© ISO/IEC 2015 – All rights reserved

\mybookworld\Data\IVC\MPEG112\CD\w15427.docCOMMITTEE DRAFT

 SET DDOrganization "© ISO/IEC 2015 – All rights reserved" © ISO/IEC 2015 – All rights reserved

 SET LibEnteteISO "ISO/IEC CD 14496-33" ISO/IEC CD 14496-33

 SET LIBTypeTitreISO " 63" 63

 SET DDTITLE4 "Part 33: Internet video coding" Part 33: Internet video coding

 SET DDTITLE3 "Information technology — Coding of audio-visual objects" Information technology — Coding of audio-visual objects

 SET DDTITLE2 "Technologies de l'information — Codage des objets audiovisuels — Partie 33: Codage vidéo Internet" Technologies de l'information — Codage des objets audiovisuels — Partie 33: Codage vidéo Internet

 SET DDTITLE1 "Information technology — Coding of audio-visual objects — Part 33: Internet video coding" Information technology — Coding of audio-visual objects — Part 33: Internet video coding

 SET DDDocLanguage "E" E

 SET DDWorkDocDate "2015-06-26" 2015-06-26

 SET DDDocStage "(30) Committee" (30) Committee

 SET DDOrganization3 "ISO/IEC" ISO/IEC

 SET DDOrganization1 "ISO/IEC J" ISO/IEC J

 SET DDBASEYEAR ""

 SET DDAmno ""

 SET DDDocSubType ""

 SET DDDocType "International Standard" International Standard

 SET DDpubYear "201x" 201x

 SET DDWorkDocNo "15427" 15427

 SET DDRefNoPart "ISO/IEC 14496" ISO/IEC 14496

 SET DDRefGen "ISO/IEC 14496‑33" ISO/IEC 14496‑33

 SET DDRefNum "ISO/IEC CD 14496-33" ISO/IEC CD 14496-33

 SET DDSCSecr ""

 SET DDSecr "JISC" JISC

 SET DDSCTitle "Coding of audio, picture, multimedia and hypermedia information" Coding of audio, picture, multimedia and hypermedia information

 SET DDTCTitle "Information technology" Information technology

 SET DDWGNum "11" 11

 SET DDSCNum "29" 29

 SET DDTCNum "1" 1

 SET LIBLANG " 2" 2

 SET libH2NAME "Heading 2,H2,H21,Œ©�o‚µ 2,?c�o??E 2,h2,뙥2,?c1,?c�o?ƒÊ 2,?2,Œ1,Œ2,Titre 2,Œ©1,Œ©2,©1,Œ©_o‚µ 2" Heading 2,H2,H21,Œ©�o‚µ 2,?c�o??E 2,h2,뙥2,?c1,?c�o?ƒÊ 2,?2,Œ1,Œ2,Titre 2,Œ©1,Œ©2,©1,Œ©_o‚µ 2

 SET libH1NAME "Heading 1,Heading U,H1,H11,Œ©�o‚µ 1,?c�o??E 1,h1,뙥,?c,?c�o?ƒÊ 1,?,Œ,Titre 1,µ 2 +...,µ 2,Titre Partie" Heading 1,Heading U,H1,H11,Œ©�o‚µ 1,?c�o??E 1,h1,뙥,?c,?c�o?ƒÊ 1,?,Œ,Titre 1,µ 2 +...,µ 2,Titre Partie

 SET LibDesc ""

 SET LibDescD ""

 SET LibDescE ""

 SET LibDescF ""

 SET NATSubVer "0" 0

 SET CENSubVer "2" 2

 SET ISOSubVer ""

 SET LIBVerMSDN "STD Version 2.1c2" STD Version 2.1c2

 SET LIBStageCode "30" 30

 SET LibRpl ""

 SET LibICS ""

 SET LIBFIL " 4" 4

 SET LIBDeFileName ""

 SET LIBNatFileName ""

 SET LIBFileOld ""

 SET LIBTypeTitreCEN ""

 SET LIBTypeTitreNAT ""

 SET LibEnteteCEN ""

 SET LibEnteteNAT ""

 SET LIBASynchroVF ""

 SET LIBASynchroVE ""

 SET LIBASynchroVD ""

 SET DDEditionNo "" ISO/IEC JTC 1/SC 29 N 15427
Date: 2015-06-26
ISO/IEC CD 14496-33
ISO/IEC JTC 1/SC 29/WG 11
Secretariat: JISC
Information technology — Coding of audio-visual objects — Part 33: Internet video coding
Technologies de l'information — Codage des objets audiovisuels — Partie 33: Codage vidéo Internet

Warning

This document is not an ISO International Standard. It is distributed for review and comment. It is subject to change without notice and may not be referred to as an International Standard.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Copyright notice

This ISO document is a working draft or committee draft and is copyright-protected by ISO. While the reproduction of working drafts or committee drafts in any form for use by participants in the ISO standards development process is permitted without prior permission from ISO, neither this document nor any extract from it may be reproduced, stored or transmitted in any form for any other purpose without prior written permission from ISO.

Requests for permission to reproduce this document for the purpose of selling it should be addressed as shown below or to ISO's member body in the country of the requester:

[Indicate the full address, telephone number, fax number, telex number, and electronic mail address, as appropriate, of the Copyright Manger of the ISO member body responsible for the secretariat of the TC or SC within the framework of which the working document has been prepared.]

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.
Contents
Page
viiiForeword

Introduction
x
1
Scope
1
2
Normative references
1
3
Definitions, abbreviated terms, and Conventions
1
3.1
Definitions
1
3.1.1
AC coefficient
1
3.1.2
backward prediction
1
3.1.3
bidirectional prediction
1
3.1.4
bidirectional inter decoded picture
1
3.1.5
bin
1
3.1.6
binarization
2
3.1.7
binarization process:
2
3.1.8
bit string
2
3.1.9
bitstream
2
3.1.10
block
2
3.1.11
byte
2
3.1.12
byte-aligned
2
3.1.13
coded picture
2
3.1.14
component
2
3.1.15
chroma
2
3.1.16
DC coefficient
2
3.1.17
decoded picture
3
3.1.18
decoder
3
3.1.19
decoding order
3
3.1.20
decoding process
3
3.1.21
display order
3
3.1.22
dequantization
3
3.1.23
encoder
3
3.1.24
encoding process
3
3.1.25
forbidden
3
3.1.26
forward prediction
3
3.1.27
forward inter decoded picture
3
3.1.28
flag
3
3.1.29
frequency index
3
3.1.30
frame
4
3.1.31
inter coding
4
3.1.32
inter macroblock
4
3.1.33
inter prediction
4
3.1.34
intra coding
4
3.1.35
intra macroblock
4
3.1.36
intra prediction
4
3.1.37
inverse transform
4
3.1.38
layer
4
3.1.39
level
4
3.1.40
luma
4
3.1.41
macroblock
5
3.1.42
motion compensation
5
3.1.43
motion vector
5
3.1.44
non-reference picture
5
3.1.45
output order
5
3.1.46
parse
5
3.1.47
partitioning
5
3.1.48
picture reordering
5
3.1.49
prediction
5
3.1.50
prediction process
5
3.1.51
predictior
5
3.1.52
profile
5
3.1.53
quantization parameter
6
3.1.54
quantized transofrm coefficients
6
3.1.55
random access
6
3.1.56
raster scan
6
3.1.57
reference index
6
3.1.58
reference picture
6
3.1.59
reserved
6
3.1.60
residual
6
3.1.61
run
6
3.1.62
sequence
6
3.1.63
skipped macroblock
6
3.1.64
slice
6
3.1.65
slice header
7
3.1.66
source
7
3.1.67
start code
7
3.1.68
stuffing bits
7
3.1.69
syntax element
7
3.1.70
transform coefficient
7
3.2
Abbreviated terms
7
3.3
Conventions
7
3.3.1
Arithmetic operators
7
3.3.2
Logical operators
8
3.3.3
Relational operators
8
3.3.4
Bitwise operators
8
3.3.5
Assignment
8
3.3.6
Mathematical functions
9
3.3.7
Variables, syntax elements, and tables
9
3.3.8
Text description of logical operations
10
3.3.9
Processes
11
3.3.10
Description of bitsteam syntax parsing process and decoding process
12
4
Source, coded, decoded and output data formats
16
4.1
Source
16
4.2
Color format
16
4.3
Coded bitstream format
16
4.4
Sequence header
17
4.5
Picture
17
4.6
Picture types
17
4.7
Slice
17
4.8
Macroblock
18
4.9
Block
18
4.10
Frame re-ordering
18
4.11
Reference pictures
19
4.12
Inverse scanning processes and derivation processes for neighbours
19
4.12.1
Inverse macroblock scanning process
19
4.12.2
Inverse macroblock partition scanning process
20
4.12.3
Inverse 8x8 luma block scanning process
20
4.12.4
Inverse 4x4 luma block scanning process
21
4.12.5
Derivation process of the availability for macroblock addresses
21
4.12.6
Derivation process for neighbouring macroblock addresses and their availability
21
4.12.7
Derivation processes for neighbouring macroblocks, blocks, and partitions
22
4.12.8
Derivation process for neighbouring locations
25
5
Syntax and semantics
26
5.1
Bitstream syntax
26
5.1.1
Start codes
26
5.1.2
Video sequence
27
5.1.3
Extension and user data
28
5.1.4
Picture
29
5.1.5
Slice
30
5.1.6
Macroblock
30
5.1.7
Block
31
5.2
Video bitstream semantics
32
5.2.1
Video sequence
32
5.2.2
Sequence header
32
5.2.3
Extension data and user data
35
5.2.4
Picture
35
5.2.5
Slice
37
5.2.6
Macroblock
37
5.2.7
Block
40
6
Decoding Process
40
6.1
General
40
6.2
Intra prediction
41
6.2.1
Intra_4x4 prediction process for luma samples
41
6.2.2
Intra_8x8 prediction process for luma samples
44
6.2.3
Intra_16x16 prediction process for luma samples
47
6.2.4
Intra prediction for 8(8 chroma Block
49
6.3
Inter prediction
51
6.3.1
Derivation process for motion vector components and reference indices
52
6.3.2
Decoding process for Inter prediction samples
59
6.4
Transform coefficient decoding process and picture construction process
68
6.4.1
Inverse scanning
68
6.4.2
Inverse quantization
70
6.4.3
Inverse transform process
74
6.4.4
Reconstruction
78
6.5
loop Filtering
79
6.5.1
Reference picture buffer management
80
7
Parsing Process
81
7.1
ue(v)
81
7.2
ae(v)
82
7.2.1
Description
82
7.2.2
Initialization
83
7.2.3
Binarization process
83
7.2.4
Parsing Binary String
86

Tables
17Table 4‑1 — P frame sub-types

22Table 4‑2 – Specification of input and output assignments for subclauses 4.12.7.1 to 4.12.7.3

26Table 4‑3 — Specification of mbAddrN

26Table 5‑1 — Start code value

33Table 5‑2 — Chroma format

33Table 5‑3 — Sample precision

33Table 5‑4 — Aspect ratio information

34Table 5‑5 — Frame rate codes

35Table 5‑6 — Time code

36Table 5‑7 — Coding type of a picture

38Table 5‑8 — MbPartTypes of macroblocks in P pictures

38Table 5‑9 — MbPartTypes of macroblocks in B pictures

39Table 5‑10 — MbPredTypes of P_16x16 macroblock

39Table 5‑11 — MbPredTypes of P_16x8, P_8x16, and P_8x8 macroblocks

39Table 5‑12 — MbPredTypes of B_16x16, B_16x8, and B_8x16 macroblocks

39Table 5‑13 — MbPredTypes of B_8x8 macroblock

42Table 6‑1— Luma intra prediction modes

49Table 6‑2 — 8(8 Chroma intra prediction mode

63Table 6‑3 — Assignment of the luma prediction sample predSampleXL[xL, yL]

69Table 6‑4 — Inverse scanning order of 8×8 block

70Table 6‑5 — CurrentQPCb, CurrentQPCr and QP of chroma blocks

71Table 6‑6 — DequantTable and ShiftTable

81Table 7‑1 — Zero-order Exp-Golomb codes

83Table 7‑2— Relation between synEIVal and binary string

83Table 7‑3— Relation between synEIVal and binary string

84Table 7‑4 — Relation between synEIVal and binary string

84Table 7‑5 — Relation between synEIVal and binary string

85Table 7‑6 — Relation between synEIVal and binary string

86Table 7‑7 — Relation between synEIVal and binary string

86Table 7‑8 — Relation between synEIVal and binary string

86Table 7‑9 — Relation between synEIVal and binary string

87Table 7‑10 — Initialized index of syntax element

91Table 7‑11 — Relation between priIdx and lMax

91Table 7‑12 — Relation between coeffLevel, coeffRun and secIdx

Figures
16Figure 4‑1 — Position of luminance and chrominance samples in 4:2:0 format

18Figure 4‑2 — partitioning of a macroblock into 8x8 blocks (4:2:0 format)

19Figure 4‑3 — Frame re-ordering example

20Figure 4‑4 — Macroblock partitions

20Figure 4‑5 — Scan for 8x8 luma blocks

21Figure 4‑6 — Scan for 4x4 luma blocks

22Figure 4‑7 — Neighbouring macroblocks for a given macroblock

23Figure 4‑8 — Determination of the neighbouring macroblock, blocks, and partitions (informative)

32Figure 5‑1 — Picture boundaries

42Figure 6‑1 — Luma intra prediction mode directions

55Figure 6‑2 — Derivation process of motion vectors in B skip mode

56Figure 6‑3 — Symmetrical mode

62Figure 6‑4 — Integer samples (shaded blocks with upper-case letters) and fractional sample positions (un-shaded blocks with lower-case letters) for quarter sample luma interpolation

66Figure 6‑5 — Relation between variable positions and reference samples

79Figure 6‑6 — The order of filtered edges in a macroblock(4:2:0 format)

79Figure 6‑7 — Horizontal or vertical edge samples of 8x8 block

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 14496‑31 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information Technology, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.

ISO/IEC 14496 consists of the following parts, under the general title Information Technology — Coding of audio visual objects:

· Part 1: Systems

· Part 2: Visual

· Part 3: Audio

· Part 4: Conformance testing

· Part 5: Reference software

· Part 6: Delivery Multimedia Integration Framework (DMIF)

· Part 7: Optimized reference software for coding of audio-visual objects

· Part 8: Carriage of ISO/IEC 14496 contents over IP networks

· Part 9: Reference hardware description

· Part 10: Advanced Video Coding

· Part 11: Scene description and application engine

· Part 12: ISO base media file format

· Part 13: Intellectual Property Management and Protection (IPMP) extensions

· Part 14: MP4 file format

· Part 15: Advanced Video Coding (AVC) file formatPart 16: Animation Framework eXtension (AFX)

· Part 17: Streaming text format

· Part 18: Font compression and streaming

· Part 19: Synthesized texture stream

· Part 20: Lightweight Application Scene Representation (LASeR) and Simple Aggregation Format (SAF)

· Part 21: MPEG-J Graphics Framework eXtensions (GFX)

· Part 22: Open Font Format

· Part 23: Symbolic Music Representation

· Part 24: Audio and systems interaction

· Part 25: 3D Graphics Compression Model

· Part 26: Audio conformance

· Part 27: 3D Graphics conformance

· Part 28: Composite font representation

· Part 29: Web Video Coding

· Part 30: Timed text and other visual overlays in ISO base media file format

· Part 31: Video Coding for Browsers
· Part 32: Reference software and conformance for file formats
· Part 33: Internet Video Coding

Introduction

This part of this International Standard specifies Internet Video Coding, a video compression technology that is intended to be suitable for video distribution models currently adopted on the Internet.

Information technology — Coding of audio-visual objects — Part 33: Internet video coding
1 Scope

This part of ISO/IEC 14496-33 specifies MPEG-4 Internet Video Coding.
2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

· None

3 Definitions, abbreviated terms, and Conventions

For the purposes of this International Standard, the following terms and definitions apply.

3.1 Definitions

3.1.1 AC coefficient

Any transform coefficient for which the frequency index in one or both dimensions is non-zero.
3.1.2 backward prediction

The process of predicting the current picture by using future pictures in the display order as reference pictures
3.1.3 bidirectional prediction

The process of predicting the current picture by the past reference pictures and future reference pictures in the display order.

3.1.4 bidirectional inter decoded picture

A decoded picture using bidirectional prediction in inter prediction.

3.1.5 bin

One bit of a bin string.

3.1.6 binarization

A set of bin strings for all possible values of a syntax element.

3.1.7 binarization process:

A unique mapping process of all possible values of a syntax element onto a set of bin strings.

3.1.8 bit string

A string of bins. A bin string is an intermediate binary representation of values of syntax elements from the binarization of the syntax element.
3.1.9 bitstream

A sequence of bits that forms the representation of coded pictures and associated data forming one or more coded video sequences.
3.1.10 block

An MxN (M-column by N-row) array of samples, or an MxN array of transform coefficients.
3.1.11 byte

A sequence of 8 bits, written and read with the most significant bit on the left and the least significant bit on the right. When represented in a sequence of data bits, the most significant bit of a byte is first.

3.1.12 byte-aligned
A position in a bitstream is byte-aligned when the position is an integer multiple of 8 bits from the position of the first bit in the bitstream. A bit or byte or syntax element is said to be byte-aligned when the position at which it appears in a bitstream is byte-aligned.
3.1.13 coded picture

A coded representation of a picture.
3.1.14 component

An array or single sample from one of the three arrays (luma and two chroma) that make up a picture in 4:2:0 colour format or the array or a single sample of the array that make up a picture in monochrome format.

3.1.15 chroma

An adjective specifying that a sample array or single sample is representing one of the two colour difference signals related to the primary colours. The symbols used for a chroma array or sample are Cb and Cr.

NOTE – The term chroma is used rather than the term chrominance in order to avoid the implication of the use of linear light transfer characteristics that is often associated with the term chrominance.
3.1.16 DC coefficient

A transform coefficient for which the frequency index is zero in all dimensions.
3.1.17 decoded picture

A decoded picture is derived by decoding a coded picture.

3.1.18 decoder

An embodiment of a decoding process.
3.1.19 decoding order

The order in which syntax elements are processed by the decoding process.
3.1.20 decoding process

The process that derives decoded pictures from syntax elements.

3.1.21 display order

The order of in which the decoded pictures are displayed.

3.1.22 dequantization

The process of rescaling the quantized transform coefficients after their representation in the bitstream has been decoded and before they are presented to the inverse transform.

3.1.23 encoder

An embodiment of an encoding process.

3.1.24 encoding process

A process, not specified in this Recommendation | International Standard, that produces a bitstream conforming to this Recommendation | International Standard.
3.1.25 forbidden

Define some special syntax elements, which should not exist in the bitstream which conforms to the syntax defined in this part. The reason for forbidden is to avoid the pseudo initial code in the bitstream.
3.1.26 forward prediction

The process of predicting the current picture by the past reference pictures in the display order.

3.1.27 forward inter decoded picture

A decoded picture using only forward prediction in inter prediction.

3.1.28 flag

A binary variable that can take one of the two possible values 0 and 1.

3.1.29 frequency index

A one-dimensional or two-dimensional index associated with a transform coefficient prior to an inverse transform part of the decoding process.

3.1.30 frame

The representation of video signals in the spatial domain, Composed of one luma sample matrix (Y) and two chroma sample matrices (Cb and Cr).

3.1.31 inter coding

Coding of a block, macroblock, slice, or picture that uses inter prediction.

3.1.32 inter macroblock

A macroblock which is coded using inter prediction.
3.1.33 inter prediction

A prediction derived from only data elements (e.g. sample value or motion vector) of reference pictures other than the current decoded picture.

3.1.34 intra coding

Coding of a block, macroblock, slice, or picture that uses intra prediction.

3.1.35 intra macroblock

A macroblock which is coded using intra prediction.
3.1.36 intra prediction

A prediction derived from only data elements (e.g. sample value) of the same decoded slice.

3.1.37 inverse transform

A part of the decoding process by which a set of transform coefficients are converted into spatial-domain values, or by which a set of transform coefficients are converted into DC transform coefficients.
3.1.38 layer

One of a set of syntactical structures in a non-branching hierarchical relationship. Higher layers contain lower layers. The coding layers are the coded video sequence, picture, slice, macroblock and block.

3.1.39 level

A defined set of constraints on the values that may be taken by the syntax elements and variables of this Recommendation | International Standard. The same set of levels is defined for all profiles, with most aspects of the definition of each level being in common across different profiles. Individual implementations may, within specified constraints, support a different level for each supported profile. In a different context, level is the value of a transform coefficient prior to scaling.
3.1.40 luma

An adjective specifying that a sample array or single sample is representing the monochrome signal related to the primary colours. The symbol or subscript used for luma is Y or L.

NOTE – The term luma is used rather than the term luminance in order to avoid the implication of the use of linear light transfer characteristics that is often associated with the term luminance. The symbol L is sometimes used instead of the symbol Y to avoid confusion with the symbol y as used for vertical location.
3.1.41 macroblock

Includes a 16(16 luma sample value block and its corresponding chroma sample value blocks.
3.1.42 motion compensation

The use of motion vectors to improve the efficiency of the prediction of sample values.The prediction uses motion vectors to provide offsets into the past and/or future reference frames containing previously decoded sample values that are used to form the prediction error.

3.1.43 motion vector

A two-dimensional vector used for inter prediction that provides an offset from the coordinates in the decoded picture to the coordinates in a reference picture.
3.1.44 non-reference picture

A non-reference picture is not used for inter prediction of any other pictures.
3.1.45 output order

The order in which the decoded pictures are output from the decoded picture buffer in case the decoded pictures are to be output from the decoded picture buffer.
3.1.46 parse

The procedure of getting the syntax element from the bitstream.

3.1.47 partitioning

The division of a set into subsets such that each element of the set is in exactly one of the subsets.
3.1.48 picture reordering

The process of reordering the decoded pictures if the decoding order is different from the output order.

3.1.49 prediction

An embodiment of the prediction process.

3.1.50 prediction process

The use of a predictor to provide an estimate of the data element (e.g. sample value or motion vector) currently being decoded.

3.1.51 predictior
A combination of specified values or previously decoded data elements (e.g. sample value or motion vector) used in the decoding process of subsequent data elements.
3.1.52 profile

A specified subset of the syntax of this Recommendation | International Standard.
3.1.53 quantization parameter

A variable used by the decoding process for scaling of transform coefficient levels.

3.1.54 quantized transform coefficients
Transform coefficients before dequantization. A variable length coded representation of quantized transform coefficients is transmitted as part of the coded video bitstream.

3.1.55 random access

The act of starting the decoding process for a bitstream at a point other than the beginning of the stream.

3.1.56 raster scan

A mapping of a rectangular two-dimensional pattern to a one-dimensional pattern such that the first entries in the one-dimensional pattern are from the first top row of the two-dimensional pattern scanned from left to right, followed similarly by the second, third, etc., rows of the pattern (going down) each scanned from left to right.
3.1.57 reference index

The order indication of the reference frames in the frame buffer in the decoding process.

3.1.58 reference picture

A picture that contains samples that may be used for inter prediction in the decoding process of subsequent pictures in decoding order.
3.1.59 reserved

The term reserved, when used in the clauses specifying some values of a particular syntax element, are for future use by ISO/IEC. These values shall not be used in bitstreams conforming to this Recommendation | International Standard, but may be used in future extensions of this Recommendation | International Standard by ISO/IEC.
3.1.60 residual

The decoded difference between a prediction of a sample or data element and its decoded value.

3.1.61 run

A number of data elements of the same value in the decoding process. On one hand, it means the number of zero coefficients before a non-zero coefficient in the block scan; on the other hand, it means the number of skipped macroblocks.
3.1.62 sequence

The highest level syntax structure of coding bitstream, including one or several consecutive coded pictures.
3.1.63 skipped macroblock

A macroblock for which no data is encoded.

3.1.64 slice

An integer number of consecutive macroblock rows in the raster scan order.

3.1.65 slice header

A part of a coded slice containing the data elements pertaining to the first or all macroblocks represented in the slice.

3.1.66 source

Term used to describe the video material or some of its attributes before encoding.

3.1.67 start code

A 32-bit codeword which is unique in the whole bitstream. Start code has a lot of usages, one of which is to identify the start point of the syntax structure in the bitstream.

3.1.68 stuffing bits

The bit string which is inserted into bit-stream during encoding process and should be aborted during the decoding process.

3.1.69 syntax element

An element of data represented in the bitstream.

3.1.70 transform coefficient

A scalar quantity, considered to be in a frequency domain, that is associated with a particular one-dimensional or two-dimensional frequency index in an inverse transform part of the decoding process.

3.2 Abbreviated terms

BBV

Bitstream Buffer Verifier

LSB

Least Significant Bit

MB

Macroblock

MSB

Most Significant Bit

3.3 Conventions

The mathematical operators and their precedence rules used to describe this Specification are similar to those used in the C programming language. However, operators of integer divisions with truncation and of rounding are specifically defined. If not specifically explained, numbering and counting begin from zero.

3.3.1 Arithmetic operators

+

Addition
−

Subtraction (as a binary operator) or negation (as a unary prefix operator)

×

Multiplication

ab

Exponential operation. a is raised to power of b. also it can represent superscript.

/
Integer division with truncation of the result toward zero. For example, 7/4 and (−7)/(−4) are truncated to 1 and (−7)/4 and 7/(−4) are truncated to −1.
[image: image1.wmf]b

a

Division in mathematical equations where no truncation or rounding is intended

[image: image2.wmf]å

=

b

a

i

i

f

)

(

The summation of the f (i) with i taking integral values from a up to, b (including b)

a % b

Remainder from division of a by b. both a and b are positive integers

3.3.2 Logical operators

a && b

Logical AND operation between a and b

a || b

Logical OR operation between a and b

!

Logical NOT operation

3.3.3 Relational operators

>

Greater than

>=

Greater than or equal to

<

Less than

<=

Less than or equal to

==

Equal to

!=

Not equal to

3.3.4 Bitwise operators

&

AND operation

|

OR operation

~

Negation operation

a >> b
Shift a in 2’s complement binary integer representation format to the right by b bit positions. This operator is only defined with b, a positive integer

a << b
Shift a in 2’s complement binary integer representation format to the left by b bit positions. This operator is only defined with b, a positive integer

3.3.5 Assignment

=

Assignment operator

++
Increment, x++ is equivalent to x = x + 1. When this operator is used for an array index, the variable value is obtained before the auto increment operation
−−
 Decrement, i.e. x−− is equivalent to x = x − 1. When this operator is used for an array index, the variable value is obtained before the auto decrement operation
+=
Addition assignment operator, for example x += 3 corresponds to x = x + 3, x += (−3) is equivalent to x = x + (−3)

−=
Subtraction assignment operator，for example x −= 3 corresponds to x = x − 3, x −= (−3) is equivalent to x = x − (−3)

3.3.6 Mathematical functions
	Abs(x) =
	[image: image3.wmf];0

;0

xx

xx

>=

ì

í

-<

î

	(3‑1)

	Ceil(x)

	Takes the smallest integer not smaller than x
	(3‑2)

	Clip1(x) =
	Clip3(0, 255, x)

	(3‑3)

	Clip3(a,b,c) =
	
[image: image4.wmf]ï

î

ï

í

ì

<

<

else

c

b

c

b

a

c

a

;

;

;

	(3‑4)

	Floor(x)
	Takes the biggest integer not bigger than x
	(3‑5)

	Log2(x)

	Logarithm number of x with base 2
	(3‑6)

	Log10(x)
	Logarithm number of x with base 10
	(3‑7)

	Median(x,y,z) =
	x + y + z − Min(x, Min(y, z)) − Max(x, Max(y, z))
	(3‑8)

	Min(x, y) =
	
[image: image5.wmf]î

í

ì

>

<=

y

x

y

x

;

y

;

x

	(3‑9)

	Max(x, y) =
	
[image: image6.wmf]î

í

ì

<

>=

y

x

y

x

;

y

;

x

	(3‑10)

	Round(x) =
	Sign(x) * Floor(Abs(x) + 0.5)
	(3‑11)

	Sign(x) =
	
[image: image7.wmf]î

í

ì

<

>=

0

;

1

0

;

0

x

x

	(3‑12)

	InverseRasterScan

(a, b, c, d, e)=
	
[image: image8.wmf]î

í

ì

=

=

=

=

1

;

*

)

)

/

(

/

(

0

;

*

)

)

/

(

%

(

e

c

b

d

a

e

b

b

d

a

	(3‑13)

3.3.7 Variables, syntax elements, and tables
Syntax elements in the bitstream are represented in bold type. Each syntax element is described by its name (all lower case letters with underscore characters), its one or two syntax categories, and one or two descriptors for its method of coded representation. The decoding process behaves according to the value of the syntax element and to the values of previously decoded syntax elements. When a value of a syntax element is used in the syntax tables or the text, it appears in regular (i.e., not bold) type.

In some cases the syntax tables may use the values of other variables derived from syntax elements values. Such variables appear in the syntax tables, or text, named by a mixture of lower case and upper case letter and without any underscore characters. Variables starting with an upper case letter are derived for the decoding of the current syntax structure and all depending syntax structures. Variables starting with an upper case letter may be used in the decoding process for later syntax structures without mentioning the originating syntax structure of the variable. Variables starting with a lower case letter are only used within the subclause in which they are derived.

In some cases, "mnemonic" names for syntax element values or variable values are used interchangeably with their numerical values. Sometimes "mnemonic" names are used without any associated numerical values. The association of values and names is specified in the text. The names are constructed from one or more groups of letters separated by an underscore character. Each group starts with an upper case letter and may contain more upper case letters.

NOTE – The syntax is described in a manner that closely follows the C-language syntactic constructs.

Functions that specify properties of the current position in the bitstream are referred to as syntax functions. These functions are specified in subclause 7.2 and assume the existence of a bitstream pointer with an indication of the position of the next bit to be read by the decoding process from the bitstream. Syntax functions are described by their names, which are constructed as syntax element names and end with left and right round parentheses including zero or more variable names (for definition) or values (for usage), separated by commas (if more than one variable).

Functions that are not syntax functions (including mathematical functions specified in subclause 5.7) are described by their names, which start with an upper case letter, contain a mixture of lower and upper case letters without any underscore character, and end with left and right parentheses including zero or more variable names (for definition) or values (for usage) separated by commas (if more than one variable).

A one-dimensional array is referred to as a list. A two-dimensional array is referred to as a matrix. Arrays can either be syntax elements or variables. Subscripts or square parentheses are used for the indexing of arrays. In reference to a visual depiction of a matrix, the first subscript is used as a row (vertical) index and the second subscript is used as a column (horizontal) index. The indexing order is reversed when using square parentheses rather than subscripts for indexing. Thus, an element of a matrix s at horizontal position x and vertical position y may be denoted either as s[x, y] or as syx.

Binary notation is indicated by enclosing the string of bit values by single quote marks. For example, '01000001' represents an eight-bit string having only its second and its last bits (counted from the most to the least significant bit) equal to 1.

Hexadecimal notation, indicated by prefixing the hexadecimal number by "0x", may be used instead of binary notation when the number of bits is an integer multiple of 4. For example, 0x41 represents an eight-bit string having only its second and its last bits (counted from the most to the least significant bit) equal to 1.

Numerical values not enclosed in single quotes and not prefixed by "0x" are decimal values.

A value equal to 0 represents a FALSE condition in a test statement. The value TRUE is represented by any value different from zero.

3.3.8 Text description of logical operations

In the text, a statement of logical operations as would be described in pseudo-code as

if(condition 0)

 statement 0

else if(condition 1)

 statement 1

…

else /* informative remark on remaining condition */

 statement n

may be described in the following manner:

... as follows / ... the following applies.

–
If condition 0, statement 0

–
Otherwise, if condition 1, statement 1

–
…

–
Otherwise (informative remark on remaining condition), statement n

Each "If ... Otherwise, if ... Otherwise, ..." statement in the text is introduced with "... as follows" or "... the following applies" immediately followed by "If ... ". The last condition of the "If ... Otherwise, if ... Otherwise, ..." is always an "Otherwise, ...". Interleaved "If ... Otherwise, if ... Otherwise, ..." statements can be identified by matching "... as follows" or "... the following applies" with the ending "Otherwise, ...".

In the text, a statement of logical operations as would be described in pseudo-code as

if(condition 0a && condition 0b)

 statement 0

else if(condition 1a | | condition 1b)

 statement 1

…

else

 statement n

may be described in the following manner:

... as follows / ... the following applies.

–
If all of the following conditions are true, statement 0

–
condition 0a

–
condition 0b

–
Otherwise, if any of the following conditions are true, statement 1

–
condition 1a

–
condition 1b

–
…

–
Otherwise, statement n

In the text, a statement of logical operations as would be described in pseudo-code as:

if(condition 0)

 statement 0

if(condition 1)

 statement 1

may be described in the following manner:

When condition 0, statement 0

When condition 1, statement 1

3.3.9 Processes

Processes are used to describe the decoding of syntax elements. A process has a separate specification and invoking. All syntax elements and upper case variables that pertain to the current syntax structure and depending syntax structures are available in the process specification and invoking. A process specification may also have a lower case variable explicitly specified as the input. Each process specification has explicitly specified an output. The output is a variable that can either be an upper case variable or a lower case variable.

When invoking a process, the assignment of variables is specified as follows.

· If the variables at the invoking and the process specification do not have the same name, the variables are explicitly assigned to lower case input or output variables of the process specification.

· Otherwise (the variables at the invoking and the process specification have the same name), assignment is implied.

In the specification of a process, a specific macroblock may be referred to by the variable name having a value equal to the address of the specific macroblock.

3.3.10 Description of bitsteam syntax parsing process and decoding process

3.3.10.1 Method of describing bitstream syntax

The description style of the syntax is similar to C programming language.

The syntax tables specify a superset of the syntax of all allowed bitstreams. Additional constraints on the syntax may be specified, either directly or indirectly, in other clauses.

NOTE – An actual decoder should implement means for identifying entry points into the bitstream and means to identify and handle non-conforming bitstreams. The methods for identifying and handling errors and other such situations are not specified here.

The following table lists examples of pseudo code used to describe the syntax. When syntax_element appears, it specifies that a syntax element is parsed from the bitstream and the bitstream pointer is advanced to the next position beyond the syntax element in the bitstream parsing process.

	
	Descriptor

	/* A statement can be a syntax element with associated descriptor or can be an expression used to specify its existence, type, and value, as in the following examples */
	

	syntax_element
	ue(v)

	conditioning statement
	

	/* A group of statements enclosed in brackets is a compound statement and is treated functionally as a single statement. */
	

	{
	

	
statement
	

	
statement
	

	
…
	

	}
	

	/* A “while” structure specifies that the statement is to be evaluated repeatedly while the condition remains true. */
	

	while (condition)
	

	
statement
	

	/* A “do … while” structure executes the statement once, and then tests the condition. It repeatedly evaluates the statement while the condition remains true. */
	

	Do
	

	
Statement
	

	while (condition)
	

	/* An “if … else” structure tests the condition first. If it is true, the primary statement is evaluated. Otherwise, the alternative statement is evaluated. If the alternative statement is unnecessary to be evaluated, the “else” and corresponding alternative statement can be omitted. */
	

	if(condition)
	

	
primary statement
	

	Else
	

	
alternative statement
	

	/* A “for” structure evaluates the initial statement at the beginning then tests the condition. If it is true, the primary and subsequent statements are evaluated until the condition becomes false. */
	

	for (initial statement; condition; subsequent statement)
	

	
primary statement
	

Parse and decoding process are described using text and C-like pseudo language.

3.3.10.2 Syntax functions
Functions used for syntax description are explained in this section. It is assumed that the decoder has a bitstream position indicator. This bitstream position indicator locates the position of the bit that is going to be read right next. A function consists of its name and a sequence of parameters inside of parentheses. A function may not have any parameters.

byte_aligned()

The function byte_aligned () returns TRUE if the current position is on a byte boundary. Otherwise, it returns FALSE.

next_bits(n)

The function returns the next n bits from the bitstream, MSB first. The current bitstream position indicator is not changed. If the remaining number of bits to be read are less than n, it returns 0.

byte_aligned_next_bits(n)

If the current position of the bitstream is not byte-aligned, returns n bits beginning from the next byte-aligned position, MSB first. The current bitstream position indicator is not changed. If the current position of the bitstream is byte-aligned, returns n bits from the current position, MSB first. The current bitstream position is not changed. If the remaining number of bits to be read is less than n, it returns 0.

next_start_code()

The next_start_code() function locates the next start code. It is defined in the table below.

	next_start_code() {
	Descriptor

	
stuffing_bit
	'1'

	 while (! byte_aligned())
	

	 stuffing_bit
	'0'

	
while (next_bits(24) != '0000 0000 0000 0000 0000 0001')
	

	

stuffing_byte
	'0000 0000'

	}
	

The stuffing_bytes shall appear after a picture header and before a slice header start code.
is_end_of_slice()

This function tests if the current position is at the end of the slice. The function’s definition is shown in the table below.

	is_end_of_slice () {
	descriptor

	if(byte_aligned () {
	

	if(next_bits(32) == 0x80000001
	

	return TRUE; // end of slice
	

	}
	

	else {
	

	if((byte_aligned_next_bits(24) == 0x000001) && is_stuffing_pattern())
	

	return TRUE; // end of slice
	

	}
	

	return FALSE;
	

	}
	

is_stuffing_pattern()

This function tests whether the remaining bits of the current byte or the next byte (in case the current position is byte-aligned), are stuffing bits. The function’s definition is shown in the table below.

	is_stuffing_pattern () {
	descriptor

	
if(next_bits(8−n) == (1<< (7−n)))
// n：0～7，for shifting the bitstream position indicator in the current byte, when n is 0, the bitstream position indicator indicates the MSB of the current byte.
	

	 return TRUE;
	

	 Else
	

	 return FALSE;
	

	}
	

read_bits(n)

This function returns n bits of the bitstream from the current position, MSB first. The bitstream position indicator advances n bits. If n is equal to 0, the function returns 0, and the bitstream position indicator does not move.

Syntax functions can be also used for describing parsing process and decoding process.

3.3.10.3 Syntax descriptors
The descriptors below specify the parsing process of syntax elements.

b(8)
A byte with arbitrary value (8 bits). The parsing process for this descriptor is specified by the return value of read_bits(8).

f(n)
A bit string with n bits. The parsing process is specified by the returned value of read_bits(n).

i(n)
Signed integer with n bits. In syntax table, if n is ‘v’, the number of bits is determined by other syntax elements. The parsing process is specified by the return value of read_bits(n), interpreted as two’s complement representation with MSB first.

r(n)
N bits ‘0’. The parsing process is specified by the returned value of read_bits(n).

u(n)
Unsigned integer with n bits. In syntax table, if n is ‘v’, the number of bits is determined by other syntax elements. The parsing process is specified by the returned value of read_bits(n), interpreted as two’s complement representation with MSB first.

ue(v)
Unsigned integer Exp-Golomb-coded syntax element with the first bit on left. The parsing process is specified in subclause 5.1.

3.3.10.4 Reserved, forbidden and marker bit

In the bitstream syntax defined by this Specification, the value of some syntax elements is marked as ‘reserved’ or ‘forbidden’.

The term ‘reserved’, when used in the clauses specifying some values of a particular syntax element, is for future uses. These values shall not be used in the bitstreams conforming to this Specification, but may be used in future extensions of this Specification.

The term ‘forbidden’ specifies some values of syntax elements that shall not be used in the bitstreams conforming to this Specification. marker_bit specifies a bit with value 1. reserved_bits specifies that some particular syntax elements are used for future extension of this Specification. The decoding process shall ignore these bits. In the series of consecutive reserved_bits bytes there shall not be a string of more than 21 consecutive ‘0’.
4 Source, coded, decoded and output data formats

4.1 Source

This Specification deals with coding of progressive sequences. In progressive sequences each picture in the sequence shall be a frame picture. The sequence, at the output of the decoding process, consists of a series of reconstructed frames that are separated in time by a frame period.

A frame consists of three sample matrices of integers: a luma sample matrix (Y), and two chroma sample matrices (Cb and Cr).

An element of each color sample matrix has integer value. The relationship between these Y, Cb and Cr components and the primary (analogue) Red, Green and Blue Signals, the chromaticity of these primaries and the transfer characteristics of the source frame may be specified in the bitstream. This information does not affect the decoding process.

4.2 Color format

In 4:2:0 format, the Cb and Cr matrices shall be one half the size of the Y matrix in both horizontal and vertical dimensions. The luma and chroma samples are positioned as shown in Figure 4‑1.

[image: image9.wmf]
[image: image10.wmf] luma sample [image: image11.wmf] chroma sample

Figure 4‑1 — Position of luma and chroma samples in 4:2:0 format

4.3 Coded bitstream format
The highest syntactic structure of the coded video bitstream is the video sequence. A video sequence commences with a sequence header which is followed by one or more coded pictures. In front of each picture, a picture header is present. The order of the coded pictures in the coded bitstream is the bitstream order. The bitstream order is same as the decoding order. The decoding order is not necessarily same as the display order. The video sequence is terminated by a sequence_end_code.

4.4 Sequence header

A video sequence header commences with sequence header start code and is followed by a series of coded picture data. A sequence header is allowed to be repeatedly present in bitstream. This sequence header is called repeat sequence header. The main purpose of repeat sequence header is providing with random access functionality. The first coded picture after a sequence header should be I frame. The first P frame after a sequence header only refers to pictures appeared after the sequence header. If a bitstream is edited so that all of the data preceding any of the repeat sequence headers is removed (or alternatively random access is made to that sequence header), then the resulting bitstream shall be a legal bitstream that complies with this Specification.

4.5 Picture

A reconstructed picture is obtained by decoding a coded picture, i.e. a picture header, the optional extensions immediately following it, and the picture data. A coded pictureis a frame picture. A reconstructed picture is a reconstructed frame.

4.6 Picture types

There are three types of pictures that use different coding methods:

· an Intra-coded (I) picture is coded using information only from itself;

· a Predictive-coded (P) picture is a picture which is coded using motion compensated prediction from a past reference frame;

· a Bidirectionally predictive-coded (B) picture is a picture which is coded using motion compensated prediction from a past and/or future reference frame(s).

This Specification defines 3 sub-types of P picture, which can be used for non-reference P frame coding in low delay cases. It is defined in the Table 4‑1. A non-reference P frame is not used as a reference frame for motion compensated inter-frame prediction. A non-reference P frame with reference picture buffer (RPB) swapping is referred as a non-reference P frame accompanied with the operation of RPB swapping. After decoding a non-reference P frame with RPB swapping, the newest two decoded pictures placed in RPB exchange their positions in the buffer each other.

Table 4‑1 — P frame sub-types
	Name
	Value

	P frame
	1

	Non-reference P frame
	2

	Non-reference P frame with RPB swapping
	3

4.7 Slice

A slice is a series of an arbitrary number of consecutive macroblocks. The first and last macroblocks of a slice shall not be skipped macroblocks. Every slice shall contain at least one macroblock. Slices shall not overlap. The position of slices may change from picture to picture.

The first and last macroblock of a slice shall be in the same horizontal row of macroblocks.

Slices shall occur in the bitstream in the order in which they are encountered, starting at the upper-left of the picture and proceeding by raster-scan order from left to right and top to bottom.

4.8 Macroblock

A picture is partitioned into macroblocks. The top-left corner of macroblock shall not surpass the boundary of picture.

A macroblock contains a section of the luma component and the spatially corresponding chroma components. The term macroblock can either refer to source and decoded data or to the corresponding coded data elements. A skipped macroblock is one for which no information is transmitted. The chroma format for a macroblock is 4:2:0 format.

A 4:2:0 Macroblock consists of 6 8x8 blocks. This structure holds 4 Y, 1 Cb and 1 Cr blocks and the block order is depicted in Figure 4‑2.

[image: image12.wmf]0

4

5

1

2

3

Y

Cb

Cr

Figure 4‑2 — partitioning of a macroblock into 8x8 blocks (4:2:0 format)

4.9 Block

The term “block” can refer either to source and reconstructed data or to the DCT coefficients or to the corresponding coded data elements.

When “block” refers to source and reconstructed data it refers to an orthogonal section of a luma or chroma component with the same number of lines and samples.The blocksize can be either 4x4, 8x8 or 16x16.
4.10 Frame re-ordering

When the sequence contains coded B frames, the number of consecutive coded B frames is variable and unbounded. The first coded frame after a sequence header shall not be a B frame.

The order of the coded frames in the bitstream, also called coded order, is the order in which a decoder reconstructs them. The order of the reconstructed frames at the output of the decoding process, also called the display order, is not always the same as the coded order and this subclause defines the rules of frame re-ordering that shall happen within the decoding process.

When the sequence contains no coded B frames, the coded order is the same as the display order. This is true in particular always when low_delay is one. When B frames are present in the sequence, re-ordering is performed according to the following rules:

· If the current frame in coded order is a B frame, the output frame is the frame reconstructed from that B frame.

· If the current frame in coded order is an I frame or P frame, the output frame is the frame reconstructed from the previous I frame or P frame if one exists. If none exists, at the start of the sequence, no frame is output.

The frame reconstructed from the final I frame or P frame is output immediately after the frame reconstructed when the last coded frame in the sequence was removed from the BBV buffer.

The following Figure 4‑3 is an example for explaining re-ordering: there are two coded B frames between successive coded P frames. The P frame with only intra coded blocks is marked as “I”. Frame ‘1I’ is used to form a prediction for frame ‘4P’. Frames ‘4P’ and ‘1I’ are both used to form predictions for frames ‘2B’ and ‘3B’. Therefore the order of coded frames in the coded sequence shall be ‘1I’, ‘4P’, ‘2B’, ‘3B’. However, the decoder shall display them in the order ‘1I’, ‘2B’, ‘3B’, ‘4P’.

At the encoder input:

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13

	I
	B
	B
	P
	B
	B
	P
	B
	B
	I
	B
	B
	P

At the encoder output, in the coded bitstream, and at the decoder output:

	1
	4
	2
	3
	7
	5
	6
	10
	8
	9
	13
	11
	12

	I
	P
	B
	B
	P
	B
	B
	I
	B
	B
	P
	B
	B

At the decoder output:

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13

	I
	B
	B
	P
	B
	B
	P
	B
	B
	I
	B
	B
	P

Figure 4‑3 — Frame re-ordering example

4.11 Reference pictures

P frame can use up to eight (at maximum) forward frames as reference; B frame can refer to one forward reference frame and one backward reference frame.

In a situation where a sample indicated by a motion vector is outside of the reference picture boundary, the nearest integer sample inside a picture from the indicated outside position shall be used for boundary padding. For the luma sample matrix, samples in a reference block shall not surpass 16 samples either horizontally or vertically outside of the reference picture boundary. For each chroma sample matrix, if color format is 4:2:0, samples in a reference block shall not surpass 8 samples either horizontally or vertically outside of the reference picture boundary.

4.12 Inverse scanning processes and derivation processes for neighbours

This subclause specifies inverse scanning processes; i.e., the mapping of indices to locations, and derivation processes for neighbours.

4.12.1 Inverse macroblock scanning process

Input to this process is a macroblock address mbAddr.

Output of this process is the location (x, y) of the upper-left luma sample for the macroblock with address mbAddr relative to the upper-left sample of the picture.

The inverse macroblock scanning process is specified as follows.

x = InverseRasterScan(mbAddr, 16, 16, PicWidthInSamples, 0) (4‑1)
y = InverseRasterScan(mbAddr, 16, 16, PicWidthInSamples, 1) (4‑2)
4.12.2 Inverse macroblock partition scanning process

Macroblocks may be partitioned, and the partitions are scanned for inter prediction as shown in Figure 4‑4. The outer rectangles refer to the samples in a macroblock or sub-macroblock, respectively. The rectangles refer to the partitions. The number in each rectangle specifies the index of the inverse macroblock partition scan or inverse sub-macroblock partition scan.

The functions MbPartWidth(), and MbPartHeight() describing the width and height of macroblock partitions are specified in Table 5‑8, andTable 5‑9. MbPartWidth() and MbPartHeight() are set to appropriate values for each macroblock, depending on the macroblock type.

[image: image13]
Figure 4‑4 — Macroblock partitions
Input to this process is the index of a macroblock partition mbPartIdx.

Output of this process is the location (x, y) of the upper-left luma sample for the macroblock partition mbPartIdx relative to the upper-left sample of the macroblock.
The inverse macroblock partition scanning process is specified by

x = InverseRasterScan(mbPartIdx, MbPartWidth(mb_part_type), MbPartHeight(mb_part_type), 16, 0) (4‑3)
y = InverseRasterScan(mbPartIdx, MbPartWidth(mb_part_type), MbPartHeight(mb_part_type), 16, 1) (4‑4)
4.12.3 Inverse 8x8 luma block scanning process

Input to this process is the index of a 8x8 luma block luma8x8BlkIdx within a 16x16 luma block.

Output of this process is the location (x, y) of the upper-left luma sample for the 8x8 luma block with index luma8x8BlkIdx relative to the upper-left luma sample of the16x16 block.

Figure 4‑5 shows the scan for the 8x8 luma blocks.

[image: image14]
Figure 4‑5 — Scan for 8x8 luma blocks
The inverse 8x8 luma block scanning process is specified by

x = InverseRasterScan(luma8x8BlkIdx, 8, 8, 16, 0) (4‑5)
y = InverseRasterScan(luma8x8BlkIdx, 8, 8, 16, 1) (4‑6)
4.12.4 Inverse 4x4 luma block scanning process
Input to this process is the index of a 4x4 luma block luma4x4BlkIdx within a 8x8 luma block.

Output of this process is the location (x, y) of the upper-left luma sample for the 4x4 luma block with index luma4x4BlkIdx relative to the upper-left luma sample of the 8x8 block.

Figure 4‑6 shows the scan for the 4x4 luma blocks.

[image: image15]
Figure 4‑6 — Scan for 4x4 luma blocks
The inverse 4x4 luma block scanning process is specified by

x = InverseRasterScan(luma4x4BlkIdx, 4, 4, 8, 0) (4‑7)
y = InverseRasterScan(luma4x4BlkIdx, 4, 4, 8, 1) (4‑8)
4.12.5 Derivation process of the availability for macroblock addresses
Input to this process is a macroblock address mbAddr.

Output of this process is the availability of the macroblock mbAddr.

NOTE – The meaning of availability is determined when this process is invoked.

The macroblock is marked as available, unless one of the following conditions is true in which case the macroblock shall be marked as not available:

· mbAddr < 0

· mbAddr > CurrMbAddr

· the macroblock with address mbAddr belongs to a different slice than the current slice

4.12.6 Derivation process for neighbouring macroblock addresses and their availability
The outputs of this process are:
· mbAddrA: the address and availability status of the macroblock to the left of the current macroblock.

· mbAddrB: the address and availability status of the macroblock above the current macroblock.

· mbAddrC: the address and availability status of the macroblock above-right of the current macroblock.

· mbAddrD: the address and availability status of the macroblock above-left of the current macroblock.

Figure 4‑7 shows the relative spatial locations of the macroblocks with mbAddrA, mbAddrB, mbAddrC, and mbAddrD relative to the current macroblock with CurrMbAddr.

[image: image16]
Figure 4‑7 — Neighbouring macroblocks for a given macroblock

Input to the process in subclause 4.12.5 is mbAddrA = CurrMbAddr − 1 and the output is whether the macroblock mbAddrA is available. In addition, mbAddrA is marked as not available when CurrMbAddr % PicWidthInMbs is equal to 0.

Input to the process in subclause 4.12.5 is mbAddrB = CurrMbAddr − PicWidthInMbs and the output is whether the macroblock mbAddrB is available.

Input to the process in subclause 4.12.5 is mbAddrC = CurrMbAddr − PicWidthInMbs + 1 and the output is whether the macroblock mbAddrC is available. In addition, mbAddrC is marked as not available when (CurrMbAddr + 1) % PicWidthInMbs is equal to 0.

Input to the process in subclause 4.12.5 is mbAddrD = CurrMbAddr − PicWidthInMbs − 1 and the output is whether the macroblock mbAddrD is available. In addition, mbAddrD is marked as not available when CurrMbAddr % PicWidthInMbs is equal to 0.
4.12.7 Derivation processes for neighbouring macroblocks, blocks, and partitions

Subclause 4.12.7.1 specifies the derivation process for neighbouring macroblocks.

Subclause 4.12.7.2 specifies the derivation process for neighbouring 8x8 luma blocks.

Subclause 4.12.7.3 specifies the derivation process for neighbouring partitions.

Table 4‑2 specifies the values for the difference of luma location (xD, yD) for the input and the replacement for N in mbAddrN, mbPartIdxN, and luma8x8BlkIdxN for the output.

These input and output assignments are used in subclauses 4.12.7.1 to 4.12.7.3. The variable predPartWidth is specified when Table 4‑2 is referred to.

Table 4‑2 — Specification of input and output assignments for subclauses 4.12.7.1 to 4.12.7.3
	N
	xD
	yD

	A
	−1
	0

	B
	0
	−1

	C
	predPartWidth
	−1

	
	−1
	−1

Figure 4‑8 illustrates the relative location of the neighbouring macroblocks, blocks, or partitions A, B, C, and D to the current macroblock, partition, or block, when the current macroblock, partition, or block is in frame coding mode.

[image: image17]
Figure 4‑8 — Determination of the neighbouring macroblock, blocks, and partitions (informative)

4.12.7.1 Derivation process for neighbouring macroblocks

Outputs of this process are

· mbAddrA: the address of the macroblock to the left of the current macroblock and its availability status and

· mbAddrB: the address of the macroblock above the current macroblock and its availability status.

mbAddrN (with N being A or B) is derived as follows.

· The difference of luma location (xD, yD) is set according to Table 4‑2.

· The derivation process for neighbouring locations as specified in subclause 4.12.8 is invoked for luma locations with (xN, yN) equal to (xD, yD), and the output is assigned to mbAddrN.

4.12.7.2 Derivation process for neighbouring 8x8 luma block

Input to this process is an 8x8 luma block index luma8x8BlkIdx.

The luma8x8BlkIdx specifies the 8x8 luma blocks of a macroblock in a raster scan.

Outputs of this process are

· mbAddrA: either equal to CurrMbAddr or the address of the macroblock to the left of the current macroblock and its availability status,

· luma8x8BlkIdxA: the index of the 8x8 luma block to the left of the 8x8 block with index luma8x8BlkIdx and its availability status,

· mbAddrB: either equal to CurrMbAddr or the address of the macroblock above the current macroblock and its availability status,

· luma8x8BlkIdxB: the index of the 8x8 luma block above the 8x8 block with index luma8x8BlkIdx and its availability status.

mbAddrN and luma8x8BlkIdxN (with N being A or B) are derived as follows.

· The difference of luma location (xD, yD) is set according to Table 4‑2.

· The luma location (xN, yN) is specified by

xN = (luma8x8BlkIdx % 2) * 8 + xD (4‑9)
yN = (luma8x8BlkIdx / 2) * 8 + yD (4‑10)
· The derivation process for neighbouring locations as specified in subclause 4.12.8 is invoked for luma locations with (xN, yN) as the input and the output is assigned to mbAddrN and (xW, yW).

· The variable luma8x8BlkIdxN is derived as follows.

· If mbAddrN is not available, luma8x8BlkIdxN is marked as not available.

· Otherwise (mbAddrN is available), the 8x8 luma block in the macroblock mbAddrN covering the luma location (xW, yW) shall be assigned to luma8x8BlkIdxN.
4.12.7.3 Derivation process for neighbouring partitions
Inputs to this process are

· a macroblock partition index mbPartIdx

Outputs of this process are

· mbAddrA\mbPartIdxA: specifying the macroblock partition to the left of the current macroblock and its availability status,

· mbAddrB\mbPartIdxB: specifying the macroblock partition above the current macroblock and its availability status,

· mbAddrC\mbPartIdxC: specifying the macroblock partition to the right-above of the current macroblock and its availability status,

· mbAddrD\mbPartIdxD: specifying the macroblock partition to the left-above of the current macroblock and its availability status.

mbAddrN and mbPartIdxN (with N being A, B, C, or D) are derived as follows.

· The inverse macroblock partition scanning process as described in subclause 4.12.2 is invoked with mbPartIdx as the input and (x, y) as the output.

· The variable predPartWidth in Table 4‑2 is specified as follows.

predPartWidth = MbPartWidth(mb_part_type).

· The difference of luma location (xD, yD) is set according to Table 4‑2.

· The neighbouring luma location (xN, yN) is specified by

xN = x + xD (4‑11)
yN = y + yD (4‑12)
· The derivation process for neighbouring locations as specified in subclause 4.12.8 is invoked for luma locations with (xN, yN) as the input and the output is assigned to mbAddrN and (xW, yW).

· Depending on mbAddrN, the following applies.

· If mbAddrN is not available, the macroblock partition mbAddrN\mbPartIdxN is marked as not available.

· Otherwise (mbAddrN is available), the following applies.

· The macroblock partition in the macroblock mbAddrN covering the luma location (xW, yW) shall be assigned to mbPartIdxN.

· When the partition given by mbPartIdxN is not yet decoded, the macroblock partition mbPartIdxN is marked as not available.

4.12.8 Derivation process for neighbouring locations
Input to this process is a luma or chroma location (xN, yN) expressed relative to the upper left corner of the current macroblock

Outputs of this process are

· mbAddrN: either equal to CurrMbAddr or to the address of neighbouring macroblock that contains (xN, yN) and its availability status,

· (xW, yW): the location (xN, yN) expressed relative to the upper-left corner of the macroblock mbAddrN (rather than relative to the upper-left corner of the current macroblock).

Let maxWH be a variable specifying a maximum value of the location components xN, yN, xW, and yW. maxWH is derived as follows.

· If this process is invoked for neighbouring luma locations,

maxWH = 16 (4‑13)
· Otherwise (this process is invoked for neighbouring chroma locations),

maxWH = 8 (4‑14)
The derivation process for neighbouring macroblock addresses and their availability in subclause 4.12.6 is invoked with mbAddrA, mbAddrB, mbAddrC, and mbAddrD as well as their availability status as the output.

Table 4‑3 specifies mbAddrN depending on (xN, yN).
Table 4‑3 — Specification of mbAddrN
	xN
	yN
	mbAddrN

	< 0
	< 0
	mbAddrD

	< 0
	0..maxWH − 1
	mbAddrA

	0..maxWH − 1
	< 0
	mbAddrB

	0..maxWH − 1
	0..maxWH − 1
	CurrMbAddr

	> maxWH − 1
	< 0
	mbAddrC

	> maxWH − 1
	0..maxWH − 1
	not available

	
	> maxWH − 1
	not available

The neighbouring luma location (xW, yW) relative to the upper-left corner of the macroblock mbAddrN is derived as

xW = (xN + maxWH) % maxWH (4‑15)
yW = (yN + maxWH) % maxWH (4‑16)
5 Syntax and semantics

5.1 Bitstream syntax

5.1.1 Start codes

Start codes are specific bit patterns that do not otherwise occur in the video stream.

Each start code consists of a start code prefix followed by a start code value. The start code prefix is a string of twenty three bits with the value zero followed by a single bit with the value one. The start code prefix is thus the bit string ‘0000 0000 0000 0000 0000 0001’.

The start code value is an eight bit integer which identifies the type of start code. Most types of start code have just one start code value. However, slice_start_code is represented by many start code values, in this case the start code value is the slice_vertical_position for the slice.

All start codes shall be byte aligned. This shall be achieved by inserting bits with the value zero before the start code prefix such that the first bit of the start code prefix is the first (most significant) bit of a byte.

Start code value is an 8-bit integer. The following Table 5‑1 shows various start code values used in this Specification.
Table 5‑1 — Start code value

	Name
	Start code value (Hexadecimal)

	slice_start_code
	00 ~ AF

	video_sequence_start_code
	B0

	video_sequence_end_code
	B1

	user_data_start_code
	B2

	i_picture_start_code
	B3

	reserved
	B4

	extension_start_code
	B5

	pb_picture_start_code
	B6

	video_edit_code
	B7

	reserved
	B8

	System start code
	B9 ~ FF

When assigning some values, certain syntax elements may contain the same bit string as in start code prefix. These are called as start code emulation.

To prevent the appearance of start code emulation in bitstream, encoding shall be performed in the following manner: when writing a target bit into bitstream, if the bit is the second LSB of a byte, the encoder shall check 22 bits before the target bit. If all these preceding 22 bits are ‘0’, ‘10’ shall be inserted so that the target bit becomes the MSB of the next byte.

The decoding process shall be as follows: when reading a target byte, the decoder shall check the two bytes before the target byte and the target byte. If these three bytes form the bit string ‘0000 0000 0000 0000 0000 0010’, the two LSBs of the target byte shall be dropped. This Specification does not specify the way of dropping the two bits. Any methods can be used to achieve this purpose.

The above method shall not be applied to data in the sequence header, extension and user data.
5.1.2 Video sequence

	video_sequence() {
	descriptor

	do {
	

	sequence_header()
	

	extension_and_user_data(0)
	

	do {
	

	if(next_bits(32) == i_picture_start_code)
	

	i_picture_header()
	

	else
	

	pb_picture_header()
	

	extension_and_user_data(1)
	

	picture_data()
	

	} while ((next_bits(32) == pb_picture_start_code) || (next_bits(32) == i_picture_start_code))
	

	} while ((next_bits(32) ! = video_sequence_end_code) && (next_bits(32) != video_edit_code))
	

	if(next_bits(32) == video_sequence_end_code)
	

	video_sequence_end_code
	f(32)

	if(next_bits(32) == video_edit_code)
	

	video_edit_code
	f(32)

	}
	

5.1.2.1 Sequence header

	sequence_header() {
	descriptor

	video_sequence_start_code
	f(32)

	profile_id
	u(8)

	level_id
	u(8)

	horizontal_size
	u(14)

	vertical_size
	u(14)

	chroma_format
	u(2)

	sample_precision
	u(3)

	aspect_ratio
	u(4)

	frame_rate_code
	u(4)

	bit_rate_lower
	u(18)

	marker_bit
	f(1)

	bit_rate_upper
	u(12)

	low_delay
	u(1)

	marker_bit
	f(1)

	bbv_buffer_size
	u(18)

	abt_enable
	u(1)

	if_type
	u(1)

	reserved_bits
	r(4)

	next_start_code()
	

	}
	

5.1.3 Extension and user data

	extension_and_user_data(i) {
	descriptor

	while ((next_bits(32) == extension_start_code) || (next_bits(32) == user_data_start_code)) {
	

	if(next_bits(32) == extension_start_code)
	

	extension_data(i)
	

	if(next_bits(32) == user_data_start_code)
	

	user_data()
	

	}
	

	}
	

5.1.3.1 Extension data

	extension_data(i) {
	descriptor

	while (next_bits(32) == extension_start_code) {
	

	extension_start_code
	f(32)

	while (next_bits(24) != ‘0000 0000 0000 0000 0000 0001’)
	

	extension_data_byte
	u(8)

	}
	

5.1.3.2 User data

	user_data() {
	descriptor

	user_data_start_code
	f(32)

	while (next_bits(24) ! = ‘0000 0000 0000 0000 0000 0001’) {
	

	user_data
	b(8)

	}
	

	}
	

5.1.4 Picture

5.1.4.1 I Picture header

	i_picture_header() {
	descriptor

	i_picture_start_code
	f(32)

	bbv_delay
	u(16)

	time_code_flag
	u(1)

	if(time_code_flag = = ‘1’)
	

	time_code
	u(24)

	marker_bit
	f(1)

	picture_distance
	u(8)

	if(low_delay = = ‘1’)
	

	 bbv_check_times
	ue(v)

	fixed_picture_qp
	u(1)

	picture_qp
	u(6)

	reserved_bits
	r(4)

	loop_filter_disable
	u(1)

	if(!loop_filter_disable) {
	

	alpha
	u(8)

	Beta
	u(6)

	}
	

	next_start_code()
	

	}
	

5.1.4.2 PB Picture header

	pb_picture_header() {
	descriptor

	pb_picture_start_code
	f(32)

	bbv_delay
	

	picture_coding_type
	u(2)

	picture_distance
	u(8)

	if(low_delay == ‘1’)
	

	 bbv_check_times
	ue(v)

	fixed_picture_qp
	u(1)

	picture_qp
	u(6)

	no_forward_reference_flag
	u(1)

	reserved_bits
	r(3)

	loop_filter_disable
	u(1)

	if(!loop_filter_disable) {
	

	alpha
	u(8)

	Beta
	u(6)

	}
	

	
next_start_code()
	

	}
	

5.1.4.3 Picture data

	picture_data() {
	descriptor

	do {
	

	slice()
	

	} while (next_bits(32) = = slice_start_code)
	

	}
	

5.1.5 Slice

	slice() {
	Descriptor

	slice_start_code
	f(32)

	if(vertical_size >MaxVerticalPositionLsb)
	

	slice_vertical_position_extension
	 u(3)

	if(!fixed_picture_qp) {
	

	fixed_slice_qp
	u(1)

	slice_qp
	u(6)

	}
	

	while (! byte_aligned())
	

	aec_byte_alignment_bit
	f(1)

	do {
	

	if(! is_end_of_slice()) {
	

	macroblock()
	

	aec_mb_stuffing_bit
	ae(v)

	}
	

	} while (! is_end_of_slice())
	

	next_start_code()
	

	}
	

Note: MaxVerticalPositionLsb is 2800.

5.1.6 Macroblock

	macroblock() {
	descriptor

	if(PictureType != 0) {//0: I picture
	

	mb_part_type
	ae(v)

	If(PictureType == 2 && MbPartType != ‘B_Skip’) { //2: B picture
	

	If(MbPartType == ‘B_16x16’)
	

	mb_pred_type
	ae(v)

	else if(MbPartType == ‘B_16x8’ || MbPartType == ‘B_8x16’) {
	

	mb_pred_type

	ae(v)

	mb_pred_type
	ae(v)

	 }
	

	else if(MbPartType == ‘B_8x8’) {
	

	mb_pred_type

	ae(v)

	mb_pred_type

	ae(v)

	mb_pred_type

	ae(v)

	mb_pred_type
	ae(v)

	}
	

	}
	

	 else if(PictureType == 1) { // 1: P picture
	

	if(MbPartType == ‘P_16x16’ || MbPartType == ‘P_Skip’)
	

	mb_pred_type
	ae(v)

	else if(MbPartType == ‘P_16x8’ || MbPartType == ‘P_8x16’) {
	

	mb_pred_type
	ae(v)

	mb_pred_type
	ae(v)

	}
	

	else if(MbPartType == ‘P_8x8’) {
	

	mb_pred_type
	ae(v)

	mb_pred_type
	ae(v)

	mb_pred_type
	ae(v)

	mb_pred_type
	ae(v)

	}
	

	}
	

	}
	

	If(MbPartType == ‘I_Block ’) // intra macroblock
	

	mb_trans_type
	ae(v)

	If(PictureType == 1 && RefPicNumber > 1) {
	

	if(MbPartType != ‘I_ Block‘) {
	

	for (i=0; i<MvNum; i++)
	

	 reference_frame_index
	ae(v)

	}
	

	}
	

	 if(MbPartType == ‘I_Block’) {
	

	If(mb_trans_type == 0) //16x16
	

	intra_luma_pred_mode
	ae(v)

	else {
	

	for (i=0; i<4; i++) { //8x8
	

	sub_mb_trans_type
	ae(v)

	if(sub_mb_trans_type) {
	

	 for(j = 0; j < 4; j++)
	

	intra_luma_pred_mode
	ae(v)

	}
	

	else
	

	intra_luma_pred_mode
	ae(v)

	}
	

	intra_chroma_pred_mode
	ae(v)

	 }
	

	for (i = 0; i < MvNum; i++) {
	

	mv_diff_x
	ae(v)

	mv_diff_y
	ae(v)

	}
	

	Cbp
	ae(v)

	if(MbCBP > 0 && ! FixedQP)
	

	 mb_qp_delta
	ae(v)

	for (i = 0; i < LumaBlockNum + ChromaBlockNum; i++)
	

	block(i)
	

	}
	

	
	

	
	

Note: LumaBlockNum is 4, and ChromaBlockNum is 2.

5.1.7 Block

	block(i) {
	descriptor

	if(i<(LumaBlockNum + ChromaBlockNum) && MbCBP & (1 << i)) {
	

	do {
	

	trans_coefficient
	ae(v)

	} while (trans_coefficient != ‘EOB’)
	

	}
	

	}
	

Note: LumaBlockNum is 4, and ChromaBlockNum is 2.
5.2 Video bitstream semantics

5.2.1 Video sequence

video_sequence_end_code – The bit string ‘0x000001B1’. It terminates a video sequence.
video_edit_code – The bit string ‘0x000001B7’. It means that there may be missing reference pictures for the successive B picture that immediately follow I picture. This B picture cannot be decoded correctly.
5.2.2 Sequence header

video_sequence_start_code – The bit string ‘0x000001B0’. It identifies the begining of a sequence header.

profile_id – an 8-bit unsigned integer. It specifies the profile of a bitstream. The high-order 6 bits of profile_id is group_id, and the low-order 2 bits of profile_id is category_id.

level_id – an 8-bit unsigned integer. It specifies the level of a bitstream.

horizontal_size – a 14-bit unsigned integer. It specifies the width of the displayable part of the luma component of pictures in samples. The width of the encoded luma component of pictures in macroblocks, PicWidthInMbs, is (horizontal_size + 15)/16. The displayable part is left-aligned in the encoded pictures.

vertical_size – a 14-bit unsigned integer. It specifies the height of the displayable part of the luma component of the frame in lines. The height of the encoded luma component of frames in macroblocks, PicHeightInMbs, is (vertical_size + 15)/16. The displayable part is top-aligned in the encoded pictures.
NOTE – The relation of horizontal_size, vertical_size and picture boundaries is shown in Figure 5‑1. In Figure 5‑1, solid line represents the boundaries of display area, which the width and the height are determined by horizontal_size and vertical_size respectively; dash line represents the boundaries of picture, for which the width and the height are determined by PicWidthInMbs and PicHeightInMbs, respectively. For example, if the horizontal_size is 1920, and vertical_size is 1080, the PicWidthInMbs (16 is 1920, and the PicHeightInMbs (16 is 1088.
The width and height of coded picture are calculated by
PicWidth = PicWidthInMbs * 16 (5‑1)
PicHeight = PicHeightInMbs * 16 (5‑2)

[image: image18.emf]horizontal_size

v

e

r

t

i

c

a

l

_

s

i

z

e

MbWidth

´

16

M

b

H

e

i

g

h

t

´

1

6

Figure 5‑1 — Picture boundaries
chroma_format – a 2-bit unsigned integer. It specifies the chroma component format. Refer to Table 5‑2 for its semantics.

Table 5‑2 — Chroma format

	chroma_format
	Description

	00
	Reserved

	01
	4:2:0

	10
	Reserved

	11
	Reserved

sample_precision – a 3-bit unsigned integer. It specifies the precision of luma and chroma samples. Refer to Table 5‑3 for its semantics.
Table 5‑3 — Sample precision

	sample_precision
	Description

	000
	Forbidden

	001
	The precision of luma and chroma sample is 8-bit.

	010
	Reserved

	011
	Reserved

	100
	Reserved

	101
	Reserved

	110
	Reserved

	111
	Reserved

aspect_ratio – a 4-bits unsigned integer. It specifies the sample aspect ratio (SAR) or display aspect ratio (DAR) of reconstructed pictures. Refer to Table 5‑4.
Table 5‑4 — Aspect ratio information
	aspect_ratio
	SAR
	DAR

	0000
	Forbidden
	Forbidden

	0001
	1.0
	–

	0010
	–
	4 (3

	0011
	–
	16 (9

	0100
	–
	2.21 (1

	0101 – 1111
	–
	Reserved

If sequence display extension is absent in bitstream, the whole reconstructed picture will be mapped to the whole active display area.
SAR = (DAR (vertical_size) (horizontal_size (5‑3)
NOTE – In this case, horizontal_size and vertical_size are restricted by the SAR and selected DAR of a source picture.

If sequence display extension is present in bitstream,

SAR = (DAR (display_vertical_size) (display_horizontal_size (5‑4)
frame_rate_code – a 4-bit unsigned integer. It specifies the frame rate. Refer to Table 5‑5.
Table 5‑5 — Frame rate codes

	frame_rate_code
	Frame rate

	0000
	Forbidden

	0001
	24000 (1001 (23.967…)

	0010
	24

	0011
	25

	0100
	30000 (1001 (29.97…)

	0101
	30

	0110
	50

	0111
	60000 (1001 (59.94…)

	1000
	60

	1001 – 1111
	Reserved

The time interval between two successive pictures is reciprocal of frame rate.

bit_rate_lower – low-order 18 bits of BitRate.

bit_rate_upper – high-order 12 bits of BitRate.

BitRate = (bit_rate_upper << 18) + bit_rate_lower (5‑5)
BitRate is calculated in 400bits/s and it is a ceiling integer. BitRate shall not be 0.

low_delay – flag. ‘1’ indicates that the sequence does not contain any B pictures, that the frame re-ordering delay is not present.
bbv_buffer_size – a 18-bit unsigned integer. It specifies the requirement for bitstream buffer size of BBV for decoding. BBS is the minimum bitstream buffer size in bits for video decoding, and it is calculated by
BBS = 16 (1024 (bbv_buffer_size (5‑6)
abt_enable – flag. ‘1’ indicates that either 16x16, 8x8 or 4x4 transform can be used in transform coding; "0" means only 8x8 transform can be used in transform coding.

if_type – flag. ‘1’ indicates that either 4-tap, 6-tap or 10-tap filter can be used in luma component interpolation. ‘0’ means that only 6-tap filter can be used in luma component interpolation.

5.2.3 Extension data and user data
extension_start_code – The extension_start_code is the bit string ‘0x000001B5’ in hexadecimal. It identifies the beg user_data_start_code inning of video extension data.
user_data_start_code – The user_data_start_code is the bit string ‘0x000001B2’ in hexadecimal. It identifies the beginning of user data. The user data continues until receipt of another start code.

5.2.3.1 Extension data

extension_data_byte – The extension_data_byte is an 8-bit unsigned integer which is used for identifying the video extension data.
5.2.3.2 user_data

This is an 8-bit integer. User data is defined by users for their specific applications. In the series of consecutive user_data bytes there shall not be a string of 23 or more consecutive zero bits.

5.2.4 Picture

Picture header decoding process is as follows.
5.2.4.1 I Picture header

i_picture_start_code – bit string ‘0x000001B3’. It identifies the begining of I picture header. PictureType is set to 0.

bbv_delay – The bbv_delay is a 16-bit unsigned integer. In all cases other then when bbv_delay has the value hexadecimal FFFF, the value of bbv_delay is the number of periods of a 90 kHz clock derived from the 27 MHz system clock that the BBV shall wait after receiving the final byte of the picture start code before decoding the picture. bbv_delay shall be coded to represent the delay as specified above or it shall be coded with the value hexadecimal FFFF. If any bbv_delay field in a sequence is coded with hexadecimal FFFF, then all of them shall be coded with this value.

time_code_flag – flag. ‘1’ indicates that time_code is present in bitstream. ‘0’ indicates that no time_code is present in bitstream.

time_code – a 24-bit unsigned integer comprising DropFrameFlag, TimeCodeHours, TimeCodeMinutes, TimeCodeSeconds and TimeCodePictures. See Table 5‑6. All these are unsigned integers expressed by using supplemental codes. These parameters correspond to those specified in IEC 60461. The time_code describes the time starting from the first frame with picture_distance 0 to the current frame.
Table 5‑6 — Time code
	time_code
	Value
	Descriptor

	DropFrameFlag
	0,1
	u(1)

	TimeCodeHours
	0..23
	u(5)

	TimeCodeMinutes
	0..59
	u(6)

	TimeCodeSeconds
	0..59
	u(6)

	TimeCodePictures
	0..59
	u(6)

picture_distance – an 8-bit unsigned integer. picture_distance is equal to the picture_distance of previous picture (display order) plus 1, plus the number of skipped pictures between current picture and previous picture (between the sequence_start_code and the first sequence_end_code (or sequence_edit_code) after it, the number of skipped pictures between two consecutive pictures shall be less than 32, and the sum of the number of skipped pictures and the number of B pictures between two adjacent non-bidirectional inter decoded pictures shall be less than 127), in modulo 256 operation.
bbv_check_times – If low_delay is equal to ‘0’, bbv_check_times shall not be present in bitstream and BbvCheckTimes is set to 0. If bbv_check_times is present in bitstream, BbvCheckTimes is obtained with parsing bbv_check_times. The value of bbv_check_times shall be less than 216−1.

BbvCheckTimes plus 1 indicates the times BBV buffer has been checked. BbvCheckTimes greater than 0 denotes that current picture is a “big picture”

fixed_picture_qp – flag. ‘1’ indicates the quantization parameter does not change in the picture. ‘0’ indicates the quantization parameter may change. A fixed quantization parameter FixedQP is set to fixed_picture_qp.
picture_qp – a 6-bit unsigned integer. It specifies the quantization parameter of the picture, ranging from 0 to 63 inclusive. The predictive quantization parameter PreviousQP is initialized to picture_qp.
loop_filter_disable – flag. It specifies whether the operation of de-blocking filter shall be disabled. ‘1‘ indicates the de-blocking filter operation is disabled, ‘0‘ indicates the de-blocking filter is used.

alpha – a 8-bit unsigned integer. It specifies a threshold of level difference between the border samples across one block edge.

beta – a 6-bit unsigned integer. It specifies a threshold of level difference between the border samples on the same side of one block edge.

5.2.4.2 PB Picture header

pb_picture_start_code – bit string ‘0x000001B6’. It identifies the beginning of PB picture header.
picture_coding_type – a 2-bit unsigned integer. It specifies the coding type of a picture. Its meaning is defined in Table 5‑7.
Table 5‑7 — Coding type of a picture

	picture_coding_type
	Coding type
	PictureType

	00
	Forbidden
	/

	01
	Forward inter prediction (P)
	1

	10
	Bidirectional inter prediction (B)
	2

	11
	Reserved
	/

See subclause 5.2.4.1 for other syntax elements of PB picture header.
When low_delay is ‘1’ and picture_coding_type is “10”, the current picture is decoded as P picture.

no_forward_reference_flag – flag. ‘1’ indicates that current picture shall not use prior reference pictures for forward prediction. ‘0’ indicates that current picture can use prior reference pictures for forward prediction.

5.2.5 Slice

slice_start_code – a bit string of 32 bits. The first 24 bits have the value ‘0x000001’ and the last 8 bits are the slice_vertical_position ranging from 0x00 to 0xAF.

slice_vertical_position – an 8-bit unsigned integer with range 0x00 to 0xAF. It gives MbRow, the vertical position of the first macroblock in the slice, in macroblock units.
If vertical_size of a coded frame is greater than 2800, MbRow depends on slice_vertical_position and slice_vertical_position_extension.

slice_vertical_position_extension – a 3-bit unsigned integer. If vertical_size of a coded frame is less than or equal to 2800, slice_vertical_position_extension shall not be present in bitstream.

MbRow is derived as:

if(vertical_size > 2800)

MbRow = (slice_vertical_position_extension << 7) + slice_vertical_position (5‑7)
else

MbRow = slice_vertical_position (5‑8)
MBIndex is equal to MbRow * PicWidthInMbs + MbColumn. predQuantCoeffMatirx[i, j] (i, j = 0~7) is initialized to 0.

fixed_slice_qp – flag. It is set to ‘1’ to indicate that the quantization parameter in the slice does not change, while ‘0’ means that the quantization parameter may change. The fixed quantization parameter flag FixedQP is equal to fixed_slice_qp.
slice_qp – a 6-bit unsigned integer. It specifies the quantization parameter of a slice, ranging from 0 to 63, inclusive. If fixed_picture_qp is ‘0’, predictive quantization parameter of a slice PreviousQP is equal to slice_qp.
aec_byte_alignment_bit – shall be ‘1’.
aec_mb_stuffing_bit – flag. The aec_mb_stuffing_bit of the last macroblock of a slice shall be ‘1’.

5.2.6 Macroblock
mb_part_type – It indicates the partition type of a macroblock. The semantics depends on the picture coding type.

Tables and semantics are specified for the various partition types for macroblocks in P and B pictures. Each table presents the value of mb_part_type, the name of mb_part_type (given by the MbPartType), the width of macroblock partitions(given by the MbPartWidth(mb_part_type)), and the height of macroblock partition (given by the MbPartHight(mb_part_type)). When a value is not applicable it is designated by “na”.
· If current picture is a P picture,
Refer to Table 5‑8 for the semantics of mb_part_type.

· If current picture is a B picture

Refer to Table 5‑9 to for the semantics of mb_part_type.
Table 5‑8 — MbPartTypes of macroblocks in P pictures
	mb_part_type
	MbPartType
	MbPartWidth(mb_part_type)
	MbPartHight(mb_part_type)

	0
	P_16x16
	16
	16

	1
	P_8x16
	8
	16

	2
	P_16x8
	16
	8

	3
	I_Block
	Na
	Na

	4
	P_8x8
	8
	8

Table 5‑9 — MbPartTypes of macroblocks in B pictures
	mb_part_type
	MbPartType
	MbPartWidth(mb_part_type)
	MbPartHight(mb_part_type)

	0
	B_Skip
	16
	16

	1
	B_16x16
	16
	16

	2
	B_8x16
	8
	16

	3
	B_16x8
	16
	8

	4
	I_Block
	Na
	Na

	5
	B_8x8
	8
	8

mb_trans_type – It indicates the transform type of an intra macroblock (given by the MbTransformType). It can be 0 or 1. If mb_trans_type is 0, then the MbTransformType is Trans_16x16; otherwise, the MbTransformType is Trans_8x8.
For the inter macroblock, the MbTransformType is determined by the value of mb_part_type. If both the MbPartWidth(mb_part_type) and the MbPartHight(mb_part_type) are 16, the MbTransformType is Trans_16x16; otherwise, the MbTransformType is Trans_8x8.
reference_frame_index – It indicates the reference frame of a macroblock partition.
RefPicNumber is a variable to indicate the number of available reference pictures in reference picture buffer. It is initiliazed to 0 at the begining of one video sequence.
mb_pred_type – It indicates the inter prediction type of each macroblock partition.

Tables 5‑10 through 5‑13 specify the semantics for the various inter prediction types for macroblock partitions in P and B pictures. Each table lists the value of mb_pred_type, the name of mb_pred_type (given by the MbPredType), the number of motion vectors of a macroblock partition in the bitstream (given by the MbPartMvNum), and the prediction mode of a macroblock partition (given by the MbPartPredMode).
· If current picture is a P picture,

Refer to Table 5‑10 and Table 5‑11 for the semantics of mb_pred_type.
· If current picture is a B picture

Refer to Table 5‑12 and Table 5‑13 for the semantics of mb_pred_type.
Table 5‑10 — MbPredTypes of P_16x16 macroblock
	mb_pred_type
	MbPredType
	MbPartMvNum
	MbPartPredMode

	0
	Skip
	0
	Forward

	2
	Fwd
	1
	Forward

	3
	Mh
	1
	Forward

Table 5‑11 — MbPredTypes of P_16x8, P_8x16, and P_8x8 macroblocks
	mb_pred_type
	MbPredType
	MbPartMvNum
	MbPartPredMode

	0
	Fwd
	1
	Forward

	1
	Mh
	1
	Forward

Table 5‑12 — MbPredTypes of B_16x16, B_16x8, and B_8x16 macroblocks
	mb_pred_type
	MbPredType
	MbPartMvNum
	MbPartPredMode

	0
	Bck
	1
	Backward

	2
	Fwd
	1
	Forward

	3
	Sym
	1
	Bidirectional

Table 5‑13 — MbPredTypes of B_8x8 macroblock
	mb_pred_type
	MbPredType
	MbPartMvNum
	MbPartPredMode

	0
	Skip
	0
	Bidirectional

	1
	Fwd
	1
	Forward

	2
	Bck
	1
	Backward

	3
	Sym
	1
	Bidirectional

sub_mb_trans_type – it indicates the transform type of a 8x8 block (given by the SubMbTransformType). It can be equal to 0 or 1. If sub_mb_trans_type is 0, then the SubMbTransformType is Trans_8x8; otherwise, the SubMbTransformType is Trans_4x4.
mv_diff_x – the horizontal motion vector component difference. it is in one-quarter luma sample units, in range from −4096 to 4095 (the range is −1024 to 1023.75 in luma sample units).
mv_diff_y – the vertical motion vector component difference. it is in one-quarter luma sample units, in range from −4096 to 4095 (the range is −1024 to 1023.75 in luma sample units).

cbp – A 6-bit unsigned integer MbCBP is obtained with parsing process of cbp. In format of 4:2:0, it specifies which of the four luma blocks and two chroma blocks in the index numbers from 0 to 5 of a macroblock may contain nonzero quantization coefficients.
mb_qp_delta – It indicates the increment of current quantization parameters relative to predicted quantization parameters. The value of PreviousDeltaQP is set to mb_qp_delta.
5.2.7 Block

trans_coefficient – it is used to specify run length and nonzero quantization coefficient.

6 Decoding process

6.1 General

Outputs of this process are decoded samples of the current picture.

This clause describes the decoding process, given syntax elements and upper-case variables from clause 5.

The decoding process is specified such that all decoders shall produce numerically identical results. Any decoding process that produces identical results to the process described here conforms to the decoding process requirements of this Recommendation | International Standard.

The various parameters and flags in the bitstream for macroblock() and all syntactic structures above macroblock() shall be interpreted as indicated in clause 5. Many of these parameters and flags affect the decoding process described in the following subclauses. Once all of the macroblocks in a given picture have been processed, the entire picture will have been reconstructed.

An overview of the decoding process is given as follows.

· The intra prediction process for I macroblocks is specified in subclause 6.2, has intra prediction samples as its output. The output are the reconstructed samples prior to the deblocking filter process.

· The inter prediction process for P and B macroblocks is specified in subclause 6.3 with inter prediction samples being the output.

· The transform coefficient decoding process and picture reconstruction process prior to deblocking filter process are specified in subclause 6.4. That process derives samples for I and B macroblocks and for P macroblocks. The output are reconstructed samples prior to the deblocking filter process.

· The reconstructed samples prior to the deblocking filter process that are next to the edges of blocks and macroblocks are processed by a deblocking filter as specified in subclause 6.5 with the output being the decoded samples.
The sequence of reconstructed frames shall be re-ordered as described in subclause 4.10. The reconstructed frames shall be output from the decoding process at regular intervals of the frame period.
6.2 Intra prediction

This process is invoked for intra macroblocks.

Inputs to this process are reconstructed samples prior to the deblocking filter process from neighbouring macroblocks.

Outputs of this process are the Intra prediction samples of components of the macroblock.

Depending on the MbTransformType of current macroblock the following applies.

· If the MbTransformType is Trans_16x16,

The macroblock prediction mode is equal to Intra_16x16, the specification in subclause 6.2.3 applies.
· Otherwise,
· If the SubMbTransformType of current 8x8 block is Trans_4x4,
The prediction mode of the current 8x8 block is equal to Intra_4x4, the specification in subclause 6.2.1 applies.

· Otherwise,
The prediction mode of the current 8x8 block is equal to Intra_8x8, the specification in subclause 6.2.2 applies.

The decoding processes for Intra prediction modes for the chroma components are described in subclause 6.2.4.
6.2.1 Intra_4x4 prediction process for luma samples

This process is invoked when the prediction mode of current 8x8 block is equal to Intra_4x4.

Inputs to this process are reconstructed luma samples prior to the deblocking filter process from neighbouring 8x8 blocks

Outputs of this process are 4x4 luma sample arrays as part of the 8x8 luma array of prediction samples of the block pred8x8L.

The luma component of a 8x8 block consists of 4 blocks of 4x4 luma samples. These blocks are inverse scanned using the 4x4 luma block inverse scanning process as specified in subclause 4.12.4.

For all 4x4 luma blocks of the luma component of a 8x8 block with luma4x4BlkIdx = 0..3, the variable Intra4x4PredMode[luma4x4BlkIdx] is derived as specified in subclause 6.2.1.1.

For each luma block of 4x4 samples indexed using luma4x4BlkIdx = 0..3,

1. The Intra_4x4 sample prediction process in subclause 6.2.1.2 is invoked with luma4x4BlkIdx and reconstructed samples prior (in decoding order) to the deblocking filter process from adjacent luma blocks as the input and the output are the Intra_4x4 luma prediction samples pred4x4L[x, y] with x, y = 0..3.

2. The position of the upper-left sample of a 4x4 luma block with index luma4x4BlkIdx inside the current 8x8 block is derived by invoking the inverse 4x4 luma block scanning process in subclause 4.12.4 with luma4x4BlkIdx as the input and the output being assigned to (xO, yO) and x, y = 0..3.

pred8x8L[xO + x, yO + y] = pred4x4L[x, y] (6‑1)
3. The transform coefficient decoding process and picture reconstruction process prior to deblocking filter process in subclause 6.4 is invoked with pred8x8L and luma4x4BlkIdx as the input and the reconstructed samples for the current 4x4 luma block S’L as the output.

6.2.1.1 Derivation process for the Intra4x4PredMode

Inputs to this process are the index of the 4x4 luma block luma4x4BlkIdx.

Output of this process is the variable IntraLumaPredMode [luma4x4BlkIdx].

The value of intra_luma_pred_mode of 4x4 block with luma4x4BlkIdx is derived from bitstream parsing, and assigned to the variable IntraLumaPredMode [luma4x4BlkIdx]. Table 6‑1 specifies the values for intra_luma_pred_mode and the associated names.
Table 6‑1 — Luma intra prediction modes
	intra_luma_pred_mode
	Name

	0
	Intra_Vertical

	1
	Intra_Horizontal

	2
	Intra_DC

	3
	Intra_Down_Left

	4
	Intra_Down_Right

The intra_luma_pred_mode labelled 0, 1, 3, and 4 represent directions of predictions as illustrated in Figure 6‑1.

[image: image19.png]

Figure 6‑1 — Luma intra prediction mode directions

6.2.1.2 Intra_4x4 sample prediction

This process is invoked for each 4x4 luma block of a 8x8 block with prediction mode equal to Intra_4x4 followed by the transform decoding process and picture reconstruction process prior to deblocking for each 4x4 luma block.

Inputs to this process are the index of the 4x4 luma block with index luma4x4BlkIdx and reconstructed samples prior (in decoding order) to the deblocking filter process from adjacent luma blocks.

Output of this process are the prediction samples pred4x4L [x, y], with x, y = 0..3 for the 4x4 luma block with index luma4x4BlkIdx.

The position of the upper-left sample of a 4x4 luma block with index luma4x4BlkIdx inside the current 8x8 block is derived by invoking the inverse 4x4 luma block scanning process in subclause 4.12.4 with luma4x4BlkIdx as the input and the output being assigned to (xO, yO).

6.2.1.2.1 Reference sample calculation
Let the decoded picture sample matrix of current block be I;
The reference samples for I is obtained by the following process: Let the coordinates of upper left corner sample of current block be (x0, y0). The reference samples for current block are obtained by:
· If the samples with coordinates (x0+i−1, y0−1) (i=1~4) are “available”, then r[i] are equal to I[x0+i−1, y0−1], and r[i] are “available”; otherwise, r[i] are “not available”.

· If the samples with coordinates (x0+i−1, y0−1) (i=5~8) are “available”, then r[i] are equal to I[x0+i−1, y0−1], and r[i] are “available”; otherwise, r[i] are equal to r[4], and availability of r[i] follows the availability of r[4].

· If the samples with coordinates (x0−1, y0+i−1) (i=1~4) are “available”, then c[i] are equal to I[x0−1, y0+i−1], and c[i] are “available”; otherwise, c[i] are “not available”.

· If the samples with coordinates (x0−1, y0+i−1) (i=5~8) are “available”, then c[i] are equal to I[x0−1, y0+i−1], and c[i] are “available”; otherwise, c[i] are equal to c[4], and availability of c[i] follows the availability of c[4].

· If the sample with coordinate (x0−1, y0−1) is “available”, then r[0] is equal to I[x0−1, y0−1], and r[0] is “available”; otherwise:

· If r[1] is “available” and c[1] is “not available”, then r[0] is equal to r[1], and r[0] is “available”;

· Otherwise, if c[1] is “available”, and r[1] is “not available”, then r[0] is equal to c[1], and r[0] is “available”;

· Otherwise, if both r[1] and c[1] are “available”, then r[0] is equal to r[1], and r[0] is “available”; otherwise, r[0] is “not available”.

6.2.1.2.2 Specification of 4x4 Intra_Vertical prediction mode
This mode shall be used only when r[i] (i=1~4) is “available”.
pred4x4L[x,y] = r[x + 1] (x,y=0~3) (6‑2)
6.2.1.2.3 Specification of 4x4 Intra_Horizontal prediction mode
This mode shall be used only when c[i] (i=1~4) is “available”.

pred4x4L[x,y] = c[y + 1] (x,y=0~3) (6‑3)
6.2.1.2.4 Specification of 4x4 Intra_DC prediction mode
If both r[i] and c[i] (i=0~6) are “available”,

pred4x4L[x,y] = ((r[x − 1] + 4 * r[x] + 6 * r[x + 1] + 4 * r[x + 2] + r[x + 3] + 8) >> 4 +
(c[y − 1] + 4 * c[y] + 6 * c[y + 1] + 4 * c[y + 2] + c[y + 3] + 8) >> 4) >> 1,(x,y=0~3) (6‑4)
Otherwise, if only r[i] (i=0~6) is “available”, then

pred4x4L[x,y] = (r[x − 1] + 4 * r[x] + 6 * r[x + 1] + 4 * r[x + 2] + r[x + 3] + 8) >> 4, (x,y=0~3) (6‑5)
Otherwise, if only c[i] (i=0~6) is “available”, then

pred4x4L[x,y] = (c[y−1] + 4 * c[y] + 6 * c[y + 1] + 4 * c[y + 2] + c[y + 3] + 8) >> 4, (x,y=0~3) (6‑6)
Otherwise,
pred4x4L[x,y] = 2n−1 (x,y=0~3; n is the precision of sample) (6‑7)
6.2.1.2.5 Specification of 4x4 Intra_Down_Left mode
This mode shall be used only when both r[i] and c[i] (i=2~8) are “available”.

pred4x4L[x,y] = (r[x + y + 2] + c[x + y + 2]) >> 1, (x,y=0~3) (6‑8)
6.2.1.2.6 Specification of 4x4 Intra_Down_Right mode
This mode shall be used only when both r[i] and c[i] (i=0~3) are “available”.

· If x is equal to y, then
 pred4x4L[x,y] = r[0], (x,y=0~3) (6‑9)
· Otherwise, if x is greater than y, then

 pred4x4L[x,y] = r[x − y], (x,y=0~3) (6‑10)
· Otherwise, if y is greater than x, then

 pred4x4L[x,y] = c[y − x], (x,y=0~3) (6‑11)
6.2.2 Intra_8x8 prediction process for luma samples

This process is invoked when the prediction mode of current block is equal to Intra_8x8.

Inputs to this process are reconstructed luma samples prior to the deblocking filter process from neighbouring 8x8 blocks, and the index of the 8x8 luma block(given by the luma8x8BlkIdx).
Outputs of this process are 8x8 luma sample arrays as part of the 16x16 luma array of prediction samples of the macroblock predL.

Intra8x8PredMode[luma8x8BlkIdx] is derived as specified in subclause 6.2.2.1.

For current luma block of 8x8 samples indexed using luma8x8BlkIdx,

1. The Intra_8x8 sample prediction process in subclause 6.2.2.2 is invoked with luma8x8BlkIdx and reconstructed samples prior (in decoding order) to the deblocking filter process from adjacent luma blocks as the input and the output are the Intra_8x8 luma prediction samples pred8x8L[x, y] with x, y = 0..7.

2. The transform coefficient decoding process and picture reconstruction process prior to deblocking filter process in subclause 6.4 is invoked with predL and luma8x8BlkIdx as the input and the reconstructed samples for the current 8x8 luma block S’L as the output.

6.2.2.1 Derivation process for the Intra8x8PredMode

Inputs to this process are the index of the 8x8 luma block luma8x8BlkIdx.

Output of this process is the variable IntraLumaPredMode [luma8x8BlkIdx].

The value of intra_luma_pred_mode of 8x8 luma block with luma8x8BlkIdx is derived from bitstream parsing, and assigned to the variable IntraLumaPredMode [luma8x8BlkIdx].

Table 6‑1 specifies the values for intra_luma_pred_mode and the associated names.
The intra_luma_pred_mode labelled 0, 1, 3, and 4 represent directions of predictions as illustrated in Figure 6‑1.

6.2.2.2 Intra_8x8 sample prediction

This process is invoked for each 8x8 luma block of a macroblock with prediction mode equal to Intra_8x8 followed by the transform decoding process and picture reconstruction process prior to deblocking for each 8x8 luma block.

Inputs to this process are the index of the 8x8 luma block with index luma8x8BlkIdx and reconstructed samples prior (in decoding order) to the deblocking filter process from adjacent luma blocks.

Output of this process are the prediction samples pred8x8L[x, y], with x, y = 0..7 for the 8x8 luma block with index luma8x8BlkIdx.

The position of the upper-left sample of a 8x8 luma block with index luma8x8BlkIdx inside the current macroblock is derived by invoking the inverse 8x8 luma block scanning process in subclause 4.12.3 with luma8x8BlkIdx as the input and the output being assigned to (xO, yO).

6.2.2.2.1 Reference sample calculation
Let the decoded picture sample matrix of current block be I;
The reference samples for I are obtained by the following process: Let the coordinates of upper left corner sample of current block be (x0, y0). The reference samples for current block are obtained by:
· If the samples with coordinates (x0+i−1, y0−1) (i=1~8) are “available”, then r[i] are equal to I[x0+i−1, y0−1], and r[i] are “available”; otherwise, r[i] are “not available”.

· If the samples with coordinates (x0+i−1, y0−1) (i=9~16) are “available”, then r[i] are equal to I[x0+i−1, y0−1], and r[i] are “available”; otherwise, r[i] are equal to r[4], and availability of r[i] follows the availability of r[4].

· If the samples with coordinates (x0−1, y0+i−1) (i=1~8) are “available”, then c[i] are equal to I[x0−1, y0+i−1], and c[i] are “available”; otherwise, c[i] are “not available”.

· If the samples with coordinates (x0−1, y0+i−1) (i=9~16) are “available”, then c[i] are equal to I[x0−1, y0+i−1], and c[i] are “available”; otherwise, c[i] are equal to c[4], and availability of c[i] follows the availability of c[4].

· If the sample with coordinate (x0−1, y0−1) is “available”, then r[0] is equal to I[x0−1, y0−1], and r[0] is “available”; otherwise:

· If r[1] is “available” and c[1] is “not available”, then r[0] is equal to r[1], and r[0] is “available”;

· Otherwise, if c[1] is “available”, and r[1] is “not available”, then r[0] is equal to c[1], and r[0] is “available”;

· Otherwise, if both r[1] and c[1] are “available”, then r[0] is equal to r[1], and r[0] is “available”; otherwise, r[0] is “not available”.

6.2.2.2.2 Specification of 8x8 Intra_Vertical prediction mode
This mode shall be used only when r[i] (i=1~8) is “available”.
pred8x8L[x,y] = r[x + 1] (x,y=0~7) (6‑12)
6.2.2.2.3 Specification of 8x8 Intra_Horizontal prediction mode
This mode shall be used only when c[i] (i=1~8) is “available”.

pred8x8L[x,y] = c[y + 1] (x,y=0~7) (6‑13)
6.2.2.2.4 Specification of 8x8 Intra_DC prediction mode
If both r[i] and c[i] (i=0~10) are “available”,

pred8x8L[x,y] = ((r[x − 1] + 4 * r[x] + 6 * r[x + 1] + 4 * r[x + 2] + r[x + 3] + 8) >> 4 +

(c[y − 1] + 4 * c[y] + 6 * c[y + 1] + 4 * c[y + 2] + c[y + 3] + 8) >> 4) >> 1,(x,y=0~7) (6‑14)
Otherwise, if only r[i] (i=0~10) is “available”, then

pred8x8L[x,y] = (r[x − 1] + 4 * r[x] + 6 * r[x + 1] + 4 * r[x + 2] + r[x + 3] + 8) >> 4, (x,y=0~7) (6‑15)
Otherwise, if only c[i] (i=0~10) is “available”, then

pred8x8L[x,y] = (c[y−1] + 4 * c[y] + 6 * c[y + 1] + 4 * c[y + 2] + c[y + 3] + 8) >> 4, (x,y=0~7) (6‑16)
Otherwise,

pred8x8L[x,y] = 2n−1 (x,y=0~7; n is the precision of sample) (6‑17)
6.2.2.2.5 Specification of 8x8 Intra_Down_Left mode
This mode shall be used only when both r[i] and c[i] (i=2~16) are “available”.

pred8x8L[x,y] = (r[x + y + 2] + c[x + y + 2]) >> 1, (x,y=0~7) (6‑18)
6.2.2.2.6 Specification of 8x8 Intra_Down_Right mode
This mode shall be used only when both r[i] and c[i] (i=0~7) are “available”.

· If x is equal to y, then

 pred8x8L[x,y] = r[0], (x,y=0~7) (6‑19)
· Otherwise, if x is greater than y, then

 pred8x8L[x,y] = r[x − y], (x,y=0~7) (6‑20)
· Otherwise, if y is greater than x, then

 pred8x8L[x,y] = c[y − x], (x,y=0~7) (6‑21)
6.2.3 Intra_16x16 prediction process for luma samples

This process is invoked when the macroblock prediction mode is equal to Intra_16x16. It specifies how the Intra prediction luma samples for the current macroblock are derived.

Input to this process are reconstructed samples prior to the deblocking process from neighbouring luma blocks (if available).

Outputs of this process are Intra prediction luma samples for the current macroblock predL[x, y].
The value of intra_luma_pred_mode of current macroblock is derived from bitstream parsing, and assigned to the variable Intra16x16PredMode.

Table 6‑1 specifies the values for intra_luma_pred_mode and the associated names.
The intra_luma_pred_mode labelled 0, 1, 3, and 4 represent directions of predictions as illustrated in Figure 6‑1.

Let predL[x, y] with x, y = 0..15 denote the prediction samples for the 16x16 luma block samples.

6.2.3.1 Reference sample calculation
Let the decoded picture sample matrix of current block be I;
The reference samples for I is obtained by the following process: Let the coordinates of upper left corner sample of current block be (x0, y0). The reference samples for current block are obtained by:
· If the samples with coordinates (x0+i−1, y0−1) (i=1~16) are “available”, then r[i] are equal to I[x0+i−1, y0−1], and r[i] are “available”; otherwise, r[i] are “not available”.

· If the samples with coordinates (x0+i−1, y0−1) (i=17~32) are “available”, then r[i] are equal to I[x0+i−1, y0−1], and r[i] are “available”; otherwise, r[i] are equal to r[4], and availability of r[i] follows the availability of r[4].

· If the samples with coordinates (x0−1, y0+i−1) (i=1~16) are “available”, then c[i] are equal to I[x0−1, y0+i−1], and c[i] are “available”; otherwise, c[i] are “not available”.

· If the samples with coordinates (x0−1, y0+i−1) (i=17~32) are “available”, then c[i] are equal to I[x0−1, y0+i−1], and c[i] are “available”; otherwise, c[i] are equal to c[4], and availability of c[i] follows the availability of c[4].

· If the sample with coordinate (x0−1, y0−1) is “available”, then r[0] is equal to I[x0−1, y0−1], and r[0] is “available”; otherwise:

· If r[1] is “available” and c[1] is “not available”, then r[0] is equal to r[1], and r[0] is “available”;

· Otherwise, if c[1] is “available”, and r[1] is “not available”, then r[0] is equal to c[1], and r[0] is “available”;

· Otherwise, if both r[1] and c[1] are “available”, then r[0] is equal to r[1], and r[0] is “available”; otherwise, r[0] is “not available”.

6.2.3.1.1 Specification of 16x16 Intra_Vertical prediction mode
This mode shall be used only when r[i] (i=1~16) is “available”.
predL[x,y] = r[x + 1] (x,y=0~15) (6‑22)
6.2.3.1.2 Specification of 16x16 Intra_Horizontal prediction mode
This mode shall be used only when c[i] (i=1~16) is “available”.

predL[x,y] = c[y + 1] (x,y=0~15) (6‑23)
6.2.3.1.3 Specification of 16x16 Intra_DC prediction mode
If both r[i] and c[i] (i=0~18) are “available”,

predL[x,y] = ((r[x − 1] + 4 * r[x] + 6 * r[x + 1] + 4 * r[x + 2] + r[x + 3] + 8) >> 4 +

(c[y − 1] + 4 * c[y] + 6 * c[y + 1] + 4 * c[y + 2] + c[y + 3] + 8) >> 4) >> 1,(x,y=0~15) (6‑24)
Otherwise, if only r[i] (i=0~18) is “available”, then

predL[x,y] = (r[x − 1] + 4 * r[x] + 6 * r[x + 1] + 4 * r[x + 2] + r[x + 3] + 8) >> 4, (x,y=0~15) (6‑25)
Otherwise, if only c[i] (i=0~18) is “available”, then

predL[x,y] = (c[y−1] + 4 * c[y] + 6 * c[y + 1] + 4 * c[y + 2] + c[y + 3] + 8) >> 4, (x,y=0~15) (6‑26)
Otherwise,

predL[x,y] = 2n−1 (x,y=0~15; n is the precision of sample) (6‑27)
6.2.3.1.4 Specification of 16x16 Intra_Down_Left mode
This mode shall be used only when both r[i] and c[i] (i=2~32) are “available”.

predL[x,y] = (r[x + y + 2] + c[x + y + 2]) >> 1, (x,y=0~15) (6‑28)
6.2.3.1.5 Specification of 16x16 Intra_Down_Right mode
This mode shall be used only when both r[i] and c[i] (i=0~15) are “available”.

· If x is equal to y, then

 predL[x,y] = r[0], (x,y=0~15) (6‑29)
· Otherwise, if x is greater than y, then

 predL[x,y] = r[x − y], (x,y=0~15) (6‑30)
· Otherwise, if y is greater than x, then

 predL[x,y] = c[y − x], (x,y=0~15) (6‑31)
6.2.4 Intra prediction for 8(8 chroma block
This process is invoked for intra macroblock. It specifies how the Intra prediction chroma samples for the current macroblock are derived.

Inputs to this process are reconstructed samples prior to the deblocking process from neighbouring chroma blocks (if available).

Outputs of this process are Intra prediction chroma samples for the current macroblock predCb[x, y] and predCr[x, y].
Both chroma blocks (Cb and Cr) of the macroblock shall use the same prediction mode. The prediction mode is applied to each of the chroma blocks separately. The process specified in this subclause is invoked for each chroma block. In the remainder of this subclause, chroma block refers to one of the two chroma blocks and the subscript C is used as a replacement of the subscript Cb or Cr.

Let predC[x, y] with x, y = 0..7 denote the prediction samples for the chroma block samples.

Intra chroma prediction mode of current 8x8 chroma block is parsed from the intra_chroma_pred_mode, which is specified in Table 6‑2.

Table 6‑2 — 8(8 Chroma intra prediction mode
	intra_chroma_pred_mode
	Name

	0
	Intra_Chroma_DC

	1
	Intra_Chroma_Horizontal

	2
	Intra_Chroma_Vertical

	3
	Intra_Chroma_Plane

6.2.4.1 Reference sample calculation
Let the decoded picture sample matrix of current chroma block be I;
The reference samples for I is obtained by the following process: Let the coordinates of upper left corner sample of current block be (x0, y0). The reference samples for current block are obtained by:
· If the samples with coordinates (x0+i−1, y0−1) (i=1~8) are “available”, then r[i] are equal to I[x0+i−1, y0−1], and r[i] are “available”; otherwise, r[i] are “not available”.

· If the samples with coordinates (x0+i−1, y0−1) (i=9~16) are “available”, then r[i] are equal to I[x0+i−1, y0−1], and r[i] are “available”; otherwise, r[i] are equal to r[4], and availability of r[i] follows the availability of r[4].

· If the samples with coordinates (x0−1, y0+i−1) (i=1~8) are “available”, then c[i] are equal to I[x0−1, y0+i−1], and c[i] are “available”; otherwise, c[i] are “not available”.

· If the samples with coordinates (x0−1, y0+i−1) (i=9~16) are “available”, then c[i] are equal to I[x0−1, y0+i−1], and c[i] are “available”; otherwise, c[i] are equal to c[4], and availability of c[i] follows the availability of c[4].

· If the sample with coordinate (x0−1, y0−1) is “available”, then r[0] is equal to I[x0−1, y0−1], and r[0] is “available”; otherwise:

· If r[1] is “available” and c[1] is “not available”, then r[0] is equal to r[1], and r[0] is “available”;

· Otherwise, if c[1] is “available”, and r[1] is “not available”, then r[0] is equal to c[1], and r[0] is “available”;

· Otherwise, if both r[1] and c[1] are “available”, then r[0] is equal to r[1], and r[0] is “available”; otherwise, r[0] is “not available”.

6.2.4.2 Specification of Intra_Chroma_DC prediction mode

 The values of the prediction samples predC[x, y] with x = 0..7 and y = 0..7 are derived as follows.
· If r[i],c[i]（i=0~9) are “available”, then

predC[x,y] = ((r[x] + 2 * r[x + 1] + r[x + 2] + 2) >> 2 + (c[y] + 2 * c[y + 1] + c[y + 2] + 2) >> 2) >> 1,
(x,y=0~7) (6‑32)
· Otherwise, if r[i]（i=0~9) is “available”, then

predC[x,y] = (r[x] + 2 * r[x + 1] + r[x + 2] + 2) >> 2, (x,y=0~7) (6‑33)
· Otherwise, if c[i]（i=0~9) is “available”, then

predC[x,y] = (c[y] + 2 * c[y + 1] + c[y + 2] + 2) >> 2, (x,y=0~7) (6‑34)
· Otherwise,

predC[x,y] = 128, (x, y=0~7) (6‑35)
6.2.4.3 Specification of Intra_Chroma_Horizontal prediction mode

This mode shall be used only when c[i] (i=1..8) is “available”.
 predC[x,y] = c[y + 1], (x, y=0..7) (6‑36)
6.2.4.4 Specficication of Intra_Chroma_Vertical prediction mode

This mode shall be used only when r[i] (i=1..8) is “available”.

 predC[x,y] = r[x + 1], (x, y=0..7) (6‑37)
6.2.4.5 Specification of Intra_Chroma_Plane prediction mode

This mode shall be used only when both r[i] and c[i] (i=1..8) are “available”.

 Let,

	ih =
	
[image: image20.wmf]3

0

(1)([5][3])

i

iriri

=

+´+--

å

	(6‑38)

	iv =
	
[image: image21.wmf]3

0

(1)([5][3])

i

icici

=

+´+--

å

	(6‑39)

ia = (r[8] + c[8]) << 4, (6‑40)
ib = (17 * ih + 16) >> 5, (6‑41)
ic = (17 * iv + 16) >> 5, (6‑42)
Then,

predC[x,y] = Clip1((ia + (x − 3) * ib + (y − 3) * ic + 16) >> 5), (x, y = 0~7) (6‑43)
6.3 Inter prediction

This process is invoked when decoding inter macroblocks in P and B pictures.

Outputs of this process are Inter prediction samples for the current macroblock that are a 16x16 array predL of luma samples and two 8x8 arrays predCb and predCr of chroma samples, one for each of the chroma components Cb and Cr.

The partitioning of a macroblock is specified by mb_part_type. Each macroblock partition is referred to by mbPartIdx.

The following steps are specified for each macroblock partition.

The functions MbPartWidth(), MbPartHeight() describing the width and height of macroblock partitions are specified in Table 5‑8, and Table 5‑9.

The variables partWidth and partHeight are derived as follows.

partWidth = MbPartWidth(mb_part_type) (6‑44)
partHeight = MbPartHeight(mb_part_type) (6‑45)
with mbPartIdx proceeding over values 0..3.

The Inter prediction process for a macroblock partition mbPartIdx consists of the following ordered steps

· Derivation process for motion vector components and reference indices as specified in subclause 6.3.1.

· Decoding process for Inter prediction samples as specified in subclause 6.3.2.

For use in derivation processes of variables invoked later in the decoding process, the following assignments are made:

MvFst[mbPartIdx] = mvFst,
MvSnd[mbPartIdx] = mvSnd,
RefIdxFst[mbPartIdx] = refIdxFst,
RefIdxSnd[mbPartIdx] = refIdxSnd,
PredFlagFst[mbPartIdx] = predFlagFst,
PredFlagSnd[mbPartIdx] = predFlagSnd (6‑46)
The location of the upper-left sample of the partition relative to the upper-left sample of the macroblock is derived by invoking the inverse macroblock partition scanning process as described in subclause 4.12.2 with mbPartIdx as the input and (xP, yP) as the output.

The macroblock prediction is formed by placing the partition prediction samples in their correct relative positions in the macroblock, as follows.

The variable predL[xP + x, yP + y] with x = 0 .. partWidth − 1, y = 0 .. partHeight − 1 is derived by

predL[xP + x, yP + y] = predPartL[x, y] (6‑47)
The variable predC[xP / 2 + x, yP / 2 + y] with x = 0 .. partWidth/2 − 1, y = 0 .. partHeight/2 − 1, and C being replaced by Cb or Cr is derived by

predC[xP / 2 + x, yP / 2 + y] = predPartC[x, y] (6‑48)
6.3.1 Derivation process for motion vector components and reference indices

Inputs to this process are

· a macroblock partition mbPartIdx,

Outputs of this process are

· luma motion vectors mvFst and mvSnd as well as the chroma motion vectors mvCFst and mvCSnd

· reference indices refIdxFst and refIdxSnd

· prediction list utilization flags predFlagFst and predFlagSnd

For the derivation of the variables mvFst and mvSnd as well as refIdxFst and refIdxSnd, the following applies.

· If MbPartType is equal to P_16x16 and MbPredType(mbPartIdx) is equal to Skip, the derivation process for luma motion vectors for skipped macroblocks in P pictures in subclause 6.3.1.1 is invoked with the output being the luma motion vectors mvFst and reference indices refIdxFst, and predFlagFst is set equal to 1. mvSnd and refIdxSnd are marked as unavailable, and predFlagSnd is set equal to 0.
· Otherwise, if MbPartType is equal to B_Skip or MbPredType(mbPartIdx) is equal to Skip, the derivation process for luma motion vectors for B_Skip in B pictures in subclause 6.3.1.2 is invoked with mbPartIdx as the input and the output being the luma motion vectors mvFst, mvSnd, the reference indices refIdxFst, refIdxSnd, and the prediction utilization flags predFlagFst, predFlagSnd.

· Otherwise, if MbPredType(mbPartIdx) is equal to Sym, the derivation process for luma motion vectors for B_Sym in B pictures in subclause 6.3.1.3 is invoked with mbPartIdx as the input and the output being the luma motion vectors mvFst, mvSnd, the reference indices refIdxFst, refIdxSnd, and the prediction utilization flags predFlagFst, predFlagSnd.
· Otherwise, if MbPredType(mbPartIdx) is equal to Mh, the derivation process for luma motion vectors for P_Mh in P pictures in subclause 6.3.1.4 is invoked with mbPartIdx as the input and the output being the luma motion vectors mvFst, mvSnd, the reference indices refIdxFst, refIdxSnd, and the prediction utilization flags predFlagFst, predFlagSnd.
· Otherwise, for X being replaced by either ‘Fst’ or ‘Snd’ in the variables predFlagX, mvX, refIdxX, and in Pred_X and in the syntax elements ref_idx_X and mvd_X, and the following applies.

The variables refIdxX and predFlagX are derived as follows.
· If MbPredType (mbPartIdx) is equal to Fwd,

refIdxFst = ref_idx_fst[mbPartIdx],
predFlagFst = 1 (6‑49)
· Otherwise,

refIdxFst = −1,
predFlagFst = 0 (6‑50)
· If MbPredType (mbPartIdx) is equal to Bwd,

refIdxSnd = ref_idx_snd[mbPartIdx],
predFlagSnd = 1 (6‑51)
· Otherwise,

refIdxSnd = −1,
predFlagSnd = 0 (6‑52)
When predFlagX is 1,

the derivation process for luma motion vector prediction in subclause 6.3.1.4 is invoked with mbPartIdx, and list suffix X as the input and the output being mvpX. The luma motion vectors are derived by

mvX[0] = mvpX[0] + mv_diff_x (6‑53)
mvX[1] = mvpX[1] + mv_diff_y (6‑54)
For the derivation of the variables for the chroma motion vectors, the following applies. When predFlagX is equal to 1, the derivation process for chroma motion vectors in subclause 6.3.2 is invoked with mvX and refIdxX as input and the output being mvCX.

6.3.1.1 Derivation process for luma motion vectors for P_Skip

This process is invoked when MbPartType is equal to P_16x16 and MbPredType is equal to Skip.
Outputs of this process are the motion vector mvFst and the reference index refIdxFst.

The reference index refIdxFst for a skipped macroblock is derived as follows.

refIdxFst = 0. (6‑55)
For the derivation of the motion vector mvFst, the following applies.

The process specified in subclause 6.3.1.6 is invoked with mbPartIdx set equal to 0, and list suffix Fst as input and the output is assigned to mbAddrA, mbAddrB, mvFstA, mvFstB, refIdxFstA, and refIdxFstB.

· If mbAddrA or mbAddrB is marked as “not available”, mvFst is a zero vector.

· Otherwise, if mvFstA is a zero vector and refIdxFstA is 0, or if mvFst B is a zero vector and refIdxFstB is 0, then mvFst is a zero vector.

· Otherwise, the derivation process for luma motion vector prediction as specified in subclause 6.3.1.5 is invoked with mbPartIdx = 0 and list suffix Fst as input, and the output is assigned to mvFst.

6.3.1.2 Derivation process for luma motion vectors for B_Skip

This process is invoked when MbPartType is equal to B_skip, or MbPartType is equal to B_8x8 and MbPredType is equal to Skip.

Inputs to this process is mbPartIdx.

Outputs of this process are the reference indices refIdxFst, refIdxSnd, the motion vectors mvFst and mvSnd, and the prediction list utilization flags, predFlagFst and predFlagSnd.

Forward and backward reference pictures of current block are the default reference pictures, i.e. reference pictures with reference indices 0.

refIdxFst = 0,

refIdxSnd = 0. (6‑56)
Both forward and backward prediction lists are used.

predFlagFst = 1,

predFlagSnd = 1. (6‑57)
· If the mb_part_type of the collocated macroblock of current macroblock in backward reference picture is ‘I_Block’, the forward and backward motion vectors (given by mvFst and mvSnd) of current block are the predicted forward and backward motion vectors of the macroblock containing current block.
The predicted forward and backward motion vectors are obtained according to motion vector prediction method as pecified in subclause 6.3.1.5. mvFst is derived with mbPartIdx and list suffix Fst as input, and mvSnd is derived with mbPartIdx and list suffix Snd as input.
· Otherwise,

The picture_distance of the backward reference picture of current macroblock partition is assigned to DistanceIndexCol, and the picture_distance of the forward reference picture of the collocated macroblock partition in backward reference pictuire is assigned to DistanceIndexRef. The picture_distance of the forward reference picture of current macroblock partition is assigned to DistanceIndexFw, and the picture_distance of backward reference picture of current macroblock partition is assigned to DistanceIndexBw as shown Figure 6‑2. The picture_distance of current picture is assigned to DistanceIndexCur.

BlockDistanceRef = (DistanceIndexCol − DistanceIndexRef + 512) % 512 (6‑58)
BlockDistanceFw = (DistanceIndexCur − DistanceIndexFw + 512) % 512 (6‑59)
BlockDistanceBw = (DistanceIndexBw − DistanceIndexCur + 512) % 512 (6‑60)
The motion vector of the collocated macroblock partition in backward reference picture is mvRef.

If mvRef[0] is less than 0,

mvFst[0] = ‑(((16384/BlockDistanceRef) * (1 − mvRef[0] * BlockDistanceFw)−1)>>14 (6‑61)
otherwise,
mvFst[0] = ((16384/BlockDistanceRef) * (1 + mvRef[0] * BlockDistanceFw)−1)>>14 (6‑62)
If mvRef[1] is less than 0,

mvSnd[1] = ((16384/BlockDistanceRef) * (1 − mvRef[1] * BlockDistanceBw)−1)>>14 (6‑63)
otherwise,
mvSnd[1] = ‑(((16384/BlockDistanceRef) * (1 + mvRef[1] * BlockDistanceBw)−1)>>14) (6‑64)

[image: image22.emf]BlockDistanceRef

BlockDistanceFw

mvRef

mvFw

mvBw

......

Current block in direct mode

The block corresponded by

current block in direct mode

Backward Reference Forward Reference

BlockDistanceBw

Current B

Figure 6‑2 — Derivation process of motion vectors in B skip mode

6.3.1.3 Derivation process for luma motion vectors for B_Sym

This process is invoked when MbPredType is equal to Sym.

Inputs to this process is mbPartIdx.

Outputs of this process are the reference indices refIdxFst, refIdxSnd, the motion vectors mvFst and mvSnd, and the prediction list utilization flags, predFlagFst and predFlagSnd.
Reference picture indexes are derived as follows: both forward and backward reference picture of current block are the default reference pictures, i.e. the pictures with reference indices 0.

refIdxFst = 0,

refIdxSnd = 0. (6‑65)
Both forward and backward prediction lists are used.

predFlagFst = 1,

predFlagSnd = 1. (6‑66)
The forward motion vector of block in symmetrical mode mvFst is obtained as follows.

The derivation process for luma motion vector prediction in subclause 6.3.1.5 is invoked with mbPartIdx and list suffix Fst as input，and the output being mvpFst. The mvFst is derived by:

mvFst[0] = mvpFst[0] + mv_diff_x,

mvFst[1] = mvpFst[1] + mv_diff_y. (6‑67)
The backward motion vector mvSnd is derived based on mvFst as shown Figure 6‑3 by
mvSnd[0] = −((mvFst[0] (BlockDistanceBw * (512 / BlockDistanceFw) + 256) >> 9) (6‑68)
mvSnd[1] = −(((mvFst[1]) (BlockDistanceBw * (512 / BlockDistanceFw) + 256) >> 9) (6‑69)

[image: image23.emf]BlockDistanceFw

mvFw

mvBw

......

Current block in symmetrical mode

Backward Reference Forward Reference

BlockDistanceBw

Current B

Figure 6‑3 — Symmetrical mode

6.3.1.4 Derivation process for luma motion vectors for P_Mh
This process is invoked when MbPredType is equal to Mh.

Inputs to this process is mbPartIdx.

Outputs of this process are the reference indices refIdxFst, refIdxSnd, the motion vectors mvFst and mvSnd, and the prediction list utilization flags, predFlagFst and predFlagSnd.
refIdxFst is determined by the syntax element of reference_frame_index, and
refIdxSnd = refIdxFst. (6‑70)
Both Fst and Snd lists are used.

predFlagFst = 1,

predFlagSnd = 1. (6‑71)
The derivation process for luma motion vector prediction in subclause 6.3.1.5 is invoked with mbPartIdx and suffix Fst，and the output being mvpFst. The mvFst is derived by:

mvFst[0] = mvpFst[0] + mv_diff_x,

mvFst[1] = mvpFst[1] + mv_diff_y. (6‑72)
The motion vector mvSnd is set equal to mvpFst:

mvSnd[0] = mvpFst[0],

mvSnd[1] = mvpFst[1]. (6‑73)
6.3.1.5 Derivation process for luma motion vector prediction

Inputs to this process is the macroblock partition index mbPartIdx and list suffix X,

Output of this process is the prediction mvpX of the motion vector mvX.

The derivation process for the neighbouring blocks for motion data in subclause 6.3.1.6 is invoked with mbPartIdx, and list suffix X as the input and with mbAddrN\mbPartIdxN, reference indices refIdxXN and the motion vectors mvXN with N being replaced by A, B, or C as the output.
The following rules are applied in sequential order to determine the motion vector predictor mvpX.

· If only one of refIdxXA, refIdxXB, and refIdxXC is not equal to −1, and the motion vector of this block is mvXN, then,

mvpX[0] = mvXN[0],

 mvpX[1] = mvXN[1]. (6‑74)
· Otherwise,

To derive mvpX[0]:

· If mvXA[0] < 0 and mvXB[0] > 0 and mvX[0] > 0, or mvXA[0] > 0 and mvXB[0] < 0 and mvC[0] < 0, then,
mvpX[0] = (mvXB[0] + mvXC[0]) / 2 (6‑75)
· Otherwise, if mvXB[0] < 0 and mvXA[0] > 0 and mvXC[0] > 0, or mvXB[0] > 0 and mvXA[0] < 0 and mvXC[0] < 0, then,
mvpX[0] = (mvXA[0] + mvXC[0]) / 2 (6‑76)
· Otherwise, if mvXC[0] < 0 and mvXA[0] > 0 and mvXB[0] > 0, or mvXC[0] > 0 and mvXA[0] < 0 and mvXB[0] < 0, then,

mvpX[0] = (mvXA[0] + mvXB[0]) / 2 (6‑77)
· Otherwise, calculate the distance between every two candidates, namely ABSVAB[0]、ABSVBC[0] and ABSVCA[0], where,

ABSVAB[0] = | mvXA[0] − mvXB[0] |,
ABSVBC[0] = | mvXB[0] − mvXC[0] |,

ABSVCA[0] = | mvXC[0] − mvXA[0] | (6‑78)
· If ABSVAB[0] < ABSVBC[0] and ABSVAB[0] < ABSVCA[0], then,

mvpX[0] = (mvXA[0] + mvXB[0]) / 2 (6‑79)
· Otherwise, If ABSVBC[0] < ABSVAB[0] and ABSVBC[0] < ABSVCA[0], then,

mvpX[0] = (mvXB[0] + mvXC[0]) / 2 (6‑80)
· Otherwise,

mvpX[0] = (mvXA[0] + mvXC[0]) / 2 (6‑81)
To derive mvpX[1]:

· If mvXA[1] < 0 and mvXB[1] > 0 and mvX[1] > 0, or mvXA[1] > 0 and mvXB[1] < 0 and mvC[1] < 0, then,
mvpX[1] = (mvXB[1] + mvXC[1]) / 2 (6‑82)
· Otherwise, if mvXB[1] < 0 and mvXA[1] > 0 and mvXC[1] > 0, or mvXB[1] > 0 and mvXA[1] < 0 and mvXC[1] < 0, then,
mvpX[1] = (mvXA[1] + mvXC[1]) / 2 (6‑83)
· Otherwise, if mvXC[1] < 0 and mvXA[1] > 0 and mvXB[1] > 0, or mvXC[1] > 0 and mvXA[1] < 0 and mvXB[1] < 0, then,

mvpX[1] = (mvXA[1] + mvXB[1]) / 2 (6‑84)
· Otherwise, calculate the distance between every two candidates, namely ABSVAB[1]、ABSVBC[1] and ABSVCA[1], where,

ABSVAB[1] = | mvXA[1] − mvXB[1] |,
ABSVBC[1] = | mvXB[1] − mvXC[1] | ,
ABSVCA[1] = | mvXC[1] − mvXA[1] | (6‑85)
· If ABSVAB[1] < ABSVBC[1] and ABSVAB[1] < ABSVCA[1], then,

mvpX[1] = (mvXA[1] + mvXB[1]) / 2 (6‑86)
· Otherwise, If ABSVBC[1] < ABSVAB[1] and ABSVBC[1] < ABSVCA[1], then,

mvpX[1] = (mvXB[1] + mvXC[1]) / 2 (6‑87)
· Otherwise,

mvpX[1] = (mvXA[1] + mvXC[1]) / 2 (6‑88)
6.3.1.6 Derivation process for luma motion vector prediction

Inputs to this process are

· the macroblock partition index mbPartIdx,

· the list suffix X

Outputs of this process are (with N being replaced by A, B, or C)

· mbAddrN\mbPartIdxN specifying neighbouring partitions,

· the motion vectors mvXN of the neighbouring partitions, and

· the reference indices refIdxXN of the neighbouring partitions.

The partitions mbAddrN\mbPartIdxN\ with N being either A, B, or C are derived in the following ordered steps.

1. Let mbAddrD\mbPartIdxD be variables specifying an additional neighbouring partition.

2. The process in subclause 4.12.7.3 is invoked with mbPartIdx, as input and the output is assigned to mbAddrN\mbPartIdxN with N being replaced by A, B, C, or D.

3. When the partition mbAddrC\mbPartIdxC is not available, the following applies

mbAddrC = mbAddrD (6‑89)
mbPartIdxC = mbPartIdxD (6‑90)
The motion vectors mvXN and reference indices refIdxXN (with N being A, B, or C) are derived as follows.

· If the macroblock partition mbAddrN\mbPartIdxN is not available or mbAddrN is coded in Intra prediction mode or predFlagX of mbAddrN\mbPartIdxN is equal to 0, both components of mvXN are set equal to 0 and refIdxXN is set equal to −1.

· Otherwise, the following applies.
The motion vector mvXN and reference index refIdxXN are set equal to MvX[mbPartIdxN] and RefIdxX[mbPartIdxN], respectively, which are the motion vector mvX and reference index refIdxX that have been assigned to the macroblock partition mbAddrN\mbPartIdxN.
6.3.1.7 Derivation process for chroma motion vectors

Inputs to this process are a luma motion vector mvX.

Outputs of this process are a chroma motion vector mvCX.

A chroma motion vector is derived from the corresponding luma motion vector. Since the accuracy of luma motion vectors is one-quarter sample and chroma has half resolution compared to luma, the accuracy of chroma motion vectors is one-eighth sample, i.e., a value of 1 for the chroma motion vector refers to a one-eighth sample displacement.

The horizontal and vertical components of the chroma motion vector mvCX are derived by multiplying the corresponding components of luma motion vector mvX by 2,

mvCX[0] = mvX[0] / 2,
mvCX[1] = mvX[1] / 2. (6‑91)
6.3.2 Decoding process for Inter prediction samples

Inputs to this process are

· a macroblock partition mbPartIdx,

· variables specifying partition width and height, partWidth and partHeight

· luma motion vectors mvFst and mvSnd and chroma motion vectors mvCFst and mvCSnd

· reference indices refIdxFst and refIdxSnd

· prediction list utilization flags, predFlagFst and predFlagSnd

Outputs of this process are

· the Inter prediction samples predPart, which are a (partWidth)x(partHeight) array predPartL of prediction luma samples, and two (partWidth/2)x(partHeight/2) arrays predPartCb, predPartCr of prediction chroma samples, one for each of the chroma components Cb and Cr.

Let predPartFstL and predPartSndL be (partWidth)x(partHeight) arrays of predicted luma sample values and predPartFstCb, predPartSndCb, predPartFstCr, and predPartSndCr be (partWidth/2)x(partHeight/2) arrays of predicted chroma sample values.

For X being replaced by either ‘Fst’ or ‘Snd’ in the variables predFlagX, RefPicListX, refIdxX, refPicX, predPartX, the following is specified.

When predFlagX is equal to 1, the following applies.

· The reference frame consisting of an ordered two-dimensional array refPicXL of luma samples and two ordered two-dimensional arrays refPicXCb and refPicXCr of chroma samples is derived by invoking the process specified in subclause6.3.2.1with refIdxX and RefPicListX given as input.

· The arrays predPartXL, predPartXCb, and predPartXCr are derived by invoking the process specified in subclause 6.3.2.2 with the current partition specified by mbPartIdx, the motion vectors mvX, mvCX, and the reference arrays with refPicXL, refPicXCb, and refPicXCr given as input.

For C being replaced by L, Cb, or Cr, the array predPartC of the prediction samples of component C is derived by invoking the process specified in subclause 6.3.2.3 with the current partition specified by mbPartIdx and the array predPartFstC and predPartSndC as well as predFlagFst and predFlagSnd given as input.

6.3.2.1 Reference picture selection process

Input to this process is a reference index refIdxX.

Output of this process is a reference picture consisting of a two-dimensional array of luma samples refPicXL and two two-dimensional arrays of chroma samples refPicXCb and refPicXCr.

Reference picture list RefPicListX is a list of previously decoded reference frames.
The reference picture list RefPicListX is derived as specified in subclause 6.5.1.
The refIdx is mapped to another variable refIdx_2 by the following process:

If refIdx < 2

refIdx_2 = refIdx

else

refidx_2 = 4 * refIdx − 5
A reference frame referred by RefPicList [refIdx_2] shall be the output.

The output reference frame consists of a (PicWidthInSamplesL)x(PicHeightInSamplesL) array of luma samples refPicXL and two (PicWidthInSamplesC)x(PicHeightInSamplesC) arrays of chroma samples refPicXCb and refPicCr.

The reference picture sample arrays refPicXL, refPicXCb, refPicXCr correspond to decoded sample arrays SL,SCb, SCr derived in subclause 6.5 for previous decoded pictures.
6.3.2.2 Fractional sample interpolation process

Inputs to this process are

· the current partition given by its partition index mbPartIdx,

· the width and height partWidth, partHeight of this partition in luma-sample units,

· a luma motion vector mvX given in quarter-luma-sample units,

· a chroma motion vector mvCX given in eighth-chroma-sample units, and

· the selected reference picture sample arrays refPicXL, refPicXCb, and refPicXCr
Outputs of this process are

· a (partWidth)x(partHeight) array predPartXL of prediction luma sample values and

· two (partWidth/2)x(partHeight/2) arrays predPartXCb, and predPartXCr of prediction chroma sample values.

Let (xAL, yAL) be the location given in full-sample units of the upper-left luma sample of the current partition given by mbPartIdx relative to the upper-left luma sample location of the given two-dimensional array of luma samples.

Let (xIntL, yIntL) be a luma location given in full-sample units and (xFracL, yFracL) be an offset given in quartersample units. These variables are used only inside this subclause for specifying general fractional-sample locations inside the reference sample arrays refPicXL, refPicXCb, and refPicXCr.

For each luma sample location (0 <= xL < partWidth, 0 <= yL < partHeight) inside the prediction luma sample array predXL, the corresponding predicted luma sample value predXL[xL, yL] is derived as follows:

xIntL = xAL + (mvX[0] >> 2) + xL (6‑92)
yIntL = yAL + (mvX[1] >> 2) + yL (6‑93)
xFracL = mvX[0] & 3 (6‑94)
yFracL = mvX[1] & 3 (6‑95)
· The prediction sample value predXL[xL, yL] is derived by invoking the process specified in subclause 6.3.2.2.1 with (xIntL, yIntL), (xFracL, yFracL) and refPicXL given as input.

Let (xIntC, yIntC) be a chroma location given in full-sample units and (xFracC, yFracC) be an offset given in one-eighth sample units. These variables are used only inside this subclause for specifying general fractional-sample locations inside the reference sample arrays refPicXCb, and refPicXCr.

For each chroma sample location (0 <= xC < partWidth/2, 0 <= yC < partHeight/2) inside the prediction chroma sample arrays predPartXCb and predPartXCr, the corresponding prediction chroma sample values predPartXCb[xC, yC] and predPartXCr[xC, yC] are derived as follows:

xIntC = (xAL >> 1) + (mvCX[0] >> 3) + xC (6‑96)
yIntC = (yAL >> 1) + (mvCX[1] >> 3) + yC (6‑97)
xFracC = mvCX[0] & 7 (6‑98)
yFracC = mvCX[1] & 7 (6‑99)
· The prediction sample value predPartXCb [xC, yC] is derived by invoking the process specified in subclause 6.3.3.2.2 with (xIntC, yIntC), (xFracC, yFracC) and refPicXCb given as input.
· The prediction sample value predPartXCr [xC, yC] is derived by invoking the process specified in subclause 6.3.2.2.2 with (xIntC, yIntC), (xFracC, yFracC) and refPicXCr given as input.

6.3.2.2.1 Luma sample interpolation process
Inputs to this process are:

· a luma location in full-sample units (xIntL, yIntL),

· a luma location in fractional-sample units (xFracL, yFracL),

· the luma reference sample array refPicXL.

Output of this process is a predicted luma sample value predSampleXL [xL, yL]

[image: image24.emf]A

-1,-1

A

0,-1

a

0,-1

b

0,-1

c

0,-1

A

1,-1

A

-1,0

A

0,0

A

1,0

A

-1,1

A

0,1

A

1,1

a

0,1

b

0,1

c

0,1

a

0,0

b

0,0

c

0,0

d

0,0

h

0,0

n

0,0

e

0,0

i

0,0

p

0,0

f

0,0

j

0,0

q

0,0

g

0,0

k

0,0

r

0,0

d

-1,0

h

-1,0

n

-1,0

d

1,0

h

1,0

n

1,0

A

2,-1

A

2,0

A

2,1

d

2,0

h

2,0

n

2,0

A

-1,2

A

0,2

A

1,2

a

0,2

b

0,2

c

0,2

A

2,2

Figure 6‑4 — Integer samples (shaded blocks with upper-case letters) and fractional sample positions (un-shaded blocks with lower-case letters) for quarter sample luma interpolation

In Figure 6‑4, the positions labelled with upper-case letters Ai, j within shaded blocks represent luma samples at full-sample locations inside the given two-dimensional array refPicXL of luma samples. These samples may be used for generating the predicted luma sample value predSampleXL[xL, yL]. The locations (xAi, j, yAi, j) for each of the corresponding luma samples Ai, j inside the given array refPicXL of luma samples are derived as follows:

xAi, j = Clip3(0, PicWidth − 1, xIntL +i)
 (6‑100)
yAi, j = Clip3(0, PicHeight − 1, yIntL +j)
 (6‑101)
The positions labelled with lower-case letters within un-shaded blocks represent luma samples at quarter-pel sample fractional locations. The luma location offset in fractional-sample units (xFracL, yFracL) specifies which of the generated luma samples at full-sample and fractional-sample locations is assigned to the predicted luma sample value predSampleXL[xL, yL]. This assignment is done according to Table 6‑3. The value of predSampleXL[xL, yL] shall be the output.

Table 6‑3 — Assignment of the luma prediction sample predSampleXL[xL, yL]
	xFracL
	0
	0
	0
	0
	1
	1
	1
	1
	2
	2
	2
	2
	3
	3
	3
	3

	yFracL
	0
	1
	2
	3
	0
	1
	2
	3
	0
	1
	2
	3
	0
	1
	2
	3

	predSampleXL[xL, yL]
	A
	d
	h
	n
	a
	e
	I
	p
	b
	f
	j
	q
	c
	g
	k
	r

Given the luma samples Ai, j at full-sample locations (xAi, j, yAi, j), the luma samples ‘a0,0’ to ‘r0,0’ at fractional sample positions are derived by the following equations.
· If PicHeight is larger than or equal to 1600,
The samples labelled a0,0, b0,0, c0,0, d0,0, h0,0, and n0,0 shall be derived by applying the 4-tap filter to the nearest integer position samples:
	a’0,0 = − 6 * A−1,0 + 56 * A0,0 +15 * A1,0 − A2,0
	(6‑102)

	b’0,0 = − 4 * A−1,0 + 36 * A0,0 + 36 * A1,0 − 4 * A2,0
	(6‑103)

	c‘0,0 = − A−1,0 + 56 * A0,0 + 15 * A1,0 − 6 * A2,0
	(6‑104)

	d’0,0 = − 6 * A0,−1 + 56 * A0,0 + 15 * A0,1 − A0,2
	(6‑105)

	h’0,0 = − 4*A0,−1 + 36*A0,0 + 36*A0,1 − 4*A0,2
	(6‑106)

	n’0,0 = − A0,−1 + 15*A0,0 + 56*A0,1 − 6*A0,2
	(6‑107)

	a0,0 = a’0,0 >> 6
	(6‑108)

	b0,0 = b’0,0 >> 6
	 (6‑109)

	c0,0 = c’0,0 >> 6
	 (6‑110)

	d0,0 = d’0,0 >> 6
	 (6‑111)

	h0,0 = h’0,0 >> 6
	 (6‑112)

	n0,0 = n’0,0 >> 6
	 (6‑113)

The samples labelled e0,0, i0,0, p0,0, f0,0, j0,0, q0,0, g0,0, k0,0 and r0,0 shall be derived by applying the 4-tap filter to the samples a’0,i, b’0,i and c0,i where i = −1..2 in vertical direction:
	e0,0 = (− 6 * a’0,−1 + 56 * a’0,0 + 15 * a’0,1 − a’0,2) >> 12
	 (6‑114)

	i0,0 = (− 4 * a’0,−1 + 36 * a’0,0 + 36 * a’0,1 − 4 * a’0,2) >> 12
	 (6‑115)

	p0,0 = (− a’0,−1 + 15 * a’0,0 + 56 * a’0,1 − 6 * a’0,2) >> 12
	 (6‑116)

	f0,0 = (− 6 * b’0,−1 + 56 * b’0,0 + 15 * b’0,1 − b’0,2) >> 12
	 (6‑117)

	j0,0 = (− 4 * b’0,−1 + 36 * b’0,0 + 36 * b’0,1 − 4 * b’0,2) >> 12
	 (6‑118)

	q0,0 = (− b’0,−1 + 15 * b’0,0 + 56 * b’0,1 − 6 * b’0,2) >> 12
	 (6‑119)

	g0,0 = (− 6 * c’0,−1 + 56 * c’0,0 + 15 * c’0,1 − c’0,2) >> 12
	 (6‑120)

	k0,0 = (− 4 * c’0,−1 + 36 * c’0,0 + 36 * c’0,1 − 4 * c’0,2) >> 12
	 (6‑121)

	r0,0 = (− c’0,−1 + 15 * c’0,0 + 56 * c’0,1 − c’0,2) >> 12
	 (6‑122)

· else if PicHeight is larger than or equal to 720,

The samples labelled a0,0, b0,0, c0,0, d0,0, h0,0, and n0,0 shall be derived by applying the 6-tap filter to the nearest integer position samples:
	a’0,0 = 2 * A−2,0 − 9 * A−1,0 + 57 * A0,0 + 17 * A1,0 − 4 * A2,0 + A3,0
	 (6‑123)

	b’0,0 = 2 * A−2,0 − 9 * A−1,0 + 39 * A0,0 + 39 * A1,0 − 9 * A2,0 + 2 * A3,0
	 (6‑124)

	c’0,0 = A−2,0 − 4 * A−1,0 + 17 * A0,0 + 57 * A1,0 − 9 * A2,0 + 2 * A3,0
	 (6‑125)

	d’0,0 = 2 * A0,−2 − 9 * A0,−1 + 57 * A0,0 + 17 * A0,1 − 4 * A0,2 + A0,3
	 (6‑126)

	h’0,0 = 2 * A0,−2 − 9 * A0,−1 + 39 * A0,0 + 39 * A0,1 − 9 * A0,2 + 2 * A0,3
	 (6‑127)

	n’0,0 = A0,−2 − 4 * A0,−1 + 17 * A0,0 + 57 * A0,1 − 9 * A0,2 + 2 * A0,3
	 (6‑128)

	a0,0 = a’0,0 >> 6
	 (6‑129)

	b0,0 = b’0,0 >> 6
	 (6‑130)

	c0,0 = c’0,0 >> 6
	 (6‑131)

	d0,0 = d’0,0 >> 6
	 (6‑132)

	h0,0 = h’0,0 >> 6
	 (6‑133)

	n0,0 = n’0,0 >> 6
	 (6‑134)

The samples labelled e0,0, i0,0, p0,0, f0,0, j0,0, q0,0, g0,0, k0,0 and r0,0 shall be derived by applying the 6-tap filter to the samples a’0,i, b’0,i and c0,i where i = −2..3 in vertical direction:
	e0,0 = (2 * a’0,−2 − 9 * a’0,−1 + 57 * a’0,0 + 17 * a’0,1 − 4 * a’0,2 + a’0,3) >> 12
	 (6‑135)

	i0,0 = (2 * a’0,−2 − 9 * a’0,−1 + 39 * a’0,0 + 39 * a’0,1 − 9 * a’0,2 + 2 * a’0,3) >> 12
	 (6‑136)

	p0,0 = (a’0,−2 − 4 * a’0,−1 + 17 * a’0,0 + 57 * a’0,1 − 9 * a’0,2 + 2 * a’0,3) >> 12
	 (6‑137)

	f0,0 = (2 * b’0,−2 − 9 * b’0,−1 + 57 * b’0,0 + 17 * b’0,1 − 4 * b’0,2 + b’0,3) >> 12
	 (6‑138)

	j0,0 = (2 * b’0,−2 − 9 * b’0,−1 + 39 * b’0,0 + 39 * b’0,1 − 9 * b’0,2 + 2 * b’0,3) >> 12
	 (6‑139)

	q0,0 = (b’0,−2 − 4 * b’0,−1 + 17 * b’0,0 + 57 * b’0,1 − 9 * b’0,2 + 2 * b’0,3) >> 12
	 (6‑140)

	g0,0 = (2 * c’0,−2 − 9 * c’0,−1 + 57 * c’0,0 + 17 * c’0,1 − 4 * c’0,2 + c’0,3) >> 12
	 (6‑141)

	k0,0 = (2 * c’0,−2 − 9 * c’0,−1 + 39 * c’0,0 + 39 * c’0,1 − 9 * c’0,2 + 2 * c’0,3) >> 12
	 (6‑142)

	r0,0 = (c’0,−2 −4 * c’0,−1 + 17 * c’0,0 + 57 * c’0,1 − 9 * c’0,2 + 2 * c’0,3) >> 12
	 (6‑143)

· else,

The samples labelled a0,0, b0,0, c0,0, d0,0, h0,0, and n0,0 shall be derived by applying the following 10-tap filter to the nearest integer position samples:
	a’0,0 = A−4,0 − 2 * A−3,0 + 4 * A−2,0 − 10 * A−1,0 + 57 * A0,0 + 19 * A1,0 − 7 * A2,0 + 3 * A3,0 − A4,0
	 (6‑144)

	b’0,0 =A−4,0 − 2 * A−3,0 + 5 * A−2,0 − 12 * A−1,0 + 40 * A0,0 + 40 * A1,0 − 12 * A2,0 + 5 * A3,0 − 2 * A4,0 + A5,0
	 (6‑145)

	c’0,0 = −A−3,0 + 3 * A−2,0 − 7 * A−1,0 + 19 * A0,0 + 57 * A1,0 − 10 * A2,0 + 4 * A3,0 − 2 * A4,0 + A5,0
	 (6‑146)

	d’0,0 = A0,−4 − 2 * A0,−3 + 4 * A0,−2 − 10 * A0,−1 + 57 * A0,0 + 19 * A0,1 − 7 * A0,2 + 3 * A0,3 − A0,4
	 (6‑147)

	h’0,0 = A0,−4 − 2 * A0,−3 + 5 * A0,−2 − 12 * A0,−1 + 40 * A0,0 + 40 * A0,1 − 12 * A0,2 + 5 * A0,3 −2 * A0,4 + A0,5
	 (6‑148)

	n’0,0 = − A0,−3 + 3 * A0,−2 − 7 * A0,−1 + 19 * A0,0 + 57 * A0,1 − 10 * A0,2 + 4 * A0,3 − 2 * A0,4 + A0,5)
	 (6‑149)

	a0,0 = a’0,0 >> 6
	 (6‑150)

	b0,0 = b’0,0 >> 6
	 (6‑151)

	c0,0 = c’0,0 >> 6
	 (6‑152)

	d0,0 = d’0,0 >> 6
	 (6‑153)

	h0,0 = h’0,0 >> 6
	 (6‑154)

	n0,0 = n’0,0 >> 6
	 (6‑155)

The samples labelled e0,0, i0,0, p0,0, f0,0, j0,0, q0,0, g0,0, k0,0 and r0,0 shall be derived by applying the following 10-tap filter to the samples a’0,i, b’0,i and c0,i where i = −4..5 in vertical direction:
	e0,0 = (a’0,−4 − 2 * a’0,−3 + 4 * a’0,−2 − 10 * a’0,−1 + 57 * a’0,0 + 19 * a’0,1 − 7 * a’0,2 + 3 * a’0,3 − a’0,4) >> 12
	 (6‑156)

	i0,0 = (a’0,−4 − 2 * a’0,−3 + 5 * a’0,−2 − 12 * a’0,−1 + 40 * a’0,0 +40 * a’0,1 − 12*a’0,2 + 5*a’0,3 − 2*a’0,4 + a’0,5) >> 12
	 (6‑157)

	p0,0 = (−a’0,−3 + 3*a’0,−2 − 7*a’0,−1 + 19*a’0,0 +57*a’0,1 − 10*a’0,2 + 4*a’0,3 − 2*a’0,4 + a’0,5) >> 12
	 (6‑158)

	f0,0 = (b’0,−4 − 2*b’0,−3 + 4*b’0,−2 − 10*b’0,−1 + 57*b’0,0 +19*b’0,1 − 7*a’0,2 + 3*b’0,3 − b’0,4) >> 12
	 (6‑159)

	j0,0 = (b’0,−4 − 2*b’0,−3 + 5*b’0,−2 − 12*b’0,−1 + 40*b’0,0 +40*b’0,1 − 12*b’0,2 + 5*b’0,3 − 2*b’0,4 + b’0,5) >> 12
	 (6‑160)

	q0,0 = (−b’0,−3 + 3*b’0,−2 − 7*b’0,−1 + 19*b’0,0 +57*b’0,1 − 10*b’0,2 + 4*b’0,3 − 2*b’0,4 + b’0,5) >> 12
	 (6‑161)

	g0,0 = (c’0,−4 − 2*c’0,−3 + 4*c’0,−2 − 10*c’0,−1 + 57*c’0,0 +19*c’0,1 − 7*c’0,2 + 3*c’0,3 − c’0,4) >> 12
	 (6‑162)

	k0,0 = (c’0,−4 − 2*c’0,−3 + 5*c’0,−2 − 12*c’0,−1 + 40*c’0,0 +40*c’0,1 − 12*c’0,2 + 5*c’0,3 − 2*c’0,4 + c’0,5) >> 12
	 (6‑163)

	r0,0 = (−c’0,−3 + 3*c’0,−2 − 7*c’0,−1 + 19*c’0,0 +57*c’0,1 − 10*c’0,2 + 4*c’0,3 − 2*c’0,4 + c’0,5) >> 12
	 (6‑164)

6.3.2.2.2 Chroma sample interpolation process

Inputs to this process are

· a chroma location in full-sample units (xIntC, yIntC),

· a chroma location offset in fractional-sample units (xFracC, yFracC), and

· chroma component samples from the selected reference picture refPicXC.

Output of this process is a predicted chroma sample value predPartXC[xC, yC].

In Figure 6‑5, the positions labelled with upper-case letters Ai, j within shaded blocks represent chroma samples at full-sample locations inside the given two-dimensional array refPicXC of chroma samples. These samples may be used for generating the predicted chroma sample value predSampleXC[xC, yC]. The locations (xAi, j, yAi, j) for each of the corresponding chroma samples Ai, j inside the given array refPicXC of chroma samples are derived as follows:

xAi, j = Clip3(0, PicWidth / 2 − 1, xIntC + i)

 (6‑165)
yAi, j = Clip3(0, PicHeight / 2 − 1, yIntC + j)

 (6‑166)

[image: image25]
Figure 6‑5 — Relation between variable positions and reference samples

A two-dimensional array is defined as:

C[8][4] = {

 { 0, 64, 0, 0 },

 { −4, 62, 6, 0 },

 { −6, 56, 15, −1 },

 { −5, 47, 25, −3 },

 { −4, 36, 36, −4 },

 { −3, 25, 47, −5 },

 { −1, 15, 56, −6 },

 { 0, 6, 62, −4 }

}
The elements of interpolated sample matrix predSampleXC[xC, yC] are calculated as:
if(xFracC == 0)
predSampleXC[xC, yC] = (C[yFracC][0] * A0,−1 + C[yFracC][1] * A0,0 +

C[yFracC][2] * A0,1 + C[yFracC][3] * A0,2 + 32) >> 6 (6‑167)
else if(yFracC == 0)

predSampleXC[xC, yC] = (C[xFracC][0]) * A−1,0 + C[xFracC][1] * A0,0 +
C[xFracC][2] * A1,0 + C[xFracC][3] * A2,0 + 32) >> 6 (6‑168)
else

predSampleXC[xC, yC] = (C[yFracC][0] * a’0,−1(xFracC,0) + C[yFracC][1] * a’0,0(xFracC,0) + C[yFracC][2] *
a’0, 1(xFracC,0) + C[yFracC][3] * a’0, 2(xFracC,0) + 2048) >> 12 (6‑169)
 where a’0,−1(xFracC, 0), a’0,0(xFracC, 0), a’0,1(xFracC, 0) and a’0,2(xFracC, 0), are calculated by
a’0,−1(xFracC, 0) = C[xFracC][0] * A−1,−1 + C[xFracC][1] * A0,−1 + C[xFracC][2] * A1,−1 + C[xFracC][3] * A2,−1 (6‑170)
a’0,0(xFracC, 0) = C[xFracC][0] * A−1,0 + C[xFracC][1] * A0,0 + C[xFracC][2] * A1,0 + C[xFracC][3] * A2,0 (6‑171)
a’0,1(xFracC, 0) = C[xFracC][0] * A−1,1 + C[xFracC][1] * A0,1 + C[xFracC][2] * A1,1 + C[xFracC][3] * A2,1 (6‑172)
a’0,2(xFracC, 0) = C[xFracC][0] * A−1,2 + C[xFracC][1] * A0,2 + C[xFracC][2] * A1,2 + C[xFracC][3] * A2,2 (6‑173)
6.3.2.3 Combining predictions

Inputs to this process are

· mbPartIdx: the current partition given by the partition index

· predFlagFst and predFlagSnd: prediction list utilization flags

· predPartXL: a (partWidth)x(partHeight) array of prediction luma samples (with X being replaced by ‘Fst’ or ‘Snd’ depending on predFlagFst and predFlagSnd)

· predPartXCb and predPartXCr: (partWidth/2)x(partHeight/2) arrays of prediction chroma samples, one for each of the chroma components Cb and Cr (with X being replaced by ‘Fst’ or ‘Snd’ depending on predFlagFst and predFlagSnd)

Outputs of this process are

· predPartL: a (partWidth)x(partHeight) array of prediction luma samples and

· predPartCb, and predPartCr: (partWidth/2)x(partHeight/2) arrays of prediction chroma samples, one for each of the chroma components Cb and Cr.
Depending on the component for which the prediction block is derived, the following applies.

· If the luma sample prediction values predPartL[x, y] are derived, the following applies with C set equal to L, x set equal to 0 .. partWidth − 1, and y set equal to 0 .. partHeight − 1.

· Otherwise, if the chroma Cb component sample prediction values predPartCb [x, y] are derived, the following applies with C set equal to Cb, x set equal to 0 .. partWidth / 2 − 1, and y set equal to 0 .. partHeight / 2 − 1.

· Otherwise (the chroma Cr component sample prediction values predPartCr [x, y] are derived), the following applies with C set equal to Cr, x set equal to 0 .. partWidth / 2 − 1, and y set equal to 0 .. partHeight / 2 − 1.

The prediction sample values are derived as follows.

· If predFlagFst is equal to 1 and predFlagSnd is equal to 0 for the current partition

predPartC[x, y] = predPartFstC[x, y] (6‑174)
· Otherwise, if predFlagFst is equal to 0 and predFlagSnd is equal to 1 for the current partition

predPartC[x, y]= predPartSndC[x, y] (6‑175)
· Otherwise (predFlagFst and predFlagSnd are equal to 1 for the current partition),

predPartC[x, y] = (predPartFstC[x, y] + predPartSndC[x, y] + 1) >> 1 (6‑176)
6.4 Transform coefficient decoding process and picture reconstruction process

This subclause specifies transform coefficient decoding and picture reconstruction prior to the deblocking filter process.

Inputs to this process are quantized transform coefficients for luma and chroma components, and available Inter or Intra prediction sample arrays for the current macroblock for the applicable component predL, predCb, or predCr.

Outputs of this process are the reconstructed sample arrays prior to the deblocking filter process for the applicable component S’L, S’Cb, or S’Cr.

When the MbPredType of current macroblock is Skip or the MbPartType of current macroblock is B_Skip, all values of quantized transform coefficients are set equal to 0 for the current macroblock.
6.4.1 Inverse scanning

This subclause specifies the inverse scanning process for block coefficients in Zigzag order.
· If MbTransformType is Trans_8x8 and SubMbTransformType is Trans_4x4,
· Input of this process is an array Q with size of 16. The elements of the array is qn, with 0≤n≤15.

· Output of this process is a two-dimensional array C with size of 4×4. The elements of the array is cij, with 0≤i≤3，0≤j≤3.

The conversion between the array Q and C is: cij= qn , and the relationship between i, j and n is defined as follows.
IVC_SCAN4[4x4] = {

0, 1, 4, 8,

 5, 2, 3, 6,

 9, 12, 13, 10,

 7, 11, 14, 15

}
i = IVC_SCAN4[n] / 4
j = IVC_SCAN4[n] % 4
· If MbTransformType is Trans_8x8 and SubMbTransformType is Trans_8x8,
· Input of this process is an array Q with size of 64. The elements of the array is qn, with 0≤n≤63.

· Output of this process is a two-dimensional array C with size of 8×8. The elements of the array is cij, with 0≤i≤7，0≤j≤7.

The conversion between the array Q and C is: cij= qn , and Table 6‑4 shows the mapping from the index n of Q to the indices i and j of the array C.
Table 6‑4 — Inverse scanning order of 8×8 block
	n
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	i
	0
	1
	0
	0
	1
	2
	3
	2
	1
	0
	0
	1
	2
	3
	4
	5

	j
	0
	0
	1
	2
	1
	0
	0
	1
	2
	3
	4
	3
	2
	1
	0
	0

	n
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31

	i
	4
	3
	2
	1
	0
	0
	1
	2
	3
	4
	5
	6
	7
	6
	5
	4

	j
	1
	2
	3
	4
	5
	6
	5
	4
	3
	2
	1
	0
	0
	1
	2
	3

	n
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47

	i
	3
	2
	1
	0
	1
	2
	3
	4
	5
	6
	7
	7
	6
	5
	4
	3

	j
	4
	5
	6
	7
	7
	6
	5
	4
	3
	2
	1
	2
	3
	4
	5
	6

	n
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63

	i
	2
	3
	4
	5
	6
	7
	7
	6
	5
	4
	5
	6
	7
	7
	6
	7

	j
	7
	7
	6
	5
	4
	3
	4
	5
	6
	7
	7
	6
	5
	6
	7
	7

· If MbTransformType is Trans_16x16

· Input of this process is an array Q with size of 256. The elements of the array is qn, with 0≤n≤255.

· Output of this process is a two-dimensional array C with size of 16×16. The elements of the array is cij, with 0≤i≤16，0≤j≤16.

The conversion between the array Q and C is: cij= qn , and the relationship between i, j and n is defined as follows.
IVC_SCAN16[16*16] = {

 0, 1, 16, 32, 17, 2, 3, 18, 33, 48, 64, 49, 34, 19, 4, 5,

 20, 35, 50, 65, 80, 96, 81, 66, 51, 36, 21, 6, 7, 22, 37, 52,

 67, 82, 97, 112, 128, 113, 98, 83, 68, 53, 38, 23, 8, 9, 24, 39,

 54, 69, 84, 99, 114, 129, 144, 160, 145, 130, 115, 100, 85, 70, 55, 40,

 25, 10, 11, 26, 41, 56, 71, 86, 101, 116, 131, 146, 161, 176, 192, 177,

 162, 147, 132, 117, 102, 87, 72, 57, 42, 27, 12, 13, 28, 43, 58, 73,

 88, 103, 118, 133, 148, 163, 178, 193, 208, 224, 209, 194, 179, 164, 149, 134,

 119, 104, 89, 74, 59, 44, 29, 14, 15, 30, 45, 60, 75, 90, 105, 120,

 135, 150, 165, 180, 195, 210, 225, 240, 241, 226, 211, 196, 181, 166, 151, 136,

 121, 106, 91, 76, 61, 46, 31, 47, 62, 77, 92, 107, 122, 137, 152, 167,

 182, 197, 212, 227, 242, 243, 228, 213, 198, 183, 168, 153, 138, 123, 108, 93,

 78, 63, 79, 94, 109, 124, 139, 154, 169, 184, 199, 214, 229, 244, 245, 230,

 215, 200, 185, 170, 155, 140, 125, 110, 95, 111, 126, 141, 156, 171, 186, 201,

 216, 231, 246, 247, 232, 217, 202, 187, 172, 157, 142, 127, 143, 158, 173, 188,

 203, 218, 233, 248, 249, 234, 219, 204, 189, 174, 159, 175, 190, 205, 220, 235,

 250, 251, 236, 221, 206, 191, 207, 222, 237, 252, 253, 238, 223, 239, 254, 255

}
i = IVC_SCAN16[n] / 16
j = IVC_SCAN16[n] % 16
6.4.2 Inverse quantization

6.4.2.1 Quantization parameter

The range of luma and chroma quantization parameters shall be 0~63 inclusive.

If the current block is a luma block, quantization parameter QP of the block is equal to CurrentQP of the macroblock which it belongs to. Then use CurrentQP as index to get the QPs of Cb and Cr chroma blocks respectively from Table 6‑5.
Table 6‑5 — CurrentQPCb, CurrentQPCr and QP of chroma blocks
	CurrentQP
	Chroma QP

	< 43
	CurrentQP

	43
	42

	44
	43

	45
	43

	46
	44

	47
	44

	48
	45

	49
	45

	50
	46

	51
	46

	52
	47

	53
	47

	54
	48

	55
	48

	56
	48

	57
	49

	58
	49

	59
	49

	60
	50

	61
	50

	62
	50

	63
	51

6.4.2.2 Inverse quantization process
This clause specifies the process to transform two dimensional quantized transform coefficient array QuantCoeffMatrix to two dimensional transform coefficient array CoeffMatrix using quantization parameter QP.
Two dimensional transform coefficients array CoeffMatrix is obtained by:
CoeffMatrix [i,j] = (QuantCoeffMatrix[i,j] (DequantTable(QP) + 2ShiftTable(QP)−2) >> (ShiftTable(QP)−1), i,j=0~7 (6‑177)
DequantTable and ShiftTable are defined in Table 6‑6.
Table 6‑6 — DequantTable and ShiftTable
	QP
	DequantTable(QP)
	ShiftTable(QP)

	0
	32768
	14

	1
	36061
	14

	2
	38968
	14

	3
	42495
	14

	4
	46341
	14

	5
	50535
	14

	6
	55437
	14

	7
	60424
	14

	8
	32932
	13

	9
	35734
	13

	10
	38968
	13

	11
	42495
	13

	12
	46177
	13

	13
	50535
	13

	14
	55109
	13

	15
	59933
	13

	16
	65535
	13

	17
	35734
	12

	18
	38968
	12

	19
	42577
	12

	20
	46341
	12

	21
	50617
	12

	22
	55027
	12

	23
	60097
	12

	24
	32809
	11

	25
	35734
	11

	26
	38968
	11

	27
	42454
	11

	28
	46382
	11

	29
	50576
	11

	30
	55109
	11

	31
	60056
	11

	32
	65535
	11

	33
	35734
	10

	34
	38968
	10

	35
	42495
	10

	36
	46320
	10

	37
	50515
	10

	38
	55109
	10

	39
	60076
	10

	40
	65535
	10

	41
	35744
	9

	42
	38968
	9

	43
	42495
	9

	44
	46341
	9

	45
	50535
	9

	46
	55099
	9

	47
	60087
	9

	48
	65535
	9

	49
	35734
	8

	50
	38973
	8

	51
	42500
	8

	52
	46341
	8

	53
	50535
	8

	54
	55109
	8

	55
	60097
	8

	56
	32771
	7

	57
	35734
	7

	58
	38965
	7

	59
	42497
	7

	60
	46341
	7

	61
	50535
	7

	62
	55109
	7

	63
	60099
	7

6.4.3 Inverse transform process

6.4.3.1 Inverse transform for 4×4 block
This process of transform is applied to 4x4 block when MbTransformType is Trans_8x8 and SubMbTransformType is Trans_4x4.
Inputs of this process are:

· the variables of BitDepth

· a two-dimensional array D with size of 4×4. The elements of the array is Dij, with 0≤i≤3， 0≤j≤3

Output of this process is:

· a two-dimensional array R with size of 4×4. The elements of the array is Rij, with 0≤i≤3, 0≤j≤3.

The 4x4 DCT transform core T4 is defined as:
T4[4][4] = {

{128， 128， 128， 128}，

{167， 69， −69， −167}，
{128， −128， −128， 128}，
{69， −167， 167， −69}

}

The inverse transform process is equivalent to the following.
· Step1, horizontal inverse transform for the array D:

H’ = D (T4T (6‑178)
Here, H’ is the temporary result, T4T is the transpose of T4
· Step2, vertical inverse transform on H’ :

H = T4T (H’ (6‑179)
· Step3, shift operation on H:

Ri,j = sign(abs(Hi,j) + (1<<15)) >> 16 (6‑180)
6.4.3.2 Inverse transform for 8×8 block
This process of transform is applied to 8x8 block when MbTransformType is Trans_8x8 and SubMbTransformType is Trans_8x8.
Inputs of this process are:

· the variables of BitDepth

· a two-dimensional array D with size of 8×8. The elements of the array is dij, with 0≤i≤7， 0≤j≤7

Output of this process is:

· a two-dimensional array R with size of 8×8. The elements of the array is rij, with 0≤i≤7, 0≤j≤7

The inverse transform process is equivalent to the following.

· First, horizontal transform for the array D:

Step 1, with i = 0, 1, … , 7
ei0 = (di0 + di4)*181>>7

ei1 = (di0 − di4)*181>>7

ei2 = (di2*196>>8) − (di6*473>>8)

ei3 = (di2*473>>8) + (di6*196>>8)

ti4 = di1 − di7
ti7 = di1 + di7
ti5 = di3*181>>7

ti6 = di5*181>>7

ei4 = ti4 + ti6
ei5 = ti7 − ti5
ei6 = ti4 − ti6
ei7 = ti7 + ti5 (6‑181)
Data in the bitstream shall ensure that any element dij, tij and eij must be in the range of integer values from −2(BitDepth+7) to 2(BitDepth+7)−1, inclusive.

Step 2, with i = 0, 1, … , 7

fi0 = ei0 + ei3
fi3 = ei0 − ei3
fi1 = ei1 + ei2
fi2 = ei1 − ei2
fi4 = (ei4 * 301 >> 8) − (ei7 * 201 >> 8)

fi7 = (ei4 * 201 >> 8) + (ei7 * 301 >> 8)

fi5 = (ei5 * 710 >> 9) − (ei6 * 141 >> 9)

fi6 = (ei5 * 141 >> 9) + (ei6 * 710 >> 9) (6‑182)
Data in the bitstream shall ensure that any element fij must be in the range of integer values from −2(BitDepth+7) to 2(BitDepth+7)−1, inclusive.

Step 3, with i = 0, 1, … , 7

gi0 = fi0 + fi7
gi7 = fi0 − fi7
gi1 = fi1 + fi6
gi6 = fi1 − fi6
gi2 = fi2 + fi5
gi5 = fi2 − fi5
gi3 = fi3 + fi4
gi4 = fi3 − fi4 (6‑183)
Data in the bitstream shall ensure that any element gij must be in the range of integer values from −2(BitDepth+7) to 2(BitDepth+7)−1, inclusive.

· And then, vertical transform is invoked for the resulting matrix:
Step 1, with j = 0, 1, … , 7

h0j = (g0j + g4j)*181>>7

h1j = (g0j − g4j)*181>>7

h2j = (g2j*196>>8) − (g6j*473>>8)

h3j = (g2j*473>>8) + (g6j*196>>8)

t4j = g1j − g7j
t7j = g1j + g7j
t5j = g3j*181>>7

t6j = g5j*181>>7

h4j = t4j + t6j
h5j = t7j − t5j
h6j = t4j − t6j
h7j = t7j + t5j (6‑184)
Data in the bitstream shall ensure that any element hij must be in the range of integer values from −2(BitDepth+7) to 2(BitDepth+7)−1, inclusive.
Step 2, with j = 0, 1, … , 7

m0j = h0j + h3j
m3j = h0j − h3j
m1j = h1j + h2j
m2j = h1j − h2j
m4j = (h4j*301>>8) − (h7j*201>>8)

m7j = (h4j*201>>8) + (h7j*301>>8)

m5j = (h5j*710>>9) − (h6j*141>>9)

m6j = (h5j*141>>9) + (h6j*710>>9) (6‑185)
Data in the bitstream shall ensure that any element mij must be in the range of integer values from −2(BitDepth+7) to 2(BitDepth+7)−1, inclusive.

Step 3, with j = 0, 1, … , 7

n0j = m0j + m7j
n7j = m0j − m7j
n1j = m1j + m6j
n6j = m1j − m6j
n2j = m2j + m5j
n5j = m2j − m5j
n3j = m3j + m4j
n4j = m3j − m4j (6‑186)
Data in the bitstream shall ensure that any element nij must be in the range of integer values from −2(BitDepth+7) to 2(BitDepth+7)−1, inclusive.

· At last, after horizontal and vertical transform, the final reconstructed value is derived as

rij = Sign ((Abs(nij) + 16)>>5, nij), with i=0,1…,7, j=0,1,…,7 (6‑187)
6.4.3.3 Inverse transform for 16×16 block
This process of transform is applied to 16x16 block when MbTransformType is Trans_16x16
Inputs of this process are

· the variables of BitDepth

· a two-dimensional array D with size of 16×16. The elements of the array is Dij, with 0≤i≤15， 0≤j≤15

Output of this process is:

· a two-dimensional array R with size of 16×16. The elements of the array is Rij, with 0≤i≤15, 0≤j≤15.
The inverse transform process is equivalent to the following.
The 16x16 DCT transform core T16 is defined as:
T16[16][16] = {

{ 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32},

{ 45, 43, 40, 35, 29, 21, 13, 4, −4,−13,−21,−29,−35,−40,−43,−45},

{ 44, 38, 25, 9, −9,−25,−38,−44,−44,−38,−25, −9, 9, 25, 38, 44},

{ 43, 29, 4,−21,−40,−45,−35,−13, 13, 35, 45, 40, 21, −4,−29,−43},

{ 42, 17,−17,−42,−42,−17, 17, 42, 42, 17,−17,−42,−42,−17, 17, 42},

{ 40, 4,−35,−43,−13, 29, 45, 21,−21,−45,−29, 13, 43, 35, −4,−40},

{ 38, −9,−44,−25, 25, 44, 9,−38,−38, 9, 44, 25,−25,−44, −9, 38},

{ 35,−21,−43, 4, 45, 13,−40,−29, 29, 40,−13,−45, −4, 43, 21,−35},

{ 32,−32,−32, 32, 32,−32,−32, 32, 32,−32,−32, 32, 32,−32,−32, 32},

{ 29,−40,−13, 45, −4,−43, 21, 35,−35,−21, 43, 4,−45, 13, 40,−29},

{ 25,−44, 9, 38,−38, −9, 44,−25,−25, 44, −9,−38, 38, 9,−44, 25},

{ 21,−45, 29, 13,−43, 35, 4,−40, 40, −4,−35, 43,−13,−29, 45,−21},

{ 17,−42, 42,−17,−17, 42,−42, 17, 17,−42, 42,−17,−17, 42,−42, 17},

{ 13,−35, 45,−40, 21, 4,−29, 43,−43, 29, −4,−21, 40,−45, 35,−13},

{ 9,−25, 38,−44, 44,−38, 25, −9, −9, 25,−38, 44,−44, 38,−25, 9},

{ 4,−13, 21,−29, 35,−40, 43,−45, 45,−43, 40,−35, 29,−21, 13, −4}

}

· Step1, horizontal inverse transform for the array D:

H’ = D (T16T (6‑188)
Here, H‘ is the temporary result, TT16 is the transpose of T16
· Step2, vertical inverse transform on H’:

H = TNT (H’ (6‑189)
· Step3, shift operation on H:

Ri,j = sign(abs(Hi,j) + (1<<13)) >> 14 (6‑190)
6.4.4 Reconstruction
Inputs to this process are the residuals for luma and chroma components RL, RCb and RCr, and available Inter or Intra prediction sample arrays for the current macroblock for the applicable component predL, predCb, and predCr.

Outputs of this process are the reconstructed sample arrays prior to the deblocking filter process for the applicable component S’L, S’Cb, or S’Cr.

The decoded picture reconstruction is specified as follows.

S’L[x, y] = RL[x,y] + predL[x,y], with x, y = 0..15 (6‑191)
S’Cb[x, y] = RCb[x,y] + predCb[x,y], with x, y = 0..7 (6‑192)
S’Cr[x, y] = RCr[x,y] + predCr[x,y], with x, y = 0..7 (6‑193)
6.5 Loop filtering
A conditional filtering shall be applied to all 8x8 block edges of a picture, except edges at the boundary of the picture. This filtering process is performed on a macroblock basis after the completion of the picture reconstruction process prior to deblocking filter process for the entire decoded picture, with all macroblocks in a picture processed in order of increasing macroblock addresses.

The deblocking filter process is invoked for the luma and chroma components separately. For each macroblock, vertical edges are filtered first, from left to right, and then horizontal edges are filtered from top to bottom. The order of vertical and horizontal filtering for each of the macroblocks is shown in Figure 6‑6. Sample values above and to the left of the current macroblock that may have already been modified by the deblocking filter process operation on previous macroblocks shall be used as input to the deblocking filter process on the current macroblock and may be further modified during the filtering of the current macroblock. Sample values modified during filtering of vertical edges are used as input for the filtering of the horizontal edges for the same macroblock.
If the level differences between the two border samples in the same block and between the two border samples in different adjacent blocks meet certain conditions, the edge is filtered. Here, the edge is defined as edge between all 8x8 blocks inside the macroblock, and the upper and left edges of current macroblock. There are three kinds of filtering methods: strong loop filtering, normal loop filtering and weak loop filtering.

[image: image26.emf]3 1

4

6

1 3

4

6 5

2

Luma edge of

macrobloc

k

Chroma edge of

macroblock(Cb or Cr)

Figure 6‑6 — The order of filtered edges in a macroblock(4:2:0 format)

Note: Solid lines represent vertical edge of macroblock, bold dashed lines represent horizontal edge, and thin dashed line represent edge of next macroblock.

Figure 6‑7 indicates 8 sampling positions around two vertical or horizontal sides of p and q (the edge is expressed in bold line).

[image: image27]
Figure 6‑7 — Horizontal or vertical edge samples of 8x8 block

The conditions of loop filtering are:

(1). abs(q0 − p0) > abs(p0 − p1) && abs(q0 − p0) > abs(q0 − q1);

(2). abs(q0 − p0) < (
(3). abs(p2 − p0) < (&& abs(q2 − q0) < (;

(4). abs(p3 − p0) < (&& abs(q3 − q0) < (;

(5). abs(p0 − p1) < min(3, () && abs(q0 − q1) < min (3, ();

The values of α and β are derived from parsing the syntax elements of alpha and beta in bistream respectively.

· If only (1) (2) (3) are satisfied, weak loop filtering is applied. Weak filtering process is shown as follows:

P0 = ((p0− q0) + 2) >> 2) + p0 (6‑194)
Q0 = ((q0−p0) + 2) >> 2) + q0 (6‑195)
P0 and Q0 are sample values obtained after filtering process of p0 and q0.

· If only (1)(2)(3)(4) are satisfied, normal loop filtering is applied. But for each chroma component, if (6) are not satisfied, weak loop filtering is used to replace normal loop filtering. Normal filtering process is shown as follows:

P1 = ((3 * (p2− q0) + 4 * (p0 − q0) + 8 * (q0 − p1) + 8) >> 4) + p1 (6‑196)
P0 = (((p2 − q0) + 4 * (p1 − q0) + (q1 − p0) + 9 * (q0 − p0) + 8) >> 4) + p0 (6‑197)
Q0 = (((q2 − p0) + 4 * (q1 − p0) + (p1 − q0) + 9 * (p0 − q0) + 8) >> 4) + q0 (6‑198)
 Q1 = ((3 * (q2− p0) + 4 * (q0 − p0) + 8 * (p0 − q1) + 8) >> 4) + q1 (6‑199)
P1, P0, Q0 and Q1 are sample values obtained after filtering process of p1, p0, q0 and q1, respectively.

· For macroblock luma edges, if all of the six conditions are satisfied, strong loop filtering is applied. Strong filtering process is shown as follows:
P2 = ((4 * (p0− q0) + 5 * (q0 − p2) + 4) >> 3) + p2 (6‑200)
P1 = ((16 * (q0− p1) + 6 * (p2 − q0) + 7 * (p0 − q0) + 8) >> 4) + p1 (6‑201)
P0 = ((9 * (p2− q0) + 6 * (q2 − p0) + 17 * (q0 − p0) + 16) >> 5) + p0 (6‑202)
Q0 = ((9 * (q2− p0) + 6 * (p2 − q0) + 17 * (p0 − q0) + 16) >> 5) + q0 (6‑203)
 Q1 = ((16 * (p0− q1) + 6 * (q2 − p0) + 7 * (q0 − p0) + 8) >> 4) + q1 (6‑204)
Q2 = ((4 * (q0− p0) + 5 * (p0 − q2) + 4) >> 3)) + q2 (6‑205)
P2, P1, P0, Q0, Q1 and Q2 are sample values obtained after filtering process of p2, p1, p0, q0, q1 and q2, respectively.
6.5.1 Reference picture buffer management

There are at most 32 reference picture buffers for inter-prediction, and at most eight reference pictures are practically used for the P picture prediction, indicated by reference_frame_idx. The pictures in the reference picture buffer are used for P picture inter-prediction. The picture in first reference picture buffer and the picture in the second reference picture are used for B picture forward inter-prediction and backward prediction respectively. At the beginning of decoding a sequence, the 32 reference picture buffers are empty. After a picture is reconstructed, the reference picture buffer is updated as following.

After an I picture or a reference P picture is reconstructed,
· The number of reference pictures are updated by

RefPicNumber = (RefPicNumber + 1) % 32 (6‑206)
· If the first buffer is empty, its reconstruction picture is placed in the first reference picture buffer; Otherwise, the pictures in the reference buffer move to their next buffers respectively, and the reconstruction picture is placed in the first reference picture buffer.
· If all the buffers are filled with the reconstructed pictures, the 32nd reference picture is removed and other pictures are moved to their next buffers, respectively. The reconstructed picture is placed in the first reference picture buffer.

After a B picture is reconstructed, the reference picture buffers are unchanged. After a non-reference P frame with RPB swapping is reconstructed, the reference picture butter swapping is occurred. The picture in the first reference picture buffer and the picture in the second reference picture buffer change their positions each other. As a result, the picture in the first reference picture buffer is placed in moved to the second reference picture buffer, and the picture in the second reference picture buffer is moved to the first reference picture buffer.
7 Parsing Process

7.1 ue(v)

The syntax elements described by ue(v) use zero-order Exp-Golomb codes. The parsing process is as follows:

ue(v): The value of syntax element is equal to CodeNum.
When parsing zero-order Exp-Golomb codes, the first nonzero bit is found from the current position of the bitstream while counting the number of zero bits (leadingZeroBits). Then, CodeNum is calculated according to leadingZeroBits. The pseudo-code is as follows.
leadingZeroBits = −1;

for (b = 0; ! b; leadingZeroBits++)

 b = read_bits(1)

CodeNum = 2leadingZeroBits − 1 + read_bits(leadingZeroBits)

Table 7‑1 gives the structure of zero-order Exp-Golomb codes. The bit string of Exp-Golomb codes is divided into ‘prefix’ and ‘suffix’. Prefix consists of leadingZeroBits consecutive ‘0’ and a ‘1’. Suffix consists of leadingZeroBits bits, i.e the xi string in the Table 7‑1. The value of xi is either ‘0’ or ‘1’.
Table 7‑1 — Zero-order Exp-Golomb codes

	Order
	Code structure
	Range of CodeNum

	k = 0
	1
	0

	
	0 1 x0
	1-2

	
	0 0 1 x1 x0
	3-6

	
	0 0 0 1 x2 x1 x0
	7-14

	

7.2 ae(v)

7.2.1 Description
Parsing of the element syntax described by ae(v) is shown as follows.
· Conduct initialization before parsing slice, refer to subclause 7.2.2;

· Conduct binarization process for the syntax element, refer to subclause 7.2.3;

· Parse the bins of the syntax element, refer to subclause 7.2.4:

· Determine a unique contex ctxIdx for each bin in the binary string with binIdx, refer subclause 7.2.4.2;

· Parse each bin according to the ctxIdx, refer subclause 7.2.4.3;

· Compare the binary string obtained from parsing the bins with the binary string obtained from the binarization process. If there is a binary string which is equal to the parsing binary string, output the value of the syntax element; else continue parsing.

The Pseudo code of parsing is illustrated as follows:
if(the current syntax element is the first one in the slice) {
initialize all context models
initialize the advanced entropy coder
}
conduct binarization process for the syntax element
binIdx = −1
do {
binIdx++
get the ctxIdx corresponding to the binIdx
get the context model according to the ctxIdx
parse the bin according to the ctxIdx
} while ((b0,…,bbinIdx) is not in the binary string of syntax element)
output the value of the syntax element

7.2.2 Initialization
7.2.2.1 Initialization of context model

Initialize the variables of mps, cycno, and lgmps for each context model. They are unsigned integers, and the bit-depths of mps, cycno and lgmps are 1, 2 and 11, respectively.
mps and cycno shall be initialized to 0, and lgmps are initialized to 1023.

7.2.2.2 Initialization of advanced entropy coding decoder

rS1, rT1, valueS and valueT are the state variables of advanced entropy code decoder. They are unsigned integers, and the bit-depths of rS1 , rT1, valueS, and valueT are 8, 8, 32 and 9 bits respectively.
rS1 is initialized to 0, and rT1 is initialized to 0xFF. The initial values of valueS and valueT are derived as follows.
valueS = 0

valueT = read_bits(9)

while (! ((valueT >> 8) & 0x01)) {

valueT = (valueT << 1) | read_bits(1)

valueS++

}

valueT = valueT & 0xFF

7.2.3 Binarization process

Binarization process for each non-binary syntax element is specified as follows.
· Binarization process for mb_qp_delta, and mb_part_type of P frame: the value of syntax element is given by the synElVal, the relation between synElVal and binary string is specified in Table 7‑2.

Table 7‑2 — Relation between synEIVal and binary string
	Value of synElVal
	Binary string

	0
	1
	
	
	
	
	

	1
	0
	1
	
	
	
	

	2
	0
	0
	1
	
	
	

	3
	0
	0
	0
	1
	
	

	4
	0
	0
	0
	0
	1
	

	5
	0
	0
	0
	0
	0
	1

	…
	
	
	
	
	
	

	binIdx
	0
	1
	2
	3
	4
	5

· Binarization process for mb_part_type of B frame: the value of syntax element is given by the synElVal, the relation between synElVal and binary string is specified in Table 7‑3.

Table 7‑3 — Relation between synEIVal and binary string
	Value of synElVal
	Binary string

	0
	0
	
	
	
	
	

	1
	1
	1
	
	
	
	

	2
	1
	0
	1
	
	
	

	3
	1
	0
	0
	1
	
	

	4
	1
	0
	0
	0
	1
	

	5
	1
	0
	0
	0
	0
	1

	…
	
	
	
	
	
	

	binIdx
	0
	1
	2
	3
	4
	5

· Binarization process for mb_pred_type: the value of syntax element is given by the synElVal, the relationship between synElVal and binary string is specified in Table 7‑4.

Table 7‑4 — Relation between synEIVal and binary string
	Value of synElVal
	Binary string

	
	1bit
	2bits

	0
	0
	0
	0

	1
	1
	0
	1

	2
	-
	1
	0

	3
	
	1
	1

	binIdx
	0
	0
	1

· Binarization process for mv_diff_x and mv_diff_y: each syntax element consists of mvdAbs and mvdSign, firstly parse the mvdAbs and then parse mvdSign. The value of mvdAbs is given by the synEIVal, and the relation between synElval and binary string is specified in Table 7‑5.
· If the synElVal is greater than or equal to 3 and synElVal is odd, the first 4 bins of the binary string are ‘1110’, other bins is the zero-order ExGolomb representation of (synElVal−3)/2 as shown in Table 7‑1.
· If the synELVal is greater than 3 and it is even, the first 4 bins are ‘1111’, other bins are zero-order ExGolomb representation of (synElVal−3)/2.
· If synElVal is equal to 0, mvdSign is not parsed, and the value of syntax element is 0. If mvdSign is equal to 0, the value of syntax element is synElVal; if mvdSign is equal to 1, the value of syntax element is −synElVal.

Table 7‑5 — Relation between synEIVal and binary string
	Value of synElVal
	Binary String

	0
	0
	
	
	
	
	
	
	
	
	
	

	1
	1
	0
	
	
	
	
	
	
	
	
	

	2
	1
	1
	0
	
	
	
	
	
	
	
	

	3
	1
	1
	1
	0
	1
	
	
	
	
	
	

	4
	1
	1
	1
	1
	1
	
	
	
	
	
	

	5
	1
	1
	1
	0
	0
	1
	0
	
	
	
	

	6
	1
	1
	1
	1
	0
	1
	0
	
	
	
	

	7
	1
	1
	1
	0
	0
	1
	1
	
	
	
	

	8
	1
	1
	1
	1
	0
	1
	1
	
	
	
	

	9
	1
	1
	1
	0
	0
	0
	1
	0
	0
	
	

	10
	1
	1
	1
	1
	0
	0
	1
	0
	0
	
	

	11
	1
	1
	1
	0
	0
	0
	1
	0
	1
	
	

	12
	1
	1
	1
	1
	0
	0
	1
	0
	1
	
	

	13
	1
	1
	1
	0
	0
	0
	1
	1
	0
	
	

	14
	1
	1
	1
	1
	0
	0
	1
	1
	0
	
	

	…
	
	
	
	
	
	
	
	
	
	
	

	binIdx
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

· Binarization process for cbp: the value of syntax element is given by the synElVal,
· if synElVal is less than 16; the prefix of the binary string is the first 4 bins of synElVal, and the suffix is ‘0’; if synElVal is greater than 15 and less than 31, the binary string consists of the first 4 prefix bins of synElVal, and other bins are ‘100’;
· if synElVal is greater than 31 and less than or equal to 47, the binary string consists of the first 4 prefix bins of synElVal, and other bins are ‘101’;
· if synElVal is greater than 47, the binary string consists of the first 4 prefix bins of synElVal, and other bins are ‘11’.
The relation between synElVal and binary string is specified in Table 7‑6
Table 7‑6 — Relation between synEIVal and binary string
	synElVal
	Binary String

	
	4-bit prefix
	Suffix

	1
	1
	0
	0
	0
	0
	
	

	2
	0
	1
	0
	0
	0
	
	

	3
	1
	1
	0
	0
	0
	
	

	…
	
	
	
	
	
	
	

	15
	1
	1
	1
	1
	0
	
	

	16
	0
	0
	0
	0
	1
	0
	0

	17
	1
	0
	0
	0
	1
	0
	0

	…
	
	
	
	
	
	
	

	31
	1
	1
	1
	1
	1
	0
	0

	32
	0
	0
	0
	0
	1
	0
	1

	33
	1
	0
	0
	0
	1
	0
	1

	…
	
	
	
	
	
	
	

	47
	1
	1
	1
	1
	1
	0
	1

	48
	0
	0
	0
	0
	1
	1
	

	49
	1
	0
	0
	0
	1
	1
	

	…
	
	
	
	
	
	
	

	63
	1
	1
	1
	1
	1
	1
	

	binIdx
	0
	1
	2
	3
	4
	5
	6

· Binarization process for reference_frame_index of P frame: the value of syntax element is given by the synElVal, and the relation between synElVal and binary string is specified in Table 7‑7.

Table 7‑7 — Relation between synEIVal and binary string
	Value of synElVal
	Binary string
	ref_idx

	0
	1
	
	
	
	
	
	0

	1
	0
	1
	
	
	
	
	1

	2
	0
	0
	1
	
	
	
	3

	3
	0
	0
	0
	1
	
	
	7

	4
	0
	0
	0
	0
	1
	
	11

	5
	0
	0
	0
	0
	0
	1
	15

	…
	
	
	
	
	
	
	…

	binIdx
	0
	1
	2
	3
	4
	5
	…

· Binarization process for trans_coefficient: the syntax element consists of coeffLevel, coeffSign and coeffRun. Firstly coeffLevel is obtained from trans_coefficient, if coeffLevel is the first one of the block or not equal to 0, continue parsing to get coeffSign and coeffRun. AbsLevel is equal to the value of synElVal which is obtained through looking up Table 7‑1 by using coeffLevel. coeffSign is a binary symbol, which is equal to 0 or 1. RunVal is equal to the value of synElVal which is obtained by through looking up Table 7‑1 through RunVal.

· Binarization process for intra_luma_pred_mode: the value of syntax element is given by the synElVal,and the relation between synElVal and binary string is specified in Table 7‑8.

Table 7‑8 — Relation between synEIVal and binary string
	Value of synElVal
	Binary string

	0
	1
	
	
	

	1
	0
	1
	
	

	2
	0
	0
	1
	

	3
	0
	0
	0
	1

	4
	0
	0
	0
	0

	binIdx
	0
	1
	2
	3

· Binarization process for intra_chroma_pred_mode: the value of syntax element is given by the synElVal, and the relation between synElVal and binary string is specified in Table 7‑9.

Table 7‑9 — Relation between synEIVal and binary string
	Value of synElVal
	Binary string

	0
	1
	
	

	1
	0
	1
	

	2
	0
	0
	1

	3
	0
	0
	0

	binIdx
	0
	1
	2

7.2.4 Parsing Binary String

7.2.4.1 Description

For each bin, set the contextWeight to 0.
If the bin is mvdSign or coeffSign or is the zero-order Exp-Golomb part of mv_diff_x and mv_diff_y, set BypassFlag to 1; otherwise, BypassFlag to 0.
When parsing bins,
· If BypassFlag is equal to 0, determine ctxIdx for each bin accroding to the process in 7.2.4.2, and then parse bins according to the process in 7.2.4.3;
· Otherwies, parse the bins directly according to the process in 7.2.4.3.
In parsing process, binIdx is initialized to 0, and when a bin is parsed, binIdx is increased by 1, compare the parsed binary string with binary string obtained from binarization process to get the synElVal.
7.2.4.2 Determine ctxIdx

Determine ctxIdx according to the variables of initial index and ctxIdxInc. The initial index of syntax element is specified in Table 7‑10.

Table 7‑10 — Initialized index of syntax element
	Syntax element
	Type
	Initial index

	sub_mb_trans_type
	
	2

	mb_trans_type
	
	3

	mb_part_type
	
	4

	mb_pred_type
	
	19

	intra_luma_pred_mode
	
	22

	intra_chroma_pred_mode
	
	26

	reference_frame_index
	
	30

	mv_diff_x
	
	36

	mv_diff_y
	
	42

	cbp
	
	48

	mb_qp_delta
	
	54

	trans_coefficient
	Luma
	58

	
	Chroma
	124

The process of determining the ctxIdx of syntax element is specified as follows.
· Detemine the ctxIdx of mb_part_type:

Set ctxIdxInc according to binIdx:

If current frame is a P frame:

 ctxIdxInc = Min(binIdx, 3)

Otherwise, if current frame is a B frame and binIdx equal to 0:

 ctxIdxInc = 5 + a + b
If the left neighbouring macroblock partition A (or upper neighbouring macroblock partition B) of the current macroblock partition is marked as “available”, and A (or B) is not a part of ‘P_Skip’(MbPredType is Skip), or ‘B_Skip’ macroblocks(MbpartType is B_Skip), then a (or b) is set to 1; otherwise, a (or b) is set to 0. Refer to subclause 4.12.7.3 to get the neiboring macroblock partitions of A and B.

Otherwise, if current frame is B frame and binIdx <= 2:

 ctxIdxInc = 6 + binIdx

Otherwise, if current frame is B frame and binIdx > 2:

 ctxIdxInc = 8

Compute ctxIdx:

 ctxIdx = initial index + ctxIdxInc.
· Determine the ctxIdx of mb_pred_type:

Set ctxIdxInc according to binIdx:

If binIdx is equal to 0:

 ctxIdxInc = 0

Otherwise, if the first bin of the binary string is equal to ‘0’:

 ctxIdxInc = 1

Otherwise,

 ctxIdxInc = 2

Compute ctxIdx:

 ctxIdx = initial index + ctxIdxInc
· Determine ctxIdx of intra_luma_pred_mode:

ctxIdx = initial index + binIdx
· Determine ctxIdx of intra_chroma_pred_mode:

ctxIdx = initial index + binIdx
· Determine ctxIdx of mv_diff_x and mv_diff_y：

Set binIdx according to ctxIdxInc:

If binIdx is equal to 0:

 if(mvda < 2)

 ctxIdxInc = 0

 else if(mvda < 16)

 ctxIdxInc = 1

 else

 ctxIdxInc = 2

Otherwise, if binIdx is equal to 1:

 ctxIdxInc = 3

 Otherwise, if binIdx is equal to 2:

 ctxIdxInc = 4

 Otherwise, if binIdx is equal to 3:

 ctxIdxInc = 5

Otherwise, BypassFlag is set to 1

Compute ctxIdx:

 ctxIdx = Initial index + ctxIdxInc

If the left neighbouring macroblock partition A of current macroblock partition is marked as “available” and mv_diff_x or mv_diff_y of current macroblock partition presents in the bitstream, the value of mvda is set as follows.
· If the MbPartPredMode of current macroblock partition is Forward and the MbPartPredMode of A is Forward or Bidirectional, mvda is the absolute value of mv_diff_x and mv_diff_y.

· Otherwise, if the MbPartPredMode of current macroblock partition is Bidirectional and the MbPartPredMode of A is Forward or Bidirectional, mvda is the absolute value of mv_diff_x and mv_diff_y of A.

· Otherwise, the MbPartPredMode of current macroblock partition is Backward and the MbPartPredMode of A is Backward, mvda is the absolute value of mv_diff_x and mv_diff_y of A.

· Otherwise, mvda is set to 0.

If the left neighbouring macroblock partition A of current macroblock partition is marked as “not available”, then mvda is set to 0. Refer to subclause 4.12.7.3 to get the neighboring macroblock partitons of A and B.

· Determine ctxIdx of cbp:

Set binIdx according to ctxIdxInc:

If binIdx is not greater than 3:

 ctxIdxInc = a + 2 * b

Otherwise, if binIdx is equal to 4:

 ctxIdxInc = 4

Otherwise

 ctxIdxInc = 5

Compute ctxIdx:

 ctxIdx = Initial index + ctxIdxInc

If left neighbouring 8(8 block A (or upper neighbouring block B) of current block is marked as “available” and there are not nonzero coefficients in A (or B), then a (or b) is set to 1; otherwise, a (or b) is set to 0. Refer to subclause 4.12.7.2 to get the neighboring blocks of A and B.

· Determine ctxIdx of mb_qp_delta:
Set binIdx according to ctxIdxInc:

If binIdx is equal to 0:

 if(PreviousDeltaQP != 0)

 ctxIdxInc = 1

 else

 ctxIdxInc = 0

Otherwise, if binIdx is equal to 1:

 ctxIdxInc = 2

Otherwise,

 ctxIdxInc = 3

Compute ctxIdx:

 ctxIdx = Initial index + ctxIdxInc

· Determine ctxIdx of coeffLevel of trans_coefficient：

Set binIdx according to ctxIdxInc:

If binIdx is not equal to 0 or IMax is equal to 0:

 contextWeighting = 0

 ctxIdxInc = priIdx * 3 + secIdx − (priIdx != 0)

Otherwise,

 contextWeighting = 1

 ctxIdxInc = priIdx * 3 + secIdx − 1

 ctxIdxIncW = 14 + (pos >> 5) (16 + ((pos >> 1) & 0x0F)

Compute ctxIdx:

 ctxIdx = initial index + ctxIdxInc

If contextWeighting = 1, then ctxIdxW = initial index + ctxIdxIncW, where priIdx and secIdx are shown in Table 7‑11 and Table 7‑12, respectively. pos is the position of the transform coefficients in the inverse scanning method. For each 8(8 block, pos shall be initialized to 0. IMax is the maximum value of the decoded coefficients of current 8(8 block. For each 8(8 block, IMax shall be initialized to 0.

· Determine ctxIdx of coeffRun of trans_coefficient:
Set ctxIdxInc according to binIdx and AbsLevel:
 ctxIdxInc = priIdx (4 + secIdx

Compute ctxIdx：

 ctxIdx = Initial index + 46 + ctxIdxInc

where priIdx and secIdx are shown in Table 7‑11 and Table 7‑12, respectively.

Table 7‑11 — Relation between priIdx and lMax
	lMax
	priIdx

	0
	0

	1
	1

	2
	2

	3
	3

	4
	3

	>= 5
	4

Table 7‑12 — Relation between coeffLevel, coeffRun and secIdx
	secIdx
	Description

	
	coeffLevel
	coeffRun

	
	lMax == 0
	lMax != 0
	

	0
	binIdx=0
	binIdx=0
	AbsLevel=1，and binIdx=0

	1
	binIdx>=1
	binIdx=1
	AbsLevel=1，and binIdx>=1

	2
	-
	binIdx>=2
	AbsLevel>1，and binIdx=0

	3
	-
	-
	AbsLevel>1，and binIdx>=1

7.2.4.3 Parsing bins

7.2.4.3.1 Parsing process

The process of parsing bins is specified as follows.
· Parsing bin to get its value of binVal

· If BypassFlag = 1, execute decode_bypass procedure specified in subclause 7.2.4.3.3.
· Otherwise, if current syntax element is aec_mb_stuffing_bit, then execute decode_aec_stuffing_bit procedure specifed in subclause 7.2.4.3.4.

· Otherwise, execute decode_decision procedure specified in subclause7.2.4.3.2.

· If binVal is equal to 0, set bin to ‘0’. If binVal is equal to 1, set bin to ‘1’.
7.2.4.3.2 decode_decision

If contextWeighting is equal to 1, the inputs of decode_decision procedure are rS1, rT1, valueS, valueT and the context model ctx1 and ctx2; otherwise, the inputs of decode_decision procedure are rS1, rT1, valueS, valueT and context model ctx.
The output of decode_decision procedure is the value of bin binVal.
The Pseudo code of decode_decision procedure is specified as follows:

decode_decision() {

if(contextWeighting == 1) {

if(ctx1->mps == ctx2->mps) {

predMps = ctx1->mps

lgPmps = (ctx1->lgPmps + ctx2->lgPmps) / 2

}

else {

if(ctx1->lgPmps < ctx2->lgPmps) {

predMps = ctx1->mps

lgPmps = 1023 − ((ctx2->lgPmps − ctx1->lgPmps) >> 1)

}

else {

predMps = ctx2->mps

lgPmps = 1023 − ((ctx1->lgPmps − ctx2->lgPmps) >> 1)

}

}

}

else {

 predMps = ctx->mps

 lgPmps = ctx->lgPmps
 }
 if(rT1 >= (lgPmps >> 2)) {
 rS2 = rS1
 rT2 = rT1 − (lgPmps >> 2)
 sFlag = 0
}

else {

 rS2 = rS1 + 1

 rT2 = 256 + rT1 − (lgPmps >> 2)

 sFlag = 1
}
if(rS2 > valueS || (rS2 == valueS && valueT >= rT2)) {
binVal = ! predMps
 if(sFlag == 0)

tRlps = lgPmps >> 2
 else
 tRlps = rT1 + (lgPmps >> 2)
 if(rS2 == valueS)

 valueT = valueT − rT2
 else

 valueT = 256 + ((valueT << 1) | read_bits(1)) − rT2

while (tRlps < 0x100) {
 tRlps = tRlps << 1
 valueT = (valueT << 1) | read_bits(1)
 }
 rS1 = 0
 rT1 = tRlps & 0xFF
 valueS = 0
 while (valueT < 0x100) {
 valueS++
 valueT = (valueT << 1) | read_bits(1)
 }
 valueT = valueT & 0xFF
 }
 else {
 binVal = predMps
 rS1 = rS2
 rT1 = rT2
}

if(contextWeighting == 1) {
 ctx1 = update_ctx(binVal, ctx1)
 ctx2 = update_ctx(binVal, ctx2)
}
else
 ctx = update_ctx(binVal, ctx)
return (binVal)
}
7.2.4.3.3 decode_bypass

The inputs of decode_bypass procedure are rS1, rS2, valueS and valueT.
The output of decode_bypass procedure is binVal.
The pseudo code of decode_bypass procedure is specified as follows.
decode_bypass() {

 predMps = 0

 lgPmps = 1023
 if(rT1 >= (lgPmps >> 2)) {

rS2 = rS1
 rT2 = rT1 − (lgPmps >> 2)
 sFlag = 0
 }

 else {

 rS2 = rS1 + 1

 rT2 = 256 + rT1 − (lgPmps >> 2)

 sFlag = 1
 }
 if(rS2 > valueS || (rS2 == valueS && valueT >= rT2)) {
 binVal = ! predMps
 if(sFlag == 0)

tRlps = lgPmps >> 2
 else
 tRlps = rT1 + (lgPmps >> 2)
 if(rS2 == valueS)
valueT = valueT − rT2

else

valueT = ((valueT << 1) | read_bits(1)) − rT2 + 256

 while (tRlps < 0x100) {

 tRlps = tRlps << 1
valueT = (valueT << 1) | read_bits(1)
 }

 rS1 = 0
 rT1 = tRlps & 0xFF
 valueS = 0
 while (valueT < 0x100) {
valueS++

valueT = (valueT << 1) | read_bits(1)
 }

 valueT = valueT & 0xFF
 }
 else {
 binVal = predMps
 rS1 = rS2
 rT1 = rT2
 }
 return (binVal)
}
7.2.4.3.4 decode_aec_stuffing_bit

The inputs of decode_aec_stuffing_bit procedure are rS1, rS2, valueS and valueT.
The output of decode_aec_stuffing_bit procedure is binVal.
The pseudo code of decode_aec_stuffing_bit procedure is specified as follows.
decode_aec_stuffing_bit() {

predMps = 0

lgPmps = 4

if(rT1 >= (lgPmps >> 2)) {

rS2 = rS1

rT2 = rT1 − (lgPmps >> 2)

sFlag = 0

}

else {

 rS2 = rS1 + 1

 rT2 = 256 + rT1 − (lgPmps >> 2)

 sFlag = 1

}

if(rS2 > valueS || (rS2 == valueS && valueT >= rT2)) {

binVal = ! predMps

if(sFlag == 0)

tRlps = lgPmps >> 2

else

tRlps = rT1 + (lgPmps >> 2)

if(rS2 == valueS)

valueT = valueT − rT2

else

valueT = 256 + ((valueT << 1) | read_bits(1)) − rT2

while (tRlps < 0x100) {

tRlps = tRlps << 1

valueT = (valueT << 1) | read_bits(1)

}

rS1 = 0

rT1 = tRlps & 0xFF

valueS = 0

while (valueT < 0x100) {

valueS++

valueT = (valueT << 1) | read_bits(1)

}

valueT = valueT & 0xFF

}

else {

binVal = predMps

rS1 = rS2

rT1 = rT2

}

return (binVal)

}

7.2.4.3.5 update_ctx

The inputs of update_ctx procedure are binVal and ctx.
The output of update_ctx procedure is the updated ctx.

The pseudo code of update_ctx procedure is specified as follows:

update_ctx() {

if(ctx->cycno <= 1)

cwr = 3

else if(ctx->cycno == 2)

cwr = 4

else

cwr = 5

if(binVal != ctx->mps) {

if(ctx->cycno <= 2)

ctx->cycno = ctx->cycno + 1

else

ctx->cycno = 3

 }

else if(ctx->cycno == 0)

ctx->cycno = 1

if(binVal == ctx->mps)

ctx->lgPmps = ctx->lgPmps − (ctx->lgPmps >> cwr) − (ctx->lgPmps >> (cwr+2))

else {

switch (cwr) {

case 3:

ctx->lgPmps = ctx->lgPmps + 197

break

case 4:

ctx->lgPmps = ctx->lgPmps + 95

break

default:

ctx->lgPmps = ctx->lgPmps + 46

}

if(ctx->lgPmps > 1023) {

ctx->lgPmps = 2047 − ctx->lgPmps

ctx->mps = ! (ctx->mps)

}

}

return (ctx)

}
Document type: International Standard
Document subtype: REF DDDocSubType * CHARFORMAT
Document stage: (30) Committee
Document language: E
C:\GarySull\Temp8\2015_06_MPEG_112_Warsaw\output_preparation\w15427-IVC-CD_g1.doc STD Version 2.1c2

[image: image28.png](A1 Aot ALl
Ao Ao Ao Azo
yFracc
xFracc
Al Aoy AL A2y
A2 AL

[image: image29.png]scan order for
4 4x4 blocks

0 1

2 3

[image: image30.png]scan order for
4 8x8 blocks

0 1

2 3

[image: image31.png]116x16 216x8 28x16 4 8x8
macroblock macroblock macroblock macroblock
partition partitions partitions partitions
0 0 1
0 0 1
1 2 3

[image: image32.png]Current
Macroblock
or Partition
or Block

[image: image33.png]mbAddrD

mbAddrB

mbAddrC

mbAddrA

CurrMbAddr

[image: image34.png]p3

pl

pOIqO

ql

q2

q3

_1498994589.unknown

_1499153728.unknown

_1499153900.unknown

_1498994698.unknown

_1453462930.unknown

_1453462932.vsd

3
1
4
6
1
3
4
6
5
2
Luma edge of
macroblock
Chroma edge of
macroblock(Cb or Cr)

_1498980736.unknown

_1453462933.vsd

_1453462931.unknown

_1453462927.vsd
horizontal_size

vertical_size

MbWidth ´ 16

MbHeight ´ 16

