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ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).
Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.
For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html.
This document was prepared by ISO/JTC1, Subcommittee SC29, Working Group 11.
This is the first edition of ISO/IEC 23092 Part 2. ISO/IEC 23092, Genomic Information Representation, is composed of the following parts:
Part 1: Transport and Storage of Genomic Information 
Part 2: Coding of Genomic Information 
Part 3: Genomic Information Representation APIs 
Part 4: Reference Software
Part 5: Conformance Testing


[bookmark: _Toc353342668][bookmark: _Toc485815078][bookmark: _Toc506144008]Introduction
The advent of High-Throughput Sequencing (HTS) technologies enables the adoption of genomic information in the everyday practice of several fields and the advent of genomic medicine. As a consequence, an extraordinarily growing volume of generated data is expected. The current lack of appropriate standard representations and efficient compression technologies of genomic data is widely recognized as a critical element, which seriously limits the application potential in all fields using, or planning to use, genomic data at reasonable costs. 
This standard has been developed in response to the worldwide demand for new effective interoperable solutions in genomic information processing at the core of all kind of applications implementing the chain, from sequencing to storage and analysis. 
The technology employed by this specification is designed to provide a representation of the genomic information and the related entropy coding that together enable to achieve significant advances over the state-of-the-art in terms of:
· format definition and coherent data structures for sequencing and alignment information, removing ambiguities present in legacy formats 
· size of the coded data, with novel compression algorithms selected among the best performing current technologies and further improved by ad-hoc experiments during the standardization process
· speed and flexibility in the selective access to coded data, by means of newly designed data clustering and optimized storage methodologies
· latency in data transmission and consequent fast availability at remote locations, re-designing a transmission protocol inspired by real-time application domains
· Privacy and protection of the information, introducing a flexible framework allowing customizable secured access at all layers of the data hierarchy
· Reliability of the technology and interoperability among tools and systems, by providing a normative procedure to assess conformance to the standard on an exhaustive dataset
· Support to the implementation of a complete ecosystem of compliant devices and applications, through the availability of a normative reference implementation covering the totality of the specification

The fundamental structure of the MPEG-G data representation is the Genomic Record. The Genomic Record is a data structure consisting of either a single sequence read, or a paired sequence read, and its associated sequencing and alignment information; it may contain detailed mapping and alignment data, a single or paired read identifier (read name) and quality values. 
Without breaking traditional approaches, the Genomic Record introduced in the MPEG-G standard provides a more compact, simpler and manageable data structure grouping all the information related to a single DNA template from simple sequencing data to sophisticated alignment information. 
The Genomic Record, although appropriate logic data structure for interaction and manipulation of coded information, it is not a suitable atomic data structure for compression. In order to achieve high compression ratios it is necessary to group Genomic Records into clusters and to transform the information of the same type into sets of descriptors structured into homogeneous blocks. Furthermore, when dealing with selective data access, the Genomic Record is a too small unit to allow effective and fast information retrieval. 
For these reasons, this document introduces the concept of Access Unit, which is the fundamental structure for coding and access to information in the compressed domain. 
The Access Unit is the smallest data structure that can be decoded by a decoder compliant with Part 2 of this Specification. An Access Unit is composed of one block for each descriptor used to represent the information of its Genomic Records; therefore, a Block payload is the coded representation of all the data of the same type (i.e. a descriptor) in a Cluster.
In addition to clusters of Records compressed into Access Units, genomic sequence reads are further classified in data classes: five classes are defined according to the result of their alignment against one or more reference sequences; the last one contains either reads that could not be mapped or raw sequencing data.
 according to the result of their mapping against one or more reference sequences, with the exception of unmapped reads which are assigned to a specific data class called Class U. The classification of sequence reads into classes enables to develop powerful selective data access. In fact Access Units inherit a specific data characterization (e.g. perfect matches in Class P, substitutions in Class M, indels in Class I, half-mapped reads in Class HM) from the Genomic Records composing them, and thus constitute a data structure capable of providing powerful filtering capability for the efficient support of of many different use cases.
Access Units are also the fundamental, finest grain data structure in terms of content protection and in terms of metadata association. In other words each Access Unit can be protected individually and independently and specific metadata can be associated to single Access Units. Figure 1 shows how Access Units, Blocks and Genomic Records relate to each other in the MPEG-G data structure.
[image: ]
[bookmark: _Ref498431279]Figure 1 –Access Units, Blocks and Genomic Records
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[bookmark: _Ref498698961]Figure 2 – The high level data structure: Datasets and Dataset Group
A Dataset is a coded data structure containing headers and one or more Access Units. Typical Datasets may contain the complete sequencing of an individual, or a portion of it. Datasets may contain a reference genome or a subset of its chromosomes. Datasets are grouped in a Dataset Group, as shown in Figure 2. 
According to the MPEG-G standard, the compressed sequencing data can be multiplexed into a normative bitstream suitable to packetization for real-time transport over typical network protocols. In storage use cases coded data can be encapsulated into a standard MPEG-G file format with the possibility to organize Blocks per Descriptor Stream or per Access Units, to further optimize the selective access performance to the type of data access required by the different application scenarios. This Specification further provides a reference process to convert a normative MPEG-G transport stream into a normative MPEG-G file format and vice versa.  
This document defines not only the syntax and semantics of the compressed genome sequencing data representation, but also the deterministic decoding process that reconstructs any MPEG-G Dataset. The decoding process is fully specified such that all decoders that conform to this document will produce identical decoded output. The normative decoding process includes all hyerarchies of data structures from the multiplexed bitstreams included in MPEG-G files or the data streams in streaming scenarios, to the descriptors blocks and to the normative output. A simplified diagram of the decoding process is shown in Figure 3.

[image: ]
[bookmark: _Ref498430834]Figure 3 – The decoding process
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Information Technology — ISO/IEC 23092 — Part 2: Coding of Genomic Information
1 [bookmark: _Toc353342669][bookmark: _Toc485815079][bookmark: _Toc506144009]Scope
This document provides specifications for the normative representation of the following type of genomic data:
Genomic sequence reads identifiers which are treated in Clause 11.3.10.
Genomic sequence reads (both raw reads and aligned reads) which are treated in Clause 10.
Reference sequences which are treated in Clause 12.
Quality Values which are treated in Clause 11.3.9.
[bookmark: _Toc353342670][bookmark: _Toc485815080][bookmark: _Toc506144010]Normative references
The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
ISO/IEC 23092-1 Information technology -- Genomic Information Representation -- Part 1: Transport and Storage of Genomic Information
ISO/IEC 23092-3 Information technology -- Genomic Information Representation -- Part 3: APIs
ISO/IEC 23092-4 Information technology -- Genomic Information Representation -- Part 4: Reference SW
ISO/IEC 23092-5 Information technology -- Genomic Information Representation -- Part 5: Conformance
2 [bookmark: _Toc353342671][bookmark: _Toc485815081][bookmark: _Toc506144011][bookmark: _Toc353798249][bookmark: _Toc485815082]Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
—	IEC Electropedia: available at http://www.electropedia.org/
—	ISO Online browsing platform: available at https://www.iso.org/obp
3.1 
Access Unit
Logical data structure containing a coded representation of genomic information to facilitate the bit stream access and manipulation. An Access Unit contains Genomic Records belonging to the same Data Class.
3.2 
Access Unit Start Position
Left-most Genomic Record Position among all Genomic Records contained in the Access Unit. 
3.3 
Access Unit End Position
Right-most base position among all mapped bases of all Genomic Records contained in the Access Unit.
3.4 
Access Unit Range
Genomic Range comprised between the Access Unit Start Position and the right-most Genomic Record Position among all Genomic Records contained in the Access Unit.
3.5 
Access Unit Size
Number of Genomic Records contained in an Access Unit.
3.6 
Access Unit Covered Region
Genomic Range comprised between the Access Unit Start Position and the Access Unit End Position inclusive.
3.7 
alignment
A sequence read mapped on a reference sequence.
3.8 
BAM
Compressed binary version of SAM.
3.9 
base
In the context of this document “base” is used as synonymous of “nucleotide”.
3.10 
base position
The number of bases between a base and the left-most mapped base belonging to the same Genomic Segment.
3.11 
CIGAR string
A CIGAR string is a sequence of base lengths and the associated operations used to indicate bases that align (either a match/mismatch) with the reference, bases that are deleted from the reference, insertions that are not in the reference, clipped bases and splicing information.
3.12 
cluster
An aggregation of Genomic Records.
3.13 
cluster signature
Sequence of nucleotides that is common to most or all Genomic Records belonging to a cluster.
3.14 
contig
A contig (from contiguous) is a set of overlapping DNA segments that together represent a consensus region of DNA.
3.15 
Dataset
A Dataset is a compression unit specified in ISO/IEC 23092-1 containing sequence reads and possibly alignment information.
3.16 
deletion
Deletion of one or more nucleotide base pairs from a genomic sequence
3.17 
E-CIGAR
Extended CIGAR syntax specified in this document as a superset of the CIGAR syntax. E-CIGAR enables the unambiguous representation of substitutions, spliced reads and splices strandedness.
3.18 
edit operation
Modification of a sequence of nucleotides by means of a substitution, deletion or insertion.
3.19 
FASTA
GIR that includes read headers and sequence reads (nucleotides sequences)
3.20 
FASTQ
GIR that includes FASTA and Quality Values
3.21 
first read 
read 1
Sequence read generated by a paired-end sequencing run and stored in the first FASTQ file.
3.22 
genomic descriptor
descriptor
Element of the syntax used in this document to represent a feature of a genomic sequence read or associated information such as alignment information or Quality Values.
3.23 
genomic range
Interval of positions on a reference sequence specified by a start position s and an end position e such that s ≤ e. The start and the end positions of a Genomic Range are always included in the Range.
3.24 
genomic record
Data structure encoding either a single sequence read or a paired sequence read optionally associated with alignment information, read identifier and quality values.
3.25 
genomic record length
Distance between the left-most mapped base coded in the record and the right-most mapped base coded in the record.
3.26 
genomic record position
Position of the left-most mapped base of the Genomic Record on the Reference Genome. A base present in the aligned read and not present in the Reference Sequence (a.k.a. insertion) and bases preserved by the alignment process but not mapped on the Reference Sequence (a.k.a. soft clips) do not have mapping positions. Positions are 0-based.
3.27 
hard clips
Bases removed at either side of a read. Hard clips, or hard-clipped bases, are portions of an aligned sequence read that were ignored during the alignment process. 
3.28 
indel
An additional or missing nucleotide in a genomic sequence with respect to a reference genomic sequence (from insertion and deletion).
3.29 
insertion
Addition of one or more nucleotide base pairs into a genomic sequence
3.30 
MAF
Mutation Annotation Format. File format used to mark genes and other biological features in a DNA sequence.
3.31 
mapped base
A mapped base is either: 
· a base of the aligned read matching the corresponding base on the Reference Sequence 
	or
· a base of the aligned read that does not match the corresponding base (a.k.a. Single Nucleotide Polymorphism)
3.32 
paired-ends
A couple of reads produced from the same (short) DNA fragment by sequencing both ends. 
3.33 
pileup
Textual representation of sequence reads aligned to a reference sequence.
3.34 
quality value 
quality score
A quality value is assigned to each nucleotide base call in automated sequencing processes. It expresses the base-call accuracy.
3.35 
read identifier
read header
read name
Each sequence read stored in the FASTA and FASTQ formats starts with a textual field called “read identifier”, “read header” or “read name” containing a sequence identifier and an optional description.
3.36 
reference genome
A reference genome is a digital nucleic acid sequence database, assembled by scientists as a representative example of a species’ genetic material.
3.37 
reference sequence
A reference sequence is a sequence of nucleotides associated to a one-dimensional integer coordinate system for which each integer coordinate is associated to a single nucleotide. Coordinate values can only be equal to or larger than zero. This coordinate system in the context of this standard is zero-based (i.e. the first nucleotide has coordinate 0 and it is said to be at position 0) and linearly increasing from left to right.
3.38 
SAM	
GIR that is human readable and includes FASTQ + alignment and analysis information.
3.39 
second read 
read 2
Sequence read generated by a paired-end sequencing run and stored in the second FASTQ file.
3.40 
segment
genomic segment
A contiguous sequence of nucleotides
3.41 
sequence read
The readout, by a specific technology more or less prone to errors, of a continuous part of a segment of nucleotides extracted from an organic sample.
3.42 
soft clips
Soft clipped bases are portions of an aligned sequence read which do not match well to the reference genome on either side of the read and are therefore ignored for the alignment, but still kept in the aligned read.
3.43 
spliced read
Aligned read which cover non-continuous portions of the reference genome.
3.44 
template
A genomic sequence that is sequenced on a sequencing machine.


3 [bookmark: _Toc506144012]Abbreviations
AU			Access Unit
GIR		Genomic Information Representation
RBSP		Raw Byte Sequence Payload
4 [bookmark: _Toc353798250][bookmark: _Toc485815083][bookmark: _Toc506144013]Conventions
This clause contains the definition of operators, notations, functions, textual conventions and processes used throughout this document.
4.1 [bookmark: _Toc506144014]General
The mathematical operators used in this document are similar to those used in the C programming language. However, the results of integer division and arithmetic shift operations are specified more precisely, and additional operations are specified, such as exponentiation and real-valued division. Numbering and counting conventions generally begin from 0, e.g., "the first" is equivalent to the 0-th, "the second" is equivalent to the 1-th, etc.
[bookmark: _Toc485815085][bookmark: _Ref498526377][bookmark: _Ref498526379][bookmark: _Toc506144015]Arithmetic Operators
The following arithmetic operators are defined as follows:
+		Addition
−		Subtraction (as a two-argument operator) or negation (as a unary prefix operator)
*		Multiplication, including matrix multiplication
xy		Exponentiation. Specifies x to the power of y. In other contexts, such notation is used for superscripting not intended for interpretation as exponentiation.
/		Integer division with truncation of the result toward zero. For example, 7 / 4 and −7 / −4 are truncated to 1 and −7 / 4 and 7 / −4 are truncated to −1.
÷		Used to denote division in mathematical equations where no truncation or rounding is intended.

		Used to denote division in mathematical equations where no truncation or rounding is intended.

	The summation of f( i ) with i taking all integer values from x up to and including y.
x % y		Modulus. Remainder of x divided by y, defined only for integers x and y with x >= 0 and y > 0.

[bookmark: _Toc506144016]Logical Operators
The following logical operators are defined as follows:
x && y		Boolean logical "and" of x and y
x || y		Boolean logical "or" of x and y
!	Boolean logical "not"
x ? y : z	If x is TRUE or not equal to 0, evaluates to the value of y; otherwise, evaluates to the value of z.

[bookmark: _Toc506144017][bookmark: _Toc353798251][bookmark: _Toc485815086]Relational Operators
The following relational operators are defined as follows:
>	Greater than
>=	Greater than or equal to
<	Less than
<=	Less than or equal to
==	Equal to
!=	Not equal to

When a relational operator is applied to a syntax element or variable that has been assigned the value "na" (not applicable), the value "na" is treated as a distinct value for the syntax element or variable. The value "na" is considered not to be equal to any other value.
[bookmark: _Toc506144018]Bit-wise Operators
The following bit-wise operators are defined as follows:
&	Bit-wise "and". When operating on integer arguments, operates on a two's complement representation of the integer value. When operating on a binary argument that contains fewer bits than another argument, the shorter argument is extended by adding more significant bits equal to 0.
|	Bit-wise "or". When operating on integer arguments, operates on a two's complement representation of the integer value. When operating on a binary argument that contains fewer bits than another argument, the shorter argument is extended by adding more significant bits equal to 0.
^	Bit-wise "exclusive or". When operating on integer arguments, operates on a two's complement representation of the integer value. When operating on a binary argument that contains fewer bits than another argument, the shorter argument is extended by adding more significant bits equal to 0.
x >> y	Arithmetic right shift of a two's complement integer representation of x by y binary digits. This function is defined only for non-negative integer values of y. Bits shifted into the MSBs as a result of the right shift have a value equal to the MSB of x prior to the shift operation.
x << y	Arithmetic left shift of a two's complement integer representation of x by y binary digits. This function is defined only for non-negative integer values of y. Bits shifted into the LSBs as a result of the left shift have a value equal to 0.
!	Bit-wise not operator returning 1 if applied to 0 and 0 if applied to 1.

[bookmark: _Toc506144019]Assignment Operators
The following arithmetic operators are defined as follows:
=		Assignment operator
++		Increment, i.e., x++ is equivalent to x = x + 1; when used in an array index, evaluates to the value of the variable prior to the increment operation.
− −		Decrement, i.e., x− − is equivalent to x = x − 1; when used in an array index, evaluates to the value of the variable prior to the decrement operation.
+=		Increment by amount specified, i.e., x += 3 is equivalent to x = x + 3, and x += (−3) is equivalent to x = x + (−3).
−=		Decrement by amount specified, i.e., x −= 3 is equivalent to x = x − 3, and x −= (−3) is equivalent to x = x − (−3).

[bookmark: _Toc506144020]Strings Operators
The following strings operators are defined as follows:
tostr(i) 			returns the string representation of the integer i
	strcat(s1, s2) 	returns the concatenatenation of strings s1 and s2
[bookmark: _Toc506144021]Range notation
The following notation is used to specify a range of values:
x = y..z		x takes on integer values starting from y to z, inclusive, with x, y, and z being integer numbers and z being greater than y.

[bookmark: _Toc506144022]Mathematical functions
The following mathematical functions are defined:

Abs( x ) =																									(5‑1)
Ceil( x ) 	the smallest integer greater than or equal to x														(5‑2)
Clip1Y( x ) = Clip3( 0, ( 1 << BitDepthY ) − 1, x )																	(5‑3)
Clip1C( x ) = Clip3( 0, ( 1 << BitDepthC ) − 1, x )																	(5‑4)

Clip3( x, y, z ) = 																							(5‑5)
Cos( x )	the trigonometric cosine function operating on an argument x in units of radians			(5‑6)
Floor( x )	the largest integer less than or equal to x															(5‑7)

GetCurrMsb( cl, pl, pm, ml ) = 															(5‑8)
Ln( x )	the natural logarithm of x (the base-e logarithm, where e is natural logarithm base constant 2.718 281 828...)																											(5‑9)
Log2( x )		the base-2 logarithm of x																					(5‑10)
Log10( x ) 	the base-10 logarithm of x																				(5‑11)

Min( x, y ) = 																								(5‑12)

Max( x, y ) = 																								(5‑13)
Round( x ) = Sign( x ) * Floor( Abs( x ) + 0.5 )																		(5‑14)

Sign( x ) = 																									(5‑15)

Sqrt( x ) = 																												(5‑16)
Swap( x, y ) = ( y, x )																										(5‑17)
[bookmark: _Toc506144023]Order of operation precedence
When the order of precedence in an expression is not indicated explicitly by use of parentheses, the following rules apply:
Operations of a higher precedence are evaluated before any operation of a lower precedence.
Operations of the same precedence are evaluated sequentially from left to right.
Table 1 specifies the precedence of operations from highest to lowest; a higher position in the table indicates a higher precedence.
NOTE – For those operators that are also used in the C programming language, the order of precedence used in this Specification is the same as used in the C programming language.
[bookmark: _Ref496239653]Table 1. Operation precedence from highest (at top of table) to lowest (at bottom of table).
	operations (with operands x, y, and z)

	"x++", "x− −"

	"!x", "−x" (as a unary prefix operator)

	xy

	
"x * y", "x / y", "x  y""", "x % y"

	
"x + y", "x − y" (as a two-argument operator), ""

	"x << y", "x >> y"

	"x < y", "x <= y", "x > y", "x >= y"

	"x = = y", "x != y"

	"x & y"

	"x | y"

	"x && y"

	"x | | y"

	"x ? y : z"

	"x..y"

	"x = y", "x += y", "x −= y"


[bookmark: _Toc506144024]Variables, syntax elements and tables
Syntax elements in the bitstream are represented in bold type. Each syntax element is described by its name (all lower case letters with underscore characters), and one data type for its method of coded representation. The decoding process behaves according to the value of the syntax element and to the values of previously decoded syntax elements. When a value of a syntax element is used in the syntax tables or the text, it appears in regular (i.e., not bold) type.
In some cases the syntax tables may use the values of other variables derived from syntax elements values. Such variables appear in the syntax tables, or text, named by a mixture of lower case and upper case letter and without any underscore characters. Variables starting with an upper case letter are derived for the decoding of the current syntax structure and all depending syntax structures. Variables starting with an upper case letter may be used in the decoding process for later syntax structures without mentioning the originating syntax structure of the variable. Variables starting with a lower case letter are only used within the clause in which they are derived.
In some cases, "mnemonic" names for syntax element values or variable values are used interchangeably with their numerical values. Sometimes "mnemonic" names are used without any associated numerical values. The association of values and names is specified in the text. The names are constructed from one or more groups of letters separated by an underscore character. Each group starts with an upper case letter and may contain more upper case letters.
NOTE – The syntax is described in a manner that closely follows the C-language syntactic constructs.

Functions that specify properties of the current position in the bitstream are referred to as syntax functions. These functions are specified in clauses 7 and assume the existence of a bitstream pointer with an indication of the position of the next bit to be read by the decoding process from the bitstream. Syntax functions are described by their names, which are constructed as syntax element names and end with left and right round parentheses including zero or more variable names (for definition) or values (for usage), separated by commas (if more than one variable).
Functions that are not syntax functions (including mathematical functions specified in clause 5.2) are described by their names, which start with an upper case letter, contain a mixture of lower and upper case letters without any underscore character, and end with left and right parentheses including zero or more variable names (for definition) or values (for usage) separated by commas (if more than one variable).
A one-dimensional array is referred to as a list. A two-dimensional array is referred to as a matrix. Arrays can either be syntax elements or variables. Subscripts or square parentheses are used for the indexing of arrays. In reference to a visual depiction of a matrix, the first subscript is used as a row (vertical) index and the second subscript is used as a column (horizontal) index. The indexing order is reversed when using square parentheses rather than subscripts for indexing. Thus, an element of a matrix s at horizontal position x and vertical position y may be denoted either as s[ x ][ y ] or as syx. A single column of a matrix may be referred to as a list and denoted by omission of the row index. Thus, the column of a matrix s at horizontal position x may be referred to as the list s[ x ].
A specification of values of the entries in rows and columns of an array may be denoted by { {...} {...} }, where each inner pair of brackets specifies the values of the elements within a row in increasing column order and the rows are ordered in increasing row order. Thus, setting a matrix s equal to { { 1 6 } { 4 9 } } specifies that s[ 0 ][ 0 ] is set equal to 1, s[ 1 ][ 0 ] is set equal to 6, s[ 0 ][ 1 ] is set equal to 4, and s[ 1 ][ 1 ] is set equal to 9.
Binary notation is indicated by enclosing the string of bit values by single quote marks. For example, '01000001' represents an eight-bit string having only its second and its last bits (counted from the most to the least significant bit) equal to 1.
Hexadecimal notation, indicated by prefixing the hexadecimal number by "0x", may be used instead of binary notation when the number of bits is an integer multiple of 4. For example, 0x41 represents an eight-bit string having only its second and its last bits (counted from the most to the least significant bit) equal to 1.
Numerical values not enclosed in single quotes and not prefixed by "0x" are decimal values.
A value equal to 0 represents a FALSE condition in a test statement. The value TRUE is represented by any value different from zero.
[bookmark: _Toc506144025]Text description of logical operators
In the text, a statement of logical operations as would be described mathematically in the following form:
if( condition 0 )
	statement 0
else if( condition 1 )
	statement 1
...
else /* informative remark on remaining condition */
  statement n

may be described in the following manner:
... as follows / ... the following applies:
If condition 0, statement 0
Otherwise, if condition 1, statement 1
...
Otherwise (informative remark on remaining condition), statement n

Each "If ... Otherwise, if ... Otherwise, ..." statement in the text is introduced with "... as follows" or "... the following applies" immediately followed by "If ... ". The last condition of the "If ... Otherwise, if ... Otherwise, ..." is always an "Otherwise, ...". Interleaved "If ... Otherwise, if ... Otherwise, ..." statements can be identified by matching "... as follows" or "... the following applies" with the ending "Otherwise, ...".
In the text, a statement of logical operations as would be described mathematically in the following form:
if( condition 0a && condition 0b )
	statement 0
else if( condition 1a || condition 1b )
	statement 1
...
else
	statement n

... as follows / ... the following applies:
If all of the following conditions are true, statement 0:
condition 0a
condition 0b
Otherwise, if one or more of the following conditions are true, statement 1:
condition 1a
–	condition 1b
–	...
–	Otherwise, statement n

In the text, a statement of logical operations as would be described mathematically in the following form:
if( condition 0 )
	statement 0
if( condition 1 )
	statement 1

may be described in the following manner:
When condition 0, statement 0
When condition 1, statement 1

[bookmark: _Toc506144026]Processes
Processes are used to describe the decoding of syntax elements. A process has a separate specification and invoking. All syntax elements and variables that pertain to the current syntax structure and depending syntax structures are available in the process specification and invoking. A process specification may also have a lower case variable explicitly specified as input. Each process specification has explicitly specified an output. The output is a variable that can either be an upper case variable or a lower case variable.
When invoking a process, the assignment of variables is specified as follows:
If the variables at the invoking and the process specification do not have the same name, the variables are explicitly assigned to lower case input or output variables of the process specification.
Otherwise (the variables at the invoking and the process specification have the same name), assignment is implied.
In the specification of a process, a specific coding block may be referred to by the variable name having a value equal to the address of the specific coding block.
[bookmark: _Toc506144027]Syntax and Semantics
[bookmark: _Toc488411732][bookmark: _Toc495592897][bookmark: _Toc506144028]Method of specifying syntax in tabular form
The syntax tables specify a superset of the syntax of all allowed bitstreams. Additional constraints on the syntax may be specified, either directly or indirectly, in other clauses.
The following table lists examples of the syntax specification format. When syntax_element appears, it specifies that a syntax element is parsed from the bitstream and the bitstream pointer is advanced to the next position beyond the syntax element in the bitstream parsing process.
	Syntax
	Type

	/* A statement can be a syntax element with an associated data type or can be an expression used to specify conditions for the existence, type and quantity of syntax elements, as in the following two examples */
	

	syntax_element
	ue(v)

	conditioning statement 
	

	
	

	/*A group of statements enclosed in curly brackets is a compound statement and is treated functionally as a single statement. */
	

	{	
	

		statement 
	

		statement 
	

		...
	

	}
	

	/* A "while" structure specifies a test of whether a condition is true, and if true, specifies evaluation of a statement (or compound statement) repeatedly until the condition is no longer true */ 
	

	while( condition ) 
	

		statement 
	

	
	

	/* A "do ... while" structure specifies evaluation of a statement once, followed by a test of whether a condition is true, and if true, specifies repeated evaluation of the statement until the condition is no longer true */ 
	

	do 
	

		statement 
	

	while( condition ) 
	

	
	

	/* An "if ... else" structure specifies a test of whether a condition is true and, if the condition is true, specifies evaluation of a primary statement, otherwise, specifies evaluation of an alternative statement. The "else" part of the structure and the associated alternative statement is omitted if no alternative statement evaluation is needed */ 
	

	if( condition ) 
	

		primary statement 
	

	else 
	

		alternative statement 
	

	
	

	/* A "for" structure specifies evaluation of an initial statement, followed by a test of a condition, and if the condition is true, specifies repeated evaluation of a primary statement followed by a subsequent statement until the condition is no longer true. */ 
	

	for( initial statement; condition; subsequent statement ) 
	

		primary statement 
	



[bookmark: _Toc506144029]Bit ordering
For bit-oriented delivery, the bit order of syntax fields in the syntax tables is specified to start with the MSB and proceed to the LSB.
[bookmark: _Ref496566054][bookmark: _Ref496596787][bookmark: _Ref499909516][bookmark: _Toc506144030]Specification of syntax functions and data types
The functions presented here are used in the syntactical description. These functions are expressed in terms of the value of a bitstream pointer that indicates the position of the next bit to be read by the decoding process from the bitstream. 
byte_aligned( ) is specified as follows:
· If the current position in the bitstream is on a byte boundary, i.e., the next bit in the bitstream is the first bit in a byte, the return value of byte_aligned( ) is equal to TRUE. 
· Otherwise, the return value of byte_aligned( ) is equal to FALSE.

more_data_in_block_payload( ) is specified as follows: 
· If byte_aligned( ) is equal to TRUE and the current position in the block_payload syntax structure is block_size * 8 bits minus the padding bits from the beginning of the block_payload syntax structure, the return value of more_data_in_block_payload( ) is equal to FALSE.
· Otherwise, the return value of more_data_in_block_payload( ) is equal to TRUE.

read_bits( n ) reads the next n bits from the bitstream and advances the bitstream pointer by n bit positions. When n is equal to 0, read_bits( n ) is specified to return a value equal to 0 and to not advance the bitstream pointer. 

The following data types specify the parsing process of each syntax element: 
· ae(v): context-adaptive arithmetic entropy-coded syntax element. The parsing process for this data type is specified in clause13.
· b(8): byte having any pattern of bit string (8 bits). The parsing process for this data type is specified by the return value of the function read_bits( 8 ). 
· f(n): fixed-pattern bit string using n bits written (from left to right) with the left bit first. The parsing process for this data type is specified by the return value of the function read_bits( n ).
· i(n): signed integer using n bits. When n is "v" in the syntax table, the number of bits varies in a manner dependent on the value of other syntax elements. The parsing process for this data type is specified by the return value of the function read_bits( n ) interpreted as a two's complement integer representation with most significant bit written first. 
· se(v): signed integer 0-th order Exp-Golomb-coded syntax element with the left bit first. The parsing process for this data type is specified in clause 13.2.1.3. 
· st(v): null-terminated string encoded as universal coded character set (UCS) transmission format-8 (UTF-8) characters as specified in ISO/IEC 10646. The parsing process is specified as follows: st(v) begins at a byte-aligned position in the bitstream and reads and returns a series of bytes from the bitstream, beginning at the current position and continuing up to but not including the next byte-aligned byte that is equal to 0x00, and advances the bitstream pointer by ( stringLength + 1 ) * 8 bit positions, where stringLength is equal to the number of bytes returned.
NOTE – The st(v) syntax data type is only used in this Specification when the current position in the bitstream is a byte-aligned position. 
· u(n): unsigned integer using n bits. When n is "v" in the syntax table, the number of bits varies in a manner dependent on the value of other syntax elements. The parsing process for this data type is specified by the return value of the function read_bits( n ) interpreted as a binary representation of an unsigned integer with most significant bit written first.
· ue(v): unsigned integer 0-th order Exp-Golomb-coded syntax element with the left bit first. The parsing process for this data type is specified in clause 13.2.1.3.
· u7(v): variable sized unsigned integer computed by iteratively reading 8 bits, where the least significant 7 bits are interpreted as a binary representation of an unsigned integer v, with the most significant bit written first, and the 8th bit signaling if the iteration should stop. The parsing process for this data type is specified below:
s =0
v = 0
do {
	c = read_bits( 8 );
	v |= (c & 0x7f) << s;
	s += 7;
} while (c & 0x80)

· c(n): sequence of n universal coded character set (UCS) transmission format-8 (UTF-8) characters as specified in ISO/IEC 10646. 
[bookmark: _Toc506144031]Semantics
Semantics associated with the syntax structures and with the syntax elements within each structure are specified in a clause following the clause containing the syntax structures. When the semantics of a syntax element are specified using a table or a set of tables, any values that are not specified in the table(s) shall not be present in the bitstream unless otherwise specified in this document.


[bookmark: _Ref498526356][bookmark: _Toc506144032]MPEG-G coded data structures
Table 2 in clause 7.1 specifies the syntax for a Data Unit: a Data Unit can contain a Raw Reference structure, a Parameters Set structure or an Access Unit structure. 
Table 4 in clause 7.2.3 specifies the syntax for a Raw Reference structure: a Raw Reference contains reference data as strings of characters representing the reference bases.
Table 5 in clause 7.3 specifies the syntax for a Parameters Set structure containing a Parent Parameters Set identifier, a Parameter Set identifier and Encoding Parameters as specified in Clause 8 of this document.
Table 6 in clause 7.4 specifies the syntax for an Access Unit. An Access Unit structure contains an Access Unit Header prefix, followed by one or more Block structures. 
Table 7 in clause 7.5 specifies the syntax for an Access Unit Header.
Table 8 in clause 7.6 specifies the syntax for a Block structure.
Each Block structure which follows the Access Unit Header contains a Block Header prefix, specified in Table 9 in clause 7.7, followed by a Block Payload specified in clause 7.8. 
A Block Payload contains encoded genomic descriptors of a single type which is identified by a descriptor_ID.

[bookmark: _Ref498436578][bookmark: _Toc506144033]Data Unit syntax and semantics
[bookmark: _Ref485281836]Table 2. Data Unit syntax.
	Syntax
	Type

	data_unit() {
	

		data_unit_type
	u(8)

		if (data_unit_type == 0) {
	

			data_unit_size
	u(64)

			raw_reference()
	Raw Reference

		}
	

		else if (data_unit_type == 1) {
	

			data_unit_size
	u(32)

			parameter_set()
	Parameter Set

		}
	

		else if(data_unit_type == 2){
	

			data_unit_size
	u(29)

			reserved
	u(3)

			access_unit()
	Access Unit

		}
	

		else /*(data_unit_type > 2)*/{
	

			/*skip data unit*/
	

		}
	

	}
	



data_unit_type specifies the type of Data Unit.
Table 3: Values of data_unit_type and associated data unit types.
	Data_unit_type
	Data unit type
	Clause

	0
	Raw Reference
	7.2

	1
	Parameter Set
	7.3

	2
	Access Unit
	7.4



data_unit_size is the total size in bytes of the Data Unit including the 5 bytes used for data_unit_type and data_unit_size.
raw_reference is a raw_reference structure as specified in clause 7.2.
parameter_set is a parameter_set structure as specified in clause 7.3.
access_unit is an access_unit structure as specified in clause 7.4.
A conformant bitstream containing at least one Data Unit of type Access Unit shall contain at least one Data Unit of type Parameter Set.
A conformant bitstream may contain only Data Units of type Raw Reference.
[bookmark: _Ref496514502][bookmark: _Toc506144034]Raw Reference
This clause specifies the data structure used to represent a raw reference. This structure shall be used to:
deliver any reference sequence to the decoder,
return decoded reference sequences or part thereof from the decoder.
[bookmark: _Ref496515955][bookmark: _Toc506144035]Decoder input
If a raw reference is needed to decode content, such raw reference shall be made available to the decoder prior to any other Data Unit. If the corresponding Data Unit of type 0 (data_unit_type equal to 0, raw_reference) is not present in the byte stream with the content to decode, the application invoking the decoder (e.g. test application or tool compliant to ISO/IEC 23092-1) shall take care to identify the requested byte stream containing the reference and feed it to the decoder first. Decoding of content that needs a raw reference is unspecified when the raw reference is not available.
[bookmark: _Toc506144036]Decoder output
The raw_reference structure shall be used by the decoder to make available for further processing - as described in clause 7.2.1 - a Genomic Reference Sequence or part thereof encoded in an Access Unit. The decoder shall select the appropriate output to be generated (i.e. MPEG-G Record or Raw Reference) according to the value of the dataset_type encoding parameter as specified in clause 8.
[bookmark: _Ref498436611][bookmark: _Toc506144037]Syntax and semantics
[bookmark: _Ref485311563][bookmark: _Ref490064849]Table 4. Raw Reference syntax.
	Syntax
	Type

	raw_reference() {
	

		reference_ID
	u(8)

		seq_count
	u(16)

		for (seqId=0; seqId<seq_count; seqId++) {
	

			sequence_ID
	u(16)

			seq_start
	u(2^ max_bits_pos)

			seq_end
	u(2^ max_bits_pos )

			for (i=0; i<=seq_end – seq_start; i++) {
	

				sequence[seqId][i]
	u(8)

			}
	

		}
	

	}
	



reference_ID is a unique identifier of the Raw Reference.
seq_count is the number of sequences in the Raw Reference.
sequence_ID is a unique identifier of the Reference Sequence.
seq_start is the coordinate of the first base present in the Sequence array
seq_end is the coordinate of the last base present in the Sequence array
sequence[seqId][i] is the ASCII character representing the ith base in the Reference Sequence identified by sequence_ID.
[bookmark: _Toc488411738][bookmark: _Ref490058879][bookmark: _Ref490059198][bookmark: _Ref490663931][bookmark: _Toc495592910][bookmark: _Ref496814196][bookmark: _Ref500841453][bookmark: _Ref500841458][bookmark: _Ref500841462][bookmark: _Ref500847636][bookmark: _Ref504374121][bookmark: _Toc506144038][bookmark: _Toc488078064]Parameter Set 
This clause specifies the Parameter Set syntax and semantics. A conformant bitstream containing at least one Data Unit of type Access Unit shall contain at least one Parameter Set.
[bookmark: _Ref485281853][bookmark: _Ref485298691]Table 5. Parameters Set syntax.
	Syntax
	Type

	parameter_set() {
	

		parent_parameter_set_ID
	u(12)

		parameter_set_ID
	u(12)

		encoding_parameters()
	

	}
	



parent_parameter_set_ID is the unique identifier of an existing Parameter Set. Referencing an existing Parameter Set from another Parameter Set enables the generation of a hierarchy of Parameter Sets where the values of the encoding parameters of each node override the corresponding values of the parent node. If equal to parameter_set_ID, the Parameter Set is at the top level in the hierarchy.
parameters_set_ID is the unique identifier of the Parameter Set. All encoding parameters present in this Parameter Set override those present in the Parameter Set identified by parent_parameter_set_ID.
encoding_parameters are the encoding parameters as specified in clause 8 of this document.
[bookmark: _Ref496514533][bookmark: _Toc506144039]Access Unit
This clause specifies the Access Unit syntax and semantics. A conformant bitstream containing at least one Access Unit shall contain at least one Parameter Set.

[bookmark: _Ref498436693][bookmark: _Toc495592915]Table 6. Access Unit syntax.
	Syntax
	Type

	access_unit() {
	

		access_unit_header()
	Access Unit Header

		for (blockId=0; blockId<num_blocks; blockId++) {
	

			block[blockId]()
	Block

		}
	

	}
	



access_unit_header is specified in clause 7.5.
num_blocks specifies the number of blocks encoded in the Access Unit and it is encoded in the access_unit_header as specified in clause 7.5.
block[blockId] is a Block structure as specified in clause 7.6.
[bookmark: _Toc488411740][bookmark: _Ref490059878][bookmark: _Ref490060127][bookmark: _Ref490060136][bookmark: _Ref490060418][bookmark: _Toc495592916][bookmark: _Ref496230719][bookmark: _Ref496793580][bookmark: _Ref501535502][bookmark: _Ref505269100][bookmark: _Ref505584173][bookmark: _Ref505585022][bookmark: _Toc506144040][bookmark: _Ref488075571][bookmark: _Toc488078066]Access Unit Header 
This clause specifies the Access Unit Header syntax and semantics. 
[bookmark: _Ref498436749]Table 7. Access Unit Header syntax.
	Syntax
	Type

	access_unit_header() {
	

		access_unit_ID
	u(32)

		num_blocks
	u(8)

		parameter_set_ID
	u(12)

		AU_type
	u(4)

		reads_count
	u(32)

		if(AU_type == N_TYPE_AU OR AU_type == M_TYPE_AU ){
	

			mm_threshold
	u(16)

			mm_count
	u(32)

		}
	

		sequence_ID
	u(16)

		if (AU_Type!= U_TYPE_AU )
	

		{
	

			AU_start_position
	u(2^ max_bits_pos)

			AU_end_position
	u(2^ max_bits_pos)

			if (multiple_alignments_flag) {
	

				extended_AU_start_position
	u(2^ max_bits_pos)

				extended_AU_end_position
	u(2^ max_bits_pos)

			}
	

		}
	

		else {
	

			if (multiple_signature_base != 0) {
	

				U_cluster_signature[0]
	u(U_signature_size)

				if (U_cluster_signature[0] != 0xFFFFFFFF) {
	

					for (i=1; i<multiple_signature_base; i++) {
	

					U_cluster_signature[i]
	u(U_signature_size)

					}
	

				}
	

				else {
	

					num_signatures
	u(16)

					for (i=0; i<num_signatures; i++) {
	

					U_cluster_signature[i]
	u(U_signature_size)

					}
	

				}
	

			}
	

		}
	

	}
	



access_unit_ID is an unambiguous identifier, zero-based, linearly increasing by 1. It is encoded with respect to each reference sequence (identified by a combination of reference_ID and sequence_ID), i.e., it is reset when a new reference sequence starts.
num_blocks specifies the number of Blocks in the Access Unit. It is equal to the number of different types of descriptors used in the Access Unit.
parameter_set_ID is a unique identifier of the Parameters Set in the Dataset to be used to decode the Access Unit this Access Unit Header refers to.
AU_type identifies the type of Access Unit and the Class of data carried therein as specified in clause 9.1.
reads_count is a counter of the genomic sequence reads encoded in the Access Unit.
mm_threshold specifies the number of mismatches (N type or M type) in a read. If set to 0 the feature of counting mismatches in encoded reads is disabled as no reads would be below threshold.
mm_count specifies the number of reads encoded in the Access Unit which are below the specified threshold. It shall always be set to 0 if the threshold is set to 0.
reference_ID is a unique identifier of the Raw Reference to be used to decode the Access Unit as specified in clause 13.2.6.2.10. A value is reserved when no reference is used.
sequence_ID is a unique identifier of the Reference Sequence to be used to decode the Access Unit as specified in clause 13.2.6.2.10. It corresponds to the sequence_ID element in Table 4.
AU_start_position is the indexing “lower” information. For mapped AUs this is the position of the left-most mapped base encoded in the Access Unit. 
AU_end_position is the indexing “higher” information. For mapped AUs this is the position of the right-most mapped base encoded in the Access Unit. 
extended_ AU_start_position specifies the absolute position on the reference sequence of the left-most mapped base among all alignments of all Genomic Records contained in the Access Unit and belonging to a Data Class as specified in clause 10.3.
extended_AU_end_position	specifies the absolute position on the reference sequence of the right-most mapped base among all alignments of all Genomic Records contained in the Access Unit and belonging to a Data Class as specified in clause 10.3. 
U_cluster_signature is the signature of the cluster this Access Unit belongs to.
num_signatures specifies the number of signatures used to index unmapped reads.
multiple_alignments_flag and multiple_signature_base are specified in clause 7.3.
[bookmark: _Toc488411741][bookmark: _Ref490060299][bookmark: _Ref490076113][bookmark: _Ref490156222][bookmark: _Toc495592919][bookmark: _Ref496793588][bookmark: _Toc506144041][bookmark: _Toc488078067]Block 
This clause specifies the Block syntax and semantics. A Block Payload shall be byte-aligned. Byte alignment is obtained by the use of 0-bits padding in the least significant positions of last byte of a Block Payload. The number of padding bits is encoded in the Block Header as specified in clause 7.7.
[bookmark: _Ref498436898]Table 8. Block syntax.
	Syntax
	Type

	block() {
	

		 block_header()
	Block Header

		 block_payload()
	Block Payload

	}
	



block_header is a Block Header structure as specified in clause 7.7.
block_payload is a Block Payload structure as specified in clause 7.8.
[bookmark: _Toc488411742][bookmark: _Ref490062926][bookmark: _Ref490063179][bookmark: _Ref490069163][bookmark: _Ref490074634][bookmark: _Ref490295521][bookmark: _Ref494119773][bookmark: _Toc495592922][bookmark: _Ref496532746][bookmark: _Ref496794676][bookmark: _Ref499908781][bookmark: _Ref499909134][bookmark: _Ref501535539][bookmark: _Ref504375971][bookmark: _Toc506144042][bookmark: _Toc488078068]Block Header 
This clause describes the Block Header syntax and semantics.
[bookmark: _Ref485281864]Table 9. Block Header syntax.
	Syntax
	Type

	block_header() {
	

		descriptor_ID
	u(7)

		reserved
	u(6)

		padding
	u(3)

		block_size
	u(32)

	}
	



descriptor_ID is the identifier of the type of encoded genomic descriptor carried by this Block as specified in Table 17. 
reserved bits used to preserve byte alignment.
padding specifies the number of padding bits added at the end of the encoded payload in order to make it byte aligned.
block_size specifies the size in bytes of the Block Payload.
[bookmark: _Toc488411743][bookmark: _Ref490063193][bookmark: _Ref490074651][bookmark: _Ref490295411][bookmark: _Toc495592925][bookmark: _Ref496532647][bookmark: _Ref496532705][bookmark: _Ref496623218][bookmark: _Ref499908738][bookmark: _Ref499909119][bookmark: _Ref499909144][bookmark: _Ref499909177][bookmark: _Ref499909444][bookmark: _Toc506144043]Block Payload syntax and semantics
This clause specifies the syntax and semantics of the Block Payload structure containing entropy-coded descriptors.
Table 10. Block Payload syntax.
	Syntax
	Type

	block_payload() {
	

		if(descriptor_ID < 16){
	

		encoded_descriptor_sequences(descriptor_ID)
	As specified in 13.2.6.2.1

		}
	

		else if(descriptor_ID == 16){
	

			encoded_read_identifiers()
	As specified in 11.3.10.1

		}
	

		while( !byte_aligned( ) )
	

			nesting_zero_bit 
	f(1)

	}
	



encoded_descriptor_sequences(descriptor_ID) is a data structure specified in clause 13.2.6.2.1 carrying the encoded genomic descriptors for sequences and Quality Values specified in clause 9.2.
encoded_read_identifiers() is a data structure specified in clause 11.3.10.1 carrying encoded read identifiers.
nesting_zero_bit is one bit set to 0.
[bookmark: _Toc488411744][bookmark: _Ref490059372][bookmark: _Ref490059882][bookmark: _Ref490070845][bookmark: _Toc495592928][bookmark: _Ref496773503][bookmark: _Ref496820627][bookmark: _Ref496821018][bookmark: _Ref496857556][bookmark: _Ref497055679][bookmark: _Ref497055689][bookmark: _Ref497058597][bookmark: _Ref497128577][bookmark: _Ref497128602][bookmark: _Ref498459266][bookmark: _Ref498499505][bookmark: _Ref498501239][bookmark: _Ref499908833][bookmark: _Ref499909162][bookmark: _Ref500847630][bookmark: _Ref501308847][bookmark: _Ref503794346][bookmark: _Ref503950295][bookmark: _Ref504435842][bookmark: _Ref504607980][bookmark: _Ref505184107][bookmark: _Ref505415468][bookmark: _Ref505583556][bookmark: _Toc506144044]Encoding Parameters
The Encoding Parameters are configuration parameters used by the decoder during the decoding process. They are carried by the encoding_parameters data structure as specifiedin this clause.
[bookmark: _Ref504377668]Table 11. Encoding Parameters syntax.
	Syntax
	Type

	encoding_parameters() {
	

		dataset_type
	u(4)

		alphabet_ID
	u(8)

		reads_length
	u(29)

		max_au_data_unit_size
	u(29)

		max_bits_pos
	u(8)

		qv_depth
	u(3)

		as_depth
	u(3)

		terminator_size_minus1
	u(2)

		num_classes
	u(4)

		for(j=0; j < num_classes; j++)
	

			class_ID[j] 
	u(4)

		for(desc_ID=0; desc_ID < NUM_DESCRIPTORS; desc_ID++){
	

			encoding_mode_ID [desc_ID] 
	u(8)

			enc_cfg_flag[desc_ID]
	u(1)

			if(enc_cfg_flag[desc_ID] == 1){
	

				if(desc_ID < 16)
	

					decoder_configuration(encoding_mode_ID [desc_ID])
	As specified in 13.2.2

				else if(desc_ID == 16)
	

					decoder_configuration_read_IDs (encoding_mode_ID [desc_ID])
	As specified in 13.2.3

			}
	

		}
	

		num_groups
	u(8)

		for(j=0; j < num_groups; j++)
	

			rgroup_ID[j] 
	st(v)

		multiple_alignments_flag
	u(1)

		spliced_reads_flag
	u(1)

		multiple_signature_flag
	u(1)

		multiple_signature_base
	u(31)

		U_signature_size
	u(8)

		if(multiple_alignments_flag == 1){
	

			mscore_exponent
	u(4)

			mscore_fractional
	u(6)

		}
	

		qvps_flag
	u(1)

		if(qvps_flag == 1)
	

			parameter_set_qvps(num_classes)
	

		crps_flag
	u(1)

		if(crps_flag == 1)
	

			parameter_set_crps(num_classes)
	

		while( !byte_aligned( ) )
	

			nesting_zero_bit 
	f(1)

	}
	



dataset_type specifies the type of data encoded in Access Units referring to this encoding parameters as specified in ISO/IEC 23092-1. The possible values are: 0 = non-aligned content; 1 = aligned content; 2 = reference.
alphabet_ID identifies the alphabet of symbols used for data encoded in Access Units referring to this encoding parameters.
reads_length specifies the length in nucleotides of sequence reads in case of constant reads length. The value 0 indicates the presence of variable reads length (conveyed per each Genomic Record by the rlen syntax element as specified in clause 11.4.8).
max_au_data_unit_size is the maximum value permitted to the field data_unit_size in the data unit header, when data_unit_type is equal to 2, as specified in clause 7.1. A value of 0 indicates an unspecified maximum data unit size.
qv_depth specifies the number of Quality Values associated to each coded nucleotide. A value of 0 means that no Quality Values are encoded.
as_depth specifies the number of alignment scores associated to each coded alignment. A value of 0 means that no alignment scores are encoded.
terminator_size_minus1 specifies the size in bytes minus 1 of the terminator symbol used for the mmpos descriptor specified in clause 11.4.4. The terminator value shall be the largest unsigned integer representable with the number of bytes specified by terminator_size_minus1 as shown in 
	terminator_size_minus1 value
	size in bytes
	terminator value

	0
	1
	0xff

	1
	2
	0xffff

	2
	3
	0xffffff

	3
	4
	0xffffffff


Table 12. Terminator sizes and values.
num_classes specifies the number of Data Classes encoded in all Access Units referring to the current Parameters Set.
class_ID is one of the data class identifiers specified in clause 10.3. For any value of ci greater than 0 it shall always be class_ID[ci] > class_ID[ci - 1].
NUM_DESCRIPTORS is a constant counting the number of genomic descriptors specified in this document and it is set to 17.
encoding_mode_ID identifies one of the coding modes specified in clause 8.
enc_cfg_flag is a flag signaling the presence of a decoder configuration. 
num_groups specifies the number of read groups present in all Access Units referring to the current Parameters Set. The rgroup descriptor specified in clause 11.4.13 shall have values between 0 and num_groups. If num_groups is set to 0, the rgroup descriptor shall not be present in the AUs referring to this Parameter Set. 
rgroup_ID is the null-terminated string identifier of a read group.
multiple_alignments_flag is a flag signaling the presence of multiple alignments in the Access Unit. When set to 0 no multiple alignments are present.
spliced_reads_flag is a flag signaling the presence of spliced reads in the Access Unit. When set to 0 no spliced reads are present.
multiple_signature_flag is a flag signaling the use of multiple signatures in an Access Unit of type 6 (Class U).
multiple_signature_base is the default number of signatures.
U_signature_size is the size in bits of each integer representing an encoded signature. Each signature can be represented by one or more integers in the Master Index Table.
decoder_configuration is a data structure containing the decoder configuration parameters as specified in clause 13.2.2.
decoder_configuration_read_IDs(encoding_mode_ID) data structure containing the decoder configuration parameters as specified in clause 13.2.3.
mscore_exponent specifies the number of bits used to encode the exponent part of the multiple alignments score encoded in the mscore descriptor. As specified in IEEE RFC 754 [1] the value can go from 0 to 11. The mscore descriptor is specified in clause 11.4.10.
mscore_fractional specifies the number of bits used to encode the fractional part of the multiple alignments score encoded in the mscore descriptor. As specified in IEEE RFC 754 [1] the value can go from 0 to 52. The mscore descriptor is specified in clause 11.4.10. 
See clause 11.4.13 for more details on how multiple alignments scores are encoded.
qvps_flag signals the presence of a parameter_set_qvps element
parameter_set_qvps is the Quality Values Parameter Set as specified in clause 8.1. If not present, the parent Quality Values Parameter Set identified by parent_parameter_set_ID shall be used.
crps_flag signals the presence of a parameter_set_crps element.
parameter_set_crps is the Computed Reference Parameter Set as specified in clause 8.2. If not present, the parameter_set_crps of the parent Parameter Set identified by parent_parameter_set_ID shall be used.
nesting_zero_bit is one bit set to 0.
desc_ID specifies the descriptor identifiers descriptor_ID specified in Table 17.
4.2 [bookmark: _Ref488134375][bookmark: _Toc488411747][bookmark: _Toc495592931][bookmark: _Ref496776885][bookmark: _Toc506144045]Quality Values Parameter Set syntax and semantics
Table 13. Syntax of the configuration parameters for the quantization of Quality Values.
	Syntax
	Type

	parameter_set_qvps(num_classes) {
	

		for (c = 0; c < num_classes; c++) {
	

			class_ID[c]
	u(4)

			qv_num_codebooks[c]
	u(16)

			for (b = 0; b < qv_num_codebooks[c]; b++) {
	

				qv_num_codebook_entries[c][b]
	u(8)

				for (e = 0; e < qv_num_codebook_entries[c][b]; e++) {
	

						qv_recon[c][b][e]
	u(8)

			 	}
	

			}
	

		}
	

	}
	



class_ID[c] specifies one of the Data Class identifiers specified in clause 10.3. For any value of c greater than 0 it shall always be class_ID[c] > class_ID[c - 1].
[bookmark: _Ref488134548][bookmark: _Toc488411750][bookmark: _Toc495592934]qv_num_codebooks[c] is the number of Quality Value Codebooks used by an AU of the Data Class with the Data Class identifier class_ID[c] referring to this Quality Values Parameter Set.
qv_num_codebook_entries[c][b] is the number of qv_recon elements in the Quality Value Codebook QVCodebook = b corresponding to the Data Class with the Data Class identifier class_ID[c].
qv_recon[c][b][e] is the Quality Value reconstructed from Quality Value Index QVIndex = e with Quality Value Codebook QVCodebook = b, corresponding to the Data Class with the Data Class identifier class_ID[c].
[bookmark: _Ref505896654][bookmark: _Toc506144046]Computed Reference Parameter Set 
This clause specifies the data structure used to carry parameters related to the reference computation algorithms specified in clause 12.3.
Table 14. Syntax of the configuration parameters for the computation of reference sequences.
	Syntax
	Type

	parameter_set_crps(num_classes) {
	

		for (c = 0; c <num_classes; c++) {
	

			class_ID
	u(8)

			cr_alg_ID
	u(8)

			if(cr_alg_ID > 0x01){
	

				cr_buf_max_reads
	u(64)

				cr_buf_max_size
	u(64)

			}
	

		}
	

	}
	



class_ID specifies one of the Data Class identifiers specified in clause 10.3. For any value of c greater than 0 it shall always be class_ID[c] > class_ID[c - 1].
cr_alg_ID identifies the reference computation algorithm for the current Access Unit as specified in clause 12.3.1. The possible values for cr_alg_ID are listed in Table 15.
[bookmark: _Ref504438197]Table 15. Values of cr_alg_ID and corresponding reference computation algorithms.
	cr_alg_ID
	algorithm

	0
	NoComp

	1
	RefTransform

	2
	PushIn

	3
	Local Assembly



cr_buf_max_reads specifies the maximum number of decoded reads to be stored during the decoding process.
cr_buf_max_size is the maximum size in bytes of decoded reads to be stored during the decoding process.

[bookmark: _Ref491255652][bookmark: _Ref491255658][bookmark: _Toc495592937]

[bookmark: _Toc506144047]Access Units
An Access Unit (AU) is specified as a logical data structure containing a coded representation of genomic information or related metadata structured enable the data access and manipulation of compressed data. It is the smallest data structure that can be decoded by a decoder implementing the normative behavior described in this document.
According to the type of coded information carried by the AU, it can be decoded either independently of any other AU or using information contained in other AUs.
[bookmark: _Ref501362230][bookmark: _Toc506144048]Types of Access Units
AUs can be of different types according to the nature of the coded data. An Access Unit contains either a reference sequence, or a portion thereof, or encoded reads or read pairs belonging to a single class of data among those listed in section 10.3. 
Table 16. Type of encoded data per Access Unit Type.
	Access Unit Type
	Type of Data

	Name
	Value
	

	P_TYPE_AU
	1
	Class P

	N_TYPE_AU
	2
	Class N

	M_TYPE_AU
	3
	Class M

	I_TYPE_AU
	4
	Class I

	HM_TYPE_AU
	5
	Class HM

	U_TYPE_AU
	6
	Class U



The blocks of descriptors encoded in one Access Unit as specified in clause 7.6 are those corresponding to sequence reads belonging to one class of data as specified in section 10.3. Mandatory and optional descriptors carried by each Access Unit type are listed in Table 17.
AUs of any class can be possibly associated with blocks of descriptors representing the read names and/or quality values of the encoded sequence reads.
Figure 1 shows how a read is encoded in an Access Unit covering the position of the left-most mapped base in the read.
[image: ]
[bookmark: _Ref481658903]Figure 1 – A read mapped on a Reference Sequence is encoded in an Access Unit covering the position of the left-most mapped base in the read. In this figure the mapping position of Read N falls in AU K and therefore Read N is encoded in AU K, but some bases fall in the region covered by AU K+1 and AU K+2.
[bookmark: _Ref500229149][bookmark: _Toc506144049]Descriptors in Access Units
Table 17 specifies that the only mandatory descriptors are those required to represent the sequences of nucleotides, whereas read names and quality values are optional.
[bookmark: _Ref479630168]Table 17 – Descriptors required for each type of Access Unit.
	descriptor_ID
	Genomic descriptor
	Access Units types

	
	
	1
(class P)
	2
(class N)
	3
(class M)
	4
(class I)
	5
(class HM)
	6
(class U)

	sequence reads

	0
	pos
	mandatory
	mandatory
	mandatory
	mandatory
	mandatory
	optional

	1
	rcomp
	mandatory
	mandatory
	mandatory
	mandatory
	mandatory
	optional

	2
	flags
	mandatory
	mandatory
	mandatory
	mandatory
	mandatory
	optional

	3
	mmpos
	forbidden
	mandatory
	mandatory
	mandatory
	optional
	forbidden

	4
	mmtype
	forbidden
	forbidden
	mandatory
	mandatory
	optional
	forbidden

	5
	clips
	forbidden
	forbidden
	forbidden
	mandatory
	optional
	forbidden

	6
	ureads
	forbidden
	forbidden
	forbidden
	forbidden
	mandatory
	mandatory

	7
	rlen
	mandatory*
	mandatory*
	mandatory*
	mandatory*
	mandatory*
	mandatory*

	8
	pair
	mandatory**
	mandatory**
	mandatory**
	mandatory**
	mandatory**
	forbidden

	9
	mscore
	optional
	optional
	optional
	optional
	optional
	forbidden

	10
	mmap
	optional
	optional
	optional
	optional
	optional
	forbidden

	11
	msar
	forbidden
	forbidden
	forbidden
	optional
	optional
	forbidden

	12
	rtype
	forbidden
	forbidden
	forbidden
	forbidden
	forbidden
	optional

	13
	rgroup
	optional
	optional
	optional
	optional
	optional
	forbidden

	quality values

	14
	QVIndex
	optional
	optional
	optional
	optional
	optional
	optional

	15
	QVCodebookIdentifier
	optional
	optional
	optional
	optional
	optional
	optional

	read names

	16
	token_type
	optional
	optional
	optional
	optional
	optional
	optional

	reference sequences

	17
	rftp
	optional
	optional
	optional
	optional
	optional
	optional

	18
	rftt
	optional
	optional
	optional
	optional
	optional
	optional


* the rlen descriptors is mandatory only in case of variable reads length
** mandatory only in case of paired reads

Descriptors pos, rcomp and flags are always mandatory for all classes of data, whereas other descriptors are only mandatory for some classes of data. 
Table 18 shows the dependencies among descriptors for a conformant decoding process.
[bookmark: _Ref496714154]Table 18. Dependencies among descriptors.
	ID
	Descriptor
	Required descriptors

	sequence reads

	0
	pos
	flags, rcomp

	1
	rcomp
	pos, flags

	2
	flags
	pos, rcomp

	3
	mmpos
	pos,  mmtype

	4
	mmtype
	pos, mmpos

	5
	clips
	pos, mmtype, mmpos

	6
	ureads
	

	7
	rlen
	pos

	8
	pair
	pos

	9
	mscore
	pos

	10
	mmap
	pos

	11
	msar
	mmap

	12
	rtype
	pos

	13
	rgroup
	pos

	Quality Values

	14
	QVIndex
	QVCodebookIdentifier

	15
	QVCodebookIdentifier
	QVIndex

	read names

	16
	token_type
	

	reference sequences

	17
	rftp
	rftt

	18
	rftt
	rftp



[bookmark: _Ref500506785][bookmark: _Toc495592938][bookmark: _Ref496512906][bookmark: _Ref496773164][bookmark: _Ref499909475]

[bookmark: _Ref505935532][bookmark: _Toc506144050][bookmark: _Ref505265723]Sequence Reads
This clause specifies the semantics of genomic descriptors used to represent nucleotides segments and associated alignment information. Each template produced by a sequencing machine or alignment generated by an aligner is encoded in a Genomic Record by means of a subset of the genomic descriptors described in this clause. The genomic descriptors are extracted from a compliant bitstream according to the processes described in clause 13.2.6 and the genomic templates with the associated alignment information can be reconstructed from the decoded genomic descriptors according to the decoding processes described in clause 11.4.
[bookmark: _Ref472604854][bookmark: _Toc488411755][bookmark: _Toc495592941][bookmark: _Toc506144051]Supported symbols
The following alphabets are supported by this specification:
· for DNA
· si = {A, G, C, T, N}
· si = {A, G, C, T, R, Y, S, W, K, M, B, D, H, V, N, ., - } (IUPAC notation)
· for RNA
· si = {A, G, C, U, N}
· si = {A, G, C, U, R, Y, S, W, K, M, B, D, H, V, N, ., - } (IUPAC notation)

A decoder compliant with this specification shall always use the symbol “-“ to represent a gap when the IUPAC notation is used.	
Each Alphabet is identified by an alphabet_ID as shown below:
Table 19. Identifiers of alphabets supported for sequence reads representation.
	alphabet_ID
	 used alphabet
	

	0
	DNA non IUPAC
	S0 = {A, G, C, T, N}

	1
	DNA IUPAC 
	S1 = { A, G, C, T, R, Y, S, W, K, M, B, D, H, V, N, ., -}

	2
	RNA non IUPAC
	S2 = {A, G, C, U, N}

	3
	RNA IUPAC
	S3 = { A, G, C, U, R, Y, S, W, K, M, B, D, H, V, N, ., -}

	4 .. 255
	reserved
	


[bookmark: _Toc488411756][bookmark: _Toc495592942][bookmark: _Toc506144052]Paired reads
In case reads are generated in pairs by sequencing devices (e.g. Illumina and BGI), each pair can be encoded as a single logical data structure named Genomic Record where the mapping position of one of the reads is represented using the pair descriptor as specified in clause 11.4.9. The information linking one read to its mate is referred to as “pairing information” in this document. 
The two reads are not sequenced from the same strand, but might be aligned to the same strand. The sequencing device determines which read in the pair is marked as read 1, whereas the other one will be read 2. An example is shown in Figure 2.
[image: ]
[bookmark: _Ref482183312]Figure 2 – In this example read 1 is sequenced from the forward strand while read 2 from the reverse strand.
Positions of mismatches with respect to the used reference sequence shall be encoded as offset from the left-most mapped base of the first read. The second read is considered to be contiguous to the first and the calculation of the actual position of mismatches on the second read requires adding the pairing distance. This is described in clause 11.4.9.
The pair can also be split into two reads encoded separately. In this case, the pair shall be reconstructed using both the pairing descriptors and the template name shared by the two reads.
[bookmark: _Ref479630007][bookmark: _Ref479710440][bookmark: _Toc488411758][bookmark: _Toc495592943][bookmark: _Toc506144053]Data Classes
Genomic sequence reads are classified in six data classes according to the result of their mapping against one or more reference sequences.
Unmapped reads belong to one data class named “Class U”.
Mapped reads or templates are classified according to the type of mismatches with respect to the reference sequences used for alignment. In case of more than one read in a template, the template belongs to the class of the read with the highest class_ID.
The data classes and their descriptions are provided in Table 20.
[bookmark: _Ref491245862]Table 20. Sequence data classes.
	class_ID
	Class Name 
	Description

	1
	Class_P
	Reads perfectly matching to the reference sequence.

	2
	Class_N
	Reads containing mismatches which are unknown bases only.

	3
	Class_M
	Reads containing at least one substitution, and optionally unknown bases, but no insertions, no deletions and no clipped bases.

	4
	Class_I
	Reads containing at least one insertion, deletion or clipped base, and optionally unknown bases or substitutions.

	5
	Class_HM
	Half-mapped pairs where only one read is mapped.

	6
	Class_U
	Unmapped reads.



When the syntax specified in this document needs to use the maximum number of specified data classes, this is specified by the constant NUM_CLASSES = 6.
[bookmark: _Ref491364761][bookmark: _Toc495592944][bookmark: _Toc506144054]Aligned Data
In the context of this document, aligned genomic data are genomic segments which require the use of an external or internal Reference Genome (as specified in Clause 12) to be decoded.
This clause specifies the types of descriptors contained in the Blocks Payload specified in clause 7.8. Each Block contains binary coded descriptors of a single type identified by the descriptor_ID present in the Block Header as specified in clause 7.7.
Once decoded, each descriptor shall be used to initialize one or more MPEG-G record fields as specified in clause 10. Table 21 lists the descriptors used for aligned reads with a brief description and reference to the corresponding clause.
[bookmark: _Ref490295609][bookmark: _Ref490295605]Table 21. Descriptors used to represent aligned sequence reads.
	descriptor_ID
	descriptor
	semantics
	clause

	0
	pos
	read mapping position
	11.4.1

	1
	rcomp
	strand information for reads in a template
	11.4.2

	2
	flags
	additional alignment information usually produced by aligners
	11.4.3

	3
	mmpos
	position of mismatches in reads 
	11.4.4

	4
	mmtype
	type of mismatches
	11.4.5

	5
	clips
	information on clipped bases (i.e. soft clips or hard clips)
	11.4.6

	6
	ureads
	unmapped reads encoded verbatim
	11.4.7

	7
	rlen
	read lengths
	11.4.8

	8
	pair
	It can represent:
The absolute signed distance from one segment to the next 
OR 
The absolute position on a reference sequence of a read in a template
	11.4.9

	9
	mscore
	provides a score per alignment 
	11.4.13

	10
	mmap
	used to represent multiple alignments
	11.4.11.1

	11
	msar
	supports spliced alignments and alternative secondary alignments which do not preserve the same contiguity of mapping of the primary alignment
	11.4.11

	13
	rgroup
	identifier of the read group each Genomic Record belongs to
	11.4.13



[bookmark: _Ref496626886][bookmark: _Toc506144055]Raw Data
Raw reads belong to class U only. They are encoded as unmapped reads in aligned datasets. Some of the descriptors specified for reads aligned to an external or internal reference as specified in clause 10.4 are used to encode raw reads. This is motivated by the fact that raw reads are encoded using reference sequences built from the data to be encoded. The reference used for mapping is computed according to the procedures described in Clause 12.3.
Table 22 - Descriptors used to represent raw sequence reads.
	descriptor_ID
	Descriptor
	Semantics
	Clause

	0
	pos
	read mapping position
	11.4.1

	1
	rcomp
	strand information for reads in a template
	11.4.2

	2
	flags
	used to cover a part of SAM flags.
	11.4.3

	4
	mmpos
	mismatch position
	11.4.4

	5
	mmtype


	type of edit operations:
substitutions
deletions
insertions
	11.4.5

	6
	clips
	string of nucleotides with variable length (e.g. soft clips)
	11.4.6

	7
	ureads
	unmapped reads encoded verbatim
	11.4.7

	8
	rlen
	unsigned integer representing the number of bases in the read minus one.
	11.4.8

	13
	rtype
	This identifies the subset of descriptors needed to decode the read.
	11.4.10





[bookmark: _Toc506144056]Decoding process
[bookmark: _Ref398991415][bookmark: _Ref398992000][bookmark: _Toc452007247]This clause describes the decoding process an MPEG-G compliant decoder has to conform to in order to reconstruct the genomic information encoded in a MPEG-G bitstream.
Input to this process is a bitstream. Output of this process can be: 
1. a Raw Reference as specified in clause 7.2.
1 a list of decoded MPEG-G records as specified in clause 0.
The decoding process is specified such that all decoders that conform to this specification will produce numerically identical decoded output as either MPEG-G records or Raw References. Any decoding process that produces identical decoded output MPEG-G records or Raw References to those produced by the process described herein conforms to the decoding process requirements of this document.
[bookmark: _Toc506144057]General
The decoding process operates as follows:
1. The decoding of Data Units is specified in clause 11.2.
The decoding of Access Units is specified in clause 11.3. 
[bookmark: _Ref505182743][bookmark: _Toc506144058]Data Units
Inputs to this process are Data Units as specified in clause 7.1.
Outputs of this process are the MPEG-G coded data structures encapsulated within the Data Units.
The decoding process for each Data Unit extracts the MPEG-G coded data structure from the Data Unit and then parses the MPEG-G coded data structure.
[bookmark: _Ref505182967][bookmark: _Toc506144059][bookmark: _Toc488411781]Access Units
Input to the processes described in the following clauses are decoded genomic descriptors generated as output of the parsing process specified in clause 13. The genomic descriptors are contained in the decoded_symbols data structure specified in clause 13.2.2. 
In the context of the decoding process each decoded symbol is identified by 
decoded_symbol[descriptor_ID][descriptor_subsequence_ID][ jdescriptor_ID, descriptor_subsequence_ID]
where jdescriptor_ID, descriptor_subsequence_ID is used to read the arrays of decoded genomic descriptors as specified in clause 13.2.2. For descriptors where subsequences are not present descriptor_subsequence_ID is always set to 0.
At the beginning of the decoding process of one AU all indexes jdescriptor_ID, descriptor_subsequence_ID are initialized to 0.
Output of this process is: 
1. if dataset_type, as specified in clause 8, is equal to 2 a Raw Reference structure as specified in clause 7.2.
if dataset_type, as specified in clause 8, is less than 2 a sequence of MPEG-G records as specified in clause 0.
[bookmark: _Toc495592980][bookmark: _Toc506144060]References Padding
In case of AUs of type P, N, M, I and HM, if the Raw Reference structure containing the Reference Sequence to be used during the decoding process specifies a seq_start that is greater than AU_start_pos or an seq_end that is less than AU_end_pos, the decoder shall pad with “N” the missing portions of Reference Sequence. This is shown in Figure 3.
[image: ]
[bookmark: _Ref495511466][bookmark: _Ref495511460]Figure 3. The decoder shall pad the Reference Sequence with “N” in case the AU covered region is wider than the available Reference Sequence segment.
[bookmark: _Toc495592981][bookmark: _Ref500848700][bookmark: _Ref505416381][bookmark: _Ref505417154][bookmark: _Ref505437401][bookmark: _Ref505584222][bookmark: _Ref505598176][bookmark: _Ref505868743][bookmark: _Ref505870206][bookmark: _Ref505959863][bookmark: _Toc506144061]Type 1 (Class P)
Type 1 Access Units encode aligned sequence reads which perfectly match to the used Reference Sequence.
The decoding process of a binary decoded Access Unit of type 1 is as follows:
1. Decode the pos descriptor as specified in clause 11.4.1. The number of pos descriptors relevant for each Genomic Record corresponds to the number of alignments of the read or read pair contained in the Genomic Record. This is signaled by the mmap descriptor as specified in clause 11.4.11.1;
2. Decode the rcomp descriptor as specified in clause 11.4.2. The number of rcomp descriptors relevant for each Genomic Record corresponds to the number of segments in all alignments of the read or read pair contained in the Genomic Record. This is signaled by the mmap descriptor as specified in clause 11.4.11.1;
3. Decode the flags descriptor as specified in clause 11.4.3.
4. If present, decode the following optional descriptors:
a. decode the rlen descriptor as specified in clause 11.4.8;
b. (paired-end reads), decode the pair descriptor as specified in clause 11.4.3. The number of pair descriptors relevant to each Genomic Record is equal to number_of_alignments * (number_of_record_segments - 1). These two variables are calculated as specified in points 5.h and 5.i below;
c. decode the mscore descriptor as specified in clause 11.4.10;
d. decode the mmap descriptor as specified in clause 11.4.11.1;
e. decode the msar descriptor as specified in clause 11.4.11.6;
f. decode the token_type descriptor as specified in clause 11.4.16;
g. decode the QVIndex descriptor as specified in clause 11.4.14;
h. decode the QVCodebookIdentifier descriptor as specified in clause 0;
5. [bookmark: _Ref505417215]The relevant MPEG-G record fields specified in clause 0 are initialized as follows:
a. global_ID is set as specified in clause 14.1;
b. read_name is set to the decoded read identifier as specified in clause 11.4.16;
c. class_type is set to 1;
d. seq_ID is set to the value of sequence_ID as specified in clause 7.5;
e. read_1_first is set as specified in clause 11.4.9;
f. flags is set to the value of the decoded flags descriptor;
g. number_of_template_segments is set:
i. to 1 if neither pair nor mmap descriptors are present in this AU;
ii. to 2 if the pair descriptor is present but no mmap descriptors are present in this AU;
iii. to 1 or 2 if both the pair and mmap descriptors are present in this AU. Clause 11.4.11 specifies how to calculate number_of_template_segments in this case;
h. number_of_record_segments is set:
i. to 1 if neither pair nor mmap descriptors are present in the current AU;
ii. as specified in clause 11.4.9 if the pair descriptor is present but no mmap descriptors is present in the current AU;
iii. as specified in clause 11.4.11.1 if both pair and mmap descriptors are present in the current AU;
i. number_of_alignments is set:
i. to 1 if the mmap descriptor is not present in the current AU;
ii. as specified in clause 11.4.11.1 if the mmap descriptor is present in the current AU;
j. [bookmark: _Ref505418093]read_len is an array of number_of_record_segments values representing the length in nucleotides of each segment of the Genomic Record;
i. if neither the pair nor the mmap descriptors are present for the current AU, the array contains a single value equal to the rlen descriptor value decoded for the current Genomic Record;
ii. if the pair descriptor is present for the current AU, but not the mmap descriptor, the values in the array are all set to read_len as specified in clause 8;
iii. if mmap is present for the current AU, the values of the array are calculated as specified in clause 11.4.11.1;
k. sequence is an array of number_of_record_segments strings of symbols from the alphabet identified by alphabet_ID as specified in clause 8; each string has a length equal to the corresponding element in the read_len array. The sequence of nucleotides is computed as specified in clause 11.5;
l. [bookmark: _Ref505417205]quality_values is an array of number_of_record_segments strings of symbols computed as specified in clauses 11.4.14 and 0;
m. [bookmark: _Ref505938267]the mapping_pos array contains number_of_alignments pos values decoded as specified in clause 11.4.1. In case of multiple alignments mapping_pos[0] shall contain the mapping position of the primary alignment; 
n. the ecigar_len array contains number_of_alignments * number_of_record_segments values representing the length in characters of the corresponding ecigar_string string as specified in clause 14.19;
o. the ecigar_string array contains number_of_alignments * number_of_record_segments strings. Each string ecigar_string[i][j] is computed as specified in clause 11.6 to represent the mismatches, indels, clipped bases and information on multiple alignments and spliced reads of the jth segment of the ith alignment;
p. The field reverse_comp for each segment in each alignment as specified in clause 14.21 shall be initialized according to the rcomp value as follows: 
i. For each alignment, one value of rcomp is decoded;
ii. The value of reverse_comp for each segment of the alignment is set to the value of the corresponding bit of the rcomp value starting from the left-most segment of read 1 and continuing till the right-most segment of read 2; bits are considered from the MSB to the LSB.
q. the split_alignment array contains number_of_alignments * (number_of_record_segments - 1) values. Each value split_alignment [i][j] is set to 1 when the (j+1)th segment of the ith  segment is coded in a different Genomic Record as specified in clause 14.15;
r. [bookmark: _Ref505938773]delta is an array of number_of_alignments * (number_of_record_segments - 1) values computed as specified in clause 11.4.9; in case of multiple alignments the value delta[0][0] contains the pairing distance of the primary alignment;
s. split_pos is an array of number_of_alignments * (number_of_record_segments - 1) values wherein each value split_pos[i][j] contains a valid value only if the corresponding split_alignment[i][j] value is equal to 1. The value of split_pos[i][j] is computed as specified in clause 11.4.9;
t. split_seq_ID is an array of number_of_alignments * (number_of_record_segments - 1) values wherein each value split_seq_ID [i][j] contains a valid value only if the corresponding split_alignment[i][j] value is equal to 1. The value of split_seq_ID[i][j] is computed as specified in clause 11.4.9.
u. more_alignment is set to 1 only if the subsequence with descriptor_subsequence_ID equal to 0 contains the value 6 for the current Genomic Record as specified in Table 53;
v. if more_alignments is set to 1, next_pos and next_seq_ID are computed as specified in clause 11.4.9.	
[bookmark: _Ref490771315][bookmark: _Toc495592982][bookmark: _Toc506144062]Type 2 (Class N)
Access Units of type 2 (Class N) are decoded by following the process described for AUs of type 1 (Class P) in clause 11.4.1 and then applying the information on unknown bases (symbol N) carried by the mmpos descriptor as specified in clause 11.4.4.
Additional inputs to this process is the offset[]vector specified in clause 11.4.4.
The decoded sequence shall be computed by replacing with the symbol ‘N’ each base at a position represented by a decoded mmpos value in the sequence obtained as specified in clause 11.5.1.
The substitutions are applied as follows.
For each value of offset[i] belonging to read 1, the base at the corresponding position in the sequence computed as specified in clause 11.5.1 is replaced by a symbol ‘N’.
sequence[offset[i]] = ‘N’
For paired end reads, the same applies to the sequence representing read 2 for values of offset[i] belonging to read 2 as specified in clause 11.4.4.
[bookmark: _Ref490773390][bookmark: _Toc495592983][bookmark: _Toc506144063]Type 3 (Class M)
Access Units of type 3 (Class M) are decoded by following the process described for AUs of type 1 (Class P) in clause 11.4.1 and then applying the information on substitutions obtained by following the decoding process  of mmpos and mmtype descriptors as specified in clauses 11.4.4 and 11.4.5.
Additional inputs to this process are the offset[] and substitutions[] vectors specified in clauses 11.4.4 and 11.4.5.
The substitutions are applied as follows.
For each value of offset[i] belonging to read 1, the base at the corresponding position in the sequence computed as specified in clause 11.5.1 is replaced by the corresponding symbol mismatch[i] obtained as specified in clause 11.4.5.
sequence[offset[i]] = symbol corresponding to substitutions [i] in Table 30.
For paired end reads, the same applies to the sequence representing read 2 for values of offset[i] belonging to read 2 as specified in clause 11.4.4.
[bookmark: _Ref490810914][bookmark: _Toc495592984][bookmark: _Toc506144064]Type 4 (Class I)
Access Units of type 4 (Class I) are decoded by following the process described for AUs of type 1 (Class P) in clause 11.4.1 and then applying the edit operations represented by the decoded mmpos, mmtype and clips descriptors as specified in clauses 11.4.4, 11.4.5 and 11.4.6.
Additional inputs to this process are:
· the offset[] vector specified in clause 11.4.4.
· the substitutions[] and indels vectors specified in clause 11.4.5.
· the soft_clips[][] matrix and the hard_clips[] vector specified in clause 11.4.6.
The substitutions are applied as follows.
For each value of offset[i] belonging to read 1, the base at the corresponding position in the sequence computed as specified in clause 11.5.1 is replaced by the corresponding symbol mismatch[i] obtained as specified in clause 11.4.5.
sequence[offset[i]] = symbol corresponding to substitutions[i] in Table 30.
Insertions and deletions are applied as specified in Table 23.
[bookmark: _Ref505670422]Table 23. How to apply mismatches to sequence reads according to the decoded values of mmtype.
	Semantics of indels[i] as specified in Table 30.
	Operation to be performed on sequence[]

	insertion
	sequence[offset[i]] is shifted right by one position and the symbol corresponding to indels[i] in Table 30 is inserted. 

	deletion
	sequence[offset[i]] is deleted.



Information on clipped bases is applied as follows:
Soft clips
The following applies to each non-empty row of the soft_clips bi-dimensional vector computed as per clause 11.4.6:
· soft_clips[0] shall be prepended to the sequence representing read 1;
· soft_clips[1] shall be concatenated to the sequence representing read 1;
· soft_clips[2] shall be prepended to the sequence representing read 2;
· soft_clips[3] shall be concatenated to the sequence representing read 2.
Hard clips
The hard_clips[] vector is used to compute the ecigar_string element of the MPEG-G record as specified in clause 11.6.
[bookmark: _Toc495592985][bookmark: _Ref505938924][bookmark: _Toc506144065]Type 5 (Class HM)
Class HM applies only to paired end reads. Access Units of type 5 are decoded as follows:
1. The mapped read is decoded by following the process described for Class I in clause 11.3.5.
2. The unmapped read is obtained by decoding the uread syntax element as described in clause 11.3.7.
[bookmark: _Ref490753105][bookmark: _Toc495592986][bookmark: _Toc506144066]Type 6 (Class U)
Class U data can be decoded in two modes:
1. as entropy coded ureads descriptors to be decoded as specified in clause 13.2.6.2.6. The decoding process of unmapped sequence reads from ureads descriptors is specified in clause 11.4.7.
2. using the “PushIn” computed reference algorithm specified in clause 12.3.1.2. In this case the genomic sequence reads are decoded as for other class of data by using the rtype descriptor as specified in clause 11.4.11.6.
[bookmark: _Toc506144067]Reference sequences
Input to this process is one AU of type 1, 2, 3, 4 or 6.
Output of this process is a raw_reference structure as specified in clause 7.2.3.
Clause 8 specifies that all AUs referring to a Parameter Set having dataset_type set to 2 contain an encoded Reference Genome or portions thereof. According to the value of AU_type specified in clause 7.5 the decoding process is as specified in clauses 11.3.2, 11.3.3, 11.3.4, 11.3.5 and 11.3.7 for Classes P, N, M, I and U.
The elements of the raw_reference syntax specified in clause 7.2.3 shall be set as follows:
reference_ID is set to the value of reference_ID found in the Dataset Header defined in ISO/IEC 23092-1.
seq_count is set to the number of different values of sequence_ID, specified in clause 7.5, found in the headers of the AUs with dataset_type equal to 2 referring to the same Parameter Set.
For each value of sequence_ID, specified in clause 7.5, found in the headers of the AUs with dataset_type equal to 2 referring to the same Parameter Set the following applies:
sequence_ID in the raw_reference syntax is set to sequence_ID
seq_start shall be set to the smallest value of AU_start_position among all AUs with dataset_type equal to 2 referring to the same Parameter Set.
seq_end shall be set to the largest value of AU_end_position among all AUs with dataset_type equal to 2 referring to the same Parameter Set.
seq_start and seq_end elements specified in clause 7.2.3 shall be set to the values of AU_start_position and AU_end_position respectively.
[bookmark: _Toc488411771][bookmark: _Toc495592966][bookmark: _Ref505935580][bookmark: _Toc506144068]Quality Values
Decoding of Unquantized Quality Values
The syntax of encoded quality value contains compressed representation of unquantized quality value descriptor sequences as defined below.


	Syntax
	Type

	encoded_quality_value_identifiers() {
	

		region_len
	u(4)

		max_r
	u(4)

		min_q
	u(8)

		max_q
	u(8)

		do {
	

			encoded_quality_value_stream()
	

			i++
	

		} while(i <  num_quality value_streams  && more_data_in_block_payload( ))
	

	}
	










region_len signals the length of the subregion for calculating region context for decoding of quality value.  The actual region length is region_len*10.   

max_r is the maximum number of repetitions of quality value encoded. Note that if the actual number of repetitions are larger than max_r, it will be decomposed and encoded as a series of max_r following remaining value.  

min_q is the minimum quality value encoded. 

max_q is the maximum quality value encoded.      

The output of this process is quality value descriptor stream qv[i][j].  The decoding process is illustrated below: 

	Decoding process
	Type

	DecodeQV(i) {
	

		ctxTable[ ] =  contexts_creation_initialization()
	

		j = 0
	

		q=r=0; 
	

		max_ctx_q =  round(max_rlen*10/region_len)*max_q+max_q+1; 
	

		do {
	

				ctxIdx = context_selection((j==0) ? 0:round(j*10/region_len)*max_q + q + 1)
	

			q = decodedCabacSymbol()
	

			ctxIdx = context_selection( round(j*10/region_len)*max_q + q+max_ctx_q)
	

			r = decodedCabacSymbol()
	

			while ( decodedCabacSymbol =max_r){
	

				r +=  decodedCabacSymbol()
	

			}
	

			do {
	

					qv[i][j++]=q+min_q
	

			} while (r--)
	

		} while (j < num_quality value_streams  < &&  more_data_in_block_payload( ))
	

	}
	




Decoding of Quantized Quality Values
Inputs to this process are the Block Payloads (as specified in clause 7.8) for descriptor_ID = 14, which corresponds to the Quality Value Indexes, and for descriptor_ID = 15, which corresponds to the Quality Value Codebook Identifiers.
The Quality Values are decoded by transforming the Quality Value Indexes into reconstructed Quality Values. The transformation is done by a lookup in a Quality Value Codebook. Quality Value Codebooks are identified by Quality Value Codebook Identifiers. The encoder can select different codebooks (i.e. different quantization characteristics) per genomic position.
The jth QVCodebookIdentifier value corresponds to the jth genomic position after AU_start_position. Each QVIndex value corresponds to a base in a read. The absolute position of the base, and thus of the QVIndex value, can be computed according to clause 10.4.
Output of this process is a reconstructed Quality Value represented by the variable qvRecon.
This process consists of the following steps:
For each QVIndex value:
1. Compute the absolute position p of the QVIndex value.
2. Select the Quality Value Codebook, identified by the QVCodebookIdentifier value for position p, as b..
3. Initialize the variable qvRecon with the Quality Value Codebook entry qv_recon[c][b][QVIndex] , where c is the Data Class identifier of the current AU, as specified in clause 8.1.
In the case that the QVIndex descriptor is multiplexed, the QVIndex descriptor is decomposed into qv_num_codebooks descriptor subsequences. Each descriptor substream corresponds to one Quality Value Codebook as specified in clause 11.4.15.
Multiplexing of the QVIndex descriptor can prove to be beneficial in terms of compression performance, because the encoder can model for each QVIndex symbol the conditional probability of the symbol given the corresponding codebook.
The process to multiplex these subsequences to output this descriptor stream is specified as follows.
1. For each read in an Access Unit:
a. For each base in a read:
i. Calculate the absolute position of the base, and thus the corresponding Quality Value, according to clause INSERT LINK TO 11.41, as j.
ii. Get the codebook QVCodebookIdentifier[j] at position j as b.
iii. Insert 1 byte from substream b.
[bookmark: _Ref505935402][bookmark: _Toc506144069]Read identifiers decoding process
Inputs to this process is the Block Payload (as specified in clause 7.8) for descriptor_ID = 16, which corresponds to the read identifiers. The encoded_read_identifiers() of this Block Payload internally contains a list of compressed representation of token_type descriptor sequences (as specified in clause  0). 
Output of this process is the list of decompressed representation of these token_type descriptor sequences, which serve as input to the assembly process (specified in clause 11.3.10.3) to reconstruct the read identifiers. 

4.2.1.1 [bookmark: _Ref499798294]Syntax and semantics
The syntax of encoded_read_identifiers() containing a list of compressed representation of  token_type descriptor sequences is specified below. 

	Syntax
	Type

	encoded_read_identifiers() {
	

		num_read_identifiers
	u(32)

		num_token_type_sequences
	u(16)

		i = 0
	

		do {
	

			encoded_token_type_sequence(i)
	

			i++
	

		} while(i <  num_token_type_sequences  && more_data_in_block_payload( ))
	

	}
	






num_read_identifiers specifies the number of read identifiers encoded in the current Block Payload.
num_token_type_sequences specifies the number of token_type descriptor sequences in the current Block Payload.
encoded_token_type_sequence(i) specifies the data structure containing the byte-aligned compressed representation of the ith token_type descriptor sequence. Its syntax is specified below.
	Syntax
	Type

	encoded_token_type_sequence(i) {
	

		type_ID
	u(4)

		method_ID
	u(4)

		if(method_ID == 0x0) 
	

			ref_type_ID
	u(16)

		decode_token_type_sequence(i, method_ID)
	

	}
	





[bookmark: _Ref499911326]type_ID specifies the type of the ith token_type descriptor sequence. This process internally maintains a state variable typeNum, which is initialized with -1 for every Block Payload of this descriptor (descriptor_ID = 16) and is incremented for every type_ID = 0. The current values of state variable typeNum and type_ID are then used to generate a “mapped” value of type_ID as 
	if(type_ID == 0)
	typeNum++
mappedTypeId = (typeNum<<4) | (type_ID & 15)


This mappedTypeId may be signaled as ref_type_ID in a future record if its payload is an exact duplicate of a previously decoded record.
method_ID specifies the compression method (among those listed in Table 24) used for the ith token_type descriptor sequence.
[bookmark: _Ref500941662]Table 24: Description of compression methods for token_type descriptor sequence.
	method_ID
	Description

	0
	DUP
	The compressed payload is an exact duplicate of the previously decoded token_type_sequence with mappedTypeId = ref_type_ID as specified in clause 11.3.10.2.1.

	1
	CAT
	The null coding, ideal for small data. Its syntax is specified in clause 11.3.10.2.2.

	2
	RLE
	Run length coding, ideal for long list of repeated symbols. Its syntax is specified in clause 11.3.10.2.3

	3
	CABAC_ORDER_0
	Zero order coding with CABAC. Its syntax is specified in clause 11.3.10.2.4.

	4
	CABAC_ORDER_1
	First order coding with CABAC binarization. Its syntax is specified in clause 11.3.10.2.5.

	5
	X4
	A recursive decorrelation method to split a token_type_sequence into four equisized interleaved subsequences (whenever size is divisible by 4 and greater than 32), each of them being coded with one of the above methods except method_ID 0x0. Its syntax is specified in clause 11.3.10.2.6.

	0x6 .. 0xf
	reserved
	



[bookmark: _Ref499784477][bookmark: _Ref499688668]ref_type_ID is the mappedTypeId of a previously decoded token_type sequence of which payload of current token_type sequence is an exact duplicate. 
decode_token_type_sequence(i, method_ID) specifies the syntax for decoding the ith token_type descriptor sequence using the decoding method indicated by method_ID. Its syntax is specified below.
	Syntax
	Type

	decode_token_type_sequence(i, method_ID) {
	

		if(method_ID == 0x0)
	

			DUP(i)
	

		else {
	

			uncompressed_size
	u7(v)

			 if(method_ID == 0x1)
	

				CAT(i)
	

			 else if(method_ID == 0x2)
	

				RLE(i)
	

		 	else if(method_ID == 0x3)
	

				CABAC_ORDER_0(i)
	

		 	else if(method_ID == 0x4)
	

				 CABAC_ORDER_1(i)
	

		 	else if(method_ID == 0x5)
	

				X4(i)
	

		}
	

	}
	






uncompressed_size represents the size (in number of tokens) of decompressed payload of the ith token_type descriptor sequence.
4.2.1.2 [bookmark: _Ref499571565]Decoding process for compression methods
[bookmark: _Ref499685856]The input to this process is the data structure encoded_token_type_sequence() specifying the byte-aligned compressed representation of the ith token_type descriptor sequence, which is decoded with one of the compression methods listed in Table 24 and specified in this clause.
The output of this process is the decompressed representation of the ith token_type descriptor sequence.
4.2.1.2.1 [bookmark: _Ref501362232]DUP 
[bookmark: _Ref499685875]Input to this process is ref_type_ID, which is a mappedTypeId of a previously decoded token_type sequence. 
Output of this process is the decompressed payload of current token_type sequence, which is obtained by copying the decompressed payload of the reference token_type sequence uniquely identified by mappedTypeId.
4.2.1.2.2 [bookmark: _Ref501362233]CAT 
This clause specifies the decoding process for the method CAT, which may be used to decompress a token_type descriptor sequence. The output of this process is a reconstructed token_type descriptor sequence.
	Decoding process
	Type

	CAT(i) {
	

		j = 0
	

		do {
	

			decoded_tokens[i][j++]
	ue(v)

		} while(j <uncompressed_size &&  more_data_in_block_payload( ))
	

	}
	



decoded_tokens[i][j] specifies the jth token in the ith decompressed token_type descriptor sequence.
more_data_in_block_payload( ) is specified in clause 6.3.
4.2.1.2.3 [bookmark: _Ref499685673]RLE 
This clause specifies the decoding process for the method RLE, which isused to decompress a token_type descriptor sequence. The output of this process is a reconstructed token_type descriptor sequence.
	Decoding process
	Type

	RLE(i) {
	

		j = 0
	

		do {
	

			tmp_value
	u(8)

			if(tmp_value == rle_guard) {
	

				 tmp_value
	u(8)

				if(tmp_value == 0)
	

					 decoded_tokens[i][j++] = rle_guard
	

				else {
	

						rle_len = 0
	

						s = 0
	

						do {
	

							if(s != 0)
	

								tmp_value
	u(8)

							run_len |= (tmp_value & 0x7f) << s;
	

							s +=	7
	

						} while(tmp_value & 0x80)	
	

						tmp_value
	ue(v)

						for(r=0; r < ren_len; r++) {
	

							decoded_token[i][j++] = tmp_value
	

						}
	

				}
	

			} else 
	

				decoded_token[i][j++] = tmp_value
	

		} while(j <uncompressed_size &&  more_data_in_block_payload( ))
	

	}
	



rle_guard specifies the guard value signaled in decoder configuration for read identifiers (see 13.2.3).
decoded_token[i][j] specifies the jth token in the ith decompressed token_type descriptor sequence.
more_data_in_block_payload( ) is specified in clause 6.3.
4.2.1.2.4 [bookmark: _Ref499685934]CABAC_ORDER_0 
This clause specifies the decoding process for the method CABAC_ORDER_0, which may be used to decompress a token_type descriptor sequence. The output of this process is a reconstructed token_type descriptor sequence.
	Decoding process
	Type

	CABAC_ORDER_0(i) {
	

		ctxTable[ ] =  contexts_creation_initialization(0)
	

		j = 0
	

		do {
	

			k=encoded_tokens[i][j] = 0
	

			for (s=0; s<output_symbol_size; s+= coding_symbol_size[k++]) {
	

				ctxIdx = context_selection(0, NULL)
	

				decodedCabacSymbol
	ae(v)

				encoded_tokens[i][j] |=   decodedSymbol <<s
	

			}
	

			j++; 
	

		} while (j <uncompressed_size &&  more_data_in_block_payload( ))
	

	}
	



decoded_tokens[i][j] specifies the jth token in the ith decompressed token_type descriptor sequence.
contexts_creation_initialization() and context_selection() represent the initialization of ctxTable (specified in clause 14.2.6.2.3) and selection of context index ctxIdx inside ctxTable (specified in clause 14.2.6.2.5), respectively, using the parameters signaled in the decoder configuration for read identifiers (specified in clause 13.2.3). 
decodedCabacSymbol specifies the decoded symbol as specified in clause 13.2.6.2.6..
more_data_in_block_payload( ) is specified in clause 6.3.
4.2.1.2.5 [bookmark: _Ref499685966]CABAC_ORDER_1 
This clause specifies the decoding process for the method CABAC_ORDER_1, which isbe used to decompress a token_type descriptor sequence. The output of this process is a reconstructed token_type descriptor sequence.
	Decoding process
	Type

	CABAC_ORDER_1(i) {
	

		ctxTable[ ] =  contexts_creation_initialization(0)
	

		lut_values[ ][ ] =  decode_LUTs_Order_1(0, ctxTable, 0)
	

		j = 0
	

		prev_value[1] = {0}
	

		do {
	

			decoded_tokens[i][j] = 0
	

			for (s=0; s<output_symbol_size; s+= coding_symbol_size) {
	

				ctxIdx = context_selection(0,  prev_value)
	

				decodedCabacSymbol
	ae(v)

				decodedSymbol  = LUT_values[prev_value[0]][ decodedCabacSymbol ]
	

				prev_value[0] =   decodedSymbol  
	

				decoded_tokens[i][j] |=   decodedSymbol  <<s
	

			}
	

			j++
	

		} while(j <uncompressed_size &&  more_data_in_block_payload( ))
	

	}
	



LUT_values[ ][ ] specifies the 2-dimensional look-up-table signaled in the payload of the ith token_type descriptor sequence. This look-up-table is retrieved using the process decode_LUTs_Order_1() specified in 13.2.6.2.4.
[bookmark: _GoBack]decoded_tokens[i][j] specifies the jth token in the ith decompressed token_type descriptor sequence.
contexts_creation_initialization() and context_selection() specifies the initialization of ctxTable (specified in clause 14.2.6.2.3) and selection of context index ctxIdx inside ctxTable (specified in clause 14.2.6.2.5), respectively, using the parameters signaled in the decoder configuration for read identifiers (specified in clause 13.2.3). 
decodedCabacSymbol specifies the decoded symbol as specified in clause 13.2.6.2.6.
decodedSymbol is the value read from the LUT using decodedCabacSymbol as index.
more_data_in_block_payload( ) is specified in clause 6.3.
4.2.1.2.6 [bookmark: _Ref499685980]X4
This clause specifies the decoding process for the method X4, which is be used to decompress a token_type descriptor sequence. The output of this process is a reconstructed token_type descriptor sequence.
	Decoding process
	Type

	X4(i) {
	

		x4_method_IDs
	u(16)

		for (s=0; s<4; s++) {
	

			method_ID =  (x4_method_IDs >>(s*4)) & 0xf
	u(4)

			decoded_tokens_x4[s][] = decode_token_type_sequence(s, method_ID)
	

		}
	

		/* Multiplexing of interleaved subsequences */
	

		for(j=0, j<uncompressed_size; j += 4) {
	

			for(s=0, s<4; s++) {
	

				decoded_tokens[i][j+s] = decoded_tokens_x4[s][j>>2]
	

			}
	

		}
	

	}
	



x4_method_IDs specifies the four compression methods (among those listed in Table 24 except method_ID = 0x0) used to decompress the four interleaved subsequences, where the method_ID for the sth subsequence can be derived as method_ID =  (x4_method_IDs >>(s*4)) & 0xf.
decoded_tokens_x4[s][j] specifies the jth byte token in the sth decompressed interleaved subsequence.
decoded_tokens[i][j] specifies the jth byte token in the ith decompressed token_type descriptor sequence.
4.2.1.3 [bookmark: _Ref500428520]Assembly process for token_type descriptor sequences
Input to this process is decoded_tokens[ ][ ], which is the decompressed representation of encoded_read_identifiers() specified in clause 11.3.10.1, containing a list of num_token_type_streams decompressed token_type descriptor sequences.
Output of this process is the data structure read_ids[ ] containing a list of read identifiers as strings.
	Syntax

	Assemble_ Read_Identifiers(decoded_tokens[ ][ ]) {

		cIdx = 0

		refIdx = 0

		t = 0

		read_ids[ ] = {“”}

		do {

			tokType = get_tok_type(decoded_tokens[t<<4])

			distance = get_tok_int(decoded_tokens[t<<4 | tokType])

			refIdx = cIdx – distance

			if(tokType == 0x00) 	/* Token: DUP */

				strcpy(read_ids[cIdx], read_ids[refIdx])

			else { 	/* Token: DIFF */

				for (t=1; t< num_token_type_sequence; t++) {

					tokType = get_tok_type(decoded_tokens[t<<4])

					if(tokType == 0x09)  	/* Token: END */

						break

					tokStr = extract_tok_value (decoded_tokens, tokType, t, refIdx)

					strcat(read_ids[cIdx], tokStr)

				}

			}

		} while ( cIdx < num_read_identifiers && strlen(read_ids[cIdx++]) > 0)

	}



num_read_identifiers specifies the number of read identifiers encoded in the current Block Payload.
get_tok_type(decoded_tokens[ ]) pops and returns one byte from data structure decoded_tokens[ ].
get_tok_int(decoded_tokens[ ]) pops four bytes from data structure decoded_tokens[ ] and returns little-endian representation of their corresponding 32-bit integer.
strcpy(dst, src) specifies the string copying operation from the source string to the destination string.
strcat(dst, src) specifies the string concatenation operation of source string to the destination string.
strlen(str) returns the length of the input string.
extract_tok_value() pops and returns token value based on its type (as listed in Table 39) and the co-located tokens in the reference read identifier. The syntax of extract_tok_value () is described in below.
	Syntax

	extract_tok_value(decoded_tokens[ ][ ], tokType, t, refIdx) {

		tokIdx = (t << 4) | tokType

		if(tokType == 0x02) 	/* Token: CHAR */

			tmp_str = get_tok_string(decoded_tokens[tokIdx])

		else if(tokType == 0x03) 	/* Token: CHAR */

			tmp_str = parseToStr(get_tok_char(decoded_tokens[tokIdx]))

		else if(tokType == 0x04) 	/* Token: DIGITS */

			tmp_str =  parseToStr(get_tok_digits(decoded_tokens[tokIdx]))

		else if(tokType == 0x05) 	/* Token: DELTA */

			tmp_str =  parseToStr(get_tok_delta(decoded_tokens[tokIdx], refIdx))

		else if(tokType == 0x06) 	/* Token: DIGITS0 */

			tmp_str =  parseToStr(get_tok_digits0(decoded_tokens[tokIdx]))

		else if(tokType == 0x07) 	/* Token: DELTA0 */

			tmp_str =  parseToStr(get_tok_delta0(decoded_tokens[tokIdx], refIdx))

		else if(tokType == 0x08) 	/* Token: MATCH */

			tmp_str =  parseToStr(get_tok_match(refIdx))

		return tmp_str

	}



get_tok_string(decoded_tokens[ ]) pops and returns a null terminated string from data structure decoded_tokens[ ] as described for token STRING in Table 39.
get_tok_char(decoded_tokens[ ]) pops and returns a one byte UTF-8 character from data structure decoded_tokens[ ] as described for token CHAR in Table 39.
get_tok_digits(decoded_tokens[ ]) pops and returns a four bytes digit value from data structure decoded_tokens[ ] as described for token DIGITS in Table 39.
get_tok_delta(decoded_tokens[ ], refIdx) pops a one byte delta value from data structure encoded_tokens[ ] as described for token DELTA in Table 39. It returns the sum of this delta value and the digit value of the co-located DIGITS token in the reference read identifier identified by refIdx.
get_tok_digits0(decoded_tokens[ ]) pops two values, one byte fixed-width length value and four bytes digit value from data structure decoded_tokens[ ] as described for token DIGITS0 in Table 39. It returns 0-padded fixed-width representation of the digit value.
get_tok_delta0(decoded_tokens[ ], refIdx) pops a one byte delta value from data structure decoded_tokens[ ] as described for token DELTA in Table 39. It returns the 0-padded fixed-width representation of the sum of this delta value and the digit value of the co-located DIGITS0 token in the reference read identifier identified by refIdx.
get_tok_match(refIdx) returns the token value of the co-located token in the reference read identifier identified by refIdx as described for token MATCH in Table 39.
parseToStr(value) returns the string representation of the input value.
[bookmark: _Ref505801644][bookmark: _Toc506144070]Genomic descriptors 
Input to the decoding processes described in this clause is the decoded_symbols data structure specified in clause 13.2.6.2.1 indexed by the descriptor_ID identifying each genomic descriptor.
Each descriptor_ID is associated to K arrays decoded_symbols[descriptor_ID][N]  with 0 ≤ N < K.
If K is greater than 1 the input to the decoding process of the genomic descriptor are K subsequences of values decoded_symbols[descriptor_ID][descriptor_subsequence_ID] as specified in clause 13.2.2.
The subsequences are identified as subsequenceN and values of the subsequences are read by means of indexes jM,N where M = descriptor_ID and N = descriptor_subsequence_ID.
[bookmark: _Ref490750812][bookmark: _Toc506144071]pos
Input to this process is the array decoded_symbols[descriptor_ID][0] array specified in clause 13.2.6.2.1 when descriptor_ID is equal to 0 and the current value of j0,0.
Output of this process are number_of_alignments values used to set the mapping_pos field in the MPEG-G record as specified in clause 11.3.2.
At the end of the decoding process j0,0 is incremented by number_of_alignments.
In the context of this decoding process the vector pos[] is defined as:
pos  = decoded_symbols[0][0]
The first decoded pos descriptor (pos[0]) in each AU is always equal to 0 as it specifiesthe offset of the left-most mapped Genomic Record carried by the AU from the AU_start_position field of the Access Unit Header, as specified in clause 7.5, which is the position of the left-most mapped Genomic Record itself.
Single alignment
If number_of_alignments is equal to 1, the values of posi (with i > 0) specifiesthe signed offset between the  ith Genomic Record mapping position and the (i-1)th Genomic Record mapping position. Therefore the nth Genomic Record mapping position pn on the Reference Sequence (identified by sequence_ID in the AU Header) shall be calculated as:

where p0 is equal to the value of the AU_start_position field of the Access Unit Header, as specified in clause 7.5.
Multiple alignments
If number_of_alignments is greater than 1, the values of each posk (with 0 < k < number_of_alignments - 1) specifies the signed offset between the  kth alignment mapping position and the (k-1)th alignment mapping position in the current Genomic Record. For k equal to 0, pos0 specifies the signed offset between the primary alignment in the current Genomic Record and the primary alignment of the previous Genomic Record. Therefore the mapping position p0,n on the Reference Sequence (identified by sequence_ID in the AU Header) of the primary alignment of the nth Genomic Record shall be calculated as:

where pos0,n is equal to the value of the first decoded pos descriptor for the nth Genomic Record.
The mapping positions pk,n on the Reference Sequence (identified by sequence_ID in the AU Header) of the secondary alignments of the nth Genomic Record shall be calculated as:

where:
K = number_of_alignments – 1
posi,nis the ith decoded pos descriptor for the nth Genomic Record.
[bookmark: _Ref482256448][bookmark: _Toc495592946][bookmark: _Toc506144072][bookmark: _Ref505260715]rcomp
Input to this process is the array decoded_symbols[descriptor_ID][0] specified in clause 13.2.6.2.1 when descriptor_ID is equal to 1 and the current value of j1,0.
Output of this process are number_of_alignments values of decoded_symbols[descriptor_ID][0][j1,0] used to set the reverse_comp field in the MPEG-G record as specified in clause 11.3.2.
At the end of the decoding process j1,0 is incremented by number_of_alignments.
Each decoded rcomp descriptor conveys information about the strandedness of a read. Each bit of a decoded rcomp descriptor is a flag indicating if the read is on the forward (bit set to 0) or reverse (bit set to 1) strand. Table 25 shows values and semantics of the rcomp descriptor for single and paired end reads.
[bookmark: _Ref490310439]Table 25. rcomp values and semantics.
	Value
	Semantics

	
	Single read
	Paired reads

	0
	read on forward strand
	both reads on forward strand

	1
	read on reverse strand
	first read on forward strand, second on reverse strand

	2
	reserved
	first read on reverse strand, second on forward strand

	3
	reserved
	both reads on reverse strand

	4 .. 255
	reserved
	reserved


[bookmark: _Ref490750815][bookmark: _Toc506144073][bookmark: _Ref505267373]flags
Input to this process is the decoded_symbols[descriptor_ID] array specified in clause 13.2.6.2.1 when descriptor_ID is equal to 2 and the current value of j2,0.
Output of this process is the value decoded_symbols[descriptor_ID][0][j2,0] used to set the flags field in the MPEG-G record as specified in clause 11.3.2.
At the end of the decoding process j2,0 is incremented by 1.	
The flag syntax element carries additional alignment information usually produced by aligners as specified in Table 26.
[bookmark: _Ref490333608]Table 26. Semantics for each bit of the flag descriptor.
	bit position from LSB
	Semantics

	0
	read is PCR or optical duplicate

	1
	read fails platform/vendor quality checks

	2
	read mapped in proper pair

	3 .. 7
	reserved



[bookmark: _Ref505427048][bookmark: _Toc506144074]mmpos
Input to this process are:
· two subsequences decoded_symbols[descriptor_ID][descriptor_subsequence_ID] as specified in clause 13.2.6.2.1 when descriptor_ID is equal to 3 and descriptor_subsequence_ID are equal to 0 and 1 as specified in Table 55
· the current values of j3,0. and j3,1
Output of this process are 
· the arrays read1_offsets[] and read2_offsets[] containing offsets of the mismatches in the sequence read or read pair computed as specified in clause 11.5 when class_type is equal to 2, 3, 4, 5 or 6
· the number of offsets num_offsets
At the end of the decoding process j3,0 and j3,1 are incremented by the number of decoded offsets.
In this description, subsequenceN is the subsequence identified by descriptor_subsequence_ID = N (i.e. subsequenceN = decoded_symbols[3][N]).
Each value of subsequence0 signals if the corresponding value of subsequence1 is the last offset associated to the current Genomic Record. For each Genomic Record the process described in Table 27 shall stop when a bit set to 1 is found in subsequence0.
The offsets in case of single reads shall be calculated following the process described in Table 27.
[bookmark: _Ref496820224]Table 27. Determination of the offset of mismatches from the first mapped base of a Genomic Record in case of single reads.
	Decoding step
	Description

	previous_offset = 0
num_offsets = 0
j = 0
	

	if(subsequence0[j3,0] == 0){
	if there is at least one mismatch in the current Genomic Record

		do{
	

			read1_offsets[j] = subsequence1[j3,1] + previous_offset
	

			previous_offset = read1_offsets[j]
	

			j3,0++, j3,1++, j++
	

		}while(subsequence0[j3,0] == 0)
	loop on subsequence0 until a 1 is found

		num_offsets = j
	

	}
	




Table 28. Determination of the offset of mismatches from the first mapped base of a Genomic Record in case of paired-end reads.
	Decoding step
	Description

	previous_offset = 0
j = 0
	

	if(subsequence0[j3,0] == 0){
	

		do{
	

			offset[j] = subsequence1[j3,1] + previous_offset
	

			if(previous_offset < len1 && offset[j] ≥ len1) { 
	len1 is the number of mapped bases in read 1 in a read pair including insertions.

				offset[j] = subsequence1 [j3,1] + previous_offset - len1
	first mismatch of read 2

				first_mm_read2 = j
	

			}
	

			else{
	

				offset[j] = previous_offset + subsequence1 [j3,1]
	

			}
	

			previous_offset = offset[j]
	

			j3,0++, j3,1++, j++
	increment read and write pointers

		}while(subsequence0[j3,0] == 0)
	loop on subsequence0 until a 1 is found

		read1_offsets = offsets[0, first_mm_read2)
	

		read2_offsets = offsets[first_mm_read2, j)
	

		num_offsets = j
	

	}
	



[bookmark: _Ref505430292][bookmark: _Toc506144075]mmtype
Input to this process are:
· three subsequences decoded_symbols[descriptor_ID][descriptor_subsequence_ID] as specified in clause 13.2.6.2.1 when descriptor_ID is equal to 4 and descriptor_subsequence_ID are equal to 0, 1 and 2 as specified in Table 56
· the number of offset num_offsets calculated for the current Genomic Record as specified in clause 11.4.4
· the current values of j4,0, j4,1 and j4,2
Output of this process are two vectors containing values identifying the type of edit operations to be performed on the sequence read or read pair computed as specified in clause 11.5 when class_type is equal to 2, 3, 4, 5 or 6.
· the vector mismatch_type[] contains values for the type of mismatch. 0 signals substitutions, 1 signals insertions and 2 signals deletions.
· the vector mismatches[] contains the symbols to be used for substitutions and insertions. 
The two vectors shall be calculated following the process described in Table 29.
[bookmark: _Ref505873405][bookmark: _Ref505873401]Table 29. Determination of the mismatch_type[] and mismatches[] vectors from decoded_symbols[4].
	Decoding step
	

	previous_offset = 0
j = i = k = 0
	

	while(j < num_offsets){
	

		mismatch_type[i] = subsequence0[j4,0]
	

		if(	subsequence0[j4,0] == 0 )
	It’s a substitution

			mismatches[i] = Salphabet_ID[subsequence1[j4,1]]
	Salphabet_ID as specified in clause 10.1

		} else {
	It’s an indel

			if (subsequence2[j4,2] == 5){
	deletion

				mismatch_type[i] = 2
	

			}
	

			else if (alphabet_ID == 0 || alphabet_ID == 2){
	insert non-IUPAC

				mismatches[i] = Salphabet_ID [subsequence2[j4,2] – 							num_symbols - 1]
	num_symbols is equal to the number of symbols of the alphabet identified by alphabet_ID

			}
	

			else {
	insert IUPAC

				mismatches[i] = Salphabet_ID [subsequence2[j4,2] – 							num_symbols]
	num_symbols is equal to the number of symbols of the alphabet identified by alphabet_ID

			}
	

		}
	

		j4,0++, j4,1++, j4,2++, j++, i++
	

	}
	



The types of edit operations associated to each value of mismatches_type[] and mismatches[] are listed in Table 30.
[bookmark: _Ref490325674][bookmark: _Ref490773228]Table 30. Determination of the mmtype descriptor values and semantics according to the used alphabet.
	Value
	Semantics

	
	alphabet_ID = 0
	alphabet_ID = 1
	alphabet_ID = 2
	alphabet_ID = 3

	0
	Substitute with ‘A’
	Substitute with ‘A’
	Substitute with ‘A’
	Substitute with ‘A’

	1
	Substitute with ‘C’
	Substitute with ‘C’
	Substitute with ‘C’
	Substitute with ‘C’

	2
	Substitute with ‘G’
	Substitute with ‘G’
	Substitute with ‘G’
	Substitute with ‘G’

	3
	Substitute with ‘T’
	Substitute with ‘T’
	Substitute with ‘U’
	Substitute with ‘U’

	4
	Substitute with ‘N’
	Substitute with ‘N’
	Substitute with ‘N’
	Substitute with ‘N’

	5
	Deletion
	Deletion
	Deletion
	Deletion

	6
	Insert ‘A’
	Substitute with ‘R’
	Insert ‘A’
	Substitute with ‘R’

	7
	Insert ‘C’
	Substitute with ‘Y’
	Insert ‘C’
	Substitute with ‘Y’

	8
	Insert ‘G’
	Substitute with ‘S’
	Insert ‘G’
	Substitute with ‘S’

	9
	Insert ‘T’
	Substitute with ‘W’
	Insert ‘U’
	Substitute with ‘W’

	10
	Insert ‘N’
	Substitute with ‘K’
	Insert ‘N’
	Substitute with ‘K’

	11
	N/A
	Substitute with ‘M’
	N/A
	Substitute with ‘M’

	12
	N/A
	Substitute with ‘B’
	N/A
	Substitute with ‘B’

	13
	N/A
	Substitute with ‘D’
	N/A
	Substitute with ‘D’

	14
	N/A
	Substitute with ‘H’
	N/A
	Substitute with ‘H’

	15
	N/A
	Substitute with ‘V’
	N/A
	Substitute with ‘V’

	16
	N/A
	Substitute with ‘-’
	N/A
	Substitute with ‘-’

	17
	N/A
	Insert ‘A’
	N/A
	Insert ‘A’

	18
	N/A
	Insert ‘C’
	N/A
	Insert ‘C’

	19
	N/A
	Insert ‘G’
	N/A
	Insert ‘G’

	20
	N/A
	Insert ‘T’
	N/A
	Insert ‘T’

	21
	N/A
	Insert ‘N’
	N/A
	Insert ‘N’

	22
	N/A
	Insert ‘R’
	N/A
	Insert ‘R’

	23
	N/A
	Insert ‘Y’
	N/A
	Insert ‘Y’

	24
	N/A
	Insert ‘S’
	N/A
	Insert ‘S’

	25
	N/A
	Insert ‘W’
	N/A
	Insert ‘W’

	26
	N/A
	Insert ‘K’
	N/A
	Insert ‘K’

	27
	N/A
	Insert ‘M’
	N/A
	Insert ‘M’

	28
	N/A
	Insert ‘B’
	N/A
	Insert ‘B’

	29
	N/A
	Insert ‘D’
	N/A
	Insert ‘D’

	30
	N/A
	Insert ‘H’
	N/A
	Insert ‘H’

	31
	N/A
	Insert ‘V’
	N/A
	Insert ‘V’

	32
	N/A
	Insert ‘-’
	N/A
	Insert ‘-’





[bookmark: _Ref482256473][bookmark: _Toc495592950][bookmark: _Toc506144076]clips
Input to this process are: 
· four subsequences decoded_symbols[descriptor_ID][descriptor_subsequence_ID] as specified in clause 13.2.6.2.1 when descriptor_ID is equal to 5. 
· number_of_template_segments computed as specified in clause 11.3.2.
· the variable current_record_count is the number of processed Genomic Records.
· the current values of j5,0, j5,1, j5,2 and j5,3.
The four subsequences are identified by subsequences_ID from 0 to 3 as specified in Table 54.
Output of this process is one bi-dimensional vector soft_clips and a vector hard_clips as specified in Table 31.
The decoding process of the clips descriptor is provided in Table 31 where:
· subsequenceN is the subsequence identified by descriptor_subsequence_ID = N
· subsequence0[j5,0] represents the next Genomic Record containing clipped bases
· subsequence1[j5,1] represent the type and position of clipped bases
· soft_clips and hard_clips are the output of this decoding process
· soft_clips[0] and soft_clips[2] contain strings of charachters representing soft clips  preceding  the first mapped base of read1 and read2 respectively
· soft_clips[1] and soft_clips[3] contain strings of charachters representing soft clips following the last mapped base of read1 and read2 respectively
· hard_clips[0] and hard_clips[2] contain the number of hard clips preceding the first mapped base of read1 and read2 respectively
· hard _clips[1] and hard _clips[3] contain the number of hard clips following the last mapped base of read1 and read2 respectively
· the semantics of subsequence1 is as follows:
	subsequence1 values
	semantics

	0
	soft clips before start of read 1

	1
	soft clips after
end of read 1

	2
	soft clips before start of read 2

	3
	soft clips after end of read 2

	4 
	hard clips before start of read 1

	5
	hard clips after
end of read 1

	6
	hard clips before start of read 2

	7
	hard clips after end of read 2



[bookmark: _Ref490510170]Table 31. Decoding process of the clips descriptor.
	Decoding process
	Description

	j5,0, j5,1, j5,2, j5,3
	read pointers for the subsequences

	if(current_record_count == subsequence0[j5,0]){
	

		do{
	

				if(subsequence1[j5,1]<= 3){
	soft clips

					do{
	

						soft_clips[subsequence1[j5,1]] [j5,2] = subsequence2[j5,2]
	soft clipped base symbol

						j5,2++
	

					} while(subsequence2[j5,2]!= 0xff OR subsequence2[j5,2]!= 0xfe)
	continue reading symbols of clipped bases until a terminator is reached

				}
	

				else{
	hard clips

					hard_clips[subsequence1[j5,1]-4] = subsequence3[j5,3]
	store the number of hard clips

					j5,3++
	increment pointer for subsequence3

				}
	

				j5,1++
	increment pointer for subsequence1

			} while(subsequence2[j5,2]!= 0xff OR subsequence3[j5,3] == 0xfe)
	

		}
	

		j5,0++
	increment pointer for subsequence0

	}
	

	current_record_count++
	



more_elements_in_subsequence0() returns TRUE until the last value of subsequence0 has been processed.
[bookmark: _Ref482256478][bookmark: _Toc495592951][bookmark: _Toc506144077]ureads
Input to this process is the array decoded_symbols[descriptor_ID][0] structure as specified in clause 13.2.6.2.1 when descriptor_ID is equal to 6 and the current value of j6,0.
Each ureads descriptor is a string of ASCII characters representing the sequence of nucleotides symbols belonging to the current alphabet as specified in clause 10.1. 
NOTE: The length of each string shall be inferred either from reads_length in the encoding parameters as specified in clause 7.3 in case of constant reads length (e.g. paired reads), or from the corresponding rlen syntax element (specified in clause 11.4.8).
[bookmark: _Ref482256488][bookmark: _Toc495592952][bookmark: _Toc506144078]rlen
The rlen descriptor is used: 
· in case of variable length reads when reads_length = 0 in the Parameter Set (see clause 8)
· in presence of multiple alignments.
In case of variable reads length, the number of rlen descriptors associated to the current Genomic Record is equal to number_of_record_segments.
Input to this process are:
· the array decoded_symbols[descriptor_ID][0] as specified in clause 13.2.6.2.1 when descriptor_ID is equal to 7 
· the value number_of_record_segments computed as specified in clause 11.3.2
· the current value of j7,0
Output of this process are number_of_record_segments values decoded_symbols[descriptor_ID][0][j] (with j7,0 ≤ j < j7,0 + number_of_record_segments) used to set the number_of_record_segments  elements of the read_len field in the MPEG-G record as specified in clause 11.3.2 step 5.j.
At the end of the decoding process j7,0 is incremented by number_of_record_segments.
A decoded rlen descriptor represents the length of the current sequence read as number of bases minus one including soft clips.
[bookmark: _Ref505269249][bookmark: _Toc506144079]pair
Table 32 lists the possible decoding cases for the pair descriptor with the associated description.
[bookmark: _Ref505753753][bookmark: _Ref505753733]Table 32. Specification of the decoding case for the pair descriptor.
	Decoding case
	Description

	same_rec
	read 1 and read 2 are encoded in the same genomic record

	R1_ split
	read 1 in pair is on the same reference sequence but coded separately

	R2_split
	read 2 in pair is on the same reference sequence but coded separately

	R1_diff_ref_seq
	read 1 is on a different reference sequence

	R2_diff_ref_seq
	read 2 is on a different reference sequence

	R1_unpaired
	read 1 is unpaired

	R2_unpaired
	read 2 is unpaired

	more_align
	additional alignment present on another reference sequence


Input to this process are:
· ten subsequences decoded_symbols[descriptor_ID][descriptor_subsequence_ID] as specified in clause 13.2.6.2.1 when descriptor_ID is equal to 8. The description of each subsequence is provided in Table 53.
· the current values of j8,0, j8,1, j8,2, j8,3, j8,4, j8,5, j8,6, j8,7, j8,8 and j8,9
Output of this process is a variable segment_flag set to 
· 0 if both segments are coded in the Genomic Record
· 1 if only read 1 is coded in the Genomic Record
· 2 if only read 2 is coded in the Genomic Record
· 3 if, in case of multiple alignments, an additional alignment of read 1 is encoded in another AU
If subsequence0[j8,0] is less than 7 additional out shall include:
· a signed integer delta
OR 
· an unsigned integers abs_pos
OR
· two unsigned integers abs_pos and seqID

[bookmark: _Ref505719506]In the following descriptions of the decoding process subsequenceN indicates the subsequence identified by descriptor_subsequence_ID equal to N. 
The decoding process of one pair descriptor is shown in Table 33.
[bookmark: _Ref505877830]Table 33. Decoding process of the pair descriptor subsequences.
	Decoding step
	Description

	if(subsequence0[j8,0] == 1){
	proper pair

		isSignNegative =  subsequence1[j8,1] & 0x0001;		
	

		delta = subsequence1[j8,1] >> 1;
	-32767 ≤ delta ≤ 32767

		if (isSignNegative) delta = -delta;
	

		segment_flag = 0
	

		j8,1++
	

	}
	

	else if (subsequence0[j8,0] == 2){
	

		abs_pos = subsequence2[j8,2]
	Absolute mapping position of read 1 on the same reference sequence. The maximum value is 2^ max_bits_pos -1

		segment_flag = 2
	

		j8,2++
	

	}
	

	else if (subsequence0[j8,0] == 3){
	

		abs_pos = subsequence3[j8,3]
	Absolute mapping position of read 2 on the same reference sequence. The maximum value is 2^ max_bits_pos -1

		segment_flag = 1
	

		j8,3++
	

	}
	

	else if (subsequence0[j8,0] == 4){
	

		seqID = subsequence4[j8,4]
	Identifier of the reference sequence read 1 is mapped to.

		abs_pos = subsequence7[j8,7]
	Absolute mapping position of read 1 on the reference sequence identified by subsequence4[j8,4]. The maximum value is 2^ max_bits_pos -1.

		segment_flag = 2
	

		j8,4++, j8,7++,
	

	}
	

	else if (subsequence0[j8,0] == 5){
	

		seqID = subsequence5[j8,5]
	Identifier of the reference sequence read 2 is mapped to.

		abs_pos = subsequence8[j8,8]
	Absolute mapping position of read 2 on the reference sequence identified by subsequence5[j8,5]. The maximum value is 2^ max_bits_pos -1.

		segment_flag = 1
	

		j8,5++, j8,8++,
	

	}
	

	else if (subsequence0[j8,0] == 6){
	

		seqID = subsequence6[j8,6]
	Identifier of the reference sequence an additional alignment of read 1 is mapped to in case of multiple alignments.

		abs_pos = subsequence9[j8,9]
	Absolute mapping position of an additional alignment of read 1 on the reference sequence identified by subsequence6[j8,6]. The maximum value is 2^ max_bits_pos -1.

		j8,6++, j8,9++
	

		segment_flag = 4
	

	}
	

	else if (subsequence0[j8,0] == 7){
	

		segment_flag = 1
	read 1 is unpaired

	}
	

	else if (subsequence0[j8,0] == 8){
	

		segment_flag = 2
	read 2 is unpaired

	}
	

	j8,0++
	



[bookmark: _Ref498526418][bookmark: _Ref498526428][bookmark: _Ref498526494][bookmark: _Ref498526498][bookmark: _Ref498526521][bookmark: _Toc506144080][bookmark: _Ref482269418][bookmark: _Ref490412988][bookmark: _Toc495592957]mscore
The mscore descriptor provides a score per alignment. It shall be used to represent mapping/alignment score per read generated by genomic sequence reads aligners.
Input to this process is the decoded_symbols[descriptor_ID] array specified in clause 13.2.6.2.1 when descriptor_ID is equal to 9 and the current value of j9,0.
Output of this process is the value decoded_symbols[descriptor_ID][j9,0] to be interpreted as IEEE RFC 754 floating point value as specified below.
At the end of the decoding process j9,0 is incremented by 1.
In the scope of this document, aligment scores shall be expressed using an exponent and fractional part. The number of bits used to represent the exponent and the fractional part are specified in the encoding parameters (see clause 8). Figure 4 shows how this is specified in IEEE RFC 754 for an 11-bits exponent and a 52-bits fractional part.
The score of each alignment shall be represented by:
· One sign bit (S)
· 11 bits for the exponent (E)
· 53 bit for the mantissa (M)

	1     11                                52
+-+-----------+----------------------------------------------------+
|S|  Exp      |  Mantissa                                          |
+-+-----------+----------------------------------------------------+
63 62        51                                                    0


[bookmark: _Ref496718032]Figure 4. Alignment scores are expressed as 64-bit double precision floating point values.
The base (radix) to be used for the calculation of scores is 10, therefore:
score = -1s x 10E x M
[bookmark: _Ref504387127][bookmark: _Toc506144081]Descriptors for multiple alignments
The following descriptors are specified for the support of multiple alignments.
[bookmark: _Ref503255870]mmap
The mmap descriptor is used to signal on how many positions the read or the left-most read of a pair has been aligned and if spliced alignments are present. A Genomic Record containing multiple alignments is associated with one mmap descriptor. 
Input to this process are:
· two subsequences decoded_symbols[descriptor_ID][descriptor_subsequence_ID] as specified in clause 13.2.6.2.1 when descriptor_ID is equal to 11 and descriptor_subsequence_ID are equal to 0 and 1 as specified in Table 57
· the current values of j11,0. and j11,1
Output of this process is the variable number_of_alignments, the variable number_of_record_segments, a vector segments[] containing the number of segments per each alignment of the first read.
In the following clauses, subsequenceN is the subsequence identified by descriptor_subsequence_ID = N. iN is an array pointer used to read the elements of subsequenceN.
[bookmark: _Ref490411666]Multiple alignments without splices
If no splices are present in the Access Unit, spliced_reads_flag is unset.
Single reads
In case of single reads without splices 
number_of_aligments = number_of_record_segments = subsequence0[j11,0]
Paired-end reads
In paired-end sequencing without splices:
· subsequence0 contains one unsigned integer N per Genomic Record representing the number of alignments of the first read in the pair.
· subsequence1 contains N unsigned integers Mi, (0 ≤ i < N) representing the number of alignments of the second read associated to the ith alignment of the first read. This value is equal to the number of pair descriptors to be decoded for the ith alignment of the first read. 
· The decoding process shown in Table 34 applies.
[bookmark: _Ref505843104]Table 34. Decoding process of mmap in case of paired-end reads without splices.
	Decoding step
	Description

	number_of_aligments = subsequence0[j11,0]
	total number of alignments of the first read

	while(i < number_of_alignments) {
	

		number_of_record_segments++;
	

		segments[i] = subsequence1[j11,1]
	segments[i] is the number of alignments of the second read associated to the ith alignments of the first read.

	}
	


If N = number_of_aligments, and Mi = segments[i] then P = is the total number of alignments of the second read.
A special value of Mi ( = 0) indicates that the ith alignment of the first read is paired with an alignment of the second read which is already paired with a kth alignment of the first read with k < i (then there is no new alignment detected, which is consistent with the equation above).
When Mi is 0, the associated value of pair shall link to an existing second read alignment; a syntax error will be raised otherwise and the alignment considered broken. Clause 11.4.9 specifies that one decoding case the pair descriptor is specified for alignments of the first read belonging to other AUs ranges. 
Multiple alignments with splices
If the dataset is encoded with spliced reads, the msar descriptor enables representation of splices length and strandedness as specified in clause 11.4.11.6.
Together with subsequence0 and subsequence1, input to this decoding process is a vector of decoded rlen descriptors associated to the current Genomic Record as specified in clause 11.4.8.
After having decoded the mmap and the msar descriptors, the decoder knows how many reads or read pairs have been encoded to represent the multiple mappings and how many segments are composing each read or read pair mapping. This is shown in Figure 5.

[image: ]
[bookmark: _Ref485145082]Figure 5 – Multiple alignments with splices. 

 Single reads
In case of single read sequencing with splices input to the process is the array decoded_symbols[descriptor_ID] where descriptor_ID is equal to 7 (rlen descriptor) and the j7,0 index associated.
Output of this process are: 
· the variables number_of_alignments, number_of_record_segments and num_pair
· the array segments[] containing the number of segments per each alignment
The decoding process shown in Table 35 applies
[bookmark: _Ref505843229]Table 35. Decoding process of mmap in case of single reads with splices.
	Decoding step
	Description

	number_of_alignments = subsequence0[j11,0]
	total number of alignments

	number_of_record_segments = 0
	

	i = 0
	

	while(i < number_of_alignments) {
	

		number_of_record_segments += subsequence1[j11,0]
	

		segments[i] = subsequence1[j11,0]
	segments[i] is the number of segments of the ith alignments.

		i++
	

		j11,0
	

	}
	



The number of pair descriptors num_pair associated to the current Genomic Record can be calculated as 

num_pair = number_of_record_segments – number_of_alignments + M0 
where:

· M0 is the number of Mi with value 0
· num_pair has to be incremented by 1 in case the special value for the pair descriptor indicating the more_align coding case specified in clause 11.4.9 is present as first pair descriptors associated with the current Genomic Record (it indicates the presence of alignments in other AUs).

Paired-end reads
In case of paired-end sequencing with splices additional inputs to the process are:
· the array decoded_symbols[descriptor_ID] where descriptor_ID is equal to 7 (rlen descriptor) and the j7,0 index associated.
· the array decoded_symbols[descriptor_ID] where descriptor_ID is equal to 12 (msar descriptor) and the j12,0 index associated.
· four values for the number of soft clips in the array num_sclips[] containing the lengths of the four elements of the bi-dimensiona array soft_clips[] computed as specified in clause 11.4.6
· four values for the number of hard clips in the arrady hard_clips[] computed as specified in clause 11.4.6
Output of this process are: 
· the variables number_of_alignments, number_of_record_segments and num_pair
· the array segments[] containing the number of segments per each alignment

The decoding process is specified in Table 35.
Table 36. Decoding process of mmap in case of single reads with splices.
	Decoding step
	Description

	number_of_read1_segments = subsequence0[j11,0]
	total number of alignments of the first read

	number_of_record_segments = number_of_read1_segments
	

	number_of_alignments = 1
	

	rlen = decoded_symbols[7]
	

	msar = decoded_symbols[12]
	

	segments[0] = 1
	

	i = 0
	

	len1 = num_sclips[0] + num_sclips[1] + hard_clips[0] + hard_clips[1] + rlen[j7,0]
	

	j7,0++
	

	number_of_read1_segments--
	

	while(len1 < read_lengths) {
	Check if the primary alignment of read 1 has splices

		len1 += rlen[j7,0]
	

		j7,0 ++
	

		segments[0]++
	

		number_of_read1_segments--
	

	}
	

	segments[0] += subsequence1[j11,1]
	Splices in the primary alignment

	number_of_record_segments += subsequence1[j11,1]
	

	number_of_read2_segments += subsequence1[j11,1]
	

	j11,1++
	

	i = 1
	

	while(number_of_read1_segments > 0){
	

		number_of_alignments++
	

		segments[i] = count_splices(msar[j12,0])
	count_splices counts the number of splices in a msar descriptor according to the syntax specified in clause 14.20.

		number_of_read1_segments -= segments[i]
	

		j12,0++
	

		i++
	

	}
	

	i = 1
	

	while(i < number_of_alignments){
	

		number_of_read2_segments += subsequence1[j11,1]
	

		number_of_record_segments += subsequence1[j11,1]
	

		segments[i] = subsequence1[j11,1]
	segments[i] is the number of segments of the ith alignments.

		j11,1++
	

		i++
	

	}
	

	i = 0
	

	while(i < number_of_read2_segments){
	

		i += count_splices(msar[j12,0])
	

		number_of_read2_alignments++;
	

	}
	



The number of pair descriptors num_pair shall be calculated as 

num_pair = number_of_record_segments - number_of_read1_alignments + M0 

where M0 is the number of subsequence1[j11,1] values equal to 0

Multiple alignments on different sequences
It may happen that the alignment process finds alternative mappings to another reference sequence than the one where the primary mapping is positioned.
For read pairs that are uniquely aligned, a pair descriptor shall be used to represent the absolute read positions when there is for example a chimeric alignment with the mate on another chromosome. The pair descriptor shall be used to signal the reference and the position of the next record containing further alignments for the same template. The last record (e.g. the third if alternative mappings are coded in 3 different AUs) shall contain the reference and position of the first record. 
Multiple alignments with insertions, deletions, unmapped portions
When an alternative secondary mapping does not preserve the contiguity of the reference region where the sequence is aligned, it may be impossible to reconstruct the exact mapping generated by the aligner because the actual sequence (and then the descriptors related to mismatches such as substitutions or indels) is only coded for the primary alignment. The msar descriptor shall be used to represent how secondary alignments map on the reference sequence in case they contain indels and/or soft clips. If msar is represented by the special symbol “*” as specified in clause 11.4.11.6 for a secondary alignment, the decoder shall reconstruct the secondary alignment sequence from the primary alignment sequence and the secondary alignment mapping positions.


[bookmark: _Ref497058596][bookmark: _Ref505583175]msar
The msar (Multiple Segments Alignment Record) descriptor supports spliced reads and alternative secondary alignments that contain indels or soft clips in case of class I data.
msar is intended to convey information related to secondary aligments on:
· a mapped segment length
· a different mapping contiguity (i.e. CIGAR string) for a secondary alignment and/or spliced read

Input to this process is the decoded_symbols[descriptor_ID] array specified in clause 13.2.6.2.1 when descriptor_ID is equal to 11 and the current value of j11,0.
Each msar descriptor is a string of ASCII characters following the syntax of the extended CIGAR specified in clause 14.20 plus the additional symbol specified in Table 37.
[bookmark: _Ref497830108]Table 37. Special symbol used for the msar descriptor in addition to the syntax specified in clause 14.20.
	Symbol
	Semantics
	Description

	*
	The secondary alignment does not contain indels or soft clips
	This is present when the reconstruction of a secondary alignment does not require any additional information than the alignment position and the primary alignment



Multiple alignments strandedness
The rcomp descriptor specified in clause 11.4.2 shall be used to specify the strandedness of each segment of a primary alignment in a Genomc Record. One rcomp descriptor is present per segment; it is set to 0 when the segment is on the forward strand and it is set to 1 when the segment is mapped on the reverse strand.
The strandedness information for secondary alignments is conveyed by the msar descriptor. One msar descriptor is used per each read in a secondary alignment.
Scores of multiple alignments
In case of multiple alignments at least one mscore as specified in clause 11.4.10 shall be present per each alignment. The primary alignment is the one associated to the highest score.
The mscore descriptor allows signaling the mapping score of an alignment. In single reads sequencing it will have number_of_alignmens values per template; in paired-end sequencing it will have a value for each alignment of the entire template (number of different alignments of the first read possibly + the number of further second read alignments, i.e. when Mi - 1 > 0). 
Number of scores = number_of_alignmens + M0 
where M0 represent the total number of Mi = 0.
The number of scores associated to each alignment is signaled by the encoding parameter as_depth as specified in clause 8.
[bookmark: _Toc506144082]rtype
The rtype descriptor is used to signal the subset of descriptors used to encode one unmapped read or read pair (Class U) in a Genomic Record as shown in Table 38.
The rtype descriptor also enables mixing reference-based and reference-less compression in the same Dataset. In this scenario rtype = 0 signals reference based encoded records, while rtype > 0 signals the set of descriptors to be used for reference less compression(in this case descriptors refer to the computed reference, when needed).
Input to this process is the decoded_symbols[descriptor_ID] array specified in clause 13.2.6.2.1 when descriptor_ID is equal to 12 and the current value of j12,0.
Output of this process is the invTransfSym value itself used by the decoder to select the appropriate descriptors for further decoding the Genomic Record.
[bookmark: _Ref490413340]Table 38. Semantics of the rtype descriptor.
	rtype
	type of encoded reads
	description

	not used
	aligned reference based
	the entire Dataset is encoded using reference based compression for mapped reads

	0
	reference based
	the Dataset contains both read (pairs) encoded using reference based compression and reference less compression. Descriptors for this record use the external or embedded reference according to the Class of the AU

	> 0
	raw and aligned reference less
	1 = class P descriptors used
2 = class N descriptors used
3 = class M descriptors used
4 = class I descriptors used
5 = class U descriptors used



PushIn
When class U data are compressed using the “PushIn” computed reference algorithm specified in clause 12.3.1.2, the decoding process shall follow the one described for classes P, N, M, I in clauses 11.3.2 to 11.3.5 (for rtype values 1 to 4 respectively), or by ureads as described in clause 11.3.7 (rtype equal to 5). The process to be followed is indicated by the descriptor rtype as specified in clause 11.4.10.
The following table provides a description on the use of the pos and pair descriptors in this decoding process.
	descriptor
	semantics

	pos
	Matching position of the read on the pushIn computed reference, with coordinate as described in clause 12.3.1.2

	pair
	Reserved for future use.



[bookmark: _Ref496818081][bookmark: _Toc506144083][bookmark: _Ref488143077][bookmark: _Toc495592954][bookmark: _Ref496770687]rgroup
The rgroup descriptor identifies the read group the Genomic Record belongs to. It is an unsigned integer with values going from 0 to num_groups - 1. The presence of read groups in an Access Unit is signaled by num_groups > 0 in the Parameter Set as specified in clause 8.
Input to this process is the decoded_symbols[descriptor_ID] array specified in clause 13.2.6.2.1 when descriptor_ID is equal to 13 and the current value of j13,0.
Output of this process is the invTransfSym value itself interpreted as the unsigned integer identifier of the read group the Genomic Record belongs to.
[bookmark: _Ref505283781][bookmark: _Ref505418356][bookmark: _Toc506144084][bookmark: _Toc488411769][bookmark: _Toc495592964][bookmark: _Ref504535626][bookmark: _Ref504535700][bookmark: _Ref496512931]QVIndex
[bookmark: _Ref505283809]The value of QVIndex specifies how to retrieve a reconstructed Quality Value in the Quality Value Codebook identified by the QVCodebookIdentifier descriptor. For each encoded Quality Value, one QVIndex value shall be present.
QVIndex[j] specifies the Quality Value at the jth genomic position after AU_start_position. Genomic positions not covered by the Access Unit do not increment j when decoding Quality Values.
Clause 11.4.1 specifies how to calculate the absolute position of left-most mapped base in each read, and thus every Quality Value, in a read.
[bookmark: _Ref506139499][bookmark: _Toc506144085]QvCodebookIdentifier
[bookmark: _Toc488411770][bookmark: _Toc495592965]The QVCodebookIdentifier descriptor shall be used to identify the Quality Value Codebook to reconstruct a Quality Value. Multiple Quality Value Codebooks can be used in one Access Unit.
Clause 11.4.1 specifies how to calculate the absolute mapping position of the left-most mapped base in each read, and thus every Quality Value, in a read.
Figure 6 shows how codebook identifiers relate to sequence reads, Quality Values, reconstructed Quality Values, and genomic positions.
[bookmark: _Ref504537824][image: ]
Figure 6. Each genomic position is associated to a QVCodebookIdentifier descriptor. According to the corresponding QVIndex, the reconstructed Quality Value is read from the codebook identified by QVCodebookIdentifier.
[bookmark: _Ref505268841][bookmark: _Toc506144086]token_type
Sequence Read Identifiers are encoded as a sequence of token_type descriptors which can be of three types:
strings
digits
single characters
A read identifier is represented as set of differences and matches with respect to one of the previously decoded reads identifiers. The first identifier coded in an Access Unit always starts with a DIFF token followed by the value 0.
	Descriptor_ID
	Descriptor
	Semantics
	Comments

	16
	token_type
	The token type followed by parameters when necessary
	See Table 39 for possible values and the related semantics.



The token_type descriptor can take the values listed in the table below. token_type descriptors can possibly be followed by one or more parameters.
[bookmark: _Ref499830951]Table 39. Reads identifiers token_type values and relates semantics.
	Token Value
	Token Name
	Parameters
	Semantics

	0
	DUP
	unsigned integer DISTANCE ranging from 0 to 2^32-1
	Indicates that this identifier is an exact duplicate of the identifier DISTANCE records ago, with “1” being the previously decoded identifier and counting backwards in the list of previously decoded identifiers. The value of DISTANCE shall always refer to a read identifier coded in the current Access Unit. If a DUP token is found no further tokens are required to decode the read identifier. DUP can only occur at the first token position.

	1
	DIFF
	unsigned integer 
DISTANCE ranging from 0 to 2^32-1
	Indicates which identifier this token is being compared against, usually “1” to indicate the previous identifier. DIFF can only occur at the first token position.
The first identifier of a coded Access Units always starts with “DIFF 0”.

	2
	STRING
	st(v)
	This is an arbitrary run of characters and need not be purely alphabetical. STRING is always null-terminated.

	3
	CHAR
	c(1)
	UTF-8 character as specified in ISO/IEC 10646.

	4
	DIGITS
	unsigned integer ranging from 0 to 2^32-1
	a numerical value no more than 9 digits long and not starting with a leading zero

	5
	DDELTA
	unsigned integer ranging from 0 to 2^8-1
	a numerical delta to a previous DIGITS value, between 0 and 255

	6
	DIGITS0
	an 8-bit length and a 32-bit unsigned integer 
	a fixed-width numerical value no more than 8 digits long, possibly starting with a leading zero

	7
	DDELTA0
	8-bit unsigned integer
	a numerical delta to a previous DIGITS0 value. The same fixed length is assumed.

	8
	MATCH
	none
	The next token value is identical to the token at the same position in the read identifier the currently decoded read identifier is compared against (regardless of token type)

	9
	END
	none
	a marker to terminate the decoding of this identifier


[bookmark: _Ref481392773]
[bookmark: _Toc506144087]rftp
Input to this process is the decoded_symbols[descriptor_ID] array specified in clause 13.2.6.2.1 when descriptor_ID is equal to 17 and the current value of j17,0.
Output of this process is an array offset[] containing the offsets of the transformations to be applied to a decoded raw reference as specified in clause 12.3.1.1.
The decoding process for rftp is exactly the same as the one specified for mmpos in clause 11.4.4.
[bookmark: _Toc506144088]rftt
Input to this process is the decoded_symbols[descriptor_ID] array specified in clause 13.2.6.2.1 when descriptor_ID is equal to 18 and the current value of j18,0.
Output of this process is an array transf[] containing the type of transformations to be applied to a decoded raw reference as specified in clause 12.3.1.1.
The decoding process for rftt is exactly the same as the one specified for mmtype in clause 11.4.5.
[bookmark: _Ref505418256][bookmark: _Toc506144089]sequence
This section specifies how sequences of nucleotides are computed by a conformant decoder and stored in the sequence field of the MPEG-G record as specified in clause 14.12. For class HM, the mapped read is computed as specified in clause 11.5.1 while the unmapped read as specified in clause 11.5.2.
[bookmark: _Ref505416077][bookmark: _Toc506144090]Aligned reads (Classes P, N, M, I, HM)
Each sequence field sequence[i] (with 0≤ i < number_of_record_segments) of the MPEG-G record specified in clause 14.12. is computed as follows:
1. The value mapping_pos[0] is computed as specified in clause11.3.2 step 5.m;

2. The position pRef in the reference sequence identified by seq_ID as specified in clause 14.4 is computed as follows:
pRef0 = mapping_pos[0] - seq_start
where seq_start is specified in clause 7.2 for sequence_ID equal to seq_ID;
3. sequence[0] = sequence[seqId][ pRef0, pRef0+ read_len[0]), where: 
a. sequence[seqId][i] is specified as in clause 7.2
b. read_len[0] is computed as specified in clause 11.3.2 step 5.j

4. if number_of_record_segments > 1 
a. pRef1= mapping_pos[0] + read_len[0] + delta[0][0]
				where delta[0][0] is as specified in clause11.3.2 step 5.r
b. sequence[1] = sequence[seqId][ pRef1, pRef1+ read_len[1]), where: 
i. sequence[seqId] is specified as in clause 7.2
ii. read_len[1] is computed as specified in clause 11.3.2 step 5.j

5. according to the value of the class_type field calculated as specified in clause 11.3.2 the following applies:
a. class_type equal to 1: sequence[i] is completely decoded;
b. class_type equal to 2: sequence[i] is computed according to the process described in clause 11.3.3;
c. class_type equal to 3: sequence[i] is computed according to the process described in clause 11.3.4;
d. class_type equal to 4 sequence[i] is computed according to the process described in clause 11.3.5;
e. class_type equal to 5: sequence[i] is computed according to the process described in clause 11.3.6;
[bookmark: _Ref505416114][bookmark: _Toc506144091]Unmapped reads (Class HM, U)
In case of Genomic Records of class HM the mapped sequence is computed as specified in clause 11.5.1 and the unmappe sequence as specified in clause 11.4.7
In case of Genomic Records of class U the unmapped sequences of nucleotides are computed as specified in clause 11.4.7.
[bookmark: _Ref505703680][bookmark: _Toc506144092]e-cigar
Input to this process are:
· read_len computed as specified in clause 11.3.2
For class_type equal to 2, 3, and 4
· the read1_offsets[] (in case of e-cigar for read 1) or read2_offsets[] (in case of e-cigar for read 1) array computed as per clause 11.4.4 and the number of elements num_offsets contained therein. In the scope of this decoding process such array will be referred to as offsets[].
For class_type equal to 3, and 4
· the mismatches_type[] and mismatches[]arrays computed as per clause 11.4.5
For class_type equal to 4
· the soft_clips[][] and the hard_clips[]arrays computed as per clause 11.4.6
[bookmark: _Toc488411762][bookmark: _Ref490072497][bookmark: _Toc495592958][bookmark: _Ref496512944]The output is an ASCII string ecigar_string compliat to the syntax specified in clause 14.20.

The decoding process is shown in Table 40.

Table 40. Decoding process for the ecigar_string field in the MPEG-G record.
	Decoding step
	Description

	ecigar_string = ‘ ‘
	initialize to empty string

	if(class_type == 1){
	Class P

		ecigar_string = strcat(tostr(read_len), ‘=’)
	

	}
	

	else if(class_type == 2 ){
	Class N

		ecigar_string = strcat(tostr(offsets[0]), ‘=’)
	

		ecigar_string = strcat(ecigar_string, ‘N’)
	

		i = 1
	

		while(i < num_offsets){
	

			delta = offsest[i] – offsets[i-1]
	

			if(delta == 1){
	

				ecigar_string = strcat(ecigar_string, ‘N’)
	

			} else {
	

				ecigar_string = strcat(ecigar_string, strcat(tostr(delta), ‘=’))
	

				ecigar_string = strcat(ecigar_string, ‘N’)
	

			}
	

			i++
	

		}
	

		delta = read_len – offsets[i -1 ]
	

		ecigar_string = strcat(ecigar_string, strcat(tostr(delta), ‘=’))
	

	}
	

	else if(class_type == 3){
	Class M

		ecigar_string = strcat(tostr(offset[0]), ‘=’)
	

		ecigar_string = strcat(ecigar_string, mismatches [0])
	

		i = 1
	

		while(i < num_offset){
	

			delta = offsets[i] – offsets[i-1]
	

			if(delta == 1){
	

				ecigar_string = strcat(ecigar_string, mismatches[i]))
	

			} else {
	

				ecigar_string = strcat(ecigar_string, strcat(tostr(delta), ‘=’))
	

				ecigar_string = strcat(ecigar_string, mismatches [i])
	

			}
	

			i++
	

		}
	

		delta = read_len – offsets[i -1 ]
	

		ecigar_string = strcat(ecigar_string, strcat(tostr(delta), ‘=’))
	

	}
	

	else if(class_type == 4){
	Class I

		if(soft_clips[0] != 0)  {
	

			ecigar_string = strcat(strcat(‘(‘, tostr(soft_clips[0])),’)’)
	soft clips are present before the left-most mapped base

		}
	

		else if(hard_clips[0] != 0) 
	

			ecigar_string = strcat(strcat(‘[‘, tostr(hard_clips[0])),’]’)
	hard clips are present before the left-most mapped base

		previous_offset = 0
	

		i = 0, j = 0
	

		while(i < num_offset){
	

			count = 0
	

			delta = offset[i] – previous_offset
	

			if(delta == 1){
	

				if(mismatch_type[i] == 0){
	substitution

					ecigar_string = strcat(ecigar_string, mismatch[j]))
	

					j++	
	

				}
	

				else if(mismatch_type[i] == 1){
	insertion

					while(mismatch_type[i] == 1) 
	

						count++, i++
	

					ecigar_string = strcat(ecigar_string, tostr(count))
	

					ecigar_string = strcat(ecigar_string, ‘+’))
	

					j++
	

				}
	

				else if(mismatch_type[i] == 2){
	deletion

					while(mismatch_type[i] == 2) 
	

						count++, i++
	

					ecigar_string = strcat(ecigar_string, tostr(count))
	

					ecigar_string = strcat(ecigar_string, ‘-’))
	

				}
	

			} else {
	

				ecigar_string = strcat(ecigar_string, strcat(delta, ‘=’))
	

				ecigar_string = strcat(ecigar_string, substitutions[i])
	

			}
	

			i++
	

		}
	

		delta = read_len – offset[i -1 ] – soft_clips[1] – soft_clips[0]
	

		if(delta > 0)
	

			ecigar_string = strcat(ecigar_string, strcat(delta, ‘=’))
	

		if(soft_clips[1] != 0)  {
	

			ecigar_string = strcat(strcat(‘(‘, tostr(soft_clips[1])),’)’)
	soft clips are present after the right-most mapped base

		}
	

		else if(hard_clips[1] != 0) 
	

			ecigar_string = strcat(strcat(‘[‘, tostr(hard_clips[1])),’]’)
	hard clips are present after the right-most mapped base

	}
	



[bookmark: _Ref505803705]

[bookmark: _Toc506144093]Coded representation of reference sequences
The reference sequence is usually part of an available reference genome (split into chromosomes and other sequences), but can in principle have any origin. With respect to a MPEG-G bitstream compliant with ISO/IEC 23092-1, the following types of reference sequences are supported:
External Reference: the reference sequence is coded as an independent resource either locally or remotely and must be retrieved to enable the decoding of the bitstream. 
Embedded Reference: the reference sequence is coded within the bitstream as MPEG-G Dataset.
Computed Reference: the reference sequence can be computed using the information contained in an MPEG-G Dataset encoding sequence reads.

In the scope of this document embedded and computed references are referred to as internal references.
[bookmark: _Toc488411763][bookmark: _Toc495592959][bookmark: _Toc506144094]External Reference
The reference used for compression is not included in the bitstream. A normative mechanism for unique identification is specified in ISO/IEC 23092-1.
[bookmark: _Toc488411764][bookmark: _Toc495592960][bookmark: _Toc506144095]Embedded Reference
The reference is stored in the bitstream as Dataset as specified in ISO/IEC 23092-1.
[bookmark: _Ref472598669][bookmark: _Toc488411765][bookmark: _Toc495592961][bookmark: _Toc506144096]Computed Reference
A Computed Reference is used: 
to encode aligned sequence reads without using the reference sequences used for alignment,
to encode raw (unmapped) reads. 
In case of aligned reads it can be beneficial to support encoding and decoding without requiring access to the reference sequences used for alignment.
This approach uses the sequence reads to be encoded to build a local consensus assembly to perform reference-based encoding. In this case all reads shall be encoded using class U descriptors, but the classification in P, N, M, I and HM classes shall be preserved.
When sequence reads are encoded using a Computed Reference, the rtype descriptor currently specified in clause 11.4.10 shall be used to:
1. signal the set of descriptors needed to decode the current record,
1. signal the type of reference (Embedded Reference or Computed Reference) needed to decode the current record.
[bookmark: _Ref472627040][bookmark: _Toc488411766][bookmark: _Toc495592962][bookmark: _Toc506144097]Reference computation algorithms
The following reference creation algorithms are supported. cr_alg_ID is specified in clause 8.2.
[bookmark: _Ref505960005]Table 40. Supported reference computation algorithms.
	cr_alg_ID
	Name
	Description

	0
	NoComp
	No reference is computed

	1
	RefTransform
	To improve compression efficiency, an available reference can be modified before decoding sequence data. This is described in clause 12.3.1.1.

	2
	PushIn
	The reference is created by simple concatenation of already decoded reads, with padding. This is described in clause 12.3.1.2.

	3
	Local Assembly
	The reference is created by performing a local assembly. This algorithm applies only to aligned data as described in section 10.4.


[bookmark: _Toc488411767][bookmark: _Ref496795784][bookmark: _Ref505755959]Reference transformation
To improve compression efficiency, an available reference sequence can be modified before decoding sequence data. The transformation consists of one or more substitutions at given positions to match the corresponding bases in reads covering those positions. For example, if several reads in a pileup present the same substitution (A instead of C present in the reference sequence) at position Pi, transforming the reference sequence by replacing the existing C at position Pi, with an A would reduce the number of mismatches in the reads to be encoded. An example is provided in Figure 7.
The descriptors listed below shall be used for reference transformation.
Table 41. Descriptors used to implement reference transformation.
	Descriptor
	Semantics
	Comments

	rftp
	reference transformation position
	position of difference between reference and contig used for prediction

	rftt
	reference transformation type
	type of difference between reference and contig used for prediction. Same syntax as described for mmtype in section 11.4.5.


rftp
Each decoded rftp descriptor is a 32-bit unsigned integer representing the absolute position of a reference transformation on the current Reference Sequence.
rftt
Each decoded rftt is an ASCII character representing the symbol to be replaced in the Reference Sequence at the position represented by the corresponding rftp descriptor.
[image: ]
[bookmark: _Ref490414438][bookmark: _Ref490414434]Figure 7. Use of rftp and rftt descriptors to implement reference transformation.
Decoding process
When cr_alg_ID == 1 the decoder shall first apply the reference transformation to the Raw Reference structure received as input and then use it for reference-based decoding as specified in Clause 0. 
[bookmark: _Ref496795778]PushIn
General
The reference is created by pushing into a buffer, i.e. concatenating, already decoded reads. The reference is built from crBufNumReads decoded reads, each composed by a sequence of symbols from one of the alphabets as specified in section 10.1. 
A decoded read is pushed in front of the computed reference buffer only if it is different from the previous one. The computed reference obtained in this way is padded at its beginning and its end.
Process for the construction of the reference
Inputs to this process are:
a buffer crBuf which contains crBufNumReads and which size in bytes is the variable crBufSize,
an already decoded non-aligned read.
Output of this process is the updated buffer crBuf and the updated variable and crBufSize.
[bookmark: _Ref496795763]This process is executed only when the last decoded read is different from the previous last decoded read; it consists of the following steps:
1. If the variable crBufNumReads is greater than cr_buf_max_reads (clause 8.2), oldest reads are removed from the buffer crBuf until crBufNumReads is smaller than cr_buf_max_reads.
1. If (crBufSize + 2*crPadSize + the size of the last decoded read) is greater than cr_buf_max_size, oldest reads are pushed out of the buffer crBuf until (crBufSize + 2*crPadSize + the size of the last decoded read) is smaller than or equal to cr_buf_max_size.
1. The last read, decoded as described in clause 11.3.7, is pushed to buffer crBuf in front of the previous last decoded read (after the right-most crPadSize positions).
1. crPadSize right-most positions of crBuf are padded with the right-most base of the newly inserted read.
1. The whole buffer, except the left-most crPadSize positions, is pushed back until the left-most base of the oldest read is at crPadSize position.
1. crPadSize left-most positions of crBuf are padded with the left-most base of the oldest read remaining in crBuf.

The left-most position in the buffer shall have position 0; by consequence the left-most base of the oldest read shall have position crPadSize.
Local assembly
The reference is created by computing a local sliding consensus reference sequence (i.e. by performing a local assembly). This algorithm applies only to aligned data as described in section 12.3.1.3.1.
The list crBuf is built during the decoding process. A number of already decoded sequence reads may be needed and are stored in the list crBuf. The number of decoded sequence reads stored in the list crBuf is stored in the variable crBufNumReads. The current size in bytes of the list crBuf is stored in the variable crBufSize.
[bookmark: _Ref491336256]Process for adding a decoded aligned read to the list crBuf
Inputs to this process are:
a list crBuf which contains crBufNumReads and which size in bytes is the variable crBufSize,
an already decoded aligned read.

Output of this process is the updated list crBuf and the updated variables crBufNumReads and crBufSize.
This process consists of the following steps:
1. If the variable crBufNumReads is greater than cr_buf_max_reads, oldest reads are removed from the list crBuf until crBufNumReads is smaller than cr_buf_max_reads.
1. If the variable crBufSize plus the size of the already decoded aligned read is greater than cr_buf_max_size, oldest reads are removed from the list crBuf until crBufSize plus the size of the already decoded aligned read is smaller than or equal to cr_buf_max_size.
1. The last decoded read is added to the list crBuf as newest read.
[bookmark: _Ref498003982]Process for the construction of the reference 
Input to this process is a list crBuf containing at least one aligned read.
Output of this process is a list ref (the reference) containing a sequence of consensus symbols.
For each position covered by aligned reads in the list crBuf, the consensus symbol is derived as follows:
1. Collect all symbols mapping to the current position.
1. Count the occurrences of each symbol.
1. If two symbols have the same maximum number of occurrences, then:
17. If the alphabet as specifid in clause 10.1 contains the symbol “N”, set “N” as the current consensus symbol.
17. Otherwise, select the symbol “A” as the current consensus symbol.
1. Otherwise, select the symbol with the maximum number of occurrences as consensus symbol.
1. Append the consensus symbol to the list ref.
[bookmark: _Ref491256029][bookmark: _Toc495592963]Decoding process for rftp and rftt
When cr_alg_ID == 3, if the optional descriptors rftp and rftt are present in the bitstream, they shall be used to reconstruct the original reference used for sequence alignment. The decoder shall apply a transformation to the reference sequence constructed according to the process described in clause 12.3.1.3.2 by replacing the symbols present in the reference sequence at the absolute position represented by each rfppi descriptor with the symbols conveyed by each corresponding rftti descriptor.
[bookmark: _Ref349676552][bookmark: _Toc452007302][bookmark: _Toc488411772][bookmark: _Toc495592967][bookmark: _Ref497199630]

[bookmark: _Toc506144098]Parsing process
[bookmark: _Ref427231072][bookmark: _Toc452007303][bookmark: _Toc488411773][bookmark: _Toc495592968][bookmark: _Toc506144099]General
Input to this process are bits from the Block Payload. 
Outputs of this process are decoded descriptors.
The following variables are specified:
· symVal is the value of one of the symbols used to reconstruct a genomic descriptor as specified in clause 10 for read identifiers, clause 11 for sequence reads and clause 13 for Quality Values.
· cMax is the largest possible binarized value. Larger values are truncated.
· cLength is the number of bits used to represent the binarized value.
This process is invoked when the data type of a syntax element in the syntax tables is equal to ue(v), se(v) as specified in clause 13.2.1.3, or ae(v) as specified in clause 13.2.
[bookmark: _Toc338608772][bookmark: _Toc338608774][bookmark: _Toc24167875][bookmark: _Toc24168931][bookmark: _Toc330921949][bookmark: _Toc330921956][bookmark: _Toc330921957][bookmark: _Toc330921958][bookmark: _Toc330921959][bookmark: _Toc330921960][bookmark: _Toc311217284][bookmark: _Toc311217287][bookmark: _Toc311217291][bookmark: _Toc311217298][bookmark: _Toc311217303][bookmark: _Toc311217312][bookmark: _Toc311217316][bookmark: _Toc311217318][bookmark: _Toc311217320][bookmark: _Toc311217331][bookmark: _Toc311217332][bookmark: _Toc311217333][bookmark: _Toc311217334][bookmark: _Toc311217363][bookmark: _Toc311217416][bookmark: _Toc311217520][bookmark: _Toc311217530][bookmark: _Toc311217535][bookmark: _Toc311217610][bookmark: _Toc311217611][bookmark: _Toc311217686][bookmark: _Toc311217689][bookmark: _Toc311217690][bookmark: _Toc311217691][bookmark: _Toc311217759][bookmark: _Toc311217765][bookmark: _Toc311217825][bookmark: _Toc311217826][bookmark: _Toc311217867][bookmark: _Toc311217872][bookmark: _Toc311218100][bookmark: _Toc311218101][bookmark: _Toc311218106][bookmark: _Toc311218112][bookmark: _Toc311218117][bookmark: _Toc311218125][bookmark: _Toc311218127][bookmark: _Toc311218133][bookmark: _Toc311218135][bookmark: _Toc311218141][bookmark: _Toc311218143][bookmark: _Toc311218146][bookmark: _Toc311218147][bookmark: _Toc311218149][bookmark: _Toc311218323][bookmark: _Toc311218329][bookmark: _Toc311218332][bookmark: _Toc311218341][bookmark: _Toc311218342][bookmark: _Toc311218345][bookmark: _Toc311218349][bookmark: _Toc311218352][bookmark: _Toc311218353][bookmark: _Toc311218354][bookmark: _Toc311218356][bookmark: _Toc311218358][bookmark: _Toc311218446][bookmark: _Toc311218447][bookmark: _Toc311218535][bookmark: _Toc311218537][bookmark: _Toc311218642][bookmark: _Toc311218644][bookmark: _Toc311218749][bookmark: _Toc311218750][bookmark: _Toc311218849][bookmark: _Toc311218851][bookmark: _Toc311219347][bookmark: _Toc311219348][bookmark: _Toc311219815][bookmark: _Toc311219817][bookmark: _Toc311219824][bookmark: _Toc311219841][bookmark: _Toc311219842][bookmark: _Toc311219843][bookmark: _Toc311219844][bookmark: _Toc311219850][bookmark: _Toc311219852][bookmark: _Toc311219853][bookmark: _Toc311219854][bookmark: _Toc311219855][bookmark: _Toc311219856][bookmark: _Toc311219857][bookmark: _Toc311219861][bookmark: _Toc311219867][bookmark: _Toc311219870][bookmark: _Toc311219871][bookmark: _Toc311219872][bookmark: _Toc311219873][bookmark: _Toc311219874][bookmark: _Toc311219875][bookmark: _Toc311219877][bookmark: _Toc311219883][bookmark: _Toc311219886][bookmark: _Toc311219889][bookmark: _Toc311219890][bookmark: _Toc311219891][bookmark: _Toc311219892][bookmark: _Toc311219893][bookmark: _Toc311219895][bookmark: _Toc311219896][bookmark: _Toc311219897][bookmark: _Toc311219898][bookmark: _Toc311219899][bookmark: _Toc311219900][bookmark: _Toc311219901][bookmark: _Toc311219902][bookmark: _Toc311219938][bookmark: _Toc311219940][bookmark: _Toc311219961][bookmark: _Toc311219989][bookmark: _Toc29970785][bookmark: _Toc29970797][bookmark: _Toc29970909][bookmark: _Toc29971021][bookmark: _Toc29971133][bookmark: _Toc29971188][bookmark: _Toc29971192][bookmark: _Toc29971235][bookmark: _Toc29971238][bookmark: _Toc29971240][bookmark: _Toc29971249][bookmark: _Toc29971260][bookmark: _Toc29971279][bookmark: _Toc29971281][bookmark: _Toc29971300][bookmark: _Toc29971302][bookmark: _Toc29971321][bookmark: _Toc29971323][bookmark: _Toc29971342][bookmark: _Toc29971344][bookmark: _Toc29971363][bookmark: _Toc29971365][bookmark: _Toc29971384][bookmark: _Toc29971771][bookmark: _Toc506144100][bookmark: _Toc22893408][bookmark: _Ref24214461][bookmark: _Ref24434083][bookmark: _Ref29798517][bookmark: _Ref29813187][bookmark: _Toc77680550][bookmark: _Toc118289153][bookmark: _Toc226456739][bookmark: _Toc248045374][bookmark: _Toc287363850][bookmark: _Ref309494938][bookmark: _Toc311219990][bookmark: _Toc317198832][bookmark: _Ref427231073][bookmark: _Ref445584419][bookmark: _Toc452007307][bookmark: _Toc488411777][bookmark: _Toc495592972]CABAC parsing process 
[bookmark: _Toc496106820]This clause describes the parsing process of encoded_descriptor syntax elements carried by a Block Payload as specified in clause 7.8. 
[bookmark: _Ref496629283][bookmark: _Toc506144101][bookmark: _Toc496106866][bookmark: _Ref497142005][bookmark: _Ref350088073][bookmark: _Ref350088186][bookmark: _Toc452007311]Binarizations
The process of binarization converts a non-binary-valued symbol representing a genomic descriptor value (e.g. a mapping position, a mapped read length or a mismatch type) into a binary code prior to arithmetic coding. The following clauses describe the decoding process for the different binarizations adopted in this document.
[bookmark: _Ref496084404][bookmark: _Ref496084631][bookmark: _Toc496106821][bookmark: _Toc493661541][bookmark: _Ref488672370]Binary (BI) Binarization
Input to this process are bits from the Block Payload.
Output of this process is the variable symVal.
[bookmark: _Ref500318031][bookmark: _Ref500318025]The parameter cLength indicates the length in bits of the binarized symVal. The decoding process is described below:
	symVal = 0
for (i=0; i<cLength; i++) { 
	symVal += read_bits(1)^(cLength-i)
}


Table 42 illustrates explicitly the assignment of bit strings to symVal values, with cLength set to the length of the bit string.
[bookmark: _Ref500753815]Table 42. Binary bit strings and corresponding symVal (informative).
	Bit string
	cLength
	symVal

	0
	1
	0

	1
	1
	1

	0 0 1
	3
	1

	0 1 0
	3
	2

	1 1
	2
	3


For the binary binarization, the ctxIdx of each encoded symbol is determined based on the decoded MSB such that the ctxIdx is unique for each different symbol. Specifically, for binVal bj, ctxIdx is calculated using the following process:
	updateIdx(j){
	j0 = round(j/cLength);  // starting bin position of current symbol 
	ctxIdx = 0;    // starting ctxIdx for first bin
	ctx_num = 1; // total ctxIdx number of each bin
	s = 0;    // partially decoded MSB value  
	for (; j0<j; j0++) {
		ctxIdx += ctx_num;
		ctx_num <= 1;
		s = s*2+binVal[j0]; 
	}
	ctxIdx += s; 
}



[bookmark: _Ref496088353][bookmark: _Toc496106822]Truncated Unary (TU) Binarization
[bookmark: _Ref496088783][bookmark: _Toc496106823][bookmark: _Ref500413477][bookmark: _Toc493661550][bookmark: _Ref488679048]Input to this process are bits from the Block Payload.
Output of this process is the variable symVal.
The parameter cMax indicates the maximum value of symVal. The decoding process is described below:
	symVal=0;
while(read_bits(1)==1 && symVal < cMax) {						
	symVal++
}


Table 43 illustrates explicitly the assignment of bit strings to symVal values, with cLength set to the length of the bit string.
[bookmark: _Ref500761341]Table 43. Binary bit strings and corresponding symVal with cMax equal to 3 (informative).
	Bit string
	symVal

	0
	0

	1 0
	1

	1 1 0
	2

	1 1 1
	3



[bookmark: _Ref500836883]Exponential Golomb (EG) Binarization
[bookmark: _Ref504441961][bookmark: _Ref496097032][bookmark: _Toc496106824]General
Inputs to this process are bits from the Block Payload.
Output of this process is the variable symVal.
The decoding process is described below:
	leadingZeroBits= −1
for( b = 0; !b; leadingZeroBits++ )							
	b = read_bits( 1 )

symVal = 2leadingZeroBits − 1 + read_bits( leadingZeroBits )				



The value returned from read_bits( leadingZeroBits ) is interpreted as a binary representation of an unsigned integer with the most significant bits written first.
Table 44 illustrates the structure of the Exp-Golomb code by separating the bit string into "prefix" and "suffix" bits. The "prefix" bits are those bits that are parsed as specified above for the computation of leadingZeroBits, and are shown as either 0 or 1 in the bit string column of Table 44. The "suffix" bits are those bits that are parsed in the computation of symVal and are shown as xi in Table 44, with i in the range of 0 to leadingZeroBits − 1, inclusive. Each xi is equal to either 0 or 1.
[bookmark: _Ref498099297]Table 44. Bit strings with "prefix" and "suffix" bits and assignment to symVal ranges (informative).
	Bit string form
	Range of symVal

	1
	0

	0 1 x0
	1..2

	0 0 1 x1 x0
	3..6

	0 0 0 1 x2 x1 x0
	7..14

	0 0 0 0 1 x3 x2 x1 x0
	15..30

	0 0 0 0 0 1 x4 x3 x2 x1 x0
	31..62

	...
	...



Table 45 illustrates explicitly the assignment of bit strings to symVal values.
[bookmark: _Ref500765068]Table 45. Exp-Golomb bit strings and symVal in explicit form and used as ue(v) (informative).
	Bit string
	symVal

	1
	0

	0 1 0
	1

	0 1 1
	2

	0 0 1 0 0
	3

	0 0 1 0 1
	4

	0 0 1 1 0
	5

	0 0 1 1 1
	6

	0 0 0 1 0 0 0
	7

	0 0 0 1 0 0 1
	8

	0 0 0 1 0 1 0
	9

	...
	...


Depending on the descriptor, the value of a syntax element is derived as follows:
If the syntax element is coded as ue(v), the value of the syntax element is equal to symVal,
Otherwise, if the syntax element is coded as se(v), the value of the syntax element is derived by invoking the mapping process for signed Exp-Golomb codes as specified in clause 13.2.1.3 with symVal as input.
[bookmark: _Toc328598990][bookmark: _Toc328663636][bookmark: _Toc328753505][bookmark: _Toc328598993][bookmark: _Toc328663639][bookmark: _Toc328753508][bookmark: _Toc328598996][bookmark: _Toc328663642][bookmark: _Toc328753511][bookmark: _Toc328599001][bookmark: _Toc328663647][bookmark: _Toc328753516][bookmark: _Toc328599003][bookmark: _Toc328663649][bookmark: _Toc328753518][bookmark: _Toc328599006][bookmark: _Toc328663652][bookmark: _Toc328753521][bookmark: _Toc328599008][bookmark: _Toc328663654][bookmark: _Toc328753523][bookmark: _Ref500490772]Signed Exponential Golomb (SEG) Binarization
[bookmark: _Toc493661549][bookmark: _Ref489448845][bookmark: _Ref496017951][bookmark: _Ref496018724][bookmark: _Ref496087247][bookmark: _Ref496088789][bookmark: _Ref496097557][bookmark: _Toc496106825][bookmark: _Ref497209227][bookmark: _Ref497210108][bookmark: _Ref499832254]Input to this process is the output of an Exponential Golomb Binarization as specified in clause 13.2.1.3.1.
Output of this process is the variable symVal.
[bookmark: _Toc22727479][bookmark: _Toc22728252][bookmark: _Toc22728986][bookmark: _Toc22790490][bookmark: _Toc22727483][bookmark: _Toc22728256][bookmark: _Toc22728990][bookmark: _Toc22790494][bookmark: _Toc22006965][bookmark: _Toc22033244]symVal for input value k is calculated as (−1)k + 1 Ceil( k ÷ 2 ) An example is provided in Table 46.
[bookmark: _Ref499831874]Table 46. Example of decoding process for SEG binarization.
	Input
	symVal

	0
	0

	1
	1

	2
	−1

	3
	2

	4
	−2

	5
	3

	6
	−3


[bookmark: _Ref500836899]Truncated Exponential Golomb (TEG) Binarization
[bookmark: _Toc496106826][bookmark: _Ref497209238][bookmark: _Ref500490801][bookmark: _Ref500491321]Input to this process are bits from the Block Payload.
Output of this process is the variable symVal.
Truncated Exponential Golomb is a concatenation of a Truncated Unary binarization (with cMax equal to cTruncExpGolParam, with cTruncExpGolParam signaled as described in clause 13.2.2.2.1) and an Exponential Golomb representation. The parsing process for these syntax elements are processed as follows:
1. Perform the Truncated Unary decoding process with cMax=cTruncExpGolParam (see 13.2.1.2)
2. If the output of step 1 is equal to cTruncExpGolParam
a. Perform the Exponential Golomb decoding process specified in clause 13.2.1.3.
symVal is equal to the sum of step 1 and step 2a.
Table 47 illustrates the bin strings of this Truncated Exponential Golomb binarization with cTruncExpGolParam equal to 2.
[bookmark: _Ref499831834]Table 47 Bin string of the Truncated Exponential Golomb binarization with cTruncExpGolParam=2.
	Bit string
	symVal

	0
	0

	1 0
	1

	1 1 1
	2

	1 1 0 1 0
	3

	1 1 0 1 1
	4



[bookmark: _Ref500843286]Signed Truncated Exponential Golomb (STEG) Binarization
[bookmark: _Ref499069068][bookmark: _Ref499061060]Input to this process are bits from the Block Payload.
Output of this process is the variable symVal.
Signed Truncated Exponential Golomb is a concatenation of a Truncated Unary binarization (with cMax equal to cTruncExpGolParam, with cSignedTruncExpGolParam signaled as described in 13.2.2.2.1), an Exponential Golomb representation and a 1-bit Binary representation (flag). The decoding process for these syntax elements is as follows:
1. Perform the Truncated Unary decoding process with cMax=cSignedTruncExpGolParam (see 13.2.1.2)
2. If the output of step 1 is equal to cSignedTruncExpGolParam
a. Perform the Exponential Golomb decoding process specified in clause 13.2.1.3
3. Else if the output of step 1 is not equal to 0
a. Perform the Binary decoding process specified in clause 13.2.1.1 with cLength set to 1.
symVal is equal to the sum of the output values of step 1 and step 2a. If the output of step 3a is 1, symVal= -1*symVal.
Table 50 illustrates the bin strings of this Signed Truncated Exponential Golomb binarization with cSignedTruncExpGolParam equal to 2.
Table 48 Bin string of the Signed Truncated Exponential Golomb binarization with cSignedTruncExpGolParam=2.
	Bit string
	symVal

	1 1 0 1 1 1 1
	-4

	1 1 0 1 0 1
	-3

	1 1 1 1
	-2

	1 0 1
	-1

	0
	0

	1 0 0
	1

	1 1 1 0
	2

	1 1 0 1 0 0
	3

	1 1 0 1 1 0
	4



4.2.1.4 [bookmark: _Ref500843294]Split Unit-wise Truncated Unary (SUTU) Binarization
Inputs to this process are bits from the Block Payload and parameters for this binarization process: splitUnitSize and outputSymSize, where outputSymSize must always be a multiple of splitUnitSize.
Output of this process is the variable symVal.
The SUTU binary string is a concatenation of n TU binarizations (clause 13.2.1.2), where n = outputSymSize / splitUnitSize. Each TU binarization constructs a splitUnitSize bits long portion of symVal. The cMax parameter for each split unit is specified as cMax = (1<<splitUnitSize) – 1.
The decoding process for SUTU binarization is described below:
	symVal=0
cMax = (1<<splitUnitSize) – 1
for (i=0; i<outputSymSize; i+=splitUnitSize) {
	unitVal = 0
	while(read_bits(1)==1 && unitVal < cMax)					
		unitVal++
	symVal |= unitVal<<i
}



Table 49 illustrates the bin strings of Split Unit-wise Truncated Unary binarization with splitUnitSize = 2, outputSymbSize = 8.
[bookmark: _Ref499831755]Table 49 Bin string of the Split Unit-wise Truncated Unary binarization with splitUnitSize = 2, outputSymSize = 8.
	symVal
	TU Instance 1
cMax==3
	TU Instance 2
cMax==3
	TU Instance 3
cMax==3
	TU Instance 4
cMax==3

	0
	0
	-
	-
	0
	-
	-
	0
	-
	-
	0
	-
	-

	1
	1
	0
	-
	0
	-
	-
	0
	-
	-
	0
	-
	-

	3
	1
	1
	1
	0
	-
	-
	0
	-
	-
	0
	-
	-

	15
	1
	1
	1
	1
	1
	1
	0
	-
	-
	0
	-
	-

	31
	1
	1
	1
	1
	1
	1
	1
	0
	-
	0
	-
	-

	63
	1
	1
	1
	1
	1
	1
	1
	1
	1
	0
	-
	-

	binIdx
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11



4.2.1.5 [bookmark: _Ref499073128][bookmark: _Ref500049195]Signed Split Unit-wise Truncated Unary (SSUTU) Binarization
[bookmark: _Ref499072396][bookmark: _Ref499910222]Inputs to this process are bits from the Block Payload and parameters for this binarization process: splitUnitSize and outputSymSize, where outputSymSize must always be a multiple of splitUnitSize.
Output of this process is the variable symVal.
The SSUTU bin string is extension of the SUTU binarization (clause 13.2.1.6) with sign of symVal coded as a separate flag. The decoding process for this binarization is as follows:
1. The SUTU binarization produces the absolute value of symVal. The actual sign of symVal is calculated in the second step.
2. If symVal !=0, a one-bit flag equal to 1 (if symVal<0) or equal to 0 (if symVal>0) is added

Table 50 illustrates the bin strings of signed split unit-wise truncated unary binarization with splitUnitSize = 2, outputSymbSize = 8.
[bookmark: _Ref499831702]Table 50. Bin string of the Split Unit-wise Truncated Unary binarization with splitUnitSize = 2, outputSymSize = 8.
	symVal
	TU Instance 1
cMax==3
	TU Instance 2
cMax==3
	TU Instance 3
cMax==3
	TU Instance 4
cMax==3
	Sign

	-63
	1
	1
	1
	1
	1
	1
	1
	1
	1
	0
	-
	-
	1

	-31
	1
	1
	1
	1
	1
	1
	1
	0
	-
	0
	-
	-
	1

	-15
	1
	1
	1
	1
	1
	1
	0
	-
	-
	0
	-
	-
	1

	-3
	1
	1
	1
	0
	-
	-
	0
	-
	-
	0
	-
	-
	1

	-1
	1
	0
	-
	0
	-
	-
	0
	-
	-
	0
	-
	-
	1

	0
	0
	-
	-
	0
	-
	-
	0
	-
	-
	0
	-
	-
	-

	1
	1
	0
	-
	0
	-
	-
	0
	-
	-
	0
	-
	-
	0

	3
	1
	1
	1
	0
	-
	-
	0
	-
	-
	0
	-
	-
	0

	15
	1
	1
	1
	1
	1
	1
	0
	-
	-
	0
	-
	-
	0

	31
	1
	1
	1
	1
	1
	1
	1
	0
	-
	0
	-
	-
	0

	63
	1
	1
	1
	1
	1
	1
	1
	1
	1
	0
	-
	-
	0

	binIdx
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12



4.2.1.6 [bookmark: _Ref500843315]Double Truncated Unary (DTU) Binarization
Inputs to this process are bits from the Block Payload and parameters for this binarization process: cMax, splitUnitSize and outputSymSize.
Output of this process is the variable symVal.
The DTU bin string is a concatenation of two binarizations, namely TU binarization (clause 13.2.1.2) and SUTU binarization (clause 13.2.1.6). The parameter cMax is used for TU binarization, and parameters splitUnitSize and outputSymSize are used for a SUTU binarization (where its cMax is derived internally).
	if(cMax > 0) {
	symVal = decode_cabac_TU(cMax)
	if(symVal >= cMax) 
		symVal += decode_cabac_SUTU(splitUnitSize, outputSymSize)
	else
		symVal = decode_cabac_SUTU(splitUnitSize, outputSymSize)
}




decode_cabac_TU specifies the decoding process specified in clause 13.2.1.2.
decode_cabac_SUTU specifies the decoding process specified in clause 13.2.1.6.
Table 51 illustrates the bin strings of the Double Truncated Unary binarization with cMax = 1, splitUnitSize = 2, outputSymSize = 8.
[bookmark: _Ref499831609]Table 51. Bin string of the Double Truncated Unary binarization with cMax = 1, splitUnitSize = 2, outputSymSize = 8.
	symVal
	TU Instance
cMax=1
	SUTU Instance: splitUnitSize = 2, outputUnitSize = 8

	
	
	TU Instance 1
cMax=3
	TU Instance 2
cMax=3
	TU Instance 3
cMax=3
	TU Instance 4
cMax=3

	0
	0
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-

	1
	1
	0
	-
	-
	0
	-
	-
	0
	-
	-
	0
	-
	-

	3
	1
	1
	1
	0
	0
	-
	-
	0
	-
	-
	0
	-
	-

	15
	1
	1
	1
	0
	1
	1
	1
	0
	-
	-
	0
	-
	-

	31
	1
	1
	1
	0
	1
	1
	1
	1
	0
	-
	0
	-
	-

	63
	1
	1
	1
	0
	1
	1
	1
	1
	1
	1
	0
	-
	-

	binIdx
	0	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12


[bookmark: _Ref498390037][bookmark: _Ref499061111]
4.2.1.7 [bookmark: _Ref500049226]Signed Double Truncated Unary (SDTU) Binarization
Inputs to this process are bits from the Block Payload and parameters for this binarization process: cMax, splitUnitSize and outputSymSize, where outputSymSize must always be a multiple of splitUnitSize.
Output of this process is the variable symVal.
The SDTU bin string is an extension of the DTU binarization with sign of symVal coded as a flag. It is obtained as follows:
1. The DTU binarization produces the absolute value of symVal. The actual sign of symVal is calculated in the second step.
2. If symVal !=0, a one-bit flag equal to 1 (if symVal<0) or equal to 0 (if symVal>0).

Table 52 illustrates the bin strings of the Double Truncated Unary binarization with cMax = 1, splitUnitSize = 2, outputSymSize = 8.
[bookmark: _Ref499831539]Table 52. Bin string of the Signed Double Truncated Unary binarization with cMax = 1, splitUnitSize = 2, outputSymSize = 8.
	symVal
	TU Instance
cMax=1
	SUTU Instance: splitUnitSize = 2, outputUnitSize = 8
	Sign

	
	
	TU Instance 1
cMax=3
	TU Instance 2
cMax=3
	TU Instance 3
cMax=3
	TU Instance 4
cMax=3
	

	-63
	1
	1
	1
	0
	1
	1
	1
	1
	1
	1
	0
	-
	-
	1

	-31
	1
	1
	1
	0
	1
	1
	1
	1
	0
	-
	0
	-
	-
	1

	-15
	1
	1
	1
	0
	1
	1
	1
	0
	-
	-
	0
	-
	-
	1

	-3
	1
	1
	1
	0
	0
	-
	-
	0
	-
	-
	0
	-
	-
	1

	-1
	1
	0
	-
	-
	0
	-
	-
	0
	-
	-
	0
	-
	-
	1

	0
	0
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-

	1
	1
	-0
	-
	-
	0
	-
	-
	0
	-
	-
	0
	-
	-
	0

	3
	1
	1
	1
	0
	0
	-
	-
	0
	-
	-
	0
	-
	-
	0

	15
	1
	1
	1
	0
	1
	1
	1
	0
	-
	-
	0
	-
	-
	0

	31
	1
	1
	1
	0
	1
	1
	1
	1
	0
	-
	0
	-
	-
	0

	63
	1
	1
	1
	0
	1
	1
	1
	1
	1
	1
	0
	-
	-
	0

	binIdx
	0	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13








[bookmark: _Ref500491438][bookmark: _Toc506144102]Decoder Configuration
The decoder configuration syntax is specified below.
	Syntax
	Type

	decoder_configuration(encoding_mode_ID){
	 

		dependency_mask
	u(16)

		if (encoding_mode_ID == 0){ /* CABAC */
	

			num_descriptor_subsequences_minus1
	u(8)

			for (i = 0; i <= num_descriptor_subsequences_minus1; i++){
	

				descriptor_subsequence_ID
	u(v)

				support_values()
	As specified in 13.2.2.1

				cabac_binarizations()
	As specified in 13.2.2.2

				transformation_parameters()
	As specified in 13.2.2.3

			}
	 

		} else if(encode_mode_ID >= 1){  
	 

		/* reserved for future use */
	 

		}
	 

	}
	



dependency_mask signals which dependencies are enabled as specified in 
	dependency_mask
	Semantics

	0x0001
	The dependency specified in 13.2.6.2.2 is enabled

	all other bits
	reserved for future use



num_descriptor_subsequences_minus1 specifies the number of subsequences the genomic descriptor has been split into for encoding minus 1
descriptor_subsequence_ID[i] indicates the id of the ith subsequence. This table is only available if the descriptor sequence consists of multiple subsequences (for mmpos, mmtype, clips, and pair descriptors as specified in clauses 11.4.4, 11.4.5, 11.4.6 and 11.4.9 respectively). This id is used to signal which binarizations, transformations and contexts will need to be used to decode a specific subsequence. The descriptor_subsequence_ID is represented as u(ceil(log2(num_descriptor_subsequences_minus1)).
[bookmark: _Ref499910989]descriptor_subsequence_ID can only contain values as indicated in Table 53 to Table 56 (mmpos, mmtype, clips, and pair descriptors as specified in clauses  11.4.4, 11.4.5, 11.4.6 and 11.4.9 respectively). If subsequences are not identified in the descriptor_subsequence_ID array, they are assumed to be empty.
[bookmark: _Ref500843099]Table 53: Subsequences for descriptor_ID = 9 (pair descriptor).
	subsequence_ID
	Semantics

	0
	Sequence of unsigned integers identifying: 
· the next subsequence symbol required for the decoding process when values range from 1 to 6. 
· R1_unpaired decoding case as specified in 11.4.9 when the value is equal to 7.
· R2_unpaired decoding case as specified in 11.4.9 when the value is equal to 8.

	1
	same_rec decoding case as specified in 11.4.9. Sequence of signed integers representing the distance between the mapping position of read 1 and the mapping position of read 2 on the reference sequence. The value is comprised between -32767 and 32767.

	2
	R1_split decoding case as specified in 11.4.9. Sequence of unsigned integers representing the position of read 1 on the reference sequence. The maximum value can be 2^ max_bits_pos -1.

	3
	R2_split decoding case as specified in11.4.9. Sequence of unsigned integers representing the position of read 2 on the reference sequence. The maximum value can be 2^ max_bits_pos -1.

	4
	R1_diff_ref_seq decoding case as specified in 11.4.9. Sequence of unsigned integers representing the identifier of the reference sequence read 1 is mapped to. The maximum value is 2^16-1.

	5
	R2_diff_ref_seq decoding case as specified in 11.4.9. Sequence of unsigned integers representing the identifier of the reference sequence read 2 is mapped to. The maximum value is 2^16-1.

	6
	more_align decoding case as specified in 11.4.9. Sequence of unsigned integers representing the identifier of the reference sequence a secondary alignment of read 1 is mapped to. The maximum value is 2^16-1.

	7
	R1_diff_ref_seq decoding case as specified in 11.4.9. Sequence of unsigned integers representing the position of read 1 on the reference sequence. The maximum value is 2^ max_bits_pos -1.

	8
	R2_diff_ref_seq decoding case as specified in 11.4.9. Sequence of unsigned integers representing the position of read 2 on the reference sequence. The maximum value is 2^ max_bits_pos -1.

	9
	more_align decoding case as specified in 11.4.9. Sequence of unsigned integers representing a secondary alignment mapping position of read 1 on the reference sequence. The maximum value is 2^32-1.



[bookmark: _Ref499911025][bookmark: _Ref505706275]Table 54: Subsequences for descriptor_ID = 6 (clips descriptor)
	subsequence_ID
	Semantics
	Value

	0
	Record identifier
	uint

	1
	Position flag
	uint

	2
	Nucleotides strings with terminators
	ASCII string terminated by a reserved value as specified in Table 31

	3
	Hard clips length
	uint



[bookmark: _Ref500810391][bookmark: _Ref505757471]Table 55: Subsequences for descriptor_ID = 3 (mmpos descriptor)
	subsequence_ID
	Semantics
	Subsequence representation

	0
	Terminator flag
	1 bit

	1
	Position value
	Unsigned integer with max value equal to 2^(terminator_size_minus1 + 1) - 1



[bookmark: _Ref500810797]Table 56: Subsequences for descriptor_ID = 4 (mmptype descriptor)
	subsequence_ID
	Semantics
	Subsequence representation

	0
	Symbol type flag
	1 bit

	1
	Substitution type
	uint

	2
	Indels
	uint



[bookmark: _Ref505765666]Table 57: Subsequences for descriptor_ID = 11 (mmap descriptor)
	subsequence_ID
	Semantics
	Subsequence representation

	0
	First read alignments
	uint

	1
	Second read alignments
	uint



support_values() specifies the parsing of a set of configuration parameters used to parse the descriptor subsequence identified by descriptor_subsequence_ID. It is described in clause 13.2.2.1.
cabac_binarizations() specifies the parsing of information about the binarization used for CABAC coding of the descriptor subsequence identified by descriptor_subsequence_ID. It is described in clause 13.2.2.2.
transform_values() specifies the parsing of transformation parameters for the descriptors subsequence identified by descriptor_subsequence_ID. It is specified in clause 13.2.2.3.
[bookmark: _Ref497199817]Support values
	Syntax
	Type

	support_values(){
	 

		output_symbol_size
	u(5)

		coding_symbol_size[]
	u(5)

		coding_order
	u(2)

		num_output_symbols
	u(32)

	}
	



output_symbol_size represents the size in bits of each reconstructed symbol of the descriptor subsequence.
coding_symbol_size signals the length of each symbol in the encoded bitstream during decoding.
coding_order signals the number previously decoded symbols internally maintained as state variables and may be used in decoding the next symbol. The default value is 0.
num_output_symbols signals the number of symbols encoded in the subsequence and to be reconstructued by the decoding process.
[bookmark: _Toc497140362][bookmark: _Ref497201077][bookmark: _Ref497201664][bookmark: _Ref497201683][bookmark: _Ref499908991][bookmark: _Ref499909234][bookmark: _Ref500953054][bookmark: _Ref501005305][bookmark: _Ref501005637]CABAC binarizations
	Syntax
	Type

	cabac_binarizations(){
	

		binarization_ID
	u(5)

		bypass_flag
	u(1)

		cabac_binarization_parameters(binarization_ID)
	13.2.2.2.1

		if(!bypass_flag){
	

			cabac_context_parameters(descriptor_subsequence_ID)
	13.2.2.2.2

		}
	

	}
	



binarization_ID indicates the binarization method to be used for decoding. The list of binarizations is shown in Table 58.
bypass_flag if equal to 1, all bins of the binarization are decoded using bypass mode.
[bookmark: _Ref499911172][bookmark: _Ref500843092]Table 58: Values of binarization_ID and associated binarizations
	binarization_ID
	Type of binarization

	0
	Binary Coding as specified in clause 13.2.1.1

	1
	Truncated Unary as specified in clause 13.2.1.2

	2
	Exponential Golomb as specified in clause 13.2.1.3

	3
	Signed Exponential Gomb as specified in clause 13.2.1.3.2

	4
	Truncated Exponential Golomb as specified in clause 13.2.1.4

	5
	Signed Truncated Exponential Golomb as specified in clause 13.2.1.5

	6
	Split Unit-wise Truncated Unary as specified in clause 13.2.1.6

	7
	Signed Split Unit-wise Truncated Unary as specified in clause 13.2.1.7

	8
	Double Truncated Unary as specified in clause in 13.2.1.8

	9
	Signed Double Truncated Unary as specified in clause in 13.2.1.9

	10 .. 31
	Reserved for future use.



[bookmark: _Toc497140363][bookmark: _Ref500051306][bookmark: _Ref500838629][bookmark: _Ref501029395][bookmark: _Ref501029413]CABAC binarizations parameters
The cabac_binarization_parameters data structure contains the parameters used for binarization for the descriptor subsequence identified by descriptor_subsequence_ID. binarization_ID is specified in clause 13.2.2.2.
[bookmark: _Ref500278352]Table 59. CABAC binarization parameters.
	Syntax
	Type

	binarization_parameters(binarization_ID){
	

		if(binarization_ID==0){
	

			cLength
	u(5)

		} else if (	binarization_ID==1 || binarization_ID==8 || 						binarization_ID==9){
	

	 		cMax
	u(8)

		} else if (binarization_ID==4){
	

			cTruncExpGolParam
	u(5)

		} else if (binarization_ID==5){
	

			signedTruncExpGolParam
	u(5)

		}
	

		if (binarization_ID==6 || binarization_ID==7 || 			binarization_ID==8 || binarization_ID==9){          
	

			splitUnitSize
	u(5)

			outputSymSize
	u(5)

		}
	

	}
	



cMax represents the cMax variable specified in clause 13.2.1.2.
cLength represents the cLength variable specified in clause 13.2.1.1.
truncExpGolParam represents the truncExpGolParam variable specified in clause 13.2.1.4.
signedTruncExpGolParam represents the signedTruncExpGolParam variable specified in clause 13.2.1.5.
splitUnitSize represents the splitUnitSize variable as specified in clause 13.2.1.6.
outputSymSize represents the outputSymSize variable as specified in clause 13.2.1.6.
[bookmark: _Toc497140364][bookmark: _Ref500096674][bookmark: _Ref500096688][bookmark: _Ref500121957][bookmark: _Ref500838635][bookmark: _Ref501029129]CABAC context parameters
The cabac_context_parameters data structure contains the parameters used for context value adaptation and initialization for the descriptor subsequence identified by descriptor_subsequence_ID specified in clause 13.2.2. 
	Syntax
	Type

	cabac_context_parameters(){
	 

		num_contexts
	u(16)

		adaptive_mode_flag
	u(1)

		default_context_init_flag
	u(1)

		if(!default_context_init_flag){
	 

			for (i=0; i<num_contexts; i++){
	 

				context_initialization_value[i]
	u(7)

			}
	 

		}
	 

		if(coding_order_> 0) {
	

			context_offset_luts
	u(16)

			for (i=0; i<coding_order; i++){
	 

				context_offset_value[i]
	u(16)

			}
	 

		}
	 

	}
	



num_contexts specifies the size of the table ctxTable[ ] specified in 13.2.4 containing the list of context values needed for the decoding of the descriptor subsequence (including any LUTs).
adaptive_mode_flag set to 1 the arithmetic decoding engine specified in clause 13.2.5uses contexts adaptation otherwise contexts adaptation is disabled.
default_context_init_flag if set to 1 the contexts are initialized with a default value of 64 (equiprobability) otherwise contexts are initialized with values specified in context_initialization_value.
context_offset_luts specifies the number of contexts used for decoding of LUTs present in the descriptor subsequence. The range of context variables in ctxTable[ ] for LUTs is [0, context_offset_luts) and the range for context variables in ctxTable[ ] for descriptor tokens is [context_offset_luts, num_contexts).         
context_initialization_value[i] specifies the initialization values for the ith context variable.
context_offset_value[i] specifies the list of offset values needed to select the contexts (described in 13.2.6.2.5) when decoding the descriptor subsequence with a coding_order > 0, where coding_order is signaled in support_values() specified in 13.2.2.1.



[bookmark: _Toc497140365][bookmark: _Ref499909349][bookmark: _Ref501005318][bookmark: _Ref501005505][bookmark: _Ref501034264][bookmark: _Ref501034717][bookmark: _Ref501102063][bookmark: _Ref501121637]Transformation Parameters

	Syntax
	Type

	transformation_parameters(descriptor_subsequence_ID){
	 

		transform_count
	u(4)

		for(i = 0; i < transform_count; i++){
	

			transform_ID
	u(8)

			if(transform_ID == match_coding_ID){
	

				buffer_size_in_bytes
	u(16)

	[bookmark: OLE_LINK26]			pointer_subsequence_ID
	u(v)

	[bookmark: OLE_LINK23][bookmark: OLE_LINK24]			length_subsequence_ID
	u(v)

				raw_value_subsequence_ID
	u(v)

			} else if(transform_ID == equality_ID) {
	

				equality_flag_subsequence_ID
	u(v)

				equality_values_subsequence_ID
	u(v)

			} else if(transform_ID == scaling_ID) {
	

				scaling_opcode_ID
	u(8)

				if(scaling_opcode_ID > 0x0)
	

	[bookmark: OLE_LINK4][bookmark: OLE_LINK5]				scaling_value
	u(16)

			}
	

		}
	

	}
	 


[bookmark: OLE_LINK19][bookmark: OLE_LINK20][bookmark: OLE_LINK21][bookmark: OLE_LINK8][bookmark: OLE_LINK9]
transform_count signals the number of transformations that are applied to the descriptor subsequence identified with descriptor_subsequence_ID.
transform_ID signals the applied transformation according to Table 60.
[bookmark: _Ref501028332]Table 60. Values of transformation_ID and associated transformations.
	transform_ID
	name

	0
	match_coding_ID

	1
	equality_ID

	2
	scaling_ID

	3
	fixed_transform_ID

	4
	diff_coding

	5 .. 255
	Reserved for future use



[bookmark: OLE_LINK17][bookmark: OLE_LINK18][bookmark: OLE_LINK12][bookmark: OLE_LINK13][bookmark: OLE_LINK25]pointer_subsequence_ID is the subsequence_ID of the subsequence that contains all pointer information for the match_coding transformation process. The type of the pointer_subsequence_ID syntax element is equal to the type of the descriptor_subsequence_ID in clause 13.2.2.
length_subsequence_ID is the subsequence_ID of the subsequence that contains all length information for the match_coding transformation process. The type of the length_subsequence_ID syntax element is equal to the type of the descriptor_subsequence_ID in clause 13.2.2. 
raw_value_subsequence_ID is the subsequence_ID of the subsequence that contains all raw values for the match_coding transformation process. The type of the raw_value_subsequence_ID syntax element is equal to the type of the descriptor_subsequence_ID in clause 13.2.2.
equality_flag_subsequence_ID is the subsequence_ID of the subsequence that contains all flag information for the equality transformation process. The type of the equality_flag_subsequence_ID syntax element is equal to the type of the descriptor_subsequence_ID in clause 13.2.2.
equality_values_subsequence_ID is the subsequence_ID of the subsequence that contains all value information for the equality transformation process. The type of the equality_values_subsequence_ID syntax element is equal to the type of the descriptor_subsequence_ID in clause 13.2.2.
scaling_opcode_ID indicates the ID of the opcode which specifies how the decoded symbol may be scaled with scaling_value. The list of support opcodes and their operation is specified in Table 61.
[bookmark: _Ref500832174]Table 61: Description of scaling operations as transformations
	scaling_opcode_ID
	Description

	0
	NOT
	Bitwise NOT of the decoded symbol.

	1
	AND
	Bitwise AND of the scaling value and the decoded symbol.

	2
	OR
	Bitwise OR of the scaling value and the decoded symbol.

	3
	XOR
	Bitwise XOR of the scaling value and the decoded symbol.

	4
	LSHIFT
	Left shifting of the decoded symbol by scaling_value.

	5
	RSHIFT
	Right shifting of the decoded symbol by scaling_value.

	6
	ADD
	Addition of the scaling_value to the decoded symbol.

	7
	SUB
	Subtraction of the scaling_value from the decoded symbol.

	8
	rSUB
	Subtraction of the decoded symbol from the scaling_value.

	9
	MUL
	Multiplication of the scaling_value with decoded_symbol.

	10
	DIV
	Integer division of the decoded symbol by the scaling value.

	11
	rDIV
	Integer division of the scaling_value by the decoded symbol.

	12 .. 255
	Reserved
	Reserved for future use.



4.2.2 [bookmark: _Ref499797917][bookmark: _Toc506144103]Decoder configuration for read identifiers
The decoder configuration syntax for read identifiers is specified below.
	Syntax
	Type

	decoder_configuration_read_ids(encoding_mode_id){            
	 

		if (encoding_mode_id == 0){ 
	

			output_symbol_size 
	u(5)

			default_cabac_binarizations()
	11.3.10.2.4 11.3.10.2.5

			for (s=k=0; s<output_symbol_size; k++){
	

				coding_symbol_size[k] 
	u(5)

				use_default_cabac_binarization_flag
	u(1)

				if (!use_default_cabac_binarization_flag)
	

						cabac_binarizations()
	11.3.10.2.4 11.3.10.2.5

				s += coding_symbol_size[k]
	

			}
	

			rle_guard			
	u(8)

		} else if(encode_mode_id >= 1){         
	 

		/* reserved for future use */  
	

	 	}          
	

	}
	

	
	






output_symbol_size represents the size (in bits) of each output symbol when decoding the token_type descriptor sequences. The default value is 8.
coding_symbol_size represents the internal coding size in which each was coded into encoded bitstream. Note that coding_symbol_size must always be multiple of output_symbol_size and cannot be greater than output_symbol_size. The default value is 4.
use_default_cabac_binarization_flag signals if the current coding symbol segment use defaulat CABAC binarization scheme, or use its own specific binarization scheme.  
rle_guard represents the guard value used in the decoding process of RLE method (listed in Table 24 and specified in clause 11.3.10.2.3) for coding of token_type descriptor sequences.
default_cabac_binarizations(), cabac_binarizations() represent the data structure containing the parameters used for CABAC_ORDER_0 and CABAC_ORDER_1 methods (listed in Table 24 specified in clauses 11.3.10.2.4 and 11.3.10.2.5, respectively) for coding of token_type descriptor sequences. It is described in clause 13.2.2.2.
[bookmark: _Ref500051523][bookmark: _Toc506144104]Initialization process for context variables
Input to this process are a context variable table ctxTable and variables ctxIdx and initValue. 
ctxTable[ ] is the data structure containing all context variables needed to decode a descriptor sequence or subsequence. Each element of the ctxTable[ ] represents one context variable and consists of two state variables: pStateIdx and valMps. The variable pStateIdx represents a probability state index and the variable valMps represents the value of the most probable symbol as further described in clause 13.2.5.2.
The output of this process is an initialized context variable in ctxTable at index ctxIdx.
The state variables pStateIdx and valMps corresponding to index ctxIdx are initialized based on a 7-bit initValue as described below:
	Syntax

	context_initialize_states(ctxTable[ ], ctxIdx, initValue) {

		ctxTable[ctxIdx].valMps = ( initValue <=  63 ) ? 0 : 1

		ctxTable[ctxIdx].pStateIdx = ctxTable[i].valMps ? ( initValue − 64 ) : ( 63 − initValue )

	}



where
ctxTable[ctxIdx].valMps represents the variable valMps associated to the element in ctxTable at index ctxIdx
ctxTable[ctxIdx].pStateIdx represents the variable pStateIdx associated to the element in ctxTable at index ctxIdx
[bookmark: _Ref504468778][bookmark: _Toc506144105]Arithmetic decoding engine
4.2.2.1 Initialization
Outputs of this process are the initialized decoding engine registers ivlCurrRange and ivlOffset both in 16 bit register precision.
The status of the arithmetic decoding engine is represented by the variables ivlCurrRange and ivlOffset. In the initialization procedure of the arithmetic decoding process, ivlCurrRange is set equal to 510 and ivlOffset is set equal to the value returned from read_bits( 9 ) interpreted as a 9 bit binary representation of an unsigned integer with the most significant bit written first.
The bitstream shall not contain data that result in a value of ivlOffset being equal to 510 or 511.
NOTE – The description of the arithmetic decoding engine in this Specification utilizes 16 bit register precision. However, a minimum register precision of 9 bits is required for storing the values of the variables ivlCurrRange and ivlOffset after invocation of the arithmetic decoding process (DecodeBin) as specified in clause 13.2.5.2. The arithmetic decoding process for a binary decision (DecodeDecision) as specified in clause 13.2.5.2.2 and the decoding process for a binary decision before termination (DecodeTerminate) as specified in clause 13.2.5.2.5 require a minimum register precision of 9 bits for the variables ivlCurrRange and ivlOffset. The bypass decoding process for binary decisions (DecodeBypass) as specified in clause 13.2.5.2.4 requires a minimum register precision of 10 bits for the variable ivlOffset and a minimum register precision of 9 bits for the variable ivlCurrRange.
4.2.2.2 [bookmark: _Ref500249838]Arithmetic decoding process
4.2.2.2.1 [bookmark: _Ref500494125]General
Inputs to this process are ctxTable, ctxIdx, and bypass_flag, as specified in clause 13.2.6.2.6, and the state variables ivlCurrRange and ivlOffset of the arithmetic decoding engine.
Output of this process is the value of the bin.
Figure 8 illustrates the whole arithmetic decoding process for a single bin. For decoding the value of a bin, the context index table ctxTable and the ctxIdx are passed to the arithmetic decoding process DecodeBin( ctxTable, ctxIdx ), which is specified as follows:
–	If bypassFlag is equal to 1, DecodeBypass( ) as specified in clause 13.2.5.2.4 is invoked.
–	Otherwise, if bypassFlag is equal to 0, ctxTable is equal to 0, and ctxIdx is equal to 0, DecodeTerminate( ) as specified in clause 13.2.5.2.5 is invoked.
–	Otherwise (bypassFlag is equal to 0 and ctxTable is not equal to 0), DecodeDecision( ) as specified in clause 13.2.5.2.2 is invoked.


[bookmark: _Ref500246533]Figure 8 – Overview of the arithmetic decoding process for a single bin (informative)
NOTE – Arithmetic coding is based on the principle of recursive interval subdivision. Given a probability estimation p( 0 ) and p( 1 ) = 1 − p( 0 ) of a binary decision ( 0, 1 ), an initially given code sub-interval with the range ivlCurrRange will be subdivided into two sub-intervals having range p( 0 ) * ivlCurrRange and ivlCurrRange − p( 0 ) * ivlCurrRange, respectively. Depending on the decision, which has been observed, the corresponding sub-interval will be chosen as the new code interval, and a binary code string pointing into that interval will represent the sequence of observed binary decisions. It is useful to distinguish between the most probable symbol (MPS) and the least probable symbol (LPS), so that binary decisions have to be identified as either MPS or LPS, rather than 0 or 1. Given this terminology, each context is specified by the probability pLPS of the LPS and the value of MPS (valMps), which is either 0 or 1. The arithmetic core engine in this Specification has three distinct properties:
–	The probability estimation is performed by means of a finite-state machine with a table-based transition process between 64 different representative probability states { pLPS( pStateIdx ) | 0 <= pStateIdx < 64 } for the LPS probability pLPS. The numbering of the states is arranged in such a way that the probability state with index pStateIdx = 0 corresponds to an LPS probability value of 0.5, with decreasing LPS probability towards higher state indices.
–	The range ivlCurrRange representing the state of the coding engine is quantized to a small set {Q1,...,Q4} of pre-set quantization values prior to the calculation of the new interval range. Storing a table containing all 64x4 pre-computed product values of Qi * pLPS( pStateIdx ) allows a multiplication-free approximation of the product ivlCurrRange * pLPS( pStateIdx ).
–	For syntax elements or parts thereof for which an approximately uniform probability distribution is assumed to be given a separate simplified encoding and decoding bypass process is used. 

4.2.2.2.2 [bookmark: _Ref33021086][bookmark: _Toc77680577][bookmark: _Toc226456767]Arithmetic decoding process for a binary decision
4.2.2.2.2.1 General
Inputs to this process are the variables ctxTable, ctxIdx, ivlCurrRange, and ivlOffset.
Outputs of this process are the decoded value binVal, and the updated variables ivlCurrRange and ivlOffset.
Figure 9 shows the flowchart for decoding a single decision (DecodeDecision):
1. The value of the variable ivlLpsRange is derived as follows:
–	Given the current value of ivlCurrRange, the variable qRangeIdx is derived as follows:
[bookmark: _Ref33030453][bookmark: qCodIRangeIdx_Eqn]qRangeIdx =( ivlCurrRange >> 6 ) & 3		(13‑1)
–	Given qRangeIdx and pStateIdx associated with ctxTable and ctxIdx, the value of the variable rangeTabLps as specified in Table 62 is assigned to ivlLpsRange:
ivlLpsRange = rangeTabLps[ pStateIdx ][ qRangeIdx ]	(13‑2)
2. The variable ivlCurrRange is set equal to ivlCurrRange  ivlLpsRange and the following applies:
–	If ivlOffset is greater than or equal to ivlCurrRange, the variable binVal is set equal to 1 − valMps, ivlOffset is decremented by ivlCurrRange, and ivlCurrRange is set equal to ivlLpsRange.
–	Otherwise, the variable binVal is set equal to valMps.
Given the value of binVal, the state transition is performed as specified in clause 13.2.5.2.2.2. Depending on the current value of ivlCurrRange, renormalization is performed as specified in clause 13.2.5.2.3.


[bookmark: _Ref500246645]Figure 9 – Flowchart for decoding a decision
4.2.2.2.2.2 [bookmark: _Ref34033801][bookmark: _Toc77680578][bookmark: _Toc226456768]State transition process
Inputs to this process are the current pStateIdx, the decoded value binVal and valMps values of the context variable associated with ctxTable and ctxIdx.
Outputs of this process are the updated pStateIdx and valMps of the context variable associated with ctxIdx.
Depending on the decoded value binVal, the update of the two variables pStateIdx and valMps associated with ctxIdx is derived as follows:

	If (adaptive_mode_flag) {
	if( binVal = = valMps ) 
		pStateIdx = transIdxMps( pStateIdx )
	else {
		if( pStateIdx = = 0 )
			valMps = 1  valMps
		pStateIdx = transIdxLps( pStateIdx )
	}
}




Table 63 specifies the transition rules transIdxMps( ) and transIdxLps( ) after decoding the value of valMps and 1  valMps, respectively.
[bookmark: _Ref500250289][bookmark: _Ref500250281]Table 62 – Specification of rangeTabLps depending on the values of pStateIdx and qRangeIdx.
	pStateIdx
	qRangeIdx
	pStateIdx
	qRangeIdx

	
	0
	1
	2
	3
	
	0
	1
	2
	3

	0
	128
	176
	208
	240
	32
	27
	33
	39
	45

	1
	128
	167
	197
	227
	33
	26
	31
	37
	43

	2
	128
	158
	187
	216
	34
	24
	30
	35
	41

	3
	123
	150
	178
	205
	35
	23
	28
	33
	39

	4
	116
	142
	169
	195
	36
	22
	27
	32
	37

	5
	111
	135
	160
	185
	37
	21
	26
	30
	35

	6
	105
	128
	152
	175
	38
	20
	24
	29
	33

	7
	100
	122
	144
	166
	39
	19
	23
	27
	31

	8
	95
	116
	137
	158
	40
	18
	22
	26
	30

	9
	90
	110
	130
	150
	41
	17
	21
	25
	28

	10
	85
	104
	123
	142
	42
	16
	20
	23
	27

	11
	81
	99
	117
	135
	43
	15
	19
	22
	25

	12
	77
	94
	111
	128
	44
	14
	18
	21
	24

	13
	73
	89
	105
	122
	45
	14
	17
	20
	23

	14
	69
	85
	100
	116
	46
	13
	16
	19
	22

	15
	66
	80
	95
	110
	47
	12
	15
	18
	21

	16
	62
	76
	90
	104
	48
	12
	14
	17
	20

	17
	59
	72
	86
	99
	49
	11
	14
	16
	19

	18
	56
	69
	81
	94
	50
	11
	13
	15
	18

	19
	53
	65
	77
	89
	51
	10
	12
	15
	17

	20
	51
	62
	73
	85
	52
	10
	12
	14
	16

	21
	48
	59
	69
	80
	53
	9
	11
	13
	15

	22
	46
	56
	66
	76
	54
	9
	11
	12
	14

	23
	43
	53
	63
	72
	55
	8
	10
	12
	14

	24
	41
	50
	59
	69
	56
	8
	9
	11
	13

	25
	39
	48
	56
	65
	57
	7
	9
	11
	12

	26
	37
	45
	54
	62
	58
	7
	9
	10
	12

	27
	35
	43
	51
	59
	59
	7
	8
	10
	11

	28
	33
	41
	48
	56
	60
	6
	8
	9
	11

	29
	32
	39
	46
	53
	61
	6
	7
	9
	10

	30
	30
	37
	43
	50
	62
	6
	7
	8
	9

	31
	29
	35
	41
	48
	63
	2
	2
	2
	2


[bookmark: _Toc33078907][bookmark: _Ref34033586][bookmark: _Ref34033170]

[bookmark: _Ref500250486]Table 63. – State transition table.
	pStateIdx
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	transIdxLps
	0
	0
	1
	2
	2
	4
	4
	5
	6
	7
	8
	9
	9
	11
	11
	12

	transIdxMps
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16

	pStateIdx
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31

	transIdxLps
	13
	13
	15
	15
	16
	16
	18
	18
	19
	19
	21
	21
	22
	22
	23
	24

	transIdxMps
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32

	pStateIdx
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47

	transIdxLps
	24
	25
	26
	26
	27
	27
	28
	29
	29
	30
	30
	30
	31
	32
	32
	33

	transIdxMps
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48

	pStateIdx
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63

	transIdxLps
	33
	33
	34
	34
	35
	35
	35
	36
	36
	36
	37
	37
	37
	38
	38
	63

	transIdxMps
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	62
	63



4.2.2.2.3 [bookmark: _Ref34033995][bookmark: _Toc77680579][bookmark: _Toc226456769]Renormalization process in the arithmetic decoding engine 
[bookmark: _Toc24881104]Inputs to this process are bits from Block Payload data and the variables ivlCurrRange and ivlOffset.
Outputs of this process are the updated variables ivlCurrRange and ivlOffset.
A flowchart of the renormalization is shown in Figure 10. The current value of ivlCurrRange is first compared to 256 and then the following applies:
–	If ivlCurrRange is greater than or equal to 256, no renormalization is needed and the RenormD process is finished;
–	Otherwise (ivlCurrRange is less than 256), the renormalization loop is entered. Within this loop, the value of ivlCurrRange is doubled, i.e., left-shifted by 1 and a single bit is shifted into ivlOffset by using read_bits( 1 ).
The bitstream shall not contain data that result in a value of ivlOffset being greater than or equal to ivlCurrRange upon completion of this process.


[bookmark: _Ref500247828]Figure 10 – Flowchart of renormalization.
4.2.2.2.4 [bookmark: _Toc33078912][bookmark: _Ref33020359][bookmark: _Toc77680580][bookmark: _Toc226456770][bookmark: _Ref350088480]Bypass decoding process for binary decisions
Inputs to this process are bits from Block Payload data and the variables ivlCurrRange and ivlOffset.
Outputs of this process are the updated variable ivlOffset and the decoded value binVal.
The bypass decoding process is invoked when bypassFlag is equal to 1. Figure 11 shows a flowchart of the corresponding process.
First, the value of ivlOffset is doubled, i.e., left-shifted by 1 and a single bit is shifted into ivlOffset by using read_bits( 1 ). Then, the value of ivlOffset is compared to the value of ivlCurrRange and then the following applies:
–	If ivlOffset is greater than or equal to ivlCurrRange, the variable binVal is set equal to 1 and ivlOffset is decremented by ivlCurrRange.
–	Otherwise (ivlOffset is less than ivlCurrRange), the variable binVal is set equal to 0.
The bitstream shall not contain data that result in a value of ivlOffset being greater than or equal to ivlCurrRange upon completion of this process.


[bookmark: _Ref500248099]Figure 11 – Flowchart of bypass decoding process.
[bookmark: _Ref33020388][bookmark: _Toc77680581][bookmark: _Toc226456771]
4.2.2.2.5 [bookmark: _Ref350088372]Decoding process for binary decisions before termination
Inputs to this process are bits from Block Payload data and the variables ivlCurrRange and ivlOffset.
Outputs of this process are the updated variables ivlCurrRange and ivlOffset, and the decoded value binVal.
This decoding process applies to decoding of end_of_descriptor_subsequence_terminate corresponding to ctxTable equal to 0 and ctxIdx equal to 0. Figure 12 shows the flowchart of the corresponding decoding process, which is specified as follows:
First, the value of ivlCurrRange is decremented by 2. Then, the value of ivlOffset is compared to the value of ivlCurrRange and then the following applies:
–	If ivlOffset is greater than or equal to ivlCurrRange, the variable binVal is set equal to 1, no renormalization is carried out, and CABAC decoding is terminated. The last bit inserted in register ivlOffset is equal to 1. When decoding end_of_descriptor_subsequence_terminate, this last bit inserted in register ivlOffset is interpreted as rbsp_stop_one_bit. When decoding end_of_subset_one_bit, this last bit inserted in register ivlOffset is interpreted as alignment_bit_equal_to_one.
–	Otherwise (ivlOffset is less than ivlCurrRange), the variable binVal is set equal to 0 and renormalization is performed as specified in clause 13.2.5.2.3.
NOTE – This procedure may also be implemented using DecodeDecision( ctxTable, ctxIdx, bypassFlag ) with ctxTable = 0, ctxIdx = 0 and bypassFlag = 0. In the case where the decoded value is equal to 1, seven more bits would be read by DecodeDecision( ctxTable, ctxIdx, bypassFlag ) and a decoding process would have to adjust its bitstream pointer accordingly to properly decode following syntax elements.


[bookmark: _Ref500248260]Figure 12 – Flowchart of decoding a decision before termination.
4.2.2.2.6 [bookmark: _Ref380479047]Alignment process prior to aligned bypass decoding
Input to this process is the variable ivlCurrRange.
Output of this process is the updated variable ivlCurrRange.
ivlCurrRange is set equal to 256.
NOTE – When ivlCurrRange is 256, ivlOffset and the bit-stream can be considered as a shift register, and binVal as the register's second most significant bit (the most significant bit is always 0 due to the restriction of ivlOffset being less than ivlCurrRange).


[bookmark: _Toc496106832][bookmark: _Ref501362231][bookmark: _Toc506144106]Decoding process for sequence descriptors
This clause describes the decoding process for descriptors specified in clause 10.4 and 10.5. 
[bookmark: _Ref427231118][bookmark: _Toc452007332]General
Inputs to this process are all bin strings of the binarization of the requested syntax element as specified in clause 13.2.1.
Output of this process is the value of the syntax element.
This process specifies how each bin of a bin string is parsed for each syntax element. After parsing each bin, the resulting bin string is compared to all bin strings of the binarization of the syntax element and the following applies:
If the bin string is equal to one of the bin strings, the corresponding value of the syntax element is the output.
Otherwise (the bin string is not equal to one of the bin strings), the next bit is parsed.
While parsing each bin, the variable binIdx is incremented by 1 starting with binIdx being set equal to 0 for the first bin. 
The parsing of each bin is specified by the following two ordered steps:
1.	The context selection process as specified in clause 13.2.6.2.5.
2.	The arithmetic decoding process as specified in clause 13.2.5.2.1 is invoked with ctxTable, ctxIdx, and bypassFlag as inputs and the value of the bin as output.
[bookmark: _Ref505597584]Block Payload decoding process
Inputs to this process are a Block Payload as specified in clause 7.8 and a decoder configuration (as specified in clause 13.2.2.2) for each descriptor sequence identified by a descriptor_ID specified in the Block Header (clause 7.7).
Output of this process is one bi-dimensional array of the decoded_symbols data structure[descriptor_ID] (the reconstructed genomic descriptors of type descriptor_ID).
4.2.2.2.7 [bookmark: _Ref500122329]General decoding process for descriptors of sequence reads
A block of encoded descriptors is decoded as follows:
For each descriptor_subsequence_ID associated to the current descriptor_ID:
· Initialize an array prv_values to all 0.
· Set prv_values as specified in 13.2.6.2.2.
· if dependency_enabled_flag is enabled for this descriptor_substream_ID, loop up their dependencies and update the prv_values based on their dependencies as specified in 13.2.6.2.2.
· For each expected output symbol for the subsequence identified by descriptor_subsequence_ID and while more_data_in_block_payload( ) is true
· Initialize ctxTable with the CABAC context variables needed to decode each descriptor subsequence as specified in clause 13.2.6.2.3
· Retrieve the Look-Up Tables lut_values[][][] needed for CABAC decoding as specified in 13.2.6.2.4
· For each coding_symbol_size bits sub-portion of the decoded symbol and repeated until output_symbol_size bits of the decoded symbol are decoded, where coding_symbol_size is multiple of output_symbol_size
· 
· Select the context index ctxIdx as specified in 13.2.6.2.5
· Perform CABAC decoding of decodedCabacSymbol as specified in 14.2.6.2.6
· Calculate invTransfSym by performing an inverse transformation of decodedCabacSymbol as specified in 14.2.6.2.7
· Update the jth decoded symbol of the ith descriptor subsequence as decoded_symbol |= (invTransfSym <<s)
· Update the state variables values as specified in 14.2.6.2.8

· if equality_ID is present among the identifiers of the transformations associated to this descriptor_subsequence_ID apply the equality transformation as specified in	14.2.6.2.10.1
· if match_coding_ID is present among the identifiers of the transformations associated to this descriptor_subsequence_ID apply the equality transformation as specified in	14.2.6.2.10.2	
· multiplex the subsequences as specified in 14.2.6.2.9

The process described above is implemented in pseudo code as follows:
	Decoding process

	encoded_descriptor_sequences(descriptor_ID) {
	

		/* Initializations */
	

		decoded_symbols[descriptor_ID][num_descriptor_subsequences_minus1 + 1][ ] = {0}
	

		for (i=0; i<=num_descriptor_subsequences_minus1; i++) {
	

			prv_values[ ] = {0}
	

			dependency_reference_lookup(descriptor_ID, descriptor_subsequence_ID, prv_values)
	13.2.6.2.2

			j = 0
	

			do {
	

				ctxTable[ ] =  contexts_creation_initialization(i)
	13.2.6.2.3

				lut_values[ ][ ][ ] = decode_LUTs(i, ctxTable, 0)
	13.2.6.2.4

				for (s=0; s<output_symbol_size[i]; s+= coding_symbol_size[i]) {
	

					ctxIdx = context_selection(i, prv_values)
	13.2.6.2.5

					/* CABAC decoding */
	

					decodedCabacSymbol
	13.2.6.2.6

					/* Inverse-transform */
	

					invTransfSym = inverse_transform_symbol(i, decodedCabacSymbol , prv_values, 																	lut_values, bypassFlag)
	13.2.6.2.7

					decoded_symbols[descriptor_ID][i][j] |= ( invTransfSym <<s)
	

					/* Update state values */
	

					update_state_values(i,  invTransfSym , prv_values)
	13.2.6.2.8

				}
	

				j++
	

				invTransfSym = inverse_transform_symbol(i,  decodedCabacSymbol , prv_values, 																	lut_values, bypassFlag)
	13.2.6.2.7

			} while(j < num_output_symbols[i] && more_data_in_block_payload( ))
	

			end_of_descriptor_subsequence_terminate
	av(t)

		}
	

		// multiplex subsequences
	

		if( transform_present(equality_ID)){
	

			equality_transformation_multiplexing(decoded_symbols[descriptor_ID][][])
	13.2.6.2.10.1

		}
	

		if( transform_present(match_coding_ID)){
	

			match_transformation_multiplexing(decoded_symbols[descriptor_ID][][])
	13.2.6.2.10.2

		}
	

	
	

	}
	



num_descriptor_subsequences_minus1 specifies the number of descriptor subsequences signaled in decoder configuration (clause 13.2.2.2) for the descriptor sequence identified with descriptor_ID, minus 1.
num_output_symbols[i] specifies the number of output symbols encoded for the ith descriptor subsequence, which is signaled in support_values() specified clause 13.2.2.1.
decoded_symbols[descriptor_ID][i][] is the data structure containing the list of output symbols decoded for the ith descriptor subsequence of the descriptor identified by descriptor_ID.
prv_values[] is the data structure specifying the internal state of this process and contains the list of previously decoded symbols. Index 0 represents the most recent value.
output_symbol_size[i] specifies the size of the output symbol (in bits) for each encoded (output) symbol of the ith descriptor subsequence. It is signaled in support_values() specified clause 13.2.2.1.
coding_symbol_size[i] specifies the size of the symbol (in bits) used for encoding each encoded symbol of the ith descriptor subsequence. It is signaled in support_values() specified clause 13.2.2.1.
bypassFlag signals if the bypass mode of arithmetic decoding engine (clause 13.2.5.2.4) is enabled and is signaled in cabac_binarizations() specified in clause13.2.2.2.
dependency_reference_lookup()specifies the process for lookup of reference values from the dependency streams and is specified in clause 13.2.6.2.2.
context_selection() specifies the process for context selection and is specified in clause 13.2.6.2.5.
decodedCabacSymbol specifies the decoded symbols as specified in clause 13.2.6.2.6. Input to the process are variables i, ctxTable, ctxIdx and bypassFlag.
inverse_transform_symbol()specifies the process for inverse transformation of each decoded symbol and is specified in clause 13.2.6.2.7.
update_state_values()specifies the process to update the state values and is specified in clause 13.2.6.2.8.
more_data_in_block_payload( ) is specified in clause 6.3.
transform_present(transform_ID) signals the presence of transform_ID in the vector of transforms associated to this descriptor_ID.
4.2.2.2.8 [bookmark: _Ref500848287]Dependency reference lookup
Input to this process is the descriptor_subsequence_ID, and decoder configuration related to dependency descriptor sequences (specified in clause 13.2.2).
Output of this process is a vector prv_values containing updated state variables based on the lookup from the dependency descriptor sequence.
The updated state variables are calculated as follows:
	    if(dependency_enabled_flag &&  num_dependencies > 0) {
		/* mmtype dependency on mmpos */
    		if(dependency_ID[0] == 3 && descriptor_ID == 4 && descriptor_subsequence_ID == 1)
    			prv_values[0] =  reference_genomic_record[decoded_tokens[dependency_ID[0][i]]]
     }



reference_genomic_record[i] specifies the base value at the ith position of the reference genomic record.
decoded_tokens[descriptor_ID][i] specifies the reconstructed ith descriptor value of a given descriptor sequence identified by descriptor_ID.
[bookmark: _Ref500941056]Contexts creation and initialization
Input to this process is the descriptor_subsequence_ID and decoder configuration corresponding to context variables, signaled via syntax cabac_context_parameters(descriptor_subsequence_ID) specified in 13.2.2.2.1.
The initialization process of a context variable is specified in clause 13.2.4.
Outputs of this process is a ctxTable[ ] data structure containing the initialized CABAC context variables needed to decode each descriptor subsequence (as specified in clause 13.2.2.2.2). The size of ctxTable[] is signaled as num_contexts as part of cabac_context_parameters(descriptor_subsequence_ID) specified in 13.2.2.2.2, where ctxTable[i] represents the ith context variable.
If bypassFlag is equal to 0 the ctxTable is calculated as follows:
			ctxTable[num_contexts] = { {0,0} }
		if( default_context_init_flag ) {
			for (ctxIdx=0; ctxIdx<num_contexts; ctxIdx++) {
				context_initialize_states(ctxTable, ctxIdx, 64)
			}
		} else {
			for (ctxIdx=0; ctxIdx<num_contexts; ctxIdx++) {
				context_initialize_states(ctxTable, ctxIdx,  context_initialization_value[ctxIdx])
			}
		}



num_contexts specifies the size of the ctxTable[ ] containing the list of context values needed for the decoding of the descriptor subsequence (including any LUTs). It is signaled in cabac_context_parameters(descriptor_subsequence_ID) for each descriptor subsequence (clause 13.2.2.2.2).
context_initialization_value[i] specifies the explicit initialization value for the ith context variable. It is signaled in cabac_context_parameters(descriptor_subsequence_ID) for each descriptor subsequence (clause 13.2.2.2.2).
Note: this initialization step must precede the decoding process of the descriptor subsequence.
4.2.2.2.9 [bookmark: _Ref500941066]Decoding LUTs
Input to this process are the descriptor_subsequence_ID, ctxTable and ctxIdx identifying the contexts where CABAC decoding of LUTs is to be performed.
A lookup table (i.e. lists of key-value pairs) is signaled as list of values, where the keys are assumed to be equal to the 0-based index of a value in the list.
This process is executed when fixed_transform_ID is present among the identifiers of the transformations associated to this descriptor_subsequence_ID as specified in clause 13.2.2.3.
Output of this process is 
· a collection of 2-dimensional tables when coding_order is equal to 1 
· a collection of 3-dimensional tables when coding_order is equal to 2
where coding_order is signaled in support_values specified in 13.2.2.1.
If coding_order is 1 then the Look-Up Table LUT_values is calculated as follows:
	Decoding Process
	Type

	decode_LUTs_Order_1(descriptor_subsequence_ID, ctxTable, ctxIdx) {
	

		numAlpha = 1<< coding_symbol_size 
	

		i = 0, j=0
	

		do {
	

			 LUT_values[i][j] = 0
	

			numElems 
	ae(v)

			do {
	

				 LUT_values[i][j++]
	ae(v)

			}  while(j < numElems &&  more_data_in_block_payload( ))
	

			i++
	

		} while(i < numAlpha &&  more_data_in_block_payload( ))
	

	}
	



numElems specifies the number of elements in the LUT and is calculated as specified in 13.2.6.2.6.
LUT_values[i][j++] are the values of the LUT and are calculated as specified in 13.2.6.2.6. Set a limit on the size.
If coding_order is 2 then the Look-Up Table LUT_values is calculated as follows:
	Decoding Process
	Type

	decode_LUTs_Order_2(descriptor_subsequence_ID, ctxTable, ctxIdx) {
	

		numAlpha = 1<< coding_symbol_size 
	

		i = 0
	

		do {
	

			 LUT_values[i++][ ][ ] =  decode_LUTs_Order_1(descriptor_subsequence_ID, ctxTable, ctxIdx)
	

		} while(i < numAlpha &&  more_data_in_block_payload( ))
	

	}
	


4.2.2.2.10 [bookmark: _Ref500122017]Context selection
Input to this process is the descriptor_subsequence_ID and decoder configuration corresponding to context variables, signaled via syntax cabac_context_parameters() specified in 13.2.2.2.1.
The initialization process of a context variable is specified in clause 13.2.4.
Outputs of this process is the index ctxIdx of the element of ctxTable containing the initialized CABAC context variables needed to decode each descriptor subsequence (as specified in clause 13.2.6.2.1). 
	Decoding process

	context_selection(descriptor_subsequence_ID, prv_values[]) {

		if(!bypass_flag &&  coding_order > 0){

	        		ctxIdx =  context_offset_luts

	        		for (i=0; i<coding_order; i++) {

	                			ctxIdx += prv_value[i] * context_offset_values[i]

	        		}

		}

	}



bypass_flag specifies if the bypass mode of the arithmetic decoding engine (clause 13.2.5.2.4) is enabled and is signaled in cabac_binarizations() specified in clause13.2.2.2.
coding_order specifies the coding order signaled in support_values() for each descriptor subsequence (clause 13.2.2.1).
context_offset_luts specifies the number of context variables used in decoding of LUTs. It is signaled in cabac_context_parameters() for each descriptor subsequence (clause 13.2.2.2.2).
context_offset_values[] specifies the list of context offset values signaled in cabac_context_parameters() for each descriptor subsequence (clause 13.2.2.2.2).
[bookmark: _Ref500847362][bookmark: _Ref499909305][bookmark: _Ref500120312]Decoding descriptor symbols
Input to this process is the descriptor_subsequence_ID, ctxTable the index ctxIdx of the context selected as specified in clause 13.2.6.2.5, and bypass_flag.
Output of this process is a variable decodedCabacSymbol calculated as specified in clause 13.2.5.2 using the binarization identified by binarization_ID as specified in Table 58. Binarizations are listed in clause 13.2.1.
[bookmark: _Ref500122242]Inverse transformation
Input to this process are the descriptor_subsequence_ID, the symbol decoded according to the process specified in clause 13.2.6.2.6, a list of previously decoded symbols, the decoded LUTs (13.2.6.2.4) and the decoder configuration corresponding to inverse transformation, signaled via syntax transformation_parameters (descriptor_subsequence_ID) as specified in 13.2.2.3.
Output of this process is the inverse transformed symbol invTransfSym calculated as follows:
	inverse_transform_symbol(descriptor_subsequence_ID, decodedCabacSymbol, prv_values[], lut_values[][][]) {	
	if(transform_present(diff_coding_ID)) {	
                invTransfSym = decodedCabacSymbol+prv_values[0]	
        }	
        else if(transform_present(fixed_transform_ID)) {	
                        if(coding_order == 2) 	
                                invTransfSym = lut_values[prv_values[1]][prv_values[0]][ decodedCabacSymbol] 	
                        else if(coding_order == 1) 	
                                invTransfSym = lut_values[0][prv_values[0]][ decodedCabacSymbol] 	
        }	
	else if(transform_present(scale_opcode_enabled_ID)){	
       	 	if(scaling_opcode_ID == 0x00) 	
              	  	invTransfSym = ! decodedCabacSymbol	
        		else if(scaling_opcode_ID == 0x01) 	
                		invTransfSym = decodedCabacSymbol & scaling_value	
        		else if(scaling_opcode_ID == 0x02) 	
                		invTransfSym = decodedCabacSymbol| scaling_value	
        		else if(scaling_opcode_ID == 0x03) 	
               		 invTransfSym = decodedCabacSymbol^ scaling_value	
       		 else if(scaling_opcode_ID == 0x04) 	
                		invTransfSym = decodedCabacSymbol<< scaling_value	
       		 else if(scaling_opcode_ID == 0x05) 	
                		invTransfSym = decodedCabacSymbol>> scaling_value	
        		else if(scaling_opcode_ID == 0x06) 	
                		invTransfSym = decodedCabacSymbol+ scaling_value	
        		else if(scaling_opcode_ID == 0x07) 	
                		invTransfSym = decodedCabacSymbol- scaling_value	
        		else if(scaling_opcode_ID == 0x08) 	
                		invTransfSym = scaling_value -  decodedCabacSymbol	
        		else if(scaling_opcode_ID == 0x09) 	
               		 invTransfSym = decodedCabacSymbol* scaling_value	
        		else if(scaling_opcode_ID == 0x0a) 	
                		invTransfSym = decodedCabacSymbol/ scaling_value	
        		else if(scaling_opcode_ID == 0x0b) 	
               		invTransfSym = scaling_value / decodedCabacSymbol	
			else
				invTransfSym = decodedCabacSymbol
 	}		
	else{
		invTransfSym = decodedCabacSymbol
	}
}	




lut_values[i][j][k] specifies the look-up table decoded in clause 13.2.6.2.4.
transform_present(transform_ID) specifies the presence of transform_ID in the vector of transforms associated to this descriptor_ID as specified in clause 13.2.2.3.
[bookmark: _Ref500122259]Internal State update
Input to this process is the descriptor_subsequence_ID, list of state variables, like previously decoded symbols for coding_order > 0, and the current value currVal to be updated.
Output of this process is an update of the state variables contained in prv_values.
	Syntax

	update_state_values(descriptor_subsequence_ID, currVal, prv_values[]) {

	        for (i=coding_order-1; i>0; i--) {

	                prv_values[i] = prv_values[i-1]

	        }

	        prv_values[0] = currVal

	}


[bookmark: _Ref500859673][bookmark: _Toc495592976][bookmark: _Ref497057525][bookmark: _Ref498003271][bookmark: _Ref498459392][bookmark: _Ref498459409]





Transformation multiplexing
Input to these processes is a set of decoded values: decoded_values[][]. The subsequences used as input streams for these processes are identified as specified in clause 13.2.2.3.

Output of these processes is the multiplexed descriptor subsequence, which stands as the reconstructed encoded stream for the descriptor subsequence identified by descriptor_subsequence_ID.

4.2.2.2.10.1 [bookmark: _Ref500859756][bookmark: OLE_LINK22]Equality transformation
In the case that transform_ID is equal to equality_ID, this process shall be used to multiplex the input streams that represent the equality flags (input stream 0, i.e. decoded_values [equality_flag_subsequence_ID ][]) and the values (input stream 1, i.e. decoded_values [equality_values_subsequence_ID ][]). 
The subsequences shall be multiplexed as follows:
1. previous_value=0
2. for each symbol from input stream 0 (equality_flag)
a. if  equality_flag is equal to 1
i. The output_value is equal to the previous_value
ii. Write output_value to output
b. else
i. The output_value is equal to the next N bits in input stream 1 (coding_value)
ii. If output_value is greater or equal to previous_value
1. output_value = output_value+1
iii. write output_value to output
c. previous_value = output_value
4.2.2.2.10.2 [bookmark: _Ref500922668]Match transformation
[bookmark: OLE_LINK33][bookmark: OLE_LINK34]In the case that transform_ID is equal to match_coding_ID, this process shall be used to multiplex the input streams that represent the pointers (input stream 0, i.e. decoded_values[pointer_subsequence_ID][]), lengths (input stream 1, i.e. decoded_values[length_subsequence_ID][]), and the raw values (input stream 2, i.e. decoded_values[raw_value_subsequence_ID][]). 
[bookmark: OLE_LINK35][bookmark: OLE_LINK36][bookmark: OLE_LINK37][bookmark: OLE_LINK38]The pointers are coded in input stream 0, identified by subsequence_ID[0], i.e. pointer_subsequence_ID. Each pointer consists of K bits, represented by the output_symbol_size syntax element for this subsequence (see 13.2.2.1). 
[bookmark: OLE_LINK39][bookmark: OLE_LINK40]The lengths are coded in input stream 1, identified by subsequence_ID[1], i.e. length_subsequence_ID. Each pointer consists of L bits, represented by the output_symbol_size syntax element for this subsequence (see 13.2.2.1).
The pointers are coded in input stream 2, identified by subsequence_ID[2], i.e. raw_value_subsequence_ID. Each pointer consists of M bits, represented by the output_symbol_size syntax element for this subsequence (see 13.2.2.1).
During this transformation process, a buffer is assumed that contains the last Min(number of decoded output values, buffer_size) decoded output values, where the output value at position 0 is assumed to be the output value that has been decoded first and the output value at position N is assumed to be the most recently decoded output_value.
The input streams shall be multiplexed as follows:
For each length from subsequence 1 (L bits)
1. if length is equal to 0
a. Read raw_value from subsequence 2 (M bits) as output_value
b. Write output_value to output
c. Append output_value to the buffer
d. Clear the oldest value if the buffer exceeds buffer_size
2. Else
a. Read pointer from subsequence 1 (K bits) as pointer
b. Reach buffer starting at position n-pointer-length to position n-pointer as output_value[]
c. Append output_value[] to the buffer
d. If the buffer exceeds buffer_size clear as many oldest values as the size of output_value[] 
[bookmark: _Toc488411783][bookmark: _Ref490204022][bookmark: _Ref490664291][bookmark: _Ref490664304][bookmark: _Toc495592987][bookmark: _Ref497127958][bookmark: _Ref505267666]

[bookmark: _Toc506144107]MPEG-G output format
This clause specifies the output of the normative decoding process specified in clause 0 when dataset_type is equal to 0 or 1 as specified in clause 8.
The format allows:
saving the decoded content in a structured sequence of data
providing a normative reference output content to be used for the Conformance test

When dataset_type is equal to 2 the normative output is specified in Clause 7.2.

Table 64. MPEG-G Record syntax
	Syntax
	Type

	mpegg_record()  {            
	 

		global_ID      
	u(64)

		read_name          
	st(v)

		class_type
	u(8)

		seq_ID
	u(16)

		read_group
	u(8)

		read 1_first 
	u(8) 

		flags
	u(8)

		number_of_template_segments
	u(8)

		number_of_record_segments
	u(8)

		number_of_alignments
	u(16)

		for (tSeg=0; tSeg<number_of_record_segments; tSeg++) {          
	 

			read_len[tSeg]       
	u(32)

			quality_values[tSeg]       
	c(read_len)

			sequence[tSeg]       
	c(read_len)

		}          
	

		for (noa=0; noa<number_of_alignments; noa++) {          
	 

			mapping_pos[noa]       
	u(64)

			ecigar_len[noa][0]
	u(16)

			ecigar_string[noa][0]
	c(ecigar_size)

			reverse_comp[noa][0]
	u(8)

			for (tSeg=1; tSeg<number_of_template_segments; tSeg++) {       
	 

				split_alignment[noa][tSeg]
	u(8)

				if(split_alignment[noa][tSeg] == 0) {
								/* paired segment in same record */
	

					delta[noa][tSeg]
	i(32)

					ecigar_len[noa][tSeg]
	u(16)

					ecigar_string[noa][tSeg]
	c(cigar_size)

					reverse_comp[noa][tSeg]
	u(8)

				} else if (split_alignment[noa][tSeg] == 1) {
								/* paired segment split in other record */
	

					split_pos[noa][tSeg]
	u(64)

					split_seq_ID[noa][tSeg]
	u(16)

				} else if (split_alignment[noa][tSeg] == 2) { 
	

					/* unpaired read */
	

				}else{/* reserved value for split_alignment[noa][tSeg] */
	

				}
	

			}
	

			}       
	 

		}          
	 

		more_alignments
	u(8)

		if (more_alignments  == 0) {/* no more alignments */
	 

		} else if (more_alignements == 1) {
									/* more alignments in other records */
	

			next_pos       
	u(64)

			next_seq_ID       
	u(16)

		} else { /* reserved value for more_alignments */
	

		}
	

	}
	



This data structure is intended to allow quick data access by browsers of MPEG-G decoded information and efficient file comparison.
The following clauses specify how each attribute of the mpegg_record data structure is computed.
4.3 [bookmark: _Toc495592988][bookmark: _Toc500502487][bookmark: _Toc500940501][bookmark: _Ref505268952][bookmark: _Toc506144108]global_ID
global_ID is a unique 64-bit unsigned integer used as unique identifier for the MPEG-G record. Scope of the global_ID is the Genomic Dataset containing the Access Unit the encoded genomic record belongs to. The global_ID is calculated as follow:
· The 32 MSB are equal to the Access Unit ID the genomic record belongs to
· The 32 LSB is a counter of the genomic records in the Access Unit. Genomic records are considered ordered by their respective pos descriptor.
[image: ]
Figure 13. Composition of global_ID
4.4 [bookmark: _Toc495592989][bookmark: _Toc500502488][bookmark: _Toc500940502][bookmark: _Toc506144109]read_name
read_name contains the decoded read identifier as a null terminated string. In case read names are not encoded in the Access Unit, each read_name is empty and only contains the string terminator character (eight zero bits).
4.5 [bookmark: _Toc495592990][bookmark: _Toc500502489][bookmark: _Toc500940503][bookmark: _Toc506144110]class_type
class_type is an unsigned integer identifying the data class the Genomic Record belongs to among those specified in clause 10.3.
4.6 [bookmark: _Toc495592992][bookmark: _Toc500502490][bookmark: _Toc500940504][bookmark: _Ref505417554][bookmark: _Toc506144111]seq_ID
seq_ID contains the unique identifier of the Reference Sequence each segment in the Genomic Record is aligned to among those listed in the Dataset Header as specified in ISO/IEC 23092-1. In case of unmapped sequences (either raw reads or the unmapped portion of aligned reads), this field is empty. The association between this unique identifier and the textual name of the Reference Sequence shall be performed by a decoder compliant with ISO/IEC 23092-1.
[bookmark: _Toc506144112]read_group
read_group is an unsigned integer identifying the read group the MPEG-G record belongs to. Allowed values are between 0 and num_groups - 1. The presence of read groups in an Access Unit is signaled by num_groups > 0 in the Parameter Set as specified in clause 8.
4.7 [bookmark: _Toc495592996][bookmark: _Toc500502491][bookmark: _Toc500940505][bookmark: _Toc506144113][bookmark: _Toc495592993]read 1_first
read 1_first is a flag signaling if read 1 is the left-most mapped read in the Genomic Record. 
This field is always set to 1 in case of:
1. unmapped sequences (either raw reads or the unmapped portion of aligned reads)
2. single (non paired-end) sequence reads
3. genomic record containing only read 1 of a split read
This field is always set to 0 in case of:
1. genomic record containing only read 2 of a split read
4.8 [bookmark: _Toc495592998][bookmark: _Toc500502492][bookmark: _Toc500940506][bookmark: _Toc506144114]flags
flags is an 8-bit unsigned integer obtained by setting the flags related to the Genomic Record as specified in clause 11.4.3. 
[bookmark: _Ref503270350][bookmark: _Toc506144115]number_of_template_segments
number_of_template_segments specifies the number of nucleotide segments in the template. This number is the same for all the records within the same access unit.
[bookmark: _Toc506144116]number_of_record_segments
number_of_record_segments specifies the number of nucleotide segments coded in current record. It is comprised between 1 and number_of_template_segments.
4.9 [bookmark: _Toc495592999][bookmark: _Toc500502493][bookmark: _Toc500940507][bookmark: _Toc506144117]read_len
read_len contains the 32-bit unsigned integer representation of the length of each read in the Genomic Record expressed as number of nucleotides.
4.10 [bookmark: _Toc500502494][bookmark: _Toc500940508][bookmark: _Toc506144118]quality_values
The quality_values vectors contain the Quality Values associated to each nucleotide contained in the sequence vectors. When present each quality_values vector shall have the same size as the corresponding sequence vector.
4.11 [bookmark: _Toc495593002][bookmark: _Toc500502495][bookmark: _Toc500940509][bookmark: _Ref505415763][bookmark: _Toc506144119]sequence
The sequence vectors contain the ASCII representation of the nucleotides contained in the Genomic Record according to one of the alphabets specified in clause 10.1.
4.12 [bookmark: _Toc500502496][bookmark: _Toc500940510][bookmark: _Toc506144120]number_of_alignments
number_of_alignments is the number of alignments of the first read in the current Genomic Record. It is set to 0 for raw or unmapped reads.

4.13 [bookmark: _Toc500502497][bookmark: _Toc500940511][bookmark: _Ref505259879][bookmark: _Toc506144121]mapping_pos
mapping_pos contains the Genomic Record position as 0-based coordinate from the beginning of the Reference Sequence the segment is mapped to. In case of unmapped sequences (either raw reads or the unmapped portion of aligned reads), this field is empty.
4.14 [bookmark: _Ref505285987][bookmark: _Toc506144122]split_alignment
split_alignment flag indicates whether current segment of the current alignment is coded in another record (value = 1) or not (value = 0).
For split alignments (split_alignment greater than 0) the following cases have to be identified:
1. split pair with mate on the same reference sequence
2. split pair with mate on another reference sequence
3. unpaired read
	case
	split_alignment value
	

	1
	1
	seqId == split _seq_ID
mapping_pos != split _pos

	2
	1
	seqId != split_seq_ID
mapping_pos != split _pos

	3
	2
	no split_seq_ID and no split_seq_pos


4.15 [bookmark: _Toc506144123]split_pos
split_pos contains the absolute position of the paired segment in the split alignment.
4.16 [bookmark: _Toc506144124]split_seq_ID
split_seq_ID contains the unique identifier of the Reference Sequence to which the paired segment in the split alignment is aligned, among those listed in the Dataset Header as specified in ISO/IEC 23092-1.
4.17 [bookmark: _Toc506144125]delta
delta contains the position of the paired segment, relative to the position of the first segment, within the same Reference Sequence of the first segment. It is calculated as specified in clause 11.4.9.
4.18 [bookmark: _Toc495592994][bookmark: _Toc500502498][bookmark: _Toc500940512][bookmark: _Ref505285758][bookmark: _Toc506144126]ecigar_len
ecigar_len contains the size in characters of the ecigar_string field specified in clause 14.20.
4.19 [bookmark: _Ref494473318][bookmark: _Toc495592995][bookmark: _Toc500502499][bookmark: _Toc500940513][bookmark: _Ref505285795][bookmark: _Ref505286652][bookmark: _Ref505893957][bookmark: _Ref505959630][bookmark: _Toc506144127]ecigar_string
This section specifies an extended CIGAR (E-CIGAR) syntax for strings to be computed from sequences and related mismatches, indels, clipped bases and information on multiple alignments and spliced reads.
Alignments are described as a sequence of consecutive edit operations between the Reference Sequence and a sequence mapped onto the Reference Sequence.
Edit operations might involve skipping or replacing part of the sequence of either reference or read; due to this reason one has to keep track of a pointer R to the current position within the reference, and a pointer r to the current position within the read. They are both set to 0 at the beginning of the alignment process, the 0 of the reference being the position of the match.
Edit operations specified in this document are listed in Table 65.
	Operation
	Semantics
	E-CIGAR representation
	Equivalent SAM CIGAR representation 

	Increment both pointer-to-reference R and pointer-to-read r by n positions (match)
	n matching bases
	n=
	nM in older versions (not equivalent),
= in recent versions

	Replace nucleotide in the read with base C from the reference, increment pointer-to-reference R and pointer-to-read r by 1
	substitution of character C (C is present in the read and not in the reference)
	C
	M in older versions,
X in recent versions (not equivalent)

	Increment pointer-to-read r by n positions (insert from the read)
	n bases are inserted in the read (not present in the reference)
	n+
	nI

	Increment pointer-to-reference R by n positions (deletion of sequence S in the read)
	n bases are deleted in the read (but present in the reference)
	n-
	nD

	Increment pointer-to-reference R by n positions (insertion in the read). Can only occur at beginning or end of read
	n soft clips
	(n)
	nS

	Hard trim. Can only occur at beginning or end of read
	n hard clips
	[n]
	nH

	Increment pointer-to-reference R by n positions, splice consensus observed (splice in the read)
	An undirected splice of n bases 
	n*
	nN

	Increment pointer-to-reference R by n positions, splice consensus observed on the forward strand (forward splice in the read)
	A forward splice of n bases
	n/
	Not existing

	Increment pointer-to-reference R by n positions, splice consensus observed on the reverse strand (reverse splice in the read)
	A reverse splice of n bases
	n%
	Not existing


[bookmark: _Ref496861109]Table 65. Syntax of the MPEG-G E-CIGAR string
The general framework is illustrated in Figure 14.
	0000000000111111111122222222223333333 	Position in the reference
0123456789012345678901234567890123456

ACAGATATATCAGAGACCATACAGGAACATAACAGAC 	Reference
AAAGATCTAT+++++++++++CAGGTACATA       	Read

0000000000 		   1111111111		Position in the read
0123456789		     	   0123456789

CIGAR=(2)4=C3=11+4=T5=


[bookmark: _Ref496861032][bookmark: _Ref496861022]Figure 14. Alignment with soft clips, deletions and substitutions
According to the syntax specified in Table 65, the alignment depicted in Figure 14 the figure would result in this CIGAR string:
(2)4=C3=11+4=T5=
4.20 [bookmark: _Toc495592997][bookmark: _Toc500502500][bookmark: _Toc500940514][bookmark: _Ref505260846][bookmark: _Toc506144128]reverse_comp
reverse_comp is a flag associated to each alignment in the Genomic Record signaling if the alignment is on the forward (reverse_comp = 0) or reverse (reverse_comp = 1) strand. In case of unmapped sequences (either raw reads or the unmapped portion of aligned reads), this field is empty.
4.21 [bookmark: _Ref503271591][bookmark: _Toc506144129]more_alignments
more_alignments flag indicates whether more alignments, paired with the segments in current record, are recorded in other records (value = 1) or not (value = 0).
4.22 [bookmark: _Toc506144130]next_pos
next_pos contains the absolute position of the paired segment in the next record in the more_alignments list.
4.23 [bookmark: _Toc506144131]next_seq_ID
next_seq_ID contains the unique identifier of the Reference Sequence to which the paired segment in the next record in the more_alignments list is aligned, among those listed in the Dataset Header as specified in ISO/IEC 23092-1.


[bookmark: _Toc488078070][bookmark: _Toc488411785][bookmark: _Toc495593004]

[bookmark: _Toc495592939][bookmark: _Toc506144132]Annex A. Tokenization of Reads Identifiers (informative)
This clause provides an example of tokenization process for two reads identifiers encoded as a sequence of tokens specified in clause 0 and related parameters.
The following read identifiers
HS25_09827:2:2215:4133:00216#49
HS25_09827:2:2227:15822:00246#49
are tokenized into token values and parameters as shown in Table 66.
	HS25_09827:2:2215:4133:00216#49
	HS25_09827:2:2227:15822:00246#49

	Token position
	Token 
values
	
	size in bytes
	Token values
	
	size in bytes

	0
	DIFF
0
	First identifier in the AU
	1
4
	DIFF
1
	This identifier is encoded as delta on the previously decoded
	1
4

	1
	ALPHA
72, 83(HS), 0
	null-terminated string
two ASCII characters
	1
3
	MATCH
	Matches token at pos. 1 in previous identifier
	1

	2
	DIGITS
25
	digit
uint32 value
	1
4
	MATCH
	Matches token at pos. 2 in previous identifier
	1

	3
	CHAR
95
	character
ASCII code for “_”
	1
1
	MATCH
	Matches token at pos. 3 in previous identifier
	1

	4
	DIGITS0

5
9827
	digit of length 5 starting with 0
uint8 length
uint32 value excluding the leading 0
	1

1
4
	MATCH
	Matches token at pos. 4 in previous identifier
	1

	5
	CHAR
58
	character
ASCII code for “:”
	1
1
	MATCH
	Matches token at pos. 5 in previous identifier
	1

	6
	DIGITS
2
	digit
uint32 value
	1
4
	MATCH
	Matches token at pos. 6 in previous identifier
	1

	7
	CHAR
58
	character
ASCII code for “:”
	1
1
	MATCH
	Matches token at pos. 7 in previous identifier
	1

	8
	DIGITS
2215
	digit
uint32 value
	1
4
	DELTA
12
	delta encoding on token at pos. 8 in previous identifier
	1
1

	9
	CHAR
58
	character
ASCII code for “:”
	1
1
	MATCH
	Matches token at pos. 9 in previous identifier
	1

	10
	DIGITS
4133
	digit
uint32 value
	1
4
	DIGITS
15822
	digit
uint32 value
	1
4

	11
	CHAR
58
	character
ASCII code for “:”
	1
1
	MATCH
	Matches token at pos. 11 in previous identifier
	1

	12
	DIGITS0

5
216
	digit of length 5 starting with 0
uint8 length
uint32 value excluding the leading 0
	1

1
4
	DELTA0
30
	digit
uint32 value
	1
4

	13
	CHAR
35
	character
ASCII code for “#”
	1
1
	MATCH
	Matches token at pos. 13 in previous identifier
	1

	14
	DIGITS
49
	digit
uint32 value
	1
4
	MATCH
	Matches token at pos. 14 in previous identifier
	1

	15
	END
	End of identifier
	1
	END
	End of identifier
	1


[bookmark: _Ref496773242]Table 66. Example of the first two encoded read identifiers in an Access Unit
[bookmark: _Toc506144133]Annex B. Examples of decoding processes (informative)
[bookmark: _Toc506144134]clips descriptor
An example of clips descriptor representing two set of soft clips in a paired-end read is provided in Table 67.
	byte
	value
	semantics

	N
	0x00
	This is the unique identifier in this Access Unit (a monotonically increasing counter) of the next Genomic Record containing soft clips.

	N+1
	0xf1
	

	N+2
	0x31
	

	N+3
	0xe3
	

	N+4
	0x01
	This flag indicates the position of the next soft clips in the read or read pair. In this case the soft clips are located at the end of read 1.

	N+5 
	‘A’
	This is a string of 10 ASCII characters which represent the clipped bases at the end of read 1

	...
	...
	

	N+14
	‘C’
	

	N+15
	0xfe
	More soft clips for this Genomic Record are present.

	N+16
	0x02
	This flag indicates the position of the next soft clips in the read or read pair. In this case the soft clips are located at the beginning of read 2.

	N+17
	‘G’
	This is a string of 6 ASCII characters which represent the clipped bases at the end of read 1.

	...
	...
	

	N+22
	‘T’
	

	N+23
	0xff
	Descriptor terminator.


[bookmark: _Ref490510270]Table 67. Example of clips descriptor.
[bookmark: _Toc506144135]pair descriptor
Table 68 shows an example of 16 decoded bytes from the pair stream for three possible cases:
1. the signed distance between the two mapped reads is encoded in 2 bytes
1. the absolute mapping position on the current Reference Sequence is encoded for one of the two reads
1. the absolute mapping position on a different Reference Sequence is encoded for one of the two reads
Given this sequence of 4 SAM records
	1
	QNAME  163  1	11000	0  100M	=	11578	 	-578	SEQ    QS

	2
	QNAME  65   1	10006	0  100M	=	19800651	0	SEQ    QS

	3
	QNAME  129  1	10006	0  100M	X	19800651	0	SEQ    QS

	4
	QNAME  1161 1	10010	0  100M	=	10010	   	0	SEQ    QS




	SAM record
	byte
	value
	descriptor
	semantics

	1
	N
	0x0a
	pairi
	This represents a distance of -578 positions between the left-most mapped base of the read 1 and the left-most mapped base of read 2. The negative distance implies that read 2 is mapped at a smaller coordinate than read 1.

	
	N+1
	0xf1
	
	

	2
	N+2
	0x7f
	pairi+1
	read 2 in pair is on the same Reference Sequence but coded separately. This implies that:
· the pos descriptor corresponding to this pair descriptor refers to the mapping position of read 1
· the following 4 bytes encode the absolute mapping position of read 2 on the current Reference Sequence

	
	N+3
	0xfd
	
	

	
	N+4
	0x01
	
	the absolute mapping position of read 2 on the current Reference Sequence is 19,800,651

	
	N+5
	0x2e
	
	

	
	N+6
	0x22
	
	

	
	N+7
	0x4b
	
	

	3
	N+8
	0x80
	pairi+2
	read 1 is on a different Reference Sequence

	
	N+9
	0x02
	
	

	
	N+10
	0x00
	
	Reference Sequence identifier for chromosome X (in this case Ref_ID = 22)

	
	N+11
	0x16
	
	

	
	N+12
	0x01
	
	the absolute mapping position of read 1 on the Reference Sequence identified by Ref_ID = 22 is 19,800,651

	
	N+13
	0x2e
	
	

	
	N+14
	0x22
	
	

	
	N+15
	0x4b
	
	

	4
	N+16
	0x80
	pairi+3
	read 2 unpaired

	
	N+17
	0x01
	
	


[bookmark: _Ref490643963]Table 68. Examples of decoded pair descriptors
[bookmark: _Toc506144136]Annex C. Mapping quality (informative)
Some aligners produce a score for each found alignment which is usually stored in the MAPQ field of the SAM format. MPEG-G supports the representation of a mapping quality value by means of the optional mscore descriptor as described in clause 11.4.10. When several alignments scores are needed per each alignment, the parameter as_score in the Parameter Set shall signal how many scores are associated to each alignment in the Access Unit.
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