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Abstract
The Video sub-group established the fourth working draft and the fourth test model algorithm description during the 129th MPEG meeting (13 to 17 January 2020, Belgium) after evaluating the core experiment results and the related contributions. This document serves as a source of general tutorial information on the MPEG Immersive Video (MIV) design. It defines the terminology used, the process and data flow, the operating modes, the algorithmic components, and the conformance points (i.e. data formats) adopted by the video group for the reference Test Model for Immersive Video (TMIV) at both the encoder and the decoder sides along with the general characteristic of the metadata and bitstream.
[bookmark: _Toc6475688]Introduction
The MPEG-I project (ISO/IEC 23090) on coded representation of immersive media supports 3 Degrees of Freedom (3DoF), where a user’s position is static but its head can yaw, pitch and roll. This is available under MPEG-I Part 2 Omnidirectional MediA Format (OMAF) version 1 published in 2018. However, rendering flat 360° video, i.e. supporting head rotations only, may generate visual discomfort especially when objects close to the viewer are rendered. 6DoF enables translation movements in horizontal, vertical, and depth directions in addition to 3DoF orientations. The translation support enables interactive motion parallax providing viewers with natural cues to their visual system and resulting in an enhanced perception of volume around them. At the 125th MPEG meeting, a call for proposals [1] was issued to enable head-scale movements within a limited space.
This document describes the fourth version of the Test Model for Immersive Video (TMIV) that was defined at the 129th meeting of MPEG in January 2020. It is aligned with the TMIV 4 reference software. It includes a description of the process flow, the operating modes, the algorithmic components, and the data formats.
[bookmark: _Toc6475689]Scope
The normative decoding process for MPEG Immersive Video (MIV) is specified in the working draft (WD) specification MPEG/N19002 [2]. The TMIV reference software (TMIV-SW) is provided to demonstrate a reference implementation of non-normative encoding and rendering techniques and the normative decoding process for MIV standard. The software is available publicly on Gitlab as detailed in Section 7. 
[bookmark: _Toc287029603][bookmark: _Toc287029606][bookmark: _Toc287029612][bookmark: _Toc287029613][bookmark: _Toc287029616][bookmark: _Toc287029618][bookmark: _Toc287029620][bookmark: _Toc287029638][bookmark: _Toc287029643][bookmark: _Toc287029650][bookmark: _Toc287029653][bookmark: _Toc287029656][bookmark: _Toc287029673][bookmark: _Toc287029674][bookmark: _Toc287029678][bookmark: _Toc287029682][bookmark: _Toc287029683][bookmark: _Toc287029687][bookmark: _Toc287029692][bookmark: _Toc287029699][bookmark: _Toc287029700][bookmark: _Toc287029706][bookmark: _Toc287029716][bookmark: _Toc287029717]This document provides an algorithmic description for the encoder and decoder sides of TMIV reference software. The purpose of this document is to promote a common understanding of the coding features and the reference methods supported in the TMIV-SW, in order to facilitate the assessment of the technical impact of new technologies during the standardization process. Common test conditions are provided in MPEG/N18997 [3]. 
Terms and definitions
For the purpose of this document, the following definitions apply in addition to the definitions in MIV specification [2] clause 3.
Table 1: Terminology definitions used for TMIV.
	Term
	Definition

	Additional view
	A transport view that is to be pruned and packed in multiple patches.

	Basic view
	A transport view that is to be packed as a single patch.

	Clustering
	Combining pixels in a pruning mask to form patches.

	Culling
	Discarding part of a rendering input based on target viewport visibility tests.

	Depth/occupancy component
	A map that indicates either depth (range) or lack of  occupancy of each pixel in a view representation.

	Entity
	An abstract concept to be defined in another standard. For example, entities may either represent different physical objects, or a segmentation of the scene based on aspects such as reflectance properties, or material definitions.

	Entity layer
	A view representation of which all samples are either part of a single entity or non-occupied. 

	Entity component
	A multi-level map indicating the entity of each pixel in a corresponding view representation.

	Entity separation
	Extracting an entity layer per a view representation that includes the desired entity component.

	Geometry scaling
	Geometry scaling is the process of scaling the geometry video data prior to encoding and reconstructing the nominal resolution geometry video data at the decoder side. 

	Inpainting
	Filling missing pixels with matching values prior to outputting a requested target view.

	Mask aggregation
	The combination of pruning masks over a number of frames to account for motion within the scene, resulting in an aggregated pruning mask.

	Metadata merging
	Combining parameters of encoded atlas groups

	Omnidirectional view
	A view representation that enables rendering according to the user's viewing orientation, if consumed with a head-mounted device, or according to user's desired viewport, otherwise, as if the user was in the spot where and when the view was captured.

	Patch packing
	Placing patches into an atlas without overlap of the occupied regions, resulting in patch parameters.

	Pose trace
	A navigation path of a virtual camera or an active viewer navigating the immersive content over time. It sets the view parameters per frame.

	Pruning
	Measuring the interview redundancy in additional views resulting in pruning masks.

	Pruning mask
	A mask on a view representation that indicates which pixels should be preserved. All other pixels may be pruned.

	Source splitting
	Partitioning views into multiple spatial groups to produce seperable atlases.

	Source view
	Indicates source video material before encoding that corresponds to the format of a view representation, which may have been acquired by capture of a 3D scene by a real camera or by projection by a virtual camera onto a surface using source camera parameters.

	Target view
	Indicates either perspective viewport or omnidirectional view at the desired viewing position and orientation.

	Transport view
	 An optimized view representation that is to be encoded.

	Texture component
	A map that indicates YCbCr of each pixel in a view representation. The sampling of luma and chorma may differ.

	View optimization
	Analyzing source views to select or synthesize multiple transport views.

	View representation
	2D sample arrays of at least a depth/occupancy component, and with optional texture and entity components, representing the projection of a 3D scene onto a surface using view parameters.


[bookmark: _Toc6475692]Description of the System and Algorithms
Process and data flow
Group-based encoder
The group-based encoder (Figure 1) is the top-level encoder of TMIV. It splits the views into multiple groups, and encodes each of the groups independently using multiple single-group encoders (section 4.1.2). There is also a variant of the single-group encoder that is capable of entity-based enocding (section 4.1.3). The resulting metadata is merged into a single MIV bitstream.
[image: ]
[bookmark: _Ref32609630]Figure 1: Processing flow of the group-based encoder
TMIV currently outputs attribute and geometry video data as separate YCbCr uncompressed video streams in addition to the MIV metadata. In a future release of TMIV, the video streams will be encoded and multiplexed along with the MIV metadata forming the final MIV bitstream. 
[bookmark: _Ref32608269]Single-group encoder
The processing flow of the single group encoder (Figure 2) includes the view optimizer, the atlas constructor, the depth/occupancy coder and the geometry scaler. Most of the work happens in the atlas constructor which by itself has pixel pruning, mask aggregation, patch packing and atlas creation stages. TMIV currently outpus attribute and geometry video data as separate YCbCr uncompressed video streams for compression by HM and not as sub bitstreams of the MIV bitstream.
Input to view optimation is a list of source views with camera parameters. The view optimizer selects or synthesizes transport views. At least one of the transport views is flagged as a basic view. Metadata after this stage is limited to sequence and view parameters. The atlas constructor creates atlases with a depth/occupancy component and an optional texture component. Metadata after this stage also includes patch data. The depth/occupancy coder remaps the depth/occupancy component of the atlases using an appropriate depth/occupancy map threshold and depth transfer function to form geometry video data that is suitable for HEVC Main 10 compression, after which the geometry scaler reduces the resolution of that video data.
[image: ]
[bookmark: _Ref32183521]Figure 2: Processing flow of the single-group encoder
[bookmark: _Ref32608250]Entity-based encoding
TMIV also allows for entity-based encoding in which an entity-based atlas constructor (Section 5.11) prunes entity layers seperately and creates patches that are occupied by single entities and labeled as such. The single-group encoder is already capable of processing entity information, so the only difference is the choice of the atlas constructor component. It is similarly possible to combine entity-based and group-based encoding. 
Decoder
The TMIV decoder (Figure 3) consists of the HM video decoders, the MIV decoder including the metadata parser and a block to patch map decoder (section 6.1), the geometry upscaler (section 6.2), a culler (section 6.3) and a renderer (section 6.4). The MIV decoder handles the parsing, decoding and buffering to produce all normative outputs frame-by-frame.
  [image: ]
[bookmark: _Ref6849426][bookmark: _Ref6475435]Figure 3: Process flow for the TMIV decoder
Atlas construction and pruned view reconstruction
Figure 4 and Figure 5 further illustrate how data is processed across key components; the atlas constructor at the encoder side and the block to patch map decoder and the renderer at the decoder side. The figures demonstrate an example of how to map between three view representations and two atlases. More details are given in the related Sections 5 and 6.
[image: ]
[bookmark: _Ref23541904]Figure 4: Atlas construction
[image: ]
[bookmark: _Ref7703230][bookmark: _Ref6475870]Figure 5: Pruned view reconstruction
IO formats and execution
Encoder inputs
Source views (with at least a depth component and optionally texture, occupancy and entity components) representing projections of a 3D real or virtual scene are made available as inputs to the TMIV encoder. The source views can be in equirectangular projection (ERP), or perspective projection (PSP). They are provided in luma and chroma 4:2:0 format with 10 bit for texture and 8...16 bit for depth/occupancy. For entity-based coding, an entity map provided in luma & chroma 4:2:0 format with 8...16 bit is added per source view (although only luma channel is used), indicating the entity that each pixel belongs to. An example of a set of input source views is illustrated in Figure 6. The source camera parameters list is provided in JSON[footnoteRef:2] format and includes the extrinsic parameters (x, y, z positions and yaw, pitch, roll orientations in the format defined by OMAF), the intrinsic parameters (focal lengths, principal points, and distortion coefficients), in addition to the projection type per source view. [2:  http://json.org/ ] 

[image: ]
[bookmark: _Ref23542404]Figure 6: Input source views composed of texture views, depth maps, and entity maps
Bitstreams
The TMIV encoder produces bitstreams of the following structure:
A V-PCC sample stream with the following V-PCC units:
· one V-PCC parameter set (VPS) and 
· one atlas data (AD) per atlas containing,
· Atlas sequence parameter set (ASPS)
· Atlas frame parameter set (AFPS)
· one special AD with the adaptation parameter set (APS) containing all view parameters. View parameters are never updated.
· one atlas data (AD) per atlas per intra period containing,
· One atlas tile group layer (ATGL) of I_TILE_GRP type
· Multiple ATGL's of SKIP_TILE_GRP type
One geometry video data (GVD) HEVC Main 10 bitstream per atlas.
One texture attribute video data (AVD) HEVC Main 10 bitstream per atlas if texture is present.
The TMIV decoder similarly expects AVD and GVD as separate bitstreams. Multiplexing of AVD and GVD as MIV sub bitstreams is postponed to a future release of TMIV.
The TMIV-SW has a full parser and formatter, but not all aspects of the specification are exercised by the 4.x versions of TMIV-SW. These aspects are:
Viewing space handling SEI
Recommended viewport SEI
Auxiliary patches
Coordinate axis system VUI parameters
OMAF v1 compatible flag
For all these aspects there is at least a unit test to prove that the information can be coded, and the decoder will print any such information to screen to prove that it was decoded. The encoding of this information is postponed to a future release of TMIV.
[Ed.(BK): Keep this list as short as possible.]
Decoder outputs
The output of the TMIV decoder is a perspective viewport or omnidirectional view according to a desired viewing pose, enabling motion parallax cues within a limited space. The rendered output is provided in luma & chroma 4:2:0 format with 10bit for texture and 16bit for depth. It can in principle be displayed on either head mounted display (HMD) or on regular 2D monitor with tracking system feeding the updated viewing position and orientation back to the renderer for the next target view.
Encoding atlases with only basic views
TMIV-SW includes a trivial view optimizer called the NoViewOptimizer that marks all source views as 'basic'. This effectively disallows the atlas constructor from pruning any of the pixels and thus the atlases will contain all of the basic views completely (typically one view per atlas). This mode helps evaluating the rendering of (compressed) views in isolation of the other TMIV components.
Configuration file generator
The TMIV-SW executable files take a configuration JSON file as input. There are no example configuration files, but TMIV-SW includes a python script make_tmiv_configs.py that generates all CTC anchor configuration files. The script is designed to be easy to modify or import and create configuration files for new experiments (e.g. The qp_tuning_configs.py is an example of that). The output will be a directory structure with a configuration file for each encoding and decoding task including pose traces. There will also be HM configuration files with the correct atlas sizes and number of frames. 
Command-line options
To run the encoder or decoder, simply pass a configuration file:
Encoder -c Configuration.json
Top-level parameters such as startFrame or OutputDirectory or OutputCameraName maybe overriden using the -p command-line option:
Decoder -c Configuration.json -p OutputCameraName v7
It is possible to run the Decoder from within the Encoder (no HM) by specifying the reconstruct flag. This is useful for development and testing:
Encoder -c Configuration.json -p reconstruct true
Coordinate systems, projections, and camera extrinsics
This section summarizes the coordinate conversions of the hypothethical view renderer (HVR) and the conventions that have been applied in TMIV.
OMAF coordinate system
Although the MIV specification is agnostic to the coordinate system of the bitstream, the TMIV world coordinate system is that of MPEG-I OMAF[footnoteRef:3] as shown in Figure 7. Coordinate axis system VUI parameters are printed by the TMIV decoder but ignored by the TMIV renderer. [3:  https://mpeg.chiariglione.org/standards/mpeg-i/omnidirectional-media-format ] 

 points forward (the reference direction for a viewer),
 points left,
 points up,
Hereby  is the notation for Cartesian unit vectors such that. For an untransformed camera the origin is the cardinal point.


[bookmark: _Ref25094854]Figure 7: OMAF coordinate system illustrating the directions of positional and rotational units.
The definition of image coordinates is:
The top-left image corner is (0, 0),
The top-left pixel center is at (½, ½),
 points right,
 points down.
[bookmark: _Ref519028989]Image positions are notated as .
Perspective projection
Perspective projection requires an intrinsic matrix:
		(1)
where all variables are in pixel units.
Projection
Taking into account the change of coordinate system, the projection equation is
	 	(2)
where  is the image position in pixel units.
Unprojection
The matching projection equation is
	 	(3)
where  is depth in meters and  is the world position in meters. Please note that depth is typically stored as normalized disparities based on a configurable depth range, however in above equation  is a length in meters.
[bookmark: _Ref519028967]Equirectangular projection
For equirectangular projection the image is mapped on a horizontal angular range  and vertical angular angle as specified in the JSON content metadata file.
Unprojection
For an image size, the spherical coordinates are:
		(4)
	 	(5)
The ray direction is:
		(6)
and the world position is:
	 	(7)
Whereby is the ray length which is the equivalent of depth  for perspective projection. Please note that also ray length is stored as normalized disparities based on a configurable ray length range, however in the above equation  is a real length.
Projection
The ray length and ray direction are trivially determined as
		(8)
		(9)
making use of the fact that valid ray lengths are 
Finally, spherical angles are then estimated from:
		(10)
		(11)
with atan2 the full circle extension of atan[footnoteRef:4]. Then the image position is [4:  https://en.wikipedia.org/wiki/Atan2] 

		(12)
		(13)
Please note that the only difference between equirectangular projection and other omnidirectional projections is the mapping between spherical coordinates and image coordinates.
Camera extrinsics
The MIV specification as well as TMIV use position vectors (t) and unit quaternions[footnoteRef:5] (q) to represent camera extrinsics.  [5:  https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation] 

The sequence configuration files and pose traces use Euler angles which are converted directly upon loading[footnoteRef:6]. Pose traces are comma-separated value files with the same six columns as the CTC tables and JSON metadata files: X, Y, Z, Yaw, Pitch, Roll. [6:  https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles] 

The two rotations and two translations to transform a point (x) from an input camera to a virtual (output) camera are combined into a single affine transformation (f):
	f: 	(15)

Where  and .
[bookmark: _Toc6475694][bookmark: _Ref6475949][bookmark: _Ref23539045][bookmark: _Toc6475695]Description of encoder-stage processing blocks
Distribution of source views in groups
Source views can be divided into multiple groups, by the source views splitter. The grouping forces the atlas constructor to output local coherent projections of important regions (e.g. belong to foreground objects or occluded regions) in the atlases leading to improvements in the subjective and objective results especially for the natural content or at high bitrate levels. An automatic process is implemented to select views per group.  It takes source camera parameters as input along with the number of groups numGroups as a preset from the config file and outputs a list of views to be included in each group. The source views are being distributed accordingly in multiple branches, each has view optimizer and atlas constructor to process each group in parallel (i.e. independently of each other). 
The source splitter operates as follows: a camera pool including all available source views is formed and the number of cameras per group is set (by dividing the number of available source views to numGroups). The camera parameters list is used to identify the range the cameras are spanning in X, Y, and Z coordinates (as defined in OMAF coordinate system). The dominant range is selected as a basis to set key positions. Key positions are located at the maximum camera positions of the dominant axis across cameras in the camera pool. Distances of views to these key positions are computed. Based on the number of cameras for the group, the closest cameras to the first key positionare selected and removed from the camera pool. Then a second key position is identified and the process is repeated covering the distribution of all source views across the chosen number of groups.
Metadata merger
Each encoder (i.e. group’s encoding stage) produces metadata with its own indexed atlases or views. A unique group ID is assigned per group and attached to the atlas parameters of the related group. In order to enable the renderer to interpret the metadata properly and map the patches correctly across all views, the merger renumbers atlas and view ID's per patch and merges the pruning graphs.
Determination of basic and additional views 
This process labels the source views as basic views or additional views.  It includes two steps: 
Determination of the number of basic views, considering direction deviation, field of view, and distance and overlap between views.
Selection of the basic views, considering the distance to a central view position and some overlap.
The input of the process is the source views and the source camera parameters list. The output of the process is a binary IsBasic vector of length equal to the number of the source views and with elements set to true “1” when the associated view is selected as basic and false “0” elsewhere.
Determination of the number of basic views
First, a pair of views (view m, view n) that has the largest direction deviation according to the equation  is found, where i and j are the indices the source views 0, with  as shown in Figure 8.


[bookmark: _Ref7426080][bookmark: _Ref6480208]Figure 8: Explanation of the directions deviation.
When two pairs provide the same maximum direction deviation, the pair which has the largest sum of field of views (FOVs) is selected: .
When two pairs provide the same maximum sum of FOVs, the pair which has the largest distance between each other is selected: 
Second, the overlap between the two views is computed, as illustrated in Figure 9.


 

[bookmark: _Ref7426559][bookmark: _Ref6480428]Figure 9: Illustration of the overlap and its calculation.
Each pixel position (i, j) of the view m is projected on the view n in position (i', j'). The weighted sum of overlapped pixels whose new position (i', j') is in the FOV of view n is computed as in the equation below, with   meaning that (i, j) is visible by both m and n views:

where  is the spherical weight of each pixel position (i, j). FOV is in Steradian unit.
Finally, the number of basic views is determined:
If , only one basic view is selected.
If overlap , multiple basic views including view m and view n are selected.
This process is applied per group. As a consequence, each group has at least one basic view.
Selection of the basic views
When the number of basic views is one, the following applies:
The source view that has the largest FOV is selected as the basic view . If several views have the same largest FOV then the following applies:
Calculate the central camera position of the source capturing system given the source camera parameters list.

Select as the basic view the source view which camera position is the closest to the central camera position:

When several basic views are needed, the following applies:
The views m and n found are selected as basic views. The view k which has the largest direction deviation with view m and view n is determined:

If the view k has less than 50% FOV overlap with the already selected basic views m and n, then view k is selected as a basic view, and the same process is repeated to find the next basic view. Otherwise the process stops. All other non-selected source views are labeled as false in the IsBasic vector (also they are referred to here as additional views).
[bookmark: _Toc6475697] Atlas constructor
The atlas constructor takes as input the basic and additional views, along with their parameters. It outputs atlases and associated parameters as shown in Figure 10. Each basic view is carried in the atlas as a single, fully occupied patch (assuming the atlas size is equal or larger than the basic view size) or into multiple atlases (otherwise). The additional views are pruned into multiple patches which may be carried along with a basic view’s patch in the same atlas if the atlas is of larger size or in separate atlas(es). 
The atlas constructor is composed of four configurable parts: the pruner, the aggregator, the patch packer and the atlas generator. The pruner and the input of the aggregator operate at the frame level. The output part of the aggregator, the patch packer, and the atlas generator operate at intra-period level. The pruner, the aggregator and the patch packer only process the depth component, as illustrated in Figure 10.
[image: ]
[bookmark: _Ref32329415]Figure 10: Detailed block diagram of the Atlas Constructor
[bookmark: _Ref32334043]Hierarchical pruner
A multiview representation of a scene inherently has interview redundancy. The purpose of the hierarchical pruner is to select which areas of the views may be safely pruned. The pruner operates on a per-frame basis, receiving multiple views with depth component plus camera parameters, and outputting masks per view and frame of the same size. For additional views, mask values are either 'pruned' (0) or 'preserved' (255). For basic views all pixels are 'preserved'.
The method has been devised with the following goals in mind:
Remove redundancy between all pairs of views,
Prefer fewer larger patches,
Consider temporal consistency,
Maintain a realistic complexity.
To achieve these goals, the pruner creates a hierarchy of views in a greedy fashion. The hierarchy (Figure 11) serves the first two goals. Temporal consistency is maintained by establishing the hierarchy only when the view parameter list changes (only at the first frame with current CTCs). The greedy nature of the algorithm keeps the complexity at bay.
[image: ]
[bookmark: _Ref23369751]Figure 11: Pruning hierarchy for one basic and three additional views. The order of the partial views is established at frames for which the view parameter list changes. Each arrow is a trial synthesis operation using only the preserved pixels.
Incremental synthesizer
The incremental synthesizer that is part of the Renderer is repurposed within the hierarchical pruner but used in a more interactive way. Instead of directly synthesizing a full multiview frame, the incremental synthesizer renders only one view at a time and is able to provide intermediate synthesis results (without inpainting). This allows the pruner to accurately determine the interview redundancy.
To speed up the synthesis, the incremental synthesizer constructs a textured mesh for preserved pixels only. The mesh has one vertex per pixel for basic views and much less vertices for additional views.
[bookmark: _Ref32334203]Establishing the pruning hierarchy
On the first frame of the sequence the following algorithm is used with above mentioned inputs and outputs:
Initialization:
For each additional view, an incremental synthesizer is initialized.
Each basic view is synthesized to each additional view.
While there are synthesizer instantiations:
1. For each instantiation, create the pruning mask.
Select the instantiation with the maximum number of preserved pixels.
Keep the associated pruning mask for output.
Synthesize the preserved regions to the other instantiations.
Remove the selected instantiation.
The preserved fraction is typically quite low for additional views and this provides a significant reduction in computational complexity. A typical case would be 100% (basic), 20% (1st additional), 10%, 5%, etc. These statistics are output for analysis purposes.
Applying the pruning hierarchy
For subsequent frames the following algorithm is used with similar complexity.
Initialization:
1. For each additional view, an incremental synthesizer is initialized.
Each basic view is synthesized to each additional view.
For each instantiation in predetermined order:
1. Update the pruning mask.
Keep the pruning mask for output.
Synthesize the preserved regions to the other instantiations.
Remove the instantiation.
Pruning mask creation
The pruner uses two criteria to determine if a pixel may be pruned:
The pixel should be synthesized by the views higher up in the hierarchy,
The ratio between synthesized and source depth should be less than a threshold.
A mask typically has holes and irregularities which are cleaned up by a classical iterative erosion and dilation method on a 3x3 structuring element: 
For the erosion, a pixel that has at least one empty neighbor is discarded (pixel = 0).
For the dilation, a pixel that has at least one non empty neighbor is filled (pixel =1).
[bookmark: _Ref30690908]Graph-based pruner
Graph-based pruning is an extension of the hierarchical pruning strategy aiming at keeping trace of the pruned views relationship to be exploited at the synthesis stage. This concept modifies the hierarchical pruner of section 5.5 in two ways:
The pruning graph is computed at the pruning stage and is updated each time the pruning order is modified;
The pruning information is then transmitted as an additional metadata, in the IV Sequence parameters.
Pruning graph
The pruning graph is a regular acyclic directed graph where each node corresponds to a view. It is defined as follows:
A node Ni of the pruning graph is connected to a node Nj if the view associated to Nj should be pruned with respect to the view associated to node Ni or any of its parent at the pruning stage (cf. Figure 11). Node Ni is called a parent of node Nj, and node Nj is called a child of node Ni.
Each basic view is associated to a root node of this graph; it doesn’t have any parent.
A leaf node doesn’t have any child.
The connections of the pruning graph are inferred from the pruning hierarchy as defined in section 5.5.2. 
Pruning information
Transmitting the pruning graph comes down to transferring, for each view, the node ids of its children or direct parents in the pruning graph.
[bookmark: _Ref32170021]Mask aggregator
The mask is reset at the beginning of each intra period. Then, an accumulation is done for each mask’s pixel i with the 1 value across the different frames of the intra period by implementing the logical operation OR as follows:
aggregatedMask[i]@current_frame =
	max(Mask[i]@current_frame, aggregatedMask[i]@previous_frame) 
The process is completed at the end of the intra period by outputting the last accumulation result. Figure 12 illustrates for a pruned view at frame i, the accumulation of non-null samples (drawn in white) between the frame i and frame i+k within an intra period; it can be seen that contours are getting thicker on the changing part of the depth map accounting for the motion within the scene.
[image: ]
[bookmark: _Ref7431543]Figure 12. AggregatedMask evolution within an intra period.
Patch packer
The packing process consists of three steps that are described in subsequent sections:
1. Clustering (Section 5.8.1)
Atlas allocation (Section 5.8.2)
Packing (Section 5.8.3)
[bookmark: _Ref24035762]Clustering
This block is in charge of identifying what is called “clusters”. A cluster is a rectangle, containing a set of connected mask pixels of 1s value obtained by a region growing process. The connection criteria of one pixel is the presence of at least one other pixel among the 8 neighbors. 
[image: ]
Figure 13: 8-pixel neighborhood for defining the connectivity criteria for region growing.
An example of the clustering is illustrated in Figure 14 where each cluster of an already pruned view is represented by a specific false color. The parameters associated to each cluster are:
x and y positions of the top left rectangle corner.
Width and height of the rectangle.
The cluster are then sorted by a decreasing size order.
[image: ]
[bookmark: _Ref7129112]Figure 14: Clusters represented in false color on a pruned view
[bookmark: _Ref24035836]Atlas allocation
This function defines the number of atlases per group by 2 input parameters passed in the configuration file:
"AtlasResolution": [Atlas width, Atlas Height]
"MaxLumaSamplesPerFrame": Maximum size of all atlases combined expressed in luma samples per frame (for texture plus depth)
The number of atlases is given by:

Currently geometry scaling is not taken into account.
[bookmark: _Ref24035837]Packing
The packing process sequentially packs each cluster into the atlases. The input parameters are the following:
“Alignment” is defined as a number of pixels, so that the patch size and the patch position are multiple of the alignment. Default value is 8.
“MinPatchSize” is the number of pixels of the smallest border of the patch, below which the patch is discarded. Default value is 8.
“Overlap” is the number of pixels which will be added to a frontier of a newly split patch; it prevents seam artefacts. Default value is 1.
“PiP” is a flag enabling the Patch-in-Patch feature when equal to 1. It allows inserting patches into other patches. Default value is 1.
The packing process is based on a version of MaxRect algorithm [6]. It considers the available “Used Space” first, by examining the space which is effectively occupied. In a second time, “Free space” is considered. It is made of intricated loops which are described by the following pseudo-code:
For each cluster:
	While the cluster splitting condition is met
		Split the cluster into 2 parts by its largest border
	For each atlas:
		Push the cluster in “Used Space” (0° rotation first, 90° otherwise)
		If the push failed:
			Push the cluster into “Free Space” (0° rotation first, 90° otherwise)
			If the push failed:
				Split the cluster into 2 parts by its largest border
				For each resulting 2 parts:
					If  smaller than MinPatchSize:
						Discard the patch
					Else:
						Put the part in the cluster priority list
The first splitting of the cluster is done under the condition (“cluster splitting condition”) that the total area of the two new resulting clusters is smaller than the area of the initial cluster by at least 10%. In order to decide how to split a cluster, the total area of two subpatches is minimized. The split is done along a line that is parallel to the shorter side of the patch. This approach allows to divide an L-shaped cluster. For other cluster shapes (e.g. C-shape), this approach does not split the cluster. Therefore, an additional cluster splitting is performed. Within the entire bounding box of the cluster, the number of Alignment×Alignment blocks that contain pixels belonging to the cluster is calculated. This number is divided by the total number of blocks within the analyzed bounding box. If that ratio is smaller than 0.3, the cluster is split in half. Splitting of C-shaped cluster usually results in two L-shaped clusters. The cluster splitting of irregularly‑shaped cluster is a recursive method, as depicted in Figure 14.
	[image: Osplitting]

	Figure 15: Recursive splitting of the patch; dashed lines: C-splitting, dotted lines: L-splitting.


The output is a patch list for each atlas with all information necessary to recover the patches at the decoder side:
The location in the atlas (patch_pos_in_atlas_x, patch_pos_in_atlas_y) along with the atlas id (AtlasId). 
The location in the original view representation (patch_pos_in_view_x, patch_pos_in_view_y), and its dimensions (patch_width_in_view,  patch_height_in_view).
The view id (ViewId), which itself refers to the de-projection parameters for that view in the decoder. 
The entity id (entityId) in case maxEntities > 1.
A possible rotation by i*90° where i = 0 or 1 (2 and 3 are supported by the standard but not implemented in TMIV).
A possible vertical flip
The packing operation from view representation to Atlas is done with rotation (first) then vertical flipping (second). Only two rotations are tested by the TMIV (among eight configurations supported by the standard, considering combinations of rotations and flipping).
Note that at the encoding side, the rotation of 90° is here meant to be from view representation to Atlas and is counter-clockwise, i.e. rotates the Y-Axis on the X axis, as illustrated in the following figure (Figure 16).
[image: ]
[bookmark: _Ref7513848][bookmark: _Ref32334294]Figure 16: Meaning of patch related parameters.
 Only the blocks that contain pixels belonging to the cluster for the current frame are copied from the source views to the atlases. The rest of the rectangular patch is set to be unoccupied. Unoccupied pixels are indicated by setting the corresponding depth pixel luma values to 0.
Atlas generator
The final operation within the atlas constructor is writing the patches in the buffer allocated to the atlas (both the depth and the texture components). Figure  illustrates the generation of an atlas, with the successive write of patch 2, 5 and 8. While the packing algorithm is using the information of samples that are mandatory and are non-pruned (represented by area inside the perimeters in dash), the copy of the patch is rectangular, resulting in a heap of possibly overlapping rectangles.
These rectangles are fully occupied in general. They may be partially empty when basic or additional views contains invalid pixels (it may be the case when these latter views are not source views for instance). In that case, the null value in the depth expresses the invalidity of a sample.
[image: ]
[bookmark: _Ref7434559]Figure 17: Successive writing of patches into an atlas.
Depth occupancy coder
[bookmark: _Ref24035973]Introduction
The Working Draft [2] specifies how to encode occupancy information within depth atlases. The decoding is based on a normalized disparity range, a depth-occupancy map threshold and an optional clamping start value. These values are signalled per view or even per patch. 
The TMIV decoder supports all cases. Assuming 10-bit full range depth atlases, the transformation may be described in pseudo-code as:
valid := x ≥ depthOccMapThreshold  
if (valid) {
	normDisp := max(kilometer-1,
		normDisp0 + (normDisp1023 - normDisp0) * (max(depthStart, x)  1023))
	depth := 1 / normDisp
}
Line 1 is part of the block to patch map decoder (Section 6.2), lines 3...5 are part of the Synthesizer (Section 6.5) and lines 2 and 6 are implicit in the TMIV decoder. 
To summarize, an atlas value is either "invalid/non-occupied" or it is a depth value in meters. There is an implementation-defined maximum depth value set to 1 km.
TMIV encoder
The atlas constructor outputs rectangular patches with full occupancy so the occupancy coding capability of the Working Draft is not fully utilized by the TMIV encoder. Because of this, the depth occupancy coder implements a simple method that recognizes two situations as depicted in Figure  and Figure 19:
When a source view has only valid depth values, depthOccMapThreshold is set to zero. This effectively encodes full occupancy (Figure 18).
When a source view has invalid depth values, depthOccMapThreshold is set to a configured value (T) and the normalized disparity range is adjusted such that the value 2T corresponds to the far depth (Figure 19).
[image: ]
[bookmark: _Ref23881801][bookmark: _Ref33828976]Figure 18: When the source material has only valid depth values, the depth occupancy coder only performs u(16) to u(10) scaling and the depth-occupancy map threshold is set to zero to signal full occupancy
[image: ]
[bookmark: _Ref23882979][bookmark: _Ref31965105]Figure 19: When the source material has invalid depth values, the depth occupancy coder not only performs u(16) to u(10) scaling, but it also sets the depth-occupancy map threshold to a configurated value (T) and the normalized disparity range is modified such that value 2T corresponds to the far depth
[bookmark: _Ref32184890][bookmark: _Toc6475698]Entity-based atlas constructor
The entity-based atlas constructor (Figure 20) is a modified version of the atlas constructor with additional components. The entity-based processing results in patches that only include regions that belong to a single entity, hence, the patch can be associated with entity ID to indicate what entity the patch was originated from. Note that in the entity-based solution, basic views are just used for pruning and packing but not being streamed in a whole patch since each patch shall carry only pixels that belong to a specific entity.
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[bookmark: _Ref32608862]Figure 20: Entity-based atlas constructor
Frame level operations
Entity maps of the frame being processed is inputted along with the texture and depth. Then a loop is established over the selected entities set by EntityEncodeRange where in each iteration the related entity layers are extracted from the transported views (texture and depth) and passed to the pruner. The pruner in turns finds the nonredundant parts and returns the related binary masks. The pixels of the basic views’ masks by default are turned on (i.e. set entirely to max grey level) by the pruner. However, for the entity implementation no patch can have pixels belong to more than one entity at a time. Thus, the basic masks are updated based on the entity maps such that pixels are turned on only for pixels belong to the extracted entity. The other pruning masks are refined as well to accurately represent the entity. Then entity masks are aggregated across frames (per entity) to account for entity motion and stored so they can be used later for the entity clustering stage. The entity masks are merged together over the entity loop to output the regular masks used for the regular aggregator. The aggregator then aggregates the merged binary masks to account for motion across frames within an intra-period.
Intra-period level operations
After processing all frames within an intra-period (i.e. GOP), the aggregator terminates the accumulation of the masks and pass them to the patch packer. The prestored aggregated entity masks are passed to the clusterer to perfrom entity-based culstering and the resulted clusters are tagged with the related entityId and queued together. After clustering over all entities, the clusters are ordered based on their patch area and those come from basic views are prioritized as well (as done in the original packer). Patches are then formed from the clusters and packed into the atlases. Note that each patch carries the same entityId of the cluster that initiated it. Finally, an atlas generator is deployed to write the texture and depth content of the patches. The content of a given patch is extracted from the associated entity view generated by an entity separator based on the patch’s entityId. This assures having the right entity content (texture and depth) being written to the patches within the formed atlases.
Depth down-scaler
When the parameter ‘depthDownScaleFlag’ is asserted in the configuration, the depth maps atlases are scaled-down by a factor of 2x2. The down-scaling yields a lower overall pixel-rate and a higher depth map encoding quality for a given bitrate. For down-scaling the depth maps a ‘max_pooling 2x2’ filter is used. The assumption is made that foreground objects are encoded as high (bright) levels. The max_pooling filter does not produce ‘in-between’ depth levels and the down-scaled output has a known bias as foreground objects are slightly dilated. Such bias can be reverted on the decoder side.
Video encoder
The HEVC encoder of profile Main10 in the Random Access configuration is used to encode the texture and depth of the atlas(es) video (in separate layers) provided in 4:2:0 10 bit format. 
[bookmark: _Toc6475699][bookmark: _Ref6475953]Description of decoder-stage processing blocks
[bookmark: _Ref33828311]Block to patch map decoder
[bookmark: _Toc6475702]The MIV decoder generates a block to patch map (aka patchId map) as specified in clause 8.5.5 [2]. The size of the block to patch map is the nominal atlas frame divided by the patch alignment (AtlasPatchPackingBlockSize). 
This patchId map gives for each sample the number of the patch that it belongs to, as illustrated in the figure below. It is simply created by iterating over all patch bounding boxes in order of increasing patch index. Figure 21 illustrates how three overlapping patches can be resolved by following the right order.
This map is then used in a loop on the atlas’s samples (or blocks) to get their respective patch index, which itself enables getting the respective view index, hence enabling the de-projection and re-projection on the viewport.
[image: ]
[bookmark: _Ref33829124]Figure 21. Block to Patch Map generation in an ordered manner to resolve the overlapping patches.
[bookmark: _Ref33828206][bookmark: _Toc6475701][bookmark: _Ref23880040]Geometry scaler
This component corresponds to Annex G.3 of MIV WD4 [2]. When the coded geometry resolution is lower than the nominal atlas resolution, then the down-scaled depth maps atlases are up-scaled to their original resolution, using correlations with the texture frame, with the following steps:
1. A ‘nearest neighbor 2x2’ up-scaler scales the depth map to its original size. The ‘max pooling’ down-scale filter grows (dilates) foreground objects. Therefore, some depth pixels are foreground that should be background, but no depth pixels are background that should be foreground. 
To revert the diation bias, the edges up-scaled depth maps are filtered using a color adaptive, conditional, erosion filter. The erosion (minimum operator) ensures that the object shrinks in size while the color adaptivity ensures that the depth edge ends up at the correct spatial position (i.e. transitions in the full-scale texture map indicate where that is). The erosion step is depicted in Figure 22: a center pixel ‘C’ is eroded (5x5 kernel) when a confident (‘●’) color neighborhood indicates the pixel more likely belongs to the background. The center pixel color is compared to the mean confident background color and the mean confident foreground color. The depth edge locations (‘X’) are considered in-confident as they might be dilated due to the max-pool downscaling.
Due to the non-linearity of such an erosion filter (i.e. pixels are eroded, or not), geometric noise can be introduced. Neighboring edge pixels can for a minimally different input give different results on the ‘erode or not-erode’ classification. 
A contour smoothness filter ensures object edges remain sufficiently smooth. To that end, a 3x3 filter is used that computes a curvature metric. Edge pixels with high curvatures are eroded.
[image: ]
[bookmark: _Ref31186300]Figure 22. Color adaptive erosion filter kernel. 
Configuration
The depth scaling uses the following parameters:
	Scope
	Name
	Type
	Description

	Global 
	depthDownScaleFlag
	Bool 
	When asserted, depth maps atlases are down-scaled 2x2 at the encoder and up-scaled 2x2 at the decoder. When negated, depth maps atlases have the same resolution as the texture maps.

	Decoder
	depthEdgeMagnitudeTh
	Int 

	In the upscaler this parameter determines the inconfident edge pixels that are candidates for color adaptive erosion and countour smoothness filtering.

	Decoder
	minForegroundConfidence
	Float
	Threshold that distinguishes foreground from background color. (e.g. 0.5)

	Decoder
	maxCurvature
	Int
	Threshold that indentifies high curvature (noisy) edges uses for contour smoothness filtering.


[bookmark: _Ref33802771][bookmark: _Ref6489221]Patch culler
The patch culler culls patches which have no overlap with the target view based on the viewing position and the orientation, to save computational cost of view rendering. It follows the same order as the patch creation. The patch and occupancy maps are updated at each frame.
The input of the patch culler is the patch map, the occupancy map, IV sequence parameters and target viewport’s camera parameters. The output of the patch culler is the updated patch and occupancy maps.
For each patch, the four corners of the patch are reprojected to the target view by using both minimum and maximum depth values of view which the patch belongs to. When area enclosed by the eight reprojected points () has no overlap with the target viewport, the patch is culled. The overlap is judged by the following functions:
If( argmin(x()) > w-1 || argmax(x())< 0 || argmin(y()) > h-1 || argmax(y())< 0)
the patch has no overlap with the targe view.
else
the patch has overlap with the targe view.
The patch map is updated as illustrated in Figure 23. If the patch is culled, the corresponding atlas’s samples are set to unusedPatchId n (n=65535 for 16-bit occupancy map).
[image: ]
[bookmark: _Ref33829272]Figure 23. Occupancy map update in an ordered manner.
[bookmark: _Ref33802398]Renderers
The TMIV has a flexible rendering engine that is able to render directly from atlases using pipelined reprojection and parallel rasterization of triangles to reduce the wall time for generating viewports. The output is a view with texture and depth of the same bit depth.
There are three renderers in TMIV: the group-based renderer, the multi-pass renderer and the single-pass renderer. As depicted in Figure 3 these renderers have three parts:
The renderers are Controllers that accept input data, invoke the Synthesizer (possibly multiple times) and the Inpainter, and forwards the output.
The Synthesizer (§6.5) reprojects, rasterizes and blends the input data.
The Inpainter (§6.6) replaces any missing pixels (indicated by level 0 in the depth map) with interpolated texture and depth data.
Single-pass renderer
The single-pass renderer has a minimal controller that performs synthesis and inpainting. It serves as an example.
[bookmark: _Ref23545789]Multi-pass renderer
The multi-pass renderer is mainly used for atlases that contain only basic views. The controller invokes the Synthesizer in multiple passes where “NumberOfPasses” and “NumberOfViewsPerPass” can be tuned as part of the configuration parameters.
At first only nearby views (or patches belonging to nearby views) are used for the synthesis to output coherent synthesis results. Then, the view selection is extended to include views further away (or patches belonging to views further away) from the target view to output more complete synthesis results. The process is repeated over the chosen number of passes. When operating on atlases, local occupancy maps are created per pass such that they include only the patchId of patches from the selected views per pass. Then they are passed to the synthesizer to render only these selected patches. Afterward, the synthesis results of individual passes are merged together in a successive manner to output a coherent and complete synthesis results. Finally, the Inpainter is engaged to fill the missing regions prior to outputting the requested target view. A block diagram of the multi-pass operation invoked by the Controller is shown in Figure 24.
[image: ]
[bookmark: _Ref6915700][bookmark: _Ref33829326]Figure 24: Process flow for the multi-pass renderer.
[bookmark: _Ref23545766]Group-based renderer
The group-based renderer is capable of rendering from local patches within each group separately. The renderer’s process flow, illustrated in Figure 25, is composed of group selection stage, multiple passes each running the synthesizer with different set of atlases and output an synthesized intermediate view, and the merging stage to combine all intermediate synthesized views into a final desired viewport. The number of groups numGroups included in the metadata is used to set the number of passes required. Also, the selection of which atlases to be used for synthesizing intermediate view in a particular pass depends on their groupId parameters included in the metadata, the group distance to the desired pose being synthesizing for (e.g. that may be requested by a head-mounted display), and the pass index. In case numGroups = 1, then the group-based renderer converges to the simple renderer. 
[image: ]
[bookmark: _Ref24028354][bookmark: _Ref33829352]Figure 25: Process flow for the group-based renderer.
To avoid having large impact on the pixel rate when numGroups > 1, a limited number of atlases per group (at least one has to be a basic view) is desired. Depending on the content motion/occlusions, there may not be enough room to carry all necessary patches within the atlases. The goal is to let the group-based renderer pick up these missing patches from other groups during the merging stage while maintaining the coherent patches generated from the lower pass synthesis (done within the same group). During the merging step, a depth check is introduced and the merging is done as follows:
If the pixel i from the lower pass synthesis has normalized disparity value id that is larger (or equal) than the normalized disparity value jd of the exact pixel j in the higher pass, then carry the pixel i from the lower pass into the merged view.
if (id >= jd ), return i.
If the pixel i from the lower pass synthesis has normalized disparity value id that is smaller than the disparity value jd of the exact pixel j in the higher pass, then there is a conflict! To resolve, the value is carried from front objects in case the depthLowQualityFlag is false. Otherwise, the value is carried from the lower pass synthesis if existed (similar to what is done in the multi-pass renderer).  
if(id < jd) {
	if(depthLowQualityFlag >0)
		return i; // Always copy from lower pass (traditional multi-pass approach) 
	else
		return j; // Always copy from the front objects
}
[bookmark: _Ref6852038][Ed.(BK): Describe the depth low quality assessment tool.]
[bookmark: _Ref33976777]Synthesizer
Introduction
Like RVS [4], the synthesis is based on:
1. Generic reprojection of image points,
a. Unprojection image to scene coordinates (using intrinsics source camera parameters),
b. Changing the frame of reference from the source to the target camera by a combined rotation and translation (using extrinsics camera parameters),
c. Projecting the scene coordinates to image coordinates (using target camera intrinsics).
Rasterizing triangles,
d. Discarding inverted triangles,
e. Creating a clipped bounding box,
f. Barycentric interpolation of color and depth values,
Blending views/pixels.
While RVS was designed to render full views, the Synthesizer works with arbitrary vertex descriptor lists, vertex attribute lists, and triangle descriptor lists (which is very much like OpenGL). The view blending is per pixel and independent of the rendering order. It is thus possible to render any triangle from any patch in any order.
Rendering from atlases
As part of the decoder (primary purpose) the renderer takes as input:
Multiple atlases with 10-bit texture and 10-bit depth (normalized disparities),
Block to patch map per atlas,
Parameters including an atlas parameters list and a camera parameters list,
Target camera parameters for a perspective viewport or an omnidirectional view.
The output of the renderer is a single view (viewport or omnidirectional) with 10-bit texture and 10-bit depth components. 
[image: ]
[bookmark: _Ref6495817]Figure 26: Creating a mesh from an atlas. Triangles between pixels from Patch 5 and 2 are omitted. Note that Patch 8 is not drawn because no triangle can be formed. Unused pixels are skipped too.
The process is to build a mesh (Figure 26) from each of the atlases:
The vertex descriptor list is formed pixel-by-pixel:
· Skip or write dummy values for unoccupied pixels (occupancy value 0xFFFF),
· Looking up the atlas parameters list using the PatchId in the occupancy map,
· Looking up the camera parameters list using the ViewId in atlas parameters list,
· Calculating the position of the vertex in the view.
· Reprojecting from the source view to the target view.
The vertex attribute list is simply the texture values converted to YUV 4:4:4.
The triangle descriptor list is formed by:
· For each pixel consider two triangles [ / ]
· Add the triangle when all vertices have the same PatchId.
This mesh is then rasterized using barycentric interpolation of texture and depth. Multiple atlases will be utilized to render from directly in order to have an efficient pipeline for mesh generation and rasterization operations.
[bookmark: _Ref7115659]Pixel blending
The blended value of a pixel component is the weighted sum over all pixel contributions. This choice enables pixel blending in arbitrary order. The weight of a contributing pixel is determined by multiplying three exponential functions with configurable parameters (Table 2). 


The weighted sums are normalized by the depth weight to reduce the required internal precision. All three inputs (ray angle, depth and stretching) are computed in the reprojection process. 
[bookmark: _Ref3563836]Table 2: Description of the blending process.
	Input
	Description
	Purpose

	RayAngle
	The angle [rad] between the ray from the input camera and the ray from the target camera.
	Prefer nearby views over views further away (soft view selection).

	Reciprocal depth
	The reciprocal of the depth value in the target view [diopter].
	Prefer foreground over background (depth ordering).

	Stretching

	The unclipped area of the triangle in the target view relative to the source view.
	Penalize triangles that stretch between foreground and background objects.


[bookmark: _Ref6852024][bookmark: _Ref6489266]View weighting synthesizer
View weighting synthesizer is an alternative to the synthesizer presented in section 6.5.
Overview
The internal process of the view weighting synthesizer relies on the following pipeline: 
Visibility: this step aims at generating a depth map for the target viewport. First a warped depth map is generated for each input view, by unprojecting/reprojecting pixels from this view towards the target view. Compared to the synthesizer presented in section 0, splat-based rasterization [7] is used rather than triangulation to reduce artifacts due to triangle degeneracy. From the warped depth maps, a single depth map is generated, namely the visibility map. This selection process is based on a pixel-wise majority voting process which takes into account the weight of each view (cf. 6.6.2). Finally, the visibility map is cleaned out using a post median filtering to remove outliers.
Shading: this step aims at computing the target viewport color. Each input view’s pixel is blended into the target viewport with a contribution / weight taking into account its consistency with the visibility map and the weight of the view it belongs to. Input contours are detected and discarded from the shading stage to avoid ghosting.
[bookmark: _Ref31278410]Weighting strategy
As mentioned in the previous section, the visibility and shading steps rely on the notion of view weighting. For each input view a weight is computed: i) as a function of the distance between the view position and the target viewport position in the case of tridimensional rigs, and ii) as a function of the distance between the target viewport position and the view forward axis for non tridimensional rigs (linear or planar). To check for the tridimensionality, a test on the singularity of the covariance matrix of the the view positions is performed.  The contribution of each pixel in the visibilty and shading pass is thus weighted by the contribution of its associated view. 
However, when dealing with pruned input views, this information is incomplete and a special additional step which makes use of the pruning information as defined in section 5.6 is performed to recover proper view weight information.
The weight of each non-pruned pixel is updated at the synthesis stage to take into account that it could “represent” other pruned pixels in the descendant hierarchy of the pruning graph (cf. Figure 27). To correctly assess the weight of a non-pruned pixel, the following procedure is applied. Let’s consider a non-pruned pixel p of a view associated to a node N of the pruning graph. Let’s call wP = wN its initial weight (which only depends on the “distance” from the view it belongs to, to the view being synthesized). Then this weight is updated as follows:
1. If the pixel p reprojects into one of the pruned pixels belonging to child views (with respect to the view p belongs to) then its weight is accumulated with the weight wO of this “child” view (which only depends on the “distance” from this child view to the view being synthesized) by wP := wP  + wO and the process is recursively repeated to the grandchildren.
If the pixel p does not reproject into one of its child views, then the previous rule is extended recursively to the grandchildren.
If the pixel p reprojects into one of its child views at an unpruned pixel then its weight is let unchanged and no more inspection of the graph is performed toward grandchildren.
 [image: ]
[bookmark: _Ref30690727]Figure 27: graph-based pruning: weight recovery procedure
Parameters
View weighting synthesizer’s parameters are presented in Table 3.
[bookmark: _Ref30686224]Table 3: parameters of the view weighting synthesizer.
	Parameter
	Type
	Description

	angularScaling
	float
	Drives the splat size at the warping stage.

	minimalWeight
	float
	Allows for splat degeneracy test at the warping stage.

	stretchFactor
	float
	Limits the splat max size at the warping stage.

	overloadFactor
	float
	Depth selection parameter at the selection stage.

	filteringPass
	int
	Number of median filtering pass to apply to the visibility map.

	blendingFactor
	float
	Used to control the blending at the shading stage.


Inpainter
In order to fill holes in the virtual view, a 2-ways inpainter is used. For each empty pixel with no information, two neighbors are being searched: the nearest non-empty pixel at the left and at the right. The color of the inpainted pixel is a weighted average of colors of the left and the right neighbor, weighted by the distances to these pixels. In the case of significant difference between depth of both neighbors, the color of the neighbor with further depth is copied instead of using a weighted average.
However, horizontal inpainting of the virtual view would cause appearance of unnaturally-oriented lines in the case of projecting ERP images to perspective views. Therefore, for ERP images the additional step of changing projection type is performed, and the search of the nearest points is performed within transverse ERP images (transverse equirectangular projection – the Cassini projection [5]). In equirectangular projection, a sphere is mapped onto a cylinder that is tangential to points on a sphere having the latitude equal to 0 degrees (Figure 28a). In transverse projection, the cylinder on which the sphere is mapped is rotated by 90 degrees, so it is tangential to points that have longitude equal to 0 degrees (Figure 28b). It changes the properties of the equirectangular projection in such a way, that the search for the nearest projected points can be performed only on the rows of the image.
	[image: cylinders]
	[image: cylinders]


[bookmark: _Ref7434597]Figure 28: Cylinders used in the projection of a sphere on a flat image in a) equirectangular projection and b) transverse equirectangular projection
A fast approximate reprojection of equirectangular image to transverse equirectangular image is used. In a first step, the length of all rows in an equirectangular image is changed to correspond to the circumference of the corresponding circle on a sphere (Figure 29a). In a second step, all columns of such image are expanded (Figure 29b), to be of the same length (Figure 29c).
[image: transverse]
[bookmark: _Ref7434647][bookmark: _Ref33829559]Figure 29: Fast reprojection of an equirectangular image (a) to transverse equirectangular image (c). Black arrows show direction of change of size of respective rows and columns of images.
Viewing space controller
The viewing space controller is in charge of applying to the viewport a smooth fade out to black according to an internal fading index computed in the decoder part in the viewing space controller (value 0 means no fade). This module computes this index from the viewport current position and orientation and from metadata related to the geometrical dimension of the viewing space and viewing direction constraints. The dimension of the viewing space is defined by the es_primitive_operation_flag through two operation alternatives which are either CSG (Constructed Solid Geometry) or interpolation. The interpolation mode makes use of metadata which lists in an ordered way the position and orientation of primitive cardinal shapes (cuboid, spheroid, half space). The CSG operation makes use of the elementary shapes which are themselves defined from primitive shapes either by CSG or interpolation. For all these modes, it is possible to compute a signed distance SD(p) which is zero at the frontier of the related shape, negative inside and positive outside, from which a positional fading index can be computed as follows:
positional fading index( p ) = clamp(
	(SD(p) + es_guard_band_size) / es_guard_band_size,
	0, 1)
 where p is the position of the viewport, and es_guard_band_size is the value of the signed distance from which the fading should start, and clamp(a, min, max) is the clamping function of a value a on the [min, max] interval. This first index should be combined multiplicatively by two orientational fading indexes related to the current viewport converted from quaternion to yaw and pitch respectively. For example, the direction fading index for the yaw is computed as follows:
yaw fading index( p ) = clamp(
	(abs(yaw - primitive_shape_viewing_direction_yaw_center) - 
		primitive_shape_viewing_direction_yaw_range +
		es_guard_band_direction_size) / es_guard_band_direction_size,
	0, 1)
where yaw is the yaw value of the viewport and primitive_shape_viewing_direction_yaw_center is the yaw converted value from the primitive viewing direction center quaternion.

The viewing direction at a given position of the viewport is obtained from the set of individual values. In Figure 30, two modes of Viewing Space are illustrated, as well as viewing direction with the arrows.
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[bookmark: _Ref24028663]Figure 30: illustration of VS creation with additive CSG (left) and interpolation (right)
[bookmark: _Ref7702078][bookmark: _Toc6475703]Reference software
Availability and use
The reference software (TMIV-SW) is publicly available on the Gitlab server[footnoteRef:7]. The software is ISO C++17 conformant and does not require external libraries. Core experiments are expected to include the reference software as a subproject and introduce new components. Alternatively core experiments may fork the test model. [7:  https://gitlab.com/mpeg-i-visual/tmiv/] 

Software architecture
Figure 31 provides a module dependency diagram (software architecture) of TMIV-SW. There is one library per component, two main executables (the encoder and decoder) and some components have a test executable. Catch2 is a header-only test framework[footnoteRef:8] that is not required but highly recommended. The Metadata library provides a full implementation of the Working Draft syntax and semantics. The Working Draft processes are spread across the Metadata, Renderer and AtlasDeconstructor libraries.  [8:  https://github.com/catchorg/Catch2] 

[image: ]
[bookmark: _Ref23535483]Figure 31: TMIV component dependency diagram. Arrows indicate "depends on" and "has access to". Dependencies are public. Hence when a library depends on the Metadata library, it implicitly depends on the Common library.
Version strategy
TMIV uses the well-known semantic versioning strategy[footnoteRef:9]. Version numbers are x.y[.z] with: [9:  https://semver.org/] 

x the major release (upped each MPEG meeting)
y the minor release (adding functionality that does not impact the CTC)
z the patch (for bugfixes)
Some of the functionality described in this document is not yet available in the x.0 release but is also not required for the CTC.
Software coordination
In case of any related inquiries, please contact one of the software coordinators:
Julien Fleureau, julien.fleureau@interdigital.com
Vinod Malamalvadakital, vinod.malamalvadakital@nokia.com
Bart Kroon, bart.kroon@philips.com
Bin Wang (王彬), 3130100819@zju.edu.cn
Contributions should be in the form of git pull requests. 
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Annex A: TMIV configuration 
The parameters setting the temporal aspect (i.e. frame parameters) of the TMIV-SW are set as follows:
"startFrame": 0,
"numberOfFrames": 97,
"intraPeriod": 32,
“extraNumberOfFrames”: 203	(Optional)
The extraNumberOfFrames option mirrors a decoded video a specified length. It is used for generating pose traces of 300 frame total.
Few other parameters to run the software in different modes pluse verify the bitstream compatibility with OMAF-v1 are shown below:
"maxEntities": 1,
"numGroups": 1,
"OmafV1CompatibleFlag": true,
When maxEntities >1 the TMIV encoder runs in entity-based mode, otherwise it runs in regular mode. 
numGroups defines the number of groups the input views will be distributed into where each group’s views can be encoded separately by the TMIV encoder.
OmafV1CompatibleFlag indicates if produced bitstream is compatible with OMAF v1.
The source views and the associated parameters are set as follows: 
"SourceTexturePathFmt": "%s_texture_4096x2048_yuv420p10le.yuv",
"SourceDepthPathFmt": "%s_depth_4096x2048_yuv420p16le.yuv",
"SourceDirectory": ".",
"SourceCameraParameters": "ClassroomVideo.json",
"SourceCameraNames": [ "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v8", "v9", "v10", "v11", "v12", "v13", "v14"]
The SourceCameraParameters are in metadata format defined in section 3.3 and provide camera parameters and source resolutions per source view. There may be more cameras in this JSON, but the ones indicated by SourceCameraNames are used in the specified order.
The target view is set as follows:
"OutputCameraName": ["v1"],
"PoseTracePath": “Apt2.csv”,
"reconstruct": false, 
"OutputDirectory": ".",
Hereby OutputCameraName has to be a camera in the SourceCameraParameters file. The pose trace is optional and when provided it shall have the pose trace format defined in section 3.3. When reconstruct is true the decoder is being called from the encoder as well (useful for debugging purposes).
When the view optimizer and atlas constructor run as separate executables, then the paths for intermediate data and metadata files have to be specified:
"BasicTexturePathFmt": “BAS_SA_R0_Tt_v%02d.yuv",
"BasicDepthPathFmt": "BAS_SA_R0_Td_v%02d.yuv",
"BasicMetadataPath": "BAS_SA_R0_Tm_vxx.bit",
"AdditionalTexturePathFmt": "ADD_SA_R0_Tt_v%02d.yuv",
"AdditionalDepthPathFmt": "ADD_SA_R0_Td_v%02d.yuv",
"AdditionalMetadataPath": "ADD_SA_R0_Tm_vxx.bit"
The following fields specify the output of the encoder and the input of the decoder:
"AtlasTexturePathFmt": "ATL_SA_R0_Tt_c%02d_4096x3072_yuv420p10le.yuv",
"AtlasDepthPathFmt": "ATL_SA_R0_Td_c%02d_4096x3072_yuv420p10le.yuv",
"AtlasMetadataPath": "ATL_SA_R0_Tm_c00.bit"
When the block to patch map decoder and the renderer are run as separate executables, then the path format for the patchId maps has to be specified:
"AtlasPatchOccupancyMapFmt": "APO_SA_R0_Td_c%02d.yuv"
The final paths to be specified are the output paths (where writing the depth content is optional): 
"OutputTexturePath": "A17_SA_R0_Tt_v1_4096x2048_yuv420p10le.yuv",
"OutputDepthPath": "A17_SA_R0_Td_v1_4096x2048_yuv420p10le.yuv",
The configuration file selects one implementation per component, but the reference software may provide some alternatives (no view optimization, renderer / group-based renderer / multi-pass renderer, or no inpainting). Core experiments will add more implementations. A component is selected through Method parameters and method parameters are specified per component in a section with the name of the method. This section has to be present even when there are no method parameters (like in ViewReducer case below). 
The configuration of components is hierarchical using the following pattern:
"Component": {
	"SubcomponentMethod": "TheSubcomponentMethod"
	"TheSubcomponentMethod": {
		(...)
	},
	(...)
}
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