INTERNATIONAL ORGANIZATION FOR STANDARDIZATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND AUDIO
ISO/IEC JTC1/SC29/WG11 N17670
April 2018, San Diego, CA, US
Title:
Test Model 1 of Versatile Video Coding (VTM 1)
Source:
JVET

	Joint Video Experts Team (JVET)

of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11

10th Meeting: San Diego, US, 10–20 Apr. 2018
	Document: JVET-J1002-v2


	Title:
	Algorithm description for Versatile Video Coding and Test Model 1 (VTM 1)

	Status:
	Output document of JVET

	Purpose:
	Algorithm description for Versatile Video Coding and Test Model 1

	Author(s) or
Contact(s):
	Jianle Chen

Elena Alshina


	Email:
	jianle.chen@huawei.com
elena_a.alshina@samsung.com


	Source:
	Editors


_____________________________
Abstract
The JVET established the first draft of the Versatile Video Coding (VVC) standard specification and the VVC Test Model 1 (VTM1) encoding method at its 10th meeting (April 10–20, 2018, San Diego, US). This document serves as a source of general tutorial information on the VVC design and also provides an encoder-side description of VTM1.
1 Introduction
At the 10th JVET meeting (April 10–20, 2018, San Diego, US), JVET defined the first draft of Versatile Video Coding (VVC) and the VVC Test Model 1 (VTM1) encoding method. It was decided to include a quadtree with nested multi-type tree using binary and ternary splits coding block structure as the initial new coding feature of VVC. Draft reference software to implement the VTM1 encoding method (and the draft VVC decoding process) has also been developed.
2 Scope

The normative decoding process for Versatile Video Coding is specified in the VVC draft 1 text specification document [1]. The VTM1 reference software is provided to demonstrate a reference implementation of non-normative encoding techniques and the normative decoding process for VVC. The reference software can be accessed via 

https://jvet.hhi.fraunhofer.de/svn/svn_VVCSoftware_VTM
This document provides an algorithm description as well as an encoder-side description of the VVC Test Model 1, which serves as a tutorial for the algorithm and encoding model implemented in the VTM1.0 software. The purpose of this document is to share a common understanding of the coding features of VVC and the reference encoding methods supported in the VTM1.0 software, in order to facilitate the assessment of the technical impact of new technologies during the standardization process. Common test conditions and software reference configurations that should be used for experimental work for conventional standard-dynamic range rectangular video content are described in JVET-J1010 [1]. Common test conditions specific to video content with high dynamic range and wide colour gamut are described in JVET-J1011 [3]. Common test conditions specific to video content for 360° omnidirectional video applications are described in JVET-J1012 [4].
3 Algorithm description of Versatile Video Coding
3.1 VVC coding architecture
As in most preceding standards, VVC has a block-based hybrid coding architecture, combining inter-picture and intra-picture prediction and transform coding with entropy coding. Figure 3‑1 shows a general block diagram of the VVC1 encoder.

[image: image1.png]residual quant. transf. coeff.

predictor




 Figure 3‑1 – General block diagram of VTM1 encoder

The picture partitioning structure, which is further described in section 3.2, divides the input video into blocks called coding tree units (CTUs). A CTU is split using a quadtree with nested multi-type tree structure into coding units (CUs), with a leaf coding unit (CU) defining a region sharing the same prediction mode (e.g. intra or inter). In this document, the term ‘unit’ defines a region of an image covering all components; the term ‘block’ is used to define a region covering a particular component (e.g. luma), and may differ in spatial location when considering the chroma sampling format such as 4:2:0.
For all the other elements of VTM1, including intra prediction processes, inter picture prediction processes, transform and quantization processes, entropy coding processes and in-loop filter processes, the corresponding HEVC processes (with the removal of partial coding features and with the necessary straight-forward adjustment) are used in the reference software to facilitate the assessment of the newly proposed technologies during the standardization process.
As agreed in the 10th JVET meeting, the following features that are found in HEVC are not included in the initial VVC test model.

· Special strong boundary smoothing for 32×32 luma block intra prediction
· Boundary smoothing across edges for intra prediction (a horizontal filter for vertical prediction and vice versa, and the first row and column with DC prediction)

· DST-VII style transform in 4×4 intra blocks
· Mode-dependent scan for intra blocks

· Quantization weighting matrices

· Residual sign bit hiding

· VPS and VPS VUI
· Dependent slices

· Tiles
· Wavefronts (entropy coding sync)
In terms of the impact of this on specific elements of the design, this includes removal of the following features (and some others):

· Partitioning of a CU into multiple PUs (including asymmetric partitionings)

· Partitioning of a CU into multiple luma blocks for intra prediction (i.e., signalling of multiple luma intra prediction modes for a CU), except for implicit splits when the CU size is too large for the maximum transform size

· The coding unit syntax element part_mode

· Partitioning of a CU into multiple TUs, except for implicit splits when the CU size is too large for the maximum transform size

· Transforms that are applied across prediction block boundaries

· The syntax element split_transform_flag

· Non-aligned luma and chroma transform blocks

· All VPS and VPS VUI syntax

· SPS syntax elements

· log2_min_luma_transform_block_size_minus2 (always use 4x4 luma and corresponding chroma)

· log2_diff_max_min_luma_transform_block_size

· max_transform_hierarchy_depth_inter

· max_transform_hierarchy_depth_intra

· amp_enabled_flag

Generally, much of the high-level syntax is yet to be determined, as are the specifics of much of the lower-level syntax and decoding process other than the basic coding architecture, the partitioning of the picture into CTUs, and the partitioning of the CTUs using a variable-depth partitioning tree.

For initial testing purposes of the aspects of the design that have not yet been determined, the test model software uses syntax, semantics, and decoding processes that correspond to those in prior well-known video coding designs. However, these aspects are considered only to be “placeholders” for specific design details yet to be determined. The exact details of the binary/ternary/quaternary segmentation tree structure to be used are also yet to be determined. This document may contain a description of some such details that should not be considered completely agreed upon.
3.2 Partitioning
3.2.1 Partitioning of the picture into CTUs
Pictures are divided into a sequence of coding tree units (CTUs). The CTU concept is same to that of the HEVC [5]

 REF _Ref513127793 \r \h 
[6]. For a picture that has three sample arrays, a CTU consists of an N×N block of luma samples together with two corresponding blocks of chroma samples. Figure 3‑1 shows the example of a picture divided into CTUs.
The maximum allowed size of the luma block in a CTU is specified to be 128×128 (although the maximum size of the luma transform blocks is 64×64).

[image: image2.emf]
Figure 3‑2 – Example of a picture divided into CTUs
3.2.2 Partitioning of the CTUs using a tree structure
In HEVC, a CTU is split into CUs by using a quaternary-tree structure denoted as coding tree to adapt to various local characteristics. The decision whether to code a picture area using inter-picture (temporal) or intra-picture (spatial) prediction is made at the leaf CU level. Each leaf CU can be further split into one, two or four PUs according to the PU splitting type. Inside one PU, the same prediction process is applied and the relevant information is transmitted to the decoder on a PU basis. After obtaining the residual block by applying the prediction process based on the PU splitting type, a leaf CU can be partitioned into transform units (TUs) according to another quaternary-tree structure similar to the coding tree for the CU. One of key feature of the HEVC structure is that it has the multiple partition conceptions including CU, PU, and TU.

In VVC, a quadtree with nested multi-type tree using binary and ternary splits segmentation structure replaces the concepts of multiple partition unit types, i.e. it removes the separation of the CU, PU and TU concepts except as needed for CUs that have a size too large for the maximum transform length, and supports more flexibility for CU partition shapes. In the coding tree structure, a CU can have either a square or rectangular shape. A coding tree unit (CTU) is first partitioned by a quaternary tree (a.k.a. quadtree) structure. Then the quaternary tree leaf nodes can be further partitioned by a multi-type tree structure. As shown in Figure 3‑3, there are four splitting types in multi-type tree structure, vertical binary splitting (SPLIT_BT_VER), horizontal binary splitting (SPLIT_BT_HOR), vertical ternary splitting (SPLIT_TT_VER), and horizontal ternary splitting (SPLIT_TT_HOR). The multi-type tree leaf nodes are called coding units (CUs), and unless the CU is too large for the maximum transform length, this segmentation is used for prediction and transform processing without any further partitioning. This means that, in most cases, the CU, PU and TU have the same block size in the quadtree with nested multi-type tree coding block structure. The exception occurs when maximum supported transform length is smaller than the width or height of the colour component of the CU. In VTM1, a CU consists of coding blocks (CBs) of different colour components, e.g. one CU contains one luma CB and two chroma CBs (unless the video is monochrome – i.e., having only one colour component).

[image: image3.emf]SPLIT_BT_VER SPLIT_BT_HOR SPLIT_TT_HOR SPLIT_TT_VER


Figure 3‑3 – Multi-type tree splitting modes
Figure 3‑4 illustrates the signalling mechanism of the partition splitting information in quadtree with nested multi-type tree coding tree structure. A coding tree unit (CTU) is treated as the root of a quaternary tree and is first partitioned by a quaternary tree structure. Each quaternary tree leaf node (when sufficiently large to allow it) is then further partitioned by a multi-type tree structure. In the multi-type tree structure, a first flag (mtt_split_cu_flag) is signalled to indicate whether the node is further partitioned; when a node is further partitioned, a second flag (mtt_split_cu_vertical_flag) is signalled to indicate the splitting direction, and then a third flag (mtt_split_cu_binary_flag) is signalled to indicate whether the split is a binary split or a ternary split. Based on the values of mtt_split_cu_vertical_flag and mtt_split_cu_binary_flag, the multi-type tree slitting mode (MttSplitMode) of a CU is derived as shown in Table 3‑1.
[image: image4.png](s

(CTU/QT_node)

(QT_nodes)

L_fiag

1 ’O mtt_spl_vertic

0 _)Omtt,sp\m,ﬂag

(QT_eaf_node/MTT node)

-0

(MTT leaf node)

(MTT_leaf_node)

C mtt_splt_binar

(MTT_nodes with BT_VER spit)
/_flag

(MTT_nodes with TT_VER splt)

—O

(MTT_nodes with BT_HOR splt)
flag

e

(MTT_nodes with TT_HOR spit)




Figure 3‑4 – Splitting flags signalling in quadtree with nested multi-type tree coding tree structure

Table 3‑1 – MttSplitMode derviation based on multi-type tree syntax elements
	MttSplitMode
	mtt_split_cu_vertical_flag
	mtt_split_cu_binary_flag

	SPLIT_TT_HOR
	0
	0

	SPLIT_BT_HOR
	0
	1

	 SPLIT_TT_VER
	1
	0

	SPLIT_BT_VER
	1
	1


Figure 3‑5 shows a CTU divided into multiple CUs with a quadtree and nested multi-type tree coding block structure, where the bold block edges represent quadtree partitioning and the remaining edges represent multi-type tree partitioning. The quadtree with nested multi-type tree partition provides a content-adaptive coding tree structure comprised of CUs. The size of the CU may be as large as the CTU or as small as 4×4 in units of luma samples. For the case of the 4:2:0 chroma format, the maximum chroma CB size is 64×64 and the minimum chroma CB size is 2×2.
In VVC, the maximum supported luma TB size is 64×64 and the maximum supported chroma TB size is 32×32. When the width or height of the CB is larger the maximum transform width or height, the CB is automatically split to meet the TB size restriction for both the horizontal and vertical direction.
[image: image5.png]



Figure 3‑5– Example of quadtree with nested multi-type tree coding block structure
The following parameters are defined and specified by SPS syntax elements for the quadtree with nested multi-type tree coding tree scheme.

–
CTU size: the root node size of a quaternary tree
–
MinQTSize: the minimum allowed quaternary tree leaf node size

–
MaxBtSize: the maximum allowed binary tree root node size

–
MaxTtSize: the maximum allowed ternary tree root node size

–
MaxMttDepth: the maximum allowed hierarchy depth of multi-type tree splitting from a quadtree leaf
–
MinBtSize: the minimum allowed binary tree leaf node size

–
MinTtSize: the minimum allowed ternary tree leaf node size

[Ed. (JC): Currently, MaxTtSize is set sequal to MaxBtSize, and MinTtSize is set equal to MinBtSize]
In one example of the quadtree with nested multi-type tree coding tree structure, the CTU size is set as 128×128 luma samples with two corresponding 64×64 blocks of 4:2:0 chroma samples, the MinQTSize is set as 16×16, the MaxBtSize and MaxTtSize are set as 64×64, the MinBtSize and MinTtSize (for both width and height) is set as 4×4, and the MaxMttDepth is set as 4. The quaternary tree partitioning is applied to the CTU first to generate quaternary tree leaf nodes. The quaternary tree leaf nodes may have a size from 16×16 (i.e., the MinQTSize) to 128×128 (i.e., the CTU size). If the leaf QT node is 128×128, it will not be further split by the binary tree since the size exceeds the MaxBtSize and MaxTtSize (i.e., 64×64). Otherwise, the leaf quadtree node could be further partitioned by the multi-type tree. Therefore, the quaternary tree leaf node is also the root node for the multi-type tree and it has multi-type tree depth (mttDepth) as 0. When the multi-type tree depth reaches MaxMttDepth (i.e., 4), no further splitting is considered. When the multi-type tree node has width equal to MinBtSize and smaller or equal to 2 * MinTtSize, no further horizontal splitting is considered. Similarly, when the multi-type tree node has height equal to MinBtSize and smaller or equal to 2 * MinTtSize, no further vertical splitting is considered.
3.2.3 Restrictions on redundant CU splits
The quadtree with nested multi-type tree coding block structure provides a highly flexible block partitioning structure. Due to the types of splits supported in the quadtree and in the multi-type tree, different splitting patterns could potentially result in the same coding block structure. In VVC, some of these redundant splitting patterns are prevented from occuring.
Figure 3‑6 illustrates the duplicated splitting patterns between a quadtree split and two levels of binary tree splits. As shown in the figure, two levels of consecutive binary tree splits could produce the same coding block structure as a quadtree split. To remove the redundancy in this case, the binary tree split for the second partition is prevented by the syntax when the parent CU is allowed to be split with quadtree. On the other hand, for the cases in which a quadtree split is not allowed at the parent level, consecutive binary tree splits that emulate a quadtree split can still be used. More specifically, in the following two cases, the two-level consecutive binary tree split is allowed:
· A quadtree leaf node with block size equal to MinQTSize, for which quadtree splitting stops while further multi-type tree splitting is allowed
· A multi-type tree node with mttDepth larger than 0 (i.e. a non-root node of the multi-type tree), where quadtree split is not allowed
This restriction applies for the CUs in P and B pictures.
[image: image6.png]



Figure 3‑6– Redundant splitting patterns of a quadtree split and cascaded binary tree splits
Figure 3‑7 and Figure 3‑8 illustrate redundant splitting patterns of binary tree splits and ternary tree splits. As shown in Figure 3‑7, two levels of consecutive binary splits in one direction could have the same coding block structure as a ternary tree split followed by a binary tree split of the central partition. In this case, the binary tree split (in the given direction) for the central partition of a ternary tree split is prevented by the syntax. This restriction applies for the CUs in all pictures.
[image: image7.png]



Figure 3‑7–Redundant splitting patterns of binary tree split and ternary tree split case 1
In Figure 3‑8, the redundancy happens when the same multi-type tree split pattern applies with a different ordering of the binary tree splitting and ternary tree splitting. In this situation, the corresponding ternary tree split for the second partition is prevented by the syntax. This restriction applies for the CUs for P and B pictures.
[image: image8.png]



Figure 3‑8–Redundant splitting patterns of binary tree split and ternary tree split case 2
When certain splits are prohibited as described above, the signalling of the corresponding syntax elements is modified to account for the prohibited cases. For example, when a case in Figure 3‑8 is identified (i.e. the ternary split is prohibited for a CU in certain direction), the syntax element mtt_split_cu_binary_flag which specifies whether the split is a binary split or a ternary split is not signalled and is instead inferred to be equal to 1 by the decoder.
3.3 Intra prediction

To be determined.
3.4 Inter picture prediction

To be determined.
3.5 Transform and quantization
To be determined.
3.6 Entropy coding

To be determined.
3.7 In-loop filter

To be determined.
4 Description of VTM1 encoder and encoding methods
4.1.1 Derivation process of coding tree structure

To be added.

5 References

[1] B. Bross, “Versatile Video Coding (Draft 1),” document JVET-J1001, 10th JVET meeting: San Diego, US, 10–20 Apr. 2018.
[2] J. Boyce, K. Sühring, X. Li, and V. Seregin, “JVET common test conditions and software reference configurations,” document JVET-J1010, 10th JVET meeting: San Diego, US, 10–20 Apr. 2018.
[3] A. Segall, E. François, and D. Rusanovskyy, “JVET common test conditions and evaluation procedures for HDR/WCG video,” document JVET-J1011, 10th JVET meeting: San Diego, US, 10–20 Apr. 2018.
[4] P. Hanhart, J. Boyce, and K. Choi, “JVET common test conditions and evaluation procedures for 360° video,” document JVET-J1012, 10th JVET meeting: San Diego, US, 10–20 Apr. 2018.
[5] High Efficiency Video Coding (HEVC), Rec. ITU-T H.265 and ISO/IEC 23008-2, Jan. 2013 (and later editions).
[6] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the High Efficiency Video Coding (HEVC) Standard”, IEEE Trans. Circuits and Systems for Video Technology, Vol. 22, No. 12, pp. 1649‒1668, Dec. 2012.

Page: 9
Date Saved: 2018-06-15

_1589799365.vsd
SPLIT_BT_VER


SPLIT_BT_HOR


SPLIT_TT_HOR


SPLIT_TT_VER



