INTERNATIONAL ORGANIZATION FOR STANDARDIZATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11/N15790
October 2015, Geneva, CH
Title:

Algorithm Description of Joint Exploration Test Model 1 (JEM 1)
Source

Video/JVET
Status:
Approved
Abstract

This document is the Joint Exploration Model 1 (JEM 1) algorithm description. It describes the coding features that are under coordinated test model study by the Joint Video Exploration Team (JVET) of ITU-T VCEG and ISO/IEC MPEG as potential enhanced video coding technology beyond the capabilities of HEVC.

ITU-T VCEG (Q6/16) and ISO/IEC MPEG (JTC 1/SC 29/WG 11) are studying the potential need for standardization of future video coding technology with a compression capability that significantly exceeds that of the current HEVC standard (including its current extensions and near-term extensions for screen content coding and high-dynamic-range coding). Such future standardization action could either take the form of additional extension(s) of HEVC or an entirely new standard. The groups are working together on this exploration activity in a joint collaboration effort known as the Joint Video Exploration Team (JVET) to evaluate compression technology designs proposed by their experts in this area. The JVET first met during 19–21 October 2015.

Contents
11.
Introduction

12.
Technical description

12.1.
Larger Coding Tree Block and Larger Transform Unit

22.2.
Quadtree plus binary tree (QTBT) block structure

22.2.1.
QTBT block partitioning structure

42.2.2.
Encoder implementation

62.3.
Intra prediction improvement

62.3.1.
Intra mode coding with 67 intra prediction modes

72.3.2.
Four-tap intra interpolation filter

72.3.3.
Boundary prediction filters

72.3.4.
Cross component prediction

82.3.5.
Position dependent intra prediction combination (PDPC)

92.3.6.
Adaptive reference sample smoothing

102.4.
Inter prediction improvement

102.4.1.
Sub-PU based motion vector prediction

112.4.2.
Adaptive motion vector resolution

122.4.3.
Overlapped block motion compensation

122.4.4.
Local illumination compensation

132.4.5.
Affine motion compensation prediction

152.4.6.
Pattern matched motion vector derivation

162.4.7.
Bi-directional optical flow

182.5.
Transform improvement

182.5.1.
Adaptive multiple Core transform

182.5.2.
Secondary transforms

202.5.3.
Signal dependent transform (SDT)

212.6.
Adaptive loop filter

222.7.
Context adaptive binary arithmetic coding (CABAC)

222.7.1.
Context model selection for transform coefficient levels

232.7.2.
Multi-hypothesis probability estimation

242.7.3.
Initialization for context models

243.
Software and common test conditions

243.1.
Reference software

243.2.
Common test condition

254.
References

1. Introduction

The coding structure of HEVC [1]

 REF _Ref432896614 \r \h * MERGEFORMAT
[2] is kept unchanged, however, various HEVC design elements are somewhat modified. These modifications can be summarized as follows:
· Block structure
· Larger Coding Tree Unit (up to 256x256) and transforms (up to 64x64) [3][4]
· Quadtree plus binary tree (QTBT) block structure [5]
· Intra prediction improvements

· 65 intra prediction directions [4][6][7]

 REF _Ref435218699 \r \h
 * MERGEFORMAT [8]
· 4-tap interpolation filter for intra prediction [4][6]
· Boundary filter applied to other directions in addition to horizontal and vertical ones [4][6]
· Cross-component linear model (CCLM) prediction [3][4]
· Position dependent intra prediction combination (PDPC) [9]
· Adaptive reference sample smoothing [10]
· Inter prediction improvements
· Sub-PU level motion vector prediction [3]

 REF _Ref435218694 \r \h
 * MERGEFORMAT [4][11]
· Locally adaptive motion vector resolution (AMVR) [3]

 REF _Ref435218694 \r \h
 * MERGEFORMAT [4]
· Overlapped block motion compensation (OBMC) [3]

 REF _Ref435218694 \r \h
 * MERGEFORMAT [4]
· Local illumination compensation (LIC) [4][12]
· Affine motion prediction [13]
· Pattern matched motion vector derivation [4][6][5]
· Bi-directional optical flow (BIO) [7]

 REF _Ref435218699 \r \h
 * MERGEFORMAT [8]
· Transform
· Explicit multiple core transform [3]

 REF _Ref435218694 \r \h
 * MERGEFORMAT [4]
· Mode dependent non-separable secondary transforms [4][14]
· Signal dependent transform (SDT) [15]
· Adaptive loop filter (ALF) [3]

 REF _Ref435218694 \r \h
 * MERGEFORMAT [4]
· Enhanced CABAC design [4][6]
· Context model selection for transform coefficient levels
· Multi-hypothesis probability estimation

· Initialization for context models
All the methods listed above, except the ‘Quadtree plus binary tree (QTBT) block structure’ method, have been or will be integrated into the main software branch of JEM. The software of QTBT block structure method is now not a part of the main software branch and is released in a separate branch for the group to study.
2. Technical description

The technical detail of each method is described in the following sub-sections.

2.1. Larger Coding Tree Block and Larger Transform Unit

In HEVC, the maximum bock size is 64x64. In JEM, coding tree unit (CTU) sizes larger than 64x64 is supported. The CTU size signalled in the sequence level is set to be 256x256 by default. The recursive coding unit (CU) quadtree structure and the prediction unit (PU) partition scheme is kept unchanged as in HEVC.

Straightforward extension of the existing modules is introduced to support larger CTU sizes. For example, to support larger CTU, the context for syntax elements related to CU depth is extended. The context for the case of CU depth larger than 3 is the same as that of the CU depth equal to 3.

A larger transform, i.e., 64x64 DCT, is enabled to improve coding efficiency especially for higher resolution video, e.g., 1080p and 4K sequences. To reduce the computational complexity of 64x64 transform, only the top-left (lower-frequency) 32x32 coefficients among the 64x64 transformed block are maintained and the remaining higher-frequency coefficients are zeroed out. The integer transform matrix Ti,j, where [image: image2.png] is derived by scaling the DCT-II matrix by S, followed by rounding.

[image: image4.png], where [image: image6.png]

(1)

In JEM, the scaling factor S is set equal to [image: image8.png] to more accurately keep the orthogonality of the transform matrix. To keep the intermediate values of the transformed coefficients within the range of 16-bit, after horizontal and after vertical transform, all the coefficients are right shifted by 2 more bits, comparing to the right shift used in the current HEVC transforms.

2.2. Quadtree plus binary tree (QTBT) block structure

2.2.1. QTBT block partitioning structure

In HEVC a CTU is partitioned into CUs by using a quadtree structure denoted as coding tree to adapt to various local characteristics. The decision whether to code a picture area using inter-picture (temporal) or intra-picture (spatial) prediction is made at the CU level. Each CU can be further split into one, two or four PUs according to the PU splitting type. Inside one PU, the same prediction process is applied and the relevant information is transmitted to the decoder on a PU basis. After obtaining the residual block by applying the prediction process based on the PU splitting type, a CU can be partitioned into transform units (TUs) according to another quadtree structure similar to the coding tree for the CU. One of key feature of HEVC structure is that it has the multiple partition conceptions including CU, PU, and TU.
The QTBT structure removes the concepts of multiple partition type, i.e. removes the separation of CU, PU and TU conception, and support more flexibility for CU partition shape to better match the local characteristics of video data. In this block structure, CU can have each square or rectangle shape. As show in Figure 1, a Coding Tree Block (CTB) is firstly partitioned by a quadtree structure. The quadtree leaf nodes are further partitioned by a binary tree structure. There are two splitting types, symmetric horizontal splitting and symmetric vertical splitting, in the binary tree splitting. The binary tree leaf nodes are namely Coding Blocks (CBs) used for prediction and transform without any further partitioning.
The following parameters are defined to have efficient signalling of a QTBT true.

– CTU size: the root node size of a quadtree, same concept as in HEVC

– MinQTSize: the minimum allowed quadtree leaf node size

– MaxBTSize: the maximum allowed binary tree root node size

– MaxBTDepth: the maximum allowed binary tree depth
– MinBTSize: the minimum allowed binary tree leaf node size
In one example of the QTBT partitioning structure, the CTU size is set as 128x128 (luma samples and two corresponding 64x64 chroma samples), the MinQTSize is set as 16x16, the MaxBTSize is set as 64x64, the MinBTSize (for both width and height) is set as 4, and the MaxBTDepth is set as 4. The quadtree partitioning is applied to the CTU first to generate quadtree leaf nodes. The quadtree leaf nodes may have a size from 16x16 (i.e., the MinQTSize) to 128x128 (i.e., the CTU size). If the leaf quadtree node is 128x128, it will not be further split by the binary tree since the size exceeds the MaxBTSize (i.e., 64x64). Otherwise, the leaf quadtree node could be further partitioned by the binary tree. Therefore the quadtree leaf node is also the root node for the binary tree and it has the binary tree depth as 0. When the binary tree depth reaches MaxBTDepth (i.e., 4), it implies that no further splitting. When the binary tree node has width equal to MinBTSize (i.e., 4), it implies no further horizontal splitting. Similarly, when the binary tree node has height equal to MinBTSize, it implies no further vertical splitting. The leaf nodes of the binary tree are namely CUs further processed by prediction and transform without any further partitioning.

Figure 1 (left) illustrates an example of block partitioning by using QTBT, and Figure 1 (right) illustrates the corresponding tree representation. The solid lines indicate quadtree splitting and dotted lines indicate binary tree splitting. In each splitting (i.e., non-leaf) node of the binary tree, one flag is signalled to indicate which splitting type (i.e., horizontal or vertical) is used, where 0 indicates horizontal splitting and 1 indicates vertical splitting. For the quadtree splitting, there is no need to indicate the splitting type since it always split a block horizontally and vertically into 4 sub-blocks with an equal size.

[image: image9.emf]1

1

0

1

0

0

Figure 1: Illustration of a QTBT structure

In addition, the QTBT block structure supports the feature that luma and chroma have the separate QTBT structure. Currently, for P and B slice the luma and chroma CTBs in one (CTU) share the same QTBT structure. For I slice the luma CTB is partitioned into CBs by a QTBT structure, and two chroma CTBs are partitioned into chroma CBs by another QTBT structure.

2.2.2. Encoder implementation

The encoder rate-distortion optimization (RDO) process of the QTBT structure used to determine the best block partitioning shape is illustrated by the pseudo code shown in Figure 2.

[image: image10.emf]QTBT_RDO (x, y, width, height)

{

//try kinds of modes without any partitioning

TryInterPredMode(x, y, width, height);

TryIntraPredMode(x, y, width, height);

Save the cost of the best mode as CostNoPart;

//try the horizontal binary tree partitioning

QTBT_RDO (x, y, width, height/2);

QTBT_RDO (x, y+height/2, width, height/2);

Save the cost as CostHorBT;

//try the vertical binary tree partitioning

QTBT_RDO (x, y, width/2, height);

QTBT_RDO (x+width/2, y, width/2, height);

Save the cost as CostVerBT;

//try the quadtree patitioning

QTBT_RDO (x, y, width/2, height/2);

QTBT_RDO (x+width/2, y, width/2, height/2);

QTBT_RDO (x, y+height/2, width/2, height/2);

QTBT_RDO (x+width/2, y+height/2, width/2, height/2);

Save the cost as CostQT;

//select the best cost to determinate the best block partitioning structure.

CostBest = min(CostNoPart, CostHorBT, CostVerBT, CostQT);

Return;

}

Figure 2: Pseudo code of the QTBT RDO process

As shown in Figure 2, the function QTBT_RDO() is used for encoder to determine the best partition for an input block which is specified by the four input parameters x, y, width, and height indicating respectively the x-coordinate and y-coordinate of the top-left position, width, and height of the block. Firstly, the input block is treated as a leaf node (i.e., CU or CB) of the coding tree to try all kinds of modes without any further partitioning for prediction and transform, and then the RD cost of the best mode is saved as CostNoPart. Secondly, if the condition of the horizontal binary tree split is met, the input block is split into two sub-blocks horizontally. Each of them has the same width but half height of the input block. The top one has its top-left position equal to the current input block and the bottom one has its y-coordinate increased by half height. Each sub-block calls the function QTBT_RDO() recursively to determine their own best partitions. The cost of this horizontal binary tree split of current input block is saved as CostHorBT. Similarly, the cost of the vertical binary tree split and quardtree split of current input block can be derived as CostVerBT and CostQT respectively. After comparing the CostNoPart, CostHorBT, CostVerBT, and CostQT, the best block partition shape which has the minimum RD cost can be derived.

For I slice, the QTBT_RDO() for a luma CTB is processed before the QTBT_RDO() for the two corresponding chroma CTBs since the chroma CBs may reuse the collocated luma intra prediction mode as the same concept in HEVC.

The recursive calling of the function QTBT_RDO() within the quartree and the binary tree together is very time-consuming. Some simplifications have been implemented to simplify the RDO process in the released software.
If one block has its CostNoPart smaller than CostHorBT and CostVerBT when the binary tree with deep depth is tried, then the CostQT is very likely also to be larger than CostNoPart, so the RD check of quadtree split can be skipped.

The quadtree split of one node can be represented by some combinations of horizontal binary tree split and vertical binary tree split. The same partition shape can also be generated by applying the horizontal and vertical binary tree split in different orders. Even if the signalled flags representing the tree structure and the processing order of the generated CUs may different, the RD performance is supposedly to be similar since the block partition shape is the same. Therefore, the binary tree split is constrained to avoid some redundant cases.

In the QTBT_RDO() process, one block may be accessed more than once. In Fig. 3 (left) the block is firstly vertically split and the right sub-block is further horizontally split. In Fig. 3 (right) the block is firstly horizontally split and the top sub-block is further vertically split. Therefore, the sub-block in the top-right position will be accessed twice. The whole block itself may also be accessed many times. Since the best mode information of a same block is likely to be unchanged during the multiple RDO accessing, the best mode information is saved during the first RDO check stage and will be reused during the later RDO accessing to save encoding time.

[image: image11.emf]
Figure 3: Illustration of one block accessed twice
If the best mode of current block is skip mode and current block depth is deep enough, then it usually has no need to try further split RDO for both quadtree and binary tree.

The maxBTSize and minQTSize are two critical factors for the RD performance and the encoding time. In the released software, these two parameters of the currently slice are set adaptively larger when the average CU size of the previous coded picture in the same temple layer is larger, and vice versa. This picture level adaptive setting is only used for P and B slices. In the released software, the default value of the two parameter as well as maxBTDepth and minBTSize is given in Table 1.
Table 1: Derivation QTBT high level parameters setting and experimental results
	QTBT high level parameters
	I slice
	P and B slice

	CTU size
	128x128
	128x128

	minQTSize
	16x16
	16x16 (init)

	maxBTSize
	32x32
	128x128 (init)

	maxBTDepth
	4
	4

	minBTSize
	4
	4

2.3. Intra prediction improvement

2.3.1. Intra mode coding with 67 intra prediction modes
To capture finer edge directions presented in natural videos, the directional intra modes is extended from 33, as defined in HEVC, to 65. The new directional modes are indicated as red dotted arrows in Figure 4, and the Planar and DC modes remain the same. These denser directional intra prediction modes apply for all PU sizes and both luma and chroma intra predictions.

[image: image12.emf]0: Planar

1: DC

Figure 4: Proposed 67 intra prediction modes

To accommodate the increased number of directional Intra modes, an Intra mode coding method with 6 Most Probable Modes (MPMs) is used. Two major technical aspects are involved: 1) the derivation of 6 MPMs, and 2) entropy coding of 6 MPMs.

When deriving the new set of 6 MPMs, the definition of the left and above neighbouring Intra modes is changed. Instead of using the Intra modes from top and left neighbouring blocks directly as in HEVC, the most frequently used Intra mode along the top neighbouring row and along the left neighbouring column are computed, and then used as the left and above neighbouring modes, respectively.

Next, to derive the actual 6 MPMs, the same set of rules used in HEVC to obtain 3 MPMs (but using the new values of left and above modes, as explained above) is employed, and then the 3 Intra modes closest to (in terms of prediction direction) the angular modes which have already been included in the list of MPMs are added. More detailed descriptions of deriving the 6 MPMs using the left and above neighbouring modes are listed in Table 2.

Table 2: Derivation of 6 MPMs using the (L)eft and (A)bove neighbouring modes

	Conditions
	MPM0
	MPM1
	MPM2
	MPM3
	MPM4
	MPM5

	L=A
	L≠Planar and L≠DC
	L
	Planar
	L+1
	L-1
	L+2
	DC

	
	Otherwise
	Planar
	DC
	26 (Ver)
	10 (Hor)
	2
	18

	L≠A
	L≠Planar and R≠Planar
	L=DC or A=DC
	L
	A
	Planar
	Max-1
	Max+1
	Max+2

	
	
	otherwise
	L
	A
	Planar
	DC
	Max+1
	Min-1

	
	otherwise
	L+A<2
	L
	A
	26 (Ver)
	10 (Hor)
	2
	18

	
	
	otherwise
	L
	A
	DC
	Max-1
	Max+1
	Max+2

* “Max” and “Min” indicates the maximum and minimum of “L” and “A”, respectively
For entropy coding of 6 MPMs, a truncated unary binarization of the MPMs is used. The first three bins are coded with contexts which depend on the left and above neighbouring Intra mode, and the remaining bits are bypass coded.

2.3.2. Four-tap intra interpolation filter
Four-tap intra interpolation filters are utilized to improve the directional intra prediction accuracy. In HEVC, a two-tap linear interpolation filter has been used to generate the intra prediction block in the directional prediction modes (i.e., excluding Planar and DC predictors). In JEM1, two types of four-tap interpolation filters are used: Cubic interpolation filters for 4x4 and 8x8 blocks, and Gaussian interpolation filters for 16x16 and larger blocks. The parameters of the filters are fixed according to block size, and the same filter is used for all predicted pixels, in all directional modes.

2.3.3. Boundary prediction filters
In HEVC, after the intra prediction block has been generated for VER and HOR intra modes, the left-most column and top-most row of the prediction samples are further adjusted, respectively. Here this method is further extended to several diagonal intra modes, and boundary samples up to four columns or rows are further adjusted using a two-tap (for intra mode 2 & 34) or a three-tap filter (for intra mode 3-6 & 30-33). Examples of the boundary prediction filters for intra mode 34 and 30~33 are shown in Figure 5, and the boundary prediction filters for intra mode 2 and 3~6 are similar.

[image: image13.emf]Line 1: [8, 8]

Line 2: [12, 4]

Line 3: [14, 2]

Line 4: [15, 1]

Line 1Line 2Line 3Line 4

34

intra mode 34

[image: image14.emf]intra mode 33: [6, 8, 2]

intra mode 32: [2, 12, 2]

intra mode 31: [1, 12, 3]

intra mode 30: [3, 12, 1]

33323130

Figure 5: Examples of boundary prediction filters for intra mode 30 – 34

2.3.4. Cross component prediction
It was well known that coding performance can be improved by utilizing the cross component correlation existing even in YUV 4:2:0 video sequences. To reduce the cross component redundancy, in LM prediction mode, the chroma samples are predicted based on reconstructed luma samples of the same block by using a linear model as follows:

[image: image16.png]

(2)

where [image: image18.png] represents the prediction of chroma samples in a block and [image: image20.png] represents the downsampled reconstructed luma samples of the same block. Parameters [image: image22.png] and [image: image24.png] are derived by minimizing regression error between the neighbouring reconstructed luma and chroma samples around the current block.

In JEM, the LM prediction mode is extended to the prediction between two chroma components, i.e. Cr component is predicted from Cb component. Instead of using the reconstructed sample signal, the cross component prediction is applied in residual domain. This is implemented by adding a weighted reconstructed Cb residual to the original Cr intra prediction to form the final Cr prediction:

[image: image26.png]

(3)
The scaling factor[image: image28.png] is derived in as in LM mode. The only difference is an addition of a regression cost relative to a default [image: image30.png] value in the error function so that derived scaling factor is biased towards the default value (-0.5).

2.3.5. Position dependent intra prediction combination (PDPC)
PDPC is a post-processing for Intra prediction which invokes combination of HEVC Intra prediction with un-filtered boundary reference samples:

[image: image31.png]
Figure 6: Example of intra prediction in 4×4 blocks, with notation for unfiltered and filtered reference samples.

The notation used to define PDPC is shown in Figure 6. r and s represents the boundary samples with filtered and unfiltered references, respectively. [image: image33.png] is the intra prediction based on filtered reference s, and computed as defined in HEVC. x and y are the horizontal and vertical distance from the block boundary.

The new prediction [image: image35.png] combines weighted values of boundary elements with [image: image37.png] as following

[image: image38.png]
(4)
where [image: image40.png] are stored prediction parameters, [image: image42.png] for blocks with size smaller than or equal to 16×16 , and [image: image44.png] for larger blocks, and b[x, y] is a normalization factor derived as follow:
[image: image45.png]
(5)
A few 7-tap low pass fliter is used to smooth the boundary samples. Defining hk as the impulse response of a filter k, an additional stored parameter a for computing the filtered reference as in equation (6).
[image: image46.png]

(6)
where “*” represents convolution.

One set of prediction parameters ([image: image48.png], a and filter index k) is defined per intra prediction mode (neighbouring prediction directions are grouped) and block size. A CU level flag in signalled to indicate whether PDPC is applied or not. Value 0 indicates that the existing HEVC intra prediction (with HEVC reference sample smoothing filter disabled) is used, and values 1 indicates the PDPC is applied. When PDPC flag value is equal to 0, the mode dependent reference smoothing of HEVC is disabled to generate intra prediction
2.3.6. Adaptive reference sample smoothing
In HEVC, mode-dependent reference sample smoothing is applied. In JEM, a new reference sample filtering mechanism is introduced. As presented in Figure 7 two low pass filters (LPF) are used to process reference samples:

· 3-tap LPF with the coefficients of [1, 2, 1] / 4
· 5-tap LPF with the coefficients of [2, 3, 6, 3, 2] / 16
[image: image49.emf]Should reference samples

be filtered according to

the HEVC/H.265 rules?

Filtering flag == 1Filtering flag == 1

yesno

noyes

Intra-prediction

mode number

Hide the flag and filter

reference samples using

the 3-tap LPF with

coefficients of [1, 2, 1]/4

Can the filtering

flag be hidden?

yes

Can the filtering

flag be hidden?

yes

Hide the flag and filter

reference samples using the

5-tap LPF with coefficients of

[2, 3, 6, 3, 2]/16

Can the filtering

flag be hidden?

yes

Do not filter reference

samples

Can the filtering

flag be hidden?

yes

nononono

Reference sample

filtering should be

performed according to

the HEVC/H.265 rules

noyes

Figure 7: Reference sample adaptive filtering

To signal what option is selected, data hiding is used instead of signaling the flag in the bitstream. In HEVC, the sign of the last coefficient of a coefficients group (CG) is hiden in the sum of the absolute values of the CG’s coefficients. In JEM, a similar technique is used to hide the filtering flag that indicates what of the two filters related to the same filter set and selected in accordance with block size and intra prediction mode. The transform coefficients of a given TU and located at an odd position are used to hide the value of the filtering flag.

At the encoder side, samples filtering flag hiding is combined with sign hiding. It is noteworthy that coefficients adjustment for sign hiding and for samples filtering flag hiding are not separate steps they are performed jointly within a single step (“hiding procedure”). Encoder selects coefficients to modify with respect to both sign hiding and samples filtering flag hiding checksum values. Coefficients at both odd positions or at even positions could be adjusted. Hence, it makes possible to provide the desired combination of sign hiding and samples filtering flag hiding checksum values at the decoder side.
Adaptive samples smoothing is applied only for the luma component, and only when Intra CU partion is 2Nx2N, CU size is not larger than 32x32 but TU size is large than 4x4, at least one coefficient sub-group in the TU has a sign bit hidden and the intra prediction mode is not DC mode. The condition of reference samples smoothing has been modified for luminance component of 8x8 TUs compared to HEVC: the threshold of angle between intra mode and the closest horizontal or vertical axis has been reduced by 2. In order to avoid over-smoothing the boundary prediction filters (2.3.3) are disabled for blocks smaller than 16x16 with position dependent Intra prediction combination index is greater than 1. The selection rules for 4-taps Intra interpolation filer (2.3.2) has been also modified for the luma component: cubic intra-interpolation is used for all TU sizes.
In JEM, when PDPC flag is equal to 1 for a CU, adaptive samples smoothing is disabled in this CU.

2.4. Inter prediction improvement

2.4.1. Sub-PU based motion vector prediction
In HEVC, each PU can have at most one set of motion for each prediction direction. In JEM, two sub-PU level motion vector prediction methods are studied by splitting a large PU into sub-PUs and deriving motion information for all the sub-PUs of the large PU. Advanced temporal motion vector prediction (ATMVP) method allows each PU to fetch multiple sets of motion information from multiple blocks smaller than the current PU in the collocated reference picture. In spatial-temporal motion vector prediction (SMPTE) method motion vectors of the sub-PUs are derived recursively by using the temporal motion vector predictor and spatial neighbouring motion vector.

To preserve more accurate motion field for sub-PU motion prediction, the motion compression for the reference frames is currently disabled and the bi-directional prediction for 4x8 and 8x4 PUs are enabled.

[image: image50.png]
[image: image51.png]
Figure 8: ATMVP motion prediction for a PU

2.4.1.1. Advanced temporal motion vector prediction

In the advanced temporal motion vector prediction (ATMVP) method, the motion vectors temporal motion vector prediction (TMVP) is improved by allowing each PU to fetch multiple sets of motion information (including motion vectors and reference indices) from multiple blocks smaller than the current PU. As shown in Figure 2, the sub-PUs are square NxN blocks (N is set to 4 by default).

The ATMVP predicts the motion vectors of the sub-PUs within a PU in two steps. The first step is to identify the corresponding block in a reference picture with a so-called temporal vector. The reference picture is called the motion source picture. The second step is to split the current PU into sub-PUs and obtain the motion vectors as well as the reference indices of each sub-PU from the block corresponding to each sub-PU, as shown in Figure 8.

In the first step, a reference picture and the corresponding block is simply determined by the motion information of the spatial neighbouring blocks of the current PU. Each spatial neighbour is checked in order (the same as in merge mode) and the first available motion vector as well as its associated reference index are set to be the temporal vector and the index to the motion source picture. This way, in ATMVP, the corresponding block may be more accurately identified, compared with TMVP, wherein the corresponding block (sometimes called co-located block) is always in a bottom-right or center position relative to the current PU.

In the second step, a corresponding block of the sub-PU is identified by the temporal vector in the motion source picture, by adding to the coordinate of the current PU the temporal vector. For each sub-PU, the motion information of its corresponding block (the smallest motion grid that covers the center pixel) is used to derive the motion information for the sub-PU. After the motion information of a corresponding NxN block is identified, it is converted to the motion vectors and reference indices of the current sub-PU, in the same way as TMVP, wherein motion scaling and other procedures apply. For example, the decoder checks whether the low-delay condition is fulfilled and possibly uses motion vector MVx (the motion vector corresponding to reference picture list X) to predict motion vector MVy (with X being equal to 0 or 1 and Y being equal to 1-X) for each sub-PU. This is done in the same way as for temporal motion vector prediction.
2.4.1.2. Spatial-temporal motion vector prediction (STMVP)
In this method, the motion vectors of the sub-PUs are derived recursively, following raster scan order. Figure 9 illustrates this concept. Let us consider an 8x8 PU which contains four 4x4 sub-PUs A, B, C, and D. The neighbouring NxN blocks in the current frame are labeled as a, b, c, and d.

The motion derivation for sub-PU A starts by identifying its two spatial neighbours. The first neighbour is NxN block above sub-PU A (block c). If this block c is not available or is intra coded the other NxN blocks above sub-PU A are checked (from left to right, starting at block c). The second neighbour is a block to the left of the sub-PU A (block b). If block b is not available or is intra coded other blocks to the left of sub-PU A are checked (from top to bottom, staring at block b). The motion information obtained from the neighbouring blocks for each list is scaled to the first reference frame for a given list. Next, temporal motion vector predictor (TMVP) of sub-block A is derived by following the same procedure of TMVP derivation as specified in HEVC. The motion information of the co-located block at location D is fetched and scaled accordingly. At last, after retrieving and scaling the motion information, all available motion vectors (up to 3) are averaged separately for each reference list. The averaged motion vector is assigned as the motion vector of the current sub-PU.
[image: image265.emf]C4C5C6C5C4

C1C2

C0

C2

C0

C3

C3C1

Figure 9: Example of one PU with four sub-blocks (A-D) and its neighbouring blocks (a-d).

2.4.1.3. Sub-PU motion prediction mode signaling

The sub-PU modes are enabled as an additional merge candidates and there is no additional syntax element required to signal the modes. Two additional merge candidates are added to merge candidates list of each PU to represent the ATMVP mode and STMVP mode. Up to seven merge candidates are used, if the sequence parameter set indicates that ATMVP and STMVP are enabled.

2.4.2. Adaptive motion vector resolution
In Advanced Motion Vector Resolution (AMVR) mode, Motion Vector Difference (MVD) (between the motion vector and predicted motion vector of a PU) can be coded with either quarter-pel resolution or integer-pel resolution. The MVD resolution is controlled at coding unit (CU) level and an integer MVD resolution flag is conditionally signalled for each CU that has at least one non-zero MVD components.

When the integer MVD resolution flag is false, or not coded for a CU, the default quarter-pel MV resolution is used for all PUs belonging to the CU. Otherwise (when integer MV resolution flag is true for a CU), all PUs coded with AMVP mode belonging to the CU use integer MV resolution, while the PUs coded with merge mode still use quarter-pel MV resolution. When a PU uses integer MV resolution, the AMVP candidate list is filled with integer MV by rounding quarter-pel MVs to integer-pel MVs.

2.4.3. Overlapped block motion compensation
The Overlapped Block Motion Compensation (OBMC) has been used for early generations of video standards, e.g., as in H.263. In JEM, the OBMC is performed for all Motion Compensated (MC) block boundaries except the right and bottom boundaries of a CU. Moreover, it is applied for both luma and chroma components. In HEVC, a MC block is corresponding to a PU. When a PU is coded with sub-PU mode, each sub-block of the PU is a MC block. To process CU/PU boundaries in a uniform fashion, OBMC is performed at sub-block level for all MC block boundaries, where sub-block size is set equal to 4x4, as illustrated in Figure 10.

When OBMC applies to the current sub-block, besides current motion vectors, motion vectors of four connected neighbouring sub-blocks, if available and are not identical to the current motion vector, are also used to derive prediction block for the current sub-block. These multiple prediction blocks based on multiple motion vectors are weighted to generate the final prediction signal of the current sub-block.

Let’s denote prediction block based on motion vectors of a neighbouring sub-block as PN, with N indicating an index for the neighbouring above, below, left and right sub-blocks and let’s denote the prediction block based on motion vectors of the current sub-block as PC. When PN belongs to the same PU as PC (thus contains the same motion information), the OBMC is not performed from PN. Otherwise, every pixel of PN is added to the same pixel in PC, i.e., four rows/columns of PN are added to PC. The weighting factors {1/4, 1/8, 1/16, 1/32} are used for PN and the weighting factors {3/4, 7/8, 15/16, 31/32} are used for PC. The exception are small MC blocks, (i.e., when PU size is equal to 8x4, 4x8 or a PU is coded with ATMVP mode), for which only two rows/columns of PN are added to PC. In this case weighting factors {1/4, 1/8} are used for PN and weighting factors {3/4, 7/8} are used for PC. For PN generated based on motion vectors of vertically (horizontally) neighbouring sub-block, pixels in the same row (column) of PN are added to PC with a same weighting factor.

[image: image52.emf](b). Sub-PUs in ATMVP

mode

Current

CU

(a). Sub-blocks at CU/

PU boundary

PU1

PU2

Current

CU

Sub-block where

OBMC applies

Motion vector of above

neighboring sub-block is used

in OBMC of P

N1

sub-block PN1

sub-block PN2

Motion vector of left

neighboring sub-block is

used in OBMC of PN2

sub-block P

N3

Motion vectors of left and

above neighboring sub-blocks

are used in OBMC of P

N3

sub-block P

N

Motion vectors of four

neighboring sub-blocks are

used in OBMC of P

N

Figure 10: Illustration of sub-blocks where OBMC applies
2.4.4. Local illumination compensation
Local Illumination Compensation (LIC) is based on a linear model for illumination changes, using a scaling factor a and an offset b. And it is enabled or disabled adaptively for each inter-mode coded coding unit (CU).
[image: image53.png]
Figure 11: Neighbouring samples used for deriving IC parameters

When LIC applies for a CU, for each PU/sub-PU belonging to the CU, a least square error method is employed to derive the parameters a and b by using the neighbouring samples of the current CU and their corresponding reference samples. More specifically, as illustrated in Figure 11, the subsampled (2:1 subsampling) neighbouring samples of the CU and the corresponding pixels (identified by motion information of the current PU/sub-PU) in the reference picture are used. The IC parameters are derived and applied for each prediction direction separately.

When a CU is coded with 2Nx2N merge mode, the LIC flag is copied from neighbouring blocks, in a way similar to motion information copy in merge mode; otherwise, an LIC flag is signalled for the CU to indicate whether LIC applies or not.

2.4.5. Affine motion compensation prediction

In HEVC, only translation motion model is applied for motion compensation prediction (MCP). While in the real world, there’re many kinds of motions, e.g. zoom in/out, rotation, perspective motions and the other irregular motions. In JEM, a simplified affine transform motion compensation prediction is applied to improve the coding efficiency. As shown Figure 12, the affine motion field of the block is described by two control point motion vectors.
[image: image54.emf]Cur

0

v

uur

1

v

ur

Cur

0

v

1

v

Figure 12: Simplified affine motion model

The motion vector field (MVF) of a block is described by the following equation:

[image: image55.wmf]ï

ï

î

ï

ï

í

ì

+

-

+

-

=

+

-

-

-

=

y

x

x

y

y

y

x

y

y

x

x

x

v

y

w

v

v

x

w

v

v

v

v

y

w

v

v

x

w

v

v

v

0

0

1

0

1

0

0

1

0

1

)

(

)

(

)

(

)

(

(7)
Where (v0x, v0y) is motion vector of the top-left corner control point, and (v1x, v1y) is motion vector of the top-right corner control point.

In order to further simplify the motion compensation prediction, block based affine transform prediction is applied. The motion vector of the center sample of each sub-block, as shown in Figure 13, is calculated according to equation (7) and the MVF of each sub-block with high fractional accuracy (1/64 fractional sample accuracy) is generated. Then a set of high fractional accuracy motion compensation interpolation filter is applied to generate the prediction of each sub-block with derived motion vector.

[image: image56.emf]0

v

uur

1

v

ur

0

v

1

v

Figure 13: Affine MVF per sub-block

After MCP, the high accuracy motion vector of each sub-block is rounded and saved as the same accuracy as the normal motion vector.

In JEM, there are two affine motion modes: AF_INTER mode and AF_MERGE mode. For every CU that is larger than or equal to 16x16 and partition size is SIZE_2Nx2N, AF_INTER mode can be applied. An affine flag in CU level is signalled in the bitstream to indicate whether AF_INTER mode is used. In this mode, a candidate list with motion vector pair [image: image58.png] is constructed using the neighbour blocks. As shown in Figure 14, [image: image60.png] is selected from the motion vectors of the block A, B or C. The motion vector from the neighbour block is scaled according to the reference list and the relationship among the POC of the reference for the neighbour block, the POC of the reference for the current CU and the POC of the current CU. And the approach to select [image: image62.png] from the neighbour block D and E is similar. If the number of candidate list is smaller than 2, the motion vector pair candidates is used as control point motion vector prediction (CPMVP). Otherwise, RD cost of the current CU is used to determine which motion vector pair candidate is selected as the control point motion vector prediction (CPMVP) of the current CU. And an index indicating the position of the CPMVP in the candidate list is signalled in the bit stream. When there are more than two motion vector pair candidate, those candidates are sorted according the similarity between the two motion vectors in a pair. And then only the first two candidates can be sued. After the CPMVP of the current affine CU is determined, affine motion estimation is applied and the control point motion vector (CPMV) is found. Then the difference of the CPMV and the CPMVP is coded in the bit stream.
[image: image63.emf]V

0

v

1

B

C

A

D

E

Cur

V0

v1

B

C

A DE

Cur

Figure 14: MVP for AF_INTER

When a CU is applied in AF_MERGE mode, it gets the first block coded with affine mode from the valid neighbour reconstructed blocks. And the selection order for the candidate block is from left, above, above right, left bottom to above left as shown in Figure 14.a. If the neighbour left bottom block A is coded in affine mode as shown in Figure 14.b, the motion vectors[image: image65.png] , [image: image67.png] and [image: image69.png] of the top left corner, above right corner and left bottom corner of the CU which contains the block A are derived. And the motion vector [image: image71.png]of the top left corner on the current CU is calculated according to [image: image73.png] , [image: image75.png] and [image: image77.png]. Secondly, the motion vector [image: image79.png]of the above right of the current CU is calculated

After the CPMV of the current CU [image: image81.png] and [image: image83.png]are derived, according to the simplified affine motion model equation (7), the MVF of the current CU is generated. In order to identify whether the current CU is coded with AF_MERGE mode, an affine flag is signalled in the bit stream when there’s at least one neighbour block is coded in affine mode. If no block neighbouring blocks is coded with affine mode, no affine flag is signalled in the bit stream.

[image: image84.emf]Cur

A

B

C

D

E

Cur

A

BC

D

E

[image: image85.emf]0

v

uur

1

v

ur

Cur

A

00

(,)

xy

11

(,)

xy

22

(,)

xy

33

(,)

xy

44

(,)

xy

2

v

uur

3

v

ur

4

v

uur

0

v

1

v

Cur

A

00

(,)xy

11

(,)xy

22

(,)xy

33

(,)xy

44

(,)xy

2

v

3

v

4

v

(a)

(b)
Figure 15: Candidates for AF_MERGE
2.4.6. Pattern matched motion vector derivation
Pattern matched motion vector derivation mode is a special merge mode based on Frame-Rate Up Conversion (FRUC) techniques. With this mode, motion information of the block is derived at decoder side.

A FRUC flag is signalled for a CU or PU when the merge flag is true. When the FRUC flag is false, a merge index is signalled and the regular merge mode is used. When the FRUC flag is true, an additional FRUC mode flag is signalled to indicate which method (bilateral matching or template matching) is to be used to derive motion information for the block.

During the motion derivation process, an initial motion vector is first derived for the whole PU based on bilateral matching or template matching. First, the merge list of the PU is checked and the candidate which leads to the minimum matching cost is selected as the starting point. Then a local search based on bilateral matching or template matching around the starting point is performed and the MV results in the minimum matching cost is taken as the MV for the PU. Then the motion information is further refined at sub-block level with the derived CU/PU motion vectors as the starting points.

As shown in the Figure 16, the bilateral matching is used to derive motion information of the current block by finding the best match between two blocks along the motion trajectory of the current block in two different reference pictures. Under the assumption of continuous motion trajectory, the motion vectors MV0 and MV1 pointing to the two reference blocks shall be proportional to the temporal distances, i.e., TD0 and TD1, between the current picture and the two reference pictures. As a special case, when the current picture is temporally between the two reference pictures and the temporal distance from the current picture to the two reference pictures is the same, the bilateral matching becomes mirror based bi-directional MV.
[image: image86.emf]MV0

MV1

Cur PicRef0Ref1

Cur block

TD0TD1

Motion trajectory

Figure 16: Bilateral matching

As shown in Figure 17, template matching is used to derive motion information of the current block by finding the best match between a template (top and/or left neighbouring blocks of the current block) in the current picture and a block (same size to the template) in a reference picture.

[image: image87.emf]Cur PicRef0

Cur block

Template

Figure 17: Template matching

2.4.7. Bi-directional optical flow
Bi-directional Optical flow (BIO) is pixel-wise motion refinement which is performed on top of block-wise motion compensation in a case of bi-prediction. Since it compensates the fine motion can inside the block enabling BIO results in enlarging block size for motion compensation. Sample-level motion refinement doesn’t require exhaustive search or signaling since there is explicit equation which gives fine motion vector for each sample.
 [image: image88.png]
Figure 18: Optical flow trajectory.

Let’s
[image: image89.wmf](

)

k

I

 be luminance value from reference k (k=0, 1) after compensation block motion, and
[image: image90.wmf](

)

x

I

k

¶

¶

,
[image: image91.wmf](

)

y

I

k

¶

¶

are horizontal and vertical components of the
[image: image92.wmf](

)

k

I

gradient respectively. Assuming the optical flow is valid the motion vector field
[image: image93.wmf](

)

y

x

v

v

,

 is given by an equation

[image: image94.wmf](

)

(

)

(

)

.

0

=

¶

¶

+

¶

¶

+

¶

¶

y

I

v

x

I

v

t

I

k

y

k

x

k

(8)
Combining optical flow equation with Hermite interpolation for motion trajectory of each sample one gets a unique polynomial of third order which matches both function values
[image: image95.wmf](

)

k

I

and derivatives
[image: image96.wmf](

)

x

I

k

¶

¶

,
[image: image97.wmf](

)

y

I

k

¶

¶

 at the ends. The value of this polynomial at t=0 is BIO prediction:

[image: image98.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

.

2

2

2

1

0

0

1

1

0

0

1

1

1

0

y

I

y

I

v

x

I

x

I

v

I

I

pred

y

x

BIO

¶

¶

-

¶

¶

×

+

¶

¶

-

¶

¶

×

+

+

×

=

t

t

t

t

(9)
Here
[image: image99.wmf]0

t

 and
[image: image100.wmf]1

t

 denote the distance to reference frames as shown on a Figure 18. Distances
[image: image101.wmf]0

t

 and
[image: image102.wmf]1

t

 are calculated based on POC for Ref0 and Ref1: (0=POC(current)(POC(Ref0), (1= POC(Ref1)(POC(current). If both predictions come from the same time direction (both from the past or both from the future) then signs are different
[image: image103.wmf]0

1

0

<

×

t

t

. In this case BIO is applied only if prediction come not from the same time moment (
[image: image104.wmf]1

0

t

t

¹

), both referenced regions have non-zero motion (
[image: image105.wmf]0

,

,

,

1

1

0

0

¹

MVy

MVx

MVy

MVx

) and block motion vectors are proportional to the time distance (
[image: image106.wmf]1

0

1

0

1

0

t

t

-

=

=

MVy

MVy

MVx

MVx

).
The motion vector field
[image: image107.wmf](

)

y

x

v

v

,

 is determined by minimizing the difference [image: image109.png]between values in points A and B (intersection of motion trajectory and reference frame planes on Fig. 9). Model uses only first linear term of local Taylor expansion for [image: image111.png]:

[image: image112.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

y

I

y

I

v

x

I

x

I

v

I

I

y

x

¶

¶

+

¶

¶

+

¶

¶

+

¶

¶

+

-

=

D

0

0

1

1

0

0

1

1

0

1

0

t

t

t

t

(10)
All values in (10) depend on sample location [image: image114.png], which was omitted so far. Assuming the motion is consistent in local surrounding we minimize [image: image116.png] inside (2M+1)((2M+1) square window [image: image118.png] centered in currently predicted point [image: image120.png]:

[image: image121.wmf](

)

[

]

[

]

å

W

Î

¢

¢

D

=

j

i

v

v

y

x

j

i

v

v

y

x

,

2

,

'

,

min

arg

,

(11)
For this optimization problem we use simplified solution making first minimization in vertical and then in horizontal directions. It results in

[image: image122.wmf]1

3

s

s

v

x

-

=

(12)

[image: image123.wmf](

)

5

2

6

2

s

s

v

s

v

x

y

-

-

=

(13)
where,

[image: image124.wmf](

)

(

)

(

)

[

]

(

)

(

)

(

)

(

)

(

)

(

)

[

]

(

)

(

)

(

)

(

)

(

)

(

)

[

]

(

)

(

)

(

)

[

]

(

)

(

)

(

)

(

)

(

)

(

)

[

]

å

å

å

å

å

W

Î

¢

W

Î

¢

W

Î

¢

W

Î

¢

W

Î

¢

¶

¶

+

¶

¶

-

=

¶

¶

+

¶

¶

=

¶

¶

+

¶

¶

¶

¶

+

¶

¶

=

¶

¶

+

¶

¶

-

=

¶

¶

+

¶

¶

=

j

i

j

i

j

i

j

i

j

i

y

I

y

I

I

I

s

y

I

y

I

s

y

I

y

I

x

I

x

I

s

x

I

x

I

I

I

s

x

I

x

I

s

,

0

0

1

1

0

1

6

,

2

0

0

1

1

5

,

0

0

1

1

0

0

1

1

2

,

0

0

1

1

0

1

3

,

2

0

0

1

1

1

;

;

;

;

t

t

t

t

t

t

t

t

t

t

t

t

(14)
Gradients for BIO are calculated at the same time with motion compensation interpolation using operations consistent with HEVC motion compensation process (2D separable FIR). The length of interpolation filter for gradients calculation is shorter in order to maintain reasonable complexity. Table 3 shows interpolation filters used for gradients calculation for different fractional positions of block motion vector.

Table 3: Interpolation filters for gradients calculation in BIO

	Fractional pel position
	Interpolation filter for gradient

	0
	{ 8, -39, -3, 46, -17, 5 },

	1/4
	{ 4, -17, -36, 60, -15, 4 },

	1/2
	{ -1, 4, -57, 57, -4, 1 },

	3/4
	{ -4, 15, -60, 36, 17, -4 }

In JEM, BIO is applied to all bi-directional predicted blocks when the two predictions are from different reference pictures. When LIC is enabled for a CU, BIO is disabled.
2.5. Transform improvement

2.5.1. Adaptive multiple Core transform
In addition to DCT-II and 4x4 DST-VII which have been employed in HEVC, an Adaptive Multiple Transform (AMT) scheme is used for residual coding for both inter and intra coded blocks. It utilizes multiple selected transforms from the DCT/DST families other than the current transforms in HEVC. The newly introduced transform matrices are DST-VII, DCT-VIII, DST-I and DCT-V.

The AMT applies to CUs smaller than 64x64, and whether AMT applies or not is controlled at CU level for all transform units (TUs) within a CU. For each TU within an AMT enabled CU, the horizontal or vertical transform to be used is signalled by an index to a selected transform set. Each transform set is formed by selecting two transforms from the aforementioned transform matrices.

For intra prediction residual, the transform sets are pre-defined based on the intra prediction mode thus each intra prediction mode has its own transform set. For example, one transform set can be {DCT-VIII, DST-VII}. Note that the transform set for the horizontal transform may be different from the transform set for the vertical transform, even for a same intra prediction mode. However, the total number of different transform sets for all intra prediction modes as well as the number of newly introduced transforms is limited.

For inter prediction residual, however, only one transform set is used for all inter modes and for both horizontal and vertical transforms.

2.5.2. Secondary transforms
Secondary transform is applied between forward core transform and quantization (at encoder) and between de-quantization and inverse core transform (at decoder side). In JEM, as shown in Figure 19, secondary transform is performed independently for each 4×4 sub-group of transform coefficients. And is applied only in Intra CU. In JEM, mode dependent non-separable 4x4 secondary transform (MDNSST) is applied.
Application of a non-separable transform is described as follows using input as an example. To apply the non-separable transform, the 4x4 input block X

[image: image126.png]

(15)
is first represented as a vector [image: image128.png]:

[image: image129.png]
(16)
The non-separable transform is calculated as [image: image131.png], where [image: image133.png] indicates the transform coefficient vector, and T is a 16x16 transform matrix. The 16x1 coefficient vector [image: image135.png] is subsequently re-organized as 4x4 block using the scanning order for that block (horizontal, vertical or diagonal). The coefficients with smaller index will be placed with the smaller scanning index in the 4x4 coefficient block.

There are totally 11×3(for directional modes)6 + 1×2(for non-directional modes) non-separable transform matrices, where 11 is the number of transform sets for the directional intra prediction mode and each transform set includes 3 transform matrices. While for non-directional modes, i.e., Planar, DC and LM, only one transform set is applied which includes 2 transform matrices. The mapping from the intra prediction mode to the transform set is defined in Table 4. The transform set applied to luma/chroma transform coefficients is specified by the corresponding luma/chroma intra prediction modes, according to Table 4.
For each transform set, the selected non-separable secondary transform candidate is further specified by the explicitly signalled 2-bit CU-level MDNSST index. The index is signalled in a bit-stream once per Intra CU after transform coefficients. This syntax element is not signalled if all luminance and chrominance transform coefficients are zeros. Zero value of this syntax element indicates secondary transform is not applied to the current CU, values 1-3 indicates which secondary transform from the set should be applied.

[image: image136.png]
Figure 19: Secondary transform

Table 4: Mapping from intra prediction mode to transform set index

[image: image137.emf]luma intra mode0123456789101112131415161718192021222324252627282930313233

transform set index001212123434345556667778989891011101110

luma intra mode34353637383940414243444546474849505152535455565758596061626364656667 (LM)

transform set index1110111011109898987776665554343432121210

2.5.3. Signal dependent transform (SDT)
Considering that there are many similar patches within a frame and across frames, signal dependent transform explores such correlations can enhance coding performance by means of KLT. This trained KLT plays the role of transform which intends to compact the energy more efficiently.

[image: image138.png]
Figure 20: Flowchart of KLT exploring the non-local correlations

The flowchart in Figure 20 descripbes this idea. For the current coding block indicated by C, at first, a reference patch R which consists of the reconstructed left-up template [image: image140.png] and the prediction block p of the coding block is obtained. Then, this reference patch is used to search for N most similar patches over the reconstructed regions. Finally, one-dimensional KLT based on these blocks and prediction block is calculated.The coding block is unknown at the decoder for the collection of similar candidate blocks. The prediction block and the reconstructed template are used to guide the searching of similar blocks instead of using the original block. This tool is used for various block sizes 4x4, 8x8, 16x16 and 32x32.
It is known that Karhunen-Loéve transform (KLT) is the optimal transform from the energy compaction efficiency. By searching over the reconstructed regions, N blocks [image: image142.png], i = 1, 2, …, N, which are most similar to the reference patch are obtained. Here, [image: image144.png] = [image: image146.png] and D indicates the vector dimension which is the transform block size. For an example, for 4x4 coding block, N is 16. The prediction p from those blocks is subtracted and obtain the residual blocks as [image: image148.png], i = 1, 2, …, N, where [image: image150.png] = ([image: image152.png] – p)/[image: image154.png]. The, these residual blocks are used as the training samples with zero mean for the KLT derivation. These N training samples can be represented by U = ([image: image156.png],[image: image158.png],…,[image: image160.png]), which is an D[image: image162.png]N matrix. Let‘s indicate the covariance matrix [image: image164.png] as

[image: image166.png]

(17)
where the dimension of this covariance matrix is D[image: image168.png]D. KLT bases are then the eigenvectors of this covariance matrix. For natural image/video contents, we find the selection of the candidate number N as 100 is enough for the good performance

The computation complexity for the eigenvalue decomposition is [image: image170.png]. For 4x4 block with D being 16, the complexity is [image: image172.png], which is acceptable. For a large block, the complexity will be very high. For 32x32 block with D being 1024, the time complexity will be 262144 times slower than that for 4x4 block, being intolerable in the coding framework.

In considering this, a fast algorithm is utilyzed to make the large block size KLT feasible. The dimension of [image: image174.png] is D[image: image176.png]D. However, [image: image178.png] has a much lower dimension as N[image: image180.png]. We calculate the eigenvectors [image: image182.png]of [image: image184.png], which satisfy the equation as

[image: image186.png]

(18)
[image: image188.png] indicates the eigenvector matrix while [image: image190.png] denotes the diagonal matrix with the eigenvalues being the diagonal elements. Let‘s multiply both sides of equation (2) by [image: image192.png] to get

[image: image194.png]

(19)
Add brackets to this equation and obtain

[image: image196.png]

(20)
The column vectors of [image: image198.png] are the eigenvectors of [image: image200.png] with their corresponding eigenvalues being the diagonal elements of matrixes [image: image202.png]. Let [image: image204.png]. This indicates the eigenvectors of the high dimensional covariance matrix [image: image206.png] can be obtained by multiplying [image: image208.png] with the eigenvectors [image: image210.png] which are obtained from the low dimensional covariance matrix [image: image212.png]. The dimensions of [image: image214.png] and [image: image216.png] are both D[image: image218.png]N. All the other (D[image: image220.png]N) eigenvectors of [image: image222.png] have zero eigenvectors. We can use Schmidt orthogonalization to fill these (D[image: image224.png]N) eigenvectors to get D[image: image226.png]D eigenvector matrix.

To reduce the complexity for matrix multiplication, one can use the obtained N eigenvectors to perform KLT transform, leaving the remaining (D[image: image228.png]N) transform coefficients as zeros. This will not attenuate the performance since the first N projections can cover the most of the signal energy while the bases are trained from samples being highly correlated with the coding block.
The described KLT is implemented at the block level on the TU in HEVC. To have high adaptability to the image/video contents, the proposed scheme supports the proposed KLT on 4x4, 8x8, 16x16 and 32x32 transform units. Rate-distortion optimization is utilized to determine the best mode among the proposed transform and the DCT/DST transform in HEVC.
2.6. Adaptive loop filter

In JEM, ALF with block based adaption is implemented. For the luma component, 4x4 blocks are classified based on 1D Laplacian direction (up to 3 directions) and 2D Laplacian activity (up to 5 activity values). The calculation of direction [image: image230.png] and unquanitzed activity [image: image232.png] is shown in equation (2) through (5), where [image: image234.png] indicates a reconstructed pixel with relative coordinate ([image: image236.png]) to the top-left of a 4x4 block. [image: image238.png] is further quantized to the range of 0 to 4 inclusively as follows:

[image: image240.png]

(21)

[image: image242.png]

(22)

[image: image244.png]

(23)

[image: image246.png]

(24)

In total, each block can be categorized into one out of 15 (5x3) groups and an index is assigned to each 4x4 block according the value of [image: image248.png]and [image: image250.png]of the block. Therefore, up to 15 sets of ALF parameters could be signalled for the luma component of a picture. To save the signaling cost, the groups may be merged along group index value. For each group (or merged group), a set of ALF coefficients is signalled. Up to three circular symmetric filter shapes (as shown in Figure 21) are supported. In addition, a flag is signalled at Coding Unit (CU) level to indicate whether ALF is applied to the CU.

[image: image251]
Figure 21: ALF filter shapes (left: 5x5 diamond, middle: 7x7 diamond, right: truncated 9x9 diamond)

For both chroma components in a picture, a single set of ALF coefficients is applied and the 5x5 diamond shape filter is always used.

At decoder side, each pixel sample [image: image253.png]is filtered, resulting in pixel value [image: image255.png] as shown in equation (25), where L denotes filter length, [image: image257.png] represents filter coefficient and o indicates filter offset.

[image: image259.png]

(25)

The ALF coefficients of reference pictures are stored and allowed to be reused as ALF coefficients of a current picture. The current picture may choose to use ALF coefficients stored for the reference pictures, and bypass the ALF coefficients signalling. In this case, only an index to one of the reference pictures is signalled, and the stored ALF coefficients of the indicated reference picture are simply inherited for the current picture.

2.7. Context adaptive binary arithmetic coding (CABAC)

The CABAC contains the following three major changes compared to the design in HEVC:

· Modified context model selection for transform coefficient levels

· Multi-hypothesis probability estimation

· Adaptive initialization for context models

2.7.1. Context model selection for transform coefficient levels
In HEVC, transform coefficients of a transform unit (TU) are coded using non-overlapped coefficient groups (CG), and each CG contains the coefficients of a 4x4 block of a TU. The CGs inside a TU, and the transform coefficients within a CG, are coded according to pre-defined scan orders. The coding of transform coefficient levels is separated into multiple scan passes. In the first pass, the first bin (denoted by bin0, also referred as significant_coeff_flag, which indicates the magnitude of the coefficient is larger than 0) is coded. Next, two scan passes for context coding the second/third bins (denoted by bin1 and bin2, respectively, also referred as coeff_abs_greater1_flag and coeff_abs_greater2_flag) may be applied. Finally, two scan passes for coding the sign information and the remaining values (also referred as coeff_abs_level_remaining) of coefficient levels are invoked, if necessary. Note that only bins in the first three scan passes are coded in a regular mode and named regular bins in the following descriptions.

In JEM1, the context model selection method of regular bins are modified. When coding bini in the i-th scan pass (i being 0, 1, 2), the context index is dependent on the values of the i-th bins of previously coded coefficients in the neighbourhood covered by a local template. More specifically, the context index is determined based on the sum of the i-th bins of neighbouring coefficients. The template used here is depicted in Figure 22. To capture the characteristics of transform coefficients at different frequencies, one TU may be split into up to three regions and the splitting method is fixed regardless of the TU sizes. For example, when coding bin0 of luma transform coefficients, as depicted in Figure 22, one TU is split into three regions marked with different colours, and the context index assigned to each region is listed. Luma and chroma components are treated in a similar way but with separate sets of context models. Moreover, the context model selection for bin0 (i.e., significant flags) of the luma component is further dependent on transform size. For the coding of the remaining values of coefficient levels, please refer to reference [4] or [6].

[image: image260.emf]x

3

x

2

x

4

x

1

x

0

X

c

o

n

t

e

x

t

m

o

d

e

l

i

n

d

e

x

:

6

~

1

1

c

o

n

t

e

x

t

m

o

d

e

l

i

n

d

e

x

:

0

~

5

C

o

n

t

e

x

t

m

o

d

e

l

i

n

d

e

x

:

1

2

~

1

7

Figure 22: Definition of template used in transform coefficient context modeling

2.7.2. Multi-hypothesis probability estimation
The binary arithmetic coder with the multi-hypothesis probability update model is applied. Two probabilities P0 and P1 are associated with each context model. They are updated independently:

[image: image261.wmf]ï

î

ï

í

ì

>>

-

>>

-

+

=

î

í

ì

>>

-

>>

-

+

=

'0'.

is

input

if

),

8

(

,

'1'

is

input

if

),

8

)

2

(

(

,

'0'

is

input

if

),

(

,

'1'

is

input

if

),

)

2

(

(

1

1

1

0

0

0

0

0

old

j

old

j

old

k

old

new

i

old

old

i

old

k

old

new

P

P

P

P

P

M

P

P

M

P

P

P

(26)

Where
[image: image262.wmf]old

j

P

 and
[image: image263.wmf]new

j

P

 (j=0,1) represent the probabilities before and after decoding a bin; respectively. The Mi is a parameter which controls the probability updating speed; and k represents the precision of probabilities (here it is equal to 15). Probability P which is used for interval sub-division is binary arithmetic coder is combination of 2 hypothesis

[image: image264.wmf](

)

2

1

0

new

new

P

P

P

+

=

(27)
A method that assigns different values of parameter Mi used in equation (9) for changing the probability updating speed for each context model is used. The value of Mi ranges from 4 to 7, and a 2-bit variable is used to indicate the probability updating speed for a specific context model. This variable is signalled in slice header if 1 bit flag signalled for each context model i indicates that Mi is different from default value 4.

2.7.3. Initialization for context models
Instead of using fixed tables for context initialization in HEVC, the initial probability states of context models for inter-coded slices can be initialized by copying states from previously coded pictures. More specifically, after coding a centrally-located CTU of each picture, the probability state of all context models are stored and optionally used as the initial state of each corresponding context model on later pictures. In the JEM, the set of initial states for each inter-coded slice is copied from the saved states of a previously coded picture that has the same slice type, and the same slice level QP as the current slice.

3. Software and common test conditions

3.1. Reference software

The main software branch of JEM is developed on top of HEVC standard reference software HM16.6 [16]. The reference software for JEM can be downloaded from the SVN link shown in [17].
The related codes for each new added tool are marked with a dedicated macro. The macro name for the tools in the main software branch are provided in Table 5.
Table 5: Macro for the tools in JEM1
	Macro name
	Tool

	COM16_C806_LARGE_CTU
	Large CTU up to 256x256

	COM16_C806_T64
	64x64 transform

	VCEG_AZ07_INTRA_65ANG_MODES
	65 intra prediction directions

	VCEG_AZ07_INTRA_4TAP_FILTER
	4-tap interpolation filter for intra prediction

	VCEG_AZ07_INTRA_BOUNDARY_FILTER
	Additional boundary filter or intra prediction

	COM16_C806_LMCHROMA
	Cross-component linear model (CCLM) prediction

	COM16_C1046_PDPC_INTRA
	Position dependent intra prediction combination

	COM16_C983_RSAF
	Adaptive reference sample smoothing

	COM16_C806_VCEG_AZ10_SUB_PU_TMVP
	Sub-PU level motion vector prediction

	VCEG_AZ07_IMV
	Locally adaptive motion vector resolution (AMVR)

	COM16_C806_OBMC
	Overlapped block motion compensation (OBMC)

	VCEG_AZ06_IC
	Local illumination compensation (LIC)

	COM16_C1016_AFFINE
	Affine motion prediction

	VCEG_AZ07_FRUC_MERGE
	Pattern matched motion vector derivation

	VCEG_AZ05_BIO
	Bi-directional optical flow (BIO)

	COM16_C806_EMT
	Explicit multiple core transform

	COM16_C1044_NSST
	Mode dependent non-separable secondary transforms

	INTRA_KLT & INTER_KLT
	Signal dependent transform (SDT)

	ALF_HM3_REFACTOR
	Adaptive loop filter (ALF)

	VCEG_AZ07_CTX_RESIDUALCODING
	Context modeling for transform coefficient levels

	VCEG_AZ07_BAC_ADAPT_WDOW
	Multi-hypothesis probability estimation

	VCEG_AZ07_INIT_PREVFRAME
	Initialization for context models

3.2. Common test condition

Common test conditions (including test materials) for JEM coding efficiency experiments are currently based on the conditions on the prior well-known HEVC common test conditions defined in [18] with the following refinements:
· Only 10 bit coding results are mandatory to be performed

· Low-delay P coding results are required as well as low-delay B coding

· Offset the chroma QP values by +1 for all-intra (AI) and random-access (RA) configurations when using the cross-component linear model (CCLM) prediction feature, to balance out the excess gain observed in chroma.

4. References

[1] High Efficiency Video Coding (HEVC), Rec. ITU-T H.265 and ISO/IEC 23008-2, Jan. 2013.

[2] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the High Efficiency Video Coding (HEVC) Standard”, IEEE Trans. Circuits and Systems for Video Technology, Vol. 22, No. 12, pp. 1649‒1668, Dec. 2012.

[3] J. Chen, Y. Chen, M. Karczewicz, X. Li, H. Liu, L. Zhang, X. Zhao, “Coding tools investigation for next generation video coding”, ITU-T SG16 Doc. COM16–C806, Feb. 2015.

[4] M. Karczewicz, J. Chen, W.-J. Chien, X. Li, A. Said, L. Zhang, X. Zhao, “Study of coding efficiency improvements beyond HEVC”, MPEG doc. m37102, Oct. 2015.

[5] J. An, Y.-W. Chen, K. Zhang, H. Huang, Y.-W. Huang, S. Lei, “Block partitioning structure for next generation video coding”, MPEG doc. m37524 and ITU-T SG16 Doc. COM16–C966, Oct. 2015.

[6] J. Chen, W.-J. Chien, M. Karczewicz, X. Li, H. Liu, A. Said, L. Zhang, X. Zhao, “Further improvements to HMKTA-1.0”, ITU-T SG16/Q6 Doc. VCEG-AZ07, Jun. 2015.

[7] E. Alshina, A. Alshin, J.-H. Min, K. Choi, A. Saxena, M. Budagavi, “Known tools performance investigation for next generation video coding”, ITU-T SG16/Q6 Doc. VCEG-AZ05, Jun. 2015.

[8] Kiho Choi, E. Alshina, A. Alshin, C. Kim, “Information on coding efficiency improvements over HEVC for 4K content”, MPEG doc. m37043, Oct. 2015.

[9] A. Said, X. Zhao, J. Chen, M. Karczewicz, W.-J. Chien, F. Zhou, “Position dependent intra prediction combination”, MPEG doc. m37502 and ITU-T SG16 Doc. COM16–C1016,, Oct. 2015.

[10] A. Filippov, V. Rufitskiy, “Reference sample adaptive filtering for intra coding”, MPEG doc. m37526 and ITU-T SG16 Doc. COM16–C983, Oct. 2015.

[11] W.-J. Chien, M. Karczewicz, “Extension of Advanced Temporal Motion Vector Predictor”, ITU-T SG16/Q6 Doc. VCEG-AZ10, Jun. 2015.

[12] H. Liu, Y. Chen, J. Chen, L. Zhang, M. Karczewicz, “Local Illumination Compensation”, ITU-T SG16/Q6 Doc. VCEG-AZ06, Jun. 2015.

[13] S. Lin, H. Chen, H. Zhang, S. Maxim, H. Yang, J. Zhou, “Affine transform prediction for next generation video coding”, MPEG doc. m37525 and ITU-T SG16 Doc. COM16–C1016, Oct. 2015.

[14] X. Zhao, J. Chen, M. Karczewicz, “ Mode-dependent non-separable secondary transform”, ITU-T SG16/Q6 Doc. COM16–C1044, Oct. 2015.

[15] C. Lan, J. Xu and F. Wu, “Enhancement of HEVC using Signal Dependent Transform (SDT)”, MPEG doc. m37503, Oct. 2015 and ITU-T SG16/Q6 Doc. VCEG-AZ08, Jun. 2015.

[16] HEVC reference software, https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.6/.
[17] JEM reference software, https://jvet.hhi.fraunhofer.de/svn/svn_HMJEMSoftware/.
[18] F. Bossen, “Common HM test conditions and software reference configurations,” Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, JCTVC-L1100, 12th Meeting, Jan. 2013.

A

B

C

D

c

d

b

a

�Post-meeting experiments have confirmed that this offset reduces the coding gain imbalance between luma and chroma for AI and RA configurations. For low delay (LD) configurations, it does not seem desirable. Since CCLM only affects intra regions, not as much of an imbalance is observed in LD cases, and using the chroma QP offset would create an imbalance toward luma for LD. Further study is desirable toward finding improved ways of dealing with the imbalance issue, e.g., using a Lambda adjustment in the rate-distortion optimization.

25

[image: image266.emf]C4C5C6C7C8

C1C2

C0

C12

C6

C3

C11C11C10C9

C5C4

C1

C10C9

C8C7

C3C2

C0

[image: image267.emf]C3C4C5C6C7

C0C1

C11

C19

C2

C10C12C9C8

C18C17

C10

C13C14

C17C18

C12C11

C16C15C16C15

C9C8C13C14

C7C6C5C4C3

C2C1C0

_1507997574.unknown

_1509811364.unknown

_1509811593.unknown

_1509812159.unknown

_1509813523.unknown

_1509813705.unknown

_1509811931.unknown

_1509811529.unknown

_1509133007.vsd
QTBT_RDO (x, y, width, height)
{
//try kinds of modes without any partitioning
TryInterPredMode(x, y, width, height);
TryIntraPredMode(x, y, width, height);
Save the cost of the best mode as CostNoPart;

//try the horizontal binary tree partitioning
QTBT_RDO (x, y, width, height/2);
QTBT_RDO (x, y+height/2, width, height/2);
Save the cost as CostHorBT;

//try the vertical binary tree partitioning
QTBT_RDO (x, y, width/2, height);
QTBT_RDO (x+width/2, y, width/2, height);
Save the cost as CostVerBT;

//try the quadtree patitioning
QTBT_RDO (x, y, width/2, height/2);
QTBT_RDO (x+width/2, y, width/2, height/2);
QTBT_RDO (x, y+height/2, width/2, height/2);
QTBT_RDO (x+width/2, y+height/2, width/2, height/2);
Save the cost as CostQT;

//select the best cost to determinate the best block partitioning structure.
CostBest = min(CostNoPart, CostHorBT, CostVerBT, CostQT);
Return;
}

_1509811157.unknown

_1509811355.unknown

_1509811167.unknown

_1509133008.vsd

_1509811147.unknown

_1508965758.unknown

_1509133006.vsd
1

1

0

1

0

0

_1508964574.unknown

_1507031795.unknown

_1507031799.unknown

_1507031804.unknown

_1507031812.unknown

_1507031813.unknown

_1507031815.unknown

_1507031806.unknown

_1507031801.unknown

_1507031803.unknown

_1507031800.unknown

_1507031797.unknown

_1507031798.unknown

_1507031796.unknown

_1507031793.vsd
Line 1

Line 2

Line 3

Line 1: [8, 8]
Line 2: [12, 4]
Line 3: [14, 2]
Line 4: [15, 1]

Line 4

34

intra mode 34

_1507031794.vsd
intra mode 33: [6, 8, 2]
intra mode 32: [2, 12, 2]
intra mode 31: [1, 12, 3]
intra mode 30: [3, 12, 1]

33

32

31

30

_1507031792.vsd
0: Planar
1: DC

