[bookmark: _Ref434502022]INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC1/SC29/WG11
CODING OF MOVING PICTURES AND ASSOCIATED AUDIO INFORMATION

ISO/IEC/JTC1/SC29/WG11/w16063
La Jolla, USA, Feb 2016

Title:	WD of ISO/IEC TR 23008-14 Conversion and coding practices for HDR/WCG video
Source:	Jonatan Samuelsson
Status: 	Working Draft 1

[bookmark: _Toc444782344]Summary
This document provides guidance on processing of high dynamic range (HDR) video. The purpose of this document is to provide a reference for recommended practice operation of AVC or HEVC when used for compressing HDR video. This document includes a description of processing steps for converting linear light, RGB, 4:4:4 video into ST 2084, Y’CbCr, 4:2:0 video before encoding. This document also includes a description of processing steps for converting ST 2084, Y’CbCr, 4:2:0 to linear light, RGB, 4:4:4 after decoding. Some high level recommendations for compression with HEVC and AVC are also included in this document.

CONTENTS
		Page

	Summary	i
1	Scope	3
2	References	3
3	Definitions	4
4	Abbreviations and acronyms	4
5	Mathematical functions and operations	5
6	Constants	5
7	Introduction	6
8	Pre-encoding processing	7
8.1	Process for applying the inverse transfer function	9
8.2	Process for calculating Cb	10
8.3	Process for calculating Cr	10
8.4	Chroma quantization process	10
8.5	Chroma subsampling process	10
8.6	Chroma upsampling process	11
8.7	Inverse chroma quantization process	12
8.8	Process for calculating luminance	12
8.9	Process for luma adjustment	12
8.10	Process for calculating luminance from luma and chroma	13
8.11	Process for calculating RGB	14
8.12	Process for applying the transfer function	14
9	Encoding process	14
9.1	HEVC encoding	15
9.2	AVC encoding	15
10	Decoding process	16
11	Post-decoding processing	17
11.1	Inverse luma quantization process	18
1	Mastering display colour volume SEI message	20
2	Content Light Level information SEI message	21

Error! Reference source not found. (2009-02) 	i
Conversion and Coding Practices for HDR/WCG Video
1 [bookmark: _Toc398827617][bookmark: _Toc400712427][bookmark: _Toc411167637][bookmark: _Toc444782345]Scope
This document provides guidance on processing of high dynamic range video including conversions steps for going from a linear light RGB representation with BT.2020 colour primaries to 10 bit, ST 2084, 4:2:0, non-constant luminance Y’CbCr representation. The scope of this document is illustrated in Figure 1.
[image:]
[bookmark: _Ref311238193]Figure 1. Illustration of the scope of this document.
It should be noted that the content preparation step as well as the display adaptation step are considered to be out of scope of this document. The content preparation step may include filtering and image enhancement processing such as denoising, colour correction, sharpening filtering etc. Such methods are deliberately not described in this document. The processing steps described in this document are made available for reference only and does not contain any elements of normative nature. It is possible to replace one or more of the processing steps described in this document, for example in order to reduce computational complexity or to improve fidelity. The intention with this document is to provide a recommended practice guideline for operating an HDR video system that is constrained to use a 10 bit, ST 2084, 4:2:0, non-constant luminance Y’CbCr representation. This configuration is aligned with the HDR10 media profile defined in [CFFMF2.1]. The processing steps in this document are optimized with the intention of providing the best possible result when the same Hypothetical Reference Viewing Environment (HRVE) is used before the HDR system as after the HDR system. This document does not account for when different viewing environments are used before and after the HDR system.
NOTE 1 – This document does not provide any description of any preferred HRVE but acknowledges the fact that in many applications of HDR video it might be desirable with a well-defined HRVE description to ensure alignment between content preparation and content consumption.
2 [bookmark: _Toc398827618][bookmark: _Toc400712428][bookmark: _Toc411167638][bookmark: _Toc444782346]References
 [AVC]	Recommendation ITU-T H.264 (V10) (2015), Advanced video coding for generic audiovisual services. Also available as ISO/IEC 14496-10.
[BT.709]	Recommendation ITU-R BT.709-6 (2015), Parameter values for the HDTV standards for production and international programme exchange.
[BT.2020]	Recommendation ITU-R BT.2020-2 (2015), Parameter values for ultra-high definition television systems for production and international programme exchange.
[CFFMF2.1]	DECE, Common File Format & Media Formats Specification Version 2.1.
[HEVC]	Recommendation ITU-T H.265 (V3) (2015), High Efficiency Video Coding. Also available as ISO/IEC 23008-3.
[RP 431-2]	SMPTE Standard RP 431-2 (2011), D-cinema Quality - Reference Projector and Environment.
[ST 2084]	SMPTE Standard ST 2084 (2014), High Dynamic Range Electro-Optical Transfer Function for Mastering Reference Display.
3 [bookmark: _Toc398827619][bookmark: _Toc400712429][bookmark: _Toc411167639][bookmark: _Toc444782347]Definitions
[bookmark: _Toc398827622][bookmark: _Toc400712432][bookmark: _Toc411167642]This document defines the following terms:
3.1	Inverse transfer function: The function used in the pre-encoding processing to convert from a linear representation to non-linear representation. The function is the inverse of the transfer function used in the post-decoding processing. In applications where the transfer function is called Electro-Optical Transfer Function (EOTF), the inverse transfer function may be called inverse-EOTF.
3.2	Random Access Point Access Unit (RAPAU): An access unit in the bitstream containing an intra coded picture with the property that all pictures following the intra coded picture in output order can be correctly decoded without using any information preceding the Random Access Point Access Unit in the bitstream.
3.1	Transfer function: The function used in the post-decoding processing to convert from a non-linear representation to linear representation. In applications where no further processing or display adaptation is performed, this function is sometimes called Electro-Optical Transfer Function (EOTF).
4 [bookmark: _Toc444782348]Abbreviations and acronyms
This document uses the following abbreviations and acronyms:
AVC		Advanced Video Coding
[bookmark: _GoBack]EOTF		Electro-Optical Transfer Function
HDR		High Dynamic Range
HEVC		High Efficiency Video Coding
HRVE		Hypothetical Reference Viewing Environment
QP		Quantization Parameter
RAPAU		Random Access Point Access Unit
RGB		Red Green Blue
SDR		Standard Dynamic Range
SEI		Supplemental Enhancement Information
WCG		Wide Colour Gamut
5 [bookmark: _Toc287647063][bookmark: _Toc293076710][bookmark: _Toc398827623][bookmark: _Toc400712433][bookmark: _Toc411167643][bookmark: _Toc444782349]Mathematical functions and operations
/	Integer division with truncation of the result toward zero. For example, 7 / 4 and −7 / −4 are truncated to 1 and −7 / 4 and 7 / −4 are truncated to −1.
	Used to denote division in mathematical equations where no truncation or rounding is intended. For example, 7 4 = 1.75.
	Used to denote division in mathematical equations where no truncation or rounding is intended. For example, = 1.75.

Abs(x)

Clip3(x, y, z) =
Floor(x)	the largest integer less than or equal to x.
Round(x) = Sign(x) * Floor(Abs(x) + 0.5)

Sign(x) =
6 [bookmark: _Toc444782350]Constants
The following variables are used as constants throughout this document. For some of the variables it is indicated within parenthesis what the variable represents an approxiamtion of.
m1 = 0.1593017578		(represents)
m2 = 78.84375
c1 = 0.8359375
c2 = 18.8515625
c3 = 18.6875
wR = 0.2627
wG = 0.6780
wB = 0.0593
a13 = 1.4746			(represents 2*(1-wR))
a32 = 1.8814			(represents 2*(1-wB))
a22 = 0.16455 			(represents)
a23 = 0.57135 			(represents)
b21 = 0.139630 			(represents)
b22 = 0.360370			(represents)
b32 = 0.459786 			(represents)
b33 = 0.040214			(represents)
7 [bookmark: _Toc444782351]Introduction
The HDR System described in this document consist of four major processes; Pre-encoding processing (clause 8), Encoding process (clause 9), Decoding process (clause 10), and Post-decoding processing (clause 11). These four processes are applied sequentially with the output of one process being used as input to the next process according to the above-mentioned order.
It is assumed that the input to the HDR System is linear light, RGB, 4:4:4 video and the output of the system is also linear light, RGB, 4:4:4 video, targeted to resemble the input video as closely as possible. Other video formats can be input to the HDR System by first converting them to linear light, RGB, 4:4:4 video. The HDR System described in this document is in practice a system for both HDR and Wide Colour Gamut (WCG) video since it is assumed that the input video is represented with colour primaries in accordance with [BT.2020].
NOTE 1 – For a fixed point linear representation of HDR video, approximately a 28 bit representation would be required to avoid introducing quantization errors. In practice, the input to the HDR System will typically be in a non-linear representation that could either first be converted to linear light or be directly converted to ST 2084.
It is assumed that encoding and decoding is performed in 4:2:0, 10 bit representation.
NOTE 2 – The assumption of 4:2:0 and 10 bit representation is made with focus on consumer and direct-to-home applications. Processes similar to the ones described in this document can be used for conversion and compression of 4:2:2 video and/or video with bit-depth higher than 10.
The post-decoding processing steps are aligned with what is commonly referred to as non-constant luminance in which colour conversion (to R’G’B’) is applied before applying the transfer function.
The processes described in this document are applied to one or more pictures with a width equal to PicWidthInSamples and a height equal to PicHeightInSamples. The variables PicWidthInHalf, and PicHeightInHalf are used to represent PicWidthInSamples / 2 and PicHeightInSamples / 2, respectively.
There is no specific or minimum bitdepth required for performing the operations described in the pre-encoding processing and the post-encoding processing. Using the precision associated with 64 bit floating point operations will give high accuracy, but it is also possible to use fixed point arithmetic and/or floating point operation with precision lower than 64 bit. Using too low precision should be avoided since it could lead to loss of precision in the output video. The input to the encoding step and the output of the decoding step is 10 bit integer representations.
8 [bookmark: _Ref311238806][bookmark: _Toc444782352]Pre-encoding processing
Inputs to this process are:
–	a (PicWidthInSamples)x(PicHeightInSamples) array PicSampleR of floating point red samples in the range of 0.0 to 1.0, inclusive,
–	a (PicWidthInSamples)x(PicHeightInSamples) array PicSampleG of floating point green samples in the range of 0.0 to 1.0, inclusive,
–	a (PicWidthInSamples)x(PicHeightInSamples) array PicSampleB of floating point blue samples in the range of 0.0 to 1.0, inclusive,
NOTE 1 – The processes described in this document have been designed to work optimally when the input samples represent light according to a linear function such that the value 0.0 corresponds to 0 cd/m2 and the value 1.0 corresponds to 10,000 cd/m2.
Outputs of this process are:
–	a (PicWidthInSamples)x(PicHeightInSamples) array PicSampleL of integer luma samples in the range of 0 to 1023, inclusive,
–	a (PicWidthInHalf)x(PicHeightInHalf) array PicSampleSubCb of integer chroma samples of the component Cb in the range of 0 to 1023, inclusive,
–	a (PicWidthInHalf)x(PicHeightInHalf) array PicSampleSubCr of integer chroma samples of the component Cr in the range of 0 to 1023, inclusive.
A schematic overview of the pre-encoding processing is illustrated in Figure 2. The input (R, G, B) corresponds to PicSampleR, PicSampleG, and PicSampleB, respectively. The output (Y’, Cb, Cr) corresponds to PicSampleL, PicSampleSubCb, and PicSampleSubCr, respectively.
[image:]
[bookmark: _Ref311238219][bookmark: _Ref311237911]Figure 2. Overview of the pre-encoding processing
The pre-encoding processing consists of the following ordered steps:
1. A (PicWidthInSamples)x(PicHeightInSamples) array of non-linear red samples PicSampleNonLinearR is derived by invoking the process for applying the inverse transfer function specified in clause 8.1, with PicSampleR[xP][yP] as input and with the output assigned to PicSampleNonLinearR[xP][yP], with xP = 0..PicWidthInSamples − 1, yP = 0..PicHeightInSamples − 1.
2. A (PicWidthInSamples)x(PicHeightInSamples) array of non-linear green samples PicSampleNonLinearG is derived by invoking the process for applying the inverse transfer function specified in clause 8.1, with PicSampleG[xP][yP] as input and with the output assigned to PicSampleNonLinearG[xP][yP], with xP = 0..PicWidthInSamples − 1, yP = 0..PicHeightInSamples − 1.
3. A (PicWidthInSamples)x(PicHeightInSamples) array of non-linear blue samples PicSampleNonLinearB is derived by invoking the process for applying the inverse transfer function specified in clause 8.1, with PicSampleB[xP][yP] as input and with the output assigned to PicSampleNonLinearB[xP][yP], with xP = 0..PicWidthInSamples − 1, yP = 0..PicHeightInSamples − 1.
4. A (PicWidthInSamples)x(PicHeightInSamples) array of Cb samples PicSampleCb is derived by invoking the process for calculating Cb specified in clause 8.2, with PicSampleNonLinearR[xP][yP], PicSampleNonLinearG[xP][yP] and PicSampleNonLinearB[xP][yP] as input and with the output assigned to PicSampleCb[xP][yP], with xP = 0..PicWidthInSamples − 1, yP = 0..PicHeightInSamples − 1.
5. A (PicWidthInSamples)x(PicHeightInSamples) array of Cr samples PicSampleCr is derived by invoking the process for calculating Cr specified in clause 8.3, with PicSampleNonLinearR[xP][yP], PicSampleNonLinearG[xP][yP] and PicSampleNonLinearB[xP][yP] as input and with the output assigned to PicSampleCr[xP][yP], with xP = 0..PicWidthInSamples − 1, yP = 0..PicHeightInSamples − 1.
6. A modified chroma sample value PicSamplebCb[xPC][yPC], with xPC = 0..PicWidthInSamples − 1, yPC = 0..PicHeightInSamples − 1, of the chroma component Cb is derived by invoking the chroma quantization process specified in clause 8.4 with chroma sample location (xPC, yPC) and the chroma sample array PicSampleCb given as inputs.
7. A modified chroma sample value PicSamplebCr[xPC][yPC], with xPC = 0..PicWidthInSamples − 1, yPC = 0..PicHeightInSamples − 1, of the chroma component Cr is derived by invoking the chroma quantization process specified in clause 8.4 with chroma sample location (xPC, yPC) and the chroma sample array PicSampleCr given as inputs.
8. The subsampled chroma sample value PicSampleSubCb[xPC][yPC], with xPC = 0..PicWidthInHalf − 1, yPC = 0..PicHeightInHalf − 1, of the chroma component Cb is derived by invoking the chroma subsampling process specified in clause 8.5 with chroma sample location (xPC, yPC) and the chroma sample array PicSampleCb given as inputs.
9. The subsampled chroma sample value PicSampleSubCr[xPC][yPC], with xPC = 0..PicWidthInHalf − 1, yPC = 0..PicHeightInHalf − 1, of the chroma component Cr is derived by invoking the chroma subsampling process specified in clause 8.5 with chroma sample location (xPC, yPC) and the chroma sample array PicSampleCr given as inputs.
10. A modified chroma sample value PicSamplebCb[xPC][yPC], with xPC = 0..PicWidthInSamples − 1, yPC = 0..PicHeightInSamples − 1, of the chroma component Cb is derived by invoking the chroma upsampling process specified in clause 8.6 with chroma sample location (xPC, yPC) and the chroma sample array PicSampleSubCb given as inputs.
11. A modified chroma sample value PicSamplebCr[xPC][yPC], with xPC = 0..PicWidthInSamples − 1, yPC = 0..PicHeightInSamples − 1, of the chroma component Cr is derived by invoking the chroma upsampling process specified in clause 8.6 with chroma sample location (xPC, yPC) and the chroma sample array PicSampleSubCr given as inputs.
12. A modified chroma sample value PicSamplebCb[xPC][yPC], with xPC = 0..PicWidthInSamples − 1, yPC = 0..PicHeightInSamples − 1, of the chroma component Cb is derived by invoking the inverse chroma quantization process specified in clause 8.7 with PicSampleCb[xPC][yPC] given as input.
13. A modified chroma sample value PicSamplebCr[xPC][yPC], with xPC = 0..PicWidthInSamples − 1, yPC = 0..PicHeightInSamples − 1, of the chroma component Cr is derived by invoking the inverse chroma quantization process specified in clause 8.7 with PicSampleCr[xPC][yPC] given as input.
14. A (PicWidthInSamples)x(PicHeightInSamples) array of target luminance samples YTarget[xP][yP], with xP = 0..PicWidthInSamples − 1, yP = 0..PicHeightInSamples − 1, is derived by invoking the process for calculating luminance specified in clause 8.8 with PicSampleR[xP][yP], PicSampleG[xP][yP] and PicSampleB[xP][yP] given as inputs.
15. The sample array PicSampleL is derived by invoking the luma adjustment process specified in clause 8.9 with sample arrays YTarget, PicSampleCb and PicSampleCr given as inputs.
NOTE 2 – Some of the pre-encoding processing steps can be performed in parallel as can be seen in Figure 2.
8.1 [bookmark: _Ref311238923][bookmark: _Ref311238948][bookmark: _Ref311238967][bookmark: _Toc444782353]Process for applying the inverse transfer function
Input to this process is one variable LinearVal.
Output of this process is one variable NonLinearVal.
The variable NonLinearVal is derived as follows:

										
NOTE 1 – The inverse transfer function in this document is functionally identical to the Inverse-EOTF in [ST 2084].
8.2 [bookmark: _Ref311239014][bookmark: _Toc444782354]Process for calculating Cb
Inputs to this process are three variables RedVal, GreenVal and BlueVal.
[bookmark: _Ref311238986]Output of this process is one variable CbVal.
The variable CbVal is derived as follows:
CbVal = Clip3(–0.5, 0.5, –b21 * RedVal – b22 * GreenVal + 0.5 * BlueVal)	
NOTE 1 – The equation for calculating Cb is functionally identical to the one described in [BT.2020].
8.3 [bookmark: _Ref311239023][bookmark: _Toc444782355]Process for calculating Cr
Inputs to this process are three variables RedVal, GreenVal and BlueVal.
Output of this process is one variable CrVal.
The variable CrVal is derived as follows:
CrVal = Clip3(–0.5, 0.5, 0.5 * RedVal – b32 * GreenVal – b33 * BlueVal)	
NOTE 1 – The equation for calculating Cr is functionally identical to the one described in [BT.2020].
8.4 [bookmark: _Ref311239040][bookmark: _Ref311239061][bookmark: _Toc444782356]Chroma quantization process
Input to this process is a variable BeforeQuant.
Output of this process is a variable AfterQuant.
The variable AfterQuant is derived as follows:
	AfterQuant = Clip3(0, 1023, Round(BeforeQuant * 896 + 512))
8.5 [bookmark: _Ref311239078][bookmark: _Ref311239090][bookmark: _Toc444782357]Chroma subsampling process
Inputs to this process are:
–	a chroma sample location (xPC, yPC) relative to the top-left chroma sample,
–	a chroma sample array PicSampleC.
Output of this process is the subsampled chroma sample value ChromaSample.
The value of the subsampled chroma sample value ChromaSample is derived by applying the following ordered steps:
1. The sample value tempArray[n] with n = 0..2, is derived as follows:
yPos = Clip3(0, PicHeightInSamples − 1, (yPC << 1)+ n − 1)	
tempArray[n] = PicSampleC[Clip3(0, PicWidthInSamples − 1, (xPC << 1) − 1), yPos] +
				6 * PicSampleC[Clip3(0, PicWidthInSamples − 1, (xPC << 1)), yPos] +	
				PicSampleC[Clip3(0, PicWidthInSamples − 1, (xPC << 1) + 1), yPos]
2. The resampled chroma sample value ChromaSample is derived as follows:
ChromaSample = (tempArray[0] +
				6 * tempArray[1] +		
				tempArray[2] + 32) >> 6
8.6 [bookmark: _Ref311239103][bookmark: _Ref311239120][bookmark: _Ref311239628][bookmark: _Ref311239653][bookmark: _Toc444782358]Chroma upsampling process
Inputs to this process are:
–	a chroma sample location (xPC, yPC) relative to the top-left chroma sample,
–	the chroma reference sample array PicSampleC.
Output of this process is the upsampled chroma sample value ChromaSample.
Table 1 specifies the 4-tap filter coefficients fC[p, x] with p = 0..1 and x = 0..3 used for the chroma upsampling process.
[bookmark: _Ref311237975][bookmark: _Ref311237966]Table 1– 2-phase chroma resampling filter
	Phase p
	Interpolation filter coefficients

	
	fC[p, 0]
	fC[p, 1]
	fC[p, 2]
	fC[p, 3]

	0
	0
	16
	0
	0

	1
	−1
	9
	9
	−1

The value of the upsampled chroma sample value ChromaSample is derived by applying the following ordered steps:
1. The variables xRef and xPhase are derived as follows:
xRef = xPC >> 1 		
xPhase = xPC % 2		
2. The variables yRef and yPhase are derived as follows:
yRef = yPC >> 1 		
yPhase = yPC % 2		
3. The sample value tempArray[n] with n = 0..3, is derived as follows:
yPosRL = Clip3(0, PicHeightInHalf − 1, yRef + n − 1)	
tempArray[n] = fC[xPhase, 0] * PicSampleC[Clip3(0, PicWidthInHalf − 1, xRef − 1), yPosRL] +
				fC[xPhase, 1] * PicSampleC[Clip3(0, PicWidthInHalf − 1, xRef), yPosRL] +	
				fC[xPhase, 2] * PicSampleC[Clip3(0, PicWidthInHalf − 1, xRef + 1), yPosRL] +
				fC[xPhase, 3] * PicSampleC[Clip3(0, PicWidthInHalf − 1, xRef + 2), yPosRL]
4. The upsampled chroma sample value ChromaSample is derived as follows:
ChromaSample = Clip3(0, 1023, (fC[yPhase, 0] * tempArray[0] +
				fC[yPhase, 1] * tempArray[1] +
				fC[yPhase, 2] * tempArray[2] +	
				fC[yPhase, 3] * tempArray[3] + 128) >> 8)
8.7 [bookmark: _Ref311274819][bookmark: _Ref311239138][bookmark: _Ref311239393][bookmark: _Toc444782359]Inverse chroma quantization process
Input to this process is a variable BeforeInverseQuant.
Output of this process is a variable AfterInverseQuant.
The variable AfterInverseQuant is derived as follows:
	AfterInverseQuant = Clip3(-0.5, 0,5, (BeforeInverseQuant – 512) 896)
8.8 [bookmark: _Ref311365900][bookmark: _Toc444782360]Process for calculating luminance
Inputs to this process are three variables RedVal, GreenVal and BlueVal.
Output of this process is one variable LuminanceVal.
The variable LuminanceVal is derived as follows:
LuminanceVal = Clip3(0.0, 1.0, wR* RedVal + wG * GreenVal + wB * BlueVal)	
NOTE 1 – The equation for calculating the luminance is functionally identical to the one described in [BT.2020].
8.9 [bookmark: _Ref311239153][bookmark: _Toc444782361]Process for luma adjustment
Inputs to this process are:
–	a (PicWidthInSamples)x(PicHeightInSamples) array YTarget of samples in the range of 0.0 to 1.0, inclusive,
–	a (PicWidthInSamples)x(PicHeightInSamples) array PicSampleCb of samples in the range of 0.0 to 1.0, inclusive,
–	a (PicWidthInSamples)x(PicHeightInSamples) array PicSampleCr of samples in the range of 0.0 to 1.0, inclusive,
Outputs of this process are:
–	a (PicWidthInSamples)x(PicHeightInSamples) array PicSampleL of luma samples,
For each xP = 0.. PicWidthInSamples − 1, yP = 0.. PicHeightInSamples – 1 the following ordered steps are performed:
· The variable YpCandidateLow is set equal to 64
· The variable YpCandidateHigh is set equal to 940
· While YpCandidateLow+1 is not equal to YpCandidateHigh the following ordered steps are performed:
1. The YpCandidateMid is set equal to (YpCandidateLow + YpCandidateHigh) >> 1
2. The variable Ypn is derived as follows:
· Ypn = (YpCandidateMid – 64)
3. YTest is derived by invoking the process for calculating luminance from luma and chroma as specified in clause 8.10, with Ypn, PicSampleCb[xP][yP] and PicSampleCr[xP][yP] as input.
4. If YTest is less than YTarget[xP][yP] then YCandidateLow is set equal to YCandidateMid, otherwise (YTest is greater than or equal to YTarget[xP][yP]) then YCandidateHigh is set equal to YCandidateMid.
· The variable YTestLow is derived by invoking the process for calculating luminance from luma and chroma as specified in clause 8.10, with ((YpCandidateMid – 64), PicSampleCb[xP][yP] and PicSampleCr[xP][yP] as input.
· The variable YTestHigh is derived by invoking the process for calculating luminance from luma and chroma as specified in clause 8.10, with ((YpCandidateMid – 63), PicSampleCb[xP][yP] and PicSampleCr[xP][yP] as input.
· If Abs(YTestLow – YTarget[xP][yP]) < Abs(YTestHigh – YTarget[xP][yP]), PicSampleL[xP][yP] is set equal to YCandidateLow. Otherwise it is set equal to YCandidateLow+1.
8.10 [bookmark: _Ref311239301][bookmark: _Toc444782362]Process for calculating luminance from luma and chroma
[bookmark: _Ref311239337]Inputs to this process are three variables Ypn, CbVal and CrVal.
[bookmark: _Ref311239320]Output of this process is one variable YLinear.
The variable YLinear is derived by applying the following ordered steps:
1. The variables Redp, Greenp, Bluep are derived by invoking the process for calculating RGB as specified in clause 8.11, with Ypn, CbVal and CrVal as input, respectively.
2. The variables RedLinear, GreenLinear and BlueLinear are derived by invoking the process for applying the transfer function as specified in clause 8.12, with Redp, Greenp and Bluep as input, respectively.
3. YLinear is derived by invoking the process for calculating luminance as specified in clause 8.7, with RedLinear, GreenLinear and BlueLinear as input.
8.11 [bookmark: _Ref311375834][bookmark: _Toc444782363]Process for calculating RGB
Inputs to this process are three variables Yp, Cbp, Crp.
Output of this process are three variables Redp, Greenp, Bluep.
The variables Redp, Greenp, Bluep are derived as follows:
· Redp = Clip3(0.0, 1.0, Yp + a13 * Crp)
· Greenp = Clip3(0.0, 1.0, Yp – a22 * Cbp – a23 * Crp)
· Bluep = Clip3(0.0, 1.0, Yp + a32 * Cbp)
8.12 [bookmark: _Ref311239371][bookmark: _Toc444782364]Process for applying the transfer function
Input to this process is one variable NonLinearVal.
[bookmark: _Ref311239367]Output of this process is one variable LinearVal.
The variable LinearVal is derived as follows:

									
NOTE 1 – The transfer function in this document is functionally identical to the EOTF in [ST 2084].
9 [bookmark: _Ref311238826][bookmark: _Toc444782365]Encoding process
Inputs of this process are:
–	a (PicWidthInSamples)x(PicHeightInSamples) array PicSampleL of integer luma samples in the range of 0 to 1023, inclusive,
–	a (PicWidthInHalf)x(PicHeightInHalf) array PicSampleSubCb of integer chroma samples of the component Cb in the range of 0 to 1023, inclusive,
–	a (PicWidthInHalf)x(PicHeightInHalf) array PicSampleSubCr of integer chroma samples of the component Cr in the range of 0 to 1023, inclusive.
Output of this process is a bitstream.
This document does not provide a detailed description of the encoding process or the bitstream format. Clause 9.1 provides information on suitable settings of syntax elements when creating bitstreams in accordance with [HEVC]. Clause 9.2 provides information on suitable settings of syntax elements when creating bitstreams in accordance with [AVC].
9.1 [bookmark: _Ref311239421][bookmark: _Toc444782366]HEVC encoding
When creating the HEVC bitstream it is recommended to set the syntax elements listed in Table 2 to the values listed in Table 1 in each Sequence Parameter Set in the bitstream.
[bookmark: _Ref311239510]Table 2 – Recommended settings for HEVC encoding
	Syntax element
	Recommended value

	general_profile_space
	0

	general_profile_idc
	2

	video_full_range_flag
	0

	colour_primaries
	9

	transfer_characteristics
	16

	matrix_coeffs
	9

	chroma_sample_loc_type_top_field
	2

	chroma_sample_loc_type_bottom_field
	2

For HDR content represented with the colour primaries of [BT.2020] and the transfer function of [ST 2084], the video characteristics is typically different compared to the video characteristics of SDR content represented with [BT.709] colour primaries and [BT.709] transfer function. It is recommended to adjust the bit-distribution between chroma and luma for example by setting chroma QP offset (controlled by the syntax elements pps_cb_qp_offset, slice_cb_qp_offset, pps_cr_qp_offset and slice_cr_qp_offset) such that a small negative offset is used for low luma QP values and a large negative offset is used for high luma QP values. It is further recommended to adjust the bit-distribution between dark samples and bright samples for example by setting delta QP (controlled by the syntax elements cu_qp_delta_abs and cu_qp_delta_sign_flag) such that blocks with a high averge luma value are assigned lower QP than blocks with a low average luma value. It is also recommended to take into account the activity (variance) of a block when setting delta QP for the block.
9.2 [bookmark: _Ref311239435][bookmark: _Toc444782367]AVC encoding
When creating the AVC bitstream it is recommended to set the syntax elements listed in Table 3 to the values listed in Table 3 in each Sequence Parameter Set in the bitstream.
[bookmark: _Ref311239486]Table 3 – Recommended settings for AVC encoding
	Syntax element
	Recommended value

	profile_idc
	110

	video_full_range_flag
	0

	colour_primaries
	9

	transfer_characteristics
	16

	matrix_coeffs
	9

	chroma_sample_loc_type_top_field
	2

	chroma_sample_loc_type_bottom_field
	2

For HDR content represented with the colour primaries of [BT.2020] and the transfer function of [ST 2084], the video characteristics is typically different compared to the video characteristics of SDR content represented with [BT.709] colour primaries and [BT.709] transfer function. It is recommended to adjust the bit-distribution between chroma and luma for example by setting chroma QP offset (controlled by the syntax elements chroma_qp_index_offset and second_chroma_qp_index_offset) such that a small negative offset is used for low luma QP values and a large negative offset is used for high luma QP values. It is further recommended to adjust the bit-distribution between dark samples and bright samples for example by setting delta QP (controlled by the syntax element mb_qp_delta) such that blocks with a high averge luma value are assigned lower QP than blocks with a low average luma value. It is also recommended to take into account the activity (variance) of a block when setting delta QP for the block.
10 [bookmark: _Ref311238880][bookmark: _Toc444782368]Decoding process
Input to this process is a bitstream.
Outputs of this process process are:
–	a (PicWidthInSamples)x(PicHeightInSamples) array PicSampleL of integer luma samples in the range of 0 to 1023, inclusive,
–	a (PicWidthInHalf)x(PicHeightInHalf) array PicSampleSubCb of integer chroma samples of the component Cb in the range of 0 to 1023, inclusive,
–	a (PicWidthInHalf)x(PicHeightInHalf) array PicSampleSubCr of integer chroma samples of the component Cr in the range of 0 to 1023, inclusive.
When the bitstream is an HEVC bitstream the decoding process in [HEVC] is performed with the sample values of each output picture iteratively assigned to PicSampleL, PicSampleCb, and PicSampleCr, respectively.
When the bitstream is an AVC bitstream the decoding process in [AVC] is performed with the sample values of each output picture iteratively assigned to PicSampleL, PicSampleCb, and PicSampleCr, respectively.
11 [bookmark: _Ref311238896][bookmark: _Toc444782369]Post-decoding processing
Inputs to this process are:
–	a (PicWidthInSamples)x(PicHeightInSamples) array PicSampleDecL of integer luma samples, in the range of 0 to 1023, inclusive,
–	a (PicWidthInHalf)x(PicHeightInHalf) array PicSampleDecCb of integer chroma samples of the component Cb, in the range of 0 to 1023, inclusive,
–	a (PicWidthInHalf)x(PicHeightInHalf) array PicSampleDecCr of integer chroma samples of the component Cr, in the range of 0 to 1023, inclusive.
Outputs of this process are:
–	a (PicWidthInSamples)x(PicHeightInSamples) array PicSampleOutR of floating point red samples in the range of 0.0 to 1.0, inclusive,
–	a (PicWidthInSamples)x(PicHeightInSamples) array PicSampleOutG of floating point green samples in the range of 0.0 to 1.0, inclusive,
–	a (PicWidthInSamples)x(PicHeightInSamples) array PicSampleOutB of floating point blue samples in the range of 0.0 to 1.0, inclusive,
A schematic overview of the post-decoding processing is illustrated in Figure 3. The input (Y’, Cb, Cr) corresponds to PicSampleDecL, PicSampleDecCb, and PicSampleCr, respectively. The output (R, G, B) corresponds to PicSampleOutR, PicSampleOutG, and PicSampleOutB, respectively.
[image:]
[bookmark: _Ref311238463]Figure 3. Overview of the post-decoding processing. The box marked Inverse quant. constitutes inverse luma quantization and inverse chroma quantization. The box marked “Conversion to R’G’B’ ” is realized in this document by the process for calculating RGB.
The post-decoding process consists of the following ordered steps:
1. The upsampled chroma sample value PicSampleUpCb[xPC][yPC], with xPC = 0..PicWidthInSamples − 1, yPC = 0..PicHeightInSamples − 1, of the chroma component Cb is derived by invoking the chroma upsampling process specified in clause 8.6 with chroma sample location (xPC, yPC) and the chroma sample array PicSampleDecCb given as inputs.
2. The upsampled chroma sample value PicSampleUpCr[xPC][yPC], with xPC = 0..PicWidthInSamples − 1, yPC = 0..PicHeightInSamples − 1, of the chroma component Cr is derived by invoking the chroma upsampling process specified in clause 8.6 with chroma sample location (xPC, yPC) and the chroma sample array PicSampleDecCr given as inputs.
3. The upsampled chroma sample value PicSampleUpCb[xPC][yPC], with xPC = 0..PicWidthInSamples − 1, yPC = 0..PicHeightInSamples − 1, of the chroma component Cb is modified by invoking the inverse chroma quantization process specified in clause 8.7 with PicSampleUpCb[xPC][yPC] as input.
4. The upsampled chroma sample value PicSampleUpCr[xPC][yPC], with xPC = 0..PicWidthInSamples − 1, yPC = 0..PicHeightInSamples − 1, of the chroma component Cr is modified by invoking the inverse chroma quantization process specified in clause 8.7 with PicSampleUpCr[xPC][yPC] as input.
5. The luma sample value PicSampleDecY[xP][yP], with xP = 0..PicWidthInSamples − 1, yP = 0..PicHeightInSamples − 1, of the luma component Y is modified by invoking the inverse luma quantization process specified in clause 11.1 with PicSampleDecY[xP][yP] as input.
6. Three (PicWidthInSamples)x(PicHeightInSamples) arrays of non-linear samples PicSampleNonLinearR, PicSampleNonLinearG and PicSampleNonLinearB are derived by invoking the process for calculating RGB specified in clause 8.11, with PicSampleDecY[xP][yP], PicSampleUpCb[xP][yP] and PicSampleUpCr[xP][yP] as input and with the output assigned to PicSampleNonLinearR[xP][yP], PicSampleNonLinearG[xP][yP] and PicSampleNonLinearB[xP][yP], with xP = 0..PicWidthInSamples − 1, yP = 0..PicHeightInSamples − 1.
7. The output samples PicSampleOutR is derived by invoking the process for applying the transfer function specified in clause 8.12, with PicSampleNonLinearR[xP][yP] as input and with the output assigned to PicSampleOutR[xP][yP], with xP = 0..PicWidthInSamples − 1, yP = 0..PicHeightInSamples − 1.
8. The output samples PicSampleOutG is derived by invoking the process for applying the transfer function specified in clause 8.12, with PicSampleNonLinearG[xP][yP] as input and with the output assigned to PicSampleOutG[xP][yP], with xP = 0..PicWidthInSamples − 1, yP = 0..PicHeightInSamples − 1.
9. The output samples PicSampleOutB is derived by invoking the process for applying the transfer function specified in clause 8.12, with PicSampleNonLinearB[xP][yP] as input and with the output assigned to PicSampleOutB[xP][yP], with xP = 0..PicWidthInSamples − 1, yP = 0..PicHeightInSamples − 1.
11.1 [bookmark: _Ref311274790][bookmark: _Ref311239666][bookmark: _Toc444782370]Inverse luma quantization process
Input to this process is a variable BeforeInverseQuant.
Output of this process is a variable AfterInverseQuant.
The variable AfterInverseQuant is derived as follows:
	AfterInverseQuant = Clip3(0.0, 1.0, (BeforeInverseQuant – 64) 876)

Annex A.

Supplemental enhancement information (SEI) messages.
This annex provides short descriptions of SEI messages that can be used together with HDR video.

1 [bookmark: _Toc444782371]Mastering display colour volume SEI message
If mastering display colour volume information is included, it is recommended that Mastering display colour volume SEI messages are included at least at each Random Access Point Access Unit (RAPAU). The information provided in the mastering display colour volume information SEI message shall apply until, but not necessarily including, the next RAPAU. If multiple mastering display colour volume SEI messages are included in the bitstream between the start of two RAPAUs then those SEI messages shall have the same content. Table 4 shows an example of what values the Master display colour volume SEI message would contain in case the mastering display uses P3 colour primaries [RP 431-2], D65 white point and luminance range of 0 cd/m2 to 2000 cd/m2, inclusive.
[bookmark: _Ref317849573][bookmark: _Ref317849589]Table 4 – Example Mastering display colour volume SEI message representing P3 colour primaries [RP 431-2], D65 white point and luminace range of 0 cd/m2 to 2000 cd/m2, inclusive.
	Syntax element
	Example value

	display_primaries_x[0]
	13250

	display_primaries_y[0]
	34500

	display_primaries_x[1]
	7500

	display_primaries_y[1]
	3000

	display_primaries_x[2]
	34000

	display_primaries_y[2]
	16000

	white_point_x
	15635

	white_point_y
	16450

	max_display_mastering_luminance
	20000000

	min_display_mastering_luminance
	0

If the decoder contains an interface for output of mastering display colour volume information and the bitstream contains mastering display colour volume SEI messages it is recommended that the decoder outputs mastering display colour volume information synchronously to the first picture for which the SEI message apply.
2 [bookmark: _Toc444782372]Content Light Level information SEI message
[Ed. (JS) Add description and example.]

image2.wmf
î

í

ì

<

-

>=

0

;

0

;

x

x

x

x

oleObject1.bin

image3.wmf
ï

î

ï

í

ì

>

<

otherwise

;

;

;

z

y

z

y

x

z

x

oleObject2.bin

image4.wmf
ï

î

ï

í

ì

<

-

=

>

0

;

1

0

;

0

0

;

1

x

x

x

oleObject3.bin

image5.emf

Calculating
Cb and Cr

R	
G	
B	

Calculating
target Y

Inverse
transfer
function

R’	 G’	 B’	

Chroma
quant.

Sub-
sampling

Up-
sampling

Luma
adjustment

Cb	

Y’	
YTarget	

Cb	

Cr	

Cb	

Cr	

Inverse
chroma
quant.

Cr	

Calculating

Cb and Cr

R	

G	

B	

Calculating

target Y

Inverse

transfer

function

R’	G’	B’	

Chroma

quant.

Sub-

sampling

Up-

sampling

Luma

adjustment

Cb	

Y’	

YTarget	

Cb	

Cr	

Cb	

Cr	

Inverse

chroma

quant.

Cr	

image6.wmf
2

1

1

m

m

3

m

2

1

LinearVal

*

c

1

LinearVal

*

c

c

=

al

NonLinearV

÷

÷

ø

ö

ç

ç

è

æ

+

+

oleObject4.bin

image7.wmf
1

2

2

m

/

1

m

/

1

3

2

1

m

/

1

LinearVal

*

c

c

]

0

),

c

LinearVal

max[(

=

LinearVal

÷

÷

ø

ö

ç

ç

è

æ

-

-

oleObject5.bin

image8.emf

Up-
sampling

Conversion
to R’G’B’

Transfer
function

R	 	

G	 	

B	

Inverse
quant. Cb	

Cr	

Y’	 	

Up-

sampling

Conversion

to R’G’B’

Transfer

function

R		

G		

B	

Inverse

quant.

Cb	

Cr	

Y’		

image1.emf

Content
preparation

Various	
HDR	 and	
RAW	
video	
formats	

Encoding
process

Pre-
encoding

processing

Op7mized	 for	 the	 Hypothe7cal	
Reference	 Viewing	 Environment	

Out	 of	 scope	 In	 scope	
Linear	 	
light	
RGB	
4:4:4	

Hypothe7cal	 Reference	 	
Viewing	 Environment	

Decoding
process

ST	 2084	
Y’CbCr	
4:2:0	
10bit	

Linear	 	
light	
RGB	
4:4:4	

Display
adaptation

Out	 of	 scope	

Post-
decoding

processing

ST	 2084	
Y’CbCr	
4:2:0	
10bit	

Op7onal	 metadata	 Op7onal	 metadata	

Content

preparation

Various	

HDR	and	

RAW	

video	

formats	

Encoding

process

Pre-

encoding

processing

Opmized	for	the	Hypothecal	

Reference	Viewing	Environment	

Out	of	scope	

In	scope	

Linear		

light	

RGB	

4:4:4	

Hypothecal	Reference		

Viewing	Environment	

Decoding

process

ST	2084	

Y’CbCr	

4:2:0	

10bit	

Linear		

light	

RGB	

4:4:4	

Display

adaptation

Out	of	scope	

Post-

decoding

processing

ST	2084	

Y’CbCr	

4:2:0	

10bit	

Oponal	metadata	

Oponal	metadata	

