
[bookmark: OLE_LINK24][bookmark: OLE_LINK23]INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC1/SC29/WG11
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11 N16189
June 2016, Geneva, Switzerland

	Source
	Systems

	Status
	Working Draft

	Title
	WD on ISO/IEC 23000-20 Omnidirectional Media Application Format

	Author
	Byeongdoo Choi, Ye-Kui Wang, Miska M. Hannuksela (editors)

[bookmark: DDHeadingPage1][bookmark: DDOrganization][bookmark: LibEnteteISO][bookmark: LIBTypeTitreISO][bookmark: DDTITLE4][bookmark: DDTITLE3][bookmark: DDTITLE2][bookmark: DDTITLE1][bookmark: DDDocLanguage][bookmark: DDWorkDocDate][bookmark: DDDocStage][bookmark: DDOrganization3][bookmark: DDOrganization1][bookmark: DDBASEYEAR][bookmark: DDAmno][bookmark: DDDocSubType][bookmark: DDDocType][bookmark: DDWorkDocNo][bookmark: DDpubYear][bookmark: DDRefNoPart][bookmark: DDRefGen][bookmark: DDRefNum][bookmark: DDSCSecr][bookmark: DDSecr][bookmark: DDSCTitle][bookmark: DDTCTitle][bookmark: DDWGNum][bookmark: DDSCNum][bookmark: DDTCNum][bookmark: LIBLANG][bookmark: libH2NAME][bookmark: libH1NAME][bookmark: LibDesc][bookmark: LibDescD][bookmark: LibDescE][bookmark: LibDescF][bookmark: NATSubVer][bookmark: CENSubVer][bookmark: ISOSubVer][bookmark: LIBVerMSDN][bookmark: LIBStageCode][bookmark: LibRpl][bookmark: LibICS][bookmark: LIBFIL][bookmark: LIBEnFileName][bookmark: LIBFrFileName][bookmark: LIBDeFileName][bookmark: LIBNatFileName][bookmark: LIBFileOld][bookmark: LIBTypeTitre][bookmark: LIBTypeTitreCEN][bookmark: LIBTypeTitreNAT][bookmark: LibFileEnTete][bookmark: LibEntete][bookmark: LibEnteteCEN][bookmark: LibEnteteNAT][bookmark: LIBASynchro][bookmark: LIBASynchroVF][bookmark: LIBASynchroVE][bookmark: LIBASynchroVD][bookmark: DDEditionNo]FINAL DRAFT INTERNATIONAL STANDARD© ISO/IEC 2014 – All rights reservedISO/IEC FDIS 14496-15:2014(E) 59Part 15: Carriage of network abstraction layer (NAL) unit structured video in the ISO base media file formatInformation technology — Coding of audio-visual objectsTechnologies de l'information — Codage des objets audiovisuelsInformation technology — Coding of audio-visual objects — Part 15: Carriage of network abstraction layer (NAL) unit structured video in the ISO base media file formatE2014-01-13(50) ApprovalISO/IECISO/IEC J International Standard 2014ISO/IEC 14496ISO/IEC 1449615ISO/IEC FDIS 14496-15 Coding of audio, picture, multimedia and hypermedia informationInformation technology11291 2Heading 2;H2;H21;Œ©�o‚µ 2;h2;?c�o??E 2;뙥2;?c1;?c�o?ƒÊ 2;?2;Œ1;Œ2;Titre 2;Œ©2;DO NOT USE_h2;título 2;Œ©1;Œ©_o‚µ 2;2;Header 2;2nd level;?c_o??E 2;节标题Heading 1;Heading U;Titre Partie;h1;H1;H11;Œ©�o‚µ 1;?c�o??E 1;뙥;?c;?c�o?ƒÊ 1;?;Œ;Titre 1;título 1;DO NOT USE_h1;Heading;Œ©;...;Œ©_o‚µ 1;?c_o??E 1;�o‚µ 1;?c�o?ƒ 1 0 CR6STD Version 2.250ISO/IEC 1449615:2010 4O:\Documents\JTC001\SC029\065216 - ISO_IEC DIS 14496-15 (Ed 3)\50.00\180\C065216e.doc ISO/IEC JTC 1/SC 29
Date: 2016-07-15
ISO/IEC WD 23000-20:2016(E)
ISO/IEC JTC 1/SC 29/WG 11
[bookmark: CVP_Secretariat_Loca]Secretariat:
Information technology — Multimedia application format (MPEG-A) — Part 20: Omnidirectional media application format
Technologies de l'information — ????

Document type: International Standard
Document subtype:
Document stage: (50) Approval
Document language: E

C:\Users\shinji_w\AppData\Roaming\Microsoft\Templates\STD\ISO-IEC_14496-15_(E).doc STD Version 2.1c2

Copyright notice
This ISO document is a Draft International Standard and is copyright-protected by ISO. Except as permitted under the applicable laws of the user's country, neither this ISO draft nor any extract from it may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, photocopying, recording or otherwise, without prior written permission being secured.
Requests for permission to reproduce should be addressed to either ISO at the address below or ISO's member body in the country of the requester.
ISO copyright office
Case postale 56 CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Reproduction may be subject to royalty payments or a licensing agreement.
Violators may be prosecuted.

Contents	Page
1	Scope	6
2	Normative references	6
3	Terms, definitions, and abbreviated terms	6
3.1	Terms and definitions	6
3.2	Abbreviations and acronyms	7
4	OMAF architecture	7
5	Omnidirectional video projection and mappings	8
6	Omnidirectional media storage and metadata signaling in ISOBMFF	8
6.1	Most-interested regions	8
7	Omnidirectional media encapsulation and signaling in DASH	9
8	Omnidirectional media coding	10
Annex A.	List of projections and mappings under consideration	11
A.1.	Geometry and initial viewport (static metadata)	11
A.2.	Fisheye video information (static metadata)	16
A.3.	Regional projection mapping metadata (static & dynamic metadata)	18
Annex B.	Viewport dependent omnidirectional video processing (informative)	33
B.1.	General	33
B.2.	Omnidirectional video streaming based on viewport dependent projection and mapping	33
B.3.	Omnidirectional video streaming based on viewport dependent video coding	33
Annex C.	Relationship of standards (informative)	40

[bookmark: _Toc370302942]Foreword
ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of the joint technical committee is to prepare International Standards. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.
ISO/IEC 2300020 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.
ISO/IEC 23000 consists of the following parts, under the general title Information technology — Multimedia application format (MPEG-A):
· Part 1: Purpose for multimedia application formats
· Part 2: MPEG music player application format
· Part 3: MPEG photo player application format
· Part 4: Musical slide show application format
· Part 5: Media streaming application format
· Part 6: Professional archival application format
· Part 7: Open access application format
· Part 8: Portable video application format
· Part 9: Digital Multimedia Broadcasting application format
· Part 10: Surveillance application format
· Part 11: Stereoscopic video application format
· Part 12: Interactive music application format
· Part 13: Augmented reality application format
· Part 14: VOID
· Part 15: Multimedia Preservation Application Format
· Part 16: Publish/Subscribe Application Format
· Part 17: Multisensorial Media Application Format
· Part 18: Media Linking Application Format
· [bookmark: _Toc370302943]Part 19: Common Media Application Format
· Part 20: Omnidirectional Media Application Format
Introduction
When virtual reality (VR) video content is consumed with head-mounted display and headphones, only the area of the spherical video and the part of the associated audio that correspond to the orientation of the user's head are rendered, as if the user were in the spot where and when the video and audio were captured. Two of the most popular forms of VR applications include gaming and omnidirectional video, also known as 360° spherical video. Omnidirectional video is typically captured by multiple cameras that cover up to 360° of the scene. Compared to traditional media application formats, the end-to-end technology for omnidirectional video (from capture to playback) is more easily fragmented due to various capturing and video mapping technologies. From the capture side, there already exists many different types of cameras capable of capturing 360° video, and on the playback side there are many different devices that can playback 360° video with different processing capabilities. To avoid fragmentation of VR content and devices, a standardized format for omnidirectional media applications is needed.
This specification defines a media application format that enables omnidirectional media applications, focusing on VR applications with 360° video and associated audio. It firstly specifies a list of projection mappings that can be used for conversion of a spherical or 360° video into a two-dimensional rectangular video, followed by how to store omnidirectional media and the associated metadata using the ISO base media file format (ISOBMFF) and how to encapsulate, signal, and stream omnidirectional media using dynamic adaptive streaming over HTTP (DASH), and finally which video and audio codecs as well as media coding configurations can be used for compression of the omnidirectional media signal.

6

Information technology — Multimedia application format (MPEG-A) — Part 20: Omnidirectional media application format
[bookmark: _Toc443836144][bookmark: _Toc456189105]Scope
This part of ISO/IEC 23000 specifies the omnidirectional media application format for the storage, delivery, and rendering of omnidirectional images and video and the associated audio.
[bookmark: _Toc454835324][bookmark: _Toc454835373][bookmark: _Toc454997821][bookmark: _Toc455152344][bookmark: _Toc454835325][bookmark: _Toc454835374][bookmark: _Toc454997822][bookmark: _Toc455152345][bookmark: _Toc454835326][bookmark: _Toc454835375][bookmark: _Toc454997823][bookmark: _Toc455152346][bookmark: _Toc454835327][bookmark: _Toc454835376][bookmark: _Toc454997824][bookmark: _Toc455152347][bookmark: _Toc454835328][bookmark: _Toc454835377][bookmark: _Toc454997825][bookmark: _Toc455152348][bookmark: _Toc417235410][bookmark: _Toc417460762][bookmark: _Toc417235411][bookmark: _Toc417460763][bookmark: _Toc435625178][bookmark: _Toc443836147][bookmark: _Toc456189106][bookmark: _Toc305235534][bookmark: _Toc435203084][bookmark: _Toc435203210]Normative references
The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
These normative references are intended to include corrigenda and amendments available at the time of use.
	[bookmark: H264REF][bookmark: AVC][AVC]
	ISO/IEC 14496-10, Information technology — Coding of audio-visual objects — Part 10: Advanced Video Coding

	[bookmark: DASHREF][DASH]
	ISO/IEC 23009-1, Information technology — Dynamic adaptive streaming over HTTP (DASH) — Part 1: Media presentation description and segment formats

	[bookmark: H265REF][bookmark: HEVC][HEVC]
	ISO/IEC 23008-2, Information technology — High efficiency coding and media delivery in heterogeneous environments — Part 2: High efficiency video coding

	[bookmark: ISOM][bookmark: ISOMREF][ISOM]
	ISO/IEC 14496-12:2015 “Information technology – Coding of audio-visual objects – Part 12: ISO Base Media File Format

[bookmark: _Toc416424691][bookmark: _Toc416429499][bookmark: _Toc416430243][bookmark: _Toc416430981][bookmark: _Toc416431725][bookmark: _Toc416424697][bookmark: _Toc416429505][bookmark: _Toc416430249][bookmark: _Toc416430987][bookmark: _Toc416431731][bookmark: _Toc435625179][bookmark: _Toc443836148][bookmark: _Toc456189107][bookmark: _Toc305235537][bookmark: _Toc435203087][bookmark: _Toc435203213]Terms, definitions, and abbreviated terms
[bookmark: _Toc435625180][bookmark: _Toc443836149][bookmark: _Toc456189108]Terms and definitions
[Ed. (BD): The terms ‘projection, ‘mapping’ and ‘rendering’ are defined, based on the content flow of 360 video.]
	[bookmark: _Toc305235538][bookmark: _Toc435203088][bookmark: _Toc435203214][bookmark: _Toc443836150]field of view
	area of a spherical video; this area is fully and exclusively seen by a user at a particular moment in time Ed.(MH): To me, FOV does not involve a viewing orientation whereas viewport does. FOV value can be used to indicate e.g. the characteristics of a HMD, and viewport is e.g. the part of the spherical video that is currently displayed.]

	mapping
	either process by which image data on a planar surface according to a projection is mapped to a two-dimensional plane, or the image frame resulting from the process, depending on the context

	omnidirectional media
	image or video and its associated audio that enable rendering according to the orientation of the user's head, when consumed with a head-mounted device, or according to user's desired viewport, otherwise, as if the user were in the spot where and when the video and audio were captured

	projection
	either process by which a spherical image is projected onto a planar surface, or the image frame resulting from the process, depending on the context

	rendering
	process of generating a displayed audio-visual content from the decoded audio-visual data according to the orientation of the user's head, when consumed with a head-mounted device, or according to user's desired viewport, otherwise

	viewport
	Same as field of view.

[bookmark: _Toc456189109]Abbreviations and acronyms
	DASH
	MPEG Dynamic Adaptive Streaming over HTTP (ISO/IEC 23009-1)

	FOV
	Field Of View

	OMAF
	Omnidirectional Media Application Format

	VR
	Virtual Reality

[bookmark: _Toc406513145][bookmark: _Toc406513343][bookmark: _Toc410717687][bookmark: _Toc416424702][bookmark: _Toc416429511][bookmark: _Toc416430255][bookmark: _Toc416430993][bookmark: _Toc416431737][bookmark: _Toc406513155][bookmark: _Toc406513353][bookmark: _Toc410717697][bookmark: _Toc416424712][bookmark: _Toc416429521][bookmark: _Toc416430265][bookmark: _Toc416431003][bookmark: _Toc416431747][bookmark: _Toc406513161][bookmark: _Toc406513359][bookmark: _Toc410717703][bookmark: _Toc416424718][bookmark: _Toc416429527][bookmark: _Toc416430271][bookmark: _Toc416431009][bookmark: _Toc416431753][bookmark: _Toc454808730][bookmark: _Toc454808732][bookmark: _Toc454808733][bookmark: _Toc454808734][bookmark: _Toc454808735][bookmark: _Toc454808736][bookmark: _Toc454808738][bookmark: _Toc454808739][bookmark: _Toc454808745][bookmark: _Toc454835333][bookmark: _Toc454835382][bookmark: _Toc454997830][bookmark: _Toc455152353][bookmark: _Toc454835334][bookmark: _Toc454835383][bookmark: _Toc454997831][bookmark: _Toc455152354][bookmark: _Toc454835335][bookmark: _Toc454835384][bookmark: _Toc454997832][bookmark: _Toc455152355][bookmark: _Toc454835336][bookmark: _Toc454835385][bookmark: _Toc454997833][bookmark: _Toc455152356][bookmark: _Toc454835337][bookmark: _Toc454835386][bookmark: _Toc454997834][bookmark: _Toc455152357][bookmark: _Toc454835338][bookmark: _Toc454835387][bookmark: _Toc454997835][bookmark: _Toc455152358][bookmark: _Toc454835339][bookmark: _Toc454835388][bookmark: _Toc454997836][bookmark: _Toc455152359][bookmark: _Toc454835340][bookmark: _Toc454835389][bookmark: _Toc454997837][bookmark: _Toc455152360][bookmark: _Toc454835341][bookmark: _Toc454835390][bookmark: _Toc454997838][bookmark: _Toc455152361][bookmark: _Toc454835342][bookmark: _Toc454835391][bookmark: _Toc454997839][bookmark: _Toc455152362][bookmark: _Toc454835343][bookmark: _Toc454835392][bookmark: _Toc454997840][bookmark: _Toc455152363][bookmark: _Toc454835344][bookmark: _Toc454835393][bookmark: _Toc454997841][bookmark: _Toc455152364][bookmark: _Toc454835345][bookmark: _Toc454835394][bookmark: _Toc454997842][bookmark: _Toc455152365][bookmark: _Toc454835346][bookmark: _Toc454835395][bookmark: _Toc454997843][bookmark: _Toc455152366][bookmark: _Toc454835347][bookmark: _Toc454835396][bookmark: _Toc454997844][bookmark: _Toc455152367][bookmark: _Toc454835348][bookmark: _Toc454835397][bookmark: _Toc454997845][bookmark: _Toc455152368][bookmark: _Toc454835349][bookmark: _Toc454835398][bookmark: _Toc454997846][bookmark: _Toc455152369][bookmark: _Toc456189110][bookmark: _Ref416516273][bookmark: _Ref416516392][bookmark: _Ref416516404][bookmark: _Ref416516453][bookmark: _Ref416516499][bookmark: _Ref416516514][bookmark: _Ref416516593][bookmark: _Ref416516603][bookmark: _Toc431912802][bookmark: _Toc431915070][bookmark: _Toc431912805][bookmark: _Toc431915073][bookmark: _Toc431912806][bookmark: _Toc431915074][bookmark: _Toc431912809][bookmark: _Toc431915077][bookmark: _Toc431912810][bookmark: _Toc431915078][bookmark: _Toc431912814][bookmark: _Toc431915082][bookmark: _Toc431912816][bookmark: _Toc431915084][bookmark: _Toc431912819][bookmark: _Toc431915087][bookmark: _Toc431912822][bookmark: _Toc431915090][bookmark: _Toc431912823][bookmark: _Toc431915091][bookmark: _Toc431912828][bookmark: _Toc431915096][bookmark: _Toc431912829][bookmark: _Toc431915097][bookmark: _Toc305235547][bookmark: _Ref431830512]OMAF architecture
[Ed. (BD): The below description introduces a typical content flow for omnidirectional media processing. It should be updated with clear description regarding the normative interfaces.]
Figure 41 shows a typical content flow process for an omnidirectional media application. [Ed. (MH): Figure 41 needs to be updated at least in the following aspects: i) to include file encapsulation and decapsulation, ii) to include audio, iii) to include delivery (optionally).]
The VR image or video is typically captured using multiple cameras. Images from the multiple cameras are typically aligned, stitched together, projected onto one or more 2D planes according to a particular projection, and mapped onto a frame according to a particular mapping. The image or video frames are then encoded.
[Ed. (YK): Consider depicting/describing the architecture in a clearer way, at least to clearly depict/describe the normative interfaces that correspond to: 1) projection and mapping (between sphere video and projected video), 2) file encapsulation (between encoder and ISOBMFF file), 3) DASH encapsulation (between ISOBMFF file and DASH media presentation), and 4) metadata from bitstream/file (or segment)/MPD to the renderer.]
A file generator takes the encoded omnidirectional media content including video, image, and audio as input and encapsulates them into a container file. The file generator also includes metadata into the file, such as metadata assisting in rendering the decoded 2D images.
At receiver side, the stream is fed into a file parser, which will parse the metadata. Based on the decoded media content and the metadata, a specific view is extracted and displayed in HMD or other display devices, e.g. mobile phone or tablet.
 (
encode
decode
Rendering
Image stitching,
projection, and mapping
)
[bookmark: _Ref455479691]Figure 41 – Content flow process for omnidirectional media

[bookmark: _Toc456189111]Omnidirectional video projection and mappings
[Ed. (BD): The projection and mapping methods under consideration are defined in Annex A, with syntax and semantics.]
[Ed. (YK): At the 115th MPEG in Jun. 2016, it was generally agreed to include the specification of the code points and the semantics of omnidirectional video projection mappings, e.g., equi-rectangular and cube-map, into the CICP specification, as these code points are codec independent, and are expected to be used in various standard specifications such as ISOBMFF, DASH, OMAF, and other standards that deal with VR enabling technologies or applications. Similarly, the specifications of other VR related codec independent code points, if any, may also be included into the CICP specification.]
[Ed. (BD): The OMAF spec. can refer to projection and mapping related metadata in the CICP spec. Otherwise, however, the OMAF spec can define those metadata by itself]
[bookmark: _Toc456189112]Omnidirectional media storage and metadata signaling in ISOBMFF
[Ed. (YK): This section will specify omnidirectional media storage and metadata signaling in ISOBMFF files, with references to ISO/IEC 14496-12 (the specification of the ISOBMFF) and possibly also ISO/IEC 14496-15 (the specification of the file formats for AVC, HEVC, and their extensions) and ISO/IEC 23001-10 (carriage of ROI coordinates).]
[bookmark: _Toc456189113]Most-interested regions
[Ed. (YK): Currently, the description below only focuses on the metadata itself, without specifying a file format signalling mechanism, which is to be specified.]
General
The most-interested regions of an omnidirectional video may be determined by the intent of the director or producer, or derived from user statistics by a service or content provider, e.g., through the statistics of which regions have been requested/seen the most by users when the omnidirectional video content was provided through a streaming service. A most-interested region in an omnidirectional video picture is one of the regions that are statistically most likely rendered to the user at the presentation time of that picture.
NOTE:	The information of most-interested regions may be used for data pre-fetching in omnidirectional video adaptive streaming by edge servers or clients, and/or transcoding optimization when an omnidirectional video is transcoded, e.g., to a different codec or projection mapping.
Syntax
unsigned int(32) regionbase_id;
unsigned int(16) entry_count;
for (i=1; i<= entry_count; i++) {
	unsigned int(16) left_horizontal_offset;
	unsigned int(16) top_vertical_offset;
	unsigned int(16) region_width;
	unsigned int(16) region_height;
}
Semantics
regionbase_id specifies the base region against which the positions and sizes of the most-interested regions are specified. [Ed. (YK): For example, in a future version of this spec, when signalling mechanism is specified, in the context of ISOBMFF, this value can be the track_ID of the track that contains coded video data of the pictures whoes entire region is defined as the base region.]
entry_count specifies the number of entries.
left_horizontal_offset, top_vertical_offset, region_width, and region_height are integer values that indicate the position and size of the most-interested region. left_horizontal_offset and top_vertical_offset indicate the horizontal and vertical coordinates, respectively, in luma samples, of the upper left corner of the most-interested region in relative to the base region. region_width and region_height indicate the width and height, respectively, in luma samples, of the most-interested region in relative to the base region.
[Ed. (YK): In a future version of this spec, when signalling mechanism is specified, one possible way for signalling of most-interested regions is to use the mechanism for carriage of ROI coordinates specified in ISO/IEC 23001-10. For example, a new reference_type for the ‘tref’ box can be specified to indicate that a region of interest that is assumed to be the region watched by the viewer is carried in the referenced track.]
[bookmark: _Toc455482116][bookmark: _Toc455482117][bookmark: _Toc454997851][bookmark: _Toc455152374][bookmark: _Toc454997852][bookmark: _Toc455152375][bookmark: _Toc454997853][bookmark: _Toc455152376][bookmark: _Toc454997854][bookmark: _Toc455152377][bookmark: _Toc454997855][bookmark: _Toc455152378][bookmark: _Toc454997856][bookmark: _Toc455152379][bookmark: _Toc454997857][bookmark: _Toc455152380][bookmark: _Toc456189114]Omnidirectional media encapsulation and signaling in DASH
[Ed. (YK): This section will specify how to encapsulate an omnidirectional media content into a DASH media presentation and how to use DASH MPD for the metadata signalling, with references to DASH specs.]
[bookmark: _Toc456189115]Omnidirectional media coding
[Ed. (YK): This section will specify omnidirectional media coding, including video/audio codecs (profile, (tier), level), codec configurations (specific coding methods, e.g., use of HEVC tiles), and so on, with references to the codec specifications.]
[bookmark: _Toc454835357][bookmark: _Toc454835406][bookmark: _Toc454997860][bookmark: _Toc455152384][bookmark: _Toc417461195][bookmark: _Toc417461199][bookmark: _Toc417461200][bookmark: _Toc417461364][bookmark: _Toc417461369][bookmark: _Toc417461371][bookmark: _Toc417461372][bookmark: _Toc417461374][bookmark: _Toc302846804][bookmark: _Toc456189116][bookmark: _Ref416529960][bookmark: _Ref416529969][bookmark: _Ref416529976][bookmark: _Ref416530277][bookmark: _Ref416530298]List of projections and mappings under consideration
[Ed. (YK): Currently, the descriptions in this Annex only focus on the metadata itself, without specifying the file format signalling mechanisms, which are to be specified.]
[Ed. (BD): All mapping related metadata are classified into static or dynamic. Once the storage/delivery mechanism for static or dynamic metadata are determined, the mapping and projection methods will be specified in Section 5.]

[bookmark: _Toc456189117][bookmark: _Toc435203193][bookmark: _Toc435203319]Geometry and initial viewport (static metadata)
Syntax
unsigned int(1) is_stereoscopic;
unsigned int(1) is_default_front;
unsigned int(1) entire_volume;
unsigned int(1) static;
unsigned int(1) static_top;
unsigned int(1) static_bottom;
unsigned int(2) reserved;

if (is_sterescopic)
	unsigned int(8) stereoscopic_type;

unsigned int(8) geometry_type;

if (geometry_type == 2) {
	unsigned int(16) squish_start_pitch_top;
	unsigned int(16) squish_start_pitch_bottom;
	unsigned int(8) squish_ratio_top;
	unsigned int(8) squish_ratio_bottom;
} else if (geometry_type == 3) {
	unsigned int(8) radius;
} else if (geometry_type == 4) {
	unsigned int(8)	num_surface;
} else if (geometry_type == 5) {
	unsigned int(8) tspyr_depth;
	unsigned int(8) tspyr_back_width;
	unsigned int(8) tspyr_back_height;
} else if (geometry_type == 6) {
	unsigned int(8) tss_overlap_ratio;
	unsigned int(8) tss_tile_theta_num;
	for(tss_tile_theta_id=0; tss_tile_theta_id < tss_tile_theta_num;
		tss_tile_theta_id ++)
		unsigned int(8) tss_tile_theta[tss_tile_theta_id];
} else if (geometry_type == 7) {
	fisheye_video_info();
}

if (!is_default_front) {
	unsigned int(16) video_center_pitch;
	unsigned int(16) video_center_yaw;
}

signed int(16) initial_view_yaw;
signed int(16) initial_view_pitch;
signed int(16) initial_view_roll;

// all the following are optional fields
signed int(16) center_yaw;
signed int(16) center_pitch;
signed int(16) min_pitch;
signed int(16) max_pitch;
signed int(16) min_yaw;
signed int(16) max_yaw;
unsigned int(16) content_fov;

Semantics
is_stereoscopic indicates whether stereoscopic media rendering is used or not. The value of this field is equal to 1 indicates that the video in the referenced track is divided into two parts to provide different texture data for left eye and right eye separately according to the composition type specified by stereoscopic_type.
is_default_front indicates whether video_center_pitch and video_center_yaw are present (when this field is equal to 0) or not (when this field is equal to 1).
entire_volume indicates whether the video covers the entire volume of geometry. If the value of this field is ‘1’, the entire volume of the geometry shall be rendered with the video in the referenced track. If the value of this field is ‘0’, the texture of some area of the geometry shall be provided by a means other than the current track.
static indicates whether the texture mapping is changed over time. If the value of this filed is ‘1’, the texture mapping is not changing for the duration of the entire video in the current track. If the value of this filed is ‘0’, the texture mapping is changing over time.
static_top indicates whether the texture data other than video in the current track is provided. If the value of this field is ‘1’, the image data to be used as texture for top area of the geometry shall be provided.
static_bottom indicates whether the texture data other than video in the referenced track is provided. If the value of this field is ‘1’, the image data to be used as texture for bottom area of the geometry shall be provided.
stereoscopic_type indicates the type of composition for the stereoscopic video in the referenced track.
Table A.1 — Stereoscopic composition type
	Value
	stereoscopic_ type

	0x00
	Reserved

	0x01
	Side by side type

	0x02
	Top and bottom type

	0x03-0xFF
	Reserved

geometry_type indicates the type of geometry for rendering of omnidirectional media. Mathematical representation of each geometry type is defined in clause 2.3.
Table A.2 — Omnidirectional media geometry type
	Value
	geometry_type

	0x00
	Reserved

	0x01
	Sphere

	0x02
	Squished Sphere

	0x03
	Cylinder

	0x04
	Platonic Solid

	0x05
	Truncated Pyramid

	0x06
	Segmented Sphere

	0x07
	Direct Fisheye

	0x08-0xFF
	Reserved

squish_start_pitch_top and squish_start_pitch_bottom indicates respectively the pitch angle of the top and the bottom of the sphere where the squishing is applied. The top and bottom portions of the sphere indicated by these fields shall be squished with the ratio given by the value of the field squish_ratio.
squish_ratio_top indicates the ratio of squishing for the top portion of the sphere for the squished sphere geometry type. The top portion of the sphere is squished as indicated by the value of this field according to the description provided in clause 2.3.
squish_ratio_bottom indicates the ratio of squishing for the bottom portion of the sphere for the squished sphere geometry type. The bottom portion of sphere is squished as indicated by the value of this field according to the description provided in clause 2.3.
radius indicates the radius of the circular shaped regions for the top and bottom surfaces of the cylinder. The region for the texture of the top surface shall be located at the top right corner of the video in circular shape with the radius indicated by this field. The region for the texture of the bottom surface shall be located at the bottom right corner of the video in circular shape with the radius indicated by this field.
num_surface indicates the type of platonic solid for rendering of omnidirectional media. Mathematical representation of each geometry type is defined in section 2.3.4.
Table A.3 — Number of surface of platonic solid
	Value
	num_surface

	0x00
	Reserved

	0x01
	Cube (6 surfaces)

	0x02
	Octahedron (8 surfaces)

	0x03
	Icosahedrons (20 surfaces)

	0x04-0xFF
	Reserved

tspyr_depth indicates the depth of the truncated square pyramid [TSP] with respect to the side length of the TSP front, which has value 255.
tspyr_back_width and tspyr_back_height indicates the width and height, respectively, of the back face with respect to the side length of the TSP front, which has value 255.
tss_overlap_ratio indicates the ratio of overlapping.
tss_tile_theta_num indicates how many are used. Then the number of areas that are segmented will be 2* tss_tile_theta_num -1.
tss_tile_theta_id indicates the identifier of the theta.
tss_tile_theta contains values.
Table A.4 — Overlapping ratio
	Value
	Overlapping Ratio

	0x00
	0%

	0x01
	0.1%

	0x02
	0.2%

	0x03
	0.3%

	0x04
	0.4%

	0x05
	0.5%

	0x06
	0.6%

	...
	...

	0xFF
	25.5%

Table A.5 — Identifier of tss_tile_theta
	Value
	tss_tile_theta_id

	0x00
	1

	0x01
	2

	...
	

video_center_pitch and video_center_yaw indicate respectively the pitch and yaw angles of the coordinate of the point to which the center pixel of the video is rendered. When not present, the values of center_pitch and center_yaw are inferred to be equal to 0.
initial_view_yaw, initial_view_pitch, and initial_view_roll indicate the yaw, pitch, and roll angles, respectively, of the center of initial view when the coded picture is rendered, in degrees.
[Ed. (YK): What are the following values of 0x000001 to 0x020000?]
0x000001	center-yaw-present: indicates the presence of center_yaw field. This provides following information.
· When the equi-rectangular map is applied, this provides the yaw angle, in degrees, of coordinate of the point which the center pixel of the coded picture is rendered
· When the cube map is applied, this provides the yaw angle, in degrees, of coordinate of the point which the center pixel of the region that is identified by cube_front is rendered
· When the cylinder map is applied, this provides the yaw angle, in degrees, of coordinate of the point which the center pixel of the region that is identified by cylinder_side is rendered.
· When the truncated square pyramid map is applied, this provides the yaw angle, in degrees, of the coordinate of the point which the center pixel of the region that is identified by tspyr_front is rendered.
0x000002	center-pitch-present: indicates the presence of center_pitch field. This provides following information.
· When the equi-rectangular map is applied, this provides the pitch angle, in degrees, of coordinate of the point which the center pixel of the coded picture is rendered.
· When the cube map is applied, this provides the pitch angle, in degrees, of the coordinate of the point which the center pixel of the region that is identified by cube_front is rendered
· When the cylinder map is applied, this provides the pitch angle, in degrees, of the coordinate of the point which the center pixel of the region that is identified by cylinder_side is rendered.
· When the truncated square pyramid map is applied, this provides the pitch angle, in degrees, of the coordinate of the point which the center pixel of the region that is identified by tspyr_front is rendered.
0x000010	min-pitch-present: indicates the presence of min_pitch field. This provides the minimum pitch angle, in degrees, of points in the spherical surface on which the coded picture is projected.
0x000020	max-pitch-present: indicates the presence of max_pitch field. This provides the maximum pitch angle, in degrees, of points in the spherical surface on which the coded picture is projected.
0x000040	min-yaw-present: indicates the presence of min_yaw field. This provides the minimum yaw angle, in degrees, of points in the spherical surface on which the coded picture is projected, in degrees.
0x000080	max-yaw-present: indicates the presence of max_yaw field. This provides the maximum yaw angle, in degrees, of points in the spherical surface on which the coded picture is projected, in degrees.
0x010000	content-fov-present: indicates the presence of content_fov field. This provides an appropriate field of view of the content intended by the content author/provider.
0x020000	motion-yaw-only: indicates if the motion to VR video is restricted to yaw only.
· If the min_pitch field is not present, the default value for the minimum pitch angle of VR video is -90 degrees.
· If the max_pitch field is not present, the default value for the maximum pitch angle of VR video is +90 degrees.
· If the min_yaw field is not present, the default value for the minimum yaw angle of VR video is -180 degrees.
· If the max_yaw field is not present, the default value for the maximum yaw angle of VR video is +180 degrees.
[bookmark: _Toc454808754][bookmark: _Toc454808755][bookmark: _Toc454808756][bookmark: _Toc454808757][bookmark: _Toc454808758][bookmark: _Toc454835360][bookmark: _Toc454835409][bookmark: _Toc454997863][bookmark: _Toc455152387][bookmark: _Toc454835361][bookmark: _Toc454835410][bookmark: _Toc454997864][bookmark: _Toc455152388][bookmark: _Toc454835362][bookmark: _Toc454835411][bookmark: _Toc454997865][bookmark: _Toc455152389][bookmark: _Toc454835363][bookmark: _Toc454835412][bookmark: _Toc454997866][bookmark: _Toc455152390][bookmark: _Toc454835364][bookmark: _Toc454835413][bookmark: _Toc454997867][bookmark: _Toc455152391][bookmark: _Toc456189118]Fisheye video information (static metadata)
Syntax
aligned(8) class fisheye_video_info()
{
	bit(24) reserved = 0;
	unsigned int(8) num_circular_images;
	for(i=0; i< num_circle_images; i++) {
		unsigned int(32) image_center_x;
		unsigned int(32) image_center_y;
		unsigned int(32) full_radius;
		unsigned int(32) frame_radius;
		unsigned int(32) scene_radius;
		unsigned int(32) image_rotation;
		bit(30) reserved = 0;
		unsigned int(2) image_flip;
		unsigned int(32) image_scale_axis_angle;
		unsigned int(32) image_scale_x;
		unsigned int(32) image_scale_y;
		unsigned int(32) field_of_view;
		unsigned int(16) image_center_yaw;
		unsigned int(16) image_center_pitch;
		unsigned int(16) image_center_roll; [Ed. (YK): Are these three fields for yaw, pitch, and roll redundant with initial_view_yaw, initial_view_pitch, and initial_view_roll?]
		bit(16) reserved = 0;
		unsigned int(16) num_compression_curve_pionts;
		for(j=0; j< num_compression_curve_pionts; j++) {
			unsigned int(32) compression_curve_x;
			unsigned int(32) compression_curve_y;
		}
	}
	bit(24) reserved = 0;
	unsigned int(8) num_deadzones;
	for(i=0; i< num_deadzones; i++) {
		unsigned int(16) deadzone_left_horizontal_offset;
		unsigned int(16) deadzone_top_vertical_offset;
		unsigned int(16) deadzone_width;
		unsigned int(16) deadzone_height;
	}
}
Semantics
num_circular_images indicates the number of circular images in the coded picture of each sample this box applies to. Typically, the value is equal to 2, but other non-zero values are also possible.
image_center_x is a fixed-point 16.16 value that indicates the horizontal coordinate, in luma samples, of the center of the circular image in the coded picture of each sample this box applies to.
image_center_y is a fixed-point 16.16 value that indicates the vertical coordinate, in luma samples, of the center of the circular image in the coded picture of each sample this box applies to.
full_radius is a fixed-point 16.16 value that indicates the radius, in luma samples, from the center of the circular image to the edge of the full round image.
frame_radius is a fixed-point 16.16 value that indicates the radius, in luma samples, from the center of the circular image to the closest edge of the image border. The circular fisheye image may be cropped by the camera frame, therefore this value indicates the radius of a circle wherein pixels are usable.
scene_radius is a fixed-point 16.16 value that indicates the radius, in luma samples, from the center of the circular image to the closest edge of the area in the image where it is guaranteed that there are no obstructions from the camera body itself.
image_rotation is a fixed-point 16.16 value that indicates the amount of rotation, in degrees, of the circular image. Different video camera manufacturers may choose different coordinate systems or layouts for each individual fisheye image captured. The image may be rotated by images +/- 90 degrees, or +/- 180 degrees, or any other value.
image_flip indicates whether and how the image has been flipped and thus a reverse flipping operation needs to be applied. The value 0 indicates that the image has not been flipped. The value 1 indicates that the image has been vertically flipped. The value 2 indicates that the image has been horizontally flipped. The value 3 indicates that the image has been both vertically and horizontally flipped.
image_scale_axis_angle, image_scale_x, and image_scale_y are three fixed-point 16.16 values that indicate whether and how the image has been scaled along an axis. The axis is defined by a single angle as indicated by the value of image_scale_axis_angle, in degrees. An angle of 0 degrees means a horizontal vector is perfectly horizontal and a vertical vector is perfectly vertical. The values of image_scale_x and image_scale_y indicate the scaling ratios in the directions that are parallel and orthogonal, respectively, to the axis.
field_of_view is a fixed-point 16.16 value that indicates the field of view of the fisheye lens, in degrees. A typical value for a hemispherical fisheye lens is 180.0 degrees.
image_center_yaw is an integer that indicates the yaw angle, in degrees, of the point that the center pixel of the circular image in the coded picture of each sample is projected to a spherical surface.
image_center_pitch is an integer that indicates the pitch angle, in degrees, of the point that the center pixel of the circular image in the coded picture of each sample is projected to a spherical surface.
image_center_roll is an integer that indicates the roll angle, in degrees, of the point that the center pixel of the circular image in the coded picture of each sample is projected to a spherical surface.
num_compression_curve_pionts is an integer that indicates the following pairs of compression_curve_x and compression_curve_y.
The list of pairs of compression_curve_x and compression_curve_y are fixed-point 16.16 values that represent the gemometric compression curve of the circular image in relative to the part of the sphere scene that was captured. The array of the compression_curve_x values represents the normalized values of the radius length ranging from 0.0 at the image center, to 1.0 at the image border rim. The array of the compression_curve_y values represents the angles, in degrees, from the camera view direction. For a fisheye lens with a field of view of 180 degrees, the range of degrees along a normalized axis is 0.0 at the center of the image to 90.0 degrees at the border rim of the image.
num_deadzones is an integer that indicates the number of dead zones in the coded picture of each sample this box applies to.
deadzone_left_horizontal_offset, deadzone_top_vertical_offset, deadzone_width, and deadzone_height are integer values that indicate the position and size of the deadzone rectangular area in which the pixels are not usable. deadzone_left_horizontal_offset and deadzone_top_vertical_offset indicate the horizontal and vertical coordinates, respectively, in luma samples, of the upper left corner of the deadzone in the coded picture. deadzone_width and deadzone_height indicate the width and height, respectively, in luma samples, of the deadzone. To save bits for representing the video, all pixels within a deadzone should be set to the same pixel value, e.g., all black.
[bookmark: _Toc454808760][bookmark: _Toc454835366][bookmark: _Toc454835415][bookmark: _Toc454997869][bookmark: _Toc455152393][bookmark: _Toc456189119]Regional projection mapping metadata (static & dynamic metadata)
[bookmark: _Toc232492269]Syntax
unsigned int(16) center_pitch_offset;
unsigned int(16) center_yaw_offset;
unsigned int(8) num_of_regions;

for(i=0; i < num_of_regions; i++) {
unsigned int(16) region_id;
unsigned int(16) region_top_left_x;
	unsigned int(16) region_top_left_y;
	unsigned int(16) region_width;
	unsigned int(16) region_height;
	if ((geometry_type == 1) || (geometry_type == 2)) {
		int(16) pitch_start;
		int(16) yaw_start;
		int(16) pitch_end;
		int(16) yaw_end;
	} else if (geometry_type == 3) {
		unsigned int(16) cylinder_surface_id;
		signed int(16) cylinder_face_rotation;
		if (cylinder_surface_id == side) {
			int(16) yaw_start;
			int(16) height_start;
			int(16) yaw_end;
			int(16) height_end;
		}
	} else if (geometry_type == 4 && num_surface == 1) {
			unsigned int(16) cube_surface_id;
			unsigned int(16) area_top_left_x;
			unsigned int(16) area_top_left_y;
			unsigned int(16) area_width;
			unsigned int(16) area_height;
			signed int(16) cube_face_rotation;
		} else if (geometry_type == 4
				&& (num_surface == 2 || num_surface == 3)) {
			unsigned int(16) triangle_surface_id;
			unsigned int(16) orientation_of_triangle;
			unsigned int(16) area_top_left_x;
			unsigned int(16) area_top_left_y;
			unsigned int(16) area_width;
			unsigned int(16) area_height;
		} else if (geometry_type == 5) {
			unsigned int(16) truncated_pyramid_surface_id;
			unsigned int(32) area_top_left_x;
			unsigned int(32) area_top_left_y;
			unsigned int(32) area_width;
			unsigned int(32) area_height;
		}
	}
}
Semantics
center_pitch_offset and center_yaw_offset indicate respectively the offset values of the pitch and yaw angles of the coordinate of the point to which the center pixel of the video is rendered. center_pitch_offset + center_pitch and center_yaw_offset + center_yaw indicate respectively the center point of the current sample.
num_of_regions indicates the number of regions to divide the video in the referenced track. The video in the referenced track shall be divided into the number of non-overlapping regions as given by the value of this field and each region shall be separately mapped to the specific areas of the geometry. When the value of geometry_type is equal to Platonic Solid, the value of num_of_regions shall be equal to the value of num_triangles.
region_top_left_x and region_top_left_y indicate respectively the horizontal and vertical coordinate of the top-left corner of the partitioned region of the video in the referenced track.
region_width and region_height indicate respectively the width and height of the partitioned region of the video in the referenced track.
pitch_start and pitch_end indicate respectively the starting and ending pitch angles of the specific area of the geometry.
yaw_start and yaw_end indicate respectively the starting and ending yaw angles of the specific area of the geometry.
cylinder_surface_id indicates the identifier of the surfaces of a cylinder.

Table A.6 — Identifier of cylinder surface
	Value
	cylinder_surface_id

	0x00
	Reserved

	0x01
	Top

	0x02
	Bottom

	0x03
	Side

	0x04-0xFF
	Reserved

height_start and height_end indicate respectively the normalized starting and ending height of the specific area of the geometry in cylinder type.
cylinder_face_rotation indicates the amount of rotation of this cylinder face region, in degrees. The region may be rotated by +/- 180 degrees, or any other value.
cube_surface_id indicates the identifier of the surfaces of a cube as defined.
Table A.7 — Identifier of cube surface
	Value
	cube_surface_id

	0x00
	Reserved

	0x01
	Front

	0x02
	Top

	0x03
	Bottom

	0x04
	Left

	0x05
	Right

	0x06
	Back

	0x07-0xFF
	Reserved

area_top_left_x and area_top_left_y indicate respectively the horizontal and vertical coordinate of the top-left corner of the specific area on the geometry surface.
area_width and area_height indicate respectively the width and height of the specific area on the geometry surface.
cube_face_rotation indicates the amount of rotation of this cube face region, in degrees. The region may be rotated by +/- 180 degrees, or any other value.
triangle_surface_id indicates the identifier of the surface triangles for a platonic solid as defined in section 2.3.4.
orientation_of_triangle indicates the orientation of a triangle.
truncated_pyramid_surface_id indicates the identifier of the region of the TSP texture.
Table A.8 — Identifiers of TSP regions
	Value
	truncated_pyramid_surface_id

	0x00
	Front

	0x01
	Back

	0x02
	Top

	0x03
	Bottom

	0x04
	Left

	0x05
	Right

Sphere
When geometry_type is equal to Sphere, equirectangular projection of a simple planar texture video to a complete sphere geometry shall be used.
[image:] [image:]
Figure A1 – Reconstruction with sphere geometry
The map projection having transformation equations
x = λ cos ф1
y= ф
[Ed. (YK): Add an equation index for each equation in the next version.]
and the inverse formulae are
ф = y
λ = x sec ф1
where ф1 = 0.
[image:]
Figure A2 – Corresponding points for equirectangular projection/reprojection

Squished sphere
Some portion of the top and bottom parts of a sphere is squished while the middle part of the sphere is unchanged. As shown in Figure A3, the height of the top portion of the sphere starting from the angle indicated by squish_start_pitch_top is squished by the ratio given by squish_ratio_top, where the value of the squish ratio is normalized to 255. The height of the bottom portion of the sphere starting from the angle indicated by squish_start_pitch_bottom is also squished to the ratio given by squish_ratio_bottom, where the value of the squish ratio is normalized to 255.
[image:]
[bookmark: _Ref455479970]Figure A3 – Squished regions

Spherical region to area mapping:
[image:]
Figure A4 – Regional mapping for sphere geometry

Spherical surface projection:
[image:]
Figure A5 – Re-projection from plane to spherical surface
Each arbitrary pixel (x, y) in a rectangular region of planar video with width w, height h, should be projected to the point (θ’,φ’) on the inside curved surface area of the 3D sphere, defined by yaw angle θ and pitch angle φ, where the projected point (θ’, φ’)is given by:

The origin of the squished sphere geometry is its geometrical centre, which is also the position of the viewer’s perspective from within the sphere. Yaw angle is defined from -180° to 180° on the horizontal mmplane, whilst pitch angle is defined from -90° to 90° on the vertical plane.
Cylinder
A planar video to be mapped to a cylinder shall have a rectangular region and two circular regions (whose radius is the value of radius field), representing the side, top and bottom faces of the cylinder respectively. The arrangement of the non-overlapping regions in the planar texture video is not specified explicitly. Figure A6 merely shows an example of a particular arrangement, where a circular region on top of the video (red circle in the figure) is mapped to the top of the cylinder and a circular region at the bottom of the video (blue circle in the figure) is mapped to the bottom of the cylinder.
[image:]
[bookmark: _Ref455480472]Figure A6 – Reconstruction with cylinder geometry
Cylindrical region to area mapping:
[image:]
Figure A7 – Regional mapping for cylinder geometry

Cylindrical surface projection:
[image:]
Figure A8 – Re-projection from plane to cylindrical surface
Each arbitrary pixel (x, y) in a rectangular region of planar video with width w, height h, should be projected to the point (θ’,y’) on the inside curved surface area of the 3D cylinder (normalised with radius 1), defined by height h’ and pitch angle φ, where the projected point (θ’, y’)is given by:

Platonic solid
A planar video to be mapped to a platonic solid shall have multiple triangle or rectangle regions, the total number specified by the value of num_surface. The arrangement of the triangle regions to be mapped to each surface is not specified explicitly. The figures below show examples of a particular arrangement for each solid, where the location and size of each triangle region shall be defined by the figures and mathematic equations below.
If num_surface is equal to Cube:
 (
①
②
⑤
③
④
⑥
)
Figure A9 – Reconstruction with cube geometry

Cube region to area mapping:
[image:]
Figure A10 – Regional mapping for cube geometry

Cube surface projection:
[image:]
Figure A11 – Re-projection from plane to cube surface

Each arbitrary pixel (x, y) in a rectangular region of planar video with width w, height h, should be projected to the point (x’,y’) on the rectangular area of the 3D geometry surface, with width w’, height h’ where the projected point (x’, y’)is given by:

If num_surface is equal to Octahedron:

Figure A12 – Reconstruction with octahedron geometry

If num_surface is equal to Icosahedrons:

Figure A13 – Reconstruction with icosahedrons geometry

Each triangle region is determined by the value of orientation_of_triangle as follows:

If the value of orientation_of_triangle is equal to 0 :
 (
(
region_top_left_x
,
region_top_left_y
)
region_height
region_width
)
Figure A14 – Triangle patch for regional mapping with platonic-solid geometries

If the value of orientation_of_triangle is equal to1 :
 (
region_width
(
region_top_left_x
,
region_top_left_y
)
region_height
)
Figure A15 – Inverted triangle patch for regional mapping with platonic-solid geometries

Triangle surface projection:
In this version of OMAF, all triangles for Platonic Solid are equilateral (regular) triangles.
The value of region_height (h) and the value of region_width (w) shall satisfy the following equation:
h = w
Each arbitrary pixel (x, y) in an equilateral triangle region of planar video with width w, height h, should be projected to the point (x’,y’) on the equilateral triangle area of the 3D geometry surface, with width w’, height h’ where the projected point (x’, y’) is given by:

[bookmark: _GoBack]Truncated pyramid
The regions of the texture to be mapped to each surface of the 3D geometry are arranged as in the figures below. Location and size of each region are indicated.
	[image:] [image:]
Figure A16 – Truncated square pyramid geometry (left) and corresponding texture regions (right)

If truncated_pyramid_surface_id is equal to front, the front surface area is the left half of the texture rectangle.

[image:]
Figure A17 –Rectangular (large) patch for regional mapping with truncated pyramid geometry

If truncated_pyramid_surface_id is equal to back, the back surface area is defined as follows:

[image:]
Figure A18 – Rectangular (small) patch for regional mapping with truncated pyramid geometry

If the truncated_pyramid_surface_id is equal to top, bottom, left or right, the surface areas are defined as in following figures.

[image:] [image:]
[image:]	[image:]
Figure A19 – Trapezoid patch for regional mapping with truncated pyramid geometry

Segmented sphere
[image:]

[image:]
[image:]

[image:]

[image:]

[image:]Figure A20 – Various patches for regional mapping with segmented sphere geometry
[bookmark: _Toc456189120]Viewport dependent omnidirectional video processing (informative)
[bookmark: _Toc456189121]General
A distinct feature of VR or omnidirectional video compared to normal video is that, in VR typically only a subset of the entire video region represented by the video pictures, corresponding to the current field of view (FOV), i.e., the area currently being seen by the user, is displayed, while in normal video applications typically the entire video region is displayed. FOV is sometimes also referred to as viewport. This feature may be utilized to improve the performance of VR video systems, e.g., by using viewport dependent projection mapping or viewport dependent video coding. The performance improvement can be either or both of lower transmission bandwidth and lower decoding complexity compared to conventional VR video systems under the same resolution/quality of the video part presented to the user.
[bookmark: _Toc455482126][bookmark: _Toc455482127][bookmark: _Toc456189122]Omnidirectional video streaming based on viewport dependent projection and mapping

[bookmark: _Toc456189123]Omnidirectional video streaming based on viewport dependent video coding
General
Viewport dependent video coding may also be referred to as viewport dependent partial video decoding, as the key is to enable decoding only partially the entire encoded video region to provide sufficient information for display of the current FOV or viewport.
In the following, firstly the conventional VR video encoding and decoding method is presented, followed by a few viewport dependent partial VR video encoding and decoding schemes, all based on motion-constrained tiles. After that, some comparisons of the presented methods are provided. Finally, the signalling of the tile based viewport dependent partial VR video encoding and decoding schemes is discussed.
Conventional VR video encoding and decoding
Conventionally, a VR video is represented with the equi-rectangular projection or another mapping method. The video pictures are encoded as a single-layer bitstream using temporal inter prediction (TIP), the entire coded bitstream is stored at a server, if needed, transmitted to the receiver side, fully decoded by the decoder, and the region of the decoded picture corresponding to the current viewport is rendered to the user.
Simple tile based VR video partial decoding
The VR video pictures can be coded using motion-constrained tiles such that each potential region covering a viewport can be independently decoded from other regions across time. For a particular current viewport, the minimum set of tiles that cover the viewport is sent to the client, decoded, and rendered. This method is referred to as simple tile based partial decoding (STPD), and is depicted by Figure B.1.
[image:]
[bookmark: _Ref33101618][bookmark: _Toc32860602][bookmark: _Toc77680711][bookmark: _Toc246350667][bookmark: _Toc287363914][bookmark: _Toc317198641][bookmark: _Toc452007795]Figure B.1 – Tile based VR video partial decoding

A problem of this approach is that when the user turns his or her head quickly to a new viewport that is not covered (entirely or partially) by the currently being sent tiles, nothing in the new area (covered by the new viewport but not the old viewport) can be seen before the tiles covering the new viewport arrive (and the data is sufficiently buffered according to the buffering timeline). Therefore, this method can only work if the network round trip time is extremely low, e.g., at a magnitude of 10 ms, which is not feasible or is at least a big challenge today or in the near future.
Scalable coding based VR video partial decoding
Two ScaLable coding based Partial Decoding (SLPD) schemes, referred to as SLPD#1 and SLPD#2, are presented in this section.
In SLDP#1, as depicted by Figure B.2, the VR video is scalable-coded using SHVC spatial scalability with multiple resolutions. The bitstream of the lowest resolution video, i.e., the base layer (BL) is always fully sent, such that at any time for any viewport at least the lowest resolution video is available for rendering. The lowest resolution video does not need to be coded using tiles at all, although it would also work if it is coded using tiles or motion-constrained tiles.
The enhancement layers (ELs) are coded using motion-constrained tiles such that each potential region covering a viewport can be independently decoded from other regions across time, with inter-layer prediction (ILP) enabled. For a particular current viewport, the minimum set of tiles that cover the viewport is sent to the client, decoded, and rendered. From the storage point of view, the full streams of all the resolutions/layers need to be stored.
When more than two layers are coded, tiles covering different viewports can be chosen from different resolutions. For the current viewport, the tiles are chosen from the highest resolution; for viewports neighboring to the current viewport, tiles are chosen from the second highest resolution; and so on.
[image:]
[bookmark: _Ref33101619][bookmark: _Toc32860603][bookmark: _Toc77680712][bookmark: _Toc246350668][bookmark: _Toc287363915][bookmark: _Toc317198642][bookmark: _Toc452007796]Figure B.2 – First scalable coding based VR video partial decoding

In SLDP#2, as depicted by Figure B.3, the VR video is also scalable-coded using SHVC spatial scalability with multiple resolutions. The BL is coded the same as in SLPD#1, while the ELs are coded similarly as in SLPD#1 but with temporal inter prediction (TIP) disabled.
[image:]
[bookmark: _Ref454997636]Figure B.3 – Second scalable coding based VR video partial decoding

Simulcast coding based VR video partial decoding
Two SiMulcast coding based Partial Decoding (SMPD) schemes, referred to as SMPD#1 and SMPD#2, are presented in this section.
SMPD#1 is depicted by Figure B.4. This method is the same as SLPD#1 except that inter-layer prediction is not used. In other words, except the lowest resolution, all other resolutions are coded the same way as in STPD.
[image:]
[bookmark: _Ref454997674]Figure B.4 – First simulcast coding based VR video partial decoding

[image:]
[bookmark: _Ref454997717]Figure B.5 – Second simulcast coding based VR video partial decoding

SMPD#2 is depicted by Figure B.5. There are two differences between SMPD#2 and SMPD#1:
1) In SMPD#2, the lowest resolution is also coded using motion-constrained tiles same as other resolutions.
2) When SMPD#2 is used, the lowest resolution is also not fully sent, but only the tiles that cover the viewport that is geometrically the most distant from the current viewport and any other viewports not covered by sent tiles from other resolutions.
Comparison of different VR video coding schemes "(under consideration)
Table 1 provides a comparison of the VR video coding schemes described above based on six different aspects.
[bookmark: PrefixSEIscope_Tbl]Table B.1 – Comparison of VR video coding schemes
	
	Conventional
	STPD
	SLPD#1
	SLPD#2
	SMPD#1
	SMPD#2

	TIP
	Y
	Y
	Y
	N
	Y
	Y

	ILP
	n\a
	n\a
	Y
	Y
	N
	N

	Need to be tiled
	N
	Y
	N for BL 1
Y for ELs
	N for BL
Y for ELs
	N for BL
Y for ELs
	Y for both BL and ELs

	Latency 2 acceptable
	Y
	N
	Y
	Y
	Y
	Y

	RAP 3
	N
	Y
	N for BL
Y for ELs
	N for both BL and ELs
	N for BL
Y for ELs
	Y for both BL and ELs

	Clean viewport switching 4
	n\a
	n\a
	Y
	Y
	Y
	N

1 For simplicity, the lowest resolution and other resolutions are denoted as BL and ELs, respectively, in the table, regardless of scalable or simulcast coding.
2 The latency is the latency between user turning head and (fully) seeing the new viewport.
3 The "RAP" row indicates whether frequent random access points are needed because of the latency between user turning head and (fully) seeing the new viewport (in addition to RAPs required by other purposes).
4 The "Clean viewport switching" row indicates, during viewport switching, whether the sender can immediately stop sending the tiles that cover the old viewport and that are from the highest resolution.
Here are some observations. Due to the latency problem, STPD is not an acceptable option, at least for today and the near future. SLPD#2 seems not acceptable, either, due to the bandwidth issue caused by not using TIP. SMPD#1 is obviously inferior to SLPD#1 because all aspects are the same as SLPD#1 except that ILP is not used and thus would require higher storage and bandwidth costs.
Therefore, we only provide some more comparisons among the three remaining schemes: the conventional method, SLPD#1, and SMPD#2.
Firstly, we present a decoding complexity comparison between the conventional approach and SLPD#1.
The following are assumed for the comparison:
1) Two different spatial resolutions, the lower resolution being half in each direction of the higher resolution
2) At any moment a viewport of 180ox120o (corresponding to 1/3 of the sphere surface) is rendered to the user, thus 1/3 of the EL and the entire BL are transmitted, decoded and rendered for SLPD#1. Note that typically the viewport would be smaller, about 90o~110o in each dimension, which will favor SLPD#1 more against the conventional method.
Based on these assumptions, for the same resolution of the projection-mapped video, the number of pixels to be decoded in SLPD#1 would be 1-(1/3+1/4) = 5/12 = 41.7% less than that for the conventional method. This means significantly lower decoding capability requirement and less power consumption. In other words, for the same decoding capability, the resolution (in terms of number of pixels) that can be handled by SLPD#1 would be 12/7 = 171.4% of that for the conventional approach. This for example would allow using of a video decoder with capability 4096x2160 to handle a VR video resolution of 7680x1920, which is 166.7% of the resolution 4096x2160.
Secondly, a comparison between SLPD#1 and SMPD#2 is provided below:
1) When SLPD#1 is used, the region in the lowest resolution covering the current viewport needs to be transmitted and decoded. Therefore, for the region covered by the current viewport (but only for this part), SLPD#1 has a traditional scalable-coding-versus-single-layer-coding disadvantage.
2) However, SLPD#1 has higher coding efficient for the entire lowest resolution, because coding of tiles is not needed, and furthermore, random access points (RAPs) in the lowest resolution can be coded less frequently compared to higher resolutions, as RAPs are needed for the higher resolutions for optimization of the latency between user turning head and (fully) seeing the new viewport but not needed for the lowest resolution in SLPD#1.
3) Furthermore, SLPD#1 allows clean (or more efficient) viewport switching. When SLPD#1 is in use, the server or edge server can immediately stop sending the tiles from the highest resolution that cover the old viewport. In SMPD#2, because the tiles of the lowest resolution covering the current viewport is not sent, during viewport switching, the server would have to continue sending the tiles from the highest resolution that cover the old viewport, to be prepared such that the user can at least see something in case he/she turns back to the old viewport (entirely or partially).
Encapsulation and signalling in ISOBMFF and DASH
The signalling of the tile based viewport dependent partial VR video encoding and decoding schemes on the file format level can use the tiled storage of HEVC and layered HEVC (L-HEVC) in clause 10 of ISO/IEC 14496-15. One possible approach is to use the tile tracks each carrying one motion-constrained tile that corresponds to one tile region. A second possible approach is to use one or more tracks each carrying multiple tile regions and using the tile region group mapping. Compared to the second approach, the first approach can avoid the need of using lots of byte ranges, at access unit level, for requests of the tiles covering a viewport from a particular DASH representation (corresponding to one track).
[bookmark: _Toc454997875][bookmark: _Toc455152399][bookmark: _Toc454808767][bookmark: _Toc454808768][bookmark: _Toc456189124]Relationship of standards (informative)
Figure C1 presents relationship of standards.
OMAF defines new metadata dedicated to itself and generic VR code points on projection and mapping methods, which are specified in CICP. Also, OMAF aggregates all VR-related entities specified in DASH, ISOBMFF, HEIF, and A/V CODEC.

[image:]
[bookmark: _Ref455480561]Figure C1 – Relationship between VR-related standards
image2.jpeg

image3.jpeg

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.jpeg

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

image41.png

image42.png

image43.png

image44.png

image45.png

image46.png

image47.png

image48.png

image49.png

image50.png

image51.png

image52.png

