INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC1/SC29/WG11
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11 N16944
July 2017, Torino, IT

	Source
	Systems

	Status
	Approved

	Title
	Working Draft on Carriage of Web Resources in ISOBMFF

	Authors
	Thomas Stockhammer (Qualcomm), Cyril Concolato (Telecom ParisTech)

Introduction
This document specifies the use of ISOBMFF tools for the storage and delivery of web data. The specified storage is designed to enable enriching audio/video content, as well as audio-only content, with synchronized, animated, interactive web data, including overlays.
Carriage of Web data in ISOBMFF
Overview
ISO/IEC 14496-12 specifies a format for the storage of timed resources such as media streams and resources for which no timed stream structure exists or when the timed stream structure does not need to be exposed.

The following specifies how this format can be used to store Web resources, and defines associated brands. It also specifies how references from these Web resources to the file that carry them are handled.

The specified storage enables the delivery of synchronized media and web resources as supported by ISO/IEC 14496-12: file download, progressive file download, streaming, broadcast, etc.

Editor's note: We should probably discuss the different handling of sparse metadata, which probably should rather be delivered as non-timed assets rather than timed-assets. This would avoid issues with fragmented tracks having no samples for a long period of time. This would mean using MetaBoxes in movie fragments, with clearer semantics than the EventMessageBox.

Editor’s note: In all cases, it should be ensured that the file/presentation contains sufficient information such that the file can be played back in a regular browser. This may for example require a dedicated launch page that is used by browsers.

Editor's note: We should make sure that the file describes the required capabilities to process the file. This could be done by referencing Web profiles defined by other organizations, through the MIMEBox, similarly to how it is done in 14496-30.
Timed Web Assets
Overview
Storage of web resources (HTML, JavaScript …) can be done using tracks when timed decoding and presentation is desired, including operations such as seeking, fast forwarding, trick play, etc. In such case, it is assumed that a Web resource carried in a sample is to be processed (e.g. parsed and interpreted) by the web resource processor (e.g. web browser) at the sample presentation time. This allows Web processing (e.g. rendering or JavaScript execution) to be synchronized with other tracks such as audio/video/subtitles tracks. More details on the processing of these tracks are given in the hypothetical processing model in Annex XXX.

Several types of tracks are defined for different purposes:
· Tracks delivering HTML content that may be used as overlay when playing the other media tracks and that may change over time. Such tracks should not reference the other media tracks (audio, video). HTML content carried as specified in 2.3 should rather be to the other media tracks (audio, video…). This kind of track may also be used to simply provide advanced image overlay.
· Tracks delivering JavaScript code. This code is to be evaluated in the context of an HTML document, previously loaded either by the application prior to the loading of the ISOBMFF file, or by the loading of a sample from the previous type of track, or by the loading of an item as described in 2.3.
· Tracks delivering metadata, as specified in HTML[footnoteRef:1], to be used by internal page JavaScript code, previously loaded either by the application prior to the loading of the ISOBMFF file, or by the loading of a sample from the previous type of track, or by the loading of an item as described in 2.3. [1: https://html.spec.whatwg.org/multipage/media.html#best-practices-for-metadata-text-tracks]

Note: This specification defines the storage and delivery of resources referenced by the content one of the above tracks using mechanisms for the delivery of non-timed resources as specified in 2.3 in combination with the use of movie fragments.

Editor's note: We should make sure that in environment where only single track files are used (e.g. CMAF) the use cases are still satisfied. In particular, one can still put JS in the HTML track.

Editor's note: Should we include a type for tracks that contain multiple samples with HTML content and that reference the video. This type of track might be problematic, especially in terms of flashing at sample boundaries and of video playback continuity.

Editor's note: We probably should indicate the dependency of the JavaScript track to any other track (e.g. the HTML track) or items (normally possible since track ids and item ids share the same scope) when possible (i.e. when the HTML context on which the JS depends is not provided out-of-band). This probably needs a new track reference (e.g. 'ovly').

Two models for the dependencies of the tracks can be envisaged:
a) the track is self-contained, and has no dependency to any parent HTML. For example, it is an HTML track that can be rendered on its own; or it is a JavaScript track that does not dispatch any event, but executes code. This can be for example the case if the JS creates an overlay using the Canvas API, but also if it does not assume any specific HTML (but only an empty HTML <html><body></body></html>) and creates all the HTML elements. In this case, no HTML entry point is required.
b) The track has dependency on some outer context. For example, it is a JavaScript track and only contains calls to functions defined somewhere else (see example 4.3). Alternatively, it is a WebVTT track and the associated processing is contained in a JavaScript file. In that case, the track cannot be used without the surrounding context, the HTML and JavaScript. Therefore, an HTML/JS entry point is required and should be in the same ISOMBFF file.

A single file may contain multiple Web-based tracks. The processing of some tracks (e.g. JavaScript) may be required by some other tracks (e.g. HTML track). The selection of which sets of independent tracks to play is implementation specific. It may be done based on metadata also given in the file (profile capabilities, language information) or based on user input (e.g. through a GUI).
[bookmark: _Ref488328829]Track Layout
As specified in ISO/IEC 14496-30, unless specified by an embedding environment (e.g. by an HTML page delivered out-of-band or delivered in-band and identified as the file entry point as specified in 2.3), the layout of tracks, including of overlay HTML tracks and images, is specified using the TrackHeaderBox of the different tracks.
Overlay HTML Tracks
The brand 'htmt' is used to signal the presence of tracks with the following constraints:
· The track handler type is 'text'
· The sample entry format is 'stxt' and:
· its mime_format field is set to 'text/html' or 'application/xhtml+xml',
· its content_encoding field contains either an empty string or a value allowed in HTTP's Content-Encoding header
· Each sample contains HTML code, and has the following constraints:
· it is marked as a sync sample (either using the 'stss' box or using the sample_depends_on flag set to 2)
· it may be marked as redundant with the sample_has_redundancy flag set to 1

Editor's Note: Maybe, we should mention that loading of a new HTML sample is equivalent to navigating to the document contained in the new sample. It is necessary? Browsers maintain information associated to the document such as navigation information. Would this create problems?

Editor's Note: We should mention that seeking into a sample is meant to be equivalent to seeking at the beginning of the sample (no interpolation of inner animations like CSS or JS-based)

JavaScript Tracks
The brand 'hjst' is used to signal the presence of tracks with the following constraints:
· The track handler type is 'meta'
· The sample entry format is 'stxt' and:
· its mime_format field is set to 'application/javascript' or 'text/javascript',
· its content_encoding field contains either an empty string or a value allowed in HTTP's Content-Encoding header
· Each sample contains JavaScript code and has the following constraints:
· it may be marked as a sync sample (either using the 'stss' box or using the sample_depends_on flag set to 2)
· it may be marked as redundant with the sample_has_redundancy flag set to 1

Editor's Note: We should warn the user that marking JS sample as sync sample might be tricky because you need to make sure that the application JS state is indeed the same as if you did start from the beginning. We should also discuss that redundant samples should not be loaded twice because this could possibly give a wrong result.

Editor's Note: We should also probably discuss security issues with these types of tracks.
[bookmark: _Ref488309189]WebVTT Metadata Tracks
The brand 'hvtt' is used to signal the presence of tracks with the following constraints:
· The track handler type is 'meta'
· The sample entry format is 'wvtt', as specified in ISO/IEC 14496-30 and:
· its config value is "WEBVTT\r\n"

Editor's note: Should the config contain the header "kind: metadata"
· The KindBox is present in a UserDataBox in the TrackBox with the following values:
· schemeURI: about:html-kind, as specified in HTML[footnoteRef:2] [2: https://html.spec.whatwg.org/multipage/media.html#identifying-a-track-kind-through-a-url
]

· value: metadata, as specified in HTML[footnoteRef:3] [3: https://html.spec.whatwg.org/multipage/media.html#text-track-model]

· Each sample contains text cues and has the following constraints:
· it may be marked as a sync sample (either using the 'stss' box or using the sample_depends_on flag set to 2)
· it may be marked as redundant with the sample_has_redundancy flag set to 1
Image Overlay Tracks
Images are important Web resources. Image tracks, as specified in ISO/IEC 14496-12 or ISO/IEC 23008-12, can be used to provide image overlays. Overlay HTML tracks as specified 2 may also be used to provide advanced image overlays, without interactivity, when the HTML content reference images (either in tracks or as items).
[bookmark: _Ref488314246]Non-timed Web Assets
Overview
Web resources can be stored as items, when there is no specific time associated to the loading of that resource (entry point CSS, HTML, JS). Items are declared in MetaBox which can be placed in initialization or media segments.

Editor's note: make sure that this is clear that the MetaBox can be used in initialization segments and in movie fragments.
Web Items
The brand 'htmi' may be used to signal the use of a MetaBox with the following constraints:
· it is present at the file level
· it uses a HandlerBox with the handler_type set to 'html'
· it contains a PrimaryItemBox which declares as primary item a resource of type 'text/html', or 'application/xhtml+xml',
· it does not use any DataInformationBox, ItemProtectionBox or IPMPControlBox
· it uses a ItemInformationBox with the following constraints:
· its version is either 0 or 1
· each item is described by an ItemInfoEntry with the following constraints:
· its version is set to 0
· its item_protection_index is set to 0
· if the item is referred to by a URL in the content of another item, its item_name is equal to that URL.
· it uses an ItemLocationBox with the following constraints:
· its version is set to 1 or 2
· each item is described by an entry and values 0, 1 or 2 may be used for the construction method
· it may use any other boxes (such as ItemReferenceBox) not explicitly excluded above

Editor's note: Should the content of the item be the body of an HTTP response? This could help with providing cache directives. This raises the question of the time associated to cache directives: real time or media time. The processing model in the package is typically on media time.

Editor's note: Do we need to allow other packages as primary items, in particular W3C packages?

Editor's note: Should we allow Track level MetaBoxes for resources are used only by a Track?

Editor’s note: Such non-timed items may still be important, for example they may serve as an entry point and they may change, if random access is needed.
[bookmark: _Ref488307768]URLs to Web resources embedded in ISOBMFF files
If Web resources are embedded in an ISO/IEC 14496-12 file (either in track samples or items as described above), and if any of these resources contains URLs to other resources also embedded in the same ISOBMFF file (including to the ISOBMFF file itself (e.g. in a video tag)), the following constraints apply on the file:

· A MetaBox shall be present at the file level with the following constraints
· For each URL to a resource embedded in the ISOBMFF file, the item_name for the item corresponding to that resource shall be set to that URL

Editor's note: This probably should cover URI. But, are URI used to reference resources in Web content?

Editor's note: Should we make any difference between relative and absolute URL?

· If a resource embedded in the ISOBMFF file uses a URL to that same ISOBMFF file, an additional item shall be added whose item_name is set to that URL and the item location describes the entire file (offset: 0, length entire)

Editor's note: Should the offset/length point rather to the 'moov' ? or 'ftyp' + … + 'moov' ? or the entire file ? Probably not the entire file for the fragmented, streaming case.

NOTE: Because items store the same URL that is used in the Web resources, the Web content can be consumed when it is embedded in the ISOBMFF file without editing compared to when it is not embedded.

Hypothetical Processing Models
In this document, it is assumed that players/readers will process the media and web resources according to the hypothetical models below.

The first model applies when a media player integrates a Web engine. In that case, the ISOBMFF file is processed by the media player, stream samples and items are extracted, and stream samples are processed synchronously. The HTML overlay tracks are processed by instantiating a web engine. The video decoding and web engine rendering are then combined for final display, with frame accurate rendering. It is depicted in Figure 1.

Editor's note: Frame accurate synchronization is a goal but may be hard to achieve given that model assumes instantaneous processing of the sample content while in practice it may require a lot of processing. The current model guarantees synchronization at the decoding side and gives the intention to the application that presentation should be synchronized as well, but this is left to the implementation. Maybe profile should limit the complexity of the samples.

[image: cid:image002.png@01D2A79D.58D8E840]
[bookmark: _Ref488324151]Figure 1 – Hypothetical Processing Model for Media Player integrating a Web engine
Editor's note: Figure 1 and Figure 2 should be oriented in the same direction (rendering on the right).

The second model, depicted in Figure 2, applies when the Web engine is initiated, by loading some Web content (e.g. an HTML page) and when that page loads the media content (e.g. using a video or audio tag).
[image:]
[bookmark: _Ref488326983]Figure 2 - Hypothetical Processing Model for Web Engine including Media Engine
Conceptually, all resources stored as items in the ISOBMFF file are extracted from the file and placed in the cache of the Web engine, using the item_name as URL. These resources can then be available for downloads initiated by the Web engine (such as using the XmlHttpRequest or Fetch APIs). This applies even in the case of streaming using ISOBMFF fragments, when items are delivered progressively by placing MetaBoxes in segments.

Editor's note: add a description about the possible combination of the models.

It should be noted that both models assume that the results of the execution of the JavaScript code contained in a sample of a JavaScript track are available at the presentation time of that sample, and similarly that the rendering of HTML contained in an HTML overlay track sample is done at the presentation time of that sample. Concrete implementations might have to take into account processing delays to achieve synchronization and might have to prefetch resources that are not embedded in the file.

Editor's note: We should probably discuss if the model for media samples assumes that they are "delta-functions" that happen at the sample presentation time or if they document a state that is valid during the sample duration. It may dependent on the track type: on the one hand, unless the JavaScript code in a sample is idem-potent, calling it twice (after splitting a sample into two samples) will not result in the same thing; on the other hand, WebVTT metadata dispatched twice with the same value should not create problems.
Worked Examples of the use cases
Embedded HTML entry point playing the video content
Assuming the Web content is composed of the following HTML document:
<!doctype html>
<html>
 <body>
 <video src="file.mp4"></video>
 </body>
</html>

The ISOBMFF file can be structured as follows:
· track 1: audio track
· track 2: video track
· one top level MetaBox with the following
· handler: html
· primary item: 1
· items
· id: 1, content_type: text/html, name: (any name), location: offset O1, length L1, item content is the HTML file
· id 2: content_type: video/mp4, name: file.mp4, location: 0, offset: entire file length, item content is the entire ISOBMFF file

If played by a non-web-aware media player, only the audio-video tracks are played.
If played by a web-aware media player, first the HTML page is loaded and then the audio/video tracks are played within the HTML page.
Embedded HTML entry point playing the video content with additional JavaScript embedded static file
Assuming the Web content is composed of the following HTML document and of a JavaScript file:
<!doctype html>
<html>
 <head>
 <script src=file.js">
 </head>
 <body>
 <video src="file.mp4"></video>
 </body>
</html>

The ISOBMFF file can be structured as follows:
· track 1: audio track
· track 2: video track
· one top level MetaBox with the following
· handler: html
· primary item: 1
· items
· id: 1, content_type: text/html, name: (any name or no name), location: offset O1, length L1
· id 2: content_type: video/mp4, name: file.mp4, location: 0, offset: entire file length
· id 3: content_type: application/javascript, name: file.js, location: X2, offset: L2
Non-embedded HTML playing video content and JavaScript track from an ISOBMFF file
Assuming the Web content is the following HTML code (not contained inside the ISOBMFF file but delivered out-of-band):
<!doctype html>
<html>
 <head>
 <script>
 function render(param) {
 // some logic to alter the page rendering based on a parameter
 }
 </script>
 <script src=file.mp4#trackID=3">
 </head>
 <body>
 <video src="file.mp4"></video>
 </body>
</html>

The ISOBMFF file can be structured as follows:
· track 1: audio track
· track 2: video track
· track 3: JavaScript Track, with the following samples:

Sample: presentation time: 0, sync sample
render(0);

Sample: presentation time: 1s, sync sample
render(0.5);

Sample: presentation time: 5s, sync sample
render(2);

In this example, the content of Track 3 is loaded and executed at the given presentation time and synchronized with the audio video content.
Delivery of non-timed resources required by web tracks
Assuming there is an HTML overlay track, with multiple samples as follows:
Sample 1: presentation time: 0, sync sample
<!doctype html>
<html>
 <body>

 </body>
</html>

Sample 2: presentation time: 1s, sync sample
<!doctype html>
<html>
 <body>

 </body>
</html>

Sample 3: presentation time: 5s, sync sample
<!doctype html>
<html>
 <body>

 </body>
</html>
The different image files required by the HTML documents can be stored in one MetaBox as follows:
· handler: pict
· primary item: 1
· items
· id: 1, content_type: image/jpeg, name: file1.jpg, location: offset O1, length L1
· id 2: content_type: image/jpeg, name: file2.jpg, location: offset: O2 length: L2
· id 3: content_type: image/jpeg, name: file3.jpg, location: offset: O3, length: L3
The MetaBox should be placed at the Track level, but may be placed at the file level if the JPEG images are meant to be used by other tracks or items. Additionally, the content of the MetaBox may be split into several MetaBoxes. Assuming the file is segmented with a segment length of 1s, the composition of the segments would be:

Segment 1:
· sample 1
· a MetaBox with item 1 only

Segment 2:
· sample 2
· a MetaBox with item 2 only

Segment 3 / Segment 4 / Segment 5:
· sample 2, marked as redundant
· a MetaBox with item 2 only

Segment 6:
· sample 3
· a MetaBox with item 3 only

The track can be marked as dependent on the item 1, 2 and 3 using 'dpnd' track references. Samples in the track may also be marked with a SampleToMetadataItemEntry sample group 'stmi' to indicate the sample dependency to the items.
Track layout using HTML entry point
Assuming the file 'file.mp4' contains only audio/video and that the file 'overlay.mp4' contains only a HTML overlay track. The following HTML file could be provided to indicate that the overlay track is meant to be displayed as a subtitle track.
<video src="file.mp4">
<track src="overlay.mp4" kind='subtitles'>
</video>
Note: the 'graphics' kind does not currently exist in HTML.

Similarly, assuming that the file 'file.mp4' contains an audio track (id 1), a video track track (id 2), and one overlay HTML track (id 3), the HTML providing the track layout could be the following:
<video src="file.mp4">
<track src="file.mp4#trackID=3">
</video>

Note: the HTML could be embedded in the file as an item.
Track layout using ISOBMFF Track headers
Assuming that the file 'file.mp4' contains an audio track (id 1), a video track track (id 2), and one overlay HTML track (id 3), and that there is no HTML providing the track layout, a media player can rely on the track header information:

track 1 (audio): width: 0, height 0
track 2 (video): width: 3840, height: 2160, layer: 0
track 3 (HTML overlay): width: 3840, height: 2160, layer: -1

In this case, the HTML track will be rendered on top of a the video track with a rendering window size equal to that of the video track.
Annex – Possible architectures in Web Browsers
Overview
There are several possible ways to implement the above processing models in Web Browsers. This annex introduces several options.

Editor's note: We should add a discussion about the use of Media Source Extension that it should be extended to handle the track types defined here.
Using ServiceWorkers
A Service Worker is a JavaScript piece of code that runs in a Web browser outside of the context of a web page but associated to a domain. A Service Worker can intercept all request made by all web content coming from that domain. In the context of this document, a Service Worker can be used to extract items and place them in a cache; and to extract the JavaScript samples and forward them to the script tag.
Using TextTrack cues
HTML defines the TextTrack API. This API can be used to trigger the processing of HTML or JavaScript code at media presentation times. This requires the HTML, JavaScript code, or WebVTT metadata cues to be extracted and placed into cues whose time is the sample presentation time.
Using WebSocket
An implementation may also decide to use a Web Socket connection between the HTML page in the browser and the media player JavaScript extractor. The extractor would provide the JavaScript code to be executed at the sample presentation time.
Using MSE
It should be possible to consume ISOBMFF files with the tracks defined in this document with the MediaSource API. In particular, currently MSE insists that presentations with unrecognized tracks be ignored.

[bookmark: _Toc445992511]
image2.png
Synchronization

ISOBMFF Sample w/ Coded Audio Audio Decoder Decoded Audio PCM Samples

Associate with an audio element

ISOBMFF Sample w/ Coded Video Video Decoder Decoded Video Frame

Associate with a video element

ISO BMFF

File /
Segments

JavaScript i : -
- ISOBMFF Sample w/ JavaScript JerEEErsit Semifals [IErE JavaScript
Track Extraction e Engine

3ulspuay

Web Engine

Web Engine
Cache XHR, HTTP
S Client

image1.png
Loudspeakers/ |,
headphones

Audio rendering Audio decoding

Ea

Metadata

File/segment

decapsulation ISO BMFF File

Video decoding

Display [+

Visual rendering

Web engine

Media Player

Interactivity

