ISO/IEC VVC
			ISO/IEC VVC
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC1/SC29/WG11
CODING OF MOVING PICTURES AND AUDIO
ISO/IEC JTC1/SC29/WG11 N17669
April 2018, San Diego, CA, US

Title:	Working Draft 1 of Versatile Video Coding
Source:	JVET

	Joint Video Experts Team (JVET)
of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11
10th Meeting: San Diego, US, 10–20 Apr. 2018
	Document: JVET-J1001-v2

	Title:
	

	Status:
	Output document approved by JVET

	Purpose:
	Draft text of video coding specification

	Author(s) or
Contact(s):
	Benjamin Bross
	Email:
	firstname.lastname@hhi.fraunhofer.de

	Source:
	Editor

[bookmark: _Toc516846256]Abstract
Since this is an early draft, topics outside of the specific aspects that have been established by recorded meeting agreements are not included in the specification. Such aspects are to be determined by further development of the VVC project in JVET. The high-level syntax for the standard is yet to be developed. The aspects of high-level syntax in this early draft are provided only to show how certain features are likely to be controlled by some high-level syntax that may have a sequence level, a picture level, and a slice level (a picture spatial region level that includes a subset of the CTUs of the picture).
Draft 1 of Versatile Video Coding.

Ed. Notes:
· Incorporated basic definitions, abbreviations and conventions
· Incorporated a basic high-level syntax (HLS) with NAL units, SPS, PPS and slice header.
· Incorporated block partitioning by a quadtree with nested multi-type tree using binary and ternary splits with
· CU leaf nodes
· Prediction at CU level
· Transform at CU level
· Minimum CU size with 4x4 luma coding block and corresponding chroma coding blocks (2x2 for 4:2:0)
· Maximum TU size with 64x64 luma transform block and corresponding chroma transform blocks (32x32 for 4:2:0)
· Minimum TU size with 4x4 luma transform block and corresponding chroma transform blocks (2x2 for 4:2:0)
· Single tree for luma and chroma

CONTENTS
Page
Abstract	i
1	Scope	1
2	Normative references	1
2.1	Identical Recommendations | International Standards	1
2.2	Paired Recommendations | International Standards equivalent in technical content	1
2.3	Additional references	1
3	Definitions	1
4	Abbreviations	6
5	Conventions	8
5.1	General	8
5.2	Arithmetic operators	8
5.3	Logical operators	8
5.4	Relational operators	8
5.5	Bit-wise operators	8
5.6	Assignment operators	9
5.7	Range notation	9
5.8	Mathematical functions	9
5.9	Order of operation precedence	11
5.10	Variables, syntax elements and tables	11
5.11	Text description of logical operations	12
5.12	Processes	13
6	Bitstream and picture formats, partitionings, scanning processes and neighbouring relationships	14
6.1	Bitstream formats	14
6.2	Source, decoded and output picture formats	14
6.3	Partitioning of pictures, slices, CTUs	16
6.3.1	Partitioning of pictures into slices	16
6.3.2	Block, quadtree and multi-type tree structures	17
6.3.3	Spatial or component-wise partitionings	17
6.4	Availability processes	17
6.4.1	Allowed binary split process	17
6.4.2	Allowed ternary split process	18
6.5	Scanning processes	19
6.5.1	CTB raster and scanning process	19
6.5.2	Up-right diagonal scan order array initialization process	19
7	Syntax and semantics	20
7.1	Method of specifying syntax in tabular form	20
7.2	Specification of syntax functions and descriptors	21
7.3	Syntax in tabular form	22
7.3.1	NAL unit syntax	22
7.3.2	Raw byte sequence payloads, trailing bits and byte alignment syntax	23
7.3.3	Slice header syntax	25
7.3.4	Slice data syntax	25
7.4	Semantics	29
7.4.1	General	29
7.4.2	NAL unit semantics	29
7.4.3	Raw byte sequence payloads, trailing bits and byte alignment semantics	30
7.4.4	Slice header semantics	33
7.4.5	Slice data semantics	34

ii	ITU-T Rec. H.VVC
			ITU-T Rec. H.VVC	i
INTERNATIONAL STANDARD
ISO/IEC VVC
ITU-T Rec. H.VVC
ITU-T RECOMMENDATION
Versatile video coding
[bookmark: _Toc382790595][bookmark: _Toc516846257]Scope
[bookmark: _Toc382790596]This Recommendation | International Standard specifies versatile video coding.
[bookmark: _Toc516846258]Normative references
The following Recommendations and International Standards contain provisions which, through reference in this text, constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent edition of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently valid ITU-T Recommendations.
[bookmark: _Toc382790597][bookmark: _Toc516846259]Identical Recommendations | International Standards
–	None
[bookmark: _Toc382790598][bookmark: _Toc516846260]Paired Recommendations | International Standards equivalent in technical content
–	None
[bookmark: _Toc382790599][bookmark: _Toc516846261]Additional references
–	[Ed. (BB): Add references as needed.]
[bookmark: _Toc382790600][bookmark: _Toc516846262]Definitions
[Ed. (BB) included basic definitions to be updated.]
For the purposes of this Recommendation | International Standard, the following definitions apply.
3.1 [bookmark: _Ref57450726][bookmark: _Toc382790601]access unit: A set of NAL units that are associated with each other according to a specified classification rule, are consecutive in decoding order, and contain exactly one coded picture.
3.2 AC transform coefficient: Any transform coefficient for which the frequency index in at least one of the two dimensions is non-zero.
3.3 bin: One bit of a bin string.
3.4 [bookmark: _Ref57450938]binarization: A set of bin strings for all possible values of a syntax element.
3.5 [bookmark: _Ref57450941]binarization process: A unique mapping process of all possible values of a syntax element onto a set of bin strings.
3.6 [bookmark: _GoBack]binary split: A split of a rectangular MxN block of samples into two blocks where a vertical split results in a first (M / 2)xN block and a second (M / 2)xN block, and a horizontal split results in a first Mx(N / 2) block and a second Mx(N / 2) block.
3.7 [bookmark: _Ref57450944]bin string: An intermediate binary representation of values of syntax elements from the binarization of the syntax element.
3.8 bi-predictive (B) slice: A slice that is decoded using intra prediction or using inter prediction with at most two motion vectors and reference indices to predict the sample values of each block.
3.9 bitstream: A sequence of bits, in the form of a NAL unit stream or a byte stream, that forms the representation of coded pictures and associated data forming one or more coded video sequences (CVSs).
3.10 block: An MxN (M-column by N-row) array of samples, or an MxN array of transform coefficients.
3.11 byte: A sequence of 8 bits, within which, when written or read as a sequence of bit values, the left-most and right-most bits represent the most and least significant bits, respectively.
3.12 [bookmark: _Ref57452290]byte-aligned: A position in a bitstream is byte-aligned when the position is an integer multiple of 8 bits from the position of the first bit in the bitstream, and a bit or byte or syntax element is said to be byte-aligned when the position at which it appears in a bitstream is byte-aligned.
3.13 byte stream: An encapsulation of a NAL unit stream containing start code prefixes and NAL units as specified in Annex TBD.
3.14 can: A term used to refer to behaviour that is allowed, but not necessarily required.
3.15 chroma: An adjective, represented by the symbols Cb and Cr, specifying that a sample array or single sample is representing one of the two colour difference signals related to the primary colours.
NOTE – The term chroma is used rather than the term chrominance in order to avoid the implication of the use of linear light transfer characteristics that is often associated with the term chrominance.
3.16 coded picture: A coded representation of a picture containing all CTUs of the picture.
3.17 coded representation: A data element as represented in its coded form.
3.18 coded video sequence (CVS): A sequence of access units that consists, in decoding order, of an IRAP access unit, followed by zero or more access units that are not IRAP access units, including all subsequent access units up to but not including any subsequent access unit that is an IRAP access unit.
3.19 coding block: An MxN block of samples for some values of M and N such that the division of a CTB into coding blocks is a partitioning.
3.20 coding tree block (CTB): An NxN block of samples for some value of N such that the division of a component into CTBs is a partitioning.
3.21 coding tree unit (CTU): A CTB of luma samples, two corresponding CTBs of chroma samples of a picture that has three sample arrays, or a CTB of samples of a monochrome picture or a picture that is coded using three separate colour planes and syntax structures used to code the samples.
3.22 coding unit (CU): A coding block of luma samples, two corresponding coding blocks of chroma samples of a picture that has three sample arrays, or a coding block of samples of a monochrome picture or a picture that is coded using three separate colour planes and syntax structures used to code the samples.
3.23 component: An array or single sample from one of the three arrays (luma and two chroma) that compose a picture in 4:2:0, 4:2:2, or 4:4:4 colour format or the array or a single sample of the array that compose a picture in monochrome format.
3.24 context variable: A variable specified for the adaptive binary arithmetic decoding process of a bin by an equation containing recently decoded bins.
3.25 decoded picture: A decoded picture is derived by decoding a coded picture.
3.26 decoder: An embodiment of a decoding process.
3.27 decoding order: The order in which syntax elements are processed by the decoding process.
3.28 [bookmark: _Ref57451212]decoding process: The process specified in this Specification that reads a bitstream and derives decoded pictures from it.
3.29 emulation prevention byte: A byte equal to 0x03 that is present within a NAL unit when the syntax elements of the bitstream form certain patterns of byte values in a manner that ensures that no sequence of consecutive byte-aligned bytes in the NAL unit can contain a start code prefix.
3.30 encoder: An embodiment of an encoding process.
3.31 encoding process: A process not specified in this Specification that produces a bitstream conforming to this Specification.
3.32 flag: A variable or single-bit syntax element that can take one of the two possible values: 0 and 1.
3.33 frequency index: A one-dimensional or two-dimensional index associated with a transform coefficient prior to the application of a transform in the decoding process.
3.34 informative: A term used to refer to content provided in this Specification that does not establish any mandatory requirements for conformance to this Specification and thus is not considered an integral part of this Specification.
3.35 inter coding: Coding of a coding block, slice, or picture that uses inter prediction.
3.36 inter prediction: A prediction derived in a manner that is dependent on data elements (e.g., sample values or motion vectors) of one or more reference pictures.
NOTE – A prediction from a reference picture that is the current picture itself is also inter prediction.
3.37 intra coding: Coding of a coding block, slice, or picture that uses intra prediction.
3.38 intra prediction: A prediction derived from only data elements (e.g., sample values) of the same decoded slice without referring to a reference picture.
3.39 intra random access point (IRAP) access unit: An access unit in which the coded picture is an IRAP picture.
3.40 intra random access point (IRAP) picture: A coded picture for which each VCL NAL unit has nal_unit_type in the range of TBD, inclusive.
	[Ed. (BB): IRAP NAL unit types yet to be defined (if such types will exist), pending further specification development.]
3.41 intra (I) slice: A slice that is decoded using intra prediction only.
3.42 leaf: A terminating node of a tree that is a root node of a tree of depth 0.
3.43 level: A defined set of constraints on the values that may be taken by the syntax elements and variables of this Specification, or the value of a transform coefficient prior to scaling.
NOTE – The same set of levels is defined for all profiles, with most aspects of the definition of each level being in common across different profiles. Individual implementations may, within the specified constraints, support a different level for each supported profile.
3.44 list 0 (list 1) motion vector: A motion vector associated with a reference index pointing into reference picture list 0 (list 1).
3.45 list 0 (list 1) prediction: Inter prediction of the content of a slice using a reference index pointing into reference picture list 0 (list 1).
3.46 [bookmark: _Ref57451468]luma: An adjective, represented by the symbol or subscript Y or L, specifying that a sample array or single sample is representing the monochrome signal related to the primary colours.
NOTE – The term luma is used rather than the term luminance in order to avoid the implication of the use of linear light transfer characteristics that is often associated with the term luminance. The symbol L is sometimes used instead of the symbol Y to avoid confusion with the symbol y as used for vertical location.
3.47 may: A term that is used to refer to behaviour that is allowed, but not necessarily required.
NOTE – In some places where the optional nature of the described behaviour is intended to be emphasized, the phrase "may or may not" is used to provide emphasis.
3.48 [bookmark: _Ref57451851]motion vector: A two-dimensional vector used for inter prediction that provides an offset from the coordinates in the decoded picture to the coordinates in a reference picture.
3.49 multi-type tree: A tree in which a parent node can be split either into two child nodes using a binary split or into three child nodes using a ternary split, each of which may become parent node for another split into either two or three child nodes.
3.50 must: A term that is used in expressing an observation about a requirement or an implication of a requirement that is specified elsewhere in this Specification (used exclusively in an informative context).
3.51 network abstraction layer (NAL) unit: A syntax structure containing an indication of the type of data to follow and bytes containing that data in the form of an RBSP interspersed as necessary with emulation prevention bytes.
3.52 network abstraction layer (NAL) unit stream: A sequence of NAL units.
3.53 non-VCL NAL unit: A NAL unit that is not a VCL NAL unit.
3.54 note: A term that is used to prefix informative remarks (used exclusively in an informative context).
3.55 output order: The order in which the decoded pictures are output from the decoded picture buffer (for the decoded pictures that are to be output from the decoded picture buffer).
3.56 parameter: A syntax element of a sequence parameter set (SPS) or picture parameter set (PPS), or the second word of the defined term quantization parameter.
3.57 partitioning: The division of a set into subsets such that each element of the set is in exactly one of the subsets.
3.58 [bookmark: _Ref57459798]picture: An array of luma samples in monochrome format or an array of luma samples and two corresponding arrays of chroma samples in 4:2:0, 4:2:2, and 4:4:4 colour format.
NOTE – A picture may be either a frame or a field. However, in one CVS, either all pictures are frames or all pictures are fields.
3.59 picture parameter set (PPS): A syntax structure containing syntax elements that apply to zero or more entire coded pictures as determined by a syntax element found in each slice header.
3.60 picture order count (POC): A variable that is associated with each picture, uniquely identifies the associated picture among all pictures in the CVS, and, when the associated picture is to be output from the decoded picture buffer, indicates the position of the associated picture in output order relative to the output order positions of the other pictures in the same CVS that are to be output from the decoded picture buffer.
3.61 prediction: An embodiment of the prediction process.
3.62 prediction process: The use of a predictor to provide an estimate of the data element (e.g., sample value or motion vector) currently being decoded.
3.63 predictive (P) slice: A slice that is decoded using intra prediction or using inter prediction with at most one motion vector and reference index to predict the sample values of each block.
3.64 [bookmark: _Ref57452034]predictor: A combination of specified values or previously decoded data elements (e.g., sample value or motion vector) used in the decoding process of subsequent data elements.
3.65 profile: A specified subset of the syntax of this Specification.
3.66 pulse code modulation (PCM): Coding of the samples of a block by directly representing the sample values without prediction or application of a transform.
3.67 quadtree: A tree in which a parent node can be split into four child nodes, each of which may become parent node for another split into four child nodes.
3.68 quantization parameter: A variable used by the decoding process for scaling of transform coefficient levels.
3.69 random access: The act of starting the decoding process for a bitstream at a point other than the beginning of the stream.
3.70 raster scan: A mapping of a rectangular two-dimensional pattern to a one-dimensional pattern such that the first entries in the one-dimensional pattern are from the first top row of the two-dimensional pattern scanned from left to right, followed similarly by the second, third, etc., rows of the pattern (going down) each scanned from left to right.
3.71 [bookmark: _Ref57451962]raw byte sequence payload (RBSP): A syntax structure containing an integer number of bytes that is encapsulated in a NAL unit and that is either empty or has the form of a string of data bits containing syntax elements followed by an RBSP stop bit and zero or more subsequent bits equal to 0.
3.72 [bookmark: _Ref57451966]raw byte sequence payload (RBSP) stop bit: A bit equal to 1 present within a raw byte sequence payload (RBSP) after a string of data bits, for which the location of the end within an RBSP can be identified by searching from the end of the RBSP for the RBSP stop bit, which is the last non-zero bit in the RBSP.
3.73 reference index: An index into a reference picture list.
3.74 reference picture: A picture that is a short-term reference picture.
NOTE – A reference picture contains samples that may be used for inter prediction in the decoding process of subsequent pictures in decoding order.
3.75 reference picture list: A list of reference pictures that is used for inter prediction of a P or B slice.
NOTE – For the decoding process of a P slice, there is one reference picture list – reference picture list 0. For the decoding process of a B slice, there are two reference picture lists – reference picture list 0 and reference picture list 1.
3.76 reference picture list 0: The reference picture list used for inter prediction of a P or the first reference picture list used for inter prediction of a B slice.
3.77 reference picture list 1: The second reference picture list used for inter prediction of a B slice.
3.78 reserved: A term that may be used to specify that some values of a particular syntax element are for future use by ITU-T | ISO/IEC and shall not be used in bitstreams conforming to this version of this Specification, but may be used in bitstreams conforming to future extensions of this Specification by ITUT | ISO/IEC.
3.79 residual: The decoded difference between a prediction of a sample or data element and its decoded value.
3.80 scaling: The process of multiplying transform coefficient levels by a factor, resulting in transform coefficients.
3.81 sequence parameter set (SPS): A syntax structure containing syntax elements that apply to zero or more entire CVSs as determined by the content of a syntax element found in the PPS referred to by a syntax element found in each slice header.
3.82 shall: A term used to express mandatory requirements for conformance to this Specification.
NOTE – When used to express a mandatory constraint on the values of syntax elements or on the results obtained by operation of the specified decoding process, it is the responsibility of the encoder to ensure that the constraint is fulfilled. When used in reference to operations performed by the decoding process, any decoding process that produces identical cropped decoded pictures to those output from the decoding process described in this Specification conforms to the decoding process requirements of this Specification.
3.83 short-term reference picture: A picture that is marked as "used for short-term reference".
3.84 should: A term used to refer to behaviour of an implementation that is encouraged to be followed under anticipated ordinary circumstances, but is not a mandatory requirement for conformance to this Specification.
3.85 slice: An integer number of CTUs ordered consecutively in the raster scan and contained in a single NAL unit.
3.86 slice header: A part of a coded slice containing the data elements pertaining to the first or all CTUs represented in the slice.
3.87 source: A term used to describe the video material or some of its attributes before encoding.
3.88 start code prefix: A unique sequence of three bytes equal to 0x000001 embedded in the byte stream as a prefix to each NAL unit.
NOTE – The location of a start code prefix can be used by a decoder to identify the beginning of a new NAL unit and the end of a previous NAL unit. Emulation of start code prefixes is prevented within NAL units by the inclusion of emulation prevention bytes.
3.89 string of data bits (SODB): A sequence of some number of bits representing syntax elements present within a raw byte sequence payload prior to the raw byte sequence payload stop bit, where the left-most bit is considered to be the first and most significant bit, and the right-most bit is considered to be the last and least significant bit.
3.90 syntax element: An element of data represented in the bitstream.
3.91 syntax structure: Zero or more syntax elements present together in the bitstream in a specified order.
3.92 ternary split: A split of a rectangular MxN block of samples into three blocks where a vertical split results in a first (M / 4)xN block, a second (M / 2)xN block, a third (M / 4)xN block, and a horizontal split results in a first Mx(N / 4) block, a second Mx(N / 2) block, a third Mx(N / 4) block.
3.93 transform: A part of the decoding process by which a block of transform coefficients is converted to a block of spatial-domain values.
3.94 transform block: A rectangular MxN block of samples resulting from a transform in the decoding process.
3.95 transform coefficient: A scalar quantity, considered to be in a frequency domain, that is associated with a particular one-dimensional or two-dimensional frequency index in a transform in the decoding process.
3.96 transform coefficient level: An integer quantity representing the value associated with a particular twodimensional frequency index in the decoding process prior to scaling for computation of a transform coefficient value.
3.97 transform unit (TU): A transform block of luma samples and two corresponding transform blocks of chroma samples of a picture and syntax structures used to transform the transform block samples.
3.98 tree: A tree is a finite set of nodes with a unique root node.
3.99 unspecified: A term that may be used to specify some values of a particular syntax element to indicate that the values have no specified meaning in this Specification and will not have a specified meaning in the future as an integral part of future versions of this Specification.
3.100 video coding layer (VCL) NAL unit: A collective term for coded slice NAL units and the subset of NAL units that have reserved values of nal_unit_type that are classified as VCL NAL units in this Specification.
[bookmark: _Toc516846263]Abbreviations
[Ed. (BB) included some basic definitions (some of which are not currently used), to be updated.]
For the purposes of this Recommendation | International Standard, the following abbreviations apply.
B	Bi-predictive
CABAC	Context-based Adaptive Binary Arithmetic Coding
CB	Coding Block
CBR	Constant Bit Rate
CPB	Coded Picture Buffer
CRC	Cyclic Redundancy Check
CTB	Coding Tree Block
CTU	Coding Tree Unit
CU	Coding Unit
CVS	Coded Video Sequence
DPB	Decoded Picture Buffer
EG	Exponential-Golomb
EGk	k-th order Exponential-Golomb
FCC	Federal Communications Commission (of the United States)
FIFO	First-In, First-Out
FIR	Finite Impulse Response
FL	Fixed-Length
GBR	Green, Blue and Red
I	Intra
IRAP	Intra Random Access Point
LPS	Least Probable Symbol
LSB	Least Significant Bit
MPS	Most Probable Symbol
MSB	Most Significant Bit
MVP	Motion Vector Prediction
NAL	Network Abstraction Layer
NTSC	National Television System Committee (of the United States)
P	Predictive
PCM	Pulse Code Modulation
POC	Picture Order Count
PPS	Picture Parameter Set
QP	Quantization Parameter
RBSP	Raw Byte Sequence Payload
RGB	Same as GBR
RPS	Reference Picture Set
SAR	Sample Aspect Ratio
SEI	Supplemental Enhancement Information
SMPTE	Society of Motion Picture and Television Engineers
SODB	String Of Data Bits
SPS	Sequence Parameter Set
TR	Truncated Rice
UCS	Universal Coded Character Set
UTF	UCS Transmission Format
VBR	Variable Bit Rate
VCL	Video Coding Layer
[bookmark: _Toc382790602][bookmark: _Toc516846264]
Conventions
[bookmark: _Toc415475782][bookmark: _Toc423599057][bookmark: _Toc423601561][bookmark: _Toc501130127][bookmark: _Toc510795050][bookmark: _Toc516846265]General
NOTE – The mathematical operators used in this Specification are similar to those used in the C programming language. However, the results of integer division and arithmetic shift operations are defined more precisely, and additional operations are defined, such as exponentiation and real-valued division. Numbering and counting conventions generally begin from 0, e.g., "the first" is equivalent to the 0-th, "the second" is equivalent to the 1-th, etc.
[bookmark: _Toc33005123][bookmark: _Toc20134224][bookmark: _Toc24455817][bookmark: _Toc77680335][bookmark: _Toc118289001][bookmark: _Toc226456471][bookmark: _Toc248045174][bookmark: _Toc287363730][bookmark: _Toc311216713][bookmark: _Toc317198678][bookmark: _Toc415475783][bookmark: _Toc423599058][bookmark: _Toc423601562][bookmark: _Toc501130128][bookmark: _Toc510795051][bookmark: _Toc516846266]Arithmetic operators
The following arithmetic operators are defined as follows:
	+
	Addition

	−
	Subtraction (as a two-argument operator) or negation (as a unary prefix operator)

	*
	Multiplication, including matrix multiplication

	xy
	Exponentiation. Specifies x to the power of y. In other contexts, such notation is used for superscripting not intended for interpretation as exponentiation.

	/
	Integer division with truncation of the result toward zero. For example, 7 / 4 and −7 / −4 are truncated to 1 and −7 / 4 and 7 / −4 are truncated to −1.

	÷
	Used to denote division in mathematical equations where no truncation or rounding is intended.

	
	Used to denote division in mathematical equations where no truncation or rounding is intended.

	
	The summation of f(i) with i taking all integer values from x up to and including y.

	x % y
	Modulus. Remainder of x divided by y, defined only for integers x and y with x >= 0 and y > 0.

[bookmark: _Toc219707772][bookmark: _Toc219707773][bookmark: _Toc219707774][bookmark: _Toc219707775][bookmark: _Toc488804403][bookmark: _Toc496067375][bookmark: _Toc496067608][bookmark: _Toc20134225][bookmark: _Toc77680336][bookmark: _Toc118289002][bookmark: _Toc226456472][bookmark: _Toc248045175][bookmark: _Toc287363731][bookmark: _Toc311216714][bookmark: _Toc317198679][bookmark: _Toc415475784][bookmark: _Toc423599059][bookmark: _Toc423601563][bookmark: _Toc501130129][bookmark: _Toc510795052][bookmark: _Toc516846267]Logical operators
The following logical operators are defined as follows:
x && y	Boolean logical "and" of x and y
x | | y	Boolean logical "or" of x and y
!	Boolean logical "not"
x ? y : z	If x is TRUE or not equal to 0, evaluates to the value of y; otherwise, evaluates to the value of z.
[bookmark: _Toc488804404][bookmark: _Toc496067376][bookmark: _Toc496067609][bookmark: _Toc20134226][bookmark: _Toc77680337][bookmark: _Toc118289003][bookmark: _Toc226456473][bookmark: _Toc248045176][bookmark: _Toc287363732][bookmark: _Toc311216715][bookmark: _Toc317198680][bookmark: _Toc415475785][bookmark: _Toc423599060][bookmark: _Toc423601564][bookmark: _Toc501130130][bookmark: _Toc510795053][bookmark: _Toc516846268]Relational operators
The following relational operators are defined as follows:
>	Greater than
>=	Greater than or equal to
<	Less than
<=	Less than or equal to
= =	Equal to
!=	Not equal to
When a relational operator is applied to a syntax element or variable that has been assigned the value "na" (not applicable), the value "na" is treated as a distinct value for the syntax element or variable. The value "na" is considered not to be equal to any other value.
[bookmark: _Toc488804405][bookmark: _Toc496067377][bookmark: _Toc496067610][bookmark: _Toc20134227][bookmark: _Toc77680338][bookmark: _Toc118289004][bookmark: _Toc226456474][bookmark: _Toc248045177][bookmark: _Toc287363733][bookmark: _Toc311216716][bookmark: _Toc317198681][bookmark: _Toc415475786][bookmark: _Toc423599061][bookmark: _Toc423601565][bookmark: _Toc501130131][bookmark: _Toc510795054][bookmark: _Toc516846269]Bit-wise operators
The following bit-wise operators are defined as follows:
&	Bit-wise "and". When operating on integer arguments, operates on a two's complement representation of the integer value. When operating on a binary argument that contains fewer bits than another argument, the shorter argument is extended by adding more significant bits equal to 0.
|	Bit-wise "or". When operating on integer arguments, operates on a two's complement representation of the integer value. When operating on a binary argument that contains fewer bits than another argument, the shorter argument is extended by adding more significant bits equal to 0.
[bookmark: _Toc488804406][bookmark: _Toc496067378][bookmark: _Toc496067611][bookmark: _Toc20134228]^	Bit-wise "exclusive or". When operating on integer arguments, operates on a two's complement representation of the integer value. When operating on a binary argument that contains fewer bits than another argument, the shorter argument is extended by adding more significant bits equal to 0.
x >> y	Arithmetic right shift of a two's complement integer representation of x by y binary digits. This function is defined only for non-negative integer values of y. Bits shifted into the most significant bits (MSBs) as a result of the right shift have a value equal to the MSB of x prior to the shift operation.
x << y	Arithmetic left shift of a two's complement integer representation of x by y binary digits. This function is defined only for non-negative integer values of y. Bits shifted into the least significant bits (LSBs) as a result of the left shift have a value equal to 0.
[bookmark: _Toc77680339][bookmark: _Toc118289005][bookmark: _Toc226456475][bookmark: _Toc248045178][bookmark: _Toc287363734][bookmark: _Toc311216717][bookmark: _Toc317198682][bookmark: _Toc415475787][bookmark: _Toc423599062][bookmark: _Toc423601566][bookmark: _Toc501130132][bookmark: _Toc510795055][bookmark: _Toc516846270]Assignment operators
The following arithmetic operators are defined as follows:
=	Assignment operator
+ +	Increment, i.e., x+ + is equivalent to x = x + 1; when used in an array index, evaluates to the value of the variable prior to the increment operation.
− −	Decrement, i.e., x− − is equivalent to x = x − 1; when used in an array index, evaluates to the value of the variable prior to the decrement operation.
+=	Increment by amount specified, i.e., x += 3 is equivalent to x = x + 3, and x += (−3) is equivalent to x = x + (−3).
−=	Decrement by amount specified, i.e., x −= 3 is equivalent to x = x − 3, and x −= (−3) is equivalent to x = x − (−3).
[bookmark: _Toc77680340][bookmark: _Toc118289006][bookmark: _Toc226456476][bookmark: _Toc248045179][bookmark: _Toc287363735][bookmark: _Toc311216718][bookmark: _Toc317198683][bookmark: _Toc415475788][bookmark: _Toc423599063][bookmark: _Toc423601567][bookmark: _Toc501130133][bookmark: _Toc510795056][bookmark: _Toc516846271][bookmark: _Toc24455822]Range notation
The following notation is used to specify a range of values:
x = y..z	x takes on integer values starting from y to z, inclusive, with x, y, and z being integer numbers and z being greater than y.
[bookmark: _Toc77680341][bookmark: _Toc118289007][bookmark: _Ref196969207][bookmark: _Toc226456477][bookmark: _Toc248045180][bookmark: _Toc287363736][bookmark: _Toc311216719][bookmark: _Toc317198684][bookmark: _Toc415475789][bookmark: _Toc423599064][bookmark: _Toc423601568][bookmark: _Toc501130134][bookmark: _Toc510795057][bookmark: _Toc516846272]Mathematical functions
The following mathematical functions are defined:
Abs(x) = 		(51)
Asin(x)	the trigonometric inverse sine function, operating on an argument x that is
in the range of −1.0 to 1.0, inclusive, with an output value in the range of
−π÷2 to π÷2, inclusive, in units of radians		(52)
Atan(x)	the trigonometric inverse tangent function, operating on an argument x, with
an output value in the range of −π÷2 to π÷2, inclusive, in units of radians	(53)
Atan2(y, x) = 	(54)
Ceil(x)	the smallest integer greater than or equal to x.	(55)
Clip1Y(x) = Clip3(0, (1 << BitDepthY) − 1, x)		(56)
Clip1C(x) = Clip3(0, (1 << BitDepthC) − 1, x)		(57)
Clip3(x, y, z) = 		(58)
Cos(x)	the trigonometric cosine function operating on an argument x in units of radians.	(59)
Floor(x)	the largest integer less than or equal to x.		(510)
GetCurrMsb(a, b, c, d) = 	(511)
Ln(x)	the natural logarithm of x (the base-e logarithm, where e is the natural logarithm base constant 2.718 281 828...).		(512)
Log2(x)	the base-2 logarithm of x.		(513)
Log10(x) the base-10 logarithm of x.		(514)
Min(x, y) = 		(515)
Max(x, y) = 		(516)
Round(x) = Sign(x) * Floor(Abs(x) + 0.5)		(517)
Sign(x) = 		(518)
Sin(x)	the trigonometric sine function operating on an argument x in units of radians	(519)
[bookmark: _Hlk508806393]Sqrt(x) = 		(520)
[bookmark: _Toc226456478][bookmark: _Toc248045181][bookmark: _Toc287363737][bookmark: _Toc311216720][bookmark: _Toc317198685]Swap(x, y) = (y, x)		(521)
Tan(x)	the trigonometric tangent function operating on an argument x in units of radians	(522)
[bookmark: _Toc415475790][bookmark: _Toc423599065][bookmark: _Toc423601569][bookmark: _Toc501130135][bookmark: _Toc510795058][bookmark: _Toc516846273]Order of operation precedence
When order of precedence in an expression is not indicated explicitly by use of parentheses, the following rules apply:
–	Operations of a higher precedence are evaluated before any operation of a lower precedence.
–	Operations of the same precedence are evaluated sequentially from left to right.
Table 51 specifies the precedence of operations from highest to lowest; a higher position in the table indicates a higher precedence.
NOTE – For those operators that are also used in the C programming language, the order of precedence used in this Specification is the same as used in the C programming language.
[bookmark: _Ref215994896][bookmark: _Toc246350677][bookmark: _Toc287363916][bookmark: _Toc415476431][bookmark: _Toc423602466][bookmark: _Toc423602640][bookmark: _Toc501130551][bookmark: _Toc510795476]Table 51 – Operation precedence from highest (at top of table) to lowest (at bottom of table)
	operations (with operands x, y, and z)

	"x++", "x− −"

	"!x", "−x" (as a unary prefix operator)

	xy

	"x * y", "x / y", "x ÷ y", "", "x % y"

	"x + y", "x − y" (as a two-argument operator), ""

	"x << y", "x >> y"

	"x < y", "x <= y", "x > y", "x >= y"

	"x = = y", "x != y"

	"x & y"

	"x | y"

	"x && y"

	"x | | y"

	"x ? y : z"

	"x..y"

	"x = y", "x += y", "x −= y"

[bookmark: _Toc219707783][bookmark: _Toc77680342][bookmark: _Toc118289008][bookmark: _Toc226456479][bookmark: _Toc248045182][bookmark: _Toc287363738][bookmark: _Toc311216721][bookmark: _Toc317198686][bookmark: _Ref350427772][bookmark: _Toc415475791][bookmark: _Toc423599066][bookmark: _Toc423601570][bookmark: _Toc501130136][bookmark: _Toc510795059][bookmark: _Toc516846274]Variables, syntax elements and tables
Syntax elements in the bitstream are represented in bold type. Each syntax element is described by its name (all lower case letters with underscore characters), and one descriptor for its method of coded representation. The decoding process behaves according to the value of the syntax element and to the values of previously decoded syntax elements. When a value of a syntax element is used in the syntax tables or the text, it appears in regular (i.e., not bold) type.
In some cases the syntax tables may use the values of other variables derived from syntax elements values. Such variables appear in the syntax tables, or text, named by a mixture of lower case and upper case letter and without any underscore characters. Variables starting with an upper case letter are derived for the decoding of the current syntax structure and all depending syntax structures. Variables starting with an upper case letter may be used in the decoding process for later syntax structures without mentioning the originating syntax structure of the variable. Variables starting with a lower case letter are only used within the clause in which they are derived.
In some cases, "mnemonic" names for syntax element values or variable values are used interchangeably with their numerical values. Sometimes "mnemonic" names are used without any associated numerical values. The association of values and names is specified in the text. The names are constructed from one or more groups of letters separated by an underscore character. Each group starts with an upper case letter and may contain more upper case letters.
NOTE – The syntax is described in a manner that closely follows the C-language syntactic constructs.
Functions that specify properties of the current position in the bitstream are referred to as syntax functions. These functions are specified in clause 7.2 and assume the existence of a bitstream pointer with an indication of the position of the next bit to be read by the decoding process from the bitstream. Syntax functions are described by their names, which are constructed as syntax element names and end with left and right round parentheses including zero or more variable names (for definition) or values (for usage), separated by commas (if more than one variable).
Functions that are not syntax functions (including mathematical functions specified in clause 5.8) are described by their names, which start with an upper case letter, contain a mixture of lower and upper case letters without any underscore character, and end with left and right parentheses including zero or more variable names (for definition) or values (for usage) separated by commas (if more than one variable).
A one-dimensional array is referred to as a list. A two-dimensional array is referred to as a matrix. Arrays can either be syntax elements or variables. Subscripts or square parentheses are used for the indexing of arrays. In reference to a visual depiction of a matrix, the first subscript is used as a row (vertical) index and the second subscript is used as a column (horizontal) index. The indexing order is reversed when using square parentheses rather than subscripts for indexing. Thus, an element of a matrix s at horizontal position x and vertical position y may be denoted either as s[x][y] or as syx. A single column of a matrix may be referred to as a list and denoted by omission of the row index. Thus, the column of a matrix s at horizontal position x may be referred to as the list s[x].
A specification of values of the entries in rows and columns of an array may be denoted by { {...} {...} }, where each inner pair of brackets specifies the values of the elements within a row in increasing column order and the rows are ordered in increasing row order. Thus, setting a matrix s equal to { { 1 6 } { 4 9 }} specifies that s[0][0] is set equal to 1, s[1][0] is set equal to 6, s[0][1] is set equal to 4, and s[1][1] is set equal to 9.
Binary notation is indicated by enclosing the string of bit values by single quote marks. For example, '01000001' represents an eight-bit string having only its second and its last bits (counted from the most to the least significant bit) equal to 1.
Hexadecimal notation, indicated by prefixing the hexadecimal number by "0x", may be used instead of binary notation when the number of bits is an integer multiple of 4. For example, 0x41 represents an eight-bit string having only its second and its last bits (counted from the most to the least significant bit) equal to 1.
Numerical values not enclosed in single quotes and not prefixed by "0x" are decimal values.
A value equal to 0 represents a FALSE condition in a test statement. The value TRUE is represented by any value different from zero.
[bookmark: _Toc77680343][bookmark: _Toc118289009][bookmark: _Toc226456480][bookmark: _Toc248045183][bookmark: _Toc287363739][bookmark: _Toc311216722][bookmark: _Toc317198687][bookmark: _Toc415475792][bookmark: _Toc423599067][bookmark: _Toc423601571][bookmark: _Toc501130137][bookmark: _Toc510795060][bookmark: _Toc516846275]Text description of logical operations
In the text, a statement of logical operations as would be described mathematically in the following form:
if(condition 0)
 statement 0
else if(condition 1)
 statement 1
...
else /* informative remark on remaining condition */
 statement n
may be described in the following manner:
... as follows / ... the following applies:
–	If condition 0, statement 0
–	Otherwise, if condition 1, statement 1
–	...
–	Otherwise (informative remark on remaining condition), statement n
Each "If ... Otherwise, if ... Otherwise, ..." statement in the text is introduced with "... as follows" or "... the following applies" immediately followed by "If ... ". The last condition of the "If ... Otherwise, if ... Otherwise, ..." is always an "Otherwise, ...". Interleaved "If ... Otherwise, if ... Otherwise, ..." statements can be identified by matching "... as follows" or "... the following applies" with the ending "Otherwise, ...".
In the text, a statement of logical operations as would be described mathematically in the following form:
if(condition 0a && condition 0b)
 statement 0
else if(condition 1a | | condition 1b)
 statement 1
...
else
 statement n
may be described in the following manner:
... as follows / ... the following applies:
–	If all of the following conditions are true, statement 0:
–	condition 0a
–	condition 0b
–	Otherwise, if one or more of the following conditions are true, statement 1:
–	condition 1a
–	condition 1b
–	...
–	Otherwise, statement n
In the text, a statement of logical operations as would be described mathematically in the following form:
if(condition 0)
 statement 0
if(condition 1)
 statement 1
may be described in the following manner:
When condition 0, statement 0
When condition 1, statement 1
[bookmark: _Toc77680344][bookmark: _Toc118289010][bookmark: _Toc226456481][bookmark: _Toc248045184][bookmark: _Toc287363740][bookmark: _Toc311216723][bookmark: _Toc317198688][bookmark: _Toc415475793][bookmark: _Toc423599068][bookmark: _Toc423601572][bookmark: _Toc501130138][bookmark: _Toc510795061][bookmark: _Toc516846276]Processes
Processes are used to describe the decoding of syntax elements. A process has a separate specification and invoking. All syntax elements and upper case variables that pertain to the current syntax structure and depending syntax structures are available in the process specification and invoking. A process specification may also have a lower case variable explicitly specified as input. Each process specification has explicitly specified an output. The output is a variable that can either be an upper case variable or a lower case variable.
When invoking a process, the assignment of variables is specified as follows:
–	If the variables at the invoking and the process specification do not have the same name, the variables are explicitly assigned to lower case input or output variables of the process specification.
–	Otherwise (the variables at the invoking and the process specification have the same name), assignment is implied.
In the specification of a process, a specific coding block may be referred to by the variable name having a value equal to the address of the specific coding block.
[bookmark: _Ref34468389][bookmark: _Toc77680345][bookmark: _Toc118289011][bookmark: _Toc226456482][bookmark: _Toc248045185][bookmark: _Toc287363741][bookmark: _Toc311216724][bookmark: _Toc317198689][bookmark: _Toc415475794][bookmark: _Toc423599069][bookmark: _Toc423601573][bookmark: _Toc501130139][bookmark: _Toc510795062][bookmark: _Toc516846277]
Bitstream and picture formats, partitionings, scanning processes and neighbouring relationships
[bookmark: _Toc20134231][bookmark: _Toc77680346][bookmark: _Toc118289012][bookmark: _Toc226456483][bookmark: _Toc248045186][bookmark: _Toc287363742][bookmark: _Toc311216725][bookmark: _Toc317198690][bookmark: _Ref414879472][bookmark: _Toc415475795][bookmark: _Toc423599070][bookmark: _Toc423601574][bookmark: _Toc501130140][bookmark: _Toc510795063][bookmark: _Toc516846278]Bitstream formats
This clause specifies the relationship between the network abstraction layer (NAL) unit stream and byte stream, either of which are referred to as the bitstream.
The bitstream can be in one of two formats: the NAL unit stream format or the byte stream format. The NAL unit stream format is conceptually the more "basic" type. It consists of a sequence of syntax structures called NAL units. This sequence is ordered in decoding order. There are constraints imposed on the decoding order (and contents) of the NAL units in the NAL unit stream.
The byte stream format can be constructed from the NAL unit stream format by ordering the NAL units in decoding order and prefixing each NAL unit with a start code prefix and zero or more zero-valued bytes to form a stream of bytes. The NAL unit stream format can be extracted from the byte stream format by searching for the location of the unique start code prefix pattern within this stream of bytes. Methods of framing the NAL units in a manner other than use of the byte stream format are outside the scope of this Specification. The byte stream format is specified in Annex TBD.
[bookmark: _Toc20134233][bookmark: _Ref81058824][bookmark: _Toc77680347][bookmark: _Toc118289013][bookmark: _Ref205023600][bookmark: _Toc226456484][bookmark: _Toc248045187][bookmark: _Toc287363743][bookmark: _Toc311216726][bookmark: _Ref317173305][bookmark: _Toc317198691][bookmark: _Ref397946361][bookmark: _Ref397948184][bookmark: _Ref414879474][bookmark: _Toc415475796][bookmark: _Toc423599071][bookmark: _Toc423601575][bookmark: _Toc501130141][bookmark: _Toc510795064][bookmark: _Toc516846279]Source, decoded and output picture formats
This clause specifies the relationship between source and decoded pictures that is given via the bitstream.
The video source that is represented by the bitstream is a sequence of pictures in decoding order.
The source and decoded pictures are each comprised of one or more sample arrays:
–	Luma (Y) only (monochrome).
–	Luma and two chroma (YCbCr or YCgCo).
–	Green, blue, and red (GBR, also known as RGB).
–	Arrays representing other unspecified monochrome or tri-stimulus colour samplings (for example, YZX, also known as XYZ).
For convenience of notation and terminology in this Specification, the variables and terms associated with these arrays are referred to as luma (or L or Y) and chroma, where the two chroma arrays are referred to as Cb and Cr; regardless of the actual colour representation method in use. The actual colour representation method in use can be indicated in syntax that is specified in Annex TBD.
The variables SubWidthC and SubHeightC are specified in Table 61, depending on the chroma format sampling structure, which is specified through chroma_format_idc and separate_colour_plane_flag. Other values of chroma_format_idc, SubWidthC and SubHeightC may be specified in the future by ITUT | ISO/IEC.
[bookmark: _Ref73853025][bookmark: _Ref32863315][bookmark: _Toc81038503][bookmark: _Toc77680749][bookmark: _Toc118289014][bookmark: _Toc246350678][bookmark: _Toc287363917][bookmark: _Toc415476432][bookmark: _Toc423602467][bookmark: _Toc423602641][bookmark: _Toc501130552][bookmark: _Toc510795477]Table 61 – SubWidthC and SubHeightC values derived from
chroma_format_idc and separate_colour_plane_flag

	chroma_format_idc
	separate_colour_plane_flag
	Chroma format
	SubWidthC
	SubHeightC

	0
	0
	Monochrome
	1
	1

	1
	0
	4:2:0
	2
	2

	2
	0
	4:2:2
	2
	1

	3
	0
	4:4:4
	1
	1

	3
	1
	4:4:4
	1
	1

In monochrome sampling there is only one sample array, which is nominally considered the luma array.
In 4:2:0 sampling, each of the two chroma arrays has half the height and half the width of the luma array.
In 4:2:2 sampling, each of the two chroma arrays has the same height and half the width of the luma array.
In 4:4:4 sampling, depending on the value of separate_colour_plane_flag, the following applies:
–	If separate_colour_plane_flag is equal to 0, each of the two chroma arrays has the same height and width as the luma array.
–	Otherwise (separate_colour_plane_flag is equal to 1), the three colour planes are separately processed as monochrome sampled pictures.
The number of bits necessary for the representation of each of the samples in the luma and chroma arrays in a video sequence is in the range of 8 to 16, inclusive, and the number of bits used in the luma array may differ from the number of bits used in the chroma arrays.
When the value of chroma_format_idc is equal to 1, the nominal vertical and horizontal relative locations of luma and chroma samples in pictures are shown in Figure 61. Alternative chroma sample relative locations may be indicated in video usability information (see Annex TBD).
[image:]
[bookmark: _Ref73853697][bookmark: _Ref17563310][bookmark: _Toc81038463][bookmark: _Toc17563254][bookmark: _Toc77680679][bookmark: _Toc118289015][bookmark: _Toc246350629][bookmark: _Toc287363891][bookmark: _Toc317198618][bookmark: _Toc415476390][bookmark: _Toc423602642][bookmark: _Toc423603278][bookmark: _Toc501130510][bookmark: _Toc510795433]Figure 61 – Nominal vertical and horizontal locations of 4:2:0 luma and chroma samples in a picture
When the value of chroma_format_idc is equal to 2, the chroma samples are co-sited with the corresponding luma samples and the nominal locations in a picture are as shown in Figure 62.
[image:]
[bookmark: _Ref73853805][bookmark: _Toc317198619][bookmark: _Toc81038465][bookmark: _Toc118289018][bookmark: _Ref119379889][bookmark: _Toc246350631][bookmark: _Toc287363892][bookmark: _Toc415476391][bookmark: _Toc423602643][bookmark: _Toc423603279][bookmark: _Toc501130511][bookmark: _Toc510795434][bookmark: fig_6_3]Figure 62 – Nominal vertical and horizontal locations of 4:2:2 luma and chroma samples in a picture
When the value of chroma_format_idc is equal to 3, all array samples are co-sited for all cases of pictures and the nominal locations in a picture are as shown in Figure 63.
[image:]
[bookmark: _Ref73853834][bookmark: _Toc81038467][bookmark: _Toc118289020][bookmark: _Toc246350633][bookmark: _Toc287363893][bookmark: _Toc317198620][bookmark: _Toc415476392][bookmark: _Toc423602644][bookmark: _Toc423603280][bookmark: _Toc501130512][bookmark: _Toc510795435][bookmark: fig_6_5]Figure 63 – Nominal vertical and horizontal locations of 4:4:4 luma and chroma samples in a picture
[bookmark: _Toc81309235][bookmark: _Toc81315995][bookmark: _Toc81318271][bookmark: _Toc81319337][bookmark: _Toc81390023][bookmark: _Toc81393036][bookmark: _Toc81394188][bookmark: _Toc81396366][bookmark: _Toc81462790][bookmark: _Toc81465264][bookmark: _Toc81309253][bookmark: _Toc81316013][bookmark: _Toc81318289][bookmark: _Toc81319355][bookmark: _Toc81390041][bookmark: _Toc81393054][bookmark: _Toc81394206][bookmark: _Toc81396384][bookmark: _Toc81462808][bookmark: _Toc81465282][bookmark: _Toc81309257][bookmark: _Toc81316017][bookmark: _Toc81318293][bookmark: _Toc81319359][bookmark: _Toc81390045][bookmark: _Toc81393058][bookmark: _Toc81394210][bookmark: _Toc81396388][bookmark: _Toc81462812][bookmark: _Toc81465286][bookmark: _Toc81309263][bookmark: _Toc81316023][bookmark: _Toc81318299][bookmark: _Toc81319365][bookmark: _Toc81390051][bookmark: _Toc81393064][bookmark: _Toc81394216][bookmark: _Toc81396394][bookmark: _Toc81462818][bookmark: _Toc81465292][bookmark: _Ref19430028][bookmark: _Ref19430045][bookmark: _Ref19430106][bookmark: _Toc20134234][bookmark: _Toc77680348][bookmark: _Toc118289023][bookmark: _Toc226456485][bookmark: _Toc248045188][bookmark: _Toc287363744][bookmark: _Toc311216727][bookmark: _Toc317198692]
[bookmark: _Ref414879475][bookmark: _Toc415475797][bookmark: _Toc423599072][bookmark: _Toc423601576][bookmark: _Toc501130142][bookmark: _Toc510795065][bookmark: _Toc516846280]Partitioning of pictures, slices, CTUs
[bookmark: _Toc415475798][bookmark: _Toc423599073][bookmark: _Toc423601577][bookmark: _Toc501130143][bookmark: _Toc510795066][bookmark: _Toc516846281]Partitioning of pictures into slices
This subclause specifies how a picture is partitioned into slices. Pictures are divided into slices. A slice is a a sequence of CTUs.
For example, a picture may be divided into two slices as shown in Figure 64. In this example, the first slice contains 60 CTUs and the second slice contains the remaining 39 CTUs of the picture.
When a picture is coded using three separate colour planes (separate_colour_plane_flag is equal to 1), a slice contains only CTUs of one colour component being identified by the corresponding value of colour_plane_id, and each colour component array of a picture consists of slices having the same colour_plane_id value. Coded slices with different values of colour_plane_id within a picture may be interleaved with each other under the constraint that for each value of colour_plane_id, the coded slice NAL units with that value of colour_plane_id shall be in the order of increasing CTU address in raster scan order for the first CTU of each coded slice NAL unit.
NOTE 1 – When separate_colour_plane_flag is equal to 0, each CTU of a picture is contained in exactly one slice. When separate_colour_plane_flag is equal to 1, each CTU of a colour component is contained in exactly one slice (i.e., information for each CTU of a picture is present in exactly three slices and these three slices have different values of colour_plane_id).
[bookmark: _Ref17564604][bookmark: _Toc17563256][bookmark: _Toc77680681][bookmark: _Toc118289024][bookmark: _Toc246350635][image:]
[bookmark: _Ref275772185][bookmark: _Ref275772184][bookmark: _Toc287363894][bookmark: _Toc317198621][bookmark: _Toc415476393][bookmark: _Toc423602645][bookmark: _Toc423603281][bookmark: _Toc501130513][bookmark: _Toc510795436]Figure 64 – A picture with 11 by 9 luma CTUs that is partitioned into two slices (informative)

[bookmark: _Toc415475799][bookmark: _Toc423599074][bookmark: _Toc423601578][bookmark: _Toc501130144][bookmark: _Toc510795067][bookmark: _Toc516846282]Block, quadtree and multi-type tree structures
The samples are processed in units of CTBs. The array size for each luma CTB in both width and height is CtbSizeY in units of samples. The width and height of the array for each chroma CTB are CtbWidthC and CtbHeightC, respectively, in units of samples.
[Ed. (BB): Revise the following for QT+MTT.]
Each CTB is assigned a partition signalling to identify the block sizes for intra or inter prediction and for transform coding. The partitioning is a recursive quadtree partitioning. The root of the quadtree is associated with the CTB. The quadtree is split until a leaf is reached, which is referred to as the quadtree leaf. When the component width is not an integer number of the CTB size, the CTBs at the right component boundary are incomplete. When the component height is not an integer multiple of the CTB size, the CTBs at the bottom component boundary are incomplete.
The coding block is the root node of two trees, the prediction tree and the transform tree. The prediction tree specifies the position and size of prediction blocks. The transform tree specifies the position and size of transform blocks. The splitting information for luma and chroma is identical for the prediction tree and may or may not be identical for the transform tree.
The blocks and associated syntax structures are grouped into "unit" structures as follows:
–	One transform block (monochrome picture or separate_colour_plane_flag is equal to 1) or three transform blocks (luma and chroma components of a picture in 4:2:0, 4:2:2 or 4:4:4 colour format) and the associated transform syntax structures units are associated with a transform unit.
–	One coding block (monochrome picture or separate_colour_plane_flag is equal to 1) or three coding blocks (luma and chroma), the associated coding syntax structures and the associated transform units are associated with a coding unit.
–	One CTB (monochrome picture or separate_colour_plane_flag is equal to 1) or three CTBs (luma and chroma), the associated coding tree syntax structures and the associated coding units are associated with a CTU.
[bookmark: _Toc415475800][bookmark: _Toc423599075][bookmark: _Toc423601579][bookmark: _Toc501130145][bookmark: _Toc510795068][bookmark: _Toc516846283]Spatial or component-wise partitionings
The following divisions of processing elements of this Specification form spatial or component-wise partitioning:
–	The division of each picture into components
–	The division of each component into CTBs
–	The division of each picture into slices
–	The division of each slice into CTUs
–	The division of each CTU into CTBs
–	The division of each CTB into coding blocks, except that the CTBs are incomplete at the right component boundary when the component width is not an integer multiple of the CTB size and the CTBs are incomplete at the bottom component boundary when the component height is not an integer multiple of the CTB size
–	The division of each CTU into coding units, except that the CTUs are incomplete at the right picture boundary when the picture width in luma samples is not an integer multiple of the luma CTB size and the CTUs are incomplete at the bottom picture boundary when the picture height in luma samples is not an integer multiple of the luma CTB size
–	The division of each coding unit into transform units
–	The division of each coding unit into coding blocks
–	The division of each coding block into transform blocks
[bookmark: _Toc350085398][bookmark: _Toc350158243][bookmark: _Toc350158542][bookmark: _Toc350158840][bookmark: _Toc350196753][bookmark: _Toc350172801][bookmark: _Toc28778881][bookmark: _Toc29358998][bookmark: _Toc28778882][bookmark: _Toc29358999][bookmark: _Toc311216730][bookmark: _Ref311226465][bookmark: _Ref316812440][bookmark: _Ref317083590][bookmark: _Toc317198693][bookmark: _Ref414879476][bookmark: _Toc415475801][bookmark: _Toc423599076][bookmark: _Toc423601580][bookmark: _Toc501130146][bookmark: _Toc510795069]–	The division of each transform unit into transform blocks.
[bookmark: _Toc516846284]Availability processes
[Ed. (BB): Define appropriate availability checking process.]
[bookmark: _Ref513208525][bookmark: _Toc516846285]Allowed binary split process
Input to this process is a binary split mode btSplit, a coding block width cbWidth, a coding block height cbHeight, a location (x0, y0) of the top-left luma sample of the considered coding block relative to the top-left luma sample of the picture, a multi-type tree depth mttDepth and a partition index partIdx.
Output of this process is the variable allowBtSplit.
[bookmark: _Ref513208353]Table 62 – Specification of parallelTtSplit, perpendicularBtSplit, cbSize, partOffsetX and partOffsetY based on btSplit.
	btSplit
	parallelTtSplit
	perpendicularBtSplit
	cbSize
	partOffsetX
	partOffsetY

	SPLIT_BT_VER
	SPLIT_TT_VER
	SPLIT_BT_HOR
	cbWidth
	0
	cbHeight

	SPLIT_BT_HOR
	SPLIT_TT_HOR
	SPLIT_BT_VER
	cbHeight
	cbWidth
	0

The variables parallelTtSplit, perpendicularBtSplit, cbSize, partOffsetX and partOffsetY are derived as specified in Table 62.
The variable allowBtSplit is derived as follows:
· If one or more of the following conditions are true, allowBtSplit is set equal to FALSE:
· cbSize is less than or equal to MinBtSizeY
· cbWidth is greater than MaxBtSizeY
· cbHeight is greater than MaxBtSizeY
· mttDepth is greater than or equal to MaxMttDepth
Otherwise if all of the following conditions are true, allowBtSplit is set equal to FALSE:
· mttDepth is greater than 0
· partIdx is equal to 1
· MttSplitMode[x0][y0][mttDepth − 1] is equal to parallelTtSplit
· Otherwise if all of the following conditions are true, allowBtSplit is set equal to FALSE:
· slice_type is not equal to I
· mttDepth is equal to 1
· cbSize is greater than 1 << MinQtLog2SizeY
· partIdx is equal to 1
· MttSplitMode[x0][y0][mttDepth − 1] is equal to perpendicularBtSplit
· MttSplitMode[x0 − partOffsetX][y0 − partOffsetY][mttDepth] is equal to btSplit
–	Otherwise, allowBtSplit is set equal to TRUE.

[bookmark: _Ref513209609][bookmark: _Toc516846286]Allowed ternary split process
Input to this process is a ternary split mode ttSplit, a coding block width cbWidth, a coding block height cbHeight, a location (x0, y0) of the top-left luma sample of the considered coding block relative to the top-left luma sample of the picture, a multi-type tree depth mttDepth and a partition index partIdx.
Output of this process is the variable allowTtSplit.
Table 63 – Specification of parallelTtSplit, perpendicularBtSplit, cbSize, partOffsetX and partOffsetY based on btSplit.
	ttSplit
	parallelTtSplit
	perpendicularBtSplit
	cbSize
	partOffsetX
	partOffsetY

	SPLIT_TT_VER
	SPLIT_TT_VER
	SPLIT_BT_HOR
	cbWidth
	0
	cbHeight

	SPLIT_TT_HOR
	SPLIT_TT_HOR
	SPLIT_BT_VER
	cbHeight
	cbWidth
	0

The variables parallelTtSplit, perpendicularBtSplit, cbSize, partOffsetX and partOffsetY are derived as specified in Table 62.
The variable allowTtSplit is derived as follows:
· If one or more of the following conditions are true, allowSTtplit is set equal to FALSE:
· cbSize is less than or equal to 2 * MinTtSizeY
· cbWidth is greater than MaxTtSizeY
· cbHeight is greater than MaxTtSizeY
· mttDepth is greater than or equal to MaxMttDepth
· Otherwise if all of the following conditions are true, allowTtSplit is set equal to FALSE:
· slice_type is not equal to I
· mttDepth is greater than 0
· partIdx is equal to 1
· MttSplitMode[x0][y0][mttDepth − 1] is equal to perpendicularBtSplit
· MttSplitMode[x0 − partOffsetX][y0 − partOffsetY][mttDepth] is equal to parallelTtSplit
–	Otherwise, allowTtSplit is set equal to TRUE.

[bookmark: _Toc331257885][bookmark: _Toc331257893][bookmark: _Toc331257894][bookmark: _Toc33005196][bookmark: _Toc33005206][bookmark: _Toc33005216][bookmark: _Toc33005226][bookmark: _Toc33005236][bookmark: _Toc33005256][bookmark: _Toc33005266][bookmark: _Toc33005276][bookmark: _Toc33005286][bookmark: _Toc33005296][bookmark: _Toc33005306][bookmark: _Toc33005316][bookmark: _Toc33005326][bookmark: _Toc33005336][bookmark: _Toc33005346][bookmark: _Toc33005356][bookmark: _Toc33005376][bookmark: _Toc33005386][bookmark: _Toc33005396][bookmark: _Toc33005406][bookmark: _Toc33005436][bookmark: _Toc33005446][bookmark: _Toc33005456][bookmark: _Toc33005466][bookmark: _Toc33005486][bookmark: _Toc33005496][bookmark: _Toc327178039][bookmark: _Toc327178041][bookmark: _Toc327178043][bookmark: _Toc327178045][bookmark: _Toc327178047][bookmark: _Ref414879478][bookmark: _Toc415475804][bookmark: _Toc423599079][bookmark: _Toc423601583][bookmark: _Toc501130149][bookmark: _Toc510795072][bookmark: _Toc516846287][bookmark: _Ref304811064][bookmark: _Toc311216733][bookmark: _Toc317198696][bookmark: _Ref302059990]Scanning processes
[bookmark: _Toc326153808][bookmark: _Toc326163609][bookmark: _Toc326153809][bookmark: _Toc326163610][bookmark: _Toc415475805][bookmark: _Toc423599080][bookmark: _Toc423601584][bookmark: _Toc501130150][bookmark: _Toc510795073][bookmark: _Toc516846288][bookmark: _Ref326775598][bookmark: _Ref316592996][bookmark: _Toc317198697][bookmark: _Toc311216734]CTB raster and scanning process
[Ed. (BB): Define appropriate scanning process.]
[bookmark: _Toc330857244][bookmark: _Ref325626003][bookmark: _Toc415475807][bookmark: _Toc423599082][bookmark: _Toc423601586][bookmark: _Toc501130152][bookmark: _Toc510795075][bookmark: _Toc516846289][bookmark: _Toc317198698]Up-right diagonal scan order array initialization process
Input to this process is a block width blkWidth and a block size height blkHeight.
Output of this process is the array diagScan[sPos][sComp]. The array index sPos specify the scan position ranging from 0 to (blkWidth * blkHeight) − 1. The array index sComp equal to 0 specifies the horizontal component and the array index sComp equal to 1 specifies the vertical component. Depending on the value of blkWidth and blkHeight, the array diagScan is derived as follows:
i = 0
x = 0
y = 0
stopLoop = FALSE
while(!stopLoop) {
	while(y >= 0) {
		if(x < blkWidth && y < blkHeight) {		(61)
			diagScan[i][0] = x
			diagScan[i][1] = y
			i++
		}
		y− −
		x++
	}
	y = x
	x = 0
	if(i >= blkWidth * blkHeight)
		stopLoop = TRUE
}
[bookmark: _Ref472449315][bookmark: _Toc501130156][bookmark: _Toc510795079][bookmark: _Toc516846290]
Syntax and semantics
[bookmark: _Toc33005504][bookmark: _Toc33005508][bookmark: _Toc33005509][bookmark: _Toc33005525][bookmark: _Toc33005553][bookmark: _Toc33005569][bookmark: _Toc33005589][bookmark: _Toc33005613][bookmark: _Toc33005629][bookmark: _Ref33101620][bookmark: _Toc77680368][bookmark: _Toc118289038][bookmark: _Toc226456515][bookmark: _Toc248045218][bookmark: _Toc287363748][bookmark: _Toc311216736][bookmark: _Toc317198700][bookmark: _Toc415475811][bookmark: _Toc423599086][bookmark: _Toc423601590][bookmark: _Toc501130157][bookmark: _Toc510795080][bookmark: _Toc516846291]Method of specifying syntax in tabular form
The syntax tables specify a superset of the syntax of all allowed bitstreams. Additional constraints on the syntax may be specified, either directly or indirectly, in other clauses.
NOTE – An actual decoder should implement some means for identifying entry points into the bitstream and some means to identify and handle non-conforming bitstreams. The methods for identifying and handling errors and other such situations are not specified in this Specification.
The following table lists examples of the syntax specification format. When syntax_element appears, it specifies that a syntax element is parsed from the bitstream and the bitstream pointer is advanced to the next position beyond the syntax element in the bitstream parsing process.
	
	Descriptor

	/* A statement can be a syntax element with an associated descriptor or can be an expression used to specify conditions for the existence, type and quantity of syntax elements, as in the following two examples */
	

	syntax_element
	ue(v)

	conditioning statement
	

	
	

	/* A group of statements enclosed in curly brackets is a compound statement and is treated functionally as a single statement. */
	

	{
	

		statement
	

		statement
	

		...
	

	}
	

	
	

	/* A "while" structure specifies a test of whether a condition is true, and if true, specifies evaluation of a statement (or compound statement) repeatedly until the condition is no longer true */
	

	while(condition)
	

		statement
	

	
	

	/* A "do ... while" structure specifies evaluation of a statement once, followed by a test of whether a condition is true, and if true, specifies repeated evaluation of the statement until the condition is no longer true */
	

	do
	

		statement
	

	while(condition)
	

	
	

	/* An "if ... else" structure specifies a test of whether a condition is true and, if the condition is true, specifies evaluation of a primary statement, otherwise, specifies evaluation of an alternative statement. The "else" part of the structure and the associated alternative statement is omitted if no alternative statement evaluation is needed */
	

	if(condition)
	

		primary statement
	

	else
	

		alternative statement
	

	
	

	/* A "for" structure specifies evaluation of an initial statement, followed by a test of a condition, and if the condition is true, specifies repeated evaluation of a primary statement followed by a subsequent statement until the condition is no longer true. */
	

	for(initial statement; condition; subsequent statement)
	

		primary statement
	

[bookmark: _Toc20134239][bookmark: _Ref33442712][bookmark: _Toc77680369][bookmark: _Toc118289039][bookmark: _Ref168818615][bookmark: _Ref196969106][bookmark: _Ref220340855][bookmark: _Toc226456516][bookmark: _Toc248045219][bookmark: _Toc287363749][bookmark: _Toc311216737][bookmark: _Ref316817924][bookmark: _Toc317198701][bookmark: _Ref398984612][bookmark: _Toc415475812][bookmark: _Toc423599087][bookmark: _Toc423601591][bookmark: _Toc501130158][bookmark: _Toc510795081][bookmark: _Toc516846292]Specification of syntax functions and descriptors
The functions presented here are used in the syntactical description. These functions are expressed in terms of the value of a bitstream pointer that indicates the position of the next bit to be read by the decoding process from the bitstream.
byte_aligned() is specified as follows:
–	If the current position in the bitstream is on a byte boundary, i.e., the next bit in the bitstream is the first bit in a byte, the return value of byte_aligned() is equal to TRUE.
–	Otherwise, the return value of byte_aligned() is equal to FALSE.
more_data_in_byte_stream(), which is used only in the byte stream NAL unit syntax structure specified in Annex TBD, is specified as follows:
–	If more data follow in the byte stream, the return value of more_data_in_byte_stream() is equal to TRUE.
–	Otherwise, the return value of more_data_in_byte_stream() is equal to FALSE.
more_data_in_payload() is specified as follows:
–	If byte_aligned() is equal to TRUE and the current position in the sei_payload() syntax structure is 8 * payloadSize bits from the beginning of the sei_payload() syntax structure, the return value of more_data_in_payload() is equal to FALSE.
–	Otherwise, the return value of more_data_in_payload() is equal to TRUE.
more_rbsp_data() is specified as follows:
–	If there is no more data in the raw byte sequence payload (RBSP), the return value of more_rbsp_data() is equal to FALSE.
–	Otherwise, the RBSP data are searched for the last (least significant, right-most) bit equal to 1 that is present in the RBSP. Given the position of this bit, which is the first bit (rbsp_stop_one_bit) of the rbsp_trailing_bits() syntax structure, the following applies:
–	If there is more data in an RBSP before the rbsp_trailing_bits() syntax structure, the return value of more_rbsp_data() is equal to TRUE.
–	Otherwise, the return value of more_rbsp_data() is equal to FALSE.
The method for enabling determination of whether there is more data in the RBSP is specified by the application (or in Annex TBD for applications that use the byte stream format).
more_rbsp_trailing_data() is specified as follows:
–	If there is more data in an RBSP, the return value of more_rbsp_trailing_data() is equal to TRUE.
–	Otherwise, the return value of more_rbsp_trailing_data() is equal to FALSE.
next_bits(n) provides the next bits in the bitstream for comparison purposes, without advancing the bitstream pointer. Provides a look at the next n bits in the bitstream with n being its argument. When used within the byte stream format as specified in Annex TBD and fewer than n bits remain within the byte stream, next_bits(n) returns a value of 0.
payload_extension_present() is specified as follows:
–	If the current position in the sei_payload() syntax structure is not the position of the last (least significant, right-most) bit that is equal to 1 that is less than 8 * payloadSize bits from the beginning of the syntax structure (i.e., the position of the payload_bit_equal_to_one syntax element), the return value of payload_extension_present() is equal to TRUE.
–	Otherwise, the return value of payload_extension_present() is equal to FALSE.
read_bits(n) reads the next n bits from the bitstream and advances the bitstream pointer by n bit positions. When n is equal to 0, read_bits(n) is specified to return a value equal to 0 and to not advance the bitstream pointer.
The following descriptors specify the parsing process of each syntax element:
–	ae(v): context-adaptive arithmetic entropy-coded syntax element. The parsing process for this descriptor is specified in clause TBD.
–	b(8): byte having any pattern of bit string (8 bits). The parsing process for this descriptor is specified by the return value of the function read_bits(8).
–	f(n): fixed-pattern bit string using n bits written (from left to right) with the left bit first. The parsing process for this descriptor is specified by the return value of the function read_bits(n).
–	i(n): signed integer using n bits. When n is "v" in the syntax table, the number of bits varies in a manner dependent on the value of other syntax elements. The parsing process for this descriptor is specified by the return value of the function read_bits(n) interpreted as a two's complement integer representation with most significant bit written first.
–	se(v): signed integer 0-th order Exp-Golomb-coded syntax element with the left bit first. The parsing process for this descriptor is specified in clause TBD.
–	st(v): null-terminated string encoded as universal coded character set (UCS) transmission format-8 (UTF-8) characters as specified in ISO/IEC 10646. The parsing process is specified as follows: st(v) begins at a byte-aligned position in the bitstream and reads and returns a series of bytes from the bitstream, beginning at the current position and continuing up to but not including the next byte-aligned byte that is equal to 0x00, and advances the bitstream pointer by (stringLength + 1) * 8 bit positions, where stringLength is equal to the number of bytes returned.
NOTE – The st(v) syntax descriptor is only used in this Specification when the current position in the bitstream is a byte-aligned position.
–	u(n): unsigned integer using n bits. When n is "v" in the syntax table, the number of bits varies in a manner dependent on the value of other syntax elements. The parsing process for this descriptor is specified by the return value of the function read_bits(n) interpreted as a binary representation of an unsigned integer with most significant bit written first.
–	ue(v): unsigned integer 0-th order Exp-Golomb-coded syntax element with the left bit first. The parsing process for this descriptor is specified in clause TBD.
[bookmark: _Ref35660929][bookmark: _Toc77680370][bookmark: _Toc118289040][bookmark: _Toc226456517][bookmark: _Toc248045220][bookmark: _Toc287363750][bookmark: _Toc311216738][bookmark: _Toc317198702][bookmark: _Toc415475813][bookmark: _Toc423599088][bookmark: _Toc423601592][bookmark: _Toc501130159][bookmark: _Toc510795082][bookmark: _Toc516846293][bookmark: _Ref20133281][bookmark: _Toc20134240]Syntax in tabular form
[bookmark: _Toc20134241][bookmark: _Toc77680371][bookmark: _Toc118289041][bookmark: _Ref168818658][bookmark: _Ref220340857][bookmark: _Toc226456518][bookmark: _Toc248045221][bookmark: _Toc287363751][bookmark: _Toc311216739][bookmark: _Toc317198703][bookmark: _Toc415475814][bookmark: _Toc423599089][bookmark: _Toc423601593][bookmark: _Toc501130160][bookmark: _Toc510795083][bookmark: _Toc516846294]NAL unit syntax
[bookmark: _Ref398984641][bookmark: _Toc415475815][bookmark: _Toc423599090][bookmark: _Toc423601594]General NAL unit syntax

	nal_unit(NumBytesInNalUnit) {
	Descriptor

		nal_unit_header()
	

		NumBytesInRbsp = 0
	

		for(i = 2; i < NumBytesInNalUnit; i++)
	

			if(i + 2 < NumBytesInNalUnit && next_bits(24) = = 0x000003) {
	

				rbsp_byte[NumBytesInRbsp++]
	b(8)

				rbsp_byte[NumBytesInRbsp++]
	b(8)

				i += 2
	

				emulation_prevention_three_byte /* equal to 0x03 */
	f(8)

			} else
	

				rbsp_byte[NumBytesInRbsp++]
	b(8)

	}
	

[bookmark: _Ref398984672][bookmark: _Toc415475816][bookmark: _Toc423599091][bookmark: _Toc423601595]NAL unit header syntax

	nal_unit_header() {
	Descriptor

		forbidden_zero_bit
	f(1)

		nal_unit_type
	u(7)

	}
	

[bookmark: _Toc20134242][bookmark: _Toc77680372][bookmark: _Toc118289042][bookmark: _Toc226456519][bookmark: _Toc248045222][bookmark: _Toc287363752][bookmark: _Toc311216740][bookmark: _Toc317198704][bookmark: _Toc415475817][bookmark: _Toc423599092][bookmark: _Toc423601596][bookmark: _Toc501130161][bookmark: _Toc510795084][bookmark: _Toc516846295]Raw byte sequence payloads, trailing bits and byte alignment syntax
[bookmark: _Toc415475819][bookmark: _Toc423599094][bookmark: _Toc423601598]Sequence parameter set RBSP syntax
[Ed. (BB): Preliminary basic SPS, subject to further study and pending further specification development.]

	seq_parameter_set_rbsp() {
	Descriptor

		sps_seq_parameter_set_id
	ue(v)

		chroma_format_idc
	ue(v)

		if(chroma_format_idc = = 3)
	

			separate_colour_plane_flag
	u(1)

		pic_width_in_luma_samples
	ue(v)

		pic_height_in_luma_samples
	ue(v)

		bit_depth_luma_minus8
	ue(v)

		bit_depth_chroma_minus8
	ue(v)

		log2_ctu_size_minus2
	ue(v)

		log2_min_qt_size_intra_slices_minus2
	ue(v)

		log2_min_qt_size_inter_slices_minus2
	ue(v)

		max_mtt_hierarchy_depth_inter_slices
	ue(v)

		max_mtt_hierarchy_depth_intra_slices
	ue(v)

		rbsp_trailing_bits()
	

	}
	

[bookmark: _Toc20134244][bookmark: _Toc77680374][bookmark: _Ref168818756][bookmark: _Ref220341273][bookmark: _Toc226456525][bookmark: _Toc248045224][bookmark: _Toc287363754][bookmark: _Toc311216742][bookmark: _Toc317198706][bookmark: _Toc415475820][bookmark: _Toc423599095][bookmark: _Toc423601599]Picture parameter set RBSP syntax
[Ed. (BB): Preliminary basic PPS, subject to further study and pending further specification development.]

	pic_parameter_set_rbsp() {
	Descriptor

		pps_pic_parameter_set_id
	ue(v)

		pps_seq_parameter_set_id
	ue(v)

		rbsp_trailing_bits()
	

	}
	

[bookmark: _Toc331760504][bookmark: _Toc331761296][bookmark: _Toc331762089][bookmark: _Toc331765667][bookmark: _Toc331760556][bookmark: _Toc331761348][bookmark: _Toc331762141][bookmark: _Toc331765719][bookmark: _Toc20134247][bookmark: _Toc77680377][bookmark: _Ref168818767][bookmark: _Ref220341282][bookmark: _Toc226456528][bookmark: _Toc248045226][bookmark: _Toc287363756][bookmark: _Toc311216745][bookmark: _Toc317198714][bookmark: _Ref398985996][bookmark: _Toc415475822][bookmark: _Toc423599097][bookmark: _Toc423601601]Access unit delimiter RBSP syntax

	access_unit_delimiter_rbsp() {
	Descriptor

		pic_type
	u(3)

		rbsp_trailing_bits()
	

	}
	

[bookmark: _Ref398986032][bookmark: _Toc415475823][bookmark: _Toc423599098][bookmark: _Toc423601602]End of sequence RBSP syntax

	end_of_seq_rbsp() {
	Descriptor

	}
	

[bookmark: _Ref398986094][bookmark: _Toc415475824][bookmark: _Toc423599099][bookmark: _Toc423601603]End of bitstream RBSP syntax

	end_of_bitstream_rbsp() {
	Descriptor

	}
	

[bookmark: _Toc20134248][bookmark: _Toc77680380][bookmark: _Ref168818771][bookmark: _Ref220341290][bookmark: _Toc226456531][bookmark: _Toc248045229][bookmark: _Toc287363757][bookmark: _Toc311216746][bookmark: _Toc317198715][bookmark: _Ref398986096][bookmark: _Toc415475825][bookmark: _Toc423599100][bookmark: _Toc423601604]Filler data RBSP syntax

	filler_data_rbsp() {
	Descriptor

		while(next_bits(8) = = 0xFF)
	

			ff_byte /* equal to 0xFF */
	f(8)

		rbsp_trailing_bits()
	

	}
	

[bookmark: _Toc9036495][bookmark: _Toc20134249][bookmark: _Toc77680381][bookmark: _Ref168818774][bookmark: _Ref220341292][bookmark: _Toc226456532][bookmark: _Toc248045230][bookmark: _Toc287363758][bookmark: _Toc311216747][bookmark: _Toc317198716][bookmark: _Ref398986099][bookmark: _Toc415475826][bookmark: _Toc423599101][bookmark: _Toc423601605]Slice layer RBSP syntax

	slice_layer_rbsp() {
	Descriptor

		slice_header()
	

		slice_data()
	

		rbsp_slice_trailing_bits()
	

	}
	

[bookmark: _Toc20134255][bookmark: _Toc77680386][bookmark: _Ref168818785][bookmark: _Ref220341299][bookmark: _Toc226456537][bookmark: _Toc248045232][bookmark: _Toc287363759][bookmark: _Toc311216748][bookmark: _Toc317198717][bookmark: _Ref398986102][bookmark: _Toc415475827][bookmark: _Toc423599102][bookmark: _Toc423601606]RBSP slice trailing bits syntax

	rbsp_slice_trailing_bits() {
	Descriptor

		rbsp_trailing_bits()
	

		while(more_rbsp_trailing_data())
	

			cabac_zero_word /* equal to 0x0000 */
	f(16)

	}
	

[bookmark: _Toc77680387][bookmark: _Ref168818787][bookmark: _Ref220341300][bookmark: _Toc226456538][bookmark: _Toc248045233][bookmark: _Toc287363760][bookmark: _Toc311216749][bookmark: _Toc317198718][bookmark: _Ref398986104][bookmark: _Toc415475828][bookmark: _Toc423599103][bookmark: _Toc423601607]RBSP trailing bits syntax

	rbsp_trailing_bits() {
	Descriptor

		rbsp_stop_one_bit /* equal to 1 */
	f(1)

		while(!byte_aligned())
	

			rbsp_alignment_zero_bit /* equal to 0 */
	f(1)

	}
	

[bookmark: _Toc311216750][bookmark: _Toc317198719][bookmark: _Ref398986108][bookmark: _Toc415475829][bookmark: _Toc423599104][bookmark: _Toc423601608]Byte alignment syntax

	byte_alignment() {
	Descriptor

		alignment_bit_equal_to_one /* equal to 1 */
	f(1)

		while(!byte_aligned())
	

			alignment_bit_equal_to_zero /* equal to 0 */
	f(1)

	}
	

[bookmark: _Toc311216751][bookmark: _Toc317198720][bookmark: _Toc415475833][bookmark: _Toc423599108][bookmark: _Toc423601612][bookmark: _Toc501130165][bookmark: _Toc510795088][bookmark: _Toc516846296]Slice header syntax
[Ed. (BB): Preliminary basic slice header, subject to further study and pending further specification development.]

	slice_header() {
	Descriptor

		slice_pic_parameter_set_id
	ue(v)

		slice_address
	u(v)

		slice_type
	ue(v)

		if (slice_type != I)
	

			log2_diff_ctu_max_bt_size
	ue(v)

		byte_alignment()
	

	}
	

[bookmark: _Toc311216759][bookmark: _Toc317198729][bookmark: _Ref330904190][bookmark: _Ref330904581][bookmark: _Ref398986356][bookmark: _Toc415475838][bookmark: _Toc423599113][bookmark: _Toc423601617][bookmark: _Toc501130167][bookmark: _Toc510795090][bookmark: _Toc516846297]Slice data syntax
[bookmark: _Ref349667677][bookmark: _Ref349667707][bookmark: _Toc415475839][bookmark: _Toc423599114][bookmark: _Toc423601618]General slice data syntax

	slice_data() {
	Descriptor

		do {
	

			coding_tree_unit()
	

			end_of_slice_flag
	ae(v)

			CtbAddrInRs++
	

		} while(!end_of_slice_flag)
	

	}
	

[bookmark: _Ref330904226][bookmark: _Toc415475840][bookmark: _Toc423599115][bookmark: _Toc423601619]Coding tree unit syntax

	coding_tree_unit() {
	Descriptor

		xCtb = (CtbAddrInRs % PicWidthInCtbsY) << CtbLog2SizeY
	

		yCtb = (CtbAddrInRs / PicWidthInCtbsY) << CtbLog2SizeY
	

		coding_quadtree(xCtb, yCtb, CtbLog2SizeY, 0)
	

	}
	

[bookmark: _Toc317198732][bookmark: _Ref330811880][bookmark: _Ref398986404][bookmark: _Toc415475842][bookmark: _Toc423599117][bookmark: _Toc423601621]Coding quadtree syntax

	coding_quadtree(x0, y0, log2CbSize, cqtDepth) {
	Descriptor

		if(x0 + (1 << log2CbSize) <= pic_width_in_luma_samples &&
		 y0 + (1 << log2CbSize) <= pic_height_in_luma_samples &&
		 log2CbSize > MinQtLog2SizeY)
	

				qt_split_cu_flag[x0][y0]
	ae(v)

		}
	

		if(qt_split_cu_flag[x0][y0]) {
	

			x1 = x0 + (1 << (log2CbSize − 1))
	

			y1 = y0 + (1 << (log2CbSize − 1))
	

			coding_quadtree(x0, y0, log2CbSize − 1, cqtDepth + 1)
	

			if(x1 < pic_width_in_luma_samples)
	

				coding_quadtree(x1, y0, log2CbSize − 1, cqtDepth + 1)
	

			if(y1 < pic_height_in_luma_samples)
	

				coding_quadtree(x0, y1, log2CbSize − 1, cqtDepth + 1)
	

			if(x1 < pic_width_in_luma_samples && y1 < pic_height_in_luma_samples)
	

				coding_quadtree(x1, y1, log2CbSize − 1, cqtDepth + 1)
	

		} else
	

			multi_type_tree(x0, y0, 1 << log2CbSize, 1 << log2CbSize, 0 , 0)
	

	}
	

[bookmark: _Toc287363768][bookmark: _Toc311216761]
Multi-type tree syntax

	multi_type_tree(x0, y0, cbWidth, cbHeight, mttDepth, partIdx) {
	Descriptor

		if(allowSplitBtVer | | allowSplitBtHor | | allowSplitTtVer | | allowSplitTtHor)
	

				mtt_split_cu_flag
	ae(v)

		if(mtt_split_cu_flag) {
	

			if((allowSplitBtHor | | allowSplitTtHor) &&
			 (allowSplitBtVer | | allowSplitTtVer))
	

				mtt_split_cu_vertical_flag
	ae(v)

			if((allowSplitBtVer && allowSplitTtVer && mtt_split_cu_vertical_flag) | |
			 (allowSplitBtHor && allowSplitTtHor && !mtt_split_cu_vertical_flag))
	

				mtt_split_cu_binary_flag
	ae(v)

			if(MttSplitMode[x0][y0][mttDepth] = = SPLIT_BT_VER) {
	

				multi_type_tree(x0, y0, cbWidth / 2, cbHeight, mttDepth + 1, 0)
	

				multi_type_tree(x0 + (cbWidth / 2), y0, cbWidth / 2, cbHeightY, mttDepth + 1, 1)
	

			} else if(MttSplitMode[x0][y0][mttDepth] = = SPLIT_BT_HOR) {
	

				multi_type_tree(x0, y0, cbWidth, cbHeight / 2, mttDepth + 1, 0)
	

				multi_type_tree(x0, y0 + (cbHeight / 2), cbWidth, cbHeight / 2, mttDepth + 1, 1)
	

			} else if(MttSplitMode[x0][y0][mttDepth] = = SPLIT_TT_VER) {
	

				multi_type_tree(x0, y0, cbWidth / 4, cbHeight, mttDepth + 1, 0)
	

				multi_type_tree(x0 + (cbWidth / 4), y0, cbWidth / 2, cbHeight, mttDepth + 1, 1)
	

				multi_type_tree(x0 + (3 * cbWidth / 4), y0, cbWidth / 4, cbHeight, mttDepth + 1, 2)
	

			} else { /* SPLIT_TT_HOR */
	

				multi_type_tree(x0, y0, cbWidth, cbHeight / 4, mttDepth + 1, 0)
	

				multi_type_tree(x0, y0 + (cbHeight / 4), cbWidth, cbHeight / 2, mttDepth + 1, 1)
	

				multi_type_tree(x0, y0 + (3 * cbHeight / 4), cbWidth, cbHeight / 4, mttDepth + 1, 2)
	

			}
	

		} else
	

			coding_unit(x0, y0, cbWidth, cbHeight)
	

	}
	

[bookmark: _Ref350100876][bookmark: _Toc415475843][bookmark: _Toc423599118][bookmark: _Toc423601622]Coding unit syntax

	coding_unit(x0, y0, cbWidth, cbHeight) {
	Descriptor

		if(slice_type != I) {
	

				pred_mode_flag
	ae(v)

		}
	

		if(CuPredMode[x0][y0] = = MODE_INTRA) {
	

			[Ed. (BB): Intra prediction yet to be added, pending further specification development.]
	

		} else {
	

			[Ed. (BB): Inter prediction yet to be added, pending further specification development.]
	

		}
	

		if(CuPredMode[x0][y0] != MODE_INTRA)
	

			cu_cbf
	ae(v)

		if(cu_cbf) {
	

			transform_tree(x0, y0, cbWidth, cbHeight)
	

	}
	

[bookmark: _Ref398986432][bookmark: _Toc415475846][bookmark: _Toc423599121][bookmark: _Toc423601625]Transform tree syntax

	transform_tree(x0, y0, tbWidth, tbHeight) {
	Descriptor

		if(tbWidth > MaxTbSizeY | | tbHeight > MaxTbSizeY) {
	

			trafoWidth = (tbWidth > MaxTbSizeY) ? (tbWidth / 2) : tbWidth
	

			trafoHeight = (tbHeight > MaxTbSizeY) ? (tbHeight / 2) : tbHeight
	

			transform_tree(x0, y0, trafoWidth, trafoHeight)
	

			if(tbWidth > MaxTbSizeY)
	

				transform_tree(x0 + trafoWidth, y0, trafoWidth, trafoHeight)
	

			if(tbHeight > MaxTbSizeY)
	

				transform_tree(x0, y0 + trafoHeight, trafoWidth, trafoHeight)
	

			if(tbWidth > MaxTbSizeY && tbHeight > MaxTbSizeY)
	

				transform_tree(x0 + trafoWidth, y0 + trafoHeight, trafoWidth, trafoHeight)
	

		} else {
	

			transform_unit(x0, y0, tbWidth, tbHeight)
	

		}
	

	}
	

[bookmark: _Ref350100895][bookmark: _Toc415475848][bookmark: _Toc423599123][bookmark: _Toc423601627]Transform unit syntax
[Ed. (BB): Current TU syntax including coded block flags for luma and chroma is just a placeholder for a transform coding specification yet to be added, pending further specification development.]

	transform_unit(x0, y0, tbWidth, tbHeight) {
	Descriptor

		tu_cbf_luma[x0][y0]
	ae(v)

		tu_cbf_cb[x0][y0]
	ae(v)

		tu_cbf_cr[x0][y0]
	ae(v)

		if(tu_cbf_luma[x0][y0])
	

			residual_coding(x0, y0, tbWidth, tbHeight, 0)
	

		if(tu_cbf_cb[x0][y0])
	

			residual_coding(x0, y0, tbWidth / 2, tbHeight / 2, 1)
	

		if(tu_cbf_cr[x0][y0])
	

			residual_coding(x0, y0, tbWidth / 2, tbHeight / 2, 2)
	

	}
	

[bookmark: _Ref291775503][bookmark: _Toc311216766][bookmark: _Toc317198739][bookmark: _Toc415475849][bookmark: _Toc423599124][bookmark: _Toc423601628]Residual coding syntax

	residual_coding(x0, y0, tbWidth, tbHeight, cIdx) {
	Descriptor

		[Ed. (BB) coefficient syntax yet to be added, pending further specification development.]
	

	
	

	}
	

[bookmark: _Ref397950527][bookmark: _Toc415475851][bookmark: _Toc423599126][bookmark: _Toc423601630][bookmark: _Toc501130168][bookmark: _Toc510795091][bookmark: _Toc516846298]Semantics
[bookmark: _Toc415475852][bookmark: _Toc423599127][bookmark: _Toc423601631][bookmark: _Toc501130169][bookmark: _Toc510795092][bookmark: _Toc516846299]General
Semantics associated with the syntax structures and with the syntax elements within these structures are specified in this clause. When the semantics of a syntax element are specified using a table or a set of tables, any values that are not specified in the table(s) shall not be present in the bitstream unless otherwise specified in this Specification.
[bookmark: _Toc20134268][bookmark: _Ref29357062][bookmark: _Ref29357065][bookmark: _Toc77680400][bookmark: _Toc118289047][bookmark: _Ref168820094][bookmark: _Ref220341643][bookmark: _Toc226456554][bookmark: _Toc248045246][bookmark: _Toc287363773][bookmark: _Toc311216920][bookmark: _Toc317198741][bookmark: _Toc415475853][bookmark: _Toc423599128][bookmark: _Toc423601632][bookmark: _Toc501130170][bookmark: _Toc510795093][bookmark: _Toc516846300]NAL unit semantics
[bookmark: _Ref398986473][bookmark: _Toc415475854][bookmark: _Toc423599129][bookmark: _Toc423601633]General NAL unit semantics
NumBytesInNalUnit specifies the size of the NAL unit in bytes. This value is required for decoding of the NAL unit. Some form of demarcation of NAL unit boundaries is necessary to enable inference of NumBytesInNalUnit. One such demarcation method is specified in Annex TBD for the byte stream format. Other methods of demarcation may be specified outside of this Specification.
NOTE 1 – The video coding layer (VCL) is specified to efficiently represent the content of the video data. The NAL is specified to format that data and provide header information in a manner appropriate for conveyance on a variety of communication channels or storage media. All data are contained in NAL units, each of which contains an integer number of bytes. A NAL unit specifies a generic format for use in both packet-oriented and bitstream systems. The format of NAL units for both packet-oriented transport and byte stream is identical except that each NAL unit can be preceded by a start code prefix and extra padding bytes in the byte stream format specified in Annex TBD.
rbsp_byte[i] is the i-th byte of an RBSP. An RBSP is specified as an ordered sequence of bytes as follows:
The RBSP contains an string of data bits (SODB) as follows:
–	If the SODB is empty (i.e., zero bits in length), the RBSP is also empty.
–	Otherwise, the RBSP contains the SODB as follows:
1)	The first byte of the RBSP contains the (most significant, left-most) eight bits of the SODB; the next byte of the RBSP contains the next eight bits of the SODB, etc., until fewer than eight bits of the SODB remain.
2)	rbsp_trailing_bits() are present after the SODB as follows:
i)	The first (most significant, left-most) bits of the final RBSP byte contains the remaining bits of the SODB (if any).
ii)	The next bit consists of a single rbsp_stop_one_bit equal to 1.
iii)	When the rbsp_stop_one_bit is not the last bit of a byte-aligned byte, one or more rbsp_alignment_zero_bit is present to result in byte alignment.
3)	One or more cabac_zero_word 16-bit syntax elements equal to 0x0000 may be present in some RBSPs after the rbsp_trailing_bits() at the end of the RBSP.
Syntax structures having these RBSP properties are denoted in the syntax tables using an "_rbsp" suffix. These structures are carried within NAL units as the content of the rbsp_byte[i] data bytes. The association of the RBSP syntax structures to the NAL units is as specified in Table 71.
NOTE 2 – When the boundaries of the RBSP are known, the decoder can extract the SODB from the RBSP by concatenating the bits of the bytes of the RBSP and discarding the rbsp_stop_one_bit, which is the last (least significant, right-most) bit equal to 1, and discarding any following (less significant, farther to the right) bits that follow it, which are equal to 0. The data necessary for the decoding process is contained in the SODB part of the RBSP.
emulation_prevention_three_byte is a byte equal to 0x03. When an emulation_prevention_three_byte is present in the NAL unit, it shall be discarded by the decoding process.
The last byte of the NAL unit shall not be equal to 0x00.
Within the NAL unit, the following three-byte sequences shall not occur at any byte-aligned position:
–	0x000000
–	0x000001
–	0x000002
Within the NAL unit, any four-byte sequence that starts with 0x000003 other than the following sequences shall not occur at any byte-aligned position:
–	0x00000300
–	0x00000301
–	0x00000302
–	0x00000303
[bookmark: _Ref398986483][bookmark: _Toc415475855][bookmark: _Toc423599130][bookmark: _Toc423601634]NAL unit header semantics
forbidden_zero_bit shall be equal to 0.
nal_unit_type specifies the type of RBSP data structure contained in the NAL unit as specified in Table 71.
[Ed. (BB): NAL unit types yet to be defined, pending further specification development.]
[bookmark: _Ref330857631][bookmark: _Toc415476433][bookmark: _Toc423602473][bookmark: _Toc423602647][bookmark: _Toc501130553][bookmark: _Toc510795478]Table 71 – NAL unit type codes and NAL unit type classes
	nal_unit_type
	Name of nal_unit_type
	Content of NAL unit and RBSP syntax structure
	NAL unit
type class

	
	
	
	

	
	
	
	

[bookmark: _Toc20134269][bookmark: _Toc77680408][bookmark: _Toc118289050][bookmark: _Toc248045249][bookmark: _Toc287363776][bookmark: _Toc311216923][bookmark: _Toc317198744][bookmark: _Toc415475858][bookmark: _Toc423599133][bookmark: _Toc423601637][bookmark: _Toc501130171][bookmark: _Toc510795094][bookmark: _Toc516846301]Raw byte sequence payloads, trailing bits and byte alignment semantics
[bookmark: _Toc415475860][bookmark: _Toc423599135][bookmark: _Toc423601639]Sequence parameter set RBSP semantics
[Ed. (BB): Preliminary basic SPS, subject to further study and pending further specification development.]
sps_seq_parameter_set_id provides an identifier for the SPS for reference by other syntax elements. The value of sps_seq_parameter_set_id shall be in the range of 0 to 15, inclusive.
chroma_format_idc specifies the chroma sampling relative to the luma sampling as specified in clause 6.2. The value of chroma_format_idc shall be in the range of 0 to 3, inclusive.
separate_colour_plane_flag equal to 1 specifies that the three colour components of the 4:4:4 chroma format are coded separately. separate_colour_plane_flag equal to 0 specifies that the colour components are not coded separately. When separate_colour_plane_flag is not present, it is inferred to be equal to 0. When separate_colour_plane_flag is equal to 1, the coded picture consists of three separate components, each of which consists of coded samples of one colour plane (Y, Cb, or Cr) and uses the monochrome coding syntax. In this case, each colour plane is associated with a specific colour_plane_id value.
NOTE 1 – There is no dependency in decoding processes between the colour planes having different colour_plane_id values. For example, the decoding process of a monochrome picture with one value of colour_plane_id does not use any data from monochrome pictures having different values of colour_plane_id for inter prediction.
Depending on the value of separate_colour_plane_flag, the value of the variable ChromaArrayType is assigned as follows:
–	If separate_colour_plane_flag is equal to 0, ChromaArrayType is set equal to chroma_format_idc.
–	Otherwise (separate_colour_plane_flag is equal to 1), ChromaArrayType is set equal to 0.
pic_width_in_luma_samples specifies the width of each decoded picture in units of luma samples. pic_width_in_luma_samples shall not be equal to 0 and shall be an integer multiple of MinCbSizeY.
pic_height_in_luma_samples specifies the height of each decoded picture in units of luma samples. pic_height_in_luma_samples shall not be equal to 0 and shall be an integer multiple of MinCbSizeY.
bit_depth_luma_minus8 specifies the bit depth of the samples of the luma array BitDepthY and the value of the luma quantization parameter range offset QpBdOffsetY as follows:
BitDepthY = 8 + bit_depth_luma_minus8		(71)
QpBdOffsetY = 6 * bit_depth_luma_minus8		(72)
bit_depth_luma_minus8 shall be in the range of 0 to 8, inclusive.
bit_depth_chroma_minus8 specifies the bit depth of the samples of the chroma arrays BitDepthC and the value of the chroma quantization parameter range offset QpBdOffsetC as follows:
[bookmark: _Ref287008908]BitDepthC = 8 + bit_depth_chroma_minus8		(73)
QpBdOffsetC = 6 * bit_depth_chroma_minus8		(74)
bit_depth_chroma_minus8 shall be in the range of 0 to 8, inclusive.
log2_ctu_size_minus2 plus 2 specifies the luma coding tree block size of each CTU.
The variables CtbLog2SizeY, CtbSizeY, MinCbLog2SizeY, MinCbSizeY, MinTbLog2SizeY, MaxTbLog2SizeY, PicWidthInCtbsY, PicHeightInCtbsY, PicSizeInCtbsY, PicWidthInMinCbsY, PicHeightInMinCbsY, PicSizeInMinCbsY, PicSizeInSamplesY, PicWidthInSamplesC and PicHeightInSamplesC are derived as follows:
CtbLog2SizeY = log2_ctu_size_minus2 + 2		(75)
CtbSizeY = 1 << CtbLog2SizeY		(76)
MinCbLog2SizeY = 2		(77)
MinCbSizeY = 1 << MinCbLog2SizeY		(78)
MinTbSizeY = 4		(79)
MaxTbSizeY = 64		(710)
PicWidthInCtbsY = Ceil(pic_width_in_luma_samples ÷ CtbSizeY)	(711)
PicHeightInCtbsY = Ceil(pic_height_in_luma_samples ÷ CtbSizeY)	(712)
PicSizeInCtbsY = PicWidthInCtbsY * PicHeightInCtbsY	(713)
PicWidthInMinCbsY = pic_width_in_luma_samples / MinCbSizeY	(714)
PicHeightInMinCbsY = pic_height_in_luma_samples / MinCbSizeY	(715)
PicSizeInMinCbsY = PicWidthInMinCbsY * PicHeightInMinCbsY	(716)
PicSizeInSamplesY = pic_width_in_luma_samples * pic_height_in_luma_samples	(717)
PicWidthInSamplesC = pic_width_in_luma_samples / SubWidthC	(718)
PicHeightInSamplesC = pic_height_in_luma_samples / SubHeightC	(719)
[Ed. (BB): Currently the minimum CU size is fixed (4x4 luma samples and corresponding chroma samples) as well as the maximum transform size (64x64 luma samples and corresponding chroma sample size) and the minimum transform size (4x4 luma samples and corresponding chroma samples), pending further specification development.]
The variables CtbWidthC and CtbHeightC, which specify the width and height, respectively, of the array for each chroma CTB, are derived as follows:
–	If chroma_format_idc is equal to 0 (monochrome) or separate_colour_plane_flag is equal to 1, CtbWidthC and CtbHeightC are both equal to 0.
–	Otherwise, CtbWidthC and CtbHeightC are derived as follows:
CtbWidthC = CtbSizeY / SubWidthC		(720)
CtbHeightC = CtbSizeY / SubHeightC		(721)
For log2BlockWidth ranging from 0 to 4 and f or log2BlockHeight ranging from 0 to 4, inclusive, the up-right diagonal scan order array initialization process as specified in clause 6.5.2 is invoked with 1 << log2BlockWidth and 1 << log2BlockHeight as input, and the output is assigned to DiagScanOrder[log2BlockWidth][log2BlockHeight].
log2_min_qt_size_intra_slices_minus2 plus 2 specifies the minimum luma size of a leaf block resulting from quadtree splitting of a CTU in slices with slice_type equal to 2 (I). The value of log2_min_qt_size_intra_slices_minus2 shall be in the range of 0 to CtbLog2SizeY − 2, inclusive.
MinQtLog2SizeIntraY = log2_min_qt_size_intra_slices_minus2 + 2	(722)
[Ed. (BB): The leaf of a quadtree can either be a coding unit or the root of a nested multi-type tree.]
log2_min_qt_size_inter_slices_minus2 plus 2 specifies the minimum luma size of a leaf block resulting from quadtree splitting of a CTU in slices with slice_type equal to 0 (B) or 1 (P). The value of log2_min_qt_size_inter_slices_minus2 shall be in the range of 0 to CtbLog2SizeY − 2, inclusive.
MinQtLog2SizeInterY = log2_min_qt_size_inter_slices_minus2 + 2	(723)
max_mtt_hierarchy_depth_inter_slices specifies the maximum hierarchy depth for coding units resulting from multi-type tree splitting of a quadtree leaf in slices with slice_type equal to 0 (B) or 1 (P). The value of max_mtt_hierarchy_depth_inter_slices shall be in the range of 0 to CtbLog2SizeY − MinTbLog2SizeY, inclusive.
max_mtt_hierarchy_depth_intra_slices specifies the maximum hierarchy depth for coding units resulting from multi-type tree splitting of a quadtree leaf in slices with slice_type equal to 2 (I). The value of max_mtt_hierarchy_depth_intra_slices shall be in the range of 0 to CtbLog2SizeY − MinTbLog2SizeY, inclusive.

[bookmark: _Toc317198746][bookmark: _Toc415475861][bookmark: _Toc423599136][bookmark: _Toc423601640]Picture parameter set RBSP semantics
[Ed. (BB): Preliminary basic PPS, subject to further study and pending further specification development.]
pps_pic_parameter_set_id identifies the PPS for reference by other syntax elements. The value of pps_pic_parameter_set_id shall be in the range of 0 to 63, inclusive.
pps_seq_parameter_set_id specifies the value of sps_seq_parameter_set_id for the active SPS. The value of pps_seq_parameter_set_id shall be in the range of 0 to 15, inclusive.
[bookmark: _Toc20134274][bookmark: _Toc77680413][bookmark: _Ref168820890][bookmark: _Ref220341835][bookmark: _Toc226456571][bookmark: _Toc248045253][bookmark: _Toc287363780][bookmark: _Toc311216928][bookmark: _Toc317198754][bookmark: _Ref398989262][bookmark: _Toc415475863][bookmark: _Toc423599138][bookmark: _Toc423601642]Access unit delimiter RBSP semantics
The access unit delimiter may be used to indicate the type of slices present in the coded picture in the access unit containing the access unit delimiter NAL unit and to simplify the detection of the boundary between access units. There is no normative decoding process associated with the access unit delimiter.
pic_type indicates that the slice_type values for all slices of the coded picture in the access unit containing the access unit delimiter NAL unit are members of the set listed in Table 72 for the given value of pic_type. The value of pic_type shall be equal to 0, 1 or 2 in bitstreams conforming to this version of this Specification. Other values of pic_type are reserved for future use by ITUT | ISO/IEC. Decoders conforming to this version of this Specification shall ignore reserved values of pic_type.
[bookmark: _Ref19417281][bookmark: _Toc17563167][bookmark: _Toc77680754][bookmark: _Toc118289057][bookmark: _Toc246350686][bookmark: _Toc287363919][bookmark: _Toc415476434][bookmark: _Toc423602475][bookmark: _Toc423602649][bookmark: _Toc501130554][bookmark: _Toc510795479]Table 72 – Interpretation of pic_type
	pic_type
	slice_type values that may be present in the coded picture

	0
	I

	1
	P, I

	2
	B, P, I

[bookmark: _Toc20134275]
[bookmark: _Ref398989280][bookmark: _Toc415475864][bookmark: _Toc423599139][bookmark: _Toc423601643]End of sequence RBSP semantics
When included in a NAL unit with nuh_layer_id equal to 0, the end of sequence RBSP specifies that the current access unit is the last access unit in the coded video sequence in decoding order and the next subsequent access unit in the bitstream in decoding order (if any) is an IRAP access unit. The syntax content of the SODB and RBSP for the end of sequence RBSP are empty.
[bookmark: _Ref398989293][bookmark: _Toc415475865][bookmark: _Toc423599140][bookmark: _Toc423601644]End of bitstream RBSP semantics
The end of bitstream RBSP indicates that no additional NAL units are present in the bitstream that are subsequent to the end of bitstream RBSP in decoding order. The syntax content of the SODB and RBSP for the end of bitstream RBSP are empty.
[bookmark: _Toc77680416][bookmark: _Ref168820895][bookmark: _Ref205323030][bookmark: _Toc226456574][bookmark: _Toc248045256][bookmark: _Toc287363781][bookmark: _Toc311216929][bookmark: _Toc317198755][bookmark: _Ref398989307][bookmark: _Toc415475866][bookmark: _Toc423599141][bookmark: _Toc423601645]Filler data RBSP semantics
The filler data RBSP contains bytes whose value shall be equal to 0xFF. No normative decoding process is specified for a filler data RBSP.
ff_byte is a byte equal to 0xFF.
[bookmark: _Toc20134276][bookmark: _Toc77680417][bookmark: _Ref168820897][bookmark: _Ref220341846][bookmark: _Toc226456575][bookmark: _Toc248045257][bookmark: _Toc287363782][bookmark: _Toc311216930][bookmark: _Toc317198756][bookmark: _Ref398989321][bookmark: _Toc415475867][bookmark: _Toc423599142][bookmark: _Toc423601646]Slice layer RBSP semantics
The slice layer RBSP consists of a slice header and slice data.
[bookmark: _Toc317198757][bookmark: _Toc338688377][bookmark: _Toc20134282][bookmark: _Ref57623190][bookmark: _Toc77680422][bookmark: _Ref168820902][bookmark: _Ref220341849][bookmark: _Toc226456580][bookmark: _Toc248045259][bookmark: _Toc287363783][bookmark: _Toc311216931][bookmark: _Toc317198758][bookmark: _Ref398989334][bookmark: _Toc415475868][bookmark: _Toc423599143][bookmark: _Toc423601647]RBSP slice trailing bits semantics
cabac_zero_word is a byte-aligned sequence of two bytes equal to 0x0000.
Let NumBytesInVclNalUnits be the sum of the values of NumBytesInNalUnit for all VCL NAL units of a coded picture.
Let BinCountsInNalUnits be the number of times that the parsing process function DecodeBin(), specified in clause TBD, is invoked to decode the contents of all VCL NAL units of a coded picture.
Let the variable RawMinCuBits be derived as follows:
RawMinCuBits = MinCbSizeY * MinCbSizeY *
				(BitDepthY + 2 * BitDepthC / (SubWidthC * SubHeightC))	(724)
The value of BinCountsInNalUnits shall be less than or equal to (32 ÷ 3) * NumBytesInVclNalUnits + (RawMinCuBits * PicSizeInMinCbsY) 32.
NOTE – The constraint on the maximum number of bins resulting from decoding the contents of the coded slice NAL units can be met by inserting a number of cabac_zero_word syntax elements to increase the value of NumBytesInVclNalUnits. Each cabac_zero_word is represented in a NAL unit by the three-byte sequence 0x000003 (as a result of the constraints on NAL unit contents that result in requiring inclusion of an emulation_prevention_three_byte for each cabac_zero_word).
[bookmark: _Toc77680423][bookmark: _Ref168820904][bookmark: _Ref220341852][bookmark: _Toc226456581][bookmark: _Toc248045260][bookmark: _Toc287363784][bookmark: _Toc311216932][bookmark: _Toc317198759][bookmark: _Ref398989347][bookmark: _Toc415475869][bookmark: _Toc423599144][bookmark: _Toc423601648]RBSP trailing bits semantics
rbsp_stop_one_bit shall be equal to 1.
rbsp_alignment_zero_bit shall be equal to 0.
[bookmark: _Toc311216933][bookmark: _Toc317198760][bookmark: _Ref398989362][bookmark: _Toc415475870][bookmark: _Toc423599145][bookmark: _Toc423601649]Byte alignment semantics
alignment_bit_equal_to_one shall be equal to 1.
alignment_bit_equal_to_zero shall be equal to 0.

[bookmark: _Toc311216934][bookmark: _Toc317198761][bookmark: _Toc415475874][bookmark: _Toc423599149][bookmark: _Toc423601653][bookmark: _Toc501130175][bookmark: _Toc510795098][bookmark: _Toc516846302]Slice header semantics
[Ed. (BB): Preliminary basic slice header, subject to further study and pending further specification development.]
When present, the value of the slice header syntax element slice_pic_parameter_set_id shall be the same in all slice headers of a coded picture.
slice_pic_parameter_set_id specifies the value of pps_pic_parameter_set_id for the PPS in use. The value of slice_pic_parameter_set_id shall be in the range of 0 to 63, inclusive.
slice_address specifies the address of the first CTB in the slice, in CTB raster scan of a picture. The length of the slice_address syntax element is Ceil(Log2(PicSizeInCtbsY)) bits. The value of slice_address shall be in the range of 0 to PicSizeInCtbsY − 1, inclusive, and the value of slice_address shall not be equal to the value of slice_address of any other coded slice NAL unit of the same coded picture.
The variable CtbAddrInRs, specifying a CTB address in CTB raster scan of a picture, is set equal to slice_address.
slice_type specifies the coding type of the slice according to Table 73.
[bookmark: _Ref317098952][bookmark: _Toc415476439][bookmark: _Toc423602480][bookmark: _Toc423602654][bookmark: _Toc501130559][bookmark: _Toc510795484]Table 73 – Name association to slice_type
	slice_type
	Name of slice_type

	0
	B (B slice)

	1
	P (P slice)

	2
	I (I slice)

When nal_unit_type has a value in the range of TBD, inclusive, i.e., the picture is an IRAP picture, slice_type shall be equal to 2.
[Ed. (BB): IRAP slice types to be defined (if such types will exist), pending further specification development.]
log2_diff_ctu_max_bt_size specifies the difference between the luma CTB size and the maximum luma size (width or height) of a coding block that can be split using a binary split. The value of log2_diff_ctu_max_bt_size shall be in the range of 0 to CtbLog2SizeY − MinCbLog2SizeY, inclusive.
When log2_diff_ctu_max_bt_size is not present, the value of log2_diff_ctu_max_bt_size is inferred to be equal to 2.
The variables MinQtLog2SizeY, MaxBtLog2SizeY, MinBtLog2SizeY, MaxTtLog2SizeY, MinTtLog2SizeY, MaxBtSizeY, MinBtSizeY, MaxTtSizeY, MinTtSizeY and MaxMttDepth are derived as follows:
MinQtLog2SizeY = (slice_type = = I) ? MinQtLog2SizeIntraY : MinQtLog2SizeInterY	(725)
MaxBtLog2SizeY = CtbLog2SizeY − log2_diff_ctu_max_bt_size	(726)
MinBtLog2SizeY = MinCbLog2SizeY		(727)
MaxTtLog2SizeY = (slice_type = = I) ? 5 : 7	(728)
MinTtLog2SizeY = MinCbLog2SizeY		(729)
MaxBtSizeY = 1 << MaxBtLog2SizeY		(730)
MinBtSizeY = 1 << MinBtLog2SizeY		(731)
MaxTtSizeY = 1 << MaxTtLog2SizeY		(732)
MinTtSizeY = 1 << MinTtLog2SizeY		(733)
MaxMttDepth = (slice_type = = I) ? max_mtt_hierarchy_depth_intra_slices :
				max_mtt_hierarchy_depth_inter_slices	(734)
[Ed. (BB): Currently the maximum TT size is fixed (32x32 luma samples and corresponding chroma samples for I-slices and 128x128 luma samples and corresponding chroma samples for P/B-slices) as well as the maximum BT size for I-slices (CtbLog2SizeY − 2, e.g. 32x32 luma samples and corresponding chroma samples for a CTU size of 128x128 luma samples).]

[bookmark: _Toc415475879][bookmark: _Toc423599154][bookmark: _Toc423601658][bookmark: _Toc501130177][bookmark: _Toc510795100][bookmark: _Toc516846303]Slice data semantics
General slice data semantics
end_of_slice_flag equal to 0 specifies that another CTU is following in the slice. end_of_slice_flag equal to 1 specifies the end of the slice, i.e., that no further CTU follows in the slice.
[bookmark: _Toc328577703][bookmark: _Toc328598506][bookmark: _Toc328663151][bookmark: _Toc328752991][bookmark: _Ref398990158][bookmark: _Toc415475881][bookmark: _Toc423599156][bookmark: _Toc423601660]Coding tree unit semantics
The CTU is the root node of the coding quadtree structure.
[bookmark: _Ref398990180][bookmark: _Toc415475883][bookmark: _Toc423599158][bookmark: _Toc423601662]Coding quadtree semantics
qt_split_cu_flag[x0][y0] specifies whether a coding unit is split into coding units with half horizontal and vertical size. The array indices x0, y0 specify the location (x0, y0) of the top-left luma sample of the considered coding block relative to the top-left luma sample of the picture.
When qt_split_cu_flag[x0][y0] is not present, the following applies:
· If one or more of the following conditions are true, the value of qt_split_cu_flag[x0][y0] is inferred to be equal to 1:
· x0 + (1 << log2CbSize) is greater than pic_width_in_luma_samples.
· y0 + (1 << log2CbSize) is greater than pic_height_in_luma_samples.
–	Otherwise, the value of qt_split_cu_flag[x0][y0] is inferred to be equal to 0.

Multi-type tree semantics
The variables allowSplitBtVer, allowSplitBtHor, allowSplitTtVer allowSplitTtHor are derived as follows:
· The allowed binary split process as specified in clause 6.4.1 is invoked with the binary split mode SPLIT_BT_VER, the coding block width cbWidth, the coding block height cbHeight, the location (x0, y0), the current multi-type tree depth mttDepth, the current partition index partIdx as input, and the output is assigned to allowSplitBtVer.
· The allowed binary split process as specified in clause 6.4.1 is invoked with the binary split mode SPLIT_BT_HOR, the coding block height cbHeight, the coding block width cbWidth, the location (x0, y0), the current multi-type tree depth mttDepth, the current partition index partIdx as input, and the output is assigned to allowSplitBtHor.
· The allowed ternary split process as specified in clause 6.4.2 is invoked with the ternary split mode SPLIT_TT_VER, the coding block width cbWidth, the coding block height cbHeight, the location (x0, y0), the current multi-type tree depth mttDepth, the current partition index partIdx as input, and the output is assigned to allowSplitTtVer.
· The allowed ternary split process as specified in clause 6.4.2 is invoked with the ternary split mode SPLIT_TT_HOR, the coding block height cbHeight, the coding block width cbWidth, the location (x0, y0), the current multi-type tree depth mttDepth, the current partition index partIdx as input, and the output is assigned to allowSplitTtHor.
mtt_split_cu_flag equal to 0 specifies that a coding unit is not split. mtt_split_cu_flag equal to 1 specifies that a coding unit is split into two coding units using a binary split or into three coding units using a ternary split as indicated by the syntax element mtt_split_cu_binary_flag. The binary or ternary split can be either vertical or horizontal as indicated by the syntax element mtt_split_cu_vertical_flag.
When mtt_split_cu_flag is not present, the value of mtt_split_cu_flag is inferred to be equal to 0.
mtt_split_cu_vertical_flag equal to 0 specifies that a coding unit is split horizontally. mtt_split_cu_vertical_flag equal to 1 specifies that a coding unit is split vertically
When mtt_split_cu_vertical_flag is not present, it is inferred as follows:
· If allowSplitBtHor is equal to TRUE or allowSplitTtHor is equal to TRUE, the value of mtt_split_cu_vertical_flag is inferred to be equal to 0.
· Otherwise, the value of mtt_split_cu_vertical_flag is inferred to be equal to 1
mtt_split_cu_binary_flag equal to 0 specifies that a coding unit is split into three coding units using a ternary split. mtt_split_cu_binary_flag equal to 1 specifies that a coding unit is split into two coding units using a binary split.
When mtt_split_cu_binary_flag is not present, it is inferred as follows:
· If allowSplitBtVer is equal to FALSE and allowSplitBtHor is equal to FALSE, the value of mtt_split_cu_binary_flag is inferred to be equal to 0.
· Otherwise if allowSplitTtVer is equal to FALSE and allowSplitTtHor is equal to FALSE, the value of mtt_split_cu_binary_flag is inferred as to be equal to 1.
· Otherwise if allowSplitBtHor is equal to TRUE and allowSplitTtVer is equal to TRUE, the value of mtt_split_cu_binary_flag is inferred to be equal to !mtt_split_cu_vertical_flag.
· Otherwise (allowSplitBtVer is equal to TRUE and allowSplitTtHor is equal to TRUE), the value of mtt_split_cu_binary_flag is inferred to be equal to mtt_split_cu_vertical_flag.
The variable MttSplitMode[x][y][mttDepth] is derived from the value of mtt_split_cu_vertical_flag and from the value of mtt_split_cu_binary_flag as defined in Table 74 for x = x0..x0 + cbWidth − 1 and y = y0..y0 + cbHeight − 1.

[bookmark: _Ref278067287]Figure 71 – Multi-type tree spliting modes indicated by MttSplitMode (informative)
MttSplitMode[x0][y0][mttDepth] represents horizontal and vertical binary and ternary splittings of a coding unit within the multi-type tree as illustrated in Figure 71. The array indices x0, y0 specify the location (x0, y0) of the top-left luma sample of the considered coding block relative to the top-left luma sample of the picture.
[bookmark: _Ref285719228][bookmark: _Ref293581640][bookmark: _Toc287363924][bookmark: _Toc415476442][bookmark: _Toc423602483][bookmark: _Toc423602657][bookmark: _Toc501130562][bookmark: _Toc510795487]Table 74 – Specification of MttSplitMode[x][y][mttDepth] for x = x0..x0 + cbWidth − 1 and y = y0..y0 + cbHeight − 1
	[bookmark: _Toc342578186][bookmark: _Toc311216945][bookmark: _Toc311217033][bookmark: _Toc311217083][bookmark: _Toc311217090][bookmark: _Toc311217097][bookmark: _Toc311217147][bookmark: _Toc311217154]MttSplitMode[x0][y0][mttDepth]
	mtt_split_cu_vertical_flag
	mtt_split_cu_binary_flag

	SPLIT_TT_HOR
	0
	0

	SPLIT_BT_HOR
	0
	1

	SPLIT_TT_VER
	1
	0

	SPLIT_BT_VER
	1
	1

[bookmark: _Ref398990193][bookmark: _Toc415475884][bookmark: _Toc423599159][bookmark: _Toc423601663]Coding unit semantics
pred_mode_flag equal to 0 specifies that the current coding unit is coded in inter prediction mode. pred_mode_flag equal to 1 specifies that the current coding unit is coded in intra prediction mode. The variable CuPredMode[x][y] is derived as follows for x = x0..x0 + cbWidth − 1 and y = y0..y0 + cbHeight − 1:
· If pred_mode_flag is equal to 0, CuPredMode[x][y] is set equal to MODE_INTER.
· Otherwise (pred_mode_flag is equal to 1), CuPredMode[x][y] is set equal to MODE_INTRA.
When pred_mode_flag is not present, the variable CuPredMode[x][y] is is inferred to be equal to MODE_INTRA for x = x0..x0 + cbWidth − 1 and y = y0..y0 + cbHeight − 1.
cu_cbf equal to 1 specifies that the transform_tree() syntax structure is present for the current coding unit. cu_cbf equal to 0 specifies that the transform_tree() syntax structure is not present for the current coding unit.
When cu_cbf is not present, its value is inferred to be equal to 1.
Transform tree semantics
[Ed. (BB): The transform scheme does not have any syntax for spliting a CU into TUs. However, if the height or width of a CU is larger than the current maximum transform length of 64 luma samples or the corresponding chroma sample length, the CU will be implicitly split to divide it into TUs.]
Transform unit semantics
[Ed. (BB): Current TU semantics including coded block flags for luma and chroma are just a placeholder for a transform coding scheme yet to be added, pending further specification development.]
tu_cbf_luma[x0][y0] equal to 1 specifies that the luma transform block contains one or more transform coefficient levels not equal to 0. The array indices x0, y0 specify the location (x0, y0) of the top-left luma sample of the considered transform block relative to the top-left luma sample of the picture.
tu_cbf_cb[x0][y0] equal to 1 specifies that the Cb transform block contains one or more transform coefficient levels not equal to 0. The array indices x0, y0 specify the top-left location (x0, y0) of the considered transform block. The array index trafoDepth specifies the current subdivision level of a coding block into blocks for the purpose of transform coding. trafoDepth is equal to 0 for blocks that correspond to coding blocks.
tu_cbf_cr[x0][y0] equal to 1 specifies that the Cr transform block contains one or more transform coefficient levels not equal to 0. The array indices x0, y0 specify the top-left location (x0, y0) of the considered transform block. The array index trafoDepth specifies the current subdivision level of a coding block into blocks for the purpose of transform coding. trafoDepth is equal to 0 for blocks that correspond to coding blocks.
Residual coding semantics
[Ed. (BB): The transform coefficient coding syntax is yet to be added, pending further specification development.]

2	ITU-T Rec. H.VVC
			ITU-T Rec. H.VVC	1
image1.wmf
å

=

 y

x

i

)

i

f(

image2.emf
...

.

.

.

.

.

.

= Location of luma sample

= Location of chroma sample

image3.emf
...

.

.

.

.

.

.

= Location of luma sample

= Location of chroma sample

image4.emf
...

.

.

.

.

.

.

= Location of luma sample

= Location of chroma sample

image5.emf

image6.emf
SPLIT_BT_VERSPLIT_BT_HORSPLIT_TT_HORSPLIT_TT_VER

Microsoft_Visio_2003-2010_Drawing.vsd
SPLIT_BT_VER

SPLIT_BT_HOR

SPLIT_TT_HOR

SPLIT_TT_VER

INTERNATIONAL ORGANI

Z

ATION FOR STANDARDI

Z

ATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11

N

17669

April

201

8

, San

Diego

, CA, US

Title:

Working Draft 1 of Versatile Video Coding

Source:

JVET

Joint Video

Experts Team

(

JVET

)

of ITU

-

T SG

16 WP

3 and ISO/IEC JTC

1/SC

29/WG

11

10th

Meeting:

San Diego,

US, 10

–

20

Apr.

201

8

Document:

JVET

-

J1001

-

v

2

Title:

Status:

Output document a

pproved by

JVET

Purpose:

Draft

text of video coding

sp

e

cification

Author(s) or

Contact(s):

B

enjamin

Bross

Email:

firstname.lastname@hhi.fraunhofer.de

Source:

Editor

Abstract

Since this is an early draft, topics outside of the specific aspects that have been established by recorded meeting

agreements are not included in the specification. Such aspects are to be

determined

by further development of the VVC

project in JVET.

The h

igh

-

level syntax

for the standard

is yet to be developed

. T

he

aspects

of high

-

level syntax

in this

early draft

are provided only to show how certain

features

are likely to be controlled by some high

-

level syntax that may

have a sequence level, a picture le

vel, and a

slice level (a

picture spatial region level that includes a subset of the CTUs

of the picture

)

.

Draft 1 of Versatile Video Coding

.

Ed. Notes:

·

Incorporated basic definitions, abbreviations and conventions

·

Incorporated a basic

high

-

level syntax

(

HLS

)

with NAL units, SPS, PPS and slice header.

·

Incorporated

block partitioning by a

quadtree with

nested multi

-

type tree using

binary

and

ternary

splits

with

o

CU lea

f nodes

o

Prediction at CU level

o

Transform at CU level

o

Minimum

C

U

s

ize

with 4x4 luma coding b

lock

a

nd

corresponding

chroma coding blocks

(2x2 for 4:2:0)

o

Maximum

T

U

s

ize

with

6

4x

6

4

luma

transform

block

a

nd

corresponding

chroma

transform

blocks

(32x32

for 4:2:0)

o

Minimum TU

s

ize

with 4x4 luma

transform

block

a

nd

corresponding

chroma

transform

blocks

(2x2 for

4:2:0)

o

Single tree for luma and chroma

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11 N17669

April 2018, San Diego, CA, US

Title: Working Draft 1 of Versatile Video Coding

Source: JVET

Joint Video Experts Team (JVET)

of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11

10th Meeting: San Diego, US, 10–20 Apr. 2018

Document: JVET-J1001-v2

Title:

Status: Output document approved by JVET

Purpose: Draft text of video coding specification

Author(s) or

Contact(s):

Benjamin Bross Email:

firstname.lastname@hhi.fraunhofer.de

Source: Editor

Abstract

Since this is an early draft, topics outside of the specific aspects that have been established by recorded meeting

agreements are not included in the specification. Such aspects are to be determined by further development of the VVC

project in JVET. The high-level syntax for the standard is yet to be developed. The aspects of high-level syntax in this

early draft are provided only to show how certain features are likely to be controlled by some high-level syntax that may

have a sequence level, a picture level, and a slice level (a picture spatial region level that includes a subset of the CTUs

of the picture).

Draft 1 of Versatile Video Coding.

Ed. Notes:

 Incorporated basic definitions, abbreviations and conventions

 Incorporated a basic high-level syntax (HLS) with NAL units, SPS, PPS and slice header.

 Incorporated block partitioning by a quadtree with nested multi-type tree using binary and ternary splits with

o CU leaf nodes

o Prediction at CU level

o Transform at CU level

o Minimum CU size with 4x4 luma coding block and corresponding chroma coding blocks (2x2 for 4:2:0)

o Maximum TU size with 64x64 luma transform block and corresponding chroma transform blocks (32x32

for 4:2:0)

o Minimum TU size with 4x4 luma transform block and corresponding chroma transform blocks (2x2 for

4:2:0)

o Single tree for luma and chroma

