[bookmark: __RefHeading___Toc340_437157285][bookmark: _Toc313035894][bookmark: _Toc313034394][bookmark: _Toc313029672][bookmark: _Toc313027454][bookmark: _Toc313025641][bookmark: _Toc520151350]INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
[bookmark: _Toc313035895][bookmark: _Toc313034395][bookmark: _Toc313029673][bookmark: _Toc313027455][bookmark: _Toc313025642][bookmark: __RefHeading___Toc342_437157285]ORGANISATION INTERNATIONALE DE NORMALISATION
[bookmark: _Toc313035896][bookmark: _Toc313034396][bookmark: _Toc313029674][bookmark: _Toc313027456][bookmark: _Toc313025643][bookmark: __RefHeading___Toc344_437157285]ISO/IEC JTC1/SC29/WG11
[bookmark: _Toc313035897][bookmark: _Toc313034397][bookmark: _Toc313029675][bookmark: _Toc313027457][bookmark: _Toc313025644][bookmark: __RefHeading___Toc346_437157285]CODING OF MOVING PICTURES AND AUDIO

[bookmark: __RefHeading___Toc348_437157285][bookmark: _Toc313035898][bookmark: _Toc313034398][bookmark: _Toc313029676][bookmark: _Toc313027458][bookmark: _Toc313025645]ISO/IEC JTC1/SC29/WG11/N17041
[bookmark: __RefHeading___Toc350_437157285][bookmark: _Toc313035899][bookmark: _Toc313034399][bookmark: _Toc313029677][bookmark: _Toc313027459][bookmark: _Toc313025646]July 2017, Torino, Italy

Title:		CDVA Experimentation Model (CXM) 2
Source		Video Subgroup	
Status:	Approved
Editors:	Massimo Balestri, Miroslaw Bober, Werner Bailer

1	Introduction	2
2	CXM Architecture	3
3	Extraction	3
4	Pairwise matching	6
5	Retrieval	7
6	Parameters	8
7	Implementation details for CXM2.0	9
8	Results for CXM2.0	10
9	Complexity of CXM 2.0	11
Processing times	11
Peak memory usage	12
10	References	13

1 [bookmark: _Toc317895121][bookmark: __RefHeading___Toc352_437157285][bookmark: _Toc488392107]Introduction
CDVA defines video descriptors for search and retrieval applications, specifically for visual content matching in video. Visual content matching includes matching of views of large and small objects and scenes, that is robust to partial occlusions as well as changes in view point, camera parameters, and lighting conditions. The objects of interest comprise planar or non-planar, rigid or partially rigid, textured or partially textured objects, but exclude the identification of people and faces [1].

There are two base modes of operation of the visual search: Pairwise matching and Retrieval. Pairwise matching automatically determines if two video segments depict the same object or scene. Retrieval performs search of videos in a large database, returning a subset that depict the same objects or scenes contained in the query video or image.

The CDVA Experimental Model (CXM) implements the operations necessary to solve these two tasks. This document describes the general architecture and component modules contained in the CDVA experimental model.

This document describes the architecture of CXM2. CXM2 will be released in two software versions:
· CXM2.0 includes the temporal encoding of CDVS global and local descriptors, and is released together with this document.
· CXM2.1 adds extraction, matching and retrieval of deep features (NIP) descriptors. It is expected to be released in September 2017.

2 [bookmark: _Toc317895122][bookmark: __RefHeading___Toc354_437157285][bookmark: _Toc488392108]CXM Architecture
The software implementation uses the CDVS reference software TM14.2. It includes modules for temporal sampling and segmentation, extraction of deep feetures and temporal encoding of global and local CDVS features and deep features.
3 [bookmark: _Toc317895123][bookmark: __RefHeading___Toc356_437157285][bookmark: _Toc488392109]Extraction

[image:]
[bookmark: _Ref313026625]Figure 1. The CDVA descriptor extractor.

Figure 1 illustrates how the CXM2 produces a compact descriptor of a video segment in a series of processing steps, when a video frame is given in input to the system. The process is repeated for all frames in the input video segment. The resulting descriptors are grouped by segments. Segments are represented with their first key frame being identified as segment boundary. All following frames until the next segment boundary or the end of the file belong to the same segment. The output descriptor is updated by appending the output of the CDVA Extraction into a single CDVA descriptor.

1. Frame subsampling: Performs temporal frame subsampling (typically by a factor of 2-10).
2. Decode frame: Decode a frame present in the video.
3. Compute color histogram: a histogram of the R,G,B planes is computed, using 32 bins for each plane.
4. Check the difference between current and previous color histograms: if the difference is greater than a given threshold (th), the frame is selected as keyframe and further processed. If not, the frame is dropped.
5. Frame drop module: if, according to step 4, the current frame is similar to the previously encoded one, the current frame is dropped.
6. Store color histogram: the color histogram is stored in memory, to be used as “previous histogram” in the next iteration.
7. Extract SCFV descriptor: Extracts the CDVS descriptors from individual frames, using mode 0 of the CDVS standard (ISO/IEC 15938-13 [6]).
8. Extract CDVS local descriptor: Extracts the CDVS local descriptors from individual frames, using mode 0 of the CDVS standard (ISO/IEC 15938-13 [6]).
9. Extract deep feature descriptor: Extract the deep feature descriptor using a pretrained VGG16 network, and binarise the resulting descriptor.
10. Check the difference of color histograms between current frame and segment start: If the difference is greater than a given threshold (seg_th), the frame is selected as candidate of a segment boundary (first frame of a new segment).
11. Compute global SCFV similarity between current descriptor and descriptor of first frame of segment: If the similarity is below a given threshold (ver_th), the frame is confirmed to be a segment boundary.
12. Store color histogram and SCFV descriptor: For frames identified as segment boundaries, store the descriptors for comparisons with the subsequent frames.
13. Store descriptors for segment: Store all extracted descriptors for the current segment together with their time index.
14. Determine representative frame: Select a representative frame for the segment, selected as the frame with the medoid SCFV descriptor. This frame is used as the reference for encoding the global and local descriptor of the segment.
15. Determine encoding order: The encoding order is determined from the SCFV descriptors of the key frames in the segment. The first is the representative frame, followed by frames with decreasing distance to any of the frames encoded so far.
16. Determine global descriptor differences: For each key frame other then the representative frame, determine a difference descriptor as XOR between its SCFV descriptor and the SCFV descriptor of the reference frame.
17. Encode global descriptor: Encode the block formed from the SCFV descriptor of the representative frame and the difference descriptors using adaptive binary arithmetic coding.
18. Collect and filter local descriptors: Collect and order the local descriptors used in the segment, starting from the local descriptors of the representative frame, and continuing to the temporally adjacent key frame frames (alternating in forward and backward direction). The descriptors are filter as follows: if a local descriptors differs less than minLocalDiff elements from one already collected, it is discarded, and replaced by a reference to the already encoded descriptor.
19. Encode local descriptors: Generate a map of descriptor indices between the original per frame indices and the filtered list of descriptors. In case descriptors have been replaced by references, the map will have multiple pointers to the same index. The set of local descriptors remaining after filtering is encoded using adaptive binary arithmetic coding.
20. Determine deep feature descriptor differences: For each key frame other than the representative frame, determine a difference descriptor as XOR between its deep feature descriptor and the deep feature descriptor of the reference frame.
21. Encode deep feature descriptor: Encode the block formed from the deep feature descriptor of the representative frame and the difference descriptors using adaptive binary arithmetic coding.
22. Write header: Write a header structure, containing the start and end time of the segments, parameters needed for decoding, the number of frames, local descriptors and the sizes of the blocks containing the different types of descriptors.
23. Write descriptor blocks: Write the encoded global, local and deep feature descriptor blocks.
4 [bookmark: _Toc317895124][bookmark: __RefHeading___Toc358_437157285][bookmark: _Toc488392110]Pairwise matching

[image:]
Figure 2. The CDVA pairwise matching.

Figure 2 illustrates the CDVA pairwise matching operation.

1. Decode: Decode the Query CDVA Descriptor (Q) and the Reference CDVA Descriptor (R). Reconstruct SCFV and CDVS local feature or deep feature descriptors for all key frames in the segment.
2. Get next descriptors for next key frame pair Qi Rj: for all pairs of Query and Reference key frames, execute the following steps.
3. Branch between matching procedure with CDVS local and deep features.
4. Match global descriptor: perform a CDVS SCFV match operation using the global descriptors of key frames Qi and Rj
5. Match local descriptors: if the match score is greater than th1, perform a CDVS match operation using the local descriptors.
6. Match deep feature descriptors: perform a match operation (Hamming distance) of the deep feature descriptors of key frames Qi and Rj, and convert the distance into a similarity score. If the score exceeds th1, continue with the combination of scores.
7. [bookmark: __DdeLink__5082_260653121]Determine score: determine the current score as a combination of the local and global score or global and deep feature score respectively.
8. Set time of Q: if the current score is greater than th2, store the time of segment Q belongs.
9. Update score: (default strategy: max) set the total score as the maximum of all current scores..
If CDVS local feature descriptors are used, the thresholds th1 and th2 are defined according to the CDVS specification. If deep features are used, the parameters th2 and th3 defined in Section 6 shall be used.
5 [bookmark: _Toc317895126][bookmark: __RefHeading___Toc360_437157285][bookmark: _Toc488392111]Retrieval
[image:]

Figure 3. The CDVA retrieval pipeline.

Figure 3 illustrates the CDVA retrieval operation. This figure assumes that a database index has been built and is in place.

1. Decode: decode +the query CDVA descriptor and reconstruct the global and local or deep feature descriptors for each key frame in the segment.
2. Branch between retrieval procedure with CDVS local and deep features.
Retrieval procedure if CDVS local descriptors are present
3. Get next: for the CDVS global and local descriptors in the query CDVA descriptor, execute the following steps.
4. Query in the global descriptor index: perform a CDVS retrieval operation using SCFV descriptor of key frame Qi on the global descriptor database index.
5. Sort: sort the results by descending score.
6. Local descriptor matching: perform CDVS local descriptor matching on the top 500 results.
7. Rerank: rerank by local score.
8. Merge results: merge results removing duplicates.
9. Return the top 50 videos.
Retrieval procedure if deep feature descriptors are present
3. Query in the global descriptor index: perform a retrieval operation using the SCFV descriptor of key frame Qi on the global descriptor database index.
4. Query in the deep feature descriptor index: perform a retrieval operation using the deep feature descriptor of key frame Qi on the deep feature descriptor database index.
5. Combine scores: determine the score as a weighted combination of the global and deep feature descriptor scores.
6. Sort: sort the results by descending score.
7. Merge results: merge results removing duplicates.
8. Return the top 50 videos.
6 [bookmark: _Toc317895128][bookmark: __RefHeading___Toc362_437157285][bookmark: _Ref488245831][bookmark: _Toc488392112]Parameters
The section describes the parameters in CXM2. Note that additional parameters are in CDVS TM14.2, which is used by CXM2.

Table 1: Parameters used in CXM2.

	Parameter
	Process
	Description
	Default (16/64/256)

	skip_before
	Extraction
	Number of frames skipped before a sampled frame
	4 / 3 / 2

	skip_after
	Extraction
	Number of frames skipped after a sampled frame
	4 / 3 / 2

	th
	Extraction
	Threshold (color histogram) for selecting key frames
	0.7 / 0.6 / 0.5

	seg_th
	Extraction
	Threshold (color histogram) for segment candidates
	1.98

	ver_th
	Extraction
	Threshold (CDVS global) for verifying segment candidates
	18

	minLocalDiff
	Extraction
	The minimum local difference of local descriptors to be encoded (otherwise replaced by a reference).
	31/16/1

	th2
	Matching
	[Deep feature descriptors only] Threshold for the matching the weighted sum of deep feature and SCFV global descriptor. If CDVS local features are used, this parameters is defined according to the CDVS specification.
	0.46

	th3
	Matching
	[Deep feature descriptors only] Threshold for deep feature descriptor matching. If CDVS local features are used, this parameters is defined according to the CDVS specification.
	0.58

	deep_weight
	Matching and retrieval
	[Deep feature descriptors only] Weight of the deep feature descriptor for combination. The SCFV descriptor will be weighted 1 – deep_weight
	0.75

	max_retrieved
	Retrieval
	Maximum number of segments to retrieve
	50

7 [bookmark: _Toc488392113]Implementation details for CXM2.0
The software modules to extract, match, make the database index and retrieve matching images from the database index are implemented in C++.

The CXM2.0 code and the software documentation are attached to this document. The code is documented by means of doxygen (http://www.doxygen.org/).

[bookmark: _Toc317895129][bookmark: __RefHeading___Toc364_437157285]The following table summarizes the modules that compound the CXM2.0 software.

	CDVA EF
	The CDVA Evaluation framework code

	CDVS Library
	The CDVS Library (TM14.2)

	OpenCV Library
	The Open Source Computer Vision library (2.4)

Table 2. Modules that compound the CXM2.0.
	
8 [bookmark: _Toc488392114]Results for CXM2.0
The experiments were performed by building and executing the CXM2.0 source code on a 64-bit Linux server running Ubuntu 14.04 with opencv 2.4.8 and libavcodec-ffmpeg56. Please note that using older versions of the above libraries may produce incorrect results.

[image:]

 Descriptor lengths (Bps): 16K 64K 256K
 Query average lengths: 3011.25 3748.55 4850.42
 Query max lengths: 18476.57 23643.55 27737.24
 Reference average lengths: 3901.32 4889.96 6461.74
 Reference max lengths: 18476.57 23643.55 27737.24

 Retrieval performance at: 16K 64K 256K
 Mean average precision: 0.725 0.731 0.734
 r-Precision: 0.717 0.723 0.725

 Pairwise matching performance at: 16K 64K 256K 16K_256K
 True positive rate at 1% false positive rate: 0.835 0.842 0.845 0.838
 Mean Jaccard index for temporal localisation: 0.661 0.662 0.651 0.654
9 [bookmark: _Toc488392115]Complexity of CXM 2.0
Complexity measurements are reported in the following tables. The measured operations are: extraction of the “TimingExtract.txt” list, matching of the “TimingMatchingPairs.txt” list, and matching of the “TimingNonMatchingPairs.txt” list of the CDVA Dataset. Retrieval measurements were taken using the “TimingRetrieval.txt” list.
[bookmark: _Toc488392116]Processing times
All reported times are normalized using the reference platform CPU characteristics (Intel Xeon Processor E5-2630 v2), assuming that the CPU is operating at a base frequency of 2.6 GHz, in single thread execution, at an average rate of one instruction per cycle, without GPU acceleration. The cells marked yellow are values that are compared against the corresponding CDVA thresholds.
	CXM 2.0 (rev. 46)
	Extract
	Matching pairs
	Non MatchingPairs
	Retrieval

	Number of items (files, pairs)
	3318
	127
	1270
	281

	Total video duration (s)
	98,916.70
	
	
	

	Reference CPU GHz
	2.60
	2.60
	2.60
	2.60

	Normalized processing time (s)
	[bookmark: _GoBack]68,610.58
	65.75
	397.63
	11,267.51

	Processing time/video duration (s)
	0.69
	
	
	

	Processing time/item (s)
	20.67
	0.52
	0.31
	40.10

	CDVA EF limit (s)
	10.00
	1.00
	1.00
	60.00

	CDVA EF limit fulfilled
	yes
	yes
	yes
	yew

Table 1: processing times

The Evaluation Framework document states that the following limits for average time numbers on the reference platform must be met:
1. extraction time: must not exceed 10 seconds per second of decoded video content.
2. pairwise matching time: must not exceed 1 second per pair.
3. retrieval time: must not exceed 60 seconds per query.

The conditions are met.
[bookmark: _Toc488392117]Peak memory usage
The peak memory usage was detected using the run-memory-test.pl script of the CXM, based on the Linux “time” tool.

	Operation
	Maximum resident set size (kbytes)

	cdva extract
	440,296

	cdva match (matching pair)
	65,216

	cdva match (non-matching pair)
	29,880

	cdva retrieve
	13,961,940

Table 2: peak memory usage

10 [bookmark: _Toc317895130][bookmark: __RefHeading___Toc366_437157285][bookmark: _Toc488392118]References

[1] N15339, “Call for Proposals for Compact Descriptors for Video Analysis (CDVA) - Search and Retrieval”, June 2015, Warsaw (PL)
[2] N15729, Evaluation Framework for Compact Descriptors for Video Analysis - Search and Retrieval – Version 2.0, October 2015, Geneva, CH
[3] N15040, Compact Descriptors for Video Analysis: Requirements for Search Applications, Oct. 2015, Strasbourg, FR.
[4] N14507, Compact Descriptors for Video Analysis: Objectives, Applications and Use Cases, Apr. 2014, Valencia, ES.
[5] N15339, “Call for Proposals for Compact Descriptors for Video Analysis (CDVA) - Search and Retrieval”, June 2015, Warsaw (PL)
[6] ISO/IEC 15938-13:2015(en) “Information technology - Multimedia content description interface - Part 13: Compact descriptors for visual search”

13
image2.png
CDVA Matching

Decode CDVA Get SCFV
segment descriptors for
descriptors Q key frame pair

and R Qi Rj

use deep features?

Get deep
feature desc.
for key frame

pair Qi Rj

Match deep
feature #

descriptors

global score > th1

Get local
feature desc. Match global Match local
for key frame descriptors descriptors
pair Qi Rj

Match global score > th2

descriptors Determine

combined score

Set time of

deep feature segment Q
score > th3

Update score

score =0

score and time range

image3.png
CDVA Retrieval

Decode CDVA Get SCFV
segment use deep features? descriptor for
descriptor Q key frame Qi

Get the top 500
elements from the
list

Query SCFV
descriptorindex

Sort by
ending score

' desc

Local descriptor

matching for each item in
Get SCEV Get deep Rerank by local score gthe ot

descriptor for feature desc.
key frame Qi for key frame Qi

Aggregate segment
matches to video

Query deep matches

feature descriptor
index

Query SCFV
descriptorindex

Return top max_retrieved videos

Sort by
descending score

Combine scores

image4.emf
0.95 0.955 0.96 0.965 0.97 0.975 0.98 0.985 0.99 0.995 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CDVA Pairwise matching

True Negative

True Positive

16K

64K

256K

16K_256K

image1.png
Temporal subsampling (key frames)

CDVA Extraction

video
frame

Ci it
' Frame » Decode nglzl; € current—
subsampli frame histogram previous > th ?
Extract CDVS ‘
local descriptor
Extract deep ‘

feature descriptor

\ store descriptol
for segment
Compute global

i L videoframe
CEEEy timecode.

Previous
color
histogram

Extract SCFV Store color
descriptor histogram

Temporal
segmentation
current hist =
firstin seg. hist >

similarit Encode segment descriptor

Det:rerzéne lgolfba\ Encode global
P descriptors

differences
no
re?gsesrzr:ta:ve DD
frame G LR G Collect and filter Encode local

local descriptors descriptors

Determine deep » Encode deep
feature differences feature descriptors

Store hist and SCFV
descriptor of first
frame of segment

Write header

Write descriptor
blocks

append to CDVA
video descriptor

