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Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

Amendment 3 to ISO/IEC 23008‑3:2015 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.

Introduction

The following text describes the amendment 3 to the specification ISO/IEC 23008-3:2015 MPEG-H 3D Audio. It includes a number of additions and changes that serve a number of purposes: 

· improving the coding efficiency especially for low bitrate coding modes (for scene based as well as for object based and for multichannel based content)
· adding descriptive metadata
· updating the MHAS description

· some improvements for usage of MPEG-H 3D Audio in broadcasting applications

· a tool for Advanced Loudness Control
· a layered coding mode for coding of scene based content

It is envisioned that this amendment will be merged with the current version of the MPEG-H 3D Audio specification resulting in a second edition of the standard.

Information technology — High efficiency coding and media delivery in heterogeneous environments — Part 3: Part 3: 3D audio, AMENDMENT 3: MPEG-H 3D Audio Phase 2
[Editorial notes:

This document contains ISO/IEC 23008-3 MPEG-H 3D audio Phase 2 in an "Amendment"-style, i.e. in "Replace X with Y"-style.

For ease of review the document is currently structured by clauses, each of which reflect an Audio Subgroup approved set of changes.

It is envisioned that the text of the amendment will be fully integrated into the text of ISO/IEC23008-3 by the time this document reaches DAM status (October 2015).

New Tables and Figures are labelled "AMDX.Y", where X is the number of the clause it appears in in this document. and Y is an increasing integer counter.]
1 WD0 - 3D Audio Phase II

Replace Figure 1 — Block diagram of the 3D-Audio decoder. (DRC: Dynamc Range Control, SAOC: Spatial Audio Object Coding, HOA: Higher Order Ambisonics, LN: Loudness Normalization, PL: Peak Limiter) with:

[image: image1.png]
[Ed. Note: in Figure 1 and Figure 2 replace description: "HOA transport signals" with "HOA transport channels"]
Add the following descritive text after the description of the "HOA Decoder and Renderer" in clause 4.2:

The MPEG Surround Decoder takes the downmix signals coming from the MPEG-H 3D Audio decoder and performs the guided MPEG Surround upmix using the MPEG Surround side information to reproduce the multichannels signal for the transmitted loudspeaker layout.

In Table 1 — MPEG-H 3DA functional blocks and internal processing domain replace:

	Audio Core
	MPEG-H 3D Audio Core Coder
	FD or TD1) 


with:

	Audio Core
	MPEG-H 3D Audio Core Coder
	FD or TD1) 

	
	MPEG Surround
	FD


 Replace Figure 2 — MPEG-H 3D audio decoder overview with signal processing context with:

[image: image2.png]
Add the following new chapter:

x MPEG Surround

x.1 Technical Overview

The output of the 3D Audio core decoder of the "channels / prerendered objects" path may be further processed by MPEG Surround (MPS). Figure 18 shows a schematic of a combined 3D Audio core decoder and a MPS decoder.

[image: image3.png]
Figure AMD1.1: Block Diagram of a 3D Audio Core Decoder with an MPEG Surround decoder

If the SBR tool is active, a 3D Audio core decoder can typically be efficiently combined with a subsequent MPS decoder by connecting them in the QMF domain in the same way as it is described for USAC in clause 4.3 of ISO/IEC 23003-1:2012, MPEG-D (MPEG audio technologies), Part 3: Unified Speech and Audio Coding, 2012. . If a connection in the QMF domain is not possible, the tools need to be connected in the time domain. 

If MPS side information is embedded into a 3D Audio bitstream by means of the usacExtElement mechanism (with usacExtElementType being ID_EXT_ELE_MPEGS), the time-alignment between the 3D Audio data and the MPS data assumes the most efficient connection between the 3D Audio core decoder and the MPS decoder. If the SBR tool in the 3D Audio core decoder is active and if MPS employs a 64-band QMF domain representation (see 6.6.3 in ISO/IEC 23003-1:2007, Information technology — MPEG audio technologies — Part 1: MPEG Surround), the most efficient connection is in the QMF domain. Otherwise, the most efficient connection is in the time domain. This corresponds to the time-alignment for the combination of HE-AAC and MPS as defined in 4.4, 4.5, and 7.2.1 of ISO/IEC 23003-1:2007, Information technology — MPEG audio technologies — Part 1: MPEG Surround. 

The additional delay introduced by adding MPS decoding after 3D Audio decoding is given by clause 4.5 of ISO/IEC 23003-1:2007, Information technology — MPEG audio technologies — Part 1: MPEG Surround and depends on whether HQ MPS or LP MPS is used, and whether MPS is connected to the 3D Audio core decoder in the QMF domain or in the time domain.

x.2 Syntax and Data Structure

The bitstream syntax and data structure are identical to the definitions in ISO/IEC 23003-1:2007, Information technology — MPEG audio technologies — Part 1: MPEG Surround 

x.3 Tool Description

The processing of the MPEG Surround tools are fully specified in ISO/IEC 23003-1:2007, Information technology — MPEG audio technologies — Part 1: MPEG Surround 

The following changes are related to the chapter 12
Higher Order Ambisonics (HOA).

Replace Figure 33 — Simplified block diagram of the decoder with:

[image: image4.png]
In subclause 12.1.1
Block Diagram replace:

The fixed subset of the [image: image6.png] HOA coefficient signals is re-correlated, this means the decorrelation at the HOA encoding stage is reversed. Next, all of the [image: image8.png] HOA coefficient signals are used to create the ambient HOA components. The predominant HOA components are synthesized from the [image: image10.png] predominant signals and the corresponding parameters. Finally, the predominant and the ambient HOA components are composed into the desired full HOA representation, which is then rendered to a given loudspeaker setup. 

with:

The fixed subset of the [image: image12.png] HOA coefficient signals is re-correlated, this means the decorrelation at the HOA encoding stage is reversed. Next, all of the [image: image14.png] HOA coefficient signals are used to create the ambient HOA component. The ambient HOA component is input to the Directional Signals Synthesis and the Preliminary HOA Composition. The Directional Signals Synthesis creates a new HOA representation from the ambient HOA component by prediction. The predominant HOA component is synthesized from the [image: image16.png] predominant sound signals and the corresponding parameters. The predominant and the ambient HOA component are composed into the preliminary HOA representation, which is then input to the Parametric Ambience Replication (PAR). The PAR adds missing ambience components to the preliminary HOA representation, which is parametrically created from its input signals. Finally the output of the PAR, the preliminary HOA representation and the output of the Directional Signals Synthesis are composed to the decoded HOA representation that is rendered to the loudspeaker setup by the HOA Renderer. 

Replace Figure 34 — The architecture of the HOA decoder tools with:

[image: image17.png]
In subclause 12.1.2.1
HOA Decoding Tools replace:

· Ambient Synthesis

· HOA Compositions

with:

· Ambience Synthesis

· Preliminary HOA Composition

· Sub-band Directional Signals Synthesis

· Parametric Ambience Replication Decoder

· HOA Composition

In Table 120 — Syntax of HOADecoderConfig() replace:

	
MaxNumAddActiveAmbCoeffs = NumOfHoaCoeffs – 









 MinNumOfCoeffsForAmbHOA;
	
	


with:

	
if( MinAmbHoaOrder < HoaOrder ) {
	
	

	

DiffOrderBits = ceil( log2(HoaOrder- MinAmbHoaOrder+1))
	
	

	

MaxHOAOrderToBeTransmitted = DiffOrder + 















MinAmbHoaOrder;
	DiffOrderBits
	uimsbf

	
}
	
	

	
else {
	
	

	

MaxHOAOrderToBeTransmitted = HoaOrder;
	
	

	
}
	
	

	
MaxNumOfCoeffsToBeTransmitted = 





(MaxHOAOrderToBeTransmitted + 1)^2;
	
	

	
MaxNumAddActiveAmbCoeffs = 





MaxNumOfCoeffsToBeTransmitted  





 - MinNumOfCoeffsForAmbHOA;
	
	

	
VqConfBits = ceil( log2( ceil( log2(NumOfHoaCoeffs))))
	
	

	
NumVVecVqElementsBits++;
	VqConfBits
	uimsbf

	
if( MinAmbHoaOrder == 1) {
	
	

	

UsePhaseShiftDecorr;
	1
	bslbf

	
}
	
	

	
if(PredSubbandsIdx < 3) {
	2
	uimsbf

	

NumOfPredSubbands = 



NumOfPredSubbandsTable[PredSubbandsIdx];
	
	

	

PredSubbandWidths = 



PredSubbandWidthTable[PredSubbandsIdx];
	
	

	
}
	
	

	
else {
	
	

	

CodedNumberOfPredSubbands
	5
	uimsbf

	

NumOfPredSubbands = CodedNumberOfPredSubbands+1;
	
	

	

PredSubbandWidths = 



getSubbandWidths(NumOfPredSubbands);
	
	

	
}
	
	

	
if ( NumOfPredSubbands > 0 ) {
	
	

	

FirstSBRSubbandIdxBits = ceil( log2 (NumOfPredSubbands+1));
	
	

	

FirstSBRSubbandIdx;
	FirstSBRSubbandIdxBits
	uimsbf

	

MaxNumOfPredDirs =  2^( MaxNumOfPredDirsLog2);
	3
	uimsbf

	

MaxNumOfPredDirsPerBand = escapedValue(3,2,5) + 1;
	
	

	
}
	
	

	
	
	

	
NumOfBitsPerDirIdx = NumOfBitsPerDirIdxTable[DirGridTableIdx];
	2
	uimsbf

	
if( ParSubbandTableIdx < 3 ) {
	2
	uimsbf

	

NumOfParSubbands = 



NumOfParSubbandsTable[ParSubbandTableIdx];
	
	

	

ParSubbandWidths = 



ParSubbandWidthTable[ParSubbandTableIdx];
	
	

	
}
	
	

	
else {
	
	

	

CodedNumberOfParSubbands
	5
	uimsbf

	

NumOfParSubbands = CodedNumberOfParSubbands+1;
	
	

	

ParSubbandWidths = 



getSubbandWidths(NumOfParSubbands);
	
	

	
}
	
	

	
if( NumOfParSubbands > 0 ) {
	
	

	

LastFirstOrderSubbandIdxBits = 



ceil( log2(NumOfParSubbands + 1) );
	
	

	

LastFirstOrderSubbandIdx;
	LastFirstOrderSubbandIdxBits
	uimsbf

	

for ( idx = 0; idx < NumOfParSubbands; idx++) {
	
	

	


UseRealCoeffsPerParSubband[idx];
	1
	bslbf

	

}
	
	

	

for ( idx = 0; idx < LastFirstOrderSubBandIdx; idx++) {
	
	

	


UpmixHoaOrderPerParSubband[idx] = 1;
	
	

	


MaxNumOfDecoSigs[idx] =




(UpmixHoaOrderPerParSubband[idx] + 1)^2;
	
	

	

}
	
	

	

for ( idx = LastFirstOrderSubBandIdx; 



idx < NumOfParSubbands; idx++) {
	
	

	


UpmixHoaOrderPerParSubband[idx] = 2;
	
	

	


MaxNumOfDecoSigs[idx] =




(UpmixHoaOrderPerParSubband[idx] + 1)^2;
	
	

	

}
	
	

	
}
	
	


Add the following table before Figure 35 — Example for HOAConfig() in subclause 12.2.1
Configuration of HOA elements:

Table AMD1.1 — Syntax of getSubbandWidths()0\IF >= 1 "A." 

	Syntax
	No. of bits
	Mnemonic

	getSubbandWidths(NumberOfSubbands)
	
	

	{
	
	

	
totalBwSum = 0;
	
	

	
if(NumberOfSubbands > 1) {
	
	

	

CodedBwFirstBand
	1..
	uclbf

	

bw[0] = CodedBwFirstBand+1;
	
	

	

totalBwSum = totalBwSum + bw[0];
	
	

	

if(NumberOfSubbands > 2) {
	
	

	


for (nb = 1; nb < NumberOfSubbands-2; nb++) {
	
	

	



bw[nb] = bw[nb-1] + bw_diff;
	1..
	uclbf

	



totalBwSum = totalBwSum + bw[nb];
	
	

	


}
	
	

	


bw[nb] = bw[nb-1] + bw_diff;
	5
	uimsbf

	


totalBwSum = totalBwSum + bw[nb];
	
	

	

}
	
	

	
}
	
	

	
bw[NumberOfSubbands-1] = 64 – totalBwSum;
	
	

	
return(bw);
	
	

	}
	
	


Replace Figure 35 — Example for HOAConfig() with 

[image: image18.png]
In Table 121 — Syntax of HOAFrame replace:

	
NumOfContAddHoaChans = 0;
	
	


with:

	
NumOfContAddHoaChans = 0;
	
	

	
NumOfAddHoaChans = 0;
	
	


In Table 121 — Syntax of HOAFrame replace:

	

case 2:
	
	

	


if (AmbCoeffTransitionState[i] == 0) {
	
	

	



ContAddHoaCoeff [NumOfContAddHoaChans] = 












AmbCoeffIdx[i];
	
	

	



NumOfContAddHoaChans++;
	
	

	


}
	
	

	


break;
	
	


with:

	

case 2:
	
	

	


if (AmbCoeffTransitionState[i] == 0) {
	
	

	



ContAddHoaCoeff [NumOfContAddHoaChans] = 












AmbCoeffIdx[i];
	
	

	



NumOfContAddHoaChans++;
	
	

	


}
	
	

	


AddHoaCoeff[NumOfAddHoaChans] = AmbCoeffIdx[i];
	
	

	


NumOfAddHoaChans++;
	
	

	


break;
	
	


In Table 121 — Syntax of HOAFrame replace:

	
if(NumOfDirSigs > 0){
	
	

	

HOAPredictionInfo( DirSigChannelIds, NumOfDirSigs )
	
	

	
}
	
	


with:

	
if(NumOfDirSigs > 0){
	
	

	

HOAPredictionInfo( DirSigChannelIds, NumOfDirSigs )
	
	

	
}
	
	

	
	
	

	
if( NumOfPredSubbands > 0) {
	
	

	

HOADirectionalPredictionInfo();
	
	

	
}
	
	

	
if( NumOfParSubbands > 0) {
	
	

	

HOAParInfo();
	
	

	
}
	
	


In Table 122 — Syntax of ChannelSideInfoData(i) replace:

	


if(hoaIndependencyFlag){
	
	

	



NbitsQ(k)[i]
	4
	uimsbf

	



if (NbitsQ(k)[i] == 4) {
	
	

	




CodebkIdx(k)[i];
	3
	uimsbf

	



}
	
	


With:

	


if(hoaIndependencyFlag){
	
	

	



NbitsQ(k)[i]
	4
	uimsbf

	



if (NbitsQ(k)[i] == 4) {
	
	

	




CodebkIdx(k)[i];
	3
	uimsbf

	




NumVvecIndices(k)[i]++;
	NumVVecVqElementsBits
	uimsbf

	



}
	
	


In Table 122 — Syntax of ChannelSideInfoData(i) replace:

	



if ((bA + bB) == 0) {
	
	

	




NbitsQ(k)[i] = NbitsQ(k-1)[i];
	
	

	




PFlag(k)[i] = PFlag(k-1)[i];
	
	

	




CbFlag(k)[i] = CbFlag(k-1)[i];
	
	

	




CodebkIdx(k)[i] = CodebkIdx(k-1)[i];
	
	

	



}
	
	

	



else{
	
	

	




NbitsQ(k)[i]  = (8*bA)+(4*bB)+uintC;
	2
	uimsbf

	




if (NbitsQ(k)[i] == 4) {
	
	

	





CodebkIdx(k)[i];
	3
	uimsbf

	




}
	
	


With:

	



if ((bA + bB) == 0) {
	
	

	




NbitsQ(k)[i] = NbitsQ(k-1)[i];
	
	

	




PFlag(k)[i] = PFlag(k-1)[i];
	
	

	




CbFlag(k)[i] = CbFlag(k-1)[i];
	
	

	




CodebkIdx(k)[i] = CodebkIdx(k-1)[i];
	
	

	




NumVvecIndices(k)[i] = 









NumVvecIndices[k-1][i];
	
	

	



}
	
	

	



else{
	
	

	




NbitsQ(k)[i]  = (8*bA)+(4*bB)+uintC;
	2
	uimsbf

	




if (NbitsQ(k)[i] == 4) {
	
	

	





CodebkIdx(k)[i];
	3
	uimsbf

	




NumVvecIndices(k)[i]++;
	NumVVecVqElementsBits
	uimsbf

	




}
	
	


In Table 122 — Syntax of ChannelSideInfoData(i) remove:

	NOTE
CodebkIdx = 1 … 6 are reserved.
	
	


In Table 126 — Syntax of VVectorData() replace:

	
NumVvecIndices = CodebkIdx(k)[i] +1;
	
	

	

If (CodebkIdx(k)[i] == 0) {
	
	

	


VvecIdx[0] = VvecIdx + 1;
	10
	uimsbf

	


WeightVal[0] = ((SgnVal*2)-1);
	1
	uimsbf

	

} else {
	
	


With:

	

if (NumVecIndices(k)[i] == 1) {
	
	

	


VecIdx[0] = VecIdx + 1;
	10
	uimsbf

	


WeightVal[0] = ((SgnVal*2)-1);
	1
	uimsbf

	

} else {
	
	


Add the following tables before Figure 36 — Two examples for HOAFrame()

Table AMD1.2 — Syntax of HOADirectionalPredictionInfo()
	Syntax
	No. of bits
	Mnemonic

	HOADirectionalPredictionInfo ()
	
	

	{
	
	

	
if( UseDirectionalPrediction ) {
	1
	bslbf

	
if (!hoaIndependencyFlag) {
	
	

	

KeepPreviousGlobalPredDirsFlag; 
	1
	bslbf

	
}
	
	

	
else{
	
	

	

KeepPreviousGlobalPredDirsFlag = 0;
	
	

	
}
	
	

	
if( !KeepPreviousGlobalPredDirsFlag) {
	
	

	


NumOfGlobalPredDirs = NumOfGlobalPredDirs + 1;
	MaxNumOfPredDirsLog2
	bslbf

	


NumBitsForRelDirGridIdx = ceil( 








log2( NumOfGlobalPredDirs ) );
	
	

	


for ( idx=0; idx < NumOfGlobalPredDirs; idx++) {
	
	

	



GlobalPredDirsIds[idx]; 
	NumOfBitsPerDirIdx
	uimsbf

	


}
	
	

	

}
	
	

	

else{
	
	

	


/* Keep values from previous HOADirectionalPredictionInfo




payload for NumOfGlobalPredDirs and




GlobalPredDirsIds. */
	
	

	

}
	
	

	
	
	

	

SortedAddHoaCoeff = sort(AddHoaCoeff, ‘ascend’);
	
	

	
	
	

	

for ( band = 0; band < NumOfPredSubbands; band++ ) {
	
	

	


for ( dir = 0; dir < MaxNumOfPredDirsPerBand; dir++) {
	
	

	



for ( hoaIdx = 0; 





hoaIdx < MinNumOfCoeffsForAmbHOA;





hoaIdx++ ) {
	
	

	




DecodedMagDiff[band][dir][hoaIdx] = 0;
	
	

	




DecodedAngleDiff[band][dir][hoaIdx] = 0;
	
	

	



}
	
	

	


}
	
	

	

}
	
	

	
	
	

	

for ( band = 0; band < NumOfPredSubbands; band++ ) {
	
	

	


if (!hoaIndependencyFlag) {
	
	

	



KeepPreviousDirPredMatrixFlag[band]; 
	1
	bslbf

	


}
	
	

	


else{
	
	

	



KeepPreviousDirPredMatrixFlag[band] = 0;
	
	

	


}
	
	

	


if (!KeepPreviousDirPredMatrixFlag[band]) {
	
	

	



UseHuffmanCodingDiffMag;
	1
	bslbf

	



if( band < FirstSBRSubbandIdx ) {
	
	

	




UseHuffmanCodingDiffAngle;
	1
	bslbf

	



for ( dir = 0; dir < MaxNumOfPredDirsPerBand; dir++) {
	
	

	




if ( DirIsActive[band][dir] ) {
	1
	bslbf

	





RelDirGridIdx;
	NumBitsForRelDirGridIdx
	uimsbf

	





PredDirGridIdx[band][dir] = 









GlobalPredDirsIds[RelDirGridIdx];
	
	

	





for ( hoaIdx = 0; 







hoaIdx < MinNumOfCoeffsForAmbHOA;







hoaIdx++ ) {
	
	

	






readDirPredDiffValues (band, dir, hoaIdx, 








UseHuffmanCodingDiffAbs,








UseHuffmanCodingDiffAngle,








FirstSBRSubbandIdx);
	
	

	





}
	
	

	





for ( idx = 0; 







idx < NumOfAddHoaChans; 







idx++ ) {
	
	

	






readDirPredDiffValues (band, dir, 








SortedAddHoaCoeff[idx] -1, 








UseHuffmanCodingDiffAbs,








UseHuffmanCodingDiffAngle,








FirstSBRSubbandIdx);
	
	

	





}
	
	

	




}
	
	

	



}
	
	

	


}
	
	

	

}
	
	

	
}
	
	

	}
	
	


Table AMD1.3 — Syntax for readDirPredDiffValues()

	Syntax
	No. of bits
	Mnemonic

	readDirPredDiffValues(band, dir, hoaIdx, 





UseHuffmanCodingDiffAbs,





UseHuffmanCodingDiffAngle,





FirstSBRSubbandIdx)
	
	

	{
	
	

	
if(UseHuffmanCodingDiffAbs) {
	
	

	

if( band < FirstSBRSubbandIdx ) {
	
	

	


DecodedMagDiff[band][dir][hoaIdx] = 




HuffmanMagDiffNoSbr[HuffmanCodedMagDiff];
	1..10
	vlclbf

	

else {
	
	

	


DecodedMagDiff[band][dir][hoaIdx] =  




HuffmanMagDiffSbr[HuffmanCodedRealMagDiff];
	1..12
	vlclbf

	

}
	
	

	

if(DecodedMagDiff[band][dir][hoaIdx] ≤ -8){
	
	

	


DecodedMagDiff[band][dir][hoaIdx] = -8 - 




runLengthCodedVal; 
	1..
	uclbf

	


{
	
	

	


else if (DecodedMagDiff[band][dir][hoaIdx] ≥ 9){
	
	

	



 DecodedMagDiff[band][dir][hoaIdx] = 9 + 





runLengthCodedVal;
	1..
	uclbf

	


}
	
	

	

}
	
	

	
}
	
	

	
else {
	
	

	

DecodedMagDiff[band][dir][hoaIdx] = CodedMagDiff -7;
	4
	uimsbf

	

if(DecodedMagDiff[band][dir][hoaIdx] ≤ -7){
	
	

	


 DecodedMagDiff[band][dir][hoaIdx] = -7 - 




runLengthCodedVal; 
	1..
	uclbf

	

{
	
	

	

else if (DecodedMagDiff[band][dir][hoaIdx] ≥ 8){
	
	

	


 DecodedMagDiff[band][dir][hoaIdx] = 8 + 




runLengthCodedVal;
	1..
	uclbf

	

}
	
	

	
}
	
	

	
if( band < FirstSBRSubbandIdx ) {
	
	

	

if(UseHuffmanCodingDiffAngle) {
	
	

	


DecodedAngleDiff[band][dir][hoaIdx] = 






DecTableAngleDiff[HuffCodedAngleDiff];
	1..7
	vlclbf

	

}
	
	

	

else {
	
	

	


DecodedAngleDiff[band][dir][hoaIdx] = 




DecTableAngleDiff[CodedAngleDiff];
	4
	uimsbf

	

}
	
	

	
}
	
	

	}
	
	


0\IF >= 1 "A." 

Table AMD1.4 — Syntax of HOAParInfo()0\IF >= 1 "A." 

	Syntax
	No. of bits
	Mnemonic

	HOAParInfo()
	
	

	{
	
	

	
if (UsePar) {

	1
	bslbf

	

for (band = 0; band < NumOfParSubbands; band++) {
	
	

	


for(n = 0; 




n < MaxNumOfDecoSigs[band];




n++) {
	
	

	



for(m = 0; 





m < MaxNumOfDecoSigs[band];





m++) {
	
	

	




DecodedParMagDiff [band][n][m] = 0;
	
	

	




DecodedParAngleDiff [band][n][m] = 0;
	
	

	



}
	
	

	


}
	
	

	


if (!hoaIndependencyFlag) {
	
	

	



KeepPreviousParMatrixFlag[band]; 
	1
	bslbf

	


}
	
	

	


else{
	
	

	



KeepPreviousParMatrixFlag[band] = 0;
	
	

	


}
	
	

	


if (!KeepPreviousParMatrixFlag[band]) {
	
	

	



ParDecorrSigsSelectionTableIdx[band]
	2
	uimsbf

	



if (UpmixHoaOrderPerParSubband[band] == 2) {
	
	

	




NumOfDecorrSigsPerParSubband = 






NumOfDecorrSigsPerParSubbandTable[







ParDecorrSigsSelectionTableIdx[band]]
	
	

	




ParSelectedDecorrSigsIdxMatrix = 






ParSelectedDecorrSigsIdxMatrixTable[







ParDecorrSigsSelectionTableIdx[band]]
	
	

	



}
	
	

	



else{
	
	

	




NumOfDecorrSigsPerParSubband = 






NumOfDecorrSigsPerFirstOrderPar






SubbandTable[







ParDecorrSigsSelectionTableIdx[band]]
	
	

	




ParSelectedDecorrSigsIdxMatrix = 






ParFirstOrderSelectedDecorr






SigsIdxMatrixTable [







ParDecorrSigsSelectionTableIdx[band]]
	
	

	



}
	
	

	



if (UseReducedNoOfUpmixSigs){
	1
	bslbf

	




for(n = 0; 






n < MaxNumOfDecoSigs[band]; n++) {
	
	

	





UseParUpmixSig[band][n];
	1
	bslbf

	




}
	
	

	



}
	
	

	



else {
	
	

	




for(n = 0; 






n < MaxNumOfDecoSigs[band]; n++) {
	
	

	





UseParUpmixSig[band][n] = 1;
	
	

	




}
	
	

	



}
	
	

	



UseParHuffmanCodingDiffAbs;
	1
	bslbf

	



if( !UseRealCoeffsPerParSubband[band] ) {
	
	

	




UseParHuffmanCodingDiffAngle;
	1
	bslbf

	



}
	
	

	



for(n = 0; 





n < MaxNumOfDecoSigs[band];





n++) {
	
	

	




if(UseParUpmixSig[band][n]) {
	
	

	





for(m = 0;
	
	

	






m < 







NumOfDecorrSigsPerParSubband
;






m++) {
	
	

	






c = ParSelectedDecorrSigsIdxMatrix[n][m];
	
	

	






readParDiffValues(band, n, c,








UseParHuffmanCodingDiffAbs,








UseParHuffmanCodingDiffAngle);
	
	

	





}
	
	

	




}
	
	

	



}
	
	

	


}
	
	

	

}
	
	

	
}
	
	

	}
	
	


Table AMD1.5 — Syntax for readParDiffValues()0\IF >= 1 "A." 

	Syntax
	No. of bits
	Mnemonic

	readParDiffValues (band, idx, decoIdx, UseParHuffmanCodingDiffAbs,





UseParHuffmanCodingDiffAngle)
	
	

	{
	
	

	
if(UseParHuffmanCodingDiffAbs) {
	
	

	

if(UseRealCoeffsPerParSubband[band]) {
	
	

	


DecodedParMagDiff[band][idx][decoIdx] = 




HuffmanMagDiffSbr[HuffmanCodedParMagDiff];
	1..10
	vlclbf

	

else {
	
	

	


DecodedParMagDiff[band][idx][decoIdx] = 



   HuffmanMagDiffNoSbr[HuffmanCodedRealParMagDiff];
	1..12
	vlclbf

	

}
	
	

	

if (DecodedParMagDiff [band][dir][hoaIdx] ≤ -8)
	
	

	


 DecodedParMagDiff[band][idx][decoIdx] = -8 - 




runLengthCodedVal; 
	1..
	uclbf

	

}
	
	

	

else if (DecodedParMagDiff [band][dir][hoaIdx] ≥ 9)
	
	

	


 DecodedParMagDiff[band][idx][decoIdx] = 9 + 




runLengthCodedVal;
	1..
	uclbf

	

}
	
	

	
else {
	
	

	

DecodedParMagDiff[band][idx][decoIdx] = 



CodedParMagDiff - 7;
	4
	uimsbf

	

if (DecodedParMagDiff [band][dir][hoaIdx] ≤ -7)
	
	

	


 DecodedParMagDiff[band][idx][decoIdx] = -7 - 




runLengthCodedVal; 
	1..
	uclbf

	

}
	
	

	

else if (DecodedParMagDiff [band][dir][hoaIdx] ≥ 8)
	
	

	


 DecodedParMagDiff[band][idx][decoIdx] = 8 + 




runLengthCodedVal;
	1..
	uclbf

	

}
	
	

	
}
	
	

	
if(!UseRealCoeffsPerParSubband[band]){
	
	

	

if(UseParHuffmanCodingDiffAngle) {
	
	

	


DecodedParAngleDiff[band][idx][decoIdx] = 




DecTableAngleDiff[HuffCodedParAngleDiff];
	1..7
	vlclbf

	

}
	
	

	

else {
	
	

	


DecodedParAngleDiff[band][idx][decoIdx] = 




DecTableAngleDiff[CodedParAngleDiff];
	4
	uimsbf

	

}
	
	

	
}
	
	

	}
	
	


In subclause 12.3.1
Definitions of HOA Config replace:

MaxNumAddActiveAmbCoeffs
This element determines the maximum number of additional HOA channels that can be used additionally for the coding of the ambient HOA representation. 

With:

MaxHOAOrderToBeTransmitted

This element indicates the maximum HOA order of the additional ambient HOA coefficients to be transmitted.

MaxNumOfCoeffsToBeTransmitted
This element indicates the maximum number of HOA coefficients to be transmitted, computed depending on MaxHOAOrderToBeTransmitted.

MaxNumAddActiveAmbCoeffs
This element signals the maximum index for the signaling of additional ambient HOA coefficients. 

VqConfBits
This element indicates the number of bits necessary to signal the element NumVVecVqElementsBits
NumVVecVqElementsBits
This element indicates the number of bits used to signal the element NumVvecIndices in ChannelSideInfoData()
UsePhaseShiftDecorr
This element signals the usage of the phase shift de-correlation in the ambience synthesis, where true means it is used.

PredSubbandsIdx
This element signals the table index for the sub-band configuration of the Sub-band Directional Signals Synthesis 

NumOfPredSubbands
This element contains the number of sub-band groups used for the Sub-band Directional Signals Synthesis

NumOfPredSubbandsTable
This table contains the number of sub-band groups for each PredSubbandsIdx for the Sub-band Directional Signals Synthesis

PredSubbandWidths[idx]
This array of NumOfPredSubbands elements contains the number of QMF sub-bands per sub-band group of the Sub-band Directional Signals Synthesis. 

PredSubbandWidthTable
This table contains the bandwidths of the sub-band groups for each table index PredSubbandsIdx for the Sub-band Directional Signals Synthesis

Table AMD1.6 — Directional Prediction Subbands Table 0\IF >= 1 "A." 

	PredSubbandsIdx
	NumOfPredSubbandsTable
	PredSubbandWidthTable

	0
	0
	[]

	1
	10
	[1, 1, 1, 2, 2, 2, 3, 6, 11, 35]

	2
	20
	[1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4,5,7,11, 18]


getSubbandWidths() 
This function reads a flexible sub-band group configuration.

FirstSBRSubbandIdxBits
This element determines the number of bits for reading FirstSBRSubbandIdx. 

FirstSBRSubbandIdx
Indicates the first sub-band group of the Directional Signals Synthesis where the samples are reconstructed by the SBR tool. To deactivate the special SBR processing in the Sub-band Directional Signals Synthesis set the value of this element to NumOfPredSubbands + 1. 

MaxNumOfPredDirsLog2
This element signals the logarithm to the base of two from the maximum number of signals that are predicted in the Sub-band Directional Signals Synthesis.

MaxNumOfPredDirs
This element signals the maximum number of signals that are predicted in the Sub-band Directional Signals Synthesis.

MaxNumOfPredDirsPerBand
This element contains the maximum number of predicted signals per sub-band group of the Sub-band Directional Signals Synthesis.

DirGridTableIdx
This index determines the grid of potential directions of directional sub-band signals created at the Sub-band Directional Signals Synthesis.

NumOfBitsPerDirIdx
The element determines the number of bits for signaling the index of a virtual loudspeaker position index.

NumOfGridPointsTable
This table determines the number of potential directions of directional sub-band signals created at the Sub-band Directional Signals Synthesis.
NumOfBitsPerDirIdxTable
This table determines the number of bits used to code each single potential direction of a directional sub-band signal created at the Sub-band Directional Signals Synthesis.

Table AMD1.7 — Quantized Direction Index Table 0\IF >= 1 "A." 

	DirGridTableIdx
	NumOfGridPointsTable
	NumOfBitsPerDirIdxTable

	0
	256
	8

	1
	484
	9

	2
	900
	10

	3
	reserved
	reserved


ParSubbandTableIdx
This element signals the table index for the sub-band configuration of the Parametric Ambience Replication decoder 

NumOfParSubbands
This element signals the number of sub-band groups used by the Parametric Ambience Replication decoder

NumOfParSubbandsTable
This table contains the number of sub-band groups for each PAR sub-band group table index ParSubbandTableIdx 

ParSubbandWidths
This array of NumOfParSubbands elements contains the number of QMF sub-bands per sub-band group of the Parametric Ambience Replication decoder. 

ParSubbandWidthTable
This table contains the bandwidths of the sub-band groups for each table index ParSubbandTableIdx for the PAR decoder

Table AMD1.8 — PAR Subbands Table 0\IF >= 1 "A." 

\IF 0>= 1 "A." 

	ParSubbandTableIdx
	NumOfParSubbandsTable
	ParSubbandWidthTable

	0
	0
	[]

	1
	4
	[1, 1, 22, 40]

	2
	8
	[1, 1, 1, 2, 2, 5, 10, 42]


LastFirstOrderSubbandIdxBits
This element determines the number of bits required for reading LastFirstOrderSubbandIdx

LastFirstOrderSubbandIdx
This element indicates the index of the last PAR sub-band group that uses an HOA order of one.

UseRealCoeffsPerParSubband[idx]
This Boolean array indicates for each PAR sub-band group if the mixing matrix consists of real-valued non-negative (true) or complex valued elements matrix (false). 

UpmixHoaOrderPerParSubband[idx]
This array contains the HOA order used in each PAR sub-band group

MaxNumOfDecoSigs[idx]
This array contains the maximum number of de-correlated signals per PAR sub-band group.

Add the following subclause after subclause 12.3.1
Definitions of HOA Config

12.3.x Syntax of getSubbandBandwidths()

This function reads the bandwidth for NumberOfSubbands sub-band groups.

CodedBwFirstBand
This element signals the bandwidth of the first sub-band group by the number of QMF sub-bands

NumberOfSubbands
This element contains the total number of sub-band groups

bw[idx]
This array holds the bandwidth of each sub-band group in the number of QMF sub-bands

bw_diff
This element contains the differentially coded bandwidth of a sub-band group

In subclause 12.3.2.1
HOAFrame() replace:

HOAPredictionInfo( DirSigChannelIds, NumOfDirSigs )


This payload contains data for the prediction of dominant sound sources from the active directional signals of the current frame.

With:

AddHoaCoeff[idx]
This array contains the HOA coefficient index for each additional ambient HOA coefficient. 

HOAPredictionInfo( DirSigChannelIds, NumOfDirSigs )


This payload contains data for the prediction of dominant sound sources from the active directional signals of the current frame.

HOADirectionalPredictionInfo
This payload contains data for the Sub-band Directional Signals Synthesis.

HOAParInfo
This payload contains data for the Parametric Ambience Replication.

In subclause 12.3.2.2
ChannelSideInfoData(i) replace:

CodebkIdx[i]
Signals the specific codebook used to dequantize the vector-quantized V‑vector associated with the Vector-based signal of the i-th channel.

With:

CodebkIdx[i]
Signals the specific codebook used to dequantize the vector-quantized V‑vector associated with the Vector-based signal of the i-th channel.

NumVvecIndices(k)[i]
The number of vectors used to dequantize a vector-quantized V-vector.

In subclause 12.3.2.5
VVectorData( VecSigChannelIds(i) ) remove:

NumVvecIndices
The number of vectors used to dequantize a vector-quantized V‑vector. 

Add the following subclauses after 12.3.2.6
HOAPredictionInfo( DirSigChannelIds, NumOfDirSigs ):

12.3.2.x HOADirectionalPredictionInfo

This Payload contains data for the Directional Signals Synthesis.

UseDirectionalPrediction
This flag indicates if the Directional Signals Synthesis is performed in the current frame. 

KeepPreviousGlobalPredDirsFlag
This flag indicates that the elements NumOfGlobalPredDirs, NumBitsForRelDirGridIdx and GlobalPredDirsIds read from the previous HOADirectionalPredictionInfo payload are used. 

NumOfGlobalPredDirs
This element determines the available number of global, broadband directions.

NumBitsForRelDirGridIdx
This element indicates the number of bit required for reading GlobalPredDirsIds. 

GlobalPredDirsIds
This array contains the indices for the NumOfGlobalPredDirs directions, where each index belongs to a direction from the grid of positions selected by DirGridTableIdx. 

SortedAddHoaCoeff
This array contains the HOA coefficients indices from AddHoaCoeff sorted ascendingly.

KeepPreviousDirPredMatrixFlag[band]
This Boolean is true if the signal prediction matrix is kept from the previous frame and false if the mixing matrix is update by new magnitude and angle differences.
UseHuffmanCodingDiffMag
This Boolean element is true if the magnitude differences are encoded by Huffman coding. 

UseHuffmanCodingDiffAngle
This Boolean element is true if the angle differences are encoded by Huffman coding.
DirIsActive
This Boolean element is true if the current direction of the current sub-band group has been transmitted. 

RelDirGridIdx
This element holds the relative index of the current direction index stored in GlobalPredDirsIds

PredDirGridIdx[band][dir]
This 2D array contains the direction indices belonging to the direction grid selected by DirGridTableIdx for all active directions of each sub-band group

readDirPredDiffValues()
This function reads the coded magnitude and angle differences.

12.3.2.x.1 Syntax for readDirPredDiffValues()

This function reads the magnitude and phase differences for the Directional Signal Synthesis. 

HuffCodedMagDiff
This element signals the Huffman coded magnitude difference using Table F.x Huffman Table for Decoding HuffmanMagDiffNoSbr 

DecodedMagDiff[band][dir][idx]
This 3D array holds the decoded magnitude difference from Table F.x Huffman Table for Decoding HuffmanMagDiffSbr for the prediction of each directional signal with the index dir of a sub-band group with the index band from the HOA coefficient with the index idx

runLengthCodedVal
This run length code determines magnitude difference if a corresponding escape word has been signaled. 

HuffCodedAngleDiff
This element signals the Huffman coded angle difference using Table F.x Huffman Table for DecTableAngleDiff
DecodedAngleDiff[band][dir][hoaIdx]
This 3D array holds the decoded angle difference from Table F.x Huffman Table for DecTableAngleDiff for the prediction of each directional signal with the index dir of a sub-band group with the index band from the HOA coefficient with the index idx

HuffCodedSbrMagDiff
This element signals the Huffman coded magnitude difference using Table F.x Huffman Table for Decoding HuffmanMagDiffSbr.
CodedMagDiff
This element holds the magnitude difference index quantized with 4 plain bits. 

CodedAngleDiff
This element holds the angle difference index quantized with 4 plain bits.

12.3.2.x HOAParInfo

This Payload contains data for the PAR decoder.

UsePar
This Boolean is true if the PAR decoding is performed in the current frame.
KeepPreviousParMatrixFlag[idx]
This Boolean is true if the mixing matrix is kept from the previous frame and false if the mixing matrix is update by new magnitude and angle differences. 

ParDecorrSigsSelectionTableIdx[idx]
This table index determines the number and the corresponding indices of the de-correlated signals that are used to create one up-mix signal.

NumOfDecorrSigsPerParSubband
This element indicates the number of de-correlated signals that are used to create one up-mix signal, which is obtained for UpmixHoaOrderPerParSubband[idx] of two from Table F.x Table for ParDecorrSigsSelectionTableIdx referring to NumOfDecorrSigsPerParSubbandTable and ParSelectedDecorrSigsIdxMatrixTable and for UpmixHoaOrderPerParSubband[idx] of one from Table F.x Table for ParDecorrSigsSelectionTableIdx referring to NumOfDecorrSigsPerFirstOrderParSubbandTable and ParFirstOrderSelectedDecorrSigsIdxMatrixTable exploiting the index ParDecorrSigsSelectionTableIdx[idx]

ParSelectedDecorrSigsIdxMatrix[sig][idx]
This matrix contains the NumOfDecorrSigsPerParSubband indices of the de-correlated signals that are used to create the up-mix signal with the index sig, where the matrix is obtained for UpmixHoaOrderPerParSubband[idx] of two from Table F.x Table for ParDecorrSigsSelectionTableIdx referring to NumOfDecorrSigsPerParSubbandTable and ParSelectedDecorrSigsIdxMatrixTable and for UpmixHoaOrderPerParSubband[idx] of one from Table F.x Table for ParDecorrSigsSelectionTableIdx referring to ParFirstOrderPermIdxVectorTable exploiting the index ParDecorrSigsSelectionTableIdx[idx].

UseReducedNoOfUpmixSigs
This elements signals that not all up-mix signals are created.
UseParUpmixSig[idx][n]
For each PAR sub-band group of index idx the elements of the Boolean matrix are true if the up-mix signal with an index n is created or false if it is not created.
UseParHuffmanCodingDiffAbs
This Boolean indicates by true that the magnitude differences are Huffman coded. 

UseParHuffmanCodingDiffAngle
This Boolean indicates by true that the angle differences are Huffman coded. 

c
The index is equal to the index of the de-correlated signal used to create the current up-mix signal. It is obtained from Table F.x Table for ParDecorrSigsSelectionTableIdx referring to NumOfDecorrSigsPerParSubbandTable and ParSelectedDecorrSigsIdxMatrixTable for the current value of ParDecorrSigsSelectionTableIdx.
12.3.2.x.1 readParDiffValues()

This function reads magnitude and phase differences of the mixing matrices that are used by the PAR decoder.

HuffCodedParMagDiff
This element signals the Huffman coded magnitude difference using Table F.x Huffman Table for Decoding ParHuffmanMagDiffNoSbr
runLengthCodedVal
This run length code determines magnitude difference if a corresponding escape word has been signaled.

DecodedParMagDiff[band][idx][decoIdx]
This 3D array holds the decoded magnitude differences  for the prediction of each virtual loudspeaker signal with the index idx of a sub-band group with the index band from the de-correlated signal with the index decoIdx

HuffCodedParAngleDiff
This element signals the Huffman coded angle difference using Table F.x Huffman Table for ParDecTableAngleDiff
DecodedParAngleDiff[band][idx][decoIdx]
This 3D array holds the decoded angle differences for the prediction of each virtual loudspeaker signal with the index idx of a sub-band group with the index band from the de-correlated signal with the index idx

HuffmanCodedRealParMagDiff
This element signals the Huffman coded magnitude difference using Table F.x Huffman Table for Decoding ParHuffmanMagDiffSbr
CodedParMagDiff
This element holds the coded magnitude difference index quantized with 4 plain bits. 

CodedParAngleDiff
This element holds the coded angle difference index quantized with 4 plain bits.

In subclause 12.4.1.2
Global Parameter replace:

[image: image20.png]= MaxNoOfDirSigsForPrediction
Maximum number of directional signals used for the prediction of dominant sound sources

With:

[image: image22.png]= MaxNoOfDirSigsForPrediction
Maximum number of directional signals used for the prediction of dominant sound sources

[image: image24.png] 
Maximum number of directions per sub-band for Sub-band Directional Signals Synthesis 

[image: image26.png];
Maximum number of different directions over all sub-bands for Sub-band Directional Signals Synthesis

Add the following subclauses after 12.4.1.2
Global Parameter

12.4.1.2.1 Upper and lower bounds of sub-band groups for Sub-band Directional Signals Synthesis

[image: image28.png];

[image: image30.png];

for (b=0; b < [image: image32.png]; b++)

{



[image: image34.png]


[image: image36.png]
}

[image: image38.png];

12.4.1.2.2 Upper and lower bounds of sub-band groups for PAR

[image: image40.png];

[image: image42.png];

for (g=0; g < [image: image44.png]; g++)

{



[image: image46.png]


[image: image48.png]
}

[image: image50.png];

12.4.1.2.3 Orders [image: image52.png] for each sub-band group [image: image54.png] for PAR

for (g=0; g < [image: image56.png]; g++)

{


[image: image58.png];

}

Add the following subclauses after 12.4.1.10.6 Tuple set  

12.4.1.x Tuple sets [image: image60.png] for Sub-band Directional Signals Synthesis

[image: image62.png];
for (b=0; b < NumOfPredSubbands; b++)
{

[image: image64.png];

if(KeepPreviousDirPredMatrixFlag[b])

{


[image: image66.png];

}
else
{


[image: image68.png];


for (d=0; d < MaxNumOfPredDirsPerBand; d++)


{



if (DirIsActive[b][d])



{




[image: image70.png]; // according to tables F.9- F.11




[image: image72.png];



}


}

}
}
12.4.1.x Sub-band prediction indicator [image: image74.png] for Sub-band Directional Signals Synthesis

[image: image76.png];

12.4.1.x Prediction coefficient matrices [image: image78.png] for Sub-band Directional Signals Synthesis

Since the prediction coefficient matrix elements are coded differentially, before starting to decode/convert the elements for a [image: image80.png]-th independency frame it is necessary to initialize the quantized values to zero for the previous frame as follows:

if ([image: image82.png] )
{
for (b=0; b < NumOfPredSubbands; b++)
{
for (d=0; d < MaxNumOfPredDirsPerBand; d++)
{
for (n=0; n < MaxNumOfCoeffsToBeTransmitted; n++)
{

[image: image84.png];
[image: image86.png];
}

}

}

}

The actual decoding/conversion is assumed to be performed as follows:

for (b=0; b < NumOfPredSubbands; b++)

{


if([image: image88.png] && !hoaIndependencyFlag)

{


[image: image90.png] = [image: image92.png];


for (d=0; d < MaxNumOfPredDirsPerBand ; d++){



for (n=0; n < MaxNumOfCoeffsToBeTransmitted; n++){




[image: image94.png];




[image: image96.png];



}


}

}

else

{



for (d=0; d < MaxNumOfPredDirsPerBand; d++)



{




if (DirIsActive[b][d])




{





for (n=0; n < MaxNumOfCoeffsToBeTransmitted; n++)





{






[image: image98.png]











[image: image100.png];






if([image: image102.png])






{







[image: image104.png];






}






else






{







[image: image106.png]













[image: image108.png];







// constrain the quantized angle to lie in interval [-7,...,8] 







[image: image110.png];






}






if [image: image112.png]





{







FloatMag = [image: image114.png];






}






else






{







[image: image116.png]





}






[image: image118.png]





[image: image120.png];





}




}




else




{





for (n=0; n < MaxNumOfCoeffsToBeTransmitted; n++)





{






[image: image122.png];






[image: image124.png];






[image: image126.png];





}





}



}


}

}

12.4.1.x Mixing matrices [image: image128.png] for Parametric Ambience Replication

Since the mixing matrix elements are coded differentially, before starting to decode/convert the elements for a [image: image130.png]-th independency frame it is necessary to initialize the quantized values to zero for the previous frame as follows:

if ([image: image132.png] )
{
for (g=0; g < NumOfParSubbands; g++)
{
for (d=0; d < MaxNumOfDecoSigs(g); d++)
{
for (n=0; n < MaxNumOfDecoSigs(g); n++)
{

[image: image134.png];
[image: image136.png];
}

}

}

}

The actual decoding/conversion is assumed to be performed as follows:

for (g=0; g < NumOfParSubbands; g++)
{

if([image: image138.png] && !hoaIndependencyFlag)

{


[image: image140.png] = [image: image142.png];



for (d=0; d < MaxNumOfDecoSigs(g); d++){



for (n=0; n < MaxNumOfDecoSigs(g); n++){




[image: image144.png];




[image: image146.png];



}


}

}

else

{


[image: image148.png] 








[image: image150.png];
[image: image152.png] 
















[image: image154.png];


for (d=0; d < MaxNumOfDecoSigs(g); d++)


{



for (n=0; n < MaxNumOfDecoSigs(g); n++){





[image: image156.png];





[image: image158.png];





[image: image160.png]



}



if([image: image162.png])



{




for (n=0; n < [image: image164.png]; n++)




{





CurrColIdx = [image: image166.png];





[image: image168.png]








[image: image170.png];





if([image: image172.png])





{






[image: image174.png];





}





else





{






[image: image176.png]







[image: image178.png]







[image: image180.png];






// constrain the quantized angle to lie in interval [-7,...,8] 






[image: image182.png]








[image: image184.png];





}





if [image: image186.png]





{







FloatParMag = [image: image188.png];






}






else






{







[image: image190.png]





}





[image: image192.png]





[image: image194.png];



}


}

}
}
12.4.1.x Permutation matrices [image: image196.png] for PAR 

for (g=0; g < LastFirstOrderSubBandIdx; g++)
{


[image: image198.png]









[image: image200.png];


[image: image202.png]








[image: image204.png];


for (d=0; d < MaxNumOfDecoSigs(g); d++)


{



for (n=0; n < MaxNumOfDecoSigs(g); n++){




[image: image206.png];



}



[image: image208.png]+1][image: image210.png]= 1;


}
}
for (g= LastFirstOrderSubBandIdx; g < NumOfParSubbands; g++)
{


[image: image212.png] 









[image: image214.png];


[image: image216.png]








[image: image218.png];


for (d=0; d < MaxNumOfDecoSigs(g); d++)


{



for (n=0; n < MaxNumOfDecoSigs(g); n++){




[image: image220.png];



}



[image: image222.png]+1][image: image224.png]= 1;


}
}
12.4.1.x Indicator [image: image226.png] for use of PAR

[image: image228.png];

Replace Figure 40 — Architecture of spatial HOA decoder with:

[image: image229.png]
In subclause 12.4.2.1
General Architecture replace:

In the Predominant Sound Synthesis processing block the HOA representation of the predominant sound component [image: image231.png] is computed from the frame [image: image233.png] of all predominant sound signals. It uses the tuple sets [image: image235.png] and [image: image237.png], the set [image: image239.png] of prediction parameters and the sets [image: image241.png], [image: image243.png], [image: image245.png] of coefficient indices of the ambient HOA component, which have to be enabled, disabled and to remain active in the [image: image247.png] frame.

In the Ambience Synthesis processing block, the ambient HOA component frame [image: image249.png] is created from the frame [image: image251.png] of the intermediate representation of the ambient HOA component. Note that this processing also comprises an inverse spatial transform to invert the spatial transform applied in the encoder (see Annex C.5.3.3.2) for decorrelating the first [image: image253.png] coefficients of the ambient HOA component. 

Finally, in the HOA Composition processing block the ambient HOA component frame [image: image255.png] and the frame [image: image257.png] of the predominant sound HOA component are superimposed to provide the decoded HOA frame [image: image259.png].

In the following, the individual processing blocks are described in more detail.

With:

In the Predominant Sound Synthesis processing block the HOA representation of the predominant sound component [image: image261.png] is computed from the frame [image: image263.png] of all predominant sound signals. It uses the tuple sets [image: image265.png] and [image: image267.png], the set [image: image269.png] of prediction parameters and the sets [image: image271.png], [image: image273.png], [image: image275.png], which contain indices of coefficient sequences of the ambient HOA component, which are to be enabled, to be disabled and active but not be enabled or disabled, respectively. Additionally, a modified version [image: image277.png] of [image: image279.png] is computed by fading in coefficient sequences with indices contained in the index set [image: image281.png] and fading out coefficient sequences with indices contained in the index set [image: image283.png]. The modified version is only needed for the later computation of the modified version [image: image285.png] of the preliminary decoded HOA representation (see  Sec. 1.5 ) to be input to the PAR decoder.

In the Ambience Synthesis processing block, the ambient HOA component frame [image: image287.png] is created from the frame [image: image289.png] of the intermediate representation of the ambient HOA component. Note that this processing also comprises an inverse spatial transform to invert the spatial transform applied in the encoder (see Annex C.5.3.3.2) for decorrelating the first [image: image291.png] coefficients of the ambient HOA component. 

The ambient HOA component frame [image: image293.png] and the frame [image: image295.png] of the predominant sound HOA component are superposed in the Preliminary HOA Composition processing block to provide the frame [image: image297.png] of the preliminary decoded HOA representation. Additionally, the frame [image: image299.png] of a modified version of the preliminary decoded HOA representation is computed by replacing the frame [image: image301.png] by its modified version [image: image303.png] for the superposition. The resulting modified HOA representation [image: image305.png] is then successively input into the PAR decoder instead of the original version [image: image307.png] to avoid signal discontinuities after performing on [image: image309.png] the truncation and coefficient selection (see  Sec. 12.4.2.7.2). 

Finally, in the HOA Composition processing block the ambient HOA component frame [image: image311.png] and the frame [image: image313.png] of the predominant sound HOA component are superimposed to provide the decoded HOA frame [image: image315.png].

In the Sub-band Directional Signals Synthesis processing block the frame [image: image317.png] of the HOA representation of the composition of all predicted sub-band directional signals is computed. Each directional sub-band signal is assumed to be predicted by a complex valued weighted sum of the transmitted coefficient sequences of the ambient HOA component [image: image319.png], where the indices of the transmitted coefficient sequences are assumed to be among the first [image: image321.png]. The prediction of each directional signal related to the [image: image323.png]-th sub-band, [image: image325.png], belonging to the [image: image327.png]-th sub-band group is carried out using the prediction coefficients matrix [image: image329.png] and the tuple set [image: image331.png]. The [image: image333.png] assumed sub-bands are uniquely assigned to [image: image335.png] sub-band groups, which are determined by the sub-band group configuration specified in the HOAConfig(). It defines for each [image: image337.png]-th sub-band group a lower index bound [image: image339.png] and an upper index bound [image: image341.png] such that sub-bands with indices between these bounds, i.e. with [image: image343.png], are assumed to belong to this sub-band group. 

Per sub-band group there are at most [image: image345.png] potential active direction trajectories, where the indices identifying the active direction trajectories for the [image: image347.png]-th sub-band group are assumed to be contained in the set [image: image349.png]. For each index [image: image351.png] of an active direction trajectory the respective direction is denoted by [image: image353.png], both of which are assumed to be contained as tuples in the set [image: image355.png], i.e. 

[image: image356.png]
Note that the set [image: image358.png] can be computed from[image: image360.png], since it contains the first elements of all tuples of [image: image362.png]. 

In order to avoid artifacts in the predicted directional sub-band signals due to changes of the estimated directions and prediction coefficients between successive frames, the prediction is performed on concatenated long frames consisting of two temporally successive frames. In particular, that means that each quantity [image: image364.png] and [image: image366.png] is related to the [image: image368.png]-th and [image: image370.png]-th frame. The quantity [image: image372.png] (which can be equal to zero or one) indicates if a prediction of sub-band directional signals is to be performed related to the frames [image: image374.png] and [image: image376.png] at all. 

The frame [image: image378.png] is assumed to have only non-zero contributions for those coefficient sequences of the ambient HOA component that are not already transmitted within the transport channels. Further, if coefficient sequences of the ambient HOA component are faded in (or faded out respectively), the corresponding coefficient sequences of the HOA representation [image: image380.png] are faded out (or faded in respectively). 

Note further that the time domain coefficient sequences of the HOA representation [image: image382.png] of the composition of all predicted sub-band directional signals receive a delay of [image: image384.png] samples due to the successive application of the QMF based analysis and synthesis filter banks, which is expressed by the breve symbol above the variables.

Within the Parametric Ambience Replication (PAR) Decoder processing block ambient components, which are potentially still missing withing the preliminary decoded HOA representation [image: image386.png], are parametrically replicated from the modified version [image: image388.png] of it. The replication is carried out in the frequency domain using Quadrature Mirror Filters (QMF) with [image: image390.png] sub-bands (see ISO/IEC 23003-1:2007, Information technology — MPEG audio technologies — Part 1: MPEG Surround). Each individual sub-band [image: image392.png], [image: image394.png], is processed using the corresponding parameters of the [image: image396.png]-th sub-band group, [image: image398.png], to which it is uniquely assigned. The assignment is determined by the PAR related sub-band group configuration specified in the HOAConfig(). It defines for each [image: image400.png]-th sub-band group a lower index bound [image: image402.png] and an upper index bound [image: image404.png] such that sub-bands with indices between these bounds, i.e. with [image: image406.png], are assumed to belong to this sub-band group. The PAR related side information for the [image: image408.png]-th frame consists of the mixing matrices [image: image410.png] and the permutation matrices [image: image412.png] for the individual [image: image414.png] sub-band groups [image: image416.png], as well as the quantity [image: image418.png], which indicates (by a zero or one) whether PAR is to be performed for the frames [image: image420.png] and [image: image422.png] at all.

In a last step, in the Final HOA Composition processing block the frame [image: image424.png] of the preliminary decoded HOA representation, the frame [image: image426.png] of the HOA representation of the composition of all predicted sub-band directional signals and the frame [image: image428.png] of the replicated ambient HOA component are superposed to provide the frame [image: image430.png] of the decoded HOA representation, considering the delay between the individual HOA representations to be superposed.

In the following, the individual processing blocks are described in more detail.

Add at the end of subclause 12.4.2.2
Channel Reassignment:

Note that for the case that the flag [image: image432.png] has a value of [image: image434.png], it is assumed that the frame [image: image436.png] instead of [image: image438.png] is obtained from the transport channels, which has to be ensured by a respective modification at the spatial HOA encoding stage. 

In subclause 12.4.2.4.1 General replace:

As illustrated in Figure 41, the processing can be subdivided into four processing steps, which are described in the following. 

With:

Additionally, the frame [image: image440.png] of a modified version of [image: image442.png] is computed, where the modification only consist of fading in coefficient sequences with indices contained in the index set [image: image444.png] and fading out coefficient sequences with indices contained in the index set [image: image446.png]. The modified version is only needed for the later computation of the modified version [image: image448.png] of the preliminary decoded HOA representation (see Sec. 12.4.2.5) to be input to the PAR decoder. As illustrated in Figure 41, the processing can be subdivided into four processing steps, which are described in the following. 

Replace Figure 41 — Predominant sound synthesis with:

[image: image449.png]
In subclause 12.4.2.4.2 Compute HOA representation of active directional signals replace:
[image: image450.png]
With:

[image: image451.png]
Add at the end of subclause 12.4.2.4.5 Compose complete predominant sound component :

The modified predominant sound HOA representation [image: image453.png] is computed from [image: image455.png] by fading in coefficient sequences with indices contained in the index set [image: image457.png] and fading out coefficient sequences with indices contained in the index set [image: image459.png]. In particular, the individual samples [image: image461.png] of the modified predominant sound HOA representation [image: image463.png] are computed according to 

[image: image464.png]
In subclause 12.4.2.5
Ambience Synthesis replace:

The first [image: image466.png] coefficients of the ambient HOA component are obtained by 


[image: image468.png]
where [image: image470.png] denotes the mode matrix of order [image: image472.png] with respect to the predefined directions [image: image474.png] defined in Annex F.1.5. Note that the multiplication by the mode matrix [image: image476.png]represents the inverse spatial transform intended to invert the spatial transform applied in the encoder (see Annex C.5.3.3.2) for decorrelating the first [image: image478.png] coefficients of the ambient HOA component. The sample values of the remaining coefficients of the ambient HOA component are set according to 

[image: image480.png]
With:

The first [image: image482.png] coefficient sequences of the ambient HOA component are computed as outlined in the following two subclauses. The sample values of the remaining higher-order coefficient sequences of the ambient HOA component are set according to 

[image: image483.png]
By default the first [image: image485.png] HOA coefficient sequences are reconstructed with the method outlined in subclause 12.4.2.5.1. If [image: image487.png] is of value [image: image489.png], an alternative synthesis method described in subclause 12.4.2.5.2 can be used. In this case the flag [image: image491.png] signals which of the two processing methods shall be applied. 

Add the following two subclauses at the end of subclause 12.4.2.5
Ambience Synthesis:

12.4.2.5.1 Spatial transform

The first [image: image493.png] coefficient sequences of the ambient HOA component are obtained by 

[image: image494.png]
where [image: image496.png] denotes the mode matrix of order [image: image498.png] defined in Annex F.1.5 with respect to the predefined directions [image: image500.png], [image: image502.png] defined in Annex F.2-F.11. Note that the multiplication by the mode matrix represents the inverse spatial transform intended to invert the spatial transform applied in the encoder (see subclause C.5.3.3.2) for de-correlating the first [image: image504.png] coefficient sequences of the ambient HOA component.

12.4.2.5.2 Phase based transform

If the flag [image: image506.png] is of value [image: image508.png], the following processing is applied to reconstruct the first four coefficient sequences of the ambient HOA component by 

[image: image509.png]
with the coefficients [image: image511.png] as defined in Table AMD1.9  and [image: image513.png] and [image: image515.png] are the frames of +90 degree phase shifted signals [image: image517.png] and [image: image519.png] defined by 

[image: image520.png]
[image: image521.png]
Note that the phase shift operation introduces a delay of one frame. In order to avoid this delay in the decoder for the case that the flag [image: image523.png] has a value of [image: image525.png], it is assumed that the Channel Reassignment processing block (see subclause 12.4.2.3) provides the frame [image: image527.png] instead of [image: image529.png], which can be maintained by a respective modification at the spatial HOA encoding stage. 

Table AMD1.9 — Coefficients for phase-based transform

	n
	c(n)

	0
	1.0140887535122356

	1
	0.22902729095022714

	2
	0.98199999999999998

	3
	0.16084982644276205

	4
	0.51316810111307576

	5
	0.97489691762770481

	6
	-0.88020833333333337


Add the following subclauses after  12.4.2.5
Ambience Synthesis:

12.4.2.x Preliminary HOA composition

The frame [image: image531.png] of the preliminary decoded HOA representation is computed by 

[image: image532.png]
Additionally, the frame [image: image534.png] of a modified version of the preliminary decoded HOA representation is computed by 

[image: image535.png]
This modified HOA representation is assumed to be successively input to the PAR decoder instead of the original version [image: image537.png] to avoid signal discontinuities after performing on [image: image539.png] the truncation and coefficient selection (see  subclause 12.4.2.x.2  Truncation and Coefficient Selection). 
12.4.2.x Sub-band Directional Signals Synthesis

The purpose of the Sub-band Directional Signals Synthesis is to approximate the non-transmitted coefficient sequences of the residual (i.e. ambient) HOA component by a composition of directional sub-band signals, which are predicted by a weighted/scaled sum of the transmitted coefficient sequences of the residual (i.e. ambient) HOA component, where the scaling is complex valued in general. In particular, each directional sub-band signal related to the [image: image541.png]-th sub-band, [image: image543.png], is represented parametrically by complex valued prediction scaling factors matrices [image: image548.png][image: image546.png]

 and tuple sets  related to the [image: image550.png]-th sub-band group ([image: image552.png]) which includes the [image: image554.png]-th sub-band. Per sub-band group there are at most [image: image556.png] potential active direction trajectories, where the indices identifying the active direction trajectories for the [image: image558.png]-th sub-band group are assumed to be contained in the set [image: image560.png]. For each index [image: image562.png] of an active direction trajectory the respective direction is denoted by [image: image564.png], both of which are assumed to be contained as tuples in the set [image: image566.png], i.e. 

[image: image568.png]
Note that the set[image: image570.png] is assumed to consist of the first elements of the tuples of [image: image572.png], and can hence be computed from [image: image574.png]. 

Further note, that in the absence of predominant sound signals the ambient component corresponds to a "truncated" version of the original HOA representation. Truncation in this context means that the original HOA representation is approximated by only [image: image576.png] of its total [image: image578.png] coefficient sequences, i.e. by those that were transmitted within the [image: image580.png] transport channels. 

The detailed architecture of the Sub-band Directional Signals Synthesis is illustrated in Figure AMD1.1. The individual processing units to compute the frame[image: image582.png] of the HOA representation of the composition of all predicted sub-band directional signals will be described in the following. 

[image: image583.png]
Figure AMD1.1 — Sub-band directional signals synthesis.

12.4.2.x.1 Analysis Filter Banks

Each frame [image: image585.png], [image: image587.png], of an individual coefficient sequence of the ambient HOA representation[image: image589.png]is first decomposed into frames of individual sub-band signals[image: image591.png], [image: image593.png]. For each sub-band [image: image595.png], [image: image597.png], the frames of the sub-band signals of the individual HOA coefficient sequences are collected into the sub-band HOA representation [image: image599.png] as 

[image: image600.png]
The filter bank is assumed to be based on Quadrature Mirror Filters (QMF) with a total of [image: image602.png] sub-bands (ISO/IEC 23003-1:2007, Information technology — MPEG audio technologies — Part 1: MPEG Surround). Note that, in contrast to the HOA coefficient sequences [image: image604.png] their sub-band representations [image: image606.png] are complex valued in general. Further, the sub-band signals are decimated in time compared to the original time-domain signals by a factor of [image: image608.png]. As a consequence, the number of samples in the frames [image: image610.png] is [image: image612.png]. It is assumed that [image: image614.png] is an integral multiple of [image: image616.png] to assure that [image: image618.png] has a positive integer value. 

A further important implementation issue is that the coefficient sequences of the ambient HOA representation with indices greater than [image: image620.png] are assumed to be zero. Hence, the application of the analysis filters can be restricted to the HOA coefficient sequences [image: image622.png] with indices [image: image624.png] only. The sub-band signal frames [image: image626.png] with indices [image: image628.png] can be set to zero.

12.4.2.x.2 Synthesis of directional sub-band HOA representation for individual sub-band groups

In order to avoid artifacts due to changes of the directions and prediction coefficients between successive frames, the computation of the directional sub-band HOA representation is based on the concept of overlap add in the sub-band domain. Hence, the HOA representation [image: image630.png] of active directional sub-band signals related to the [image: image632.png]-th sub-band, [image: image634.png], is computed as the sum of a faded out component and a faded in component: 

[image: image635.png]
To compute the two individual components, in a first step the instantaneous frame of all directional sub-band signals [image: image637.png] for the [image: image639.png]-th sub-band is computed by 

[image: image641.png]
using the ambient sub-band HOA representation [image: image643.png] for the [image: image645.png]-th frame and the prediction coefficients matrix [image: image647.png] for the [image: image649.png]-th sub-band group including the [image: image651.png]-th sub-band and for the ([image: image653.png])-th frame, where [image: image655.png]. The (matrix) frame[image: image657.png] is assumed to be composed of the (row) frames of the individual directional sub-band signals[image: image659.png], [image: image661.png], according to 

[image: image662.png]
Note that all elements of the frame [image: image664.png] of a directional signal are zero if the corresponding direction is not active, i.e., if the corresponding directional trajectory index [image: image666.png]  is not contained in the set [image: image668.png]. 

In a second step, the instantaneous sub-band HOA representation [image: image670.png] of the active directional sub-band signal [image: image672.png] with direction index [image: image674.png] with respect to the direction [image: image676.png]  is obtained as 

[image: image678.png]
 where [image: image680.png] denotes the mode vector with respect to the direction [image: image682.png] which is computed as described in Annex F.1.5.

Assuming the matrices [image: image684.png], [image: image686.png], and [image: image688.png] to be composed of their samples by 

[image: image690.png]
[image: image692.png]
[image: image694.png]
the sample values of the faded out and faded in components of the HOA representation of active directional sub-band signals are finally determined for [image: image696.png], [image: image698.png] and [image: image700.png] by 

[image: image702.png]
[image: image704.png]
where the vector 

[image: image706.png]
represents an overlap add (periodic Hann) window function to be applied on the sub-band signals, of which the elements are defined by 

[image: image708.png]
12.4.2.x.3  Synthesis Filter Banks

The individual time domain coefficient sequences [image: image710.png], [image: image712.png], of the HOA representation [image: image714.png] of the composition of all predicted sub-band directional signals are synthesized from the corresponding sub-band coefficient sequences [image: image716.png], [image: image718.png] by the Synthesis Filter Banks. Note that the synthesized time domain coefficient sequences have a delay of [image: image720.png] samples due to the successive application of the QMF based analysis and synthesis filter banks, which is expressed by the breve symbol above the variables.

12.4.2.x.4  Coefficient Sequence Selection and Fading

In a final step, the preliminary computed HOA representation [image: image722.png] of the composition of all predicted sub-band directional signals is modified to have only contributions for those coefficient sequences, which have not been explicitly transmitted for the ambient HOA component. Further, for those coefficient sequences of the ambient HOA component that are explicitly additionally transmitted and faded in (or faded out), the respective coefficient sequences of the preliminary HOA representation [image: image724.png] of the composition of all predicted sub-band directional signals have to be modified by fading them out (or fading them in), respectively. Due to the delay between [image: image726.png] and [image: image728.png] of [image: image730.png] samples the fading of the coefficient sequences of [image: image732.png] is performed across frame boundaries, as illustrated in Figure AMD1.2. The modified HOA representation of the composition of all predicted sub-band directional signals is denoted by [image: image734.png] with its coefficient sequences [image: image736.png], [image: image738.png]. 

[image: image739.png]
Figure AMD1.2 — Illustration of faded coefficient sequences of [image: image741.png].

For the case that a coefficient sequence [image: image743.png] of the ambient HOA component is faded out in the [image: image745.png]-th frame (i.e [image: image747.png]) as illustrated in Figure AMD1.2a, the fade in of the coefficient sequence [image: image749.png] in the [image: image751.png]-th frame begins [image: image753.png] samples later, where in particular the fading in is finished only at the [image: image755.png]-th sample of the [image: image757.png]-th frame. 

Similarly, for the case that a coefficient sequence [image: image759.png] of the ambient HOA component is faded in in the [image: image761.png]-th frame (i.e [image: image763.png]) as illustrated in Figure AMD1.2b, the fade out of the coefficient sequence[image: image765.png] in the [image: image767.png]-th frame begins [image: image769.png] samples later, where in particular the fading out is finished only at the [image: image771.png]-th sample of the [image: image773.png]-th frame. 

Finally, it has to be considered that a fade in or fade out of the coefficient sequences [image: image775.png] of the HOA representation of the composition of all predicted sub-band directional signals is only required if it is not already present, resulting from overlap-add processing. 

In the case that [image: image777.png] and [image: image779.png], there is already a fade in within each of the [image: image781.png]-th frames [image: image783.png], [image: image785.png], such that is not necessary to apply an additional fade in. Similarly, in the case that [image: image787.png] and [image: image789.png], there is already a fade out within each of the [image: image791.png]-th frames [image: image793.png], [image: image795.png], such that is not necessary to apply an additional fade out. Altogether, the computation of the sample values [image: image797.png], [image: image799.png], [image: image801.png], of the coefficient sequences of the HOA representation of the composition of all predicted sub-band directional signals is hence formally expressed by

[image: image802.png]
12.4.2.x  Parametric Ambience Replication (PAR) Decoder

The Parametric Ambience Replication (PAR) Decoder, as illustrated in Figure AMD1.3, replicates an ambient HOA component [image: image804.png] to complement the missing ambience in the preliminary reconstructed HOA component [image: image806.png]. The replicated ambient component is created in the sub-band domain, where its sub-band representation [image: image808.png] related to the [image: image810.png]-th sub-band is assumed to be of order [image: image812.png] depending on the corresponding [image: image814.png]-th sub-band group [image: image816.png]. The orders [image: image818.png] for each sub-band group [image: image820.png] are specified in subclause 12.4.1.2.3 Orders [image: image822.png] for each sub-band group [image: image824.png] for PAR. The sub-band representation [image: image826.png] is represented and created by means of [image: image828.png] virtual loudspeaker sub-band signals [image: image830.png] at directions [image: image832.png], [image: image834.png], defined in the tables in the Annexes F.2 - F.11. These up-mix sub-band signals are computed as a mixture of the sub-band signals [image: image836.png], which are themselves created by de-correlation filters from the virtual loudspeaker sub-band signals representing a so-called truncated and sparse sub-band HOA representation [image: image838.png]. The latter is obtained from the sub-band HOA representation [image: image840.png] by reducing its order to [image: image842.png] and setting all coefficient sequences to zero which are zero in the intermediate representation of the ambient HOA component [image: image844.png]. The number of de-correlated sub-band signals to be mixed for the creation of each up-mix sub-band signal is allowed to vary over time according to the values of NumOfDecorrSigs PerParSubbandTable in order to adapt to the diffuseness of the ambient HOA component to be replicated. This number, denoted by [image: image846.png] specified in subclause 12.4.1.x Permutation matrices [image: image848.png] for PAR , offers the possibility to control the amount of side information required to code the mixing matrices [image: image850.png] for the individual sub-band groups [image: image852.png]. Further, for [image: image854.png] the mixing uses de-correlated sub-band signals obtained from virtual loudspeaker signals [image: image856.png] at directions in the neighborhood of the direction of the up-mix signal. This operation prevents that directional components of the truncated and sparse sub-band HOA representation [image: image858.png] are undesirably spatially distributed over all directions for the replication of the ambient HOA component. An additional aspect is that for each number [image: image860.png] and each individual up-mix sub-band signal it is specified in Table F.x Table for ParDecorrSigsSelectionTableIdx referring to NumOfDecorrSigsPerParSubbandTable and ParSelectedDecorrSigsIdxMatrixTable, which de-correlated sub-band signals have to be mixed. In order to decrease the mutual correlation between each group of de-correlated sub-band signals to be mixed, the assignment of the virtual loudspeaker signals to the de-correlation filters is adapted to the choice of de-correlated sub-band signals. This assignment is expressed through the permutation matrices [image: image862.png] for the individual sub-band groups [image: image864.png]. The individual processing units of the PAR Decoder to compute the frame [image: image866.png] of the replicated ambient HOA component will be described in the following. 
[image: image867.png]
Figure AMD1.3 — PAR Decoder.

12.4.2.x.1  Analysis Filter Banks

Each frame [image: image869.png], [image: image871.png], of the first 

[image: image872.png]
coefficient sequences of the modified version [image: image874.png] of the preliminary decoded HOA representation is first decomposed into frames of individual sub-band signals [image: image876.png], [image: image878.png]. For each sub-band [image: image880.png], the frames of the sub-band signals of the individual HOA coefficient sequences are collected into the sub-band HOA representation [image: image882.png] as 

[image: image883.png]
The filter bank is assumed to be based on Quadrature Mirror Filters (QMF) with a total of [image: image885.png] sub-bands (ISO/IEC 23003-1:2007, Information technology — MPEG audio technologies — Part 1: MPEG Surround).

12.4.2.x.2  Truncation and Coefficient Selection

For each [image: image887.png]-th sub-band belonging to the [image: image889.png]-th sub-band group, [image: image891.png], a truncated version [image: image893.png] of [image: image895.png] of order [image: image897.png] is computed, which is composed of the individual coefficient sequences according to 

[image: image898.png]
 The coefficient sequences [image: image900.png] with [image: image902.png] of the truncated HOA representation [image: image904.png] are either taken from [image: image906.png] if their index is contained in the index set of the transmitted coefficient sequences of the ambient HOA component, defined by 

[image: image907.png]
or set to zero else, i.e.:

[image: image908.png]
12.4.2.x.3  Spatial Transform

Each truncated HOA sub-band representation [image: image910.png] of the [image: image912.png]-th sub-band belonging to the [image: image914.png]-th sub-band group, [image: image916.png], is subjected to a spatial transform, which means the rendering to [image: image918.png] virtual loud-speaker signals [image: image920.png], at the directions [image: image922.png], [image: image924.png], defined in the tables in the Annexes F.2-F.11. Arranging the individual virtual loudspeaker signals in the matrix [image: image926.png] according to 

[image: image927.png]
the spatial transform is expressed by means of multiplying the truncated HOA representation [image: image929.png] with the inverse of the mode matrix [image: image931.png] (defined in Annex F.1.5) with respect to these directions by 

[image: image932.png]
12.4.2.x.4  Computation of de-correlated sub-band signals

For the computation of the de-correlated signals [image: image934.png] for the [image: image936.png]-th sub-band belonging to the [image: image938.png]-th sub-band group, the virtual loudspeaker sub-band signals [image: image940.png], [image: image942.png] are first assigned to the [image: image944.png] de-correlation filters. To obtain continuous input signals for the de-correlation filters over-lap add processing is employed. In particular, the input signals [image: image946.png] to the de-correlation filters for the [image: image948.png]-th sub-band are computed as the sum of a faded out component and a faded in component: 

[image: image949.png]
To compute the two individual components, in a first step the instantaneous frame [image: image951.png] of all permuted virtual loudspeaker sub-band signals of the sparse and truncated HOA sub-band representation [image: image953.png] for the [image: image955.png]-th frame is computed by 

[image: image956.png]
where [image: image958.png] is the permutation matrix for the [image: image960.png]-th sub-band group including the [image: image962.png]-th sub-band and for the ([image: image964.png])-th frame, where [image: image966.png]. The sample values of the faded out and faded in components of the input signal frames to the de-correlation filters are determined for [image: image968.png], [image: image970.png], [image: image972.png], and [image: image974.png] by 

[image: image975.png]
[image: image976.png]
where [image: image978.png] denote the elements of the window function vector [image: image980.png] defined in subclause 12.4.2.x.2 Synthesis of directional sub-band HOA representation for individual sub-band groups. In a next step, the de-correlation filters for the [image: image982.png]-th sub-band compute the output signals [image: image984.png]. The de-correlation filters are described in the following subclause.
12.4.2.x.4.1  Definition of de-correlation filters

The used de-correlator filters used for the PAR Decoder are slightly adapted filters from the de-correlators as specified in ISO/IEC 23003-1:2007, Information technology — MPEG audio technologies — Part 1: MPEG Surround. A summary of the changes compared to the de-correlators from MPEG surround is provided in the following:

· Use of a 64-band QMF filterbank instead of a hybrid QMF filterbank

· For all QMF bands the IIR allpass filters of order 3 are used

· The energy adjustment is not used

Thus, the de-correlator filter for each QMF band [image: image986.png] is composed of these steps:

· The integer delay for each j-th QMF band is set to zero.
· Apply an IIR allpass filter

The frequency regions for the QMF bank with [image: image988.png] bands are shown in Table AMD1.10.

Table AMD1.10 — Frequency region definitions for F=64 QMF bands

	Freq. region
	QMF band indices

	[image: image989.png]

	[image: image990.png]


	[image: image991.png]

	[image: image992.png]

	[image: image993.png]

	[image: image994.png]


	[image: image995.png]

	[image: image996.png]



The filter coefficients used in the subsequent IIR allpass filters are the 3rd order coefficients as defined in MPEG surround, where they are used in frequency region [image: image998.png] and where 10 different filter sets for the indices [image: image1000.png] are defined. The used assignment of the signal index [image: image1002.png] to these filter sets is shown in Table AMD1.11.

Table AMD1.11 — Assignment of signal index to filter index

	Signal index 
[image: image1003.png]
	Filter set 
[image: image1004.png]

	1
	0

	2
	1

	3
	2

	4
	3

	5
	4

	6
	5

	7
	7

	8
	8

	9
	9


12.4.2.x.5  Ambience Replication

The replicated ambient HOA component for the [image: image1006.png]-th sub-band belonging to the [image: image1008.png]-th sub-band group, [image: image1010.png], is represented by means of up-mix signals being virtual loudspeaker sub-band signals [image: image1012.png] at the directions [image: image1014.png], [image: image1016.png], defined in the tables in the Annexes F.2-F.11. The up-mix sub-band signals are computed by re-assigning the de-correlated signals back to the virtual loudspeaker directions and successively mixing them. For the purpose of signal continuity overlap-add processing on the up-mix signals is carried out. In particular, the up-mix signals [image: image1018.png] for the [image: image1020.png]-th sub-band are computed as the sum of a faded out component and a faded in component:

[image: image1021.png]
To compute the two individual components, in a first step the instantaneous frame [image: image1023.png] of all up-mix sub-band signals for the [image: image1025.png]-th frame is computed by

[image: image1026.png]
[image: image1027.png]
Here,  [image: image1029.png] denotes the inverse of the permutation matrix describing the re-assignment for the [image: image1031.png]-th sub-band group and the ([image: image1033.png])-th frame, where [image: image1035.png]. Further,  [image: image1037.png] is the corresponding mixing matrix. Assuming the matrices [image: image1039.png], [image: image1041.png], and [image: image1043.png] to be composed of their samples by 

[image: image1044.png]
[image: image1045.png]
[image: image1046.png]
the sample values of the faded out and faded in components of the up-mix sub-band signals are determined for [image: image1048.png], [image: image1050.png], [image: image1052.png], and [image: image1054.png] by 

[image: image1055.png]
[image: image1056.png]
where [image: image1058.png] denote the elements of the window function vector [image: image1060.png] defined in subclause 12.4.2.x.2 Synthesis of directional sub-band HOA representation for individual sub-band groups.

12.4.2.x.6  Inverse Spatial Transform

The virtual loudspeaker signals [image: image1062.png] representing the replicated ambient HOA component for the [image: image1064.png]-th sub-band belonging to the [image: image1066.png]-th sub-band group, [image: image1068.png], are subjected to an inverse spatial transform to provide their HOA representation [image: image1070.png], which is expressed by means of multiplication with the mode matrix [image: image1072.png] (defined in Annex F.1.5) as 

[image: image1073.png]
The final output HOA representation [image: image1075.png] is obtained from [image: image1077.png] by filling it up with zeros to have an order [image: image1079.png], i.e. 

[image: image1080.png]
12.4.2.x.7  Synthesis Filter Banks and Coefficient Selection and Fading

In a first step, the frame [image: image1082.png] of the preliminary parametrically replicated ambient HOA component is computed as follows:

Its first [image: image1084.png] time domain coefficient sequences [image: image1086.png], [image: image1088.png], are synthesized from the corresponding sub-band coefficient sequences [image: image1090.png], [image: image1092.png], by the Synthesis Filter Banks. The remaining time-domain coefficient sequences [image: image1094.png] with indices [image: image1096.png] are set to zero. Note that the synthesized time domain coefficient sequences have a delay of [image: image1098.png] samples due to the successive application of the QMF based analysis and synthesis filter banks, which is expressed by the breve symbol above the variables. 

In a second step, the frame [image: image1100.png] of the preliminary parametrically replicated ambient HOA component is  modified to have only contributions for those coefficient sequences, which have not been explicitly transmitted for the ambient HOA component. Further, for those coefficient sequences of the ambient HOA component that are explicitly additionally transmitted and faded in (or faded out), the respective coefficient sequences of the HOA representation [image: image1102.png] of the parametrically replicated ambient HOA component have to be modified by fading them out (or fading them in), respectively. Due to the delay between [image: image1104.png] and [image: image1106.png] of [image: image1108.png] samples the fading of the coefficient sequences of [image: image1110.png] is performed across frame boundaries as illustrated in Figure AMD1.100. The resulting HOA representation of the parametrically replicated ambient HOA component is denoted by [image: image1112.png]  with its coefficient sequences [image: image1114.png], [image: image1116.png]. 

[image: image1117.png]
Figure AMD1.100— Illustration of faded coefficient sequences of [image: image1119.png].

For the case that a coefficient sequence [image: image1121.png] of the ambient HOA component is faded out in the [image: image1123.png]-th frame (i.e [image: image1125.png]) as illustrated in Figure AMD1.100a, the fade in of the coefficient sequence [image: image1127.png] in the [image: image1129.png]-th frame begins [image: image1131.png] samples later, where in particular the fading in is finished only at the [image: image1133.png]-th sample of the [image: image1135.png]-th frame. 

Similarly, for the case that a coefficient sequence [image: image1137.png] of the ambient HOA component is faded in in the [image: image1139.png]-th frame (i.e [image: image1141.png]) as illustrated in Figure AMD1.100b, the fade out of the coefficient sequence[image: image1143.png] in the [image: image1145.png]-th frame begins [image: image1147.png] samples later, where in particular the fading out is finished only at the [image: image1149.png]-th sample of the [image: image1151.png]-th frame. 

Finally, it has to be considered that a fade in or fade out of the coefficient sequences [image: image1153.png] of the HOA representation of the composition of all predicted sub-band directional signals is only required if it is not already present, resulting from overlap-add processing. 

In the case that [image: image1155.png] and [image: image1157.png], there is already a fade in within each of the [image: image1159.png]-th frames [image: image1161.png], [image: image1163.png], such that is not necessary to apply an additional fade in. Similarly, in the case that [image: image1165.png] and [image: image1167.png], there is already a fade out within each of the [image: image1169.png]-th frames [image: image1171.png], [image: image1173.png], such that is not necessary to apply an additional fade out. Altogether, the computation of the sample values [image: image1175.png], [image: image1177.png], [image: image1179.png], of the coefficient sequences of the HOA representation of the parametrically replicated ambient HOA component is hence formally expressed by

[image: image1180.png]
12.4.2.6 HOA composition
Finally the decoded HOA frame [image: image1182.png] is computed by 

[image: image1184.png]
With:
12.4.2.x  Final HOA composition
The frame [image: image1186.png] of the finally reconstructed HOA representation is computed by a superposition of the frame [image: image1188.png] of the preliminary decoded HOA representation, the frame [image: image1190.png] of the HOA representation of the composition of all predicted sub-band directional signals and the frame [image: image1192.png] of the replicated ambient HOA component. For the superposition the delay between the individual HOA representations to be superposed has to be considered. Hence, the computation of the sample values [image: image1194.png], [image: image1196.png], [image: image1198.png], of the individual coefficient sequences of [image: image1200.png] is given by 

[image: image1201.png]
In Annex C.5.3
Spatial HOA Encoding replace:

A possible architecture of the spatial HOA encoder is depicted in the following Figure C.6. 

[image: image1202.png]
Figure 3\IF >= 1 "C." 
C.
6 — Architecture of spatial HOA encoder

First, the [image: image1204.png]-th frame [image: image1206.png] of the HOA representation is input to a Direction and Vector Estimation processing block, which is assumed to provide the tuple sets [image: image1208.png] and [image: image1210.png].

Using both tuple sets [image: image1212.png] and [image: image1214.png], the initial HOA frame [image: image1216.png] is decomposed in the HOA Decomposition into the frame [image: image1218.png] of all predominant sound (i.e. directional and vector-based) signals and the frame [image: image1220.png] of the ambient HOA component. Note the delay of one frame, respectively, which is due to overlap add processing in order to avoid blocking artifacts. Furthermore, the HOA Decomposition is assumed to output some prediction parameters [image: image1222.png] related to the predominant sound HOA component computed from the directional signals. Additionally, a target assignment vector [image: image1224.png]  containing information about the assignment of predominant sound signals, which were determined in the HOA Decomposition processing block, to the [image: image1226.png] available channels is assumed to be provided. The affected channels can be assumed to be occupied, meaning they are not available to transport any coefficient sequences of the ambient HOA component in the respective time frame.

In the Ambient Component Modification processing block, the frame [image: image1228.png] of the ambient HOA component is modified according to the information provided by the tagret assignment vector [image: image1230.png]. In particular, it is determined which coefficient sequences of the ambient HOA component are to be transmitted in the given [image: image1232.png] channels, depending, amongst other aspects, on the information (contained in the target assignment vector [image: image1234.png]) about which channels are available and not already occupied by predominant sound signals. Additionally, a fade in and out of coefficient sequences is performed if the indices of the chosen coefficient sequences vary between successive frames. The case that only the first [image: image1236.png] coefficient sequences of the ambient HOA component [image: image1238.png] are chosen to be perceptually coded corresponds to a reduction of the order of the ambient component from [image: image1240.png] to [image: image1242.png].

Furthermore, it is assumed that the first [image: image1244.png] coefficient sequences of the ambient HOA component [image: image1246.png] are always chosen to be perceptually coded to be and to be transmitted. In order to de-correlate these HOA coefficient sequences, it is proposed to transform them to directional signals (i.e. general plane wave functions) impinging from some predefined directions [image: image1248.png], [image: image1250.png] related to order [image: image1252.png].

Along with from the modified ambient HOA component [image: image1254.png] a temporally predicted modified ambient HOA component [image: image1256.png] is computed to be later used in the Gain Control processing block in order to allow a reasonable look ahead.

The information about the modification of the ambient HOA component is directly related to the assignment of all possible types of signals to the available channels. The final information about the assignment is assumed to be contained in the final assignment vector [image: image1258.png]. In order to compute this vector, information contained in the target assignment vector [image: image1260.png] is exploited.

The Channel Assignment assigns with the information provided by the assignment vector [image: image1262.png] the appropriate signals contained in [image: image1264.png] and that contained in [image: image1266.png] to the [image: image1268.png] available channels, yielding the signals [image: image1270.png], [image: image1272.png]. Further, appropriate signals contained in [image: image1274.png] and that in [image: image1276.png] are also assigned to the [image: image1278.png] available channels, yielding the predicted signals [image: image1280.png], [image: image1282.png].

Each of the signals [image: image1284.png], [image: image1286.png], is finally processed by a Gain Control, where the signal gain is smoothly modified to achieve a value range that is suitable for the perceptual encoders. The predicted signal frames [image: image1288.png], [image: image1290.png], allow a kind of look ahead in order to avoid severe gain changes between successive blocks. The gain modifications are assumed to be reverted in the spatial decoder with the gain control side information, consisting of the exponents [image: image1292.png] and the exception flags [image: image1294.png], [image: image1296.png].

With:

The architecture of the spatial HOA encoder can be separated into two successive parts, which are illustrated in Figure AMD1.4 and Figure AMD1.5, respectively.

[image: image1297.png]
Figure AMD1.4 — Architecture of spatial HOA encoder (part 1)

[image: image1298.png]
Figure AMD1.5 — Architecture of spatial HOA encoder (part 2)

In the first part, the [image: image1300.png]-th frame [image: image1302.png] of the HOA representation is input to a Direction and Vector Estimation processing block, which is assumed to provide the tuple sets [image: image1304.png] and [image: image1306.png].

Using both tuple sets [image: image1308.png] and [image: image1310.png], the initial HOA frame [image: image1312.png] is decomposed in the HOA Decomposition into the frame [image: image1314.png] of all predominant sound (i.e. directional and vector-based) signals and the frame [image: image1316.png] of the ambient HOA component. Note the delay of one frame, respectively, which is due to overlap add processing in order to avoid blocking artifacts. Furthermore, the HOA Decomposition is assumed to output some prediction parameters [image: image1318.png] related to the predominant sound HOA component computed from the directional signals. Additionally, a target assignment vector [image: image1320.png]  containing information about the assignment of predominant sound signals, which were determined in the HOA Decomposition processing block, to the [image: image1322.png] available channels is assumed to be provided. The affected channels can be assumed to be occupied, meaning they are not available to transport any coefficient sequences of the ambient HOA component in the respective time frame.

In the Ambient Component Modification processing block, the frame [image: image1324.png] of the ambient HOA component is modified according to the information provided by the tagret assignment vector [image: image1326.png]. In particular, it is determined which coefficient sequences of the ambient HOA component are to be transmitted in the given [image: image1328.png] channels, depending, amongst other aspects, on the information (contained in the target assignment vector [image: image1330.png]) about which channels are available and not already occupied by predominant sound signals.

It is assumed that the indices of the selected coefficient sequences to be transmitted are contained in the set [image: image1332.png]. They are constrained to be not greater than [image: image1334.png], where [image: image1336.png] is a predefined order that is specified in the HOAConfig(). Reducing the value of this maximum order can be used to decrease the computational complexity as well as to increase the coding efficiency.  

Additionally, a fade in and out of coefficient sequences is performed if the indices of the chosen coefficient sequences vary between successive frames. The indices of ambient HOA coefficient sequences that are selected to be transmitted and supposed to be faded out, faded in or not faded at all in the ([image: image1338.png])-th frame are contained in the sets [image: image1340.png], [image: image1342.png], and [image: image1344.png], respectively. 

Furthermore, it is assumed that the first [image: image1346.png] coefficient sequences of the ambient HOA component [image: image1348.png] are always chosen to be perceptually coded  to be transmitted. In order to de-correlate these HOA coefficient sequences, it is proposed to transform them to directional signals (i.e. general plane wave functions) impinging from some predefined directions [image: image1350.png], [image: image1352.png] related to order [image: image1354.png].

Along with the modified ambient HOA component [image: image1356.png] a temporally predicted modified ambient HOA component [image: image1358.png] is computed to be later used in the Gain Control processing block in order to allow a reasonable look ahead.

The information about the modification of the ambient HOA component is directly related to the assignment of all possible types of signals to the available channels. The final information about the assignment is assumed to be contained in the final assignment vector [image: image1360.png]. In order to compute this vector, information contained in the target assignment vector [image: image1362.png] is exploited. 

The goal of the Directional Sub-band Signals Prediction, which is carried out in the frequency domain using Quadrature Mirror Filters (QMF) with [image: image1364.png] sub-bands is to approximate the long frame of the ambient HOA component [image: image1366.png] by a composition of predicted directional sub-band signals. Each directional sub-band signal is assumed to be predicted by a weighted sum of active coefficient sequences of the ambient HOA component, i.e. those coefficient sequences whose indices are contained in the set [image: image1368.png]. The idea is that these coefficient sequences will be transmitted within the [image: image1370.png] transport channels and, hence, will be available at the decompression stage to approximate the non-transmitted coefficient sequences of the ambient HOA component by their predicted versions. 

The prediction of each individual directional sub-band signal to be performed at the decompression stage is based on parameters of the corresponding sub-band group including the sub-band of interest. It is assumed that there are [image: image1372.png] sub-bands that are assigned to [image: image1374.png] sub-band groups, which are determined by the sub-band group configuration to be specified in the HOAConfig() (see subclause 12.4.1.2.1 Upper and lower bounds of sub-band groups for Sub-band Directional Signals Synthesis) It defines for each [image: image1376.png]-th sub-band group a lower index bound [image: image1378.png] and an upper index bound [image: image1380.png]such that sub-bands with indices between these bounds, i.e. with [image: image1382.png], are assumed to belong to this sub-band group. The parameters for each [image: image1384.png] -th sub-band group, [image: image1386.png], comprise on the one hand the prediction coefficients matrix [image: image1388.png], which is used to compute the directional sub-band signals from the active coefficient sequences of the ambient HOA component. On the other hand, the parameters include the tuple set [image: image1390.png] containing direction information to compute the HOA representation of the directional sub-band signals. The first element [image: image1392.png] of each tuple of the set  
[image: image1394.png] denotes the index of an active direction trajectory, of which there are at most [image: image1396.png]. The second element [image: image1398.png] of each tuple indicates the corresponding direction. Note that the indexing of the direction trajectories is important to provide continuous directional sub-band signals on the one hand, and to exploit temporal dependencies between successive prediction coefficient matrices [image: image1400.png] for an efficient coding on the other hand. 

Further, for an efficient coding of the directions for the individual sub-band groups it is assumed that all of them are contained in the ordered direction set [image: image1402.png], of which the number of elements is constrained to be not greater than a predefined number of [image: image1404.png], of which a typical value is [image: image1406.png] or [image: image1408.png]. Hence, the coding of the directions for the individual sub-band groups may be done by their index of the corresponding direction in the set [image: image1410.png]. 

The Directional Sub-band Signals Prediction also outputs the binary quantity [image: image1412.png] indicating if a prediction of sub-band directional signals is to be performed related to the frames [image: image1414.png] and [image: image1416.png] at all. 

The Channel Assignment assigns with the information provided by the assignment vector [image: image1418.png] the appropriate signals contained in [image: image1420.png] and that contained in [image: image1422.png] to the [image: image1424.png] available channels, yielding the signals [image: image1426.png], [image: image1428.png]. Further, appropriate signals contained in [image: image1430.png] and that in [image: image1432.png] are also assigned to the [image: image1434.png] available channels, yielding the predicted signals [image: image1436.png], [image: image1438.png].

Each of the signals [image: image1440.png], [image: image1442.png], is finally processed by a Gain Control, where the signal gain is smoothly modified to achieve a value range that is suitable for the perceptual encoders. The predicted signal frames [image: image1444.png], [image: image1446.png], allow a kind of look ahead in order to avoid severe gain changes between successive blocks. The gain modifications are assumed to be reverted in the spatial decoder with the gain control side information, consisting of the exponents [image: image1448.png] and the exception flags [image: image1450.png], [image: image1452.png].

The second part of the spatial HOA encoder consists of the computation of side information related to Parametric Ambience Replication (PAR). The main idea of PAR is to complement the preliminary encoded HOA representation by potentially missing ambient components, which are parametrically replicated from itself. For that purpose, in a first step the HOA representation [image: image1454.png] is reconstructed by a spatial decoder using the signals [image: image1456.png], [image: image1458.png], and the side information 

[image: image1459.png]
[image: image1460.png]
[image: image1461.png]
obtained in the first part of the spatial HOA encoder. This side information does obviously not contain any PAR related components. Hence, the PAR decoder has to be omitted for this special spatial HOA decoding. Due to the successive application of the QMF based analysis and synthesis filter banks in the Sub-band Directional Signals Synthesis of the spatial HOA decoder, the reconstructed HOA representation [image: image1463.png] has a delay of [image: image1465.png] samples, which is expressed by the breve symbol above the variable. Hence, in a next step, the reconstructed HOA representation [image: image1467.png] is delayed by [image: image1469.png] samples to align it with the frames of the original HOA representation. Finally, the original HOA representation (delayed by [image: image1471.png] frames) [image: image1473.png] and the delayed reconstructed HOA representation [image: image1475.png] together with the index sets [image: image1477.png], [image: image1479.png], and [image: image1481.png] are input to the PAR Encoder processing block, which provides PAR related side information. The PAR is assumed to be carried out in the frequency domain using Quadrature Mirror Filters (QMF) with [image: image1483.png] sub-bands. Each individual sub-band [image: image1485.png], [image: image1487.png], is processed using the corresponding parameters of the [image: image1489.png]-th sub-band group, [image: image1491.png], to which it is uniquely assigned. The assignment is determined by the PAR related sub-band group configuration specified in the HOAConfig() (see also subclause 12.4.1.2.2 Upper and lower bounds of sub-band groups for PAR). It defines for each [image: image1493.png]-th sub-band group a lower index bound [image: image1495.png] and an upper index bound [image: image1497.png] such that sub-bands with indices between these bounds, i.e. with [image: image1499.png], are assumed to belong to this sub-band group. The PAR related side information consists of the mixing matrices [image: image1501.png], the permutation matrices [image: image1503.png] and the numbers [image: image1505.png] for the individual [image: image1507.png] sub-band groups [image: image1509.png]. 
In Annex C.5.3.3
Ambient Component Modification replace:

The Ambient Component Modification processing block has the purpose to appropriately modify the coefficient sequences of the ambient HOA component. In particular, it makes the decision which of the coefficient sequences of the ambient HOA component [image: image1511.png] are to be chosen to be perceptually coded. Further, a fade in and out of coefficient sequences is performed if the indices of the chosen coefficient sequences vary between successive frames. It is assumed that the first [image: image1513.png] coefficient sequences of the ambient HOA component [image: image1515.png] are always chosen to be perceptually coded. In order to de-correlate these HOA coefficient sequences, it is proposed to transform them to directional signals (i.e. general plane wave functions) impinging from some predefined directions [image: image1517.png], [image: image1519.png]. The resulting modified frame of the ambient HOA component is denoted by [image: image1521.png]. The information about the choice of the ambient HOA coefficient sequences to be transmitted, about their assignment and about the assignment of the predominant sound signals to the given [image: image1523.png] channels is assumed to be contained in the assignment vector [image: image1525.png].
With:

The Ambient Component Modification processing block has the purpose to appropriately modify the coefficient sequences of the ambient HOA component. In particular, it makes the decision which of the coefficient sequences of the ambient HOA component [image: image1527.png] are to be chosen to be perceptually coded. Further, a fade in and out of coefficient sequences is performed if the indices of the chosen coefficient sequences vary between successive frames. It is assumed that the first [image: image1529.png] coefficient sequences of the ambient HOA component [image: image1531.png] are always chosen to be perceptually coded. In order to de-correlate these HOA coefficient sequences, it is proposed to transform them to directional signals (i.e. general plane wave functions) impinging from some predefined directions [image: image1533.png], [image: image1535.png]. The resulting modified frame of the ambient HOA component is denoted by [image: image1537.png]. The information about the choice of the ambient HOA coefficient sequences to be transmitted, about their assignment and about the assignment of the predominant sound signals to the given [image: image1539.png] channels is assumed to be contained in the assignment vector [image: image1541.png]. The case that only the first [image: image1542.png]coefficient sequences of the ambient HOA component [image: image1543.png]are chosen to be perceptually coded corresponds to a reduction of the order of the ambient component from [image: image1545.png] to [image: image1546.png]. The indices of ambient HOA coefficient sequences to be transmitted are assumed to be output in the set [image: image1548.png].

In Annex C.5.3.3.1
Computation of the assignment vector replace:

The actual computation of the assignment vector [image: image1550.png] is summarized in Table C.1. Along with its computation auxiliary quantities consisting of the sets [image: image1552.png], [image: image1554.png] and [image: image1556.png] are computed, which contain the indices of ambient HOA coefficient sequences that are supposed to be active, disabled and enabled in the ([image: image1558.png])-th frame, respectively. The set [image: image1560.png] is assumed to be initialized to an empty set.
Further, during the computation of the assignment vector, the set [image: image1562.png] of indices of all non-active ambient HOA coefficient sequences which might potentially be activated in the ([image: image1564.png])-th frame is assumed to be determined. This set is assumed to have [image: image1566.png] elements denoted by [image: image1568.png].

With:

The actual computation of the assignment vector [image: image1570.png] is summarized in Table C.1. Along with its computation the set [image: image1572.png] of indices of active ambient HOA coefficient sequences to be transmitted for the ([image: image1574.png])-th frame is computed together with additional auxiliary quantities consisting of the sets [image: image1576.png] and [image: image1578.png], which contain the indices of ambient HOA coefficient sequences that are supposed to be disabled and enabled in the ([image: image1580.png])-th frame, respectively. The set [image: image1582.png] is assumed to be initialized to an empty set.

Further, during the computation of the assignment vector, the set [image: image1584.png] of indices of all non-active ambient HOA coefficient sequences which might potentially be activated in the ([image: image1586.png])-th frame is assumed to be determined. This set is assumed to have [image: image1588.png] elements denoted by [image: image1590.png]. It is in particular assumed to be a subset of [image: image1592.png], which denotes the set of indices of ambient HOA coefficient sequences that might be chosen to be transmitted within the [image: image1594.png] transport channels. 

Replace Annex C.5.3.3.2
Computation of the modified ambient HOA component with:

C.5.3.3.2 Computation of the modified ambient HOA component

As already mentioned, it is assumed that the first [image: image1596.png] coefficient sequences of the ambient HOA component [image: image1598.png] are always chosen to be perceptually coded. In order to de-correlate these HOA coefficient sequences, it is proposed to apply a transform to them as outlined in subclause C.5.3.3.2.1.

The same is done for the temporally predicted ambient HOA component, where it is assumed that [image: image1600.png] is obtained from [image: image1602.png] by taking only the first [image: image1604.png] rows: 

[image: image1605.png]
By further assuming the frame [image: image1607.png] of the modified ambient HOA component and the temporally predicted frame [image: image1609.png] of the modified ambient HOA component to be composed by means of its samples as 

[image: image1611.png]
 and 

[image: image1613.png]
the individual samples are computed by 

[image: image1614.png]
and 

[image: image1616.png]
C.5.3.3.2.1 Transform for the [image: image1618.png] low order coefficient sequences of the ambient HOA component

By default the first [image: image1620.png] HOA coefficient sequences of [image: image1622.png] and [image: image1624.png] are transformed to provide the signal frames [image: image1626.png] and [image: image1628.png], respectively, where the transform is described in subclause C.5.3.3.2.2 If [image: image1630.png] is of value [image: image1632.png], an alternative synthesis method described in  . C.5.3.3.2.3  can be used. In the latter case the flag [image: image1634.png] has to be set to [image: image1636.png].
C.5.3.3.2.2 Spatial Transform

The first [image: image1638.png] coefficient sequences of the ambient HOA component are subjected to a spatial transoform, where they are transformed to directional signals (i.e. general plane wave functions) impinging from some predefined directions [image: image1640.png], [image: image1642.png]. 

Assuming [image: image1644.png] to be the matrix created from [image: image1646.png] by taking only the first [image: image1648.png] rows, the transform is given by

[image: image1649.png]
where [image: image1651.png] denotes the mode matrix of order [image: image1653.png] with respect to the predefined directions [image: image1655.png] defined in Annex F.1.5. 

The same is done for the temporally predicted ambient HOA component, where it is assumed that [image: image1657.png] is obtained from [image: image1659.png] by taking only the first [image: image1661.png] rows: 

[image: image1662.png]
C.5.3.3.2.3 Phase-based transform

The phase-based transform for the first [image: image1664.png] HOA coefficient sequences of [image: image1666.png]is defined by 

[image: image1667.png]
with the coefficients [image: image1669.png] as defined in Table 36, the signal frames [image: image1671.png] and [image: image1673.png] being defined by 

[image: image1674.png]
and [image: image1676.png] and [image: image1678.png] are the frames of +90 degree phase shifted signals [image: image1680.png] and [image: image1682.png] defined by

[image: image1683.png]
The phase-based transform for the first [image: image1685.png] HOA coefficient sequences of [image: image1687.png]is defined accordingly. Note that this kind of transform introduces a delay of one frame.

Table AMD1.12 — Coefficients for phase-based transform

	n
	d(n)

	0
	0.34202009999999999

	1
	0.41629927335044281

	2
	0.14319999999999999

	3
	0.53170257350013528

	4
	0.93969259999999999

	5
	0.15152053650908184

	6
	0.53517399036360758

	7
	0.57735026918962584

	8
	0.94060406122874030

	9
	0.500000000000000


Add following subclauses after C.5.3.3
Ambient Component Modification:

C.5.3.x Directional Sub-bands Signals Prediction 
The purpose of the Directional Sub-band Signals Prediction is to approximate the ambient HOA component by a composition of directional sub-band signals, which are predicted by a weighted sum of those coefficient sequences of the ambient HOA component that are supposed to be transmitted within the [image: image1689.png] given transport channels, i.e the coefficient sequences with indices contained in the set [image: image1691.png]. The idea is that these coefficient sequences will be available at the decompression stage to approximate the non-transmitted coefficient sequences of the ambient HOA component by their predicted versions.

The prediction of each individual directional sub-band signal to be performed at the decompression stage is based on parameters of the corresponding sub-band group including the sub-band of interest. It is assumed that there are [image: image1693.png] sub-bands that are assigned to [image: image1695.png] sub-band groups, which are determined by the sub-band group configuration to be specified in the HOAConfig() (see subclause 12.4.1.2.1 Upper and lower bounds of sub-band groups for Sub-band Directional Signals Synthesis). It defines for each [image: image1697.png]-th sub-band group a lower index bound [image: image1699.png] and an upper index bound [image: image1701.png] such that sub-bands with indices between these bounds, i.e. with [image: image1703.png], are assumed to belong to this sub-band group.

The parameters for each [image: image1705.png]-th sub-band group, [image: image1707.png], comprise on the one hand the prediction coefficients matrix [image: image1709.png], which is used to compute the directional sub-band signals from the active coefficient sequences of the ambient HOA component. On the other hand, the parameters include the tuple set [image: image1711.png] containing direction information to compute the HOA representation of the directional sub-band signals. The first element [image: image1713.png] of each tuple of the set [image: image1715.png] denotes the index of an active direction trajectory, of which there are at most [image: image1717.png]. The second element [image: image1719.png] of each tuple indicates the corresponding direction. Note that the indexing of the direction trajectories is important to provide continuous directional sub-band signals on the one hand, and to exploit temporal dependencies between successive prediction coefficient matrices [image: image1721.png] for an efficient coding on the other hand. 

Further, for an efficient coding of the individual sub-band directions it is assumed that all of them are contained in the ordered direction set [image: image1723.png], of which the number of elements is constrained to be not greater than a predefined number of [image: image1725.png], of which a typical value is [image: image1727.png] or [image: image1729.png]. Hence, the coding of the individual sub-band directions may be done by their index of the corresponding direction in the set[image: image1731.png]. 

In order to avoid artifacts in the predicted directional sub-band signals due to changes of the estimated directions and prediction coefficients between successive frames, the prediction is performed on concatenated long frames consisting of two temporally successive frames. In particular, that means that each quantity [image: image1733.png], [image: image1735.png] and [image: image1737.png], [image: image1739.png], is related to the [image: image1741.png]-th and [image: image1743.png]-th frame. At decompression, these parameters are then assumed to be used to perform overlap add processing with the predicted directional sub-band signals. 

Note that in the absence of predominant sound signals the ambient component corresponds to a "truncated" version of the original HOA representation. Truncation in this context means that the original HOA representation is approximated by only [image: image1745.png] of its total [image: image1747.png] coefficient sequences, i.e. by those that are chosen to be transmitted within the [image: image1749.png] transport channels. 

A possible architecture for the Directional Sub-band Signals Prediction is illustrated in Figure AMD1.6. The individual processing units to compute the prediction parameters will be described in the following. 

[image: image1750.png]
Figure AMD1.6  — Directional sub-band signals prediction

C.5.3.x.1 Analysis Filter Banks

Each frame [image: image1752.png], [image: image1754.png], of an individual coefficient sequence of the ambient HOA representation [image: image1756.png] is first decomposed into frames of individual sub-band signals  [image: image1758.png], [image: image1760.png]. For each sub-band [image: image1762.png], [image: image1764.png], the frames of the sub-band signals of the individual HOA coefficient sequences are collected into the sub-band HOA representation  [image: image1766.png] as 

[image: image1768.png]
The filter bank is assumed to be based on Quadrature Mirror Filters (QMF) with a total of [image: image1770.png] sub-bands, which are also employed for perceptual coding. Note that, in contrast to the HOA coefficient sequences [image: image1772.png] their sub-band representations [image: image1774.png]are complex valued in general. Further, the sub-band signals are decimated in time compared to the original time-domain signals by a factor of [image: image1776.png]. As a consequence, the number of samples in the frames [image: image1778.png] is [image: image1780.png]. It is assumed that [image: image1782.png] is an integral multiple of [image: image1784.png] to assure that [image: image1786.png] has a positive integer value. 

C.5.3.x.2 Direction Estimation

The direction estimation processing block has the purpose to analyze the input HOA representation and compute for each [image: image1788.png]-th sub-band group, [image: image1790.png], a set [image: image1792.png] of tuples specifying directions of sub-band general plane wave functions with a major contribution to the sound field for sub-bands belonging to the sub-band group. In this context the term "major contribution" may for instance refer to the most power compared to sub-band general plane waves impinging from other directions. However, it may also refer to a high relevance in terms of the human perception. 

In order to avoid artifacts in the predicted directional sub-band signals at decompression due to changes of the estimated directions and prediction coefficients between successive frames, the direction estimation and the prediction of directional sub-band signals are supposed to be performed on concatenated long frames, which consist of the [image: image1794.png]-th and [image: image1796.png]-th input frame. At decompression, the quantities estimated on these long frames are then assumed to be used to perform overlap add processing with the predicted directional sub-band signals. 

The direction estimation for sub-bands [image: image1798.png] related to the [image: image1800.png]-th sub-band group is assumed to provide the set [image: image1802.png] of tuples consisting on the one hand of the indices [image: image1804.png] identifying the individual (active) direction trajectories as well as on the other hand the respective estimated directions [image: image1806.png], i.e. 

[image: image1808.png]
The index set [image: image1810.png] is assumed to be a subset of [image: image1812.png], where [image: image1814.png] is the maximum number of possible directions per sub-band group, and hence per sub-band. The value of [image: image1816.png] can be specified in the HOAConfig() and is typically small for the reason of coding efficiency. In this context, the indexing of the direction trajectories is important to provide continuous directional sub-band signals on the one hand, and to exploit temporal dependencies between successive prediction coefficient matrices [image: image1818.png] for an efficient coding on the other hand. To further increase the coding efficiency for the side information, the individual directions [image: image1820.png] of all sub-band groups are constrained to be contained in the direction set [image: image1822.png], which itself is constrained to contain not more than [image: image1824.png] directions. The value of [image: image1826.png] can be specified in the HOAConfig() as a power to the base [image: image1828.png], of which a typical value is [image: image1830.png] or [image: image1832.png]. Hence, the coding of the directions for the individual sub-band groups may be done by their index of the corresponding direction in the set [image: image1834.png]. One possible idea for the direction estimation is illustrated in Figure AMD1.7  . 

[image: image1835.png]
Figure AMD1.7  — Proposed architecture of direction estimation

In a first step a full-band direction estimation is performed on a direction grid consisting of [image: image1837.png] test directions [image: image1839.png], [image: image1841.png] (with [image: image1843.png] set in the HOAConfig() and the directions defined in Annexes F.2-F.11) using the concatenated long frame 

[image: image1845.png]
consisting of the previous and current input frames, [image: image1847.png] and [image: image1849.png], of the full-band HOA representation of the ambient component. The number [image: image1851.png] of test directions for the direction estimation is to be specified in the HOAConfig(). 

This direction search is assumed to provide a number of [image: image1853.png] direction candidates [image: image1855.png], [image: image1857.png], which are supposed to be contained in the set [image: image1859.png], i.e. 

[image: image1861.png]
A typical value for the maximum number of direction candidates per frame is [image: image1863.png]. The direction estimation can be accomplished e.g. by combining the information obtained from a directional power distribution of the input HOA representation together with a simple source movement model for the Bayesian inference of the directions. 

In a second step, the direction search is carried out for each individual sub-band group, however not on the initial direction grid consisting of [image: image1865.png] test directions, but rather on the candidate set [image: image1867.png]. The number of directions for the [image: image1869.png]-th sub-band, [image: image1871.png], denoted by [image: image1873.png], is assumed to be not greater than [image: image1875.png], which is typically distinctly smaller than [image: image1877.png]. As the full-band version, the direction search for each individual [image: image1879.png]-th sub-band group, [image: image1881.png], is also supposed to be performed on long concatenated frames of sub-band signals belonging to this sub-band group 

[image: image1883.png]
consisting of the previous and current frame. In a last step, the desired set [image: image1885.png] of all full-band direction candidates, which do actually occur as sub-band directions, is determined as 

[image: image1886.png]
To be able to refer to them, the directions of the set [image: image1888.png] are finally denoted by [image: image1890.png], [image: image1892.png] with [image: image1894.png] denoting their number.

C.5.3.x.3 Computation of directional sub-band signals for individual sub-band groups

This processing block is assumed to compute for each [image: image1896.png]-th sub-band group, [image: image1898.png], long frames of directional sub-band signals [image: image1900.png], [image: image1902.png], related to the [image: image1904.png]-th and [image: image1906.png]-th frame for each sub-band [image: image1908.png] contained in this sub-band group, i.e. for [image: image1910.png]. 

For a clearer presentation of the computation, all potential [image: image1912.png] directional signals for each [image: image1914.png]-th sub-band of a sub-band group [image: image1916.png] are arranged in the matrix [image: image1918.png] as 

[image: image1920.png]
It is assumed that the frames of the inactive directional sub-band signals, i.e. those long signal frames [image: image1922.png] whose index [image: image1924.png] is not contained within the set [image: image1926.png] for the corresponding sub-band group [image: image1928.png], are set to zero. 

The remaining long signal frames [image: image1930.png], i.e. those with index [image: image1932.png], are assumed to be collected within the matrix [image: image1934.png]. One possibility to compute the active directional sub-band signals contained therein is to minimize the error between their HOA representation and the sub-band HOA representation of the input ambient component. The solution is given by 

[image: image1936.png]
where [image: image1938.png] denotes the Moore-Penrose pseudo-inverse and [image: image1940.png] denotes the mode matrix with respect to the direction estimates in the set [image: image1942.png].

C.5.3.x.4 Prediction of directional sub-band signals for individual sub-band groups

The prediction of all directional sub-band signals related to each [image: image1944.png]-th sub-band of the [image: image1946.png]-th sub-band group, [image: image1948.png], which are contained in the matrix [image: image1950.png], is assumed to performed by a matrix multiplication of [image: image1952.png] with the matrix [image: image1954.png]with all potential prediction coefficients. In particular, the predicted version of [image: image1956.png], which is denoted by [image: image1958.png] , is assumed to be computed by 

[image: image1959.png]
Note that per construction all rows of [image: image1961.png] except for those with index [image: image1963.png] are zero, meaning that obviously only the active directional sub-band signals are predicted. Further, all columns of [image: image1965.png] except for those with index [image: image1967.png] are also zero, meaning that for prediction only those HOA coefficient sequences are considered which are supposed to be transmitted and to be available for prediction at HOA decompression.

At HOA decompression, the original sub-band HOA representation [image: image1969.png] is in general not available, but instead only a perceptually decoded version of it, which is used for the prediction of the directional sub-band signals. In the case the core coder to encode the individual transport signals employs spectral band replication (SBR), it does not make sense to exploit any phase relationships for the prediction from "replicated high frequency content" by using complex valued prediction coefficients, since the SBR cannot be assumed to preserve any phase relationships. Instead, it is more reasonable to use only real valued prediction coefficients for the frequency region affected by SBR. 

For that reason, the prediction coefficients are assumed to be complex valued for sub-band groups [image: image1971.png] smaller than the sub-band group index [image: image1973.png] (specified in the HOAConfig()), and real valued for the remaining sub-band groups, i.e. 

[image: image1975.png] [image: image1977.png]
It is reasonable to set the sub-band group index [image: image1979.png] to be the highest one such that the frequency corresponding to the lowest sub-band in this group is below the SBR frequency. 

C.5.3.x Parametric Ambience Replication (PAR) Encoder
The main idea of Parametric Ambience Replication (PAR) is to complement the preliminary encoded HOA representation by potentially missing ambient components, which are parametrically replicated from itself. The replication is performed in the sub-band domain assuming [image: image1981.png] sub-bands that are assigned to [image: image1983.png] sub-band groups. The assignment is determined by the PAR related sub-band group configuration, which is specified in the HOAConfig() (see subclause 12.4.1.2.1 Upper and lower bounds of sub-band groups for Sub-band Directional Signals Synthesis). It defines for each [image: image1985.png]-th sub-band group, [image: image1987.png], a lower index bound [image: image1989.png] and an upper index bound [image: image1991.png] such that sub-bands with indices [image: image1993.png] between these bounds, i.e. with [image: image1995.png], are assumed to belong to this sub-band group. The sub-band representation of the replicated ambient component for the [image: image1997.png]-th sub-band is assumed to be of order [image: image1999.png] depending on the corresponding [image: image2001.png]-th sub-band group. The orders [image: image2003.png] for each sub-band group [image: image2005.png] are specified in the HOAConfig(). The mentioned sub-band representation of the replicated ambient component is hence represented and created by means of [image: image2007.png] virtual loudspeaker sub-band signals at directions [image: image2009.png], [image: image2011.png], defined in the tables in annexes F.2 and F.3. These up-mix sub-band signals are computed as a mixture of the sub-band signals created by de-correlation filters from the virtual loudspeaker sub-band signals representing the truncated sub-band HOA representation of [image: image2013.png]. Truncation in this context means for sub-bands [image: image2015.png] belonging to the [image: image2017.png]-th sub-band group the reduction of the order to [image: image2019.png] and the setting of all coefficient sequences to zero, whose indices are not contained in either of the sets [image: image2021.png], [image: image2023.png], or [image: image2025.png]. The number of de-correlated sub-band signals to be mixed for the creation of each up-mix sub-band signal is allowed to vary over time according to the values in Table F.x Table for ParDecorrSigsSelectionTableIdx referring to NumOfDecorrSigsPerParSubbandTable and ParSelectedDecorrSigsIdxMatrixTable in order to adapt to the diffuseness of the ambient HOA component to be replicated. This number, denoted by [image: image2027.png], offers the possibility to control the amount of side information required to code the mixing matrices [image: image2029.png] for the individual sub-band groups [image: image2031.png]. Further, for [image: image2033.png] the mixing uses de-correlated sub-band signals obtained from virtual loudspeaker signals [image: image2035.png] at directions in the neighborhood of the direction of the up-mix signal. This operation prevents that directional components of the truncated sub-band HOA representations of [image: image2037.png] are undesirably spatially distributed over all directions for the replication of the ambient HOA component. An additional aspect is that for each number [image: image2039.png] and each individual up-mix sub-band signal it is specified in Table F.x Table for ParDecorrSigsSelectionTableIdx referring to NumOfDecorrSigsPerParSubbandTable and ParSelectedDecorrSigsIdxMatrixTable , which de-correlated sub-band signals have to be mixed. In order to decrease the mutual correlation between each group of de-correlated sub-band signals to be mixed, the assignment of the virtual loudspeaker signals to the de-correlation filters is adapted to the choice of de-correlated sub-band signals. This assignment is expressed through the permutation matrices [image: image2041.png] for the individual sub-band groups [image: image2043.png]. Note that for PAR overlap add processing is used to handle time varying parameters. Hence, each parameter indexed by the index [image: image2045.png] is assumed to be valid jointly for the frames [image: image2047.png] and [image: image2049.png]. A possible realization of the PAR encoder may be decomposed into two parts, which are illustrated in Figure AMD1.8  and Figure 27. The first part is concerned with the task how to determine the numbers [image: image2051.png] of de-correlated sub-band signals to be mixed for the creation of each up-mix sub-band signal related to the [image: image2053.png]-th sub-band group, [image: image2055.png]. These numbers unambiguously specify the permutation matrices [image: image2057.png], [image: image2059.png], through Tabel F.x Table for ParDecorrSigsSelectionTableIdx referring to ParPermIdxVectorTable. The second part of the PAR encoder deals with problem of computing the mixing matrices [image: image2061.png], [image: image2063.png]. Both parts will be described in more detail in the following. 

C.5.3.x.1 Part 1 of PAR Encoder

[image: image2064.png]
Figure AMD1.8 — Part 1 of PAR Encoder

In the first part of the PAR encoder, as illustrated Figure AMD1.8, both, the frame of the reconstructed HOA representation [image: image2066.png] and the frame of the delayed original HOA representation [image: image2068.png], are first decomposed into frames of individual sub-band HOA representations for each of the [image: image2070.png] assumed sub-bands by the application of the Analysis Filter Banks, as described in subclause 12.4.2.x.1  Analysis Filter Banks. The resulting individual sub-band HOA representations are then subjected to a Spatial Transform dependent on the corresponding sub-band group (see subclause 12.4.2.x.3  Spatial Transform for a detailed description of the processing). The frames of all resulting virtual loud-speaker sub-band signals for the [image: image2072.png]-th sub-band [image: image2074.png], are denoted by [image: image2076.png] and [image: image2078.png], respectively. In a next step, for each [image: image2080.png]-th sub-band group, [image: image2082.png], the number [image: image2084.png] of de-correlated sub-band signals to be mixed for the creation of an up-mix sub-band signal is determined from a comparison between the extended frames 
[image: image2085.png]
of the virtual loud-speaker sub-band signals of the preliminary reconstructed HOA representation and the extended frames 

[image: image2086.png]
of the virtual loud-speaker sub-band signals of the original HOA representation. The idea is that the number [image: image2088.png] may be chosen, on the one hand, in dependence on the diffuseness of the ambient HOA component to be replicated, and on the other hand, in dependence on the available data rate for the PAR side information. As a rule of thumb, the value of [image: image2090.png] should be increased the more diffuseness is missing in the preliminary reconstructed HOA representation compared to the original HOA representation. On the contrary, if a low PAR side information data rate is desired this value should be kept low. An important constraint is that [image: image2092.png] is allowed only to have values as that of NumOfDecorrSigsPerParSubbandTable given in Table F.x Table for ParDecorrSigsSelectionTableIdx referring to NumOfDecorrSigsPerParSubbandTable and ParSelectedDecorrSigsIdxMatrixTable. The permutation matrices [image: image2094.png], [image: image2096.png], which define the assignment of the virtual loud-speaker sub-band signals to the de-correlation filters, are selected according to Tabel F.x Table for ParDecorrSigsSelectionTableIdx referring to ParPermIdxVectorTable dependent on the numbers [image: image2098.png]. The dependence expressed by Tabel F.x Table for ParDecorrSigsSelectionTableIdx referring to ParPermIdxVectorTable is chosen to minimize the mutual correlation between the signals to be mixed. As a pre-processing step for the subsequent computation of the mixing matrices in the second part of the PAR Encoder, the sub-band HOA representation of the reconstructed HOA component [image: image2100.png] is subjected to a Truncation, a Coefficient Selection and a sub-band group dependent Spatial Transform (see  subclauses 12.4.2.x.2  Truncation and Coefficient Selection and 12.4.2.x.3  Spatial Transform for a detailed description of the processing) to provide the frames of all virtual loud-speaker sub-band signals [image: image2102.png] for each [image: image2104.png]-th sub-band, [image: image2106.png]. 

C.5.3.x.2 Part 2 of PAR Encoder

In the second part of the PAR Encoder, depicted in Figure AMD1.9, the virtual loud-speaker sub-band signals [image: image2108.png], representing the reconstructed HOA component [image: image2110.png] are subject to a de-correlation. In particular, the de-correlated sub-band signals [image: image2112.png] for the [image: image2114.png]-th sub-band belonging to the [image: image2116.png]-th sub-band group, i.e. for [image: image2118.png], are computed according to the description in subclause 12.4.2.x.4  Computation of de-correlated sub-band signals using the permutation matrix [image: image2120.png] for the assignment of the virtual loud-speaker sub-band signals [image: image2122.png] to the de-correlation filters. 
In a final step, the permutation matrix [image: image2124.png] for each [image: image2126.png]-th sub-band group, [image: image2128.png], is computed such as to approximate the extended frames 

[image: image2129.png]
of the virtual loud-speaker sub-band signals of the residual between the original and preliminary reconstructed HOA representation for all sub-bands [image: image2131.png] belonging to the [image: image2133.png]-th sub-band group by the following mixture 

[image: image2134.png]
of the de-correlated signals created from the virtual loud-speaker sub-band signals of the preliminary reconstructed HOA representation. 

[image: image2135.png]
Figure AMD1.9 — Part 2 of PAR Encoder

In subclause C.5.4.1
Conversion to ActiveDirSigs[i] replace:


if (DirIdx+1 == [image: image2137.png][NoOfActDirs]){



ActiveDirSigs[DirIdx] = 1;



NoOfActDirs++;


}

With:


if (DirIdx+1 == [image: image2139.png][NoOfActDirs]){



ActiveDirSigs[DirIdx] = 1;



NoOfActDirs++;


}

In suclause C.5.4.2
Conversion to ActiveDirsIds[idx] replace:

for ([image: image2141.png]; [image: image2143.png]; [image: image2145.png]){


if ([image: image2147.png]){



ActiveDirIds[NoOfActDirs] = [image: image2149.png];



NoOfActDirs++;


}

}

With:

for ([image: image2151.png]; [image: image2153.png]; [image: image2155.png]){


if ([image: image2157.png]){



ActiveDirIds[NoOfActDirs] = [image: image2159.png];



NoOfActDirs++;


}

}

In subclause C.5.4.3
Conversion of predicition parameters [image: image2161.png] (replacement of all (k-2) with (k-4)) replace completec subclause with:
C.5.4.3 Conversion of prediction paramters [image: image2162.png]
The prediction parameters [image: image2164.png] are converted to an intermediate coded representation, which corresponds to that used in the description of the HOAPredictionInfo payload in Table 127 — Syntax of HOAPredictionInfo, as follows: 

First the flag [image: image2166.png] is set which indicates whether a spatial prediction is performed at all:

[image: image2168.png]; 

if ([image: image2170.png]{


for ([image: image2172.png]){



for [image: image2174.png]{

if [image: image2176.png]{




[image: image2178.png];




}



}


}

}

In the case that [image: image2180.png], the number NumActivePred of directions for which directional signals are predicted is computed as follows:

NumActivePred = 0;
for ([image: image2182.png]){


if([image: image2184.png]){



NumActivePred++;


}

}

Depending on the value of NumActivePred it is decided whether the indices [image: image2186.png] [image: image2188.png]of the directions [image: image2190.png], for which directional signals are predicted, are either

· coded by a bit array ActivePred consisting of [image: image2192.png] elements, of which the [image: image2194.png]-th element indicates if the prediction for the direction [image: image2196.png] is predicted or not. The bit array is computed according to




for([image: image2198.png]){





[image: image2200.png];




}

· coded by the coded number [image: image2202.png] and the array [image: image2204.png] consisting of indices [image: image2206.png] of the directions [image: image2208.png], for which directional signals are predicted. The array [image: image2210.png] is computed according to




[image: image2212.png];




for([image: image2214.png]){





if ([image: image2216.png]{






[image: image2218.png];






[image: image2220.png];





}




}

The decision about which kind of coding is used is indicated by the value of [image: image2222.png], which is set to zero in the first case or to one in the second case. The decision is taken dependent on the value of [image: image2224.png] according to

[image: image2225.png]
where [image: image2227.png] is the greatest integer satisfying

[image: image2228.png]
The elements [image: image2230.png] of the matrix [image: image2232.png], which are indices of predominant sound signals to be used for the prediction of signals at the directions [image: image2234.png], are coded according to

[image: image2236.png];

for([image: image2238.png]){


if ([image: image2240.png]){



for [image: image2242.png]{




[image: image2244.png];




[image: image2246.png];



}


}

}

The corresponding quantized prediction factors [image: image2248.png], which are elements of the matrix [image: image2250.png] are coded according to 

[image: image2252.png];

for([image: image2254.png]){


if ([image: image2256.png]){



for [image: image2258.png]{




if ([image: image2260.png]){





[image: image2262.png];





[image: image2264.png];




}



}


}

}

In subclause C.5.4.4
Coding of ambient HOA coefficients side information replace:

for ([image: image2266.png]; [image: image2268.png]; [image: image2270.png]){


if ([image: image2272.png]{



if ([image: image2274.png] )



{




AmbCoeffIdxChanged[[image: image2276.png]] = false;


}


else



{




AmbCoeffIdxChanged[[image: image2278.png]]  = true;



CodedAmbCoeffIdx[NoOfCoeffs++]  = [image: image2280.png];



}

}

}

With:

for ([image: image2282.png]; [image: image2284.png]; [image: image2286.png]){


if ([image: image2288.png]{



if ([image: image2290.png] )



{




AmbCoeffIdxChanged[[image: image2292.png]] = false;


}


else



{




AmbCoeffIdxChanged[[image: image2294.png]]  = true;



CodedAmbCoeffIdx[NoOfCoeffs++]  = [image: image2296.png];



}


}

}

In subclause C.5.4.5
Coding of channel type replace:

for ([image: image2298.png]; [image: image2300.png]; [image: image2302.png]){


ChannelType[i] = [image: image2304.png];
}

With:

for ([image: image2306.png]; [image: image2308.png]; [image: image2310.png]){


ChannelType[i] = [image: image2312.png];

}

In subclause C.5.4.6
Conversion to CodedGainCorrectionExp[n] replace: 

for ([image: image2314.png]; [image: image2316.png]; [image: image2318.png]){


CodeLength = 0;


switch([image: image2320.png]){



case 0:



{




CodeLength = 1;




break;



}



case -1:



{




CodeLength = 2;




break;



}



default:



{




CodeLength = [image: image2322.png] + 2;



}


}


if(IndependendyFlag){



GainCorrPrevAmpExp[i] = ceil( log2( [image: image2324.png] ) );

}


for(l=0; l < (CodeLength – 1); l++){



CodedGainCorrectionExp[l] = 0;


}


CodedGainCorrectionExp[l] = 1;

}

With:

for ([image: image2326.png]; [image: image2328.png]; [image: image2330.png]){


CodeLength = 0;


switch([image: image2332.png]){



case 0:



{




CodeLength = 1;




break;



}



case -1:



{




CodeLength = 2;




break;



}



default:



{




CodeLength = [image: image2334.png] + 2;



}


}


if(IndependendyFlag){



GainCorrPrevAmpExp[i] = ceil( log2( [image: image2336.png] ) );


}


for(l=0; l < (CodeLength – 1); l++){



CodedGainCorrectionExp[l] = 0;


}


CodedGainCorrectionExp[l] = 1;

}

In subclause C.5.4.7
Conversion to GainCorrectionException[i] replace:

for([image: image2338.png]=0; [image: image2340.png] < [image: image2342.png]; [image: image2344.png]++){


GainCorrectionException[[image: image2346.png]][image: image2348.png]= [image: image2350.png];

}
With:

for([image: image2352.png]=0; [image: image2354.png] < [image: image2356.png]; [image: image2358.png]++){


GainCorrectionException[[image: image2360.png]][image: image2362.png]= [image: image2364.png];

}

In subclause C.5.4.8
Coding of VVector replace:

As previously described an assignment vector [image: image2366.png]containing the side information for each transport channel is provided. The quantized vector data for the transport channels containing vector-based predominant sound signals is assigned to the bit stream as follows: 

for (i=0; i < J; i++){


if [image: image2368.png]

{  

l=0;



for (q = 0; q < VVecLength; q++){

VecVal[i][q] = [image: image2370.png];

l++;



}

}

}

With:

As previously described an assignment vector [image: image2372.png]containing the side information for each transport channel is provided. The quantized vector data for the transport channels containing vector-based predominant sound signals is assigned to the bit stream as follows: 

for (i=0; i < J; i++){


if [image: image2374.png]

{  

l=0;



for (q = 0; q < VVecLength; q++){

VecVal[i][q] = [image: image2376.png];

l++;



}


}

}

Add the following subclauses after C.5.4.8
Coding of VVector:

C.5.4.x Coding of parameters for directional sub-band signals prediction
1. [image: image2378.png];

2. [image: image2380.png],

where [image: image2382.png] denotes a zero matrix with the same dimensions as [image: image2384.png].

3. for ([image: image2386.png] =0; [image: image2388.png] < [image: image2390.png]; [image: image2392.png]++)

{



[image: image2394.png] = [image: image2396.png] such that [image: image2398.png]= [image: image2400.png] 

}

4. for (b=0; [image: image2402.png] < NumOfPredSubbands; b++)

{



[image: image2404.png] is set to [image: image2406.png] or [image: image2408.png] depending on whether it is more efficient to use 


Huffman code or not for the differential coding for the magnitues of all elements of the prediction 


coefficient matrix  [image: image2410.png].


[image: image2412.png] is set to [image: image2414.png] or [image: image2416.png] depending on whether it is more efficient to use 


Huffman code or not for the differential coding for the angles of all elements of the prediction 


coefficient matrix  [image: image2418.png].

for ( d = 0; d < MaxNumOfPredDirsPerBand; d++) 

{

[image: image2419.png]
if ([image: image2421.png]
{


[image: image2423.png]= [image: image2425.png]
}

}

}

5. Since the prediction coefficient matrix elements are coded differentially, before starting to encode the elements for a [image: image2427.png]-th independency frame it is necessary to initialize the quantized values to zero for the previous frame as follows:

if ([image: image2429.png] )

{

for (b=0; [image: image2431.png] < NumOfPredSubbands; b++){

for ( d = 0; d < MaxNumOfPredDirsPerBand; d++) {

for (n = 0; n < MaxNumOfCoeffsToBeTransmitted; n++)

{


[image: image2433.png];


[image: image2435.png];

}

}

}

}

The actual encoding is assumed to be performed as follows:

for (b=0; [image: image2437.png] < NumOfPredSubbands; b++){



for ( d = 0; d < MaxNumOfPredDirsPerBand; d++) {




for (n = 0; n < MaxNumOfCoeffsToBeTransmitted; n++){





[image: image2439.png];





[image: image2441.png];





[image: image2443.png];





if([image: image2445.png]




{






[image: image2447.png]




}





else





{






[image: image2449.png];





}





[image: image2451.png];





if([image: image2453.png]{






[image: image2455.png];





}





else{






[image: image2457.png];





}





[image: image2459.png]













[image: image2461.png];





[image: image2463.png];





// If the magnitude after quantization is equal to zero, 





// the transmitted difference in quantized angle differences is ignored.





// Hence, in that case it is reasonable to code the difference 





//as efficient as possible by setting it to zero.





if([image: image2465.png]){






[image: image2467.png]















[image: image2469.png];






// Constrain the angle difference to lie in interval ]-pi,pi].






if ([image: image2471.png]){







[image: image2473.png] 






}






else{







if ([image: image2475.png]){

[image: image2476.png]





}





}





else





{






[image: image2478.png]




}




}



}

}

C.5.4.x Coding of parameters for Parametric Ambience Replication (PAR)
1. UsePar = [image: image2480.png]
2. for ([image: image2482.png] =0; [image: image2484.png] < NumOfParSubbands; [image: image2486.png]++){



[image: image2488.png]=[image: image2490.png];



Set ParDecorrSigsSelectionTableIdx[[image: image2492.png]] according to Table 26 depending on value of 


[image: image2494.png]


UseReducedNoOfUpmixSigs[[image: image2496.png]] = [image: image2498.png];


if (UseReducedNoOfUpmixSigs[[image: image2500.png]]==1){




for (n=0;n < MaxNumOfDecoSigs[[image: image2502.png]]; n++){




UseParUpmixSig[[image: image2504.png]][n] = [image: image2506.png];



}



}



UseParHuffmanCodingDiffAbs[[image: image2508.png]] =




 [image: image2510.png];



if (UseRealCoeffsPerParSubband[[image: image2512.png]]==0){




UseParHuffmanCodingDiffAngle[[image: image2514.png]] =





 [image: image2516.png];



}

}

3. Since the elements of the mixing matrices [image: image2518.png], [image: image2520.png], are coded differentially, before starting to encode the elements for a [image: image2522.png]-th independency frame, which means that the hoaIndependencyFlag in the HOAFrame() payload is set to one, it is necessary to initialize the quantized values to zero for the previous frame as follows:

for ([image: image2524.png] =0; [image: image2526.png] < NumOfParSubbands; [image: image2528.png] ++){


for (d=0; d < MaxNumOfDecoSigs([image: image2530.png]); d++){



for (n=0; n < MaxNumOfDecoSigs([image: image2532.png]); n++){




[image: image2534.png]




[image: image2536.png];



}


}
}
The actual encoding is assumed to be performed as follows:

for ([image: image2538.png] =0; [image: image2540.png] < NumOfParSubbands; [image: image2542.png] ++){


for (d=0; d < MaxNumOfDecoSigs([image: image2544.png]); d++){



for (n=0; n < MaxNumOfDecoSigs([image: image2546.png]); n++){




[image: image2548.png];





[image: image2550.png];





[image: image2552.png];





if([image: image2554.png]




{






[image: image2556.png]




}





else





{






[image: image2558.png];





}





[image: image2560.png];





if([image: image2562.png]{






[image: image2564.png];





}





else{






[image: image2566.png];





}





[image: image2568.png]













[image: image2570.png];





[image: image2572.png];





// If the magnitude after quantization is equal to zero, 





// the transmitted difference in quantized angle differences is ignored.





// Hence, in that case it is reasonable to code the difference 





//as efficient as possible by setting it to zero.





if([image: image2574.png]){






[image: image2576.png]















[image: image2578.png];






// Constrain the angle difference to lie in interval ]-pi,pi].






if ([image: image2580.png]){







[image: image2582.png] 






}






else{







if ([image: image2584.png]){

[image: image2585.png]





}





}





else





{






[image: image2587.png]




}




}



}

}

Add the following section after C.5
HOA Encoder:

C.x MPEG Surround Encoder Tool

The following building blocks are specified for very low bitrate coding of channel content (see Figure AMD1.10, Figure AMD1.11 and Figure AMD1.12):

· Pre-rendering/mixing: A pre-rendering/mixing stage is used on the encoder side to convert a channel and object input scene into a channel scene before encoding.
· Format conversion: Format conversion can be applied on the encoder side to lower the number of channels to achieve good rate / distortion results for a given bit rate.
· MPEG Surround encoding: MPEG Surround can be applied with the following tree configurations: 5-2-5, 7-2-7 or 9-2-9 based on 7-2-7 with an arbitrary tree extension. 
· 3D Audio encoder: Either the format converted channels or the MPS stereo downmix is coded with a 3D Audio encoder. The MPS side information is multiplexed into an mpegh3daExtElement.
· Phase 1 SAOC 3D encoder can be applied for encoding object signals.
[image: image2588.png]
Figure AMD1.10 — Block Diagram of a 3DA Phase 2 encoder with an MPEG Surround encoder

[image: image2589.png]
Figure AMD1.11 — Block Diagram of a 3DA Phase 2 encoder with reduced number of channels

[image: image2590.png]
Figure AMD1.12 — Block Diagram of a 3DA Phase 2 encoder with reduced number of channels

In Annex F.1.5
Definition of the mode matrix replace:

[image: image2591.png]
where [image: image2593.png].

With:

[image: image2594.png]
denoting the mode vector of order  [image: image2596.png] with respect to the directions [image: image2598.png],

where [image: image2600.png].

Correct table numbering mismatch for annex F.23 (correct references to the tables in the standard text accordingly!)
Replace Annex F.23
HOA Tables for Dynamic Range Control with the following clauses:
F.23 Spherical grid for DRC DSHT for order N=1

Inclination[image: image2602.png] in rad,  Azimuth [image: image2604.png] in rad,       [image: image2606.png]
0.33983655        3.14159265      3.14159271

1.57079667        0.00000000      3.14159267

2.06167886        1.95839324      3.14159262

2.06167892       -1.95839316      3.14159262

F.x Spherical grid for DRC DSHT for order N=2

Inclination[image: image2608.png] in rad,  Azimuth [image: image2610.png] in rad,       [image: image2612.png]
1.57079633        0.00000000      1.41002219

2.35131567        3.14159265      1.36874571

1.21127801       -1.18149779      1.36874584

1.21127606        1.18149755      1.36874598

1.31812905       -2.45289512      1.41002213

0.00975782       -0.00009218      1.41002214

1.31812792        2.45289621      1.41002230

2.41880319        1.19514740      1.41002223

2.41880555       -1.19514441      1.41002209

F.x Spherical grid for DRC DSHT for order N=3

Inclination[image: image2614.png] in rad,  Azimuth [image: image2616.png] in rad,       [image: image2618.png]
0.49220083        0.00000000      0.75567412

1.12054210       -0.87303924      0.75567398

2.52370429       -0.05517088      0.75567401

2.49233024       -2.15479457      0.87457076

1.57082248        0.00000000      0.87457075

2.02713647        1.01643753      0.75567388

1.61486095       -2.60674413      0.75567396

2.02713675       -1.01643766      0.75567398

1.08936018        2.89490077      0.75567412

1.18114721        0.89523032      0.75567399

0.65554353        1.89029902      0.75567382

1.60934762        1.91089719      0.87457082

2.68498672        2.02012831      0.75567392

1.46575084       -1.76455426      0.75567402

0.58248614       -2.22170415      0.87457060

2.00306837        2.81329239      0.75567389

F.x Spherical grid for DRC DSHT for order N=4

Inclination[image: image2620.png] in rad,  Azimuth [image: image2622.png] in rad,       [image: image2624.png]
1.57079633        0.00000000      0.52689274

2.39401407        0.00000000      0.48518011

1.14059283       -1.75618245      0.52688432

1.33721851        0.69215601      0.47027816

1.72512898       -1.33340585      0.48037442

1.17406779       -0.79850952      0.51130478

0.69042674        1.07623171      0.50662254

1.47478735        1.43953896      0.52158458

1.67073876        2.25235428      0.52835300

2.52745842       -1.33179653      0.52388165

1.81037110        3.05783641      0.49800736

1.91827560       -2.03351312      0.48516540

0.27992161        2.55302196      0.50663531

0.47981675       -1.18580204      0.50824199

2.37644317        2.52383590      0.45807408

0.98508365        2.03459671      0.47260252

2.18924206        1.58232601      0.49801422

1.49441825       -2.58932194      0.51745117

2.04428895        0.76615262      0.51744164

2.43923726       -2.63989327      0.52146074

1.10308418        2.88498471      0.52158484

0.78489181       -2.54224201      0.47027748

2.96802845        1.25258904      0.52145388

1.91816652       -0.63874484      0.48036020

0.80829458       -0.00991977      0.50824345

F.x Spherical grid for DRC DSHT for order N=5

Inclination[image: image2626.png] in rad,  Azimuth [image: image2628.png] in rad,       [image: image2630.png]
1.57079633        0.00000000      0.34493574

2.68749293        3.14159265      0.35131373

1.92461621       -1.22481468      0.35358151

1.95917092        3.06534485      0.36442231

2.18883411        0.08893301      0.36437350

0.35664531       -2.15475973      0.33953855

1.32915731       -1.05408340      0.35358417

2.21829206        2.45308518      0.33534647

1.00903070        2.31872053      0.34739607

0.99455136       -2.29370294      0.36437101

1.13601102       -0.46303195      0.33534542

0.41863640        0.63541391      0.35131934

1.78596913       -0.56826765      0.34739591

0.56658255       -0.66284593      0.36441956

2.25292410        0.89044754      0.36437098

2.67263757       -1.71236120      0.36442208

0.86753981       -1.50749854      0.34068122

1.38158330        1.72190554      0.35358401

0.98578154        0.23428465      0.35131950

1.45079827       -1.69748851      0.34739437

2.09223697       -1.85025366      0.33534659

2.62854417        1.70110685      0.34494256

1.44817433       -2.83400771      0.33953463

2.37827410       -0.72817212      0.34068529

0.82285875        1.51124182      0.33534531

0.40679748        2.38217051      0.34493552

0.84332549       -3.07860398      0.36437337

1.38947809        2.83246237      0.34068522

1.61795773       -2.27837285      0.34494274

2.17389505       -2.58540735      0.35131361

1.65172710        2.28105193      0.35358166

1.67862104        0.57097606      0.33953819

2.02514031        1.70739195      0.34739443

1.12965858        0.89802542      0.36442004

2.82979093        0.17840931      0.33953488

1.67550339        1.18664952      0.34068114

F.x Spherical grid for DRC DSHT for order N=6

Inclination[image: image2632.png] in rad,  Azimuth [image: image2634.png] in rad,       [image: image2636.png]
1.57079633        0.00000000      0.23821170

2.42144792        0.00000000      0.23821175

0.32919895        2.78993083      0.26169552

1.06225899        1.49243160      0.25534085

1.01526896       -2.16495206      0.25092628

1.10570423       -1.59180661      0.25099550

1.47319543        1.14258135      0.26160776

2.15414541        1.88359269      0.24442720

0.20805372       -0.52863458      0.25487678

0.50141101       -2.11057110      0.25619096

1.98041218        0.28912378      0.26288225

0.83752075       -2.81667891      0.25837996

2.44130228        0.81495962      0.26772416

1.21539727       -1.00788022      0.25534092

2.62944184       -1.58354086      0.26437874

1.86884674       -2.40686906      0.25619091

0.68705554       -1.20612227      0.25576026

1.52325470       -1.98940871      0.26169551

2.39097364       -2.37336381      0.25576025

0.98667678        0.86446728      0.26014219

2.27078506       -3.06771779      0.25099551

2.33605400        2.51674567      0.26455002

1.29371004        2.03656562      0.25576032

0.86334494        2.77720222      0.25092620

1.94118355       -0.37820559      0.26772409

2.10323413       -1.28283816      0.24442725

1.87416330        0.80785741      0.23821179

1.63423157        1.65277986      0.26437876

2.06477636        1.31341296      0.25595469

0.82305807       -0.47771423      0.26437883

2.04154780       -1.85106655      0.25487677

0.61285067        0.33640173      0.24442716

1.08029340        0.10986230      0.25595472

1.60164764       -1.43535015      0.26455000

2.66513701        1.69643796      0.26014228

1.35887781       -2.58083733      0.25838000

1.78658555        2.25563014      0.25487674

1.83333508        2.80487382      0.26169549

0.78406009        2.08860099      0.25099560

2.94031615       -0.07888534      0.26160780

1.34658213        2.57400947      0.25619094

1.73906669       -0.87744928      0.26014223

0.50210739        1.33550547      0.26455007

2.38040297       -0.75104092      0.25595462

1.41826790        0.54845193      0.26772418

1.77904107       -2.93136138      0.25092628

1.35746628       -0.47759398      0.26160765

1.31545731        3.12752832      0.25838016

2.81487011       -3.12843671      0.25534100

F.x Spherical grid for DRC DSHT for order N=7

Inclination[image: image2638.png] in rad,  Azimuth [image: image2640.png] in rad,       [image: image2642.png]
1.57079633        0.00000000      0.19495795

2.45610519        0.00000000      0.19495809

0.39336242        1.03016214      0.19791987

0.89422674       -2.33320867      0.19872783

0.43545329       -1.90611766      0.20164788

2.82600944        2.32040743      0.18728551

1.59930590        0.43907779      0.18583001

0.64745165        2.11280421      0.20273761

1.90012440        2.19672239      0.19118821

0.77544211        1.42837415      0.18728574

0.69899330       -0.36084163      0.18728569

2.04670638       -3.01527456      0.19927210

2.12677074        1.22510187      0.18728884

0.23447523        2.63866702      0.19927208

2.40003196       -2.63346362      0.19791989

1.45925921       -0.93421891      0.18728903

2.73580260       -0.95164110      0.19927196

1.48655587       -1.60786838      0.20474450

1.68102326       -2.09640999      0.19679660

2.36367468        2.19127430      0.19694872

2.32176930       -0.62030401      0.18583004

2.04546892        1.72866718      0.20474448

0.77250696        2.81267760      0.19495808

1.69576568        2.96849129      0.18583019

0.58175363       -2.82533899      0.18583001

2.87203994        0.51065147      0.20273763

1.39561603        0.84819515      0.20164795

1.88874012       -0.76208433      0.19872768

1.51281601       -2.91380498      0.19495791

1.08945861        2.38896622      0.19812700

1.83804298       -2.57622643      0.20273767

1.47075901        2.08646502      0.18728889

1.36153209       -2.47361065      0.19812703

1.15458107        0.35914488      0.19927210

2.23247953       -1.21160054      0.20164792

2.46336120        2.94460384      0.19682398

1.22791750        2.91409534      0.20129566

1.05015851       -2.89422460      0.20129569

2.12820204       -2.18619520      0.18728575

2.53612755        1.47084632      0.19679675

2.46546154       -1.76957871      0.19682388

1.55027992        2.54237851      0.19872776

2.84242076       -2.37565709      0.19791995

1.23439281        1.32812183      0.19694863

0.69294302        0.32555256      0.19791995

2.05614763        2.67444874      0.20164784

1.09765326        1.83278284      0.19679663

1.12592284       -0.14469268      0.20273758

1.96529200       -0.24906723      0.20129567

1.96552627       -1.69235565      0.19694871

1.76960407       -1.25179553      0.19118810

1.91136466        0.76951720      0.19872771

1.07406395       -0.69991724      0.19679662

0.69689253       -1.09648035      0.19694872

1.68400415        1.21349142      0.19118831

2.39207241        0.70375526      0.19812696

0.94043078        0.86239912      0.19682389

0.88424480       -1.70121947      0.19118805

1.24865844       -1.99210255      0.18728907

0.24866075       -0.52239150      0.19682390

1.16191600       -1.27749516      0.20474460

2.03676720        0.25756109      0.20129581

1.59547480        1.65945485      0.20474451

1.50944693       -0.45747372      0.19812716

F.x Spherical grid for DRC DSHT for order N=8

Inclination[image: image2644.png] in rad,  Azimuth [image: image2646.png] in rad,       [image: image2648.png]
1.57079633        0.00000000      0.16035506

2.37045281        3.14159265      0.15319651

1.16118114       -2.76809755      0.14493850

1.96701676       -2.93113550      0.15659032

0.44283230        2.79053078      0.16051177

2.27466442       -1.58633222      0.15823741

1.90257136       -1.34326395      0.15410190

1.22671270       -0.30245108      0.15555055

1.18223758        3.09331226      0.16269226

0.77757990       -3.00089450      0.15370974

1.71069627        1.52817508      0.15330871

2.10766509       -2.12432828      0.15659023

1.91267082        1.11619994      0.15721852

1.50641800       -1.38243964      0.15314283

1.90689598        0.26039435      0.15542290

1.87573690       -1.75821192      0.15263979

0.66839369        0.92054291      0.15198113

2.99900287        1.37574537      0.15918574

1.25503817        1.48780173      0.15554994

2.12588745        1.55120363      0.15777865

1.46867749       -1.78074999      0.15251277

1.42058775        0.80011364      0.14438414

1.39768944       -2.42566469      0.15882669

1.68448339        2.64994016      0.15410149

2.68318874        2.44896055      0.15624640

1.18069550       -2.06498432      0.15624611

0.95913015       -0.72316181      0.15330920

1.46298411        1.86944950      0.15860486

2.29917993        2.02407291      0.15772368

2.19757565        0.59478929      0.14875234

1.38002876       -0.71570078      0.15860447

1.66966479       -2.13711058      0.15319630

1.10433150       -1.56966543      0.15772351

1.51539913        1.17237827      0.15450396

1.67195210       -0.98489422      0.15912839

0.42176814       -1.52602006      0.15232202

1.06037388        1.88421174      0.14355622

0.80107740        1.50114356      0.16035524

2.52167695       -2.05535482      0.15604687

2.28748597       -2.58806117      0.15620875

2.58630438        1.56214454      0.15317153

2.72391006       -0.27193316      0.15370972

1.62712008       -0.39597375      0.14355623

2.34174815        0.09134393      0.16051150

1.06986925        0.59872741      0.16355869

1.92177200       -0.65082006      0.16077195

0.34213508        0.27645779      0.16434890

1.94986982        2.34291415      0.15314342

2.30898057        1.08877369      0.15232257

1.98986693        2.91045974      0.15264014

1.59231399        3.06757473      0.15823739

1.29864641        2.69395181      0.14576771

2.29317210        2.58349572      0.15251182

0.05793299       -2.59778561      0.14875351

1.99058472       -0.17696672      0.15658029

2.73125795       -2.83579628      0.15882635

2.15451150       -1.01207152      0.14576802

1.07129033        1.08091974      0.15708292

1.52711913        2.26168806      0.15912867

1.16236502        0.13916825      0.15708284

1.81256106        0.70838029      0.16434891

1.85530369       -2.50737902      0.15620805

0.74434685        0.30249140      0.14438364

1.49824071        0.40090739      0.15198070

1.56474110       -2.81849429      0.15604718

2.32808998       -0.50109067      0.15441122

1.87070391        1.92956677      0.15353048

2.88720571       -1.59178147      0.14493905

0.79687026       -1.22448828      0.15777882

0.49073383       -2.49121159      0.15636169

0.86597756        2.72407864      0.15441117

0.90380271       -2.41570722      0.15918617

0.69379152        2.15722882      0.15658036

0.77950388       -1.87939660      0.15317146

0.38197320        1.59711308      0.15542262

2.54311968       -1.11209930      0.16269195

1.21275328       -1.10763361      0.15353067

1.12072521        2.31432004      0.16077173

0.51475687       -0.64396568      0.15721788

2.62938152        0.64839067      0.15636234

0.82751400       -0.22838738      0.15450447

F.x Spherical grid for DRC DSHT for order N=9

Inclination[image: image2650.png] in rad,  Azimuth [image: image2652.png] in rad,       [image: image2654.png]
  1.57079633        0.00000000      0.12828036

  2.16373203        3.14159265      0.12214120

  2.55778055        1.07800687      0.12411909

  0.36041732        1.91355038      0.12214053

  1.86313281        0.70422900      0.12980341

  0.68734931        0.62766121      0.12595879

  2.53087449       -3.07674104      0.12686568

  1.93858183       -0.00399326      0.12591541

  1.99735356       -1.78523667      0.12686523

  2.54599177       -1.14448038      0.12980331

  1.41727037        2.10029510      0.12827997

  1.42975298       -2.03832959      0.12040441

  0.49591158       -2.80876714      0.12828003

  1.94504826        2.64716384      0.12980323

  1.46050203        0.65963288      0.12411898

  0.81994922        1.60055042      0.12980342

  2.90039010       -2.83032233      0.12595875

  1.17750420       -2.52395452      0.12980367

  2.23201026       -1.41758015      0.12980324

  1.83260522        3.00221101      0.12040296

  0.27280823        0.57309173      0.12827984

  1.82697936       -1.42107305      0.12411958

  0.64885136       -0.63755903      0.12214100

  2.92668990       -0.74715817      0.12411960

  0.83608830        3.07605331      0.12595899

  2.13647090       -0.37015260      0.12591690

  1.17248048       -2.96343400      0.12411921

  2.27278176       -0.78829766      0.12214053

  2.33382027        0.02692246      0.12827987

  1.44091653       -1.38509544      0.13113000

  1.49774230       -2.75550338      0.12686541

  1.64796000        2.38538463      0.12686567

  0.86423080       -2.72191030      0.12040420

  1.88340220       -0.70858136      0.12827970

  1.84991189       -2.51360023      0.12591545

  1.55433945        2.75646776      0.12411975

  1.05621052        2.19619507      0.12040388

  1.62064026       -1.72752451      0.12595883

  1.13565641       -0.61914701      0.12980332

  1.13683348        1.80774348      0.12214042

  0.73983145       -2.25726397      0.12214044

  0.29726235       -0.84075556      0.12591620

  0.52655839        2.71448092      0.12686515

  0.42942711       -1.90719617      0.12591540

  0.91398906        1.08067861      0.12411953

  2.68849385        2.50148936      0.12411959

  2.36098369       -1.86914671      0.12214058

  1.83657803       -2.89541550      0.12828043

  1.27526530        1.01421481      0.12595902

  2.35129951        2.23269302      0.12040288

  1.30431251        0.32225872      0.12595868

  0.90231487        2.60267985      0.12411967

  2.30337398        2.71898541      0.12980326

  1.39373392       -0.35543690      0.12214089

  1.49751408       -3.13733860      0.12595843

  2.01751030       -1.08299197      0.12040386

  1.17568045        1.40534497      0.12686527

  2.19236789       -2.70093341      0.12591627

  2.56023704       -0.43012045      0.12686513

  1.51097956       -2.38499767      0.12214025

  1.28573634        2.50420996      0.12595853

  0.84660824       -1.75673313      0.12686549

  0.70805638        2.10420981      0.12980326

  1.48574685        1.70727610      0.12591670

  1.99776782        2.26037793      0.12214140

  1.68420229        0.34882309      0.12686573

  1.84850208        1.58929972      0.12591555

  2.05336705        0.37361712      0.12214035

  0.13006441       -2.96000913      0.12591661

  1.76189826        1.97111953      0.12591598

  2.71326544       -1.80095205      0.12040383

  1.75573602       -0.35227870      0.12591593

  1.19314055        2.90104754      0.13112995

  1.63811123        0.98412082      0.12040459

  1.07280135        0.65657785      0.13113003

  0.91115869       -0.28257823      0.12980346

  1.29046828       -1.01963661      0.12411946

  2.37826460        0.55252527      0.12040438

  2.13871758        1.83860212      0.12828036

  2.24254365        1.40568224      0.12686556

  1.65398515       -1.06244312      0.12595861

  0.64259427       -1.30247588      0.12828045

  2.51222922       -2.44030027      0.12827971

  1.79529243       -2.10829994      0.12828002

  1.51732931       -0.70668218      0.12686586

  0.92550987       -0.95463482      0.12040314

  1.08652419       -2.13466658      0.12980337

  1.20141169       -0.04579864      0.12040323

  2.14184722       -2.24301998      0.12591668

  2.54887172        1.74602244      0.12595856

  1.05541584       -1.36282902      0.12595851

  0.91981071        0.23029246      0.12411927

  2.71843378        0.31100130      0.12595908

  1.53660179        1.34230146      0.12827978

  2.16591389        0.92821735      0.12980362

  0.56817609        0.00264963      0.12686571

  2.92170819        1.46142465      0.13112985

  1.91166616        1.21479777      0.12214024

  0.55577503        1.21928553      0.12040379

  1.22767373       -1.71900109      0.12411923

Add the following tables after Annex F.23
HOA Tables for Dynamic Range Control:
F.x Huffman Table for Decoding HuffmanMagDiffNoSbr
	HuffmanWord 
	Codeword Length
	HuffmanMagDiffNoSbr[ HuffmanWord]

	0101010
	7
	-8 (escape for run-length code)

	0101110111
	10
	-7

	010111001
	9
	-6

	01011000
	8
	-5

	0101000
	7
	-4

	0101101
	7
	-3

	01000
	5
	-2

	00
	2
	-1

	1
	1
	0

	011
	3
	1

	01001
	5
	2

	0101111
	7
	3

	0101011
	7
	4

	01011001
	8
	5

	010111010
	9
	6

	010111000
	9
	7

	0101110110
	10
	8

	0101001
	7
	9 (escape for run-length code)


F.x Huffman Table for Decoding HuffmanMagDiffSbr
	HuffmanWord
	Codeword Length
	HuffmanMagDiffSbr[HuffmanWord]

	0100111100
	10
	-8 (escape for run-length code)

	010011111111
	12
	-7

	0100111101
	10
	-6

	01001110
	8
	-5

	0100001
	7
	-4

	010001
	6
	-3

	01010
	5
	-2

	00
	2
	-1

	1
	1
	0

	011
	3
	1

	01011
	5
	2

	010010
	6
	3

	0100110
	7
	4

	0100000
	7
	5

	0100111110
	10
	6

	010011111101
	12
	7

	010011111100
	12
	8

	010011111110
	12
	9 (escape for run-length code)


F.x Huffman Table for Decoding DecTableAngleDiff
	HuffmanWord
	Codeword Length
	DecodedAngleDiff[HuffmanWord]

	0111111
	7
	-7

	0110111
	7
	-6

	000111
	6
	-5

	011000
	6
	-4

	011110
	6
	-3

	0000
	4
	-2

	010
	3
	-1

	1
	1
	0

	001
	3
	1

	01110
	5
	2

	00010
	5
	3

	011001
	6
	4

	000110
	6
	5

	0110110
	7
	6

	0111110
	7
	7

	011010
	6
	8


F.x Huffman Table for Decoding ParHuffmanMagDiffNoSbr
	1 HuffmanWord 
	2 Codeword Length
	3 ParHuffmanMagDiffNoSbr[HuffmanWord ]

	4 001110000
	5 9
	6 -8 (escape for run-length code)

	7 00111001
	8 8
	9 -7

	10 001001
	11 6
	12 -6

	13 00101
	14 5
	15 -5

	16 10100
	17 5
	18 -4

	19 0100
	20 4
	21 -3

	22 1011
	23 4
	24 -2

	25 100
	26 3
	27 -1

	28 11
	29 2
	30 0

	31 011
	32 3
	33 1

	34 000
	35 3
	36 2

	37 0101
	38 4
	39 3

	40 10101
	41 5
	42 4

	43 00110
	44 5
	45 5

	46 001111
	47 6
	48 6

	49 001000
	50 6
	51 7

	52 0011101
	53 7
	54 8

	55 001110001
	56 9
	57 9 (escape for run-length code)


F.x Huffman Table for Decoding ParHuffmanMagDiffSbr
	58 HuffmanWord
	59 Codeword Length
	60 ParHuffmanMagDiffSbr[HuffmanWord]

	61 1000011000
	62 10
	63 -8 (escape for run-length code)

	64 11111101
	65 8
	66 -7

	67 100001101
	68 9
	69 -6

	70 11111111
	71 8
	72 -5

	73 100000
	74 6
	75 -4

	76 11110
	77 5
	78 -3

	79 1001
	80 4
	81 -2

	82 110
	83 3
	84 -1

	85 0
	86 1
	87 0

	88 101
	89 3
	90 1

	91 1110
	92 4
	93 2

	94 10001
	95 5
	96 3

	97 111110
	98 6
	99 4

	100 1000010
	101 7
	102 5

	103 10000111
	104 8
	105 6

	106 11111100
	107 8
	108 7

	109 11111110
	110 8
	111 8

	112 1000011001
	113 10
	114 9 (escape for run-length code)


F.x Huffman Table for Decoding ParDecTableAngleDiff
	115 HuffmanWord
	116 Codeword Length
	117 ParDecodedAngleDiff[HuffmanWord]

	118 100111
	119 6
	120 -7

	121 111001
	122 6
	123 -6

	124 10000
	125 5
	126 -5

	127 10010
	128 5
	129 -4

	130 0011
	131 4
	132 -3

	133 000
	134 3
	135 -2

	136 110
	137 3
	138 -1

	139 01
	140 2
	141 0

	142 101
	143 3
	144 1

	145 1111
	146 4
	147 2

	148 0010
	149 4
	150 3

	151 10001
	152 5
	153 4

	154 111011
	155 6
	156 5

	157 111010
	158 6
	159 6

	160 100110
	161 6
	162 7

	163 111000
	164 6
	165 8


F.x Table for ParDecorrSigsSelectionTableIdx referring to NumOfDecorrSigsPerParSubbandTable and ParSelectedDecorrSigsIdxMatrixTable
	ParDecorrSigs
SelectionTableIdx
	NumOfDecorrSigs
PerParSubbandTable
	ParSelectedDecorr
SigsIdxMatrixTable

	0
	1
	{
{0},


{1},


{2},


{3},


{4},


{5},


{6},


{7},


{8} 
}

	1
	2
	{
{0,
 2},


{1,
 4},


{2,
 4},


{3,
 5},


{1,
 4},


{3,
 5},


{1,
 6},


{3,
 7},


{1,
 8} 
}

	2
	4
	{
{0,
 2,
 3,
 8},


{1,
 4,
 7,
 8},


{0,
 2,
 4,
 5},


{0,
 3,
 5,
 7},


{1,
 2,
 4,
 5},


{2,
 3,
 4,
 5},


{1,
 3,
 4,
 6},


{1,
 3,
 7,
 8},


{0,
 1,
 2,
 8} 
}

	3
	9
	{
{0,
1,
2,
3,
4,
5,
6,
7,
8},


{0,
1,
2,
3,
4,
5,
6,
7,
8},


{0,
1,
2,
3,
4,
5,
6,
7,
8},


{0,
1,
2,
3,
4,
5,
6,
7,
8},


{0,
1,
2,
3,
4,
5,
6,
7,
8},


{0,
1,
2,
3,
4,
5,
6,
7,
8},


{0,
1,
2,
3,
4,
5,
6,
7,
8},


{0,
1,
2,
3,
4,
5,
6,
7,
8},


{0,
1,
2,
3,
4,
5,
6,
7,
8}

}


F.x Table for ParDecorrSigsSelectionTableIdx referring to ParPermIdxVectorTable
	ParDecorrSigs
SelectionTableIdx
	ParPermIdxVectorTable

	0
	{0,
1,
2,
3,
4,
5,
6,
7,
8}

	1
	{0,
1,
3,
7,
2,
5,
6,
8,
4}

	2
	{0,
1,
3,
7,
5,
4,
6,
2,
8}

	3
	{0,
1,
2,
3,
4,
5,
6,
7,
8}


F.x Table for ParDecorrSigsSelectionTableIdx referring to NumOfDecorrSigsPerFirstOrderParSubbandTable and ParFirstOrderSelectedDecorrSigsIdxMatrixTable
	ParDecorrSigs
SelectionTableIdx
	NumOfDecorrSigs
PerFirstOrderParSubbandTable
	ParFirstOrderSelectedDecorr
SigsIdxMatrixTable

	0
	1
	{
{0},


{1},


{2},


{3},


{4},

}

	1
	2
	{
{0,
 2},


{1,
 3},


{2,
 3},


{2,
 3}

}

	2
	3
	{
{0,
 1,
 2},


{0,
 1,
 3},


{0,
 2,
 3},


{1,
 2,
 3}

}

	3
	4
	{
{0,
1,
2,
3,
4},


{0,
1,
2,
3,
4},


{0,
1,
2,
3,
4},


{0,
1,
2,
3,
4}

}


F.x Table for ParDecorrSigsSelectionTableIdx referring to ParFirstOrderPermIdxVectorTable
	ParDecorrSigs
SelectionTableIdx
	ParFirstOrderPermIdxVectorTable

	0
	{0,
1,
2,
3}

	1
	{0,
1,
3,
2}

	2
	{0,
1,
2,
3}

	3
	{0,
1,
2,
3}


2 Optimizations and Improvements for Low Bitrate Coding
The following bit stream syntax is based on ISO/IEC 23008-3:2015, clause 5.

In Table 11 – Syntax of mpegh3daCoreConfig() replace

	
tw_mdct;
	1
	bslbf

	
noiseFilling;
	1
	bslbf


with:
	
tw_mdct;
	1
	bslbf

	
fullbandLpd;
	1
	bslbf

	
noiseFilling;
	1
	bslbf


Add Table AMD2.1 – Syntax of tbe_data() at the end of 5.2.3.2
Table AMD2.1 — Syntax of tbe_data()

	Syntax 
	No. of bits 
	Mnemonic

	tbe_data()
	
	

	{
	
	

	
tbe_heMode;
	1
	uimsbf

	
idxFrameGain;
	5
	uimsbf

	
idxSubGains;
	5
	uimsbf

	
lsf_idx[0];
	7
	uimsbf

	
lsf_idx[1];
	7
	uimsbf

	
if (tbe_heMode==0) {
	
	

	

tbe_hrConfig;
	1
	uimsbf

	

tbe_nlConfig;
	1
	uimsbf

	
idxMixConfig;
	2
	uimsbf

	

if (tbe_hrConfig==1) {
	
	

	

idxShbFrGain;
	6
	uimsbf

	

idxResSubGains;
	5
	uimsbf

	

} else {
	
	

	

idxShbExcResp[0];
	7
	uimsbf

	

idxShbExcResp[1];
	4
	uimsbf

	
}
	
	

	}
	
	

	}
	
	


The following bit stream syntax is based on ISO/IEC 23003-3:2012, clause 5. These syntax elements have to be added to ISO/IEC 23008-3. The added syntax elements have to be removed from Table 37 in ISO/IEC 23008-3 if existing.

In ISO/IEC 23008-3:2015 Table 37 — References to USAC syntactic elements replace:
	Syntax of
	Defined in

	ics_info()
	ISO/IEC 23003-3:2012, 5.3, Table 22

	tw_data()
	ISO/IEC 23003-3:2012, 5.3, Table 27

	scale_factor_data()
	ISO/IEC 23003-3:2012, 5.3, Table 28

	tns_data()
	ISO/IEC 23003-3:2012, 5.3, Table 29

	ac_spectral_data()
	ISO/IEC 23003-3:2012, 5.3, Table 30

	lpd_channel_stream()
	ISO/IEC 23003-3:2012, 5.3, Table 31

	fac_data()
	ISO/IEC 23003-3:2012, 5.3, Table 39

	UsacSbrData()
	ISO/IEC 23003-3:2012, 5.3, Table 40

	Mps212Data()
	ISO/IEC 23003-3:2012, 5.3, Table 52


with:

	Syntax of
	Defined in

	ics_info()
	ISO/IEC 23003-3:2012, 5.3, Table 22

	tw_data()
	ISO/IEC 23003-3:2012, 5.3, Table 27

	scale_factor_data()
	ISO/IEC 23003-3:2012, 5.3, Table 28

	tns_data()
	ISO/IEC 23003-3:2012, 5.3, Table 29

	ac_spectral_data()
	ISO/IEC 23003-3:2012, 5.3, Table 30

	fac_data()
	ISO/IEC 23003-3:2012, 5.3, Table 39

	UsacSbrData()
	ISO/IEC 23003-3:2012, 5.3, Table 40

	Mps212Data()
	ISO/IEC 23003-3:2012, 5.3, Table 52


Add Table AMD2.2 – Syntax of lpd_channel_stream() (based on Table 31 in ISO/IEC 23003-3:2012) to subclause 5.2.3.2:

Table AMD2.2 — Syntax of lpd_channel_stream()

	Syntax
	No. of bits
	Mnemonic

	lpd_channel_stream(noiseFilling, indepFlag) 
	
	

	{ 
	
	

	
if (fullbandLpd) {
	
	

	

tns_data_present;
	1
	uimsbf

	

if (noiseFilling || tns_data_present) {
	
	

	


window_shape;
	1
	uimsbf

	


max_sfb;
	4
	uimsbf

	

} else {
	
	

	


window_shape = max_sfb = 0;
	
	

	

}
	
	

	
} else {
	
	

	

tns_data_present = 0;
	
	

	
}
	
	

	
acelp_core_mode;
	3 
	uimsbf

	
	
	

	
if (fullbandLpd) {
	
	NOTE 1

	

lpd_mode;
	3
	uimsbf

	

bpf_control_info = 1;
	
	

	
} else {
	
	

	

lpd_mode;
	5
	uimsbf

	

bpf_control_info;
	1
	uimsbf

	
}
	
	

	
core_mode_last;
	1
	uimsbf

	
fac_data_present;
	1
	uimsbf

	
	
	

	
first_lpd_flag = !core_mode_last;
	
	

	
first_tcx_flag = TRUE;
	
	

	
k = 0;
	
	

	
if (first_lpd_flag) { last_lpd_mode = -1; }
	
	NOTE 2

	
nbDiv = (fullbandLpd == 1) ? 2 : 4;
	
	

	
while (k < nbDiv) {
	
	

	

if (k == 0) {
	
	

	


if (
(core_mode_last == 1) && (fac_data_present == 1) ) {
	
	

	



fac_data(0, ccfl/8);
	
	

	


}
	
	

	

} else {
	
	

	


if (
(last_lpd_mode == 0 && mod[k] > 0) ||
	
	

	



(last_lpd_mode > 0 && mod[k] == 0) ) {
	
	

	



fac_data(0, ccfl/8);
	
	

	


}
	
	

	

}
	
	

	

if (mod[k] == 0) {
	
	

	


acelp_coding(acelp_core_mode);
	
	

	


last_lpd_mode = 0;
	
	

	


k += 1;
	
	

	

} else {
	
	

	


window_sequence = EIGHT_SHORT_SEQUENCE;
	
	NOTE 3

	


tcx_coding(lg(mod[k]), first_tcx_flag, tns_data_present, noiseFilling, indepFlag);

	


last_lpd_mode = mod[k];
	
	

	


k += (1 << (mod[k]-1));
	
	

	


first_tcx_flag = FALSE;
	
	

	

}
	
	

	
}
	
	

	
	
	

	
lpc_data(first_lpd_flag);
	
	

	
	
	

	
if ( (core_mode_last == 0) && (fac_data_present == 1) ) {
	
	

	

short_fac_flag;
	1
	uimsbf

	

fac_length = short_fac_flag ? ccfl/16 : ccfl/8;
	
	

	

fac_data(1, fac_length);
	
	

	
}
	
	

	} 
	
	

	NOTE 1:
lpd_mode defines the contents of the array mod[] as described in ISO/IEC 23003-3,


Table 89 or, if fullbandLpd is equal to 1, in ISO/IEC 23008-3, Table AMD2.5
NOTE 2:
first_lpd_flag is defined in ISO/IEC 23003-3, subclause 6.2.10.2. 

NOTE 3:
The number of spectral coefficients, lg, depends on mod[k] according to ISO/IEC 23003-3,

Table 148 or, if fullbandLpd is equal to 1, in ISO/IEC 23008-3, Table AMD2.7


Add Table AMD2.3 – Syntax of acelp_coding() (based on Table 36 in ISO/IEC 23003-3:2012:FDAM1) to subclause 5.2.3.2:

Table AMD2.3 — Syntax of acelp_coding()
	Syntax
	No. of bits
	Mnemonic

	acelp_coding(acelp_core_mode) 
	
	

	{ 
	
	

	
mean_energy; 
	2 
	uimsbf 

	
	
	

	
nb_subfr = coreCoderFrameLength / 256;
	
	NOTE 

	
for (sfr = 0; sfr < nb_subfr; sfr++) { 
	
	

	

if ((sfr == 0) || ((nb_subfr == 4) && (sfr == 2))) { 
	
	

	


acb_index[sfr]; 
	9 
	uimsbf 

	

} else { 
	
	

	


acb_index[sfr]; 
	6 
	uimsbf 

	

} 
	
	

	

ltp_filtering_flag[sfr]; 
	1 
	bmsbf 

	
	
	

	

switch (acelp_core_mode) { 
	
	

	


case 0 
	
	

	



icb_index[sfr]; 
	20
	uimsbf 

	



break; 
	
	

	


case 1 
	
	

	



icb_index[sfr]; 
	28
	uimsbf 

	



break; 
	
	

	


case 2 
	
	

	



icb_index[sfr]; 
	36
	uimsbf 

	



break; 
	
	

	


case 3 
	
	

	



icb_index[sfr]; 
	44
	uimsbf 

	



break; 
	
	

	


case 4 
	
	

	



icb_index[sfr]; 
	52
	uimsbf 

	



break; 
	
	

	


case 5 
	
	

	



icb_index[sfr]; 
	64
	uimsbf 

	



break; 
	
	

	


case 6 
	
	

	



icb_index[sfr]; 
	12
	uimsbf 

	



break; 
	
	

	


case 7 
	
	

	



icb_index[sfr]; 
	16
	uimsbf 

	



break; 
	
	

	

} 
	
	

	

gains[sfr]; 
	7 
	uimsbf 

	
}
	
	

	
	
	

	
if (fullbandLpd) {
	
	

	

tbe_data();
	
	

	
}
	
	

	} 
	
	

	NOTE: coreCoderFrameLength designates the core frame length in samples and is equal to either 1024 or 768.


Add Table AMD2.4 – Syntax of tcx_coding() (based on Table 37 in ISO/IEC 23003-3:2012) to subclause 5.2.3.2:

Table AMD2.4 — Syntax of tcx_coding()

	Syntax
	No. of bits
	Mnemonic

	tcx_coding(lg, first_tcx_flag, tns_data_present, noiseFilling, indepFlag) 
	
	

	{ 
	
	

	
if (noiseFilling) {
	
	

	

noise_factor; 
	3 
	uimsbf 

	
} else {
	
	

	

noise_factor = 8;
	
	

	
}
	
	

	
global_gain; 
	7 
	uimsbf 

	
	
	

	[editorial note: changes to tcx_coding of clause 12 go here]
	
	

	
if (enhancedNoiseFilling) {
	
	

	

num_windows = 1;
	
	

	

igf_AllZero;
	1
	uimsbf

	

igf_level(igf_AllZero, indepFlag);
	0…
	see NOTE in Table 34

	

if (!igf_AllZero) {
	
	

	


igf_data(indepFlag);
	
	

	

} else {
	
	

	


igfPrevTileIdx = {3};
	
	

	


igf_PrevWhiteningLevel = {0};
	
	

	


igf_WhiteningLevel = {0};
	
	

	

}
	
	

	
}
	
	

	
	
	

	
if (tns_data_present) {
	
	

	

num_windows = 1;
	
	

	

tns_data();
	
	

	
}
	
	

	
	
	

	
if (first_tcx_flag) { 
	
	

	

if (indepFlag) { 
	
	

	


arith_reset_flag = 1; 
	
	

	

} else { 
	
	

	


arith_reset_flag; 
	1 
	uimsbf 

	

} 
	
	

	
} else {
	
	

	

arith_reset_flag = 0; 
	
	

	
} 
	
	

	
arith_data(lg, arith_reset_flag); 
	
	

	} 
	
	


In subclause 5.5.4.4.3.2 replace

The result, quantized energy information of scalefactor bands in the IGF region, is stored in igf_curr[ ][ ][ ]. For requantization use the formula:  

igf_curr[ch][g][sfb] = 2^(igf_curr[ch][g][sfb]*0.25)

for each channel ch, windowgroup g and scalefactor band sfb in scope.

with:

The result, quantized energy information of scalefactor bands in the IGF region, is stored in igf_curr[ ][ ][ ]. For requantization use the formula:  

igf_curr[ch][g][sfb] = 2^((igf_curr[ch][g][sfb]-igf_emphasis)*0.25)

for each channel ch, window group g and scalefactor band sfb in scope and where igf_emphasis is defined as:

igf_emphasis = 0;  if IGF is running in FD  mode

igf_emphasis = 40; if IGF is running in TCX mode

In subclause 5.5.4.4.7 replace

igf_apply_whitening(pMDCT[],pMDCT_flat[])

{

  stop = swb_offset[m_igfStartSfb];

  for (i = igfMin -3; i < stop; i++) {

    power_spec[i] = pMDCT[i] * pMDCT[i];

  }

  for (i = igfMin; i < stop-3; i++) {

    env[i] = 1e-3;

    for (j = -3; j <= 3; j++) {

      env[i] += power_spec[i+j];

    }

  }

  for (i = stop-3; i < stop; i++) {

    env[i] = env[stop-4];

  }

  for (i = igfMin; i < stop; i++) {

    n = INT(log(env[i])/log(2));

    pMDCT_flat[i] = pMDCT[i] * pow(2, 21 – 0.5 * n);

  }

}

with:

igf_apply_whitening(pMDCT[], pMDCT_flat[])

{

  stop = swb_offset[m_igfStartSfb];

  for (i = igfMin; i < stop - 3; i++) {

    env = 1e-3;

    for (j = i - 3; j <= i + 3; j++) {

      env += pMDCT[j] * pMDCT[j];

    }

    n = MAX(0, INT(log(env)/log(2)));

    fac = pow(2, 21 – 0.5 * n);

    pMDCT_flat[i] = pMDCT[i] * fac;

  }

  for (; i < stop; i++) {

    pMDCT_flat[i] = pMDCT[i] * fac;

  }

}

Add subclause 5.5.5.4.x IGF core rescaling after subclause 5.5.5.4.11 IGF-ENF Processing:
5.5.5.4.x IGF core rescaling

If IGF is used in TCX mode, i.e. fullbandLpd is equal to 1 and the current frame is LPD/TCX coded, the decoded IGF levels are used for rescaling the MDCT coefficients in the IGF range. This process mimics the quantization noise adjustment described in ISO/IEC 14496-3:2009 subclause 4.6.2 for the TCX core coder.

After decoding the IGF levels as described in subclause 5.5.5.4.4, for each IGF scalefactor band the corresponding IGF level stored in igf_curr[ ] is multiplied on the MDCT coefficients of the TCX spectrum of the current frame:

for (tile = 0; tile < nT; tile++) {

  for (sfb = m_igfStartSfb; sfb < m_igfStopSfb; sfb++)

    width = (swb_offset[MIN(sfb + 1, m_igfStopSfb)] - swb_offset[sfb]);

    for (bin = 0; bin < width; bin++) {

      tb = swb_offset[sfb]+bin;

      pMDCT[tb] *= igf_curr[sfb];

  }

}

As TCX does not support grouping of windows, i.e. num_windows = 1, the window index w is always 0.

Add subclauses 5.5.x Fullband LPD and 5.5.x Time-domain Bandwidth Extension after 5.5.6
Audio Pre-Roll :

5.5.x Fullband LPD

5.5.x.1 Tool Description

In the fullband LPD mode, the ACELP core mode (see subclause 7.14 in ISO/IEC 23003-3:2012) is operated at half the sampling frequency as the MDCT based TCX core mode (see subclause 7.15 in ISO/IEC 23003-3:2012), i.e.

[image: image2655.png]
To adjust the output signals at different sampling frequencies, the ACELP output is upsampled applying a time-domain resampler. The lacking effective bandwidth ranging from fs,ACELP/2 to fs,TCX/2 in case of ACELP processing in comparison to TCX in combination with Enhanced Noise Filling (see subclause 5.5.6.8.5) is covered by the Time-Domain Bandwidth Extension (see subclause 5.5.x Time-domain Bandwidth Extension). This section describes the decoding of fullband LPD and related changes in decoding of existing tools.

5.5.x.2 Data Elements

fullbandLpd
this flag signals the usage of the fullband LPD tool.
window_shape
window shape of the current subframe.
5.5.x.3 Helper Elements

fs,TCX
sampling rate of the fullband TCX.
fs,ACELP
sampling rate of the ACELP.

lg
number of spectral coefficients of the current TCX subframe.

rl[ ]
TCX noise generation flag array, contains only the values 1 and 0.

rr[ ]
reconstructed spectrum.

x[ ]
output of the IMDCT.

nfBgn
subband index; this index indicates the start of the TCX noise generation.

nfEnd
subband index; this index indicates the stop of the TCX noise generation.

g
re-scaling gain factor.

zTCX,FB
time-domain output of TCX sampled at fs,TCX.
zTCX,LB
time-domain output of TCX sampled at fs,ACELP.
zACELP
time-domain output of ACELP sampled at fs,ACELP.
zOUT
mixed time-domain output sampled at fs,TCX.
z_fb[ ]
decoded windowed time domain signal of the fullband TCX @ fs,TCX.
z_lb[ ]
decoded windowed time domain signal of the fullband TCX @ fs,ACELP.
5.5.x.4 Framing

In case of fullband LPD coding, i.e. fullbandLpd is equal to 1, long TCX frames correspond to coreCoderFrameLength samples @ fs,TCX and medium TCX frames correspond to coreCoderFrameLength/2 samples @ fs,TCX. For ACELP, the standard frame size of coreCoderFrameLength/4 samples @ fs,ACELP as described in subclause 7.14 in ISO/IEC 23003-3:2012 is used, while coreCoderFrameLength=1024 is fixed. Possible frame combinations within one superframe are shown in Figure AMD2.1.

Figure AMD2.1 — possible frame combinations in fullband LPD within one superframe
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5.5.x.4.1 Mode coding
In case of fullband LPD, i.e. fullbandLpd is equal to 1, the lpd mode coding is the same as described in subclause 6.2.10 in ISO/IEC 23003-3:2012, while one “superframe” consists of only two frames instead of four. Due to this, Table 89 in ISO/IEC 23003-3:2012 changes to Table AMD2.5.

Table AMD2.5 — Mapping of coding modes for lpd_channel_stream() in case of fullband LPD

	
	meaning of bits in bit-field lpd_mode
	remaining mod[] entries

	lpd_mode
	bit 2
	bit 1
	bit 0
	

	0..3
	0
	mod[1]
	mod[0]
	

	4
	1
	0
	0
	mod[1]=2

mod[0]=2


In case of fullband LPD, as there are only two frames, coding mode 3 is not applicable, thus changing Table 92 in ISO/IEC 23003-3:2012 to Table AMD2.6.

Table AMD2.6 — Coding modes indicated by mod[] in case of fullband LPD

	value of mod[x]
	coding mode in frame
	bitstream

element

	0
	ACELP
	acelp_coding()

	1
	medium TCX (ccfl/2)
	tcx_coding()

	2
	long TCX (ccfl)
	tcx_coding()


In case of fullband LPD, as there are only two frames, coding mode 3 is not applicable, thus changing Table 148 in ISO/IEC 23003-3:2012 to Table AMD2.7.

Table AMD2.7 — number of spectral coefficients as a function of mod[] and coreCoderFrameLength (ccfl)

	value of mod[x]
	number lg of spectral coefficients
	ZL
	L
	M
	R
	ZR

	1
	ccfl/2
	0
	ccfl/2
	0
	ccfl/2
	0

	2
	ccfl
	ccfl/4
	ccfl/2
	ccfl/2
	ccfl/2
	ccfl/4


5.5.x.5 TD resampler

The time-domain (TD) resampler is used to upsample the time-domain output of ACELP (see subclause 7.14 in ISO/IEC 23003-3:2012) and the Forward Aliasing Cancellation tool (see subclause 7.16 in ISO/IEC 23003-3:2012) by the factor of 2, in order to bring the output to the same sampling rate as the fullband MDCT based TCX output.
Every 2 samples of the time-domain input signal are separated by a zero-valued sample to form a sequence with a sampling frequency (fs,out) which is increased by the factor of 2 compared to the sampling frequency of the input signal (fs,in = fs,out/2). Subsequently, the upsampled sequence sup is filtered using an FIR interpolation filter of length N given by the symmetric filter coefficients bk in Table AMD2.8 to form the time-domain output signal sout for each sample of index i by:

[image: image2657.png]
Table AMD2.8 — interpolation filter coefficients bk
	k
	bk

	30
	1

	29, 31
	0.63487604

	28, 32
	0

	27, 33
	-0.20701353

	26, 34
	0

	25, 35
	0.11879487

	24, 36
	0

	23, 37
	-0.07926575

	22, 38
	0

	21, 39
	0.05615642

	20, 40
	0

	19, 41
	-0.04070711

	18, 42
	0

	17, 43
	0.02957617

	16, 44
	0

	15, 45
	-0.02122066

	14, 46
	0

	13, 47
	0.01483115

	12, 48
	0

	11, 49
	-0.00993903

	10, 50
	0

	9, 51
	0.00624819

	8, 52
	0

	7, 53
	-0.00355476

	6, 54
	0

	5, 55
	0.00170582

	4, 56
	0

	3, 57
	-0.00057701

	2, 58
	0

	1, 59
	0.00006013

	0, 60
	0


5.5.x.6 LPC filter

In case of fullband LPD, i.e. fullbandLpd is equal to 1, the LPC-filters are inversely quantized, decoded and processed as described in subclause 7.13 in ISO/IEC 23003-3:2012.

Yet, as there are only 2 ACELP frames per superframe in case of fullband LPD, the maximum number of LPC-filters to be present within 1 superframe changes from 5 to 3. The LPC-filters LPC1 and LPC3 are not used, while the remaining LPC-filters correspond to LPC0, LPC2 and LPC4. Thus, in case of fullband LPD, the conditions of presence of LPC-filters as shown in Table 142 ISO/IEC 23003-3:2012 changes to Table AMD2.9.

Table AMD2.9 — conditions for the presence of a given LPC filter in the bitstream in fullband LPD

	LPC filter
	Present if

	LPC0
	first_lpd_flag=1

	LPC2
	mod[0]<2

	LPC4
	always


5.5.x.7 ACELP decoding

In case of fullband LPD, i.e. fullbandLpd is equal to 1, ACELP is decoded and processed as described in subclause 7.14 in ISO/IEC 23003-3:2012. Subsequent to the ACELP synthesis and prior to writing it to the output buffer, the ACELP output is upsampled by the factor of 2 using the time-domain resampler described in subclause 5.5.6.5.

5.5.x.8 TXC decoding

5.5.x.8.1 TCX frequency band offset tables

For the noise filling, Intelligent Gap Filling, and Temporal Noise Shaping algorithms applied in the MDCT based TCX, a vector swb_offset_tcx[] of frequency band offsets (i. e. indices of spectral bins representing frequency band borders) is required. Identically to 8-short-window FD channels and frames coded using window_sequence == EIGHT_SHORT_SEQUENCE, these TCX band offsets are based on the sampling-rate dependent swb_offset_short_window[] values defined in Tables 4.130—4.141 in ISO/IEC 14496-3:2009, subclause 4.5.4 and may be abbreviated swb_offset in functions or algorithm descriptions available to both long-window and 8-short-window FD coding and/or to both FD and LPD (i. e. MDCT based TCX) coding.

The swb_offset_tcx[] vector for a given TCX window is determined using value lg from Table AMD2.7:

swb_offset_tcx[i] = swb_offset_short_window[i] · f(lg),

where f(lg) = lg / 128, with lg being based on vector mod[ ] defined according to Table AMD2.2 — Syntax of lpd_channel_stream() in subclause 5.2.3.2.

5.5.x.8.2 TCX noise generation

The noise filling in MDCT based TCX is applied as described in ISO/IEC 23003-3:2012 subclause 7.15.3. However, the noise filling start index, lg/6 and stop index, lg are modified as follows if fullbandLpd == 1.

A run of 8 non-zeros is detected according to the following pseudo code, where nfBgn and nfEnd depend on fullbandLpd and enhancedNoiseFilling and, in case of the latter, the swb_offset_tcx bin index array:

if (fullbandLpd) {

  nfBgn = (lg/6) & 2040;

  nfEnd = enhancedNoiseFilling ? igfBgn : lg;

  nfEnd = min(nfEnd, min(lg, swb_offset_tcx[max_sfb]));

} else {

  nfBgn = (lg/6);

  nfEnd = lg;

}

for (i = 0; i < nfBgn; i++) {

  rl[i] = 1;

}

for (i = nfBgn; i < nfEnd; i += 8) {

  int k, maxK = min(nfEnd, i+8);

  tmp = 0;

  for (k = i; k < maxK; k++) {

    tmp += x_tcx_invquant[k] * x_tcx_invquant[k];

  }

  if (tmp != 0) {

    for (k = i; k < maxK; k++) {

      rl[k] = 1;

    }

  } else {

    for (k = i; k < maxK; k++) {

      rl[k] = 0;

    }

  }

}
5.5.x.8.3 Adaptive Low-Frequency De-emphasis

The purpose of the adaptive low-frequency emphasis and de-emphasis (ALFE) processes is to improve the subjective performance of the frequency-domain TCX codec at low frequencies. To this end, the TCX low-frequency MDCT spectral lines are amplified prior to quantization in the encoder, thereby increasing their quantization SNR, and this boosting is undone prior to the inverse MDCT operation in the decoder.

The ALFE operates on the spectral lines in vector x[] directly after the above-noted inverse quantization, noise filling and if enabled, frequency-domain prediction (i. e. x[] represents either the x_tcx_invquant[] or outputSpecCurr[]). If both fullbandLpd and enhancedNoiseFilling are zero the conventional ALFE algorithm, described as a four-step “de-shaping” procedure in ISO/IEC 23003-3:2012 subcl. 7.15, is applied.

Otherwise, the ALFE operates based on the LPC frequency-band gains, lpcGains[], which are derived from the gains g1 and g2 used for FD noise shaping, as defined in ISO/IEC 23003-3:2012, subcl. 7.15, by

lpcGains[k] = sqrt(g1[k] * g2[k]), i. e. the geometric mean of g1 and g2 at each index k.

The ALFE decoding is done as follows. First, the minimum and maximum of the first nine gains – the low-frequency gains – are found using comparison operations executed within a loop over the gain indices 0 to 8., i. e. over lpcGains[i] with i = 0, 1,.., 8. Then, if the ratio between the minimum and maximum gain values exceeds a threshold of 1/32, a gradual lowering of the lowest lines in x is performed such that the first line is attenuated by (max/(32 min))0.25 and the 33rd line is not attenuated:

tmp = 32 * min;

if ((max < tmp) && (tmp > 0)) {

  fac = tmp = pow(max / tmp, 1/128);

  for (i = 31; i >= 0; i--) {    /* gradual lowering of lowest 32 lines */

    x[i] *= fac;

    fac  *= tmp;

  }

}

5.5.x.8.4 Adaptive Low-Frequency De-emphasis

In MDCT based TCX coding, the reconstructed spectrum rr[] is fed into an inverse MDCT. The non-windowed output signal, x[], is re-scaled by the gain, g, obtained by an inverse quantization of the decoded global_gain index as described in ISO/IEC 23003-3:2012 subclause 7.15.3. If fullbandLpd is equal to 1, the rescaling of the spectrum is performed in the MDCT domain. The stop index of the core coder rescaling depends on enhancedNoiseFilling:

rsEnd = enhancedNoiseFilling ? min(lg, igfBgn) : lg;

rr[i] = rr[i]·g; i = 0 .. rsEnd - 1
5.5.x.8.5 Enhanced Noise Filling in TCX

In MDCT based TCX coding, Enhanced Noise Filling is carried out by the Intelligent Gap Filling (IGF) tool as described in subclause 5.5.5 if enhancedNoiseFilling is equal to 1.

The IGF decoding process for each TCX spectrum is performed after the arithmetic decoding noise filling and rescaling, but before the de-shaping is applied to the spectrum.

5.5.x.8.6 De-shaping

The spectrum de-shaping is applied to the reconstructed spectrum according to ISO/IEC 23003-3:2012 subclause 7.15.3. If fullbandLpd is equal to 1, the inverse FDNS operation consists in filtering the reconstructed spectrm r[i] using the recursive filter:

rr[i] = a[i]·r[i]+b[i]·rr[i-1], i = 0 ... lg/2-1,
where a[i] and b[i] are derived from the left and right gains g1[k], g2[k] using the formulas:

a[i] = 2·g1[k]·g2[k]/(g1[k]+g2[k]),

b[i] = (g2[k]-g1[k])/(g1[k]+g2[k])

In the above, the variable k is equal to i/(lg/M) to take into consideration the fact that the LPC spectrums are decimated, where M=coreCoderFrameLenght/16.

The spectral coefficients between lg/2 and lg are filtered by holding the last calculated filter coefficients:

rr[i] = a[i]·r[i]+b[i]·rr[i-1], i = lg/2 ... lg-1,

where a[i] and b[i] are derived from the left and right gains g1[M-1], g2[M-1] using the formulas:

a[i] = 2·g1[M-1]·g2[M-1]/(g1[M-1]+g2[M-1]),

b[i] = (g2[M-1]-g1[M-1])/(g1[M-1]+g2[M-1])

5.5.x.8.7 Temporal Noise Shaping in TCX

In MDCT based TCX coding, Temporal Noise Shaping (TNS) is applied as in short-block FD channels (i.e. channels and frames with window_sequence==EIGHT_SHORT_SEQUENCE) and follows the bitstream syntax and description specified in ISO/IEC 23003-3:2012, subcl. 5.3.2 and 7.8. If tns_data_present ≠ 0 for a given lpd_channel_stream(), a single-window instance of tns_data() is read for each TCX spectrum.

The TNS decoding (i.e. synthesis filtering) process for each TCX spectrum is performed after the arithmetic decoding, noise filling, frequency-domain prediction and enhanced noise filling steps, as referenced in ISO/IEC 23003-3:2012, subclause 7.8 and, in case of Intelligent Gap Filling with TTS, subclause 5.5.5.4.5. The only difference is that the swb_offset_short_window[] values employed for frequency band restriction of the TNS filtering process are multiplied with a factor f(mod[k]), as described in subclause 5.5.x.8.1 TCX frequency band offset tables.

5.5.x.8.8 Inverse MDCT in TCX

The reconstructed spectrum rr[] is fed into an inverse Modified Discrete Cosine Transform (IMDCT) to obtain the non-windowed time domain output signal x[] as described in ISO/IEC 23003-3:2012. If fullbandLpd is equal to 1, it is necessary to perform two independent IMDCTs, one for the fullband TCX output z_fb[] and one for the down-sampled lowband TCX output z_lb[] which will be later used for initializing the ACELP core. The down-sampling by the constant factor of 2 is achieved by applying an IMDCT of half the length of the regular IMDCT, i.e. by applying an IMDCT of length lg/2.

5.5.x.8.9 TCX windowing

In case of fullband LPD, i.e. fullbandLpd is equal to 1, the windows applied to the TCX frames prior to the transform and after inverse transform are depicted in Table AMD2.10.

Table AMD2.10 — window shapes for TCX frames in fullband LPD

	Frame
	Window Shape (schematic)

	medium TCX
	
[image: image2658.emf]coreCoderFrameLength/2@ f

s,TCX



	long TCX
	
[image: image2659.emf]coreCoderFrameLength@ f

s,TCX




However, when switching from or to FD mode, the TCX windows are adapted in fullband LPD mode, i.e. fullbandLpd is equal to 1, while the windows for the FD core remain the same. The TCX transitions window shapes are schematically depicted in Table AMD2.11 and Table AMD2.12.

Table AMD2.11 — transition window shapes of length N=1024 samples for medium TCX frames in fullband LPD

	Transition
	Window Shape (schematic)

	medium TCX (
LONG_START_SEQUENCE
	
[image: image2660.emf]


	medium TCX (
EIGHT_SHORT_SEQUENCE
	
[image: image2661.emf]


	LONG_STOP_SEQUENCE (
medium TCX
	
[image: image2662.emf]


	EIGHT_SHORT_SEQUENCE (
medium TCX
	
[image: image2663.emf]



Table AMD2.12 — transition window shapes of length N=1536 samples for long TCX frames in fullband LPD

	Transition
	Window Shape (schematic)

	long TCX (
LONG_START_SEQUENCE
	
[image: image2664.emf]


	long TCX (
EIGHT_SHORT_SEQUENCE
	
[image: image2665.emf]


	LONG_STOP_SEQUENCE (
long TCX
	
[image: image2666.emf]


	EIGHT_SHORT_SEQUENCE (
long TCX
	
[image: image2667.emf]



The calculation formulae of the window shapes are described in subclause 7.9.3.2 of ISO/IEC 23003-3:2012. In accordance to the previous frame, the left slope of the window shape and according to the presence of window_shape, the right slope of the window shape can either be a sine or a KBD window. For window_shape == 1, the window coefficients used for the IMDCT are given by the Kaiser – Bessel derived (KBD) window, otherwise the sine window is employed (see subclause 7.9.3.2 of ISO/IEC 23003-3:2012).

5.5.x.9 Forward Aliasing Cancellation (FAC) tool

In case of fullband LPD, i.e. fullbandLpd is equal to 1, the FAC tool is decoded as described in subclause 7.16 in ISO/IEC 23003-3:2012. Subsequent to the decoding and prior to writing it to the output buffer, the FAC signal is upsampled by the factor of 2 using the time-domain resampler described in subclause 5.5.x.5 TD resampler.
Due to the different core coder sampling frequencies fs,ACELP & fs,TCX in case of fullband LPD, the length of the FAC transform (fac_length) remains the same as in  fs,TCX  representation, but halves when represented in fs,ACELP, i.e.

 [image: image2669.png]  @ fs,ACELP if transitioning from and to EIGHT_SHORT_SEQUENCES and 

[image: image2671.png] @ fs,ACELP otherwise.
5.5.x.10 Post-processing of the synthesis signal

In case of fullband LPD, i.e. fullbandLpd is equal to 1, the post-processing of the synthesis signal is performed as described in subclause 7.17 in ISO/IEC 23003-3:2012. While the control coefficient for the inter-harmonic attenuation  [image: image2673.png] and the post-filter gain [image: image2675.png] are determined based on the ACELP synthesis signal before resampling (see subclause 5.5.x.7 ACELP decoding), the filtering is applied to the upsampled ACELP synthesis output. In case of post-processing of transitions between FD mode to and from ACELP, the adapted FAC area lengths must be considered (see subclause 5.5.x.9 Forward Aliasing Cancellation (FAC) tool). The bass-post filter is always enabled in case of fullband LPD, constantly changing the value of bpf_control_info in Table 90 in ISO/IEC 23003-3:2012 to bpf_control_info=1.
5.5.x.11 Coding mode switching

As described in subclause 5.5.6.8.8, the MDCT based TCX decoder generates 2 time-domain output signals at sampling frequencies fs,ACELP and fs,TCX, respectively. The signal sampled at fs,ACELP is used to update the ACELP memories to enable seamless transitions when switching between MDCT based TCX and ACELP. Additionally, the signal sampled at fs,ACELP is used for compensating the delay caused by the TD resampler, allowing to generated overlapping time-domain signals at transitions between ACELP and TCX. Cross-fading is applied at the overlap regions to avoid discontinuities.
Transition handling is depicted schematically in Table AMD2.13 for switching from MDCT based TCX to ACELP and in Table AMD2.14 for switching from ACELP to MDCT based TCX.

Table AMD2.13 — schematic depiction of switching from TCX to ACELP

	coding mode
	TCX
	ACELP

	frame index
	n-1
	n

	fullband TCX output
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	upsampled lowband TCX and ACELP output
	

	mixed fullband output
	


Table AMD2.14 — schematic depiction of switching from ACELP to TCX
	coding mode
	ACELP
	TCX

	frame index
	n-1
	n

	fullband TCX output
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	upsampled lowband TCX and ACELP output
	

	mixed fullband output
	


5.5.x Time-domain Bandwidth Extension

5.5.x.1 Introduction
This clause describes the decoding process of time-domain bandwidth extension (TBE). The TBE decoder tool is used to enable low bit rate coding of speech via the MPEG-H 3D audio codec’s LPD path for ACELP mode. 

5.5.x.2 General Overview
Figure AMD2.2 shows a high level framework of the TBE decoder. The input bit stream is de-multiplexed and decoded by the MPEG-H 3D Audio core decoder to produce the ACELP low band (LB) excitation and low band synthesis. The TBE bit stream is parsed and the parameters are passed to the TBE decoding tool. The high band synthesis is performed using the TBE parameters and the harmonically-extended high band excitation signal. 

The synthesized high band is then up-sampled and spectrally flipped in the time-domain to generate a high band component associated with the final decoded audio. The low band is also up-sampled to the same sampling rate as the high band, and then mixed with the “delay-adjusted” high band component to generate the output. In particular, the low-band core decoder may exhibit more delay than the high band processing, which would require that the high band is delayed accordingly before mixing with low band such that the low band and high band are time-aligned to avoid any artifacts.
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Figure AMD2.2 — Simplified block diagram of the MPEG-H 3D audio core decoder with TBE tools.

5.5.x.2 Overview of the TBE Decoding Tools

Figure AMD2.3 shows an overview of the TBE decoder tools. The TBE frame converter parses the TBE bit stream configuration data, tbe_data(), as described in Table AMD2.1, and passes the parameters to the TBE decoding module. The parameters associated with the TBE configuration data are described in subclause 5.5.x.3 Definitions of TBE payloads. The acelp_coding() configuration data as described in Table AMD2.3 is used by the MPEG-H 3D audio LPD core decoder to generate the low band excitation, E_LB. The nonlinear modeling module is used to generate the harmonically-extended high band excitation signal, E_HE.
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Figure AMD2.3 — Overview of the TBE decoder tools

The TBE decoding process includes the following steps:

· TBE decoding

· Nonlinear modeling 

· Resampling of LB excitation

· Harmonically extending the LB excitation based on tbe_nlConfig

· Dequantization of high band parameters

· Line spectral frequencies, temporal gains (gain shapes and gain frame), mixing configuration, high band reference gain, residual gain shapes, high band excitation inverse function.

· High band LP estimation

· High band excitation generation

· A: Spectral flip in time domain and decimation of E_HE

· B: Adaptive whitening of A
· C: Temporal envelope-modulated noise generation based on B
· HB excitation estimation based on B and C
· High band LP synthesis

· Temporal envelope adjustment of HB synthesis

· Spectral flip and upsampling.

5.5.x.3 Definitions of TBE payloads

tbe_data()
This element contains information about the high band audio content.
tbe_heMode
This element determines whether the TBE decoding of current frame uses low bit rate high efficiency mode. If the flag is set to zero, then the high resolution configuration (tbe_hrConfig) is enabled.

idxFrameGain
This payload contains data for the overall frame gain adjustment.

idxSubGains
This payload contains data for the temporal sub-frame gain shape adjustment.

lsf_idx[0]
This payload contains LSF data associated with the first stage LSFs used to estimate the LSP and then subsequently the interpolated sub-frame LP parameters.

lsf_idx[1]
This payload contains LSF data associated with the second stage LSFs used to estimate the LSP and then subsequently the interpolated sub-frame LP parameters.

tbe_hrConfig
This flag signals whether the current frame uses high resolution configuration. The flag is only read from the bit stream if the tbe_heMode is set to zero.

tbe_nlConfig
This flag signals the NL configuration that is to be used to generate the HE LB excitation. The flag is only read from the bit stream if the tbe_heMode is set to zero. The default value of tbe_nlConfig is set to 1, if tbe_heMode is set to 1. 

idxMixConfig
This payload contains data to control HB excitation generation based on B and C in subclause 5.5.x.4 TBE Decoder Processing. The flag is only read from the bit stream if the tbe_heMode is set to zero. 

idxShbFrGain
This payload contains data for the overall high band target gain. The flag is only read from the bit stream if the tbe_heMode is set to zero and tbe_hrConfig is set to 1.

idxResSubGains
This payload contains data for temporal sub-frame residual gain shape adjustment. The flag is only read from the bit stream if the tbe_heMode is set to zero and tbe_hrConfig is set to 1.

idxShbExcResp[0]
This payload contains data to filter the HE excitation B in subclause 5.5.x.4 TBE Decoder Processing. The flag is only read from the bit stream if the tbe_heMode is set to zero and tbe_hrConfig is not set to 1. 

idxShbExcResp[1]
This payload contains data to filter the HE LB excitation B in subclause 5.5.x.4 TBE Decoder Processing. The flag is only read from the bit stream if the tbe_heMode is set to zero and tbe_hrConfig is not set to 1.
5.5.x.4 TBE Decoder Processing

5.5.x.4.1 General Overview
An overview of TBE decoder processing steps is shown in Figure AMD2.4.


[image: image2680.emf]ACELP

(MPEG-H 3D Audio, LPD core 

decoder)

De-quantize 

HB parameters

Nonlinear modeling

Resampling

Harmonic 

extension

LB Exc

HE Exc

HB Excitation Generation

Spectral flip 

and 

decimation

Adaptive 

whitening

Temporal 

envelope 

modulation

Noise

HB excitation 

estimation

tbe_nlConfig

tbe_hrConfig

HB LP estimation

Synthesis, 1/A(z)

Temporal envelope 

adjustment

ACELP 

bitstream

TBE 

bitstream

AB

C

Spectral flip and 

upsampling

HB synthesis


Figure AMD2.4 — Overview of the TBE decoder processing

5.5.x.4.2 De-quantization of HB Parameters

The codebooks used to de-quantize some of the high band TBE parameters are summarized in Table AMD2.15. Pseudo-code that describes the de-quantization process is given below. 

Table AMD2.15 — List of codebook tables used to de-quantize some of the high band TBE parameters
	Codebook Table
	Parameter

	SHBCB_GainFrame5bit
	Gain frame, Table X.6, 5 bits

	SHBCB_SubGain5bit
	Subframe gains, Table X.5, 5 bits

	tbeLSFCB1_7b
	LSF first stage, Table X.1, 7 bits

	tbeLSFCB2_7b
	LSF second stage, Table X.2, 7 bits

	tbeExcFilterCB1_7b
	tbeExcFilter1, Table X.3, 7 bits

	tbeExcFilterCB2_4b
	tbeExcFilter2, Table X.4, 4 bits


frameGain = SHBCB_GainFrame5bit[idxFrameGain];

j = 4*idxSubGain;

for (i = 0; i < 4; i++) {

  subGain[i] = SHBCB_SubGain5bit[j++];

}

copyVector(tbeLSFCB1_7b + 10 * lsf_idx[0], qLsf,  10);

copyVector(tbeLSFCB2_7b + 10 * lsf_idx[1], qtemp, 10);

for (i = 0; i < 10; i++) {

  qLsf[i] = qLsf[i] + qtemp[i];

}

if (tbe_heMode==0) {

  mixFac = (idxMixConfig + 1) / 4;

  if (tbe_hrConfig == 1) {

    hbEnerTarget = 10^(0.042 * idxShbFrGain);

    j = 4 * idxResSubGains;

    for (i = 0; i < 4; i++) {

      resSubGain[i] = SHBCB_SubGain5bit[j++];

    }

  } else {

    copyVector(tbeExcFilterCB1_7b + 10 * idxShbExcResp[0], tbeExcFilter1, 10);

    copyVector(tbeExcFilterCB2_4b +  6 * idxShbExcResp[1], tbeExcFilter2,  6);

  }

}

5.5.x.4.3 Nonlinear modeling

5.5.x.4.3.1 introduction
This clause describes the steps to generate the high band excitation from the low band ACELP core. To generate a high-band excitation signal that preserves the harmonic structure of the low band excitation signal, a nonlinear function is used. The time-domain harmonic extension of the low band excitation is performed after sufficient over-sampling in order to minimize aliasing.

5.5.x.4.3.2 Resampling of LB excitation

As shown in Figure AMD2.5, an up-sampled low band excitation signal is derived from both the periodic (adaptive codebook, ACB) and aperiodic (fixed codebook, FCB) excitation components of the low band ACELP core coder. The ACELP innovation codebook excitation is first scaled by the FCB gain, gc, and then up-sampled by 2. The up-sampled past excitation samples are scaled by the pitch gain, gp, and combined with the up-sampled FCB excitation to generate the resampled low band excitation, [image: image2682.png].
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Figure AMD2.5 — Overview of low band excitation resampling process

5.5.x.4.3.3 Harmonic Extension

The resampled low band excitation signal, [image: image2685.png], is processed to extend the low band pitch harmonics into the high band. The harmonically extended excitation, [image: image2687.png], is generated using a nonlinear function, based on the tbe_nlConfig flag from tbe_data().

[image: image2688.png]
where [image: image2690.png] is the energy normalization factor between [image: image2692.png] and [image: image2694.png]. The transfer functions [image: image2696.png] and [image: image2698.png] correspond to low pass and high pass filters with a cut-off frequency 3fs/4.

5.5.x.4.4 High band LP estimation

5.5.x.4.4.1 General
The de-quantized LSF parameters are first converted to LSP.

for (i = 0; i < 10; i++) {

  hbLsp_curr[i] = (float) cos(qLsf[i] * 2PI);

}
For smoother evolution of LP polynomial, the LSPs from current frame, hbLsp_curr, are interpolated with LSPs from previous frame over four sub-frames as shown in the pseudocode below. If the previous frame is not a TBE frame (i.e., indicated using first_frame==1), then interpolation is not performed.

if( !first_frame ) {

  copyVector(memory->hbLsp_prevmem, hbLsp_prev, 10);

} else {

  copyVector(hbLsp_curr, hbLsp_prev, 10);

}

ptrLspInterpCoef = lspInterCoeff;

for( j = 0; j < 4; j++ ) {

  for( i = 0; i < 10; i++ ) {

    lsp_temp[i] = hbLsp_prev[i] * (*ptrLspInterpCoef)

                + hbLsp_curr[i] * (*(ptrLspInterpCoef+1));

  }

  ptrLspInterpCoef += 2;

  libLsp2A( lsp_temp, lpcShb+j*(11), 10 );

  lpcShb[j*11] = 1.0; 

}

copyVector(hbLsp_curr, memory->hbLsp_prevmem, 10);

5.5.x.4.4.2 High band excitation generation

The harmonically-extended excitation, [image: image2700.png], from subclause 5.5.x.4.2.2 Harmonic Extension is used as input to the high band excitation generation.

5.5.x.4.4.3 Spectral flip

The harmonic excitation, [image: image2702.png], is spectrally flipped so that the high band portion of the excitation is modulated down to the low frequency region. This spectral flip is accomplished in time domain as follows:

[image: image2703.png]
where [image: image2705.png]  is the number of samples per frame.

for(i = 0; i < 512; i++) {
  Ef_HE[i] = ((i%2) == 0) ? (-E_HE[i]) : (E_HE[i]);

}

5.5.x.4.4.4 Decimation

The spectrally-flipped harmonic excitation, [image: image2707.png], is then decimated using a pair of all-pass filters to obtain an downsampled excitation signal, [image: image2709.png]. This is done by filtering the even samples of, [image: image2711.png], by an all-pass filter whose transfer function is given by:
[image: image2712.png]
And the odd samples of [image: image2714.png] are filtered using an all-pass filter whose transfer function is given by

[image: image2715.png]
The excitation signal, [image: image2717.png], is estimated by averaging the outputs of the above two filters,  [image: image2719.png]and [image: image2721.png]. The filter coefficients are specified in Table AMD2.16.

Table AMD2.16 — All-pass filter coefficients for decimation

	
	All pass filter coefficients

	[image: image2722.png]
	0.06056541924291

	[image: image2723.png]
	0.42943401549235

	[image: image2724.png]
	0.80873048306552

	[image: image2725.png]
	0.22063024829630

	[image: image2726.png]
	0.63593943961708

	[image: image2727.png]
	0.94151583095682


5.5.x.4.4.5 Adaptive spectral whitening

Due to the nonlinear processing applied to obtain the excitation signal, [image: image2729.png], the spectrum of this excitation is no longer flat. In order to flatten the spectrum of the excitation signal, a fourth-order LP whitening is applied to[image: image2731.png]. The autocorrelation of the excitation signal is estimated. A bandwidth expansion is applied to the autocorrelation coefficients by multiplying the coefficients by an expansion function. The bandwidth expanded autocorrelation coefficients are used to obtain the LPC using the Levinson-Durbin algorithm. Inverse LP filtering is performed to obtain the whitened excitation. In the tbe_hrConfig==1 mode, the whitened excitation is further modulated by the normalized residual energy (based on idxResSubGains). In the tbe_hrConfig != 1 mode, the whitened excitation is filtered using an FIR filter that is derived from the idxShbExcResp payload.

5.5.x.4.4.6 Envelope modulated noise mixing

The whitened harmonic excitation is further modified by adding a random noise whose amplitude is modulated according to the envelope of the whitened excitation. The ratio at which the whitened excitation and the envelope-modulated noise are mixed is dependent on how strongly-voiced the speech segment is. In particular, given that the fine signal structure in the higher bands is closely related to that in the lower band, the mixing ratio may be estimated from the low band core ACELP parameters. For each subframe, [image: image2733.png], the normalized correlation, [image: image2735.png], from the low band is mapped to a voice factor parameter, [image: image2737.png]
[image: image2738.png]
The voice factors undergo further smoothing to compensate for any sudden variations in the low band voicing within a frame. For the HR configuration, the voicing factors are modified based on the idxMixConfig to compensate for any mismatch between the LB and HB voicing. Next the envelope-modulated noise is power normalized such that it is at the same level as that of the harmonic excitation. At each sub-frame, [image: image2740.png], the harmonic excitation that is scaled by the factor, [image: image2742.png], and the normalized modulated noise that is scaled by the factor [image: image2744.png] are mixed to generate the high band excitation.

5.5.x.4.4.7 High band synthesis

The high band excitation is then passed through the high band LP sub-frame synthesis filters to obtain the spectrally shaped excitation. In the tbe_hrConfig==1 mode, first a memory-less synthesis is performed (with past LP filter memories set to zero) and the energy of the synthesized high band is matched to that of the target signal energy (based on idxShbFrGain). In the subsequent step, the scaled or energy compensated excitation signal is used to perform synthesis to obtain the spectrally shaped excitation. The spectrally shaped high band signal is then scaled using the decoded gain shapes. The gain shape scaled highband signal is finally multiplied by the decoded gain frame to obtain the gain adjusted high band synthesized signal.
5.5.x.4.4.8 Resampling of HB synthesis

The gain adjusted HB synthesis is up-sampled by 2 and flipped (i.e., flip from low to high band) to generate a high band component associated with the final decoded speech as shown in Figure AMD2.6. The low band is up-sampled to the same sampling rate as the high band and mixed with the high band component.
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Figure AMD2.6 — Spectral flip of HB synthesis

Add new normative Annex containing the Codebook tables used to de-quantize high band TBE parameters
Annex X
(normative)

Codebook tables used to de-quantize high band Time Domaine Bandwidth Extension parameters
X.1 Codebook Table for tbeLSFCB1_7b
tbeLSFCB1_7b[128x10] = 

0.04864
0.097476
0.14699
0.19811
0.25074
0.32976
0.36053
0.38823
0.42603
0.46205

0.078258
0.11627
0.15307
0.2182
0.26242
0.29803
0.34483
0.379
0.41075
0.43858

0.048724
0.099256
0.15056
0.20264
0.26402
0.34633
0.37125
0.40096
0.43365
0.46697

0.055234
0.09483
0.13869
0.18

0.22943
0.27291
0.31784
0.36125
0.41255
0.45768

0.066955
0.11182
0.15389
0.19033
0.22682
0.26791
0.34946
0.38512
0.42342
0.46221

0.14499
0.1748
0.21495
0.24694
0.28636
0.31766
0.35518
0.39053
0.4296
0.46383

0.053712
0.093501
0.14021
0.18292
0.2327
0.27472
0.32114
0.36421
0.4071
0.45041

0.066898
0.11273
0.16787
0.20781
0.24622
0.28312
0.32727
0.37084
0.40917
0.45845

0.082957
0.12982
0.17424
0.21286
0.24847
0.27936
0.31235
0.34285
0.37285
0.40878

0.050453
0.087648
0.14344
0.18596
0.23016
0.27458
0.32064
0.36275
0.41255
0.4558

0.051327
0.098449
0.15099
0.19838
0.24737
0.2934
0.33846
0.38268
0.42641
0.46512

0.05992
0.098888
0.14664
0.19564
0.24687
0.2953
0.34024
0.37436
0.4127
0.46074

0.064031
0.10319
0.14764
0.19739
0.28187
0.31927
0.3543
0.39228
0.4299
0.46405

0.05498
0.10968
0.16474
0.21945
0.27381
0.32726
0.37935
0.4227
0.44562
0.46469

0.062601
0.099835
0.1538
0.20029
0.2468
0.31243
0.34783
0.37527
0.4072
0.44755

0.074256
0.12069
0.16331
0.20117
0.24158
0.2817
0.32371
0.3614
0.3963
0.43522

0.062513
0.093121
0.14336
0.21052
0.249
0.28973
0.32993
0.3629
0.39997
0.43306

0.025216
0.043257
0.13114
0.17096
0.22462
0.26778
0.31784
0.36167
0.41032
0.45643

0.056889
0.093219
0.1666
0.21076
0.25352
0.29067
0.32129
0.34992
0.37958
0.41368

0.056254
0.095794
0.14664
0.19128
0.2395
0.2838
0.32869
0.36962
0.41141
0.45676

0.058042
0.097978
0.15892
0.19464
0.23194
0.2935
0.32952
0.35889
0.40646
0.46064

0.072914
0.1154
0.15946
0.20074
0.2373
0.26943
0.30625
0.33507
0.36892
0.45515

0.056726
0.097439
0.14751
0.19242
0.24069
0.28525
0.33185
0.37655
0.42171
0.46229

0.057682
0.099927
0.15032
0.19308
0.27116
0.30672
0.33711
0.36787
0.39748
0.42756

0.059562
0.091735
0.1341
0.17118
0.21142
0.24863
0.29472
0.35438
0.41296
0.4628

0.076592
0.11714
0.16126
0.19883
0.26108
0.2992
0.3282
0.36076
0.40563
0.46238

0.081288
0.13113
0.18743
0.23964
0.28014
0.311
0.34508
0.38208
0.41473
0.44881

0.047304
0.091933
0.14034
0.18718
0.23665
0.28615
0.34071
0.37923
0.41879
0.45996

0.073207
0.11332
0.15612
0.19594
0.23554
0.27743
0.32333
0.36004
0.40608
0.4578

0.044135
0.090759
0.13707
0.17933
0.23073
0.27435
0.32164
0.36583
0.41077
0.45869

0.061503
0.099996
0.1528
0.20125
0.23896
0.27336
0.33323
0.37198
0.4063
0.46365

0.065593
0.10711
0.16066
0.20394
0.24858
0.29493
0.33799
0.37688
0.41802
0.46047

0.1059
0.15367
0.18936
0.22616
0.26279
0.28926
0.3175
0.35417
0.40672
0.45639

0.057113
0.089617
0.12791
0.16286
0.21899
0.29084
0.35171
0.38775
0.42141
0.45997

0.053929
0.092518
0.13694
0.1872
0.23374
0.27702
0.32099
0.36716
0.41372
0.45724

0.077925
0.13348
0.17623
0.21205
0.24834
0.28115
0.32721
0.38949
0.43806
0.4682

0.060914
0.096059
0.14495
0.19642
0.26599
0.30276
0.33096
0.36561
0.428
0.46364

0.05613
0.085034
0.13865
0.22254
0.26806
0.30525
0.34751
0.38395
0.41763
0.45029

0.064602
0.10449
0.14634
0.18852
0.23804
0.2827
0.32807
0.3707
0.41459
0.45941

0.058853
0.13554
0.23094
0.26372
0.28659
0.31606
0.34768
0.38237
0.41999
0.459

0.05125
0.089764
0.17961
0.22403
0.2602
0.29763
0.34402
0.37597
0.40581
0.42963

0.050346
0.092015
0.14275
0.18846
0.23657
0.28188
0.33198
0.37714
0.43739
0.47361

0.090389
0.13874
0.18458
0.22703
0.29216
0.32995
0.3617
0.3935
0.43168
0.46435

0.062889
0.10177
0.15493
0.19945
0.25233
0.29641
0.32735
0.35234
0.38123
0.45544

0.033993
0.10547
0.16782
0.19104
0.21646
0.2844
0.2997
0.3822
0.42213
0.4468

0.048248
0.091496
0.13816
0.18174
0.22617
0.27066
0.31573
0.36917
0.41195
0.45331

0.074263
0.11464
0.15112
0.19072
0.24866
0.3139
0.3564
0.39229
0.42873
0.45959

0.082441
0.12775
0.17752
0.21919
0.26654
0.31239
0.35872
0.39247
0.42209
0.45135

0.06041
0.099001
0.1455
0.18432
0.22311
0.25934
0.30034
0.339
0.38092
0.42745

0.098797
0.15514
0.19949
0.23451
0.27097
0.30414
0.34261
0.38031
0.41939
0.45784

0.050761
0.10016
0.15511
0.20496
0.28976
0.35413
0.36998
0.40295
0.43271
0.46698

0.06635
0.10749
0.15417
0.20038
0.24819
0.29304
0.33287
0.36759
0.40764
0.45054

0.069487
0.12266
0.1735
0.22063
0.26539
0.3029
0.34334
0.38586
0.42719
0.4649

0.042813
0.091028
0.13746
0.18144
0.22793
0.27297
0.31582
0.36022
0.40902
0.45234

0.052359
0.093423
0.14274
0.18587
0.23586
0.28088
0.32701
0.37263
0.41803
0.46095

0.070718
0.11038
0.14953
0.18253
0.21624
0.26049
0.32113
0.3672
0.41231
0.45706

0.097556
0.12551
0.1721
0.2097
0.25496
0.29517
0.33522
0.37297
0.41498
0.45778

0.064392
0.10609
0.15365
0.19776
0.24462
0.28831
0.33764
0.3811
0.4242
0.46355

0.073186
0.12058
0.16666
0.21015
0.25381
0.29592
0.3378
0.3776
0.4159
0.4579

0.091626
0.11604
0.15985
0.19528
0.24234
0.28384
0.32961
0.37044
0.41356
0.45836

0.057081
0.095632
0.14173
0.18279
0.22838
0.28121
0.32571
0.36764
0.41234
0.45558

0.054602
0.093851
0.14172
0.18519
0.23076
0.27183
0.32759
0.36943
0.41137
0.45868

0.092356
0.14423
0.18907
0.23602
0.2752
0.30097
0.32923
0.3666
0.43299
0.47154

0.020284
0.067152
0.1739
0.19172
0.22009
0.2837
0.29809
0.38033
0.42259
0.44582

0.11677
0.17269
0.20934
0.24439
0.27788
0.31092
0.34639
0.38046
0.42032
0.45872

0.043648
0.096081
0.15832
0.21033
0.26148
0.30301
0.35086
0.39177
0.4316
0.4681

0.086671
0.12893
0.16953
0.21426
0.28242
0.30587
0.34046
0.36881
0.40498
0.4608

0.05893
0.10354
0.1605
0.21739
0.26171
0.29623
0.33495
0.37639
0.42006
0.46177

0.058451
0.10759
0.16289
0.21735
0.27477
0.31757
0.35144
0.37944
0.40977
0.45046

0.13913
0.16306
0.20118
0.22876
0.26581
0.2942
0.33234
0.36722
0.40766
0.44982

0.064312
0.10151
0.14697
0.18944
0.23353
0.27556
0.32105
0.35401
0.39019
0.43029

0.066387
0.1139
0.16282
0.1981
0.23374
0.26839
0.31431
0.37408
0.42376
0.46234

0.0619
0.10224
0.15369
0.1959
0.23929
0.28086
0.32217
0.36659
0.40559
0.44546

0.057058
0.088951
0.12949
0.17176
0.26222
0.30829
0.34607
0.38467
0.42381
0.45859

0.049937
0.094674
0.14351
0.19269
0.24155
0.30233
0.35801
0.38773
0.42523
0.4617

0.096405
0.12953
0.17659
0.21641
0.26497
0.30357
0.34612
0.38552
0.42775
0.46475

0.069274
0.12394
0.18428
0.22001
0.26097
0.29437
0.32684
0.35971
0.392
0.426

0.07173
0.11545
0.16149
0.2073
0.25003
0.29488
0.34333
0.38752
0.43048
0.46536

0.025897
0.054595
0.13747
0.18048
0.23646
0.27848
0.33024
0.37767
0.4258
0.46747

0.062263
0.10497
0.17325
0.2122
0.24606
0.27739
0.31206
0.35079
0.39653
0.44881

0.080856
0.1174
0.15965
0.20324
0.24789
0.29084
0.33559
0.3797
0.42412
0.46362

0.076273
0.1152
0.15864
0.19365
0.23081
0.26163
0.29772
0.34594
0.40989
0.45981

0.05974
0.097397
0.14663
0.18948
0.23014
0.26658
0.31188
0.35323
0.39598
0.45568

0.089729
0.12058
0.1664
0.20761
0.25415
0.29671
0.34251
0.38499
0.42675
0.46417

0.10149
0.15478
0.20253
0.24714
0.28616
0.32199
0.35857
0.39359
0.43249
0.46541

0.068134
0.10965
0.16946
0.21258
0.25223
0.29539
0.32954
0.36661
0.40406
0.44434

0.059349
0.099026
0.14925
0.20131
0.2487
0.28452
0.3177
0.35592
0.41204
0.45923

0.065178
0.10281
0.14506
0.19004
0.23703
0.28249
0.34337
0.37726
0.40877
0.44441

0.058248
0.1002
0.14662
0.19279
0.24515
0.29091
0.34616
0.40158
0.4391
0.46714

0.055435
0.10999
0.16531
0.22018
0.27454
0.32777
0.37764
0.40848
0.42345
0.4524

0.094702
0.11922
0.16528
0.20083
0.24884
0.28901
0.33374
0.37321
0.4154
0.45969

0.065859
0.11153
0.16175
0.19725
0.2667
0.2972
0.3296
0.39005
0.41908
0.44839

0.068448
0.12152
0.17471
0.22659
0.27381
0.31568
0.35792
0.39513
0.43529
0.46713

0.03068
0.069976
0.14897
0.19635
0.2515
0.29365
0.34592
0.39015
0.43145
0.46917

0.0625
0.10732
0.16161
0.22149
0.27042
0.30207
0.32751
0.35529
0.3954
0.44926

0.073237
0.11547
0.15621
0.20002
0.24426
0.28741
0.33136
0.37513
0.41916
0.46057

0.072788
0.11042
0.14969
0.172
0.28589
0.29948
0.3576
0.37192
0.43892
0.46426

0.060735
0.1061
0.15458
0.20272
0.25444
0.3012
0.34733
0.38491
0.42641
0.46586

0.061916
0.10486
0.16011
0.20586
0.24633
0.28864
0.32991
0.36585
0.43974
0.46804

0.04931
0.07895
0.14

0.19322
0.2453
0.29023
0.32821
0.35684
0.39085
0.45545

0.071672
0.1113
0.17002
0.20712
0.28395
0.3044
0.35077
0.37205
0.43674
0.46667

0.05397
0.08745
0.13262
0.1732
0.21461
0.25479
0.33363
0.37275
0.4197
0.45941

0.047444
0.0917
0.13765
0.18167
0.22432
0.27282
0.31944
0.36299
0.40694
0.45558

0.056411
0.10184
0.17531
0.20875
0.24522
0.27875
0.33244
0.38745
0.42799
0.46691

0.061397
0.1026
0.15555
0.19894
0.24395
0.28636
0.32936
0.37276
0.41652
0.45946

0.067086
0.10131
0.1415
0.17384
0.26202
0.29564
0.32718
0.35501
0.4041
0.45262

0.06752
0.10817
0.14602
0.18037
0.23122
0.29473
0.33742
0.37734
0.42715
0.46179

0.056339
0.097771
0.15026
0.19271
0.23301
0.2775
0.32642
0.37017
0.41986
0.46119

0.078862
0.1313
0.17098
0.21256
0.25355
0.31264
0.37304
0.40151
0.44291
0.47174

0.057228
0.087987
0.13248
0.17724
0.22664
0.29933
0.33536
0.36461
0.3966
0.4468

0.071459
0.1196
0.17572
0.21851
0.25563
0.28666
0.31849
0.35939
0.42121
0.46212

0.084105
0.11778
0.1555
0.18993
0.23727
0.29898
0.33703
0.36576
0.39955
0.44998

0.059197
0.11086
0.16253
0.21338
0.26115
0.30845
0.35535
0.39323
0.43047
0.46691

0.081157
0.14149
0.19367
0.23526
0.27272
0.31008
0.35214
0.39291
0.43546
0.46809

0.059251
0.10234
0.18619
0.23621
0.27276
0.30402
0.33806
0.37437
0.42053
0.46013

0.057636
0.11668
0.17332
0.21085
0.25074
0.28787
0.35466
0.38723
0.41556
0.45072

0.077062
0.11305
0.16977
0.21412
0.25478
0.31383
0.34803
0.37685
0.41875
0.45695

0.079259
0.12789
0.17309
0.21644
0.25272
0.28551
0.31874
0.34827
0.38158
0.45512

0.057262
0.09683
0.14579
0.18805
0.23294
0.27595
0.31965
0.366
0.4105
0.45759

0.050687
0.083651
0.16807
0.20719
0.26005
0.29982
0.33047
0.36335
0.40416
0.45711

0.074028
0.12257
0.16312
0.20115
0.24125
0.28368
0.36765
0.39595
0.43793
0.4697

0.077292
0.13171
0.18313
0.223
0.26128
0.29794
0.33419
0.37304
0.41163
0.45407

0.094223
0.12981
0.17293
0.20371
0.23887
0.27876
0.32559
0.36707
0.41258
0.45899

0.050304
0.095738
0.15217
0.19473
0.24594
0.28693
0.33484
0.38731
0.41925
0.44441

0.045328
0.086714
0.13202
0.1828
0.22775
0.27262
0.31975
0.36471
0.40814
0.45356

0.066427
0.10038
0.1371
0.17293
0.22457
0.27187
0.31852
0.38646
0.4289
0.46181

0.037658
0.091131
0.15119
0.19697
0.25015
0.28876
0.31699
0.374
0.41923
0.45872

0.05842
0.088421
0.12705
0.16466
0.2148
0.26252
0.3135
0.35408
0.39721
0.4461
X.2 Codebook Table for tbeLSFCB2_7b
tbeLSFCB2_7b[128x10] =

-0.00337
-0.00510
-0.00245
0.00060
-0.00334
-0.00731
0.00799
0.00068
-0.00497
0.01280

0.01295
0.00199
-0.01603
0.01614
0.00589
-0.00575
-0.00171
0.00060
-0.00092
-0.00469

-0.00043
0.00719
0.01071
0.00272
-0.00114
-0.01095
0.01105
0.00183
-0.00772
0.00764

-0.00320
-0.00066
0.00754
0.00244
0.01423
0.00461
0.00266
0.00977
0.00397
0.00409

-0.00900
-0.02064
0.01180
0.00291
-0.00054
-0.00549
-0.00008
-0.00686
-0.00678
-0.00002

-0.00646
0.00064
-0.00090
0.00330
-0.00139
0.00387
-0.00365
-0.00194
-0.00167
0.00174

-0.00310
0.00348
-0.00210
-0.01048
0.00088
0.01234
0.00902
-0.00303
-0.00937
0.01209

-0.00744
0.00015
-0.00688
0.00403
-0.00814
0.00404
-0.00731
0.00788
-0.00504
0.01323

0.00135
-0.01165
-0.00957
-0.00186
0.00873
0.00330
-0.00063
0.00013
0.00098
0.00650

0.00628
-0.00531
0.00132
0.01057
0.00084
-0.00405
0.00899
0.00717
-0.00353
-0.00357

-0.00445
-0.00915
-0.01136
-0.01307
-0.00679
0.00019
0.00610
0.00643
0.00774
0.00522

-0.00245
-0.01237
0.00349
-0.01072
0.00668
-0.00514
0.00465
-0.00753
0.01282
0.00145

0.00020
0.00098
-0.00067
-0.00022
-0.00024
0.00072
0.00156
0.00702
0.00783
0.00300

0.00009
-0.00134
-0.00210
0.00217
-0.00712
-0.00067
-0.00289
0.00313
0.00023
-0.00204

0.00376
-0.00171
-0.00462
-0.00358
-0.00237
-0.00759
-0.00798
-0.00179
-0.00928
-0.01537

-0.00045
-0.00215
0.00164
-0.00024
0.00582
0.00815
-0.00066
-0.00713
0.00088
-0.00162

-0.00161
-0.00855
0.00341
-0.00380
-0.00987
0.00499
-0.00495
-0.00986
-0.01351
0.00954

-0.00035
0.00520
-0.00068
-0.00133
0.01598
0.00197
-0.00185
0.00165
-0.00270
-0.01326

-0.00053
0.00002
-0.00364
-0.00144
-0.00916
-0.01694
0.00265
0.00646
0.00567
0.00078

0.00631
0.01285
-0.00311
-0.01465
0.00403
0.00264
-0.00369
0.00078
0.00634
0.00285

0.00665
-0.00361
-0.00854
0.00962
-0.00654
0.01019
0.00158
0.00435
0.00877
-0.00357

0.00338
-0.00083
-0.00835
-0.01444
-0.00405
-0.00840
-0.00385
-0.00190
-0.00825
0.00515

-0.00335
-0.00132
-0.00304
-0.00521
-0.00570
-0.00721
-0.00872
-0.00590
0.00970
0.01296

0.00213
-0.00811
-0.01250
0.01025
-0.00119
-0.00865
0.00550
-0.00397
0.00942
0.00233

0.00781
0.00977
0.00334
-0.00673
-0.01296
0.00435
0.00111
-0.00431
-0.00840
0.00809

0.00281
-0.00295
-0.00111
-0.00497
-0.00256
0.00023
-0.00136
-0.00411
-0.00139
-0.00247

-0.00973
-0.00705
0.00334
0.00307
-0.00091
-0.00496
-0.00195
0.00378
0.00523
0.00387

-0.00329
0.00277
0.00016
-0.00236
0.00125
-0.00644
0.00166
-0.00244
0.00023
-0.00216

-0.00146
0.00552
0.00388
-0.00039
0.00409
0.00209
-0.00137
0.00087
-0.00120
0.00082

0.00462
0.00036
0.00365
-0.00233
0.00624
0.00022
-0.00780
0.00998
-0.00181
0.01111

0.00166
0.00000
-0.00128
0.00356
0.00562
-0.00056
0.00400
-0.00137
-0.00074
0.00172

0.00059
-0.00876
-0.01031
0.01259
0.00462
-0.00022
-0.00520
-0.01173
-0.00854
0.00461

-0.00623
0.00871
0.00137
-0.01140
0.00488
-0.00649
0.00912
0.00697
0.00018
0.00161

-0.01810
-0.00014
0.00146
-0.00191
0.00653
0.00256
0.00293
-0.00032
-0.00211
-0.00089

-0.00041
-0.00486
-0.00147
-0.00212
-0.00127
-0.00410
0.00450
0.00219
0.00191
0.00042

-0.00626
-0.00094
0.00891
0.00596
0.00246
-0.00645
-0.01149
0.00095
-0.00966
0.00508

0.00439
-0.00186
-0.01025
-0.00088
-0.00483
0.00934
-0.00057
-0.01341
0.00599
0.00660

-0.00401
-0.01532
-0.00893
-0.00157
-0.00542
-0.00426
-0.00606
-0.00341
-0.00204
-0.00048

-0.00810
-0.01429
0.00390
0.00399
-0.00012
0.01031
0.01085
0.00579
0.00179
0.00282

-0.00261
-0.00601
0.00025
-0.00432
-0.00828
0.01165
0.00455
0.00070
-0.00620
-0.01734

-0.00077
-0.00906
0.00763
-0.00175
-0.01536
0.00454
-0.00274
0.01174
0.00388
-0.00443

-0.00699
0.01617
0.00363
-0.00455
-0.01085
-0.00888
-0.00345
-0.00409
-0.00176
-0.00098

0.00237
0.00694
0.00619
-0.00269
-0.00619
-0.00513
-0.00662
0.01945
0.00982
0.00334

-0.00945
0.00895
0.00229
-0.01320
0.00256
0.00168
-0.01106
0.00550
-0.00322
-0.00463

-0.00490
-0.00743
0.00205
-0.00081
-0.00575
-0.01266
0.01381
0.00730
-0.00233
-0.01681

-0.00141
0.00044
-0.00047
-0.00114
0.00259
0.00345
0.00363
0.00523
0.01856
0.01402

-0.00473
0.00005
0.01646
0.00678
0.00100
0.00647
0.00089
-0.00544
-0.00524
0.01047

-0.00077
0.00165
-0.00063
-0.00045
-0.00052
-0.00255
-0.00528
-0.00695
-0.00521
-0.00145

0.00213
0.00388
0.01048
-0.00187
-0.00761
0.00328
-0.00815
-0.00023
0.00088
-0.00450

0.01530
0.00935
0.00755
0.00303
0.00692
0.00512
0.00375
0.00463
0.00297
-0.00083

0.00130
-0.00101
0.00009
0.00100
0.00256
0.00324
0.00385
0.00622
0.00144
-0.00456

-0.00063
-0.00036
-0.00035
-0.00429
-0.00255
-0.00276
-0.00544
0.00083
0.00099
0.00295

-0.00998
0.01045
-0.00535
0.00361
0.00112
-0.00385
-0.00531
0.00469
0.00449
-0.00224

0.00004
0.00077
0.00790
-0.00007
-0.00948
-0.00132
0.00307
0.00034
0.00531
0.00734

0.00297
-0.00669
0.01277
0.00930
0.00400
0.00377
-0.00322
-0.00198
-0.00435
-0.01245

-0.00091
0.00325
0.00161
0.01818
0.01222
0.00835
0.00426
-0.00130
-0.00496
-0.00217

-0.00556
-0.00922
0.00384
0.01075
0.00487
-0.00245
-0.01137
-0.01353
0.01339
0.00754

0.00071
0.00125
0.00059
0.00104
0.00027
0.00204
0.00071
-0.00041
-0.00574
-0.00585

0.00217
0.00300
-0.00770
-0.00164
0.00010
0.00118
-0.00011
-0.00002
-0.00053
-0.00012

-0.00568
0.00131
-0.00318
0.01111
0.00041
-0.00721
0.00253
-0.00190
-0.00423
-0.00706

-0.00211
-0.00271
0.00269
-0.00181
-0.01218
-0.00419
0.00225
-0.00293
-0.00585
-0.00265

0.00179
0.00409
0.00189
0.00557
0.00192
-0.00087
-0.00680
0.01192
-0.00009
-0.01131

-0.00260
0.00019
0.00065
-0.00016
0.00166
0.00369
0.00057
-0.00867
-0.01672
-0.00577

0.00074
-0.00313
-0.00577
-0.01117
0.01268
0.00983
0.01024
0.00849
0.00353
-0.00299

-0.00414
-0.00339
-0.00184
-0.00462
0.00169
0.00135
0.00080
-0.00307
-0.00328
0.00437

-0.00414
0.00332
0.00388
0.00865
0.00266
0.00152
0.00417
-0.00481
0.01127
-0.00190

0.00014
0.00054
-0.00267
-0.00129
0.00974
-0.00129
-0.01645
-0.00023
0.00216
-0.00094

0.00344
-0.00024
0.00063
0.00090
0.00010
0.00140
-0.00278
-0.00298
-0.00558
0.00500

0.00680
-0.00135
0.00742
0.00697
-0.00743
0.00847
0.00614
-0.00265
-0.00976
0.00082

-0.00268
-0.00037
-0.00132
0.00002
0.00274
0.00038
-0.00121
0.00105
0.00223
-0.00086

-0.00155
-0.00403
-0.00214
-0.00630
0.00164
-0.00012
0.00727
0.00100
-0.00553
-0.00712

-0.00109
-0.00513
0.00426
-0.00198
-0.00064
0.00316
-0.00233
0.00407
-0.00220
-0.00041

-0.00094
-0.00156
0.00007
-0.00060
0.00234
0.00101
-0.00263
-0.00229
0.00595
0.00684

0.00249
-0.00715
0.00663
-0.00735
0.00972
-0.00423
0.00415
0.00210
-0.01681
0.00579

-0.00452
-0.00344
-0.00482
-0.00148
-0.00085
0.00147
-0.00314
-0.00339
0.00554
-0.00666

-0.00783
0.01143
0.00487
-0.00730
0.00410
0.00412
-0.00284
-0.01383
0.00927
0.00531

-0.00070
0.00038
-0.00354
0.00283
-0.00263
-0.00456
-0.00060
-0.00363
0.00131
0.00302

0.00484
0.00422
0.00167
-0.00090
-0.00187
-0.00403
0.00003
0.00316
-0.00169
-0.00139

-0.01608
0.00351
0.00713
-0.00532
-0.01154
0.00641
0.00285
-0.00096
0.00387
0.00155

-0.00274
-0.00600
0.00146
0.00442
0.00154
-0.00044
-0.00156
-0.00220
-0.00295
-0.00348

0.00451
0.00129
-0.00598
-0.00924
-0.00267
-0.00035
-0.00035
0.01025
0.00224
-0.00936

-0.00333
0.01928
0.01314
0.00532
0.00299
-0.00150
-0.00236
0.00373
0.00259
-0.00183

-0.00353
-0.00932
0.00003
0.01754
0.00853
-0.00008
-0.00624
0.00566
0.00827
0.00118

0.00217
-0.00935
0.01083
0.00067
-0.01143
0.01088
0.00003
-0.01172
0.01042
0.00396

-0.01660
0.00488
0.01388
0.00339
-0.00212
-0.00667
-0.00086
-0.00172
-0.00523
-0.01345

0.00673
0.00086
-0.00182
0.00715
0.00340
0.00729
0.00690
-0.00234
0.00200
0.01147

0.00663
0.01129
0.00470
-0.00276
-0.00958
-0.00489
0.00915
0.00326
-0.00505
-0.01288

0.00587
-0.00019
-0.00082
0.00326
-0.00003
-0.00385
0.00133
-0.00406
0.00256
-0.00591

0.01532
0.00977
-0.00174
0.00304
-0.00344
-0.00652
-0.01245
0.00256
0.00588
0.00005

0.01009
-0.00216
-0.00350
-0.00358
-0.00498
-0.00098
0.00291
0.00284
0.00285
0.00460

-0.00508
0.01327
-0.00038
0.00304
0.00459
-0.00144
0.00127
-0.00718
-0.00963
0.00960

0.00808
0.00285
-0.00735
0.00592
-0.00489
-0.00934
0.00689
-0.00499
-0.01021
0.00396

0.00517
0.00012
0.00051
0.00232
0.00084
0.00387
-0.00405
0.00114
0.00068
-0.00005

0.00588
0.00418
-0.01025
0.00294
0.01323
0.00363
-0.00389
-0.00421
0.01118
0.00219

-0.00067
-0.00674
0.00169
0.00331
-0.00314
-0.01072
-0.01872
0.01094
0.00269
-0.00552

0.00903
0.00325
0.00558
0.00257
0.00204
-0.00219
-0.00570
-0.01377
0.00330
0.00650

0.00284
0.01149
-0.00301
-0.00822
0.00067
0.00254
-0.00309
-0.01205
-0.00010
-0.01318

0.00884
0.00161
-0.00642
-0.00693
-0.01250
-0.00702
-0.00683
-0.01022
0.00435
-0.00224

0.00513
-0.00615
-0.01373
-0.00169
0.00414
-0.00529
-0.00926
0.01457
0.00922
0.00224

-0.00062
0.00049
0.00232
0.00591
-0.00044
0.00009
0.00059
0.00328
-0.00021
0.00418

0.00189
-0.00047
0.00472
0.00164
0.00287
-0.00387
-0.00465
0.00070
0.00565
-0.00168

0.00454
0.00316
-0.00233
0.01149
0.00352
-0.00822
-0.00614
0.00157
0.00051
0.00736

-0.00788
0.00067
-0.00855
0.00507
0.00335
0.00380
0.00738
0.00339
0.00149
0.00360

0.01501
0.00202
-0.00822
-0.00462
0.00285
0.00705
-0.00018
-0.00441
-0.00545
-0.00465

0.00489
0.01066
-0.00362
-0.00124
-0.00135
-0.00669
0.00770
-0.00296
0.01064
0.00596

0.00093
-0.00225
0.00609
0.00067
0.00030
-0.00290
0.00251
-0.00254
-0.00151
0.00109

-0.00207
-0.00532
-0.01473
-0.01715
0.00824
0.00273
-0.00514
-0.01033
-0.00059
-0.00534

0.00232
0.00251
0.00162
-0.00421
0.00149
0.00162
0.00399
-0.00223
0.00552
-0.00128

0.00526
-0.00233
0.01093
0.00588
-0.00702
-0.01361
-0.00334
-0.00177
0.00054
-0.00199

0.01063
0.00542
-0.01294
-0.00590
0.01045
-0.00500
0.01123
0.00424
-0.00410
0.00156

0.00132
0.00630
0.00032
0.00503
-0.00245
0.00182
0.00076
-0.00323
0.00108
-0.00113

-0.00675
-0.00372
0.00315
-0.00018
-0.00370
-0.00204
-0.01295
-0.01879
-0.00088
-0.00739

-0.00443
0.00812
0.00509
0.00141
0.00209
0.01110
0.01058
0.00327
-0.00349
-0.00476

0.00236
0.00203
0.00071
-0.00213
-0.00041
0.00399
0.00620
0.00326
-0.00395
0.00331

0.01170
0.01308
0.00544
0.00387
0.00234
-0.00131
-0.00686
-0.00899
-0.01449
-0.00552

-0.00455
0.00381
-0.00150
-0.00425
-0.00407
0.00142
0.00145
0.00011
0.00065
-0.00036

0.00142
-0.00377
-0.01061
0.00145
-0.00680
0.00356
0.00786
-0.00003
-0.00785
-0.00015

0.00031
-0.00046
-0.00130
0.00012
-0.00511
-0.00415
0.01774
0.01511
0.00634
0.00103

0.00216
0.01149
0.00207
-0.00597
-0.01697
0.01133
0.00409
0.00307
0.00625
-0.00341

-0.00185
-0.00120
-0.00286
-0.00065
0.00175
-0.00332
-0.00206
0.00458
-0.00494
0.00032

0.00419
-0.00080
0.00042
-0.00553
0.00667
-0.00079
-0.00148
-0.00047
-0.00114
-0.00043

-0.00415
-0.01096
-0.01411
0.00782
0.00911
0.00301
0.00108
0.00301
-0.00459
-0.01355

-0.00702
-0.01663
0.00665
-0.00800
0.00952
0.00021
-0.00605
0.00804
0.00040
-0.00767

-0.00070
-0.00255
0.00008
0.00094
-0.00347
0.00505
0.00399
-0.00214
0.00319
-0.00064

-0.00519
0.00129
0.00444
0.00199
-0.00295
-0.00070
0.00338
0.00526
0.00066
-0.00398

-0.00127
0.00067
-0.00361
-0.00203
0.01636
0.00656
-0.00244
-0.00530
-0.00926
0.00465

-0.00224
-0.00755
0.01921
0.00929
0.00078
-0.00545
0.00948
0.00684
0.00558
-0.00054

0.00061
-0.00183
-0.00318
-0.00807
0.00005
0.01402
-0.00302
0.00284
0.00492
0.00030
X.3 Codebook Table for tbeExcFilterCB1_7b
tbeExcFilterCB1_7b[128x10] =
0.09278
-0.04927
-0.1285
0.04224
0.19906
-0.11443
-0.17523
0.22302
0.13816
-0.28557

0.00011
-0.11068
-0.30536
-0.28212
-0.08996
-0.23144
-0.02353
0.01956
0.08163
0.15772

-0.0627
-0.05202
-0.09499
0.09656
0.09493
-0.07314
0.26034
0.12844
0.08331
-0.13683

0.07668
-0.02219
0.29456
0.17219
0.1365
-0.02633
0.02025
-0.0703
-0.0775
-0.36374

0.07061
-0.08168
-0.02593
-0.1945
-0.1438
0.01913
0.1581
0.13042
0.18332
0.03253

-0.04266
0.05446
0.04855
0.21232
0.34886
-0.04787
-0.14493
0.01559
0.20742
0.02468

0.29098
0.06383
0.1662
0.15719
0.14352
0.19807
0.09548
-0.05796
0.10414
-0.13189

-0.11786
-0.08787
0.21436
0.22915
-0.07895
-0.16376
-0.24403
-0.12381
0.00463
0.18062

0.19711
-0.20348
0.03503
-0.24203
0.1465
0.01923
-0.25212
0.07296
-0.13447
0.06531

-0.20131
0.09759
-0.08098
-0.04882
-0.1088
-0.08122
0.14914
-0.10339
0.24513
-0.19795

-0.02871
0.24279
0.05725
0.07613
0.41804
0.19693
-0.01821
0.02656
-0.18997
-0.10614

-0.08732
-0.00701
0.29408
-0.07048
-0.21163
0.21397
0.09863
-0.24706
0.16062
-0.04952

-0.10538
-0.086
0.174
0.18545
-0.10238
0.14518
0.24527
-0.11161
-0.0553
-0.04299

-0.25925
-0.21043
0.1905
0.21659
-0.08269
-0.15606
0.20488
0.1939
-0.09604
-0.07044

0.0885
-0.01086
-0.01367
-0.06393
0.25061
-0.31779
0.27489
-0.04085
-0.00347
0.00237

0.13072
0.15224
0.11707
0.17535
0.1665
0.14625
0.1913
0.15279
0.17186
0.1516

0.13914
0.13684
-0.11358
0.00496
0.19564
-0.11009
-0.05058
0.10552
-0.0155
-0.16635

-0.17303
0.30944
-0.16285
-0.12656
0.08875
0.01211
-0.22898
0.21767
-0.01427
0.01698

0.07809
-0.09757
0.16756
-0.11494
0.23395
-0.19899
0.18347
-0.1323
0.04415
0.00773

0.04403
-0.20143
-0.07105
-0.07592
-0.06155
-0.08754
0.09564
0.16468
0.30223
0.18032

-0.05453
-0.09441
0.07789
0.00663
-0.14208
0.21035
-0.11962
0.26739
-0.19667
0.23282

0.08878
0.06016
-0.03346
-0.10331
0.03731
-0.18329
0.12412
-0.15104
-0.10267
0.17931

0.13982
0.16001
0.10645
-0.09327
-0.15898
-0.17531
-0.24699
-0.12977
-0.03232
0.10249

0.17369
-0.22144
0.05599
0.04504
-0.19557
0.20916
-0.18563
0.05508
0.11578
-0.19359

0.11344
-0.14198
0.17441
-0.24905
0.07004
-0.21457
-0.06794
0.12604
-0.01816
-0.11586

-0.28752
0.01574
-0.05318
-0.16036
-0.0289
0.33425
-0.2483
-0.03269
0.23887
-0.0867

-0.20272
0.11303
0.01556
-0.09528
0.12476
-0.06551
0.18028
-0.15544
0.13792
-0.09292

0.32678
-0.34258
0.28105
-0.16207
0.15352
-0.04954
0.10858
-0.16012
0.13098
-0.18598

0.28576
-0.13167
-0.05888
0.41716
0.15788
-0.0209
0.05537
0.05957
-0.11597
-0.14661

-0.17519
-0.20084
-0.34181
-0.14418
0.04831
0.10175
0.14236
0.29364
0.19556
0.13918

-0.01579
-0.17416
0.11269
-0.07107
0.06136
0.12149
0.38782
0.13322
0.17157
0.14254

0.60481
-0.16148
-0.15186
0.01878
-0.06836
-0.1074
-0.00005
-0.05971
0.05391
-0.02553

-0.10493
-0.14194
0.38099
-0.2901
0.22174
-0.09632
0.06112
0.02876
-0.02286
0.07233

0.24364
-0.21663
-0.01911
0.0096
-0.11763
-0.24622
0.06394
0.28675
-0.21145
-0.06453

-0.01379
0.17444
-0.27516
0.24924
-0.32361
0.20715
-0.16383
0.12124
0.00005
-0.04997

-0.11352
0.00839
0.2271
-0.09127
-0.06364
0.32364
-0.00851
-0.10246
0.07668
0.1547

0.22745
0.42787
0.08653
0.20847
-0.02817
-0.01357
-0.23705
-0.11736
-0.08144
-0.11707

-0.06226
0.07085
-0.28589
-0.14047
-0.13638
0.0236
0.10832
0.14287
-0.098
-0.16612

0.2042
0.14631
-0.08956
0.14235
-0.096
0.04706
-0.11978
-0.18188
0.05349
-0.11259

-0.09417
0.15147
-0.09651
-0.14957
-0.00021
0.05522
-0.12538
0.01834
0.25829
0.12862

0.16162
-0.06564
0.0067
0.18043
-0.06129
0.03649
0.03095
0.02585
-0.02912
0.06451

-0.28975
-0.345
0.01568
0.24021
0.18663
0.21627
0.01571
0.03578
0.11493
0.08829

-0.12705
0.04453
-0.13477
0.091
-0.01383
0.00159
-0.06496
-0.05362
-0.0394
-0.02151

-0.12755
0.14558
0.15106
-0.02064
-0.29887
0.16319
0.06857
0.0212
-0.2026
0.0259

-0.17117
-0.06328
-0.03136
-0.29652
-0.1893
-0.09838
0.0278
0.09643
0.10744
0.02357

0.053
0.18895
0.16667
-0.00416
0.1834
0.07217
0.19257
-0.04169
0.12714
-0.01619

-0.0752
-0.14532
-0.07175
0.0769
0.24361
0.11323
-0.12563
-0.23458
-0.08666
0.05998

-0.05859
0.04079
0.18985
0.09698
-0.19533
-0.24503
-0.00954
0.12981
0.21652
0.07806

-0.12002
0.28904
0.01626
-0.24498
-0.0272
0.2128
-0.02151
-0.16347
-0.0967
0.20795

0.50418
0.08574
0.22471
-0.04306
0.13474
-0.08671
-0.05666
-0.03676
-0.08459
-0.06769

0.02286
0.12102
0.29062
0.12411
0.08985
-0.16048
-0.12923
-0.07103
0.1419
0.0479

-0.10845
-0.02732
0.03072
0.0004
-0.12867
0.03644
-0.08572
-0.11518
-0.06929
-0.19148

-0.02748
-0.17042
0.00163
0.22631
0.0142
-0.11956
-0.05735
0.21573
0.14477
-0.12457

-0.01568
0.11073
-0.03985
0.04661
0.05849
-0.15079
-0.10682
0.05741
-0.18892
-0.14861

0.19846
0.08849
-0.18109
0.07191
0.11123
0.11135
-0.22693
-0.13385
0.14867
0.2448

-0.06086
0.07105
0.25679
0.21256
0.15673
0.00614
-0.14847
-0.27092
-0.16918
-0.08032

0.12908
-0.03723
0.03004
-0.20515
-0.02586
-0.09931
0.064
-0.34729
-0.24735
-0.01626

0.03513
-0.15752
-0.21218
-0.01513
0.10926
0.26235
0.13124
-0.05397
-0.12931
-0.164

0.32126
-0.43877
0.29727
-0.06329
-0.01772
-0.02293
0.0103
0.01445
-0.11286
0.15418

-0.01192
-0.07969
-0.12374
-0.17855
-0.23807
0.00419
-0.02184
0.06684
0.17852
0.29893

0.10326
0.19906
0.19395
0.15637
0.1055
0.11203
0.17639
-0.15675
-0.11169
-0.08789

-0.00384
-0.20679
0.14551
-0.33019
-0.05396
-0.1172
-0.03656
-0.19987
0.31038
-0.07446

-0.06342
-0.0733
0.17837
-0.02925
-0.3374
-0.07286
0.06349
0.08309
-0.04134
-0.18

0.18227
0.01978
-0.13399
0.13816
-0.07183
-0.09984
0.19717
-0.38523
0.24609
-0.14978

-0.15414
0.11149
-0.03078
0.18451
-0.00297
0.07744
-0.19722
0.13131
-0.32475
-0.17452

0.1621
0.19069
-0.01805
-0.19237
-0.31834
-0.15308
-0.24636
-0.04185
-0.09914
0.15125

0.03948
-0.06088
0.02126
0.10788
0.09653
0.02821
0.15783
0.31781
-0.08155
-0.0866

-0.0929
-0.12616
0.15252
-0.0054
-0.13055
-0.06022
0.32783
-0.01737
-0.14561
0.16336

0.14679
-0.56493
-0.10632
0.04228
-0.05807
0.04268
0.09777
-0.03118
0.08026
-0.02373

0.11382
-0.10601
0.11797
-0.15816
0.18875
-0.24262
0.22059
-0.2419
0.16014
-0.16597

-0.24762
-0.1385
-0.0306
0.01652
0.2478
0.00461
0.04798
-0.13205
-0.17872
-0.27586

0.17452
-0.07422
-0.18426
-0.22858
0.17663
0.17637
0.01567
0.04839
0.17465
0.04414

0.21046
0.20266
-0.06857
0.13902
0.09125
0.15126
0.00066
0.25658
-0.11583
0.09393

0.09252
-0.15663
0.25566
-0.29825
0.20961
0.02225
-0.07936
0.18718
-0.0963
0.05259

-0.00489
0.30066
0.2113
-0.02953
-0.13884
-0.01595
0.07737
0.24748
0.00024
-0.24767

0.0832
0.132
-0.32829
0.23837
-0.14868
0.02548
0.02908
-0.06391
0.17978
-0.17895

-0.28483
0.09445
0.03269
-0.28991
0.28999
-0.15826
-0.07588
0.15063
0.02107
-0.09693

0.00589
-0.23991
-0.25147
0.0797
0.00099
-0.33922
-0.00358
0.05907
-0.00584
-0.06714

-0.3141
-0.18801
-0.19762
-0.01455
-0.15881
-0.02694
-0.11556
0.15593
0.03082
0.07944

-0.17182
-0.12576
-0.207
0.01487
-0.3132
0.07076
0.14413
-0.04814
0.07926
0.29518

-0.12083
0.22381
-0.09037
-0.00754
-0.10236
-0.30394
-0.04741
-0.19619
0.0041
-0.02265

-0.135
-0.13959
-0.07177
0.04913
0.1705
0.29018
0.21969
0.12795
-0.08954
-0.1192

-0.02099
-0.01349
0.18666
-0.11731
-0.0694
-0.01206
0.04575
-0.28522
0.06272
0.21929

0.05285
-0.24949
-0.07622
0.00994
0.12521
-0.20135
-0.23649
-0.0102
0.28374
-0.08653

0.02941
-0.11032
0.10028
-0.09118
0.02639
0.03435
-0.09569
0.1835
-0.23319
0.21404

0.24015
0.2126
-0.30559
-0.05484
0.21301
-0.21983
-0.07878
0.03676
-0.08183
-0.06813

-0.19167
0.12845
-0.02812
-0.08852
-0.00023
0.05442
-0.23315
0.25718
-0.17648
0.04466

-0.27951
-0.40209
0.03651
-0.23924
-0.0378
-0.03813
0.146
0.03969
0.01548
0.10721

0.05164
0.3033
0.16359
-0.3031
0.18994
0.09423
-0.17393
-0.10583
0.15986
-0.17391

0.28887
0.212
0.1482
0.07474
-0.0562
0.07817
0.09121
-0.0125
0.0249
0.10721

-0.10861
-0.17472
-0.16074
0.01766
0.13904
-0.01032
-0.18168
-0.07163
0.0866
0.25212

0.06583
0.1732
0.18612
0.02844
-0.00684
0.05076
0.06633
-0.01868
-0.36337
-0.00145

-0.20373
0.17958
0.01276
-0.19623
0.25943
-0.20367
0.04363
0.1202
-0.23678
0.23433

-0.31519
0.45586
-0.19958
0.15573
-0.01105
0.05693
-0.00513
-0.04786
0.04476
-0.07665

0.03913
0.01571
0.12931
-0.04987
-0.03622
0.12222
-0.12841
-0.06675
0.12739
-0.27043

0.19196
0.01555
-0.18623
-0.10338
0.10205
0.24427
-0.05114
-0.19983
-0.06205
0.23172

-0.04826
0.06662
-0.05736
0.11138
0.14769
0.16176
0.18896
0.17452
0.16037
0.16983

-0.58447
0.14411
0.15819
-0.02144
-0.05763
0.03507
0.07015
0.04073
0.00249
0.06873

-0.0266
-0.16384
0.28281
-0.21409
0.01775
0.19542
-0.24404
0.14437
0.01253
-0.14766

-0.15907
0.18067
-0.22955
0.29121
-0.1669
0.04491
0.15167
-0.15487
0.01232
0.11974

-0.10455
-0.17684
0.00579
-0.06413
-0.27576
-0.13528
-0.10478
-0.08135
-0.18969
0.04317

-0.05531
0.07263
0.32632
0.25261
0.13853
0.22197
0.05991
0.10931
-0.02463
-0.03771

-0.20395
-0.07239
-0.09158
0.08176
0.07971
0.00478
0.08317
-0.05277
-0.01755
0.30809

0.08477
0.14641
-0.2379
-0.10917
0.17376
0.00504
-0.17479
-0.04727
0.13627
-0.02987

-0.02589
-0.05581
-0.02698
0.18784
-0.07125
-0.21985
0.14818
-0.04534
-0.01314
-0.27353

0.10683
0.10494
0.03292
0.07779
0.04558
0.19903
-0.1806
-0.25146
-0.218
-0.08735

-0.01506
0.02393
-0.0587
0.18272
-0.04665
0.25365
0.03352
0.07832
0.31578
-0.18382

-0.13469
0.00802
-0.06824
-0.14264
0.09786
0.14645
0.03437
0.25509
0.12065
-0.0047

-0.17372
0.16471
-0.1458
0.20169
-0.19102
0.23891
-0.15672
0.17025
-0.14625
0.17294

-0.15096
-0.13882
-0.24174
-0.21843
-0.16274
-0.04953
-0.15773
-0.11578
0.05515
0.00516

0.17293
-0.16682
-0.18541
0.17506
0.00449
-0.19161
0.13069
-0.01691
-0.16014
0.14568

0.25916
-0.21056
0.2534
0.02887
-0.1987
0.19963
-0.21138
0.09373
-0.1072
-0.05951

0.04409
0.16961
0.14393
0.18203
-0.00318
-0.15294
0.14754
-0.08258
-0.39253
0.05379

-0.29088
0.21829
-0.18293
-0.05882
0.23213
-0.21198
0.2196
-0.17126
0.10365
0.07923

0.17379
0.04236
-0.20095
0.24801
-0.04809
-0.17663
0.2164
-0.1322
-0.05155
0.19464

0.305
-0.09919
-0.29554
0.13626
-0.13423
0.12329
-0.27827
0.21269
-0.14658
0.06335

0.1476
0.19249
0.04762
-0.09385
-0.16885
-0.22736
-0.04003
0.12119
0.21066
0.20016

0.16428
-0.23129
0.09663
0.16263
-0.18679
0.0795
0.0932
-0.21933
0.16027
0.06644

0.33437
0.09924
-0.0745
-0.3394
-0.21713
0.03763
0.16516
0.02988
0.01462
-0.08174

0.05556
0.1579
-0.10683
-0.23347
-0.02877
0.17658
0.2735
-0.04794
-0.19388
-0.06425

0.19943
0.08925
0.13219
-0.00961
-0.05766
-0.26293
-0.24305
-0.23162
-0.16636
-0.25138

0.27138
-0.13496
-0.01964
0.30839
-0.36682
0.11144
0.11409
-0.07192
-0.13701
0.09785

-0.23936
-0.16826
0.22517
-0.12862
0.14949
0.15623
0.08161
-0.08912
0.05373
-0.14484

0.01871
0.10768
0.03986
0.20721
0.07845
-0.16446
-0.10902
0.16222
-0.18383
0.00369

0.21345
-0.22268
0.07646
0.1023
-0.22599
0.20325
-0.10195
-0.10515
0.20697
-0.13575

-0.04869
-0.07865
-0.12637
-0.00702
-0.06357
-0.11804
-0.19936
-0.23968
-0.09776
0.0579

-0.0791
0.0253
-0.0595
0.08575
0.01864
0.07607
-0.15311
0.29688
-0.13386
0.16496

-0.0944
0.25161
-0.35154
0.16061
0.06074
-0.1722
0.1042
0.15929
-0.18229
0.19977
X.4 Codebook Table for tbeExcFilterCB2_4b

tbeExcFilterCB2_4b[16x6] =
-0.20232
0.19847
-0.096441
0.20558
0.1712
0.14251

0.18595
-0.059879
0.22704
0.098489
-0.21216
0.1781

0.14201
0.13805
0.18921
0.10948
0.21574
-0.19181

-0.15192
-0.20135
-0.16245
0.15589
-0.20001
0.15736

0.11894
-0.22244
0.10315
0.20449
0.19699
0.16757

-0.18169
-0.1969
0.21968
-0.17568
0.08214
-0.073996

-0.17077
0.094474
-0.016721
-0.21172
-0.22251
0.20939

0.17044
0.1361
-0.21435
0.22042
-0.11153
-0.1802

0.10768
-0.21295
-0.17889
-0.2272
0.16925
0.12479

0.19545
0.18475
0.06574
-0.22264
-0.15453
-0.17849

0.15459
-0.24222
-0.0084513
-0.081542
-0.17888
-0.22024

-0.19043
0.14675
-0.20002
-0.19699
0.063592
-0.17998

0.019109
0.1948
0.21405
-0.15812
0.19539
0.19374

-0.18862
0.13162
0.18746
0.17667
-0.21274
-0.12737

0.2333
0.18153
-0.21589
-0.0058148
0.043154
0.1992

-0.11754
-0.19539
-0.15312
0.1694
0.18711
-0.20856
X.5 Codebook Table for SHBCB_SubGain5bit
SHBCB_SubGain5bit[32x4] = 

0.21132, 0.8919, 0.25073, 0.24781, 0.49109, 0.36892, 0.36424, 0.68769, 0.31642, 0.39282, 0.50357, 0.69143, 0.14538, 0.20545, 0.61508, 0.72523, 0.55597, 0.40693, 0.5515, 0.4636, 0.32782, 0.35346, 0.71621, 0.48607, 0.47823, 0.75732, 0.28454, 0.30591, 0.93541, 0.20099, 0.17145, 0.15627, 0.46125, 0.40196, 0.53871, 0.57318, 0.81196, 0.33227, 0.32905, 0.32359, 0.27682, 0.63987, 0.274, 0.64008, 0.55515, 0.50701, 0.48201, 0.44507, 0.47378, 0.47841, 0.60912, 0.41031, 0.66645, 0.45733, 0.47489, 0.33369, 0.28321, 0.30804, 0.31331, 0.83754, 0.72424, 0.24507, 0.26089, 0.56661, 0.50327, 0.28639, 0.75435, 0.26554, 0.55363, 0.61005, 0.4572, 0.31771, 0.11637, 0.11819, 0.15457, 0.96163, 0.49218, 0.58968, 0.40155, 0.49174, 0.33193, 0.70435, 0.4566, 0.40953, 0.41897, 0.52221, 0.45016, 0.58571, 0.30084, 0.55935, 0.69881, 0.28529, 0.35628, 0.51005, 0.57418, 0.52403, 0.19211, 0.20635, 0.90755, 0.24599, 0.7371, 0.23927, 0.56338, 0.24211, 0.64261, 0.38355, 0.435, 0.49054, 0.7583, 0.53387, 0.27663, 0.20498, 0.53563, 0.46946, 0.44187, 0.54153, 0.47413, 0.49108, 0.51251, 0.50223, 0.6421, 0.52116, 0.34328, 0.43333, 0.4512, 0.57399, 0.51208, 0.44725
X.6 Codebook Table for SHBCB_GainFrame5bit

SHBCB_GainFrame5bit[32] = 
0.001011, 0.003713, 0.015517, 0.060132, 0.120586, 0.195489, 0.281113, 0.379025, 0.492374, 0.620740, 0.764047, 0.924080, 1.098318, 1.290460, 1.498303, 1.724956, 1.972520, 2.246851, 2.565094, 2.935901, 3.376749, 3.924642, 4.601801, 5.425421, 6.469817, 7.949088, 10.28801, 13.60010, 15.98213, 26.88470, 52.42506, 104.3400
3 Joint Channels for Low Bitrate Coding
In Table 10 — Syntax of mpegh3daChannelPairElementConfig() replace:

	
if(shiftIndex1 > 0) {
	
	

	

shiftChannel1;
	nBits1)
	

	
}
	
	

	}
	
	


with:

	
if (shiftIndex1 > 0) {
	
	

	

shiftChannel1;
	nBits1)
	

	
}
	
	

	
if (sbrRatioIndex == 0 && qceIndex == 0) {
	
	

	

lpdStereoIndex;
	1
	bslbf

	
}
	
	

	}
	
	


In Table 32 — Syntax of mpegh3daCoreCoderData () replace:

	
for (ch=0; ch<nrChannels; ch++) {
	
	

	

if (core_mode[ch] == 1) {
	
	

	


lpd_channel_stream(indepFlag);
	
	

	

}
	
	


with:

	
for (ch = 0; ch < nrChannels; ch++) {
	
	

	

if (core_mode[ch] == 1) {
	
	

	


if (lpdStereoIndex == 1 && ch == 1 && core_mode[0] == 1) {
	

	



lpd_stereo_stream();
	
	

	


} else {
	
	

	



lpd_channel_stream(indepFlag);
	
	

	


}
	
	

	

}
	
	


Add following new table in 5.2.3.2:
Table AMD3.1 — Syntax of lpd_stereo_stream()

	Syntax
	No. of bits
	Mnemonic

	lpd_stereo_stream(indepFlag)
	
	

	{


for (l = 0, n = 0; l < ccfl; l += M, n++) {
	
	

	

res_mode;
	1
	uimsbf

	

q_mode;
	1
	uimsbf

	

ipd_mode;
	2
	uimsbf

	

pred_mode;
	1
	uimsbf

	

cod_mode;
	2
	uimsbf

	
	
	

	

nbands = band_config(N, res_mode);
	
	

	

ipd_band_max = max_band[res_mode][ipd_mode];
	
	

	

cod_band_max = max_band[res_mode][cod_mode];
	
	

	

cod_L = 2*(band_limits[cod_band_max]-1);
	
	

	
	
	

	

for (k = 1; k >= 0; k--) {
	
	

	


if (q_mode == 0 || k == 1) {
	
	

	



for (b = 0; b < nbands; b++) {
	
	

	




ild_idx[2n+k][b];
	5
	uimsbf

	



}
	
	

	



for (b = 0; b < ipd_band_max; b++) {
	
	

	




ipd_idx[2n+k][b];
	3
	uimsbf

	



}
	
	

	



if (pred_mode == 1) {
	
	

	




for (b = cod_band_max; b < nbands;b++) {
	
	

	





pred_gain_idx[2n+k][b];
	3
	uimsbf

	




}
	
	

	



}
	
	

	


}
	
	

	

}
	
	

	
	
	

	

if (cod_mode == 1) {
	
	

	


cod_gain_idx[2n+k];
	7
	uimsbf

	


for (i = 0; i < cod_L/8; i++) {
	
	

	



code_book_indices(i, 1, 1);
	
	

	


}
	
	

	

}
	
	

	
}
	
	

	}
	
	


Add the following new subclause at the end of 5.5:
5.5.x LPD Stereo Coding

5.5.x.1 Tool description

LPD stereo is a discrete M/S stereo coding, where the Mid-channel is coded by the mono LPD core coder and the Side signal coded in the DFT domain. The decoded Mid signal is output from the LPD mono decoder and then processed by the LPD stereo module. The stereo decoding is done in the DFT domain where the L and R channels are decoded. The two decoded channels are transformed back in the Time Domain and can be then combined in this domain with the decoded channels from the FD mode. FD mode uses its own stereo tools, i.e. discrete stereo with or without complex prediction described in ISO/IEC 23003-3:2012, subclause 7.12.
5.5.x.2 Data Elements

lpd_stereo_stream() 
Data element to decode the stereo data for the LPD mode

lpdStereoIndex
Flag which indicates if LPD stereo is activated. 

res_mode
Flag which indicates the frequency resolution of the parameter bands. 

q_mode
Flag which indicates the time resolution of the parameter bands.

ipd_mode
Bit field which defines the maximum of parameter bands for the IPD parameter. 

pred_mode
Flag which indicates if prediction is used.

cod_mode
Bit field which defines the maximum of parameter bands for which the side signal is quantized. 

Ild_idx[k][b]
ILD parameter index for the frame k and band b. 

Ipd_idx[k][b]
IPD parameter index for the frame k and band b.

pred_gain_idx[k][b]
Prediction gain index for the frame k and band b.

cod_gain_idx 
Global gain index for the quantized side signal.

fullBandLpd 
Flag which indicates if LPD mode is in full band mode.

5.5.x.3 Help Elements

ccfl
Core code frame length.

M
Stereo LPD frame length as defined in Table AMD3.2.

band_config()
Function that returns the number of coded parameter bands.

band_limits()
Function that returns the number of coded parameter bands
max_band()
Function that returns the number of coded parameter bands

cod_L
Number of DFT lines for the decoded side signal.
5.5.x.4 Decoding Process

[editorial note: insert heading "General" to avoid hanging paragraph and renumber following subclauses accordingly]
The stereo decoding is performed in the frequency domain. It acts as a post-processing of the LPD decoder. It receives from the LPD decoder the synthesis of the mono Mid signal. The Side signal is then predicted and decoded in frequency domain. Left (L) and right (R) channel spectrums are then reconstructed in frequency domain before being resynthesized in time domain. LPD stereo works with a fixed frame size equal to the size of the ACELP frame independently of the coding mode used in LPD mode.

5.5.x.4.1 Frequency analysis 

The DFT spectrum of the frame index i is computed from the decoded frame x of the Mid signal of length M as follows:

[image: image2746.png]
where N is the size of the signal analysis, w is the analysis window and x the decoded time signal from the LPD decoder at frame index i delayed by the overlap size L of the DFT. M is equal to the size of the ACELP frame at the output sampling rate. The DFT analysis window size N is equal to the LPD stereo frame size plus the overlap size of the DFT. The sizes are depending whether the LPD mode is running in full-band mode as defined in Table AMD3.2.

Table AMD3.2 — DFT and frame sizes of the stereo LPD

	fullBandLpd
	ccfl
	DFT size N
	Frame size M
	Overlap size L

	0
	1024
	336
	256
	80

	1
	1024
	672
	512
	160

	0
	768
	256
	192
	64

	1
	768
	512
	384
	128


The window w is a sine window defined as:

[image: image2747.png]
5.5.x.4.2 Configuration of the parameter bands

The DFT spectrum is divided into non-overlapping frequency bands called parameter bands. The partitioning of the spectrum is non-uniform and mimics the auditory frequency decomposition. Two different divisions of the spectrum are possible with bandwidths following roughly either two or four times the Equivalent Rectangular Bandwidths (ERB).

The spectrum partitioning is selected by the data element res_mode and defined by the following pseudo-code:
funtion nbands = band_config(N, res_mod)

band_limits[0] = 1;

nbands = 0;

while(band_limits[nbands++] < (N/2)) {

  if (stereo_lpd_res == 0) {

    band_limits[nbands] = band_limits_erb2[nbands];

  } else {

    band_limits[nbands] = band_limits_erb4[nbands];

  }

}

nbands--;

band_limits[nbands] = N/2;

return nbands

where nbands is the total number of parameter bands and N the DFT analysis window size. The tables band_limits_erb2 and band_limits_erb4 are defined in Table AMD3.3. The decoder can adaptively change the resolution of the parameter bands at every two LPD stereo frames.

Table AMD3.3 — Parameter band limits in term of DFT index k

	Parameter band index b
	band_limits_erb2
	band_limits_erb4

	0
	1
	1

	1
	3
	3

	2
	5
	7

	3
	7
	13

	4
	9
	21

	5
	13
	33

	6
	17
	49

	7
	21
	73

	8
	25
	105

	9
	33
	177

	10
	41
	241

	11
	49
	337

	12
	57
	

	13
	73
	

	14
	89
	

	15
	105
	

	16
	137
	

	17
	177
	

	18
	241
	

	19
	337
	


The maximum number of parameter bands for IPD is sent within the 2 bits field ipd_mode data element: 

[image: image2748.png]
The maximum number of parameter bands for the coding of the Side signal is sent within the 2 bits field cod_mode data element: 

[image: image2749.png]
The table max_band[ ][ ] is defined in Table AMD3.4. 

The number of decoded lines to expect for the side signal is then computed as:

[image: image2750.png]
Table AMD3.4 — Maximum number of bands for different code modes

	Mode index
	max_band[0]
	max_band[1]

	0
	0
	0

	1
	7
	4

	2
	9
	5

	3
	11
	6


5.5.x.4.3 Inverse quantization of stereo parameters

The stereo parameters Interchannel Level Differencies (ILD), Interchannel Phase Differencies (IPD) and prediction gains are sent either every frame or every two frames depending of flag q_mode. If q_mode equal 0, the parameters are updated every frame. Otherwise, the parameters values are only updated for odd indices i of the LPD stereo frame within the USAC frame. The index i of the LPD stereo frame within a USAC frame can be either between 0 and 3 in LPD version 0 and between 0 and 1 in LPD version 1.

The ILD are decoded as follows:
[image: image2751.png]
The IPD are decoded for the ipd_max_band first bands:

[image: image2752.png]
The prediction gains are only decoded if pred_mode flag is set to one. The decoded gains are then:
[image: image2753.png]
If the pred_mode is equal to zero, all gains are set to zero.

Independently of the value of q_mode, the decoding of the side signal is performed every frame if code_mode is a non-zero value. It first decodes a global gain:

[image: image2754.png]
The decoded shape of the Side signal is the output of the AVQ described in ISO/IEC 23003-3:2012, subclause 7.12.

[image: image2755.png]
Table AMD3.5 — Inverse quantization table ild_q[]

	index
	output
	index
	Output

	0
	-50
	16
	2

	1
	-45
	17
	4

	2
	-40
	18
	6

	3
	-35
	19
	8

	4
	-30
	20
	10

	5
	-25
	21
	13

	6
	-22
	22
	16

	7
	-19
	23
	19

	8
	-16
	24
	22

	9
	-13
	25
	25

	10
	-10
	26
	30

	11
	-8
	27
	35

	12
	-6
	28
	40

	13
	-4
	29
	45

	14
	-2
	30
	50

	15
	0
	31
	reserved


Table AMD3.6 — Inverse quantization table res_pres_gain_q[]

	index
	output

	0
	0

	1
	0.1170

	2
	0.2270

	3
	0.3407

	4
	0.4645

	5
	0.6051

	6
	0.7763

	7
	1


5.5.x.4.4 Inverse channel mapping

The Mid signal X and Side signal S are first converted to the left and right channels L and R as follows:

[image: image2756.png]
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where the gain g per parameter band is derived from the ILD parameter:

[image: image2759.png] where [image: image2761.png]
For parameter bands below cod_max_band, the two channels are updated with the decoded Side signal:

[image: image2762.png]
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For higher parameter bands, the side signal is predicted and the channels updated as:

[image: image2764.png]
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Finally, the channels are multiplied by a complex value aiming to restore the original energy and the inter-channel phase of the stereo signal:

[image: image2766.png]
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where 

[image: image2768.png]
where c is bound to be between -12 and 12dB, and where [image: image2770.png], and where atan2(x,y) is the four-quadrant inverse tangent of x over y.
5.5.x.4.5 Time domain synthesis

From the two decoded spectrums L and R, two time domain signals, l and r, are synthesized by an inverse DFT: 

[image: image2771.png]
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Finally an overlap-add operation allows reconstructing a frame of M samples:

[image: image2773.png]
[image: image2774.png]
5.5.x.4.6 Post-processing

The bass post-processing is applied on two channels separately. The processing is for both channels the same as described in ISO/IEC 23003-3:2012, subclause 7.17.

5.5.x.4.7 Transition from FD mode
The transitions from FD to LPD mode are done first on the decoded Mid signal as in mono case. It is achieved by artificially creating a Mid-signal from the time domain signal decoded in FD mode. 

[image: image2775.png]
This signal is then conveyed to the LPD decoder for updating the memories and applying the FAC decoding as it is done in the mono case for transitions from FD mode to ACELP. The processing is described in ISO/IEC 23003-3:2012, subclause 7.16. In case of FD mode to TCX, a conventional overlap-add is performed. The LPD stereo decoder receives as input signal a decoded Mid signal where the transition is already done. The stereo decoder outputs then a left and right channel signals which overlap the previous frame decoded in FD mode. The signals are then cross-faded on each channel for smoothing the transition in the left and right channels:

[image: image2776.png]
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A schematic illustration of the transitions is depicted in Figure AMD3.1 in case LPD is in full-band mode where M=ccfl/2.
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Figure AMD3.1 — Schematic representation of the transition 
from FD to LPD mode with LPD stereo.
5.5.x.4.7 Transition to FD mode
For transitions from LPD mode to FD mode, an extra frame is decoded by the LPD stereo decoder. The Mid signal coming from the LPD decoder is extended with zero for the frame index i=ccfl/M.

[image: image2779.png]
The stereo decoding as described in the previous sections is performed by holding the last stereo parameters, and by switching off the Side signal inverse quantization, i.e. code_mode is set to 0. Moreover the right side windowing after the inverse DFT is not applied.

The resulting left and right channels are then combined to the FD mode decoded channels of the next frame by using an overlap-add processing in case of TCX to FD mode or by using a FAC for each channel in case of ACELP to FD mode.

A schematic illustration of the transitions is depicted in Figure AMD3.2 in case LPD in full-band mode where M=ccfl/2.
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Figure AMD3.2 — Schematic representation of the transition 
from LPD to FD mode with LPD stereo.

4 Discrete Multi-Channel Coding Tool

In Table 50 add table entry ID_EXT_ELE_MCT:

Table 50 — Value of usacExtElementType

	usacExtElementType
	Value

	…
	…

	ID_EXT_ELE_MCT
	9

	…
	…


In Table 51 add table entry ID_EXT_ELE_MCT:
Table 51 — Interpretation of data blocks for extension payload decoding

	usacExtElementType
	The concatenated usacExtElementSegmentData represents:

	…
	…

	ID_EXT_ELE_MCT
	MultichannelCodingFrame()

	…
	…


In Table 13 add case for ID_EXT_ELE_MCT):
Table 13 — Syntax of mpegh3daExtElementConfig()

	Syntax
	No. of bits
	Mnemonic

	mpegh3daExtElementConfig()
	
	 

	{
	
	

	
…
	
	

	
case ID_EXT_ELE_MCT:
	
	

	

MCTConfig();
	
	

	

break;
	
	

	
…
	
	

	}
	
	


Add new subclause at the end of 5.2.2 and add the following Tables:

5.2.2.X Extension Element Configurations 

Table AMD4.1 — Syntax of MCTConfig(),

	Syntax
	No. of bits
	Mnemonic

	MCTConfig()
	
	

	{
	
	

	
nMCTChannels = 0;
	
	

	
for(chan=0;chan < bsNumberOfSignals[grp]; chan++) {
	
	

	

mctChanMask[chan];
	1
	uimsbf

	

if(mctChanMask[chan] > 0) {
	
	

	


mctChannelMap[nMCTChannels]=chan;
	
	

	


nMCTChannels++;
	
	

	

}
	
	

	
}
	
	

	}
	
	

	NOTE: The corresponding ID_USAC_EXT element shall be prior to any audio element of the corresponding signal group.


At the end of 5.2.3.3 add the following Tables:
Table AMD4.2 — Syntax of MultichannelCodingBoxRotation()
	Syntax
	No. of Bits
	Mnemonic

	MultichannelCodingBoxRotation()
	
	

	{
	
	

	
if (keepTree == 0) {
	NOTE 1)
	

	

channelPairIndex;
	nBits  
	

	
}
	
	

	
else {
	
	

	

channelPairIndex=lastChannelPairIndex;
	
	

	
}
	
	

	
	
	

	
hasMctMask;
	1
	uimsbf

	
hasBandwiseAngles;
	1
	uimsbf

	
windowsPerFrame =1;
	
	

	
if (hasMctMask || hasBandwiseAngles) {
	
	

	

isMCTShort;
	1
	uimsbf

	

numMaskBands;
	5
	uimsbf

	

if (isMCTShort) {
	
	

	


numMaskBands = numMaskBands*8;



windowsPerFrame =8;
	
	

	

}
	
	

	
} else {
	
	

	

numMaskBands = MAX_NUM_MC_BANDS;
	
	

	
}
	
	

	
if (hasMctMask) {
	
	

	

for(j=0;j<numMaskBands;j++) {
	
	

	


mctMask[j];
	1
	uimsbf

	

}


} else {



for(j=0;j<numMaskBands;j++) {
	
	

	


mctMask[j] = 1;
	
	

	

}
	
	

	
}
	
	

	
If(indepFlag > 0) {
	
	

	

mct_delta_time = 0;
	
	

	
} else {
	
	

	

mct_delta_time;
	1
	uimsbf

	
}
	
	

	
if (hasBandwiseAngles == 0) {
	
	

	

hcod_angle[dpcm_beta[0]];
	1..10
	vlclbf

	
}
	
	

	
else {
	
	

	

for(j=0;j<numMaskBands;j++) {
	
	

	


if (mctMask[j] ==1) {
	
	

	



hcod_angle[dpcm_beta[j]];
	1..10
	vlclbf

	


}
	
	

	

}
	
	

	
}
	
	

	}
	
	

	NOTE 1) nBits =  floor(log2(nMCTChannels*(nMCTChannels-1)/2 – 1))+1


Table AMD4.3 — Syntax of MultichannelCodingBoxPrediction()

	Syntax
	No. of Bits
	Mnemonic

	MultichannelCodingBoxPrediction()
	
	

	{
	
	

	
if (keepTree == 0) {
	NOTE 1)
	

	

channelPairIndex;
	nBits  
	uimsbf

	
}
	
	

	
else {
	
	

	

channelPairIndex= lastChannelPairIndex;
	
	

	
}
	
	

	
	
	

	
hasMctMask;
	1
	uimsbf

	
hasBandwiseCoeff;
	1
	uimsbf

	
windowsPerFrame =1;
	
	

	
if (hasMctMask || hasBandwiseCoeff) {
	
	

	

isMCTShort;
	1
	uimsbf

	

numMaskBands;
	5
	uimsbf

	

if (isMCTShort) {
	
	

	


numMaskBands = numMaskBands*8;



windowsPerFrame =8;
	
	

	

}
	
	

	
} else {
	
	

	

numMaskBands = MAX_NUM_MC_BANDS;
	
	

	
}
	
	

	
if (hasMctMask) {
	
	

	

for(j=0;j<numMaskBands;j++) {
	
	

	


mctMask[j];
	1
	uimsbf

	

}


} else {



for(j=0;j<numMaskBands;j++) {
	
	

	


mctMask[j] = 1;
	
	

	

}
	
	

	
}
	
	

	
pred_dir;
	1
	

	
If(indepFlag > 0) {
	
	

	

mct_delta_time = 0;
	
	

	
} else {
	
	

	

mct_delta_time;
	1
	uimsbf

	
}
	
	

	
if (hasBandwiseCoeff == 0) {
	
	

	

hcod_sf[dpcm_alpha_q_re[0]];
	1..19
	vlclbf

	
}
	
	

	
else {
	
	

	

for(j=0;j<numMaskBands;j++) {
	
	

	


if (mctMask[j] ==1) {
	
	

	



hcod_sf[dpcm_alpha_q_re[j]];
	1..19
	vlclbf

	


}
	
	

	

}
	
	

	
}
	
	

	}
	
	

	NOTE 1) nBits =  floor(log2(nMCTChannels*(nMCTChannels-1)/2 – 1))+1


Table AMD4.4 — Syntax of MultichannelCodingFrame()
	Syntax
	No. of bits
	Mnemonic

	MultichannelCodingFrame()
	
	

	{
	
	

	
MCTSignalingType;
	2
	uimsbf

	
keepTree;
	1
	uimsbf

	
if(keepTree==0) {
	
	

	

numPairs=escapedValue(5,8,16);
	
	

	
}
	
	

	
else {
	
	

	

numPairs=lastNumPairs;
	
	

	
}
	
	

	
for(pair=0; pair<numPairs;pair++) {
	
	

	

if(MCTSignalingType == 0) { /* tree of stereo prediction boxes */
	
	

	


MultichannelCodingBoxPrediction();
	
	

	

}
	
	

	

if(MCTSignalingType == 1) { /* tree of rotation boxes */
	
	

	


MultichannelCodingBoxRotation();
	
	

	

}
	
	

	

if((MCTSignalingType == 2) ||


 
   (MCTSignalingType == 3)) {
	
	

	


/* reserved */
	
	

	

}
	
	

	
}
	
	

	}
	
	


In Table 34 replace
	
if (!common_window) {
	
	

	

ics_info();
	
	

	
}
	
	

	
if (tw_mdct && !common_tw) {
	
	

	

tw_data();
	
	

	
}


	
	

	
scale_factor_data();
	
	

	
	
	

	
if (enhancedNoiseFilling) {



igf_AllZero


igf_level(igf_AllZero, indepFlag);



if (!igf_AllZero) {




igf_data(indepFlag);



} else {




igfPrevTileIdx = {3};




igf_PrevWhiteningLevel = {0};


}


}
	1

0…
	uimsbf

NOTE


with:

	
	
	

	
if (!common_window) {
	
	

	

ics_info();
	
	

	
}
	
	

	
if (tw_mdct && !common_tw) {
	
	

	

tw_data();
	
	

	
}
	
	

	
	
	

	
if (indepFlag) {
	
	

	

prev_aliasing_symmetry;
	1
	uimsbf

	
} else {
	
	

	

prev_aliasing_symmetry = curr_aliasing_symmetry;
	
	

	
}
	
	

	
curr_aliasing_symmetry;
	1
	uimsbf

	
	
	

	
scale_factor_data();
	
	

	
	
	

	
if (enhancedNoiseFilling) {



igf_AllZero;


igf_level(igf_AllZero, indepFlag);



if (!igf_AllZero) {




igf_data(indepFlag);



} else {




igfPrevTileIdx = {3};




igf_PrevWhiteningLevel = {0};



igf_WhiteningLevel = {0};


}


}
	1

0…
	uimsbf

NOTE

	
	
	


Add the following new subclauses “5.5.X Multichannel Coding Tool” at the end of subclause 5.5:
5.5.X Multichannel Coding Tool

5.5.X.1 Tool description

The Multichannel Coding Tool (MCT) is a method for joint coding of multiple channels for more efficient coding of time-variant horizontally and vertically distributed channels.

5.5.X.2 Terms and Definitions

Help elements:

mctChanMask[chan]
Indicates the use of the tool for a certain channel:
Table AMD4.5 — mctChanMask
	mctChanMask
	Meaning

	0
	Multi channel coding tool not applied 

	1
	Multi channel coding tool applied


channelPairIndex
A list of channel pair indices for each pair of channels processed by the MCT. The channelPairIndex is decoded to two channel indices with decode_channel_pair_index().
hasMctMask
Indicates the transmission of a mask that indicates the use of the tool for certain scale factor bands. 

Table AMD4.6 — hasMctMask
	hasMctMask
	Meaning

	0
	MCT is applied to all bands 

	1
	A mask indicating the usage of MCT per band is transmitted


hasBandwiseAngles
Indicates whether a single angle or multiple angles are transmitted.

hasBandwiseCoeff
Indicates whether a single prediction coefficient or multiple prediction coefficients are transmitted.
isMCTShort
Indicates whether the current processing is applied to a frame containing eight sub-windows.

Table AMD4.7 — isMCTShort
	isMCTShort
	Meaning

	0
	Stereo parameters applied to one MDCT frame

	1
	Stereo parameters applied to eight MDCT sub-windows


numMaskBands
The number of processing bands that are processed by MCT.

pair
The index of the currently processed stereo processing box.

band
A stereo processing band containing two scalefactor bands

mctMask [band]
Indicates the activity of the MCT for a certain parameter band within a certain parameter pairing.

mct_delta_time
Indicates the coding scheme used for the MCT parameters:
Table AMD4.8 — mct_delta_time
	mct_delta_time
	Meaning

	0
	frequency differential coding of MCT parameters

	1
	time differential coding of MCT parameters


hcod_angle[ ]
The Huffman code book for angles.
dpcm_beta[band]
The differentially encoded angle to be applied.
dpcm_alpha_q_re[band]
The differentially encoded prediction coefficient to be applied.

pred_dir
Indicates the direction of prediction according to ISO/IEC 23003-3:2012, Table 120

DEFAULT_ALPHA
Initialization value for stereo prediction, equal to 0.
DEFAULT_BETA
Initialization value for rotation angle, equal to 48.
MAX_NUM_MC_BANDS
Maximum number of MCT bands, equal to 64.
MCTSignalingType
The type of signaling MCT data.
keepTree
Indicates whether to use the same tree of channel pairs as in the previous frame.

numPairs
The number of channel pairs.

5.5.X.3 Decoding process

5.5.X.3.1 General

In case an element with usacExtElementType ID_EXT_ELE_MCT belongs to the currently processed signal group, the affected channels according to mctChanMask[] shall be decoded by the MCT. Here, the extension element with usacExtElementType  ID_EXT_ELE_MCT shall be written before any audio element of a certain signal group.
The decoding of the Multichannel Coding Tool (MCT) is performed in multiple steps as follows:
5.5.X.3.2 Decoding of channel pair index

Channel pairs are efficiently signaled using a unique index channelPairIndex for each pair, dependent on the sum nMCTChannels of active channels in the vector mctChanMask[]. The decoding process is described in the function decode_channel_pair_index() as follows:

decode_channel_pair_index(channelPairIndex, channelPair[2]) 

{

  maxNumPairIdx = nMCTChannels*(nMCTChannels-1)/2 - 1;
  numBits = floor(log2(maxNumPairIdx))+1;

  pairCounter = 0;

  for (chan1=1; chan1 < nMCTChannels; chan1++) {

      for (chan0=0; chan0 < chan1; chan0++) {

        if (pairCounter == channelPairIndex) {

          channelPair[0] = chan0;

          channelPair[1] = chan1;

          return;

        }

        else 

          pairCounter++;

      }

    }
  }

}
For instance, all possible channel pairs when using 6 channels can be indexed according to the following Table.
Table AMD4.9 – Coding of channelPairIndex for a setup with 6 MCT channels
	ch 
nr
	0
	1
	2
	3
	4
	5

	0
	
	0
	1
	2
	3
	4

	1
	
	
	5
	6
	7
	8

	2
	
	
	
	9
	10
	11

	3
	
	
	
	
	12
	13

	4
	
	
	
	
	
	14

	5
	
	
	
	
	
	


5.5.X.3.3 Decoding process for rotation angles

In case MCTSignalingType = 1, the MultichannelCodingBoxRotation() bit stream element is used. For all rotation angles the difference to a preceding (in time or frequency) value is coded using the Huffman code book specified in 5.5.X.3.6. See ISO/IEC 14496-3:2009, 4.6.3, for a detailed description of the Huffman decoding process. Rotation angles are not transmitted for mctMask[band] = 0. The following pseudo code describes how to decode the rotation angles pairBeta[band].
decode_rotation()

{

  for(pair=0; pair<numPairs; pair++) {

    mctBandsPerWindow = numMaskBands[pair]/windowsPerFrame;

    for(band=0; band<numMaskBands[pair]; band++) {

      if(mct_delta_time[pair] > 0) {

        lastVal = beta_prev_frame[pair][band%mctBandsPerWindow];

      } 

      else {

        if ((band % mctBandsPerWindow) == 0) {

           lastVal = DEFAULT_BETA;

        }

      }

      if (mctMask[pair][band] > 0 ) {

        newBeta = lastVal + dpcm_beta[pair][band];

        if(newBeta >= 64) {

          newBeta -= 64;

        }

        pairBeta[pair][band] = newBeta;

        beta_prev_frame[pair][band%mctBandsPerWindow] = newBeta;

        lastVal = newBeta;

      }

      else {

        beta_prev_frame[pair][band%mctBandsPerWindow] = DEFAULT_BETA; /* -45° */

      }

      /* reset fullband angle */

      beta_prev_fullband[pair] = DEFAULT_BETA;

    }

    for(band=bandsPerWindow; band<MAX_NUM_MC_BANDS; band++) {

      beta_prev_frame[pair][band] = DEFAULT_BETA;

    }

  }

}
beta_prev_frame[pair][sfb] contains the decoded rotation angles of the corresponding stereo channel pair of the last sub-window of the previous frame. If no differential coding was used for the previous frame or for the respective scale factor band in the previous frame, beta_prev_frame[sfb] is set to DEFAULT_BETA. 
All rotation angles are reset to DEFAULT_BETA upon a transform length change and for all cases the memory is not used for the current frame.
5.5.X.3.4 Decoding process for real-valued stereo prediction

In case MCTSignalingType = 0, the MultichannelCodingBoxPrediction() bit stream element is used. Decoding is performed similar to the decoding of prediction coefficients as defined in ISO/IEC 23003‑3:2012, 7.7.2.3.2. The following pseudo code describes how to decode the prediction coefficients pairAlpha[band].
decode_prediction()

{

  for(pair=0; pair<numPairs; pair++) {

    mctBandsPerWindow = numMaskBands[pair]/windowsPerFrame;

    for(band=0; band<numMaskBands[pair]; band++) {

      if(mct_delta_time[pair] > 0) {

        lastVal = alpha_prev_frame[pair][band%mctBandsPerWindow];

      } 

      else {

        if ((band % mctBandsPerWindow) == 0) {

           lastVal = DEFAULT_ALPHA;

        }

      }

      if (mctMask[pair][band] > 0 ) {
        dpcm_alpha = -decode_huffman() + 60; /* function returns dpcm_alpha_[sfb]*/       

        newAlpha = lastVal + dpcm_alpha;

        pairAlpha[pair][band] = newAlpha;

        alpha_prev_frame[pair][band%mctBandsPerWindow] = newAlpha;

        lastVal = newAlpha;

      }

      else {

        alpha_prev_frame[pair][band%mctBandsPerWindow] = DEFAULT_ALPHA;      
      }

      /* reset fullband angle */

      alpha_prev_fullband[pair] = DEFAULT_ALPHA;
    }

    for(band=bandsPerWindow; band<MAX_NUM_MC_BANDS; band++) {

      alpha_prev_frame[pair][band] = DEFAULT_ALPHA;

    }

  }

}
5.5.X.3.5 Decoding of quantized rotation angles

To avoid floating point differences of trigonometric functions on different platforms, the following lookup-tables for converting rotation angle indices directly to sin/cos shall be used:
tabIndexToSinAlpha[64] = {

  -1.000000f,-0.998795f,-0.995185f,-0.989177f,-0.980785f,

  -0.970031f,-0.956940f,-0.941544f,-0.923880f,-0.903989f,

  -0.881921f,-0.857729f,-0.831470f,-0.803208f,-0.773010f,

  -0.740951f,-0.707107f,-0.671559f,-0.634393f,-0.595699f,

  -0.555570f,-0.514103f,-0.471397f,-0.427555f,-0.382683f,

  -0.336890f,-0.290285f,-0.242980f,-0.195090f,-0.146730f,

  -0.098017f,-0.049068f, 0.000000f, 0.049068f, 0.098017f,

   0.146730f, 0.195090f, 0.242980f, 0.290285f, 0.336890f,

   0.382683f, 0.427555f, 0.471397f, 0.514103f, 0.555570f,

   0.595699f, 0.634393f, 0.671559f, 0.707107f, 0.740951f, 

   0.773010f, 0.803208f, 0.831470f, 0.857729f, 0.881921f, 

   0.903989f, 0.923880f, 0.941544f, 0.956940f, 0.970031f, 

   0.980785f, 0.989177f, 0.995185f, 0.998795f

};
tabIndexToCosAlpha[64] = {

  0.000000f, 0.049068f, 0.098017f, 0.146730f, 0.195090f,

  0.242980f, 0.290285f, 0.336890f, 0.382683f, 0.427555f, 

  0.471397f, 0.514103f, 0.555570f, 0.595699f, 0.634393f, 

  0.671559f, 0.707107f, 0.740951f, 0.773010f, 0.803208f, 

  0.831470f, 0.857729f, 0.881921f, 0.903989f, 0.923880f, 

  0.941544f, 0.956940f, 0.970031f, 0.980785f, 0.989177f, 

  0.995185f, 0.998795f, 1.000000f, 0.998795f, 0.995185f, 

  0.989177f, 0.980785f, 0.970031f, 0.956940f, 0.941544f, 

  0.923880f, 0.903989f, 0.881921f, 0.857729f, 0.831470f, 

  0.803208f, 0.773010f, 0.740951f, 0.707107f, 0.671559f, 

  0.634393f, 0.595699f, 0.555570f, 0.514103f, 0.471397f, 

  0.427555f, 0.382683f, 0.336890f, 0.290285f, 0.242980f, 

  0.195090f, 0.146730f, 0.098017f, 0.049068f

};

5.5.X.3.6 Huffman Tables for Differential Rotation Angles

The following Huffman tables huff_ctabAngle[] and huff_ltabAngle[] for the code words and the code word lengths, respectively, shall be used for decoding the rotation angle differences:

huff_ctabAngle[] = {

  0x00000000, 0x0000000B, 0x00000012, 0x0000001B, 0x0000001F,

  0x00000031, 0x0000003A, 0x00000043, 0x00000065, 0x00000073, 

  0x00000082, 0x0000009A, 0x000000CE, 0x000000EE, 0x00000106, 

  0x0000013A, 0x000001D9, 0x000001DE, 0x00000202, 0x00000261,  

  0x0000020F, 0x0000020E, 0x00000263, 0x00000266, 0x00000272, 

  0x00000271, 0x00000277, 0x00000276, 0x00000334, 0x00000325, 

  0x00000326, 0x00000327, 0x00000324, 0x00000323, 0x00000335, 

  0x00000322, 0x00000320, 0x00000321, 0x00000273, 0x00000270, 

  0x00000267, 0x00000260, 0x00000262, 0x00000203, 0x000001DF, 

  0x000001DA, 0x000001D8, 0x0000019B, 0x000001DB, 0x00000132, 

  0x00000100, 0x000000CF, 0x000000CC, 0x0000009B, 0x00000081,  

  0x00000072, 0x0000004F, 0x00000042, 0x00000038, 0x00000030, 

  0x0000001E, 0x0000001A, 0x00000011, 0x0000000A

};

huff_ltabAngle[] = {

  0x00000001, 0x00000004, 0x00000005, 0x00000005, 0x00000005,

  0x00000006, 0x00000006, 0x00000007, 0x00000007, 0x00000007, 

  0x00000008, 0x00000008, 0x00000008, 0x00000008, 0x00000009, 

  0x00000009, 0x00000009, 0x00000009, 0x0000000A, 0x0000000A, 

  0x0000000A, 0x0000000A, 0x0000000A, 0x0000000A, 0x0000000A, 

  0x0000000A, 0x0000000A, 0x0000000A, 0x0000000A, 0x0000000A, 

  0x0000000A, 0x0000000A, 0x0000000A, 0x0000000A, 0x0000000A, 

  0x0000000A, 0x0000000A, 0x0000000A, 0x0000000A, 0x0000000A, 

  0x0000000A, 0x0000000A, 0x0000000A, 0x0000000A, 0x00000009, 

  0x00000009, 0x00000009, 0x00000009, 0x00000009, 0x00000009, 

  0x00000009, 0x00000008, 0x00000008, 0x00000008, 0x00000008, 

  0x00000007, 0x00000007, 0x00000007, 0x00000006, 0x00000006, 

  0x00000005, 0x00000005, 0x00000005, 0x00000004 

};
5.5.X.3.7 Application of Multichannel Coding Tool

[editorial note: insert heading "General Decoding Process" to avoid hanging paragraph and renumber following subclauses accordingly]
Reconstruct the spectral coefficients of all channels by iteratively looping over all transmitted stereo boxes  and frequency bands as follows:

decode_mct()

{

  for (pair=0; pair < numPairs; pair++) {

    mctBandOffset = 0;
    alphaSfb = pairAlpha[pair];

    betaSfb = pairBeta[pair];
    /* inverse MCT application */

    for (win = 0, group = 0; group <num_window_groups; group++) {

      for (groupwin = 0; groupwin < window_group_length[group]; groupwin++, win++) { 

        *dmx = spectral_data[ch1][win];

        *res = spectral_data[ch2][win];
        apply_mct_wrapper(self,dmx,res,
                           &alphaSfb[mctBandOffset], &betaSfb[mctBandOffset],
                           &mctMask[mctBandOffset],mctBandsPerWindow, alpha,

                           totalSfb,pair,nSamples);

      }

      mctBandOffset += mctBandsPerWindow;

    } 

  }

}
Thereby spectral_data[ch1] and spectral_data[ch2] represent the two input and output channels of the channel pair that is currently processed in the MCT stereo processing box.

Further processing of every MCT stereo processing box is done as follows:
apply_mct_wrapper(self, *dmx, *res, 
                  *alphaSfb, *betaSfb,

                  *mctMask, mctBandsPerWindow, alpha, 
                  totalSfb, pair, nSamples)

{

  sfb = 0;

  if (MCTSignalingType == 0) {
    if (!bHasBandwiseCoeff[pair] && !bHasMctMask[pair]) {

      apply_mct_prediction(dmx, res, alphaSfb[0], nSamples);

    }

    else {

      /* apply bandwise processing */

      for (i = 0; i< mctBandsPerWindow; i++) {

        if (mctMask[i] == 1) {

          startLine = swb_offset [sfb];

          stopLine  = (sfb+2<totalSfb)? swb_offset [sfb+2] : swb_offset [sfb+1];

          nSamples  = stopLine-startLine;

          apply_mct_prediction(&dmx[startLine], &res[startLine], 
                               alphaSfb[i], nSamples, pred_dir);

        }

        sfb += 2;

        /* break condition */

        if (sfb >= totalSfb) {

          break;

        }

      }

    }

  }

  else if (MCTSignalingType == 1) {

    /* apply fullband box */

    if (!bHasBandwiseAngles[pair] && !bHasMctMask[pair]) {

      apply_mct_rotation(dmx, res, betaSfb[0], nSamples);

    }

    else {

      /* apply bandwise processing */

      for (i = 0; i< mctBandsPerWindow; i++) {

        if (mctMask[i] == 1) {

          startLine = swb_offset [sfb];

          stopLine  = (sfb+2<totalSfb)? swb_offset [sfb+2] : swb_offset [sfb+1];

          nSamples  = stopLine-startLine;

          apply_mct_rotation(&dmx[startLine], &res[startLine], 
                             betaSfb[i], nSamples);

        }

        sfb += 2;

        /* break condition */

        if (sfb >= totalSfb) {

          break;

        }

      }

    }

  }

  else if (MCTSignalingType == 2) {
    /* reserved */
  }

  else if (MCTSignalingType == 3) {
    /* reserved */

  }

}
5.5.X.3.7.1 Application of rotation angles

apply_mct_rotation(*dmx, *res, aIdx, nSamples)

{

  for (n=0;n<nSamples;n++) {

    L =  dmx[n] * tabIndexToCosAlpha [aIdx] - res[n] * tabIndexToSinAlpha [aIdx];

    R =  dmx[n] * tabIndexToSinAlpha [aIdx] + res[n] * tabIndexToCosAlpha [aIdx];

    dmx[n] = L;

    res[n] = R;

  }

}
5.5.X.3.7.2 Application of real-valued stereo prediction coefficients

Real-valued Stereo Prediction is performed like the Upmixing process described in ISO/IEC 23003-3:2012 subclause 7.7.2.3.4 under the assumption that ms_mask_present = 3; num_window_groups = windowsPerFrame; window_group_length = 1; cplx_pred_used[g][sfb] = mctMask[sfb]; alpha_im = 0;
Thus, in the context of the MCT, the prediction upmixing process can be calculated using the following pseudo code:
apply_mct_prediction(*dmx, *res, alpha_q, nSamples, pred_dir)

{
  alpha_re = alpha_q * 0.1;

  for (n=0;n<nSamples;n++) {
    if (pred_dir == 0) {
      L = dmx[n] + alpha * dmx[n] + res[n];

      R = dmx[n] - alpha * dmx[n] - res[n];

    }

    else {

      L =   dmx[n] + alpha * dmx[n] + res[n];

      R = - dmx[n] + alpha * dmx[n] + res[n];

    }

    dmx[n] = L;

    res[n] = R;

  }

}
In 5.5.3 (Transform Splitting), replace all occurrences of the words:
· “MDCTs” with the words “lapped transforms”,

· “MDCT” with the word “transform”,

· “IMDCTs” with the words “inverse lapped transforms”, and

· “IMDCT” with the words “inverse lapped transform”.
Replace subclause 5.5.3.5.1 (IMDCT) with the following text:
5.5.3.5.1 Inverse Lapped Transform

The processing for TS follows the description given in ISO/IEC 23003-3:2012 subclause “7.9, Filterbank and block switching”. The following modifications or additions shall be taken into account. See also 5.5.Z.
The TS coefficients in spec[] are de-interleaved using a helper buffer[] with N, the window length based on the window_sequence value (N = ccfl·2 since, by definition, the sequence isn’t an EIGHT_SHORT_SEQUENCE):
for (i = 0, i2 = 0; i < N/2; i += 1, i2 += 2) {

  spec[0][i] = spec[i2];   /* isolate 1st window */

  buffer[i]  = spec[i2+1]; /* isolate 2nd window */

}

for (i = 0; i < N/2; i += 1) {

  spec[1][i] = buffer[i];  /* copy 2nd window */

}

The inverse transform for each half-length TS spectrum spec[0, 1] is then defined as follows, with cs() and k0 as specified, via the prev_aliasing_symmetry and curr_aliasing_symmetry values, by Table AMD4.9  Joint Channels for Low Bitrate Coding 
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 for 0 ≤ n < N/2 ,
where
 j   = window index, must be 0 or 1,


n  = time-domain sample index,


k   = spectral coefficient index,


n0 = (N / 4 + 1) / 2.
Note that for the second inverse transform x1,n, prev_aliasing_symmetry is set to curr_aliasing_symmetry. Subsequent windowing and block switching steps for the transform outputs x(0,1) are defined in the next subclauses.

At the end of subclause 5.5 add a new subclause with the following text:
5.5.Z
Filterbank and Block Switching

The frequency-to-time transformation, windowing, block switching, and overlap-and-add operations are carried out as specified in ISO/IEC 23003-3:2012, subclause 7.9. The only exception is the analytical expression for the inverse lapped transform xi,n of the spectral coefficients spec[i] for the window index i, which is now given by


[image: image2782.wmf]1

2

,00

0

22

[][]cs()()

N

in

k

xspeciknnkk

NN

p

-

=

æö

=×++

ç÷

èø

å

 
for 0 ≤ n < N ,
with i, k, n, N, and n0 defined as in ISO/IEC 23003-3:2012, 7.9.3.1, and with cs() and k0 as tabulated, using the prev_aliasing_symmetry and curr_aliasing_symmetry values, in Table AMD4.10 below. Note that for the 7 last transforms (at i > 0) of an EIGHT_SHORT_SEQUENCE, prev_aliasing_symmetry is set to curr_aliasing_symmetry.

Table AMD4.10 – Mapping of aliasing symmetry values to parameters of the inverse lapped transform xi,n
	last frame i-1
	current frame i

	
	right-side symmetry even (symmi=0)
	right-side symmetry odd (symmi=1)

	right-side symmetry even (symmi-1=0)
	cs(…) = cos(…)

k0 = 0.5
	cs(…) = sin(…)

k0 = 1.0

	right-side symmetry odd (symmi-1=1)
	cs(…) = cos(…)
k0 = 0.0
	cs(…) = sin(…)
k0 = 0.5

	NOTE
symmi –1 = value of prev_aliasing_symmetry, 
symmi = value of curr_aliasing_symmetry


.
In channels and frames with LPD coding (core_mode[ch] ≠ 0), prev_aliasing_symmetry and curr_aliasing_symmetry shall be zero.

5 Updates to MHAS
In Table 139 replace:

	

case PACTYP_BUFFERINFO:
	
	

	


mhas_buffer_fullness_present;
	1
	uimsbf

	


if (mhas_buffer_fullness_present)
	
	

	



mhas_buffer_fullness = escapedValue(15,24,32);
	15,39,71
	uimsbf

	


}
	
	

	


break;
	
	

	
}
	
	


with: 

	

case PACTYP_BUFFERINFO:
	
	

	


mhas_buffer_fullness_present;
	1
	uimsbf

	


if (mhas_buffer_fullness_present) {
	
	

	



mhas_buffer_fullness = escapedValue(15,24,32);
	15,39,71
	uimsbf

	


}
	
	

	


break;
	
	

	

case PACTYP_AUDIOTRUNCATION:
	
	

	


audioTruncationInfo();
	
	

	


break;
	
	

	
}
	
	


Add in “Table 139 — Syntax of MHASPacketPayload()”:

	

case PACTYP_CRC32:
	
	

	


mhasParity32Data;
	32
	bslbf

	


break;
	
	

	

case PACTYP_GLOBAL_CRC16:
	
	

	


global_CRC_type;
	2
	bslbf

	


numProtectedPackets;
	6
	bslbf

	


mhasParity16Data;
	16
	bslbf

	


break;
	
	

	

case PACTYP_ GLOBAL_CRC32:
	
	

	


global_CRC_type;
	2
	bslbf

	


numProtectedPackets;
	6
	bslbf

	


mhasParity32Data;
	32
	bslbf

	


break;
	
	


Add new Table in 14.2.2:

Table AMD5.2 – Syntax of audioTruncationInfo()

	Syntax
	No. of bits
	Mnemonic

	audioTruncationInfo()
	
	

	{
	
	

	
isActive;
	1
	bool

	
reserved;
	1
	bool

	
truncFromBegin;
	1
	bool

	
nTruncSamples;
	13
	uimsbf

	}
	
	


Add new subclause in 14.3. after 14.3.2:

14.3.X  Subsidiary MHAS packets

isActive 
If 1 the truncation message is active, if 0 the decoder should ignore the message.

reserved
reserved bit shall be zero

truncFromBegin
if 0 truncate samples from the end, if 1 truncate samples from the beginning.

nTruncSamples
number of samples to truncate

Add in “Table 141 — Value of MHASPacketType()”:

	MHASPacketType
	Value

	PACTYP_BUFFERINFO
	14

	PACTYP_GLOBAL_CRC16
	15

	PACTYP_GLOBAL_CRC32
	16

	PACTYP_AUDIOTRUNCATION
	17

	/* reserved for ISO use */
	18-127


Add in “14.3.2  MHASPacketPayload()”

global_CRC_type
This element provides an indication on the packet types allowed within the numProtectedPackets protected packets with the global CRC specified in MHASPacketType PACTYP_GLOBAL_CRC32 or PACTYP_GLOBAL_CRC16, according to Table AMD5.1.

Table AMD5.1 — Value of global_CRC_type

	value
	Indication on the packet types allowed within the numProtectedPackets

	0
	multiple packets of any packet type.

	1
	multiple packets of any packet type, of which only one packet of type PACTYP_MPEGH3DAFRAME.

	2-3
	reserved for ISO use


numProtectedPackets
a 6-bit field that indicates the number of MHAS packets protected by the CRC check defined in the MHASPacketType PACTYP_GLOBAL_CRC16 and PACTYP_GLOBAL_CRC32.
At the end of “14.4 Description of MHASPacketTypes” add new subclause as follows:
14.4.x PACTYP_GLOBAL_CRC16 and PACTYP_ GLOBAL_CRC32

The MHASPacketType PACTYP_GLOBAL_CRC16 and PACTYP_ GLOBAL_CRC32 may be used for detection of errors in the subsequent numProtectedPackets MHAS packets. For this packet type, MHASPacketLabel has no meaning and shall be set to 0. This may be beneficial when an MHAS stream is conveyed over an error prone channel.

The error detection method uses one of the generator polynomial and associated shift register states as defined for mhasParity16Data or mhasParity32Data respectively.

The CRC-check includes:

· first all bits positioned before the mhasParity32Data/mhasParity16Data in the MHAS packet of type PACTYP_GLOBAL_CRC32 or PACTYP_GLOBAL_CRC16, corresponding to the fields: MHASPacketType, MHASPacketLabel, MHASPacketLength, gloabal_CRC_type and numProtectedPackets,

· and afterwards all bits of the MHASAudioStreamPacket() of the subsequent numProtectedPackets MHAS packets.

In the case where there are no errors, each of the outputs of the shift register shall be zero. At the CRC encoder the mhasParity16Data / mhasParity32Data field is encoded with a value such that this is ensured.

14.4.x PACTYP_AUDIOTRUNCATION

The MHAS package of type PACTYP_AUDIOTRUNCATION indicates a potential truncation. Truncation in this context means the removal of audio samples from the decoded PCM samples. Audio samples are removed either before or after a truncation point as signaled in the truncation packet. 

The packet contains a flag, isActive, which indicates whether the truncation shall actually be applied. If this flag is 0 the truncation package shall be ignored.

If the process of truncation is applied after the mixing stage, i.e. after the signal has passed all core decoder and rendering stages, but before the post-processing (DRC-2, binauralization etc.) and end-of-chain (DRC-3 etc.). In this case the truncation point occurs delayed by the core decoding and rendering delay.

If the process of truncation occurs at a later stage, after the mixing stage (e.g., after end-of-chain), the truncation point shall be delayed by the corresponding delay of the additional processing blocks (e.g., DRC-2, binauralization) and the truncation shall be carried out at this later truncation stage (e.g. after end-of-chain).The decoded samples are either truncated from the beginning (if truncFromBegin==1) or from the end (if truncFromBegin==0). In the case of a truncation from the end, the decoder shall discard all samples at the truncation stage after the truncation point. In the case of a truncation from begin, the decoder shall discard all samples at the truncation stage prior to the truncation point. 

Furthermore, associated data for use in the post-processing or end-of-chain context needs to be truncated in a similar manner.

If truncFromBegin==1, the following additional rules apply:

· The MHAS stream shall contain an additional MHAS packet of type PACTYP_MPEGH3DACFG
· If isActive==1 the decoder shall perform a decoder reset as if a change of decoder configuration had occurred.

For correct application of the truncation the MHAS truncation packet shall occur before the PACTYP_MPEGH3DACFG (if present) and before the corresponding PACTYP_MPEGH3DAFRAME that contains the AU to truncate. Truncation messages shall be processed jointly with the AU of the following PACTYP_MPEGH3DAFRAME packet with identical MHASPacketLabel.
At the end of 14.5 add new subclause as follows:

14.5.X CRC error detection
Certain applications require additional error protection, for example if MHAS is used on common serial interfaces (e.g. AES/EBU, S/PDIF), while a minimum overhead in terms of bitrate is added. Figure AMD5.1 and Figure AMD5.2 illustrate two examples on how the CRC and global CRC packets can be used for error detection.
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Figure AMD5.1 — Example 5

[image: image2784.emf]SYNCG-CRCConfigPayloadPayload

Protected by Global CRC


Figure AMD5.2 — Example 6
6 Metadata Updates 
6.1 Inclusion of syntax and semantics related to mae_Data()
Replace Table 144 with 

Table 144 — Syntax of mae_Data()

	Syntax
	No. of bits
	Mnemonic

	mae_Data()
	
	

	{
	
	

	
mae_numDataSets;
	4
	uimsbf

	
for (dscr = 0; dscr < mae_bsNumDataSets; dscr ++) {
	
	

	

mae_dataType[dscr];
	4
	uimsbf

	

mae_dataLength[dscr];
	16 
	uimsbf

	

switch (mae_dataType[dscr] ) {
	
	

	

case ID_MAE_GROUP_DESCRIPTION:
	
	

	


mae_Description( ID_MAE_GROUP_DESCRIPTION );
	
	

	


break;
	
	

	

case ID_ MAE_SWITCHGROUP_DESCRIPTION:
	
	

	


mae_Description( ID_MAE_SWITCHGROUP_DESCRIPTION );

	


break;
	
	

	

case ID_ MAE_GROUPPRESET_DESCRIPTION:
	
	

	


mae_Description( ID_MAE_GROUPPRESET_DESCRIPTION );
	

	


break;
	
	

	

case ID_ MAE_GROUP_CONTENT:
	
	

	


mae_ContentData(); 
	
	

	


Break;
	
	

	

case ID_MAE_GROUP_COMPOSITE:
	
	

	


mae_CompositePair()
	
	

	


break;
	
	

	

case ID_MAE_SCREEN_SIZE:
	
	

	


mae_ProductionScreenSizeData();
	
	

	


break;
	
	

	

case ID_MAE_GROUP_EXTENSION:
	
	

	


mae_GroupDefinitionExtension();
	
	

	


break;
	
	

	

case ID_MAE_SCREEN_SIZE_EXTENSION:
	
	

	


mae_ProductionScreenSizeDataExtension();
	
	

	


break;
	
	

	

case ID_MAE_GROUP_PRESET_EXTENSION:
	
	

	


mae_GroupPresetDefinitionExtension();
	
	

	


break;
	
	

	

default:
	
	

	


while (mae_dataLength[dscr] ) {
	
	

	



tmp;
	8
	uimsbf

	


}
	
	

	


break;
	
	

	

}
	
	

	
}
	
	

	}
	
	


Replace Table 150 in 15.2 with
Table 150 — Syntax of mae_GroupPresetDefinition()

	Syntax
	No. of bits
	Mnemonic

	mae_GroupPresetDefinition(numGroupPresets)
	
	

	{
	
	

	
for ( gp = 0; gp < numGroupPresets; gp++ ) {
	
	

	

mae_groupPresetID[gp];
	5
	uimsbf

	

mae_groupPresetKind[gp];
	5
	uimsbf

	
	
	

	

mae_bsGroupPresetNumConditions[gp];
	4
	uimsbf

	

for ( cnd = 0; cnd < mae_bsGroupPresetNumConditions + 1; cnd++ ) {
	

	


mae_groupPresetReferenceID[gp][cnd];
	7
	uimsbf

	


mae_groupPresetConditionOnOff[gp][cnd];
	1
	bslbf

	
	
	

	


if (mae_groupPresetConditionOnOff[gp][cnd]) {
	
	

	



mae_groupPresetDisableGainInteractivity[gp][cnd];
	1
	bslbf

	



mae_groupPresetGainFlag[gp][cnd];
	1
	bslbf

	



if ( mae_groupPresetGainFlag[gp][cnd] ) {
	
	

	




mae_groupPresetGain[gp][cnd];
	8
	uimsbf

	



}
	
	

	



mae_groupPresetDisablePositionInteractivity[gp][cnd];
	1
	bslbf

	



mae_groupPresetPositionFlag[gp][cnd];
	1
	bslbf

	



if ( mae_groupPresetPositionFlag [gp][cnd] ) {
	
	

	




mae_groupPresetAzOffset[gp][cnd];
	8
	uimsbf

	




mae_groupPresetElOffset[gp][cnd];
	6
	uimsbf

	




mae_groupPresetDistFactor[gp][cnd];
	4
	uimsbf

	



}
	
	

	


}
	
	

	

}
	
	

	
}
	
	

	}
	
	


Add the following tables after Table 151 in 15.2:

Table AMD6.1 — Syntax of mae_ProductionScreenSizeDataExtension()

	Syntax
	No. of bits
	Mnemonic

	mae_ProductionScreenSizeDataExtension()
	
	

	{
	
	

	
mae_overwriteProductionScreenSizeData;
	1
	bslbf

	
if ( mae_overwriteProductionScreenSizeData ) {
	
	

	

/* NON-CENTERED DEFAULT PRODUCTION SCREEN */
	
	

	

bsScreenSizeLeftAz;
	10
	uimsbf

	

bsScreenSizeRightAz;
	10
	uimsbf

	
}
	
	

	
	
	

	 
mae_NumPresetProductionScreens;
	5
	uimsbf

	
for ( n = 0; n < mae_NumPresetProductionScreens; n++ ) {
	
	

	

mae_productionScreenGroupPresetID[n];
	5
	uimsbf

	

mae_hasNonStandardScreenSize[n];
	1
	bslbf

	

if (mae_hasNonStandardScreenSize[n]) {
	
	

	


isCenteredInAzimuth[n];
	1
	bslbf

	


if ( isCenteredInAzimuth[n] ) {
	
	

	



bsScreenSizeAz[n];
	9
	uimsbf

	


} else {
	
	

	



bsScreenSizeAzLeft[n];
	10
	uimsbf

	



bsScreenSizeAzRight[n];
	10
	uimsbf

	


}
	
	

	


bsScreenSizeTopEl[n];
	9
	uimsbf

	


bsScreenSizeBottomEl[n];
	9
	uimsbf

	

}
	
	

	
}
	
	

	}
	
	


Table AMD6.2 — Syntax of mae_GroupDefinitionExtension()

	Syntax
	No. of bits
	Mnemonic

	mae_GroupDefinitionExtension()
	
	

	{
	
	

	
mae_numExtendedGroups;
	7
	uimsbf

	
for ( grp = 0; grp < mae_numExtendedGroups; grp++ ) {
	
	

	mae_groupID;
	7
	uimsbf

	/* CONDITIONED CLOSEST SPEAKER PLAYOUT */
	
	

	if (mae_closestSpeakerPlayout[mae_groupID]) {
	
	

	


mae_hasClosestSpeakerCondition[grp];
	1
	bslbf

	


if ( mae_hasClosestSpeakerCondition[grp] ) {
	
	

	



mae_closestSpeakerThresholdAngle[grp];
	7
	uimsbf

	


}
	
	

	

}
	
	

	

/* DIFFUSENESS */
	
	

	

mae_groupDiffuseness[grp];
	7
	uimsbf

	

/* DIVERGENCE */
	
	

	

mae_groupDivergence[grp];
	7
	uimsbf

	

if (mae_groupDivergence[grp] > 0) {
	
	

	


mae_groupDivergenceAzimuthRange[grp];
	6
	uimbsf

	

}
	
	

	

/* SECTOR EXCLUSION */
	
	

	

mae_numExclusionSectors[grp];
	4
	uimsbf

	

for ( sc = 0; sc < mae_numExclusionSectors; sc++) {
	
	

	


mae_usePredefinedSector[grp][sc];
	1
	bslbf

	


if ( mae_usePredefinedSector[grp][sc] ) {
	
	

	



mae_excludeSectorIndex[grp][sc];
	4
	uimsbf

	


} else {
	
	

	



mae_excludeSectorMinAzimuth[grp][sc];
	7
	uimbsf

	



mae_excludeSectorMaxAzimuth[grp][sc]
	7
	uimbsf

	



mae_excludeSectorMinElevation[grp][sc];
	5
	uimbsf

	



mae_excludeSectorMaxElevation[grp][sc]
	5
	uimbsf

	


}
	
	

	

}
	
	

	
}
	
	

	}
	
	


Table AMD6.3 — Syntax of mae_GroupPresetDefinitionExtension()

	Syntax
	No. of bits
	Mnemonic

	mae_GroupPresetDefinitionExtension()
	
	

	{
	
	

	
for ( gp = 0; gp < mae_numGroupPresets; gp++ ) {
	
	

	

mae_hasSwitchGroupConditions[gp];
	1
	bslbf

	

if ( mae_hasSwitchGroupConditions[gp] )  {
	
	

	


temp = mae_bsGroupPresetNumConditions[gp] +1;
	
	

	


for ( cnd = 0; cnd < temp; cnd++ ) {
	
	

	



mae_isSwitchGroupCondition[gp][cnd];


	1
	bslbf

	


}
	
	

	

}
	
	

	
	
	

	

mae_hasDownmixIdGroupPresetExtensions[gp];
	1
	bslbf

	

if ( mae_hasDownmixIdGroupPresetExtensions ) {
	
	

	


mae_numDownmixIdGroupPresetExtensions[gp];
	5
	uimsbf

	


for ( egp = 0; egp < mae_numDownmixIdGroupPresetExtensions; egp++ ) {

	



mae_groupPresetDownmixId[gp][egp];
	7
	uimsbf

	



mae_bsGroupPresetNumConditions[gp][egp];
	4
	uimsbf

	



for ( cnd = 0; cnd < mae_bsGroupPresetNumConditions + 1; cnd++ ) {

	




mae_isSwitchGroupCondition[gp][egp][cnd];
	1
	bslbf

	




if ( mae_isSwitchGroupCondition[gp][epg][cnd] ) {
	
	

	





mae_groupPresetSwitchGroupID[gp][egp][cnd];
	5
	uimsbf

	




} else {
	
	

	





mae_groupPresetGroupID[gp][egp][cnd];
	7
	uimsbf

	




}
	
	

	




mae_groupPresetConditionOnOff[gp][egp][cnd];
	1
	bslbf

	




if (mae_groupPresetConditionOnOff[gp][egp][cnd] {
	
	

	





mae_groupPresetDisableGainInteractivity[gp][egp][cnd];
	1
	bslbf

	





mae_groupPresetGainFlag[gp][egp][cnd];
	1
	bslbf

	





if ( mae_groupPresetGainFlag[gp][egp][cnd]) {
	
	

	






mae_groupPresetGain[gp][egp][cnd];
	8
	uimsbf

	





}
	
	

	





mae_groupPresetDisablePositionInteractivity[gp][egp][cnd];
	1
	bslbf

	





mae_groupPresetPositionFlag[gp][egp][cnd];
	1
	bslbf

	





if ( mae_groupPresetPositionFlag [gp][egp][cnd] ) {
	
	

	






mae_groupPresetAzOffset[gp][egp][cnd];
	8
	uimsbf

	






mae_groupPresetElOffset[gp][egp][cnd];
	6
	uimsbf

	






mae_groupPresetDistFactor[gp][egp][cnd];
	4
	uimsbf

	





}
	
	

	




}
	
	

	



}
	
	

	


}
	
	

	

}
	
	

	
}
	
	

	}
	
	


Add entries to Table 152 in 15.3:

Table 152 — Value of mae_dataType
	mae_dataType
	value
	meaning

	ID_MAE_GROUP_DESCRIPTION
	0
	Group description follows in the bitstream

	ID_MAE_SWITCHGROUP_DESCRIPTION
	1
	Switch group description follows in the bitstream

	ID_ MAE_GROUP_CONTENT
	2
	Group content information follows in the bitstream

	ID_MAE_GROUP_COMPOSITE
	3
	Composite pair information follows in the bitstream

	ID_MAE_SCREEN_SIZE
	4
	Information about the local screen size follows in the bitstream

	ID_MAE_GROUPPRESET_DESCRIPTION
	5
	Group preset description follows in the bitstream 

	ID_MAE_GROUP_EXTENSION
	6
	Extension metadata of the group definition follows in the bitstream

	ID_MAE_SCREEN_SIZE_EXTENSION
	7
	Extension metadata of the screen size information  follows in the bitstream

	ID_MAE_GROUP_PRESET_EXTENSION
	8
	Extension metadata of the group preset definition follows in the bitstream

	reserved
	9 - 15
	n/a


Add the following description of semantics at the end of 15.3:

mae_ overwriteProductionScreenSizeData
This field defines if the bitstream contains azimuth values for a non-centered default production screen. If this flag is set to 1, the following azimuth values shall be used in the processing instead of the values from mae_ProductionScreenSizeData().
bsScreenSizeAzLeft
This field defines the azimuth corresponding to the left screen edge:


[image: image2785.wmf]nominal

left

j

= 0.5 · bsScreenSizeAzLeft


[image: image2786.wmf]nominal

left

j

= min (max ([image: image2787.wmf]nominal

left

j

, -180), 180); 


bsScreenSizeAzRight
This field defines the azimuth corresponding to the right screen edge:
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mae_bsNumPresetProductionScreens
This field defines the number of preset-associated production screens.

mae_productionScreenGroupPresetID
This field defines the presetID the current production screen is associated with.

mae_hasNonStandardScreenSize
This field defines if the bitstream contains a non-standard preset-associated production screen size. If the flag is one, the non-standard production screen size information follows in the bitstream.
isCenteredInAzimuth
This flag defines if the production screen is centered in azimuth (absolute values of the azimuth angles of the left and right screen adge are identical) or not.

bsScreenSizeAz
If the production screen is centered in azimuth, the width of the screen is given as one azimuth angle between 0 and 180°.

This field defines the azimuth corresponding to the left and right screen edge: 
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bsScreenSizeTopEl
This field defines the elevation corresponding to the top screen edge: 
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bsScreenSizeBottomEl
This field defines the elevation corresponding to the bottom screen edge: 
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mae_numExtendedGroups
This field defines the number of groups that should be extended by the new metadata fields. 
mae_groupID
This field refers to the groupID of the currently extended group.
mae_hasClosestSpeakerCondition
If the ‘closest speaker playout flag’ of the current group is set to 1, it is here possible to restrict the processing, to speakers that are located in a specified area around the members of the group. This flag defines if the ‘closest speaker processing’ shall happen unconditioned (value of 0) or conditiones (value of 1).

mae_closestSpeakerThresholdAngle
If the ‘closest speaker processing’ shall only happen if one or more speakers are located in a defined area around the members of the group, the threshold angle for this area is given by this field. 
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mae_groupDiffuseness
Definition of the diffuseness of the members of the group; this field can take values between 0 and 127, corresponding to diffuseness values between 0.0 and 1.0:



diffuseness = (mae_groupDiffuseness / 127);
mae_groupDivergence
This field defines the divergence of the members of the group. The field can take values between 0 and 127, corresponding to divergence values between 0.0 and 1.0:



divergence = (mae_groupDivergence / 127);
mae_groupDivergenceAzimuthRange
If the divergence of the group is bigger than 0.0 (mae_groupDivergence > 0), the mae_groupDivergenceAzimuthRange defines the positioning of the virtual sources. The field can take values between 0 and 63, resulting in azimuth offset angles between 0° and 180°:
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mae_numExclusionSectors
This field defines the number of sectors/areas that should be excluded from rendering the members of the current group. It allows for values between 0 and 15. A value of 0 means that no speakers shall be excluded.
mae_usePredefinedSector
This flag defines if the following sector is a predefied one (value of 1) identified by a table entry or if a detailled sector definition by azimuth and elevation ranges follows in the bitstream (value of 0).

mae_excludeSectorIndex
Identifier of the predefined exclusion sector.
Table AMD6.4 — Value of mae_excludeSectorIndex
	Value of mae_excludeSectorIndex
	Short description
	Explanation

	0
	No positive elevation
	Exclude all speaker with positive elevation angles 

	1
	No negative elevation
	Exclude all speakers with negative elevation angles 

	2
	No front
	Exclude all front speakers

	3
	No right side
	Exclude all right side speakers 

	4
	No left side
	Exclude all left side speakers 

	5
	No surround
	Exclude all surround speakers

	6
	Screen only
	Exclude all speakers that are not located in the reproduction screen area

	7-15
	Reserved
	n/a


mae_excludeSectorMinAzimuth
This field defines the minimum azimuth of the excluded area.
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mae_excludeSectorMaxAzimuth
This field defines the maximum azimuth of the excluded area.
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mae_excludeSectorMinElevation
This field defines the minimum elevation of the excluded area.
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mae_excludeSectorMaxElevation
This field defines the maximum elevation of the excluded area.
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mae_hasSwitchGroupCondition
This flag defines if a group preset has switch group conditions (flag is equal to 1). 
mae_isSwitchGroupCondition
This field defines if the condition from original preset definition references a groupID (mae_isSwitchGroupCondition is equal to 0) or if the references ID shall be interpreset as a switchGroupID (mae_isSwitchGroupCondition is equal to 1).

mae_hasDownmixIdGroupPresetExtensions
This flag defines if a group preset has layout-dependent extensions (flag is equal to 1). Group presets can be extended by group presets extensions, that are applicable for a specific downmixId. These extensions can overwrite the preset conditions and other preset characteristics, e.g the group preset gain. If a preset is chosen/valid and there is a current donwmixId, the conditions and characteristics of the appropriate group preset extension shall replace the corresponding values from the chosen/valid group preset in the processing and rendering.

mae_groupPresetDownmixId
This field references a downmixId, for which the current group preset extension is applicable.

mae_groupPresetSwitchGroupID
This field contains a reference to a switchGroupID that is used in a switch group condition.

6.2 Inclusion of update of the OAM data
In 7.3.1 update Table 69 as follows:

Table 69 — Syntax of ObjectMetadataConfig()

	Syntax
	No. of bits
	Mnemonic

	ObjectMetadataConfig()
	
	

	{
	
	

	
lowDelayMetadataCoding;
	1
	bslbf

	
hasCoreLength;
	1
	bslbf

	
if (!hasCoreLength) {
	
	

	

frameLength;
	6
	uimsbf

	

OAMFrameLength = frameLength<<6;
	
	

	
} else {
	
	

	

OAMFrameLength = outputFrameLength;
	
	

	
}
	
	

	
hasScreenRelativeObjects;
	1
	bslbf

	
if( hasScreenRelativeObjects ) {
	
	

	

for ( o = 0; o < num_objects; o++ ) {
	
	

	


isScreenRelativeObject[o];
	1
	bslbf

	

}
	
	

	
}
	
	

	
hasDynamicObjectPriority;
	1
	bslbf

	
hasUniformSpread;
	1
	bslbf

	}
	
	


Update Table 72 as follows:
Table 72 — Syntax of intracoded_object_metadata_efficient()

	Syntax
	No. of bits
	Mnemonic

	intracoded_object_metadata_efficient()

	{
	
	

	
ifperiod;
	6
	uimsbf

	
if (num_objects>1) {
	
	

	

common_azimuth;
	1
	bslbf

	

if (common_azimuth) {
	
	

	


default_azimuth;
	8
	tcimsbf

	

}
	
	

	

else {
	
	

	


for (o = 0; o < num_objects; o++) {
	
	

	



position_azimuth[o];
	8
	tcimsbf

	


}
	
	

	

}
	
	

	

common_elevation;
	1
	bslbf

	

if (common_elevation) {
	
	

	


default_elevation;
	6
	tcimsbf

	

}
	
	

	

else {
	
	

	


for (o = 0; o < num_objects; o++) {
	
	

	



position_elevation[o];
	6
	tcimsbf

	


}
	
	

	

}
	
	

	

common_radius;
	1
	bslbf

	

if (common_radius) {
	
	

	


default_radius;
	4
	uimsbf

	

}
	
	

	

else {
	
	

	


for (o = 0; o < num_objects; o++) {
	
	

	



position_radius[o];
	4
	uimsbf

	


}
	
	

	

}
	
	

	

common_gain;
	1
	bslbf

	

if (common_gain) {
	
	

	


default_gain;
	7
	tcimsbf

	

}
	
	

	

else {
	
	

	


for (o = 0; o < num_objects; o++) {
	
	

	



gain_factor[o];
	7
	tcimsbf

	


}
	
	

	

}
	
	

	

common_spread;
	1
	bslbf

	

if (common_spread) {
	
	

	


if (hasUniformSpread) {
	
	

	



default_spread;
	7
	uimsbf

	


} 
	
	

	


else {
	
	

	



default_spread_width;
	7
	uimsbf

	



default_spread_height;
	5
	uimsbf

	



default_spread_depth;
	4
	uimsbf

	


}
	
	

	

}
	
	

	

else {
	
	

	


for (o = 0; o < num_objects; o++) {
	
	

	



if (hasUniformSpread) {
	
	

	




spread[o];
	7
	uimsbf

	



} 
	
	

	



else {
	
	

	




spread_width[o];
	7
	uimsbf

	




spread_height[o];
	5
	uimsbf

	




spread_depth[o];
	4
	uimsbf

	



}
	
	

	


}
	
	

	

}
	
	

	

if (hasDynamicObjectPriority) {
	
	

	


common_dynamic_object_priority;
	1
	bslbf

	


if (common_dynamic_object_priority) {
	
	

	



default_dynamic_object_priority;
	3
	uimsbf

	


}
	
	

	


else {
	
	

	



for (o = 0; o < num_objects; o++) {
	
	

	




dynamic_object_priority[o];
	3
	uimsbf

	



}
	
	

	


}
	
	

	

}
	
	

	
}
	
	

	
else {
	
	

	

position_azimuth;
	8
	tcimsbf

	

position_elevation;
	6
	tcimsbf

	

position_radius;
	4
	uimsbf

	

gain_factor;
	7
	tcimsbf

	

if (hasUniformSpread) {
	
	

	


spread;
	7
	uimsbf

	

} 
	
	

	

else {
	
	

	


spread_width;
	7
	uimsbf

	


spread_height;
	5
	uimsbf

	


spread_depth;
	4
	uimsbf

	

}
	
	

	

if (hasDynamicObjectPriority) {
	
	

	


dynamic_object_priority;
	3
	uimsbf

	

}
	
	

	
}
	
	

	}
	
	


Update Table 73 as follows:

Table 73 — Syntax of differential_object_metadata()

	Syntax
	No. of bits
	Mnemonic

	differential_object_metadata() {
	
	

	
bits_per_point;
	4
	uimsbf

	
fixed_azimuth;
	1
	bslbf

	
if (!fixed_azimuth) {
	
	

	

for (o = 0; o < num_objects; o++) {
	
	

	


flag_azimuth;
	1
	bslbf

	


if (flag_azimuth) {
	
	

	



num_points_azimuth = offset_data(bits_per_point);
	
	

	



nbits_azimuth;
	3
	uimsbf

	



for (p = 0; p < num_points_azimuth; p++) {
	
	

	




differential_azimuth[o][p];
	nbits_azimuth + 2
	tcimsbf

	



}
	
	

	


}
	
	

	

}
	
	

	
}
	
	

	
fixed_elevation;
	1
	bslbf

	
if (!fixed_elevation) {
	
	

	

for (o = 0; o < num_objects; o++) {
	
	

	


flag_elevation;
	1
	bslbf

	


if (flag_elevation) {
	
	

	



num_points_elevation = offset_data(bits_per_point);
	
	

	



nbits_elevation;
	3
	uimsbf

	



for (p = 0; p < num_points_elevation; p++) {
	
	

	




differential_elevation[o][p];
	nbits_elevation + 2
	tcimsbf

	



}
	
	

	


}
	
	

	

}
	
	

	
}
	
	

	
fixed_radius;
	1
	bslbf

	
if (!fixed_radius) {
	
	

	

for (o = 0; o < num_objects; o++) {
	
	

	


flag_radius;
	1
	bslbf

	


if (flag_radius) {
	
	

	



num_points_radius = offset_data(bits_per_point);
	
	

	



nbits_radius;
	3
	uimsbf

	



for (p = 0; p < num_points_radius; p++) {
	
	

	




differential_radius[o][p];
	nbits_radius + 2
	tcimsbf

	



}
	
	

	


}
	
	

	

}
	
	

	
}
	
	

	
fixed_gain;
	1
	bslbf

	
if (!fixed_gain) {
	
	

	

for (o = 0; o < num_objects; o++) {
	
	

	


flag_gain;
	1
	bslbf

	


if (flag_gain) {
	
	

	



num_points_gain = offset_data(bits_per_point);
	
	

	



nbits_gain;
	3
	uimsbf

	



for (p = 0; p < num_points_gain; p++) {
	
	

	




differential_gain[o][p];
	nbits_gain + 2
	tcimsbf

	



}
	
	

	


}
	
	

	

}
	
	

	
}
	
	

	
fixed_spread;
	1
	bslbf

	
if (!fixed_spread) {
	
	

	

for (o = 0; o < num_objects; o++) {
	
	

	


if (hasUniformSpread) {
	
	

	



flag_spread;
	1
	bslbf

	



if (flag_spread) {
	
	

	




num_points_spread = offset_data(bits_per_point);
	
	

	




nbits_spread;
	3
	uimsbf

	




for (p = 0; p < num_points_spread; p++) {
	
	

	





differential_spread[o][p];
	nbits_spread + 2
	tcimsbf

	




}
	
	

	



}
	
	

	


}
	
	

	


else {
	
	

	



flag_spread_width;
	1
	bslbf

	



if (flag_spread_width) {
	
	

	




num_points_spread_width = offset_data(bits_per_point);
	

	




nbits_spread_width;
	3
	uimsbf

	




for (p = 0; p < num_points_spread_width; p++) {
	
	

	





differential_spread_width[o][p];
	nbits_spread_width + 2
	tcimsbf

	




}
	
	

	



}
	
	

	



flag_spread_height;
	1
	bslbf

	



if (flag_spread_height) {
	
	

	




num_points_spread_height = offset_data(bits_per_point);

	




nbits_spread_height;
	3
	uimsbf

	




for (p = 0; p < num_points_spread_height; p++) {
	
	

	





differential_spread_heigth[o][p];
	nbits_spread_height + 2
	tcimsbf

	




}
	
	

	



}
	
	

	



flag_spread_depth;
	1
	bslbf

	



if (flag_spread_depth) {
	
	

	




num_points_spread_depth = offset_data(bits_per_point);

	




nbits_spread_depth;
	3
	uimsbf

	




for (p = 0; p < num_points_spread_depth; p++) {
	
	

	





differential_spread_depth[o][p];
	nbits_spread_depth + 2
	tcimsbf

	




}
	
	

	



}
	
	

	


}
	
	

	

}
	
	

	
}
	
	

	
if (hasDynamicObjectPriority) {
	
	

	

fixed_dynamic_object_priority;
	1
	bslbf

	

if (!fixed_dynamic_object_priority) {
	
	

	


for (o = 0; o < num_objects; o++) {
	
	

	



flag_dynamic_object_priority;
	1
	bslbf

	



if (flag_dynamic_object_priority) {
	
	

	




num_points_dynamic_object_priority = offset_data(bits_per_point);

	




nbits_dynamic_object_priority;
	2
	uimsbf

	




for (p = 0; p < num_points_dynamic_object_priority; p++) {
	

	





differential_dynamic_object_priority[o][p];
	nbits_dynamic_
object_priority 
+ 2
	tcimsbf

	




}
	
	

	



}
	
	

	


}
	
	

	

}
	
	

	
}
	
	

	}
	
	


Update Table 76 as follows:
Table 76 — Syntax of intracoded_object_metadata_low_delay()

	Syntax
	No. of bits
	Mnemonic

	intracoded_object_metadata_low_delay()

	{
	
	

	
if (num_objects>1) {
	
	

	

fixed_azimuth;
	1
	bslbf

	

if (fixed_azimuth) {
	
	

	


default_azimuth;
	8
	tcimsbf

	

}
	
	

	

else {
	
	

	


common_azimuth;
	1
	bslbf

	


if (common_azimuth) {
	
	

	



default_azimuth;
	8
	tcimsbf

	


}
	
	

	


else {
	
	

	



for (o = 0; o < num_objects; o++) {
	
	

	




position_azimuth[o];
	8
	tcimsbf

	



}
	
	

	


}
	
	

	

}
	
	

	

fixed_elevation;
	1
	bslbf

	

if (fixed_elevation) {
	
	

	


default_elevation;
	6
	tcimsbf

	

}
	
	

	

else {
	
	

	


common_ elevation;
	1
	bslbf

	


if (common_elevation) {
	
	

	



default_elevation;
	6
	tcimsbf

	


}
	
	

	


else {
	
	

	



for (o = 0; o < num_objects; o++) {
	
	

	




position_elevation[o];
	6
	tcimsbf

	



}
	
	

	


}
	
	

	

}
	
	

	

fixed_radius;
	1
	bslbf

	

if (fixed_radius) {
	
	

	


default_radius;
	4
	uimsbf

	

}
	
	

	

else {
	
	

	


common_radius;
	1
	bslbf

	


if (common_radius) {
	
	

	



default_radius;
	4
	uimsbf

	


}
	
	

	


else {
	
	

	



for (o = 0; o < num_objects; o++) {
	
	

	




position_ radius[o];
	4
	uimsbf

	



}
	
	

	


}
	
	

	

}
	
	

	

fixed_gain;
	1
	bslbf

	

if (fixed_gain) {
	
	

	


default_gain;
	7
	tcimsbf

	

}
	
	

	

else {
	
	

	


common_gain;
	1
	bslbf

	


if (common_gain) {
	
	

	



default_gain;
	7
	tcimsbf

	


}
	
	

	


else {
	
	

	



for (o = 0; o < num_objects; o++) {
	
	

	




gain_factor[o];
	7
	tcimsbf

	



}
	
	

	


}
	
	

	

}
	
	

	

fixed_spread;
	1
	bslbf

	

if (fixed_spread) {
	
	

	


if (hasUniformSpread) {
	
	

	



default_spread;
	7
	uimsbf

	


}
	
	

	


else {
	
	

	



default_spread_width;
	7
	uimsbf

	



default_spread_height;
	5
	uimsbf

	



default_spread_depth;
	4
	uimsbf

	


}
	
	

	

}
	
	

	

else {
	
	

	


common_spread;
	1
	bslbf

	


if (common_spread) {
	
	

	



if (hasUniformSpread) {
	
	

	




default_spread;
	7
	uimsbf

	



} 
	
	

	



else {
	
	

	




default_spread_width;
	7
	uimsbf

	




default_spread_height;
	5
	uimsbf

	




default_spread_depth;
	4
	uimsbf

	



}
	
	

	


}
	
	

	


else {
	
	

	



for (o = 0; o < num_objects; o++) {
	
	

	




if (hasUniformSpread) {
	
	

	





spread[o];
	7
	uimsbf

	




} 
	
	

	




else {
	
	

	





spread_width[o];
	7
	uimsbf

	





spread_height[o];
	5
	uimsbf

	





spread_depth[o];
	4
	uimsbf

	




}
	
	

	



}
	
	

	


}
	
	

	

}
	
	

	

if (hasDynamicObjectPriority) {
	
	

	


fixed_dynamic_object_priority;
	1
	bslbf

	


if (fixed_dynamic_object_priority) {
	
	

	



default_dynamic_object_priority;
	3
	uimsbf

	


}
	
	

	


else {
	
	

	



common_dynamic_object_priority;
	1
	bslbf

	



if (common_dynamic_object_priority) {
	
	

	




default_dynamic_object_priority;
	3
	uimsbf

	



}
	
	

	



else {
	
	

	




for (o = 0; o < num_objects; o++) {
	
	

	





dynamic_object_priority[o];
	3
	uimsbf

	




}
	
	

	



}
	
	

	


}
	
	

	

}
	
	

	
}
	
	

	
else {
	
	

	

position_azimuth;
	8
	tcimsbf

	

position_elevation;
	6
	tcimsbf

	

position_radius;
	4
	uimsbf

	

gain_factor;
	7
	tcimsbf

	

if (hasUniformSpread) {
	
	

	


spread;
	7
	uimsbf

	

} 
	
	

	

else {
	
	

	


spread_width;
	7
	uimsbf

	


spread_height;
	5
	uimsbf

	


spread_depth;
	4
	uimsbf

	

}
	
	

	

if (hasDynamicObjectPriority) {
	
	

	


dynamic_object_priority;
	3
	uimsbf

	

}
	
	

	
}
	
	

	}
	
	


Update Table 78 as follows
Table 78 — Syntax of single_dynamic_object_metadata()

	Syntax
	No. of bits
	Mnemonic

	single_dynamic_object_metadata (  flag_absolute ) {
	
	

	
if ( flag_absolute ) {
	
	

	

if (!fixed_azimuth*) {
	
	

	


position_azimuth;
	8
	tcimsbf

	

}
	
	

	

if (!fixed_elevation*) {
	
	

	


position_elevation;
	6
	tcimsbf

	

}
	
	

	

if (!fixed_radius*) {
	
	

	


position_radius;
	4
	uimsbf

	

}
	
	

	

if (!fixed_gain*) {
	
	

	


gain_ factor;
	7
	tcimsbf

	

}
	
	

	

if (!fixed_spread*) {
	
	

	


if (hasUniformSpread) {
	
	

	



spread;
	7
	uimsbf

	


} 
	
	

	


else {
	
	

	



spread_width;
	7
	uimsbf

	



spread_height;
	5
	uimsbf

	



spread_depth;
	4
	uimsbf

	


}
	
	

	

}
	
	

	

if (hasDynamicObjectPriority) {
	
	

	


if (!fixed_dynamic_object_priority*) {
	
	

	



dynamic_object_priority;
	3
	uimsbf

	


}
	
	

	

}
	
	

	
}
	
	

	
else {
	
	

	

nbits;
	3
	uimsbf

	

num_bits = nbits +2;
	
	

	

if (!fixed_azimuth*) {
	
	

	


flag_azimuth;
	1
	bslbf

	


if (flag_azimuth)  {
	
	

	



position_azimuth_difference;
	num_bits
	tcimsbf

	


}
	
	

	

}
	
	

	

if (!fixed_elevation*) {
	
	

	


flag_elevation;
	1
	bslbf

	


if (flag_elevation) {
	
	

	



position_elevation_difference;
	min(num_bits,7)
	tcimsbf

	


}
	
	

	

}
	
	

	

if (!fixed_radius*) {
	
	

	


flag_radius;
	1
	bslbf

	


if (flag_radius)  {
	
	

	



position_radius_difference;
	min(num_bits,5)
	tcimsbf

	


}
	
	

	

}
	
	

	

if (!fixed_gain*) {
	
	

	


flag_gain;
	1
	bslbf

	


if (flag_gain)  {
	
	

	



gain_factor_difference ;
	min(num_bits,8)
	tcimsbf

	


}
	
	

	

}
	
	

	

if (!fixed_spread*) {
	
	

	


if (hasUniformSpread) {
	
	

	



flag_spread;
	1
	bslbf

	



if (flag_spread)  {
	
	

	




spread_difference ;
	min(num_bits,8)
	tcimsbf

	



}
	
	

	


}
	
	

	


else {
	
	

	



flag_spread_width;
	1
	bslbf

	



if (flag_spread_width)  {
	
	

	




spread_width_difference ;
	min(num_bits,8)
	tcimsbf

	



}
	
	

	



flag_spread_height;
	1
	bslbf

	



if (flag_spread_height)  {
	
	

	




spread_heigth_difference ;
	min(num_bits,6)
	tcimsbf

	



}
	
	

	



flag_spread_depth;
	1
	bslbf

	



if (flag_spread_depth)  {
	
	

	




spread_depth_difference ;
	min(num_bits,5)
	tcimsbf

	



}
	
	

	

}
	
	

	

if (hasDynamicObjectPriority) {
	
	

	


if (!fixed_dynamic_object_priority*) {
	
	

	



flag_dynamic_object_priority;
	1
	bslbf

	



if (flag_dynamic_object_priority)  {
	
	

	




dynamic_object_priority_difference;
	min(num_bits,4)
	tcimsbf

	



}
	
	

	


}
	
	

	

}
	
	

	
}
	
	

	}
	
	

	* Given by the preceding intracoded_object_metadata_low_delay() frame


In 7.4.1 after hasDynamicObjectPriority add

hasUniformSpread
This flag indicates whether the spread of an object is given as uniform spread (flag is equal to 1) or as three independent values for width, height and depth (flag is equal to 0).
In 7.4.2.1.2 replace

default_spread
defines the value of the common spread parameter.
spread
if there is no common spread parameter, a value for each object is transmitted. If there is only one object, this is its spread parameter.

with

default_spread
Defines the value of the common spread parameter for the case of one uniform spread value.

default_spread_width
Defines the value of the common spread parameter for the spread in the dimension of width for the case of three independent spread values.

default_spread_height
Defines the value of the common spread parameter for the spread in the dimension of height for the case of three independent spread values.
default_spread_depth
Defines the value of the common spread parameter for the spread in the dimension of depth for the case of three independent spread values.
spread
If there is no common spread parameter, a value for each object is transmitted. If there is only one object, this is its spread parameter.

spread_width
If there is no common spread parameter, one value for the spread in the dimension of width is transmitted for each object. If there is only one object, this is its spread parameter in the dimension of width.

spread_height 
If there is no common spread parameter, one value for the spread in the dimension of height is transmitted for each object. If there is only one object, this is its spread parameter in the dimension of height.

spread_depth 
If there is no common spread parameter, one value for the spread in the dimension of depth is transmitted for each object. If there is only one object, this is its spread parameter in the dimension of depth.

In 7.4.2.1.3 after differential_spread add

flag_spread_width
flag per object indicating whether the spread parameter in width dimension changes for this iframe_period.
nbits_spread_width
how many bits are required to represent the differential value minus 2.
differential_spread_width
value of the difference between the linearly interpolated and the actual value.
flag_spread_height
flag per object indicating whether the spread parameter in height dimension changes for this iframe_period.
nbits_spread_height
how many bits are required to represent the differential value minus 2.
differential_spread_height
value of the difference between the linearly interpolated and the actual value.
flag_spread_depth
flag per object indicating whether the spread parameter in depth dimension changes for this iframe_period.
nbits_spread_depth
how many bits are required to represent the differential value minus 2.
differential_spread_depth
value of the difference between the linearly interpolated and the actual value.
In 7.4.2.4.1 and in 7.4.3.2.3.1 replace

descale_multidata()

{


for (o = 0; o < num_objects; o++)



azimuth[o] = azimuth[o] * 1.5;


for (o = 0; o < num_objects; o++)



elevation[o] = elevation[o] * 3.0;


for (o = 0; o < num_objects; o++)



radius[o] = pow(2.0, (radius[o] / 3.0)) / 2.0;


for (o = 0; o < num_objects; o++)



gain[o] = pow(10.0, (gain[o] - 32.0) / 40.0);


for (o = 0; o < num_objects; o++)



spread[o] = spread[o] * 1.5;

}

with

descale_multidata()

{


for (o = 0; o < num_objects; o++)



azimuth[o] = azimuth[o] * 1.5;


for (o = 0; o < num_objects; o++)



elevation[o] = elevation[o] * 3.0;


for (o = 0; o < num_objects; o++)



radius[o] = pow(2.0, (radius[o] / 3.0)) / 2.0;


for (o = 0; o < num_objects; o++)



gain[o] = pow(10.0, (gain[o] - 32.0) / 40.0);


if (uniform_spread == 1)

{


for (o = 0; o < num_objects; o++)




spread[o] = spread[o] * 1.5;


}

else

{


for (o = 0; o < num_objects; o++)




spread_width[o] = spread_width[o] * 1.5;



for (o = 0; o < num_objects; o++)




spread_height[o] = spread_height[o] * 3.0;



for (o = 0; o < num_objects; o++)




spread_depth[o] = (pow(2.0, (spread_depth[o] / 3.0)) / 2.0) – 0.5;


}
}

In 7.4.2.4.2 and in 7.4.3.2.3.2 replace

limit_range()

{


minval = -180;


maxval =  180;


for (o = 0; o < num_objects; o++)



azimuth[o] = MIN(MAX(azimuth[o], minval), maxval);


minval = -90;


maxval =  90;


for (o = 0; o < num_objects; o++)



elevation[o] = MIN(MAX(elevation[o], minval), maxval);


minval =    0.5;


 maxval = 16;


for (o = 0; o < num_objects; o++)



radius[o] = MIN(MAX(radius[o], minval), maxval);


minval =    0.004;


maxval = 5.957;


for (o = 0; o < num_objects; o++)



gain[o] = MIN(MAX(gain[o], minval), maxval);


minval =    0;


maxval =  180;


for (o = 0; o < num_objects; o++)



spread[o] = MIN(MAX(spread[o], minval), maxval);

}

with

limit_range()

{


minval = -180;


maxval =  180;


for (o = 0; o < num_objects; o++)



azimuth[o] = MIN(MAX(azimuth[o], minval), maxval);


minval = -90;


maxval =  90;


for (o = 0; o < num_objects; o++)



elevation[o] = MIN(MAX(elevation[o], minval), maxval);


minval =    0.5;


maxval = 16;


for (o = 0; o < num_objects; o++)



radius[o] = MIN(MAX(radius[o], minval), maxval);


minval =    0.004;


maxval = 5.957;


for (o = 0; o < num_objects; o++)



gain[o] = MIN(MAX(gain[o], minval), maxval);


if (uniform_spread == 1)

{


minval =    0;



maxval =  180;



for (o = 0; o < num_objects; o++)




spread[o] = MIN(MAX(spread[o], minval), maxval);


}


else 


{


minval =    0;



maxval =  180;



for (o = 0; o < num_objects; o++)




spread_width[o] = MIN(MAX(spread_width[o], minval), maxval);



minval =   0;



maxval =  90;



for (o = 0; o < num_objects; o++)




spread_height[o] = MIN(MAX(spread_height[o], minval), maxval);



minval =   0;



maxval =  16;



for (o = 0; o < num_objects; o++)




spread_depth[o] = MIN(MAX(spread_depth[o], minval), maxval);


}
}

In 7.4.3.1.2 after default_spread add

default_spread_width
defines the value of the fixed or common spread parameter in width dimension.
default_spread_height
defines the value of the fixed or common spread parameter in height dimension.
default_spread_depth
defines the value of the fixed or common spread parameter in depth dimension.
In 7.4.3.1.2 after spread add

spread_width
if there is no common spread parameter, a value for the spread in width dimension is transmitted for each object. If there is only one object, this is its spread parameter in width dimension.

spread_height
if there is no common spread parameter, a value for the spread in height dimension is transmitted for each object. If there is only one object, this is its spread parameter in height dimension.

spread_depth
if there is no common spread parameter, a value for the spread in depth dimension is transmitted for each object. If there is only one object, this is its spread parameter in depth dimension.

In 7.4.3.1.4 after spread add

spread_width
the absolute value of the spread parameter in width dimension if the value is not fixed.

spread_height
the absolute value of the spread parameter in height dimension if the value is not fixed.
spread_depth
the absolute value of the spread parameter in depth dimension if the value is not fixed.
In 7.4.3.1.4 after spread_difference add

flag_spread_width
flag per object indicating whether the spread parameter in width dimension changes.
spread_width_difference
difference between the previous and the active value.

flag_spread_height
flag per object indicating whether the spread parameter in height dimension changes.
spread_height_difference
difference between the previous and the active value.
flag_spread_depth
flag per object indicating whether the spread parameter in depth dimension changes.
spread_depth_difference
difference between the previous and the active value.
In 8.3 replace

· Spread parameter [image: image2823.png].
with

Uniform spread parameter 
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6.3 Update of description of Screen-Related Element Remapping
In 18.3 replace
The screen size of a nominal reference screen (used in the mixing and monitoring process) and local screen size information in the playback room are taken into account for the remapping.

If no nominal reference screen size is given, default reference values are used assuming a 4k display and an optimal viewing distance.
with 

The screen size of a nominal reference screen (used in the mixing and monitoring process) and local screen size information in the playback room are taken into account for the remapping.

The size of the applicable nominal reference screen is in general read from the bitstream, located in the mae_ProductionScreenSizeData() syntax structure. 

If the structure mae_ProductionScreenSizeDataExtension() is present in the bitstream and mae_NumPresetProductionScreens is bigger than 0, the groupPresetID of the currently chosen/valid group preset shall be used to identify the applicable screen size of the reference screen from the mae_ProductionScreenSizeDataExtension() structure before the remapping is applied.

If no preset is valid or the valid preset has no associated production screen, the production screen from the mae_ProductionScreenSizeData() structure  shall be used as a default production screen.

If the structure mae_ProductionScreenSizeDataExtension() is present in the bitstream, and the mae_overwriteProductionScreenSizeData flag as well as the hasNonStandardScreenSize flag from mae_ProductionScreenSizeData() are equal to 1, the azimuth angle data originating from mae_ProductionScreenSizeDataExtension() shall be used instead of the azimuth angle data from mae_ProductionScreenSizeData() to define the default production screen.

If no nominal reference screen size is given, default reference values are used assuming a 4k display and an optimal viewing distance.
6.4 Update of closest speaker playout processing for conditioned case
In 18.1 replace
Azimuth and elevation either represent the element’s position or the element’s speaker’s position (in case the mae_closestSpeakerPlayout flag is set to one).
with
Azimuth and elevation either represent the element’s position or the element’s speaker’s position (in case the mae_closestSpeakerPlayout flag is set to one and the closest speaker playout is unconditioned, or in case the mae_closestSpeakerPlayout flag is set to one and the speaker is located within the azimuthRange if the closest speaker playout is conditioned).
further replace

As a next step, the closest-speaker playout processing shall be conducted. If the group is marked as closest-speaker playout, then the position of the closest speaker to the output position data is determined for each member element as defined in 18.5. No rendering shall be applied; therefore it has to be ensured that the determined speaker position exists in the reproduction speaker setup.
with
As a next step, the closest-speaker playout processing shall be conducted. If the group is marked as closest-speaker playout, it shall be evaluated as the first step if the closest-speaker playout processing shall happen unconditioned or conditioned.

If the closest-speaker playout is unconditioned, the position of the closest speaker to the output position data is determined for each member element as defined in 18.5, taking into account all reproduction speakers. No rendering shall be applied; therefore it has to be ensured that the determined speaker position exists in the reproduction speaker setup.

If the closest-speaker playout is conditioned (a mae_closestSpeakerThresholdAngle value is given), it has to be determined, which of the reproduction speakers lies in the given range. 

· If a speaker lies within the closest-speaker playout processing range, both the following conditions have to be true:
· φspeaker ≥ φobj – φthresh  OR φspeaker ≤ φobj + φthresh 
· θspeaker ≥ θobj – θthresh  OR θspeaker ≤ θobj + θthresh 
After determining the list of speakers in the range, the position of the closest speaker to the output position data is determined for each member element as defined in 18.5, taking into account only the reproduction speakers in the range. No rendering shall be applied; therefore it has to be ensured that the determined speaker position exists in the reproduction speaker setup.
In 18.2.5 add

If an element group has a divergence value bigger than 0, the signaling of the closestSpeakerPlayout option shall be ignored and no closest speaker playout processing shall be conducted.
In 18.5 replace
This distance has to be calculated for all known position P1 to PN of the N output speakers with respect to the wanted position of the audio element Pwanted.
with

This distance has to be calculated for all known position P1 to PN of a defined list of N output speakers with respect to the wanted position of the audio element Pwanted. 
6.5 Inclusion of rendering of Object Divergence

In 18.1 replace

As a first step the rendering type, rendering layout and screen size information is determined. Then, the syntax element mae_AudioSceneInfo() is retrieved. Afterwards, the interactivity data is read from the interactivity interface.
with
As a first step the rendering type, rendering layout and screen size information is determined. Then, the syntax element mae_AudioSceneInfo() is retrieved. 

The overall number of object-based audio element is determined that need to be rendered by the object renderer. The overall number of object-based audio elements is 

· the sum of the number of elements with OAM data

· plus 2 times the number of elements with OAM data whose group has a divergence value bigger than 0 and whose groups are not marked to be sent to a WIRE output.

Afterwards, the interactivity data is read from the interactivity interface.
and 

Then the relevant groups are prepared for playout and rendering. Therefore, updated output element characteristics are calculated for each element of each group: Gain, azimuth, elevation, and distance. Azimuth and elevation either represent the element’s position or the element’s speaker’s position (in case the mae_closestSpeakerPlayout flag is set to one). In case of groups with SignalGroupTypeChannels, azimuth and elevation contain the unmodified speaker’s position.

with

Then the relevant groups are prepared for playout and rendering. Therefore, updated output element characteristics are calculated for each element of each group and the additional virtual objects for groups with a divergence value bigger than 0 that are not to be sent to a WIRE output: Gain, azimuth, elevation, and distance. Azimuth and elevation either represent the element’s position or the element’s speaker’s position (in case the mae_closestSpeakerPlayout flag is set to one and the divergence of the corresponding group is equal to 0 or not existing). In case of groups with SignalGroupTypeChannels, azimuth and elevation contain the unmodified speaker’s position.

The ‘unmodified’ positions and gains for the ‘virtual’ objects for the reproduction of objects with a divergence bigger than 0 are determined according to:
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The gains ρ are based on the current OAM gain, the current gain interaction and the divergence value:
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After that, the virtual objects are treated the same way as the original objects from the bitstream for the calculation of the updated output element characteristics.

Further replace:
If the gain interactivity is still enabled, the output gain is calculated for each element of the group, taking into account the interactivity gain modification, and either the OAM gain (if available) or the current gain of an element (in case no OAM data is available). If the basic interaction mode is enabled, the possible group gain value of the currently active/valid preset is also taken into account.

The overall gain modification (interactivity gain in dB plus group gain in dB) shall be restricted according to the given mae_interactivityMinGain and mae_interactivityMaxGain values. If no gain interaction is allowed, the output gain shall either contain 0dB (in case no OAM data is available) or the OAM gain in dB.

with
If the gain interactivity is still enabled, the output gain is calculated for each element of the group plus additional virtual objects if the group has a divergence value bigger than 0, taking into account the interactivity gain modification, and either the OAM gain (if available), the unmodified gain of the virtual objects or the current gain of an element (in case no OAM data is available). If the basic interaction mode is enabled, the possible group gain value of the currently active/valid preset is also taken into account.

The overall gain modification (interactivity gain in dB plus group gain in dB) shall be restricted according to the given mae_interactivityMinGain and mae_interactivityMaxGain values. If no gain interaction is allowed, the output gain shall either contain 0dB (in case no OAM data is available), the OAM gain in dB or respectively the unmodified gain in dB for the virtual objects.
further replace: 
If the position interactivity is still enabled for the current group, azimuth, elevation and distance values are determined for each element of the group. The calculation of the output values takes into account the interactivity modification (offset values and distance multiplication factor) and the values from the OAM data. If the basic interaction mode is enabled, the possible values for a group azimuth offset, group elevation offset and group distance factor defined in the preset shall be taken into account. 

with 
If the position interactivity is still enabled for the current group, azimuth, elevation and distance values are determined for each element of the group and the additional virtual objects if the divergence of the group is bigger than 0. The calculation of the output values takes into account the interactivity modification (offset values and distance multiplication factor) and the values from the OAM data or respectively the unmodified gain in dB for the virtual objects. If the basic interaction mode is enabled, the possible values for a group azimuth offset, group elevation offset and group distance factor defined in the preset shall be taken into account. 
6.6 Signaling of switch group conditions in group presets
In 15.1 replace

Group presets define a combination of groups in an audio scene. A group preset contains a list of groups and an associated on/off-status for each of these groups (presets' conditions) which are not modifiable by the user. With group presets a content creator or an application can provide a restricted number of meaningful rendering options to the user.

with
Group presets define a combination of groups in an audio scene. A group preset contains a list of groups or switch groups, each referenced by their unique ID and an associated on/off-status for each of the referenced structures (presets' conditions) which are not modifiable by the user. With group presets a content creator or an application can provide a restricted number of meaningful rendering options to the user.

In 15.3 replace

mae_numGroupPresets
Number of defined group presets. This field can take values between 0 and 31, resulting in a maximum number of 31 group presets. A group preset is a subset of all groups of an overall scene where the on/off status of each of these groups is bound to a condition. With group presets it is possible to define a controlled behavior in dependence of the on/off status of some of the groups in an overall audio scene. A group preset is valid if all its associated conditions are true (logical AND of the conditions yields 1), i.e. if the on/off status of all associated groups is conform to the defined conditions.
with
mae_numGroupPresets
Number of defined group presets. This field can take values between 0 and 31, resulting in a maximum number of 31 group presets. A group preset is a subset of all groups of an overall scene where the on/off status of each of these groups is bound to a condition. With group presets it is possible to define a controlled behavior in dependence of the on/off status of some of the groups and/or switch groups in an overall audio scene. A group preset is valid if all its associated conditions are true (logical AND of the conditions yields 1), i.e. if the on/off status of all associated groups and the on/off status of each associated switch group is conform to the defined conditions. A condition associated with a switch group with value 1 is true if one member of the switch group is switched on. A condition associated with a switch group with value 0 is true if all members of the switch group are switched off. Switch group conditions with value 0 are only applicable for switch groups whose mae_switchGroupAllowOnOff flag is equal to 1.
Further replace the semantics definition of mae_bsGroupPresetNumConditions, mae_groupPresetGroupID, mae_groupPresetConditionOnOff, mae_groupPresetDisableGainInteractivity, mae_groupPresetGainFlag, mae_groupPresetGain, mae_groupPresetDisablePositionInteractivity, mae_groupPresetPositionFlag, mae_groupPresetAzOffset, mae_groupPresetDistFactor, mae_groupPresetElOffset 
with:
mae_bsGroupPresetNumConditions
This field defines the number of group conditions that are associated with a group preset. The field takes values between 0 and 15; a minimum of 1 condition and a maximum of 16 conditions are assumed. A condition is a combination of a mae_groupID or a mae_switchGroupID and an on/off status. 
mae_groupPresetReferenceID
This field specifies the groups or switch groups associated with a group preset. By default, this reference is interpreted as a groupID. The reference can be defined to be interpreted as a switchGroupID by extension metadata.
mae_groupPresetConditionOnOff
This flag describes the required on/off status of a group associated with a group preset. If the flag is 1, the associated group has to be switched on to validate the group preset. If the flag is 0, the associated group has to be switched off.

If the referenced ID is defined to be interpreted as a switchGroupID, a groupPresetConditionOnOff with value 1 means that one member of the switch group has to be switched on to validate the group preset.

mae_groupPresetDisableGainInteractivity
This field defines if the gain interactivity of the currently referenced group or the members of the referenced switch group shall be disabled (flag is equal to 1) or shall stay enabled (flag is equal to 0) if the preset is chosen/valid.
mae_groupPresetGainFlag
This field defines whether the corresponding preset specifies an initial gain of the members of a metadata element group or of the element members of the group members of the referenced switch group. It shall only be 1 if the flag mae_allowGainInteractivtiy of the corresponding group or of all the members of the referenced switch group is set to 1.
mae_groupPresetGain
The field defines the initial gain of the members of a metadata element group or of the element members of the group members of the referenced switch group when the corresponding preset is selected.

groupPresetGain in dB = 0.5 · (mae_groupPresetGain – 255) + 32

mae_groupPresetDisablePositionInteractivity
This field defines if the position interactivity of the currently referenced group or of the members of the referenced switch group shall be disabled (flag is equal to 1) or shall stay enabled (flag is equal to 0) if the present is chosen/valid.
mae_groupPresetPositionFlag
This field defines whether initial position interactivity data (azimuth offset, elevation offset and distance factor) is present that shall be applied to the members of a metadata element group or to the element members of the group members of the referenced switch group. It shall only be 1 if the flag mae_allowPositionInteractivity of the corresponding group or of all the members of the referenced switch group is set to 1.
mae_groupPresetAzOffset
This field defines the additional azimuth offset that shall be applied to the currently referenced group or the members of the referenced switch group if the preset is chosen/valid. This field can take values between PresetAdditionalAzOffset = -180° and AzOffset = +180°:

PresetAdditionalAzOffset =1.5 · mae_groupPresetAzOffset
mae_groupPresetElOffset
This field defines the additional elevation offset that shall be applied to the currently referenced group or the members of the referenced switch group if the preset is chosen/valid. This field can take values between PresetAdditionalElOffset = -90° and ElOffset = +90°:

PresetAdditionalElOffset = 3 · mae_groupPresetElOffset
mae_groupPresetDistFactor
This field defines the additional distance change factor that shall be applied to the currently referenced group or the members of the referenced switch group if the preset is chosen/valid. This field can take values between 0 and 15 resulting in PresetAdditionalDistFactor between 0.00025 and 8:

PresetAdditionalDistFactor = 2(mae_groupPresetDistFactor-12)
In 17.7.3 replace
The second mode is a basic interaction mode, where the user may choose one of the group presets that are defined in the metadata audio element syntax. With a group preset, the on/off statuses of the groups that are referenced in the conditions of the chosen preset are defined and cannot be changed by the user. The user may only change the on/off status of the other groups that are not referenced in the conditions of the chosen preset. Position and gain of all groups can be changed according to the defined restrictions and ranges.
with
The second mode is a basic interaction mode, where the user may choose one of a set group presets that are defined in the metadata audio element syntax. With a group preset, the on/off statuses of the groups and switch groups that are referenced in the conditions of the chosen preset are defined and cannot be changed by the user. The user may only change the on/off status of the other groups and switch groups that are not referenced in the conditions of the chosen preset. Position and gain of all groups can be changed according to the defined restrictions and ranges.
6.7 Signaling of layout-dependent group presets
In 18.1 replace
In the basic interaction mode, the user can choose one of the defined group presets. The on/off statuses of the groups that are referenced in the chosen group preset’s conditions are set according to these conditions. Any discrepancy to these values by the values in the ei_GroupInteractivityStatus() syntax element shall be ignored.
with
In the basic interaction mode, the user can choose one of a set of defined group presets. 
First, it has to be checked if a downmixId is present and if the chosen preset has a group present extension (defined in mae_GroupPresetDefinitionExtension()) that references the current downmixId. If this is the case, the conditions of the corresponding group preset extension have to be used to determine which groups shall be played back / rendered. The on/off statuses of the groups and switch groups that are referenced in the chosen group preset’s or the applicable group preset extension’s conditions are set according to these conditions. Any discrepancy to these values by the values in the ei_GroupInteractivityStatus() syntax element shall be ignored.
further replace

If that is the case and if the basic interaction mode is active, it is then checked if the currently active/valid preset or the applicable group preset extension for the current downmixId disables the gain interactivity.
If the gain interactivity is still enabled, the output gain is calculated for each element of the group, taking into account the interactivity gain modification, and either the OAM gain (if available) or the current gain of an element (in case no OAM data is available). If the basic interaction mode is enabled, the possible group gain value of the currently active/valid preset is also taken into account.

with
If that is the case and if the basic interaction mode is active, it is then checked if the currently active/valid preset or t disables the gain interactivity.

If the gain interactivity is still enabled, the output gain is calculated for each element of the group, taking into account the interactivity gain modification, and either the OAM gain (if available) or the current gain of an element (in case no OAM data is available). If the basic interaction mode is enabled, the possible group gain value of the currently active/valid preset or the applicable group preset extension for the current downmixId is also taken into account.
Further replace

If that is the case and if basic interaction mode is active, it is then checked if the currently active/valid preset disables the position interactivity.

If the position interactivity is still enabled for the current group, azimuth, elevation and distance values are determined for each element of the group. The calculation of the output values takes into account the interactivity modification (offset values and distance multiplication factor) and the values from the OAM data. If the basic interaction mode is enabled, the possible values for a group azimuth offset, group elevation offset and group distance factor defined in the preset shall be taken into account. 
The overall interactivity modification (interactivity modification plus the corresponding values in the preset) shall be restricted according to the given interactivity ranges.
with

If that is the case and if basic interaction mode is active, it is then checked if the currently active/valid preset or the applicable group preset extension for the current downmixId disables the position interactivity.
If the position interactivity is still enabled for the current group, azimuth, elevation and distance values are determined for each element of the group. The calculation of the output values takes into account the interactivity modification (offset values and distance multiplication factor) and the values from the OAM data. If the basic interaction mode is enabled, the possible values for a group azimuth offset, group elevation offset and group distance factor defined in the preset or the applicable group preset extension for the current downmixId shall be taken into account. 
The overall interactivity modification (interactivity modification plus the corresponding values in the preset) shall be restricted according to the given interactivity ranges.
7 Improvements for use in broadcast ecosystems

7.1 Order of elements in mpegh3daDecoderConfig() and mpegh3daFrame()
In 5.3.1 replace:

Signal groups are represented by audio data elements which are configured in the mpegh3daDecoderConfig(). The bitstream element Signals3d() specifies the assignment of audio data elements to signal groups. In case a signal group requires extension payloads, the corresponding mpegh3daExtElementConfig()s shall directly follow the configuration elements for the audio data elements which belong to the associated signal group.

with:

Signal groups are represented by audio data elements which are configured in the mpegh3daDecoderConfig(). The bitstream element Signals3d() specifies the assignment of audio data elements to signal groups. In case a signal group requires extension payloads, the corresponding mpegh3daExtElementConfig()s shall immediately precede the configuration elements for the audio data elements which belong to the associated signal group.
7.2 Overall delay alignment and constant decoder delay
In 4.3 replace Table 1 with

Table 1 — MPEG-H 3DA functional blocks and internal processing domain

	Processing Context
	Functional Block
	Processing Domain
	Delay
Samples
	Contribution to Maximum Delay

Samples

	Audio Core
	
	TD, Core frame length = 1024
	0
	

	
	SBR / MPS212
	FD, Core frame length = 2048 or 4096
	384
	

	
	SBR/MPS212,

stereoConfigIndex==3
	FD, Core frame length = 2048 or 4096
	384+384
	

	
	
	
	
	
	
	QMF-Analysis
	TD, FD
	320
	320

	
	
	
	
	
	
	QMF-Synthesis
	FD, TD
	257
	257

	Rendering
	DRC-1
	if multiband: FD
else: neutral
	0
	

	
	Format Converter,

Core frame length = 1024
	FD
	3456
	3456

	
	Format Converter, Core frame length = 2048 or 4096
	FD
	2432
	

	
	Object Renderer
	Neutral
	0
	

	
	SAOC 3D Decoder,

bsDoubleFrameLengthFlag=0
	FD
	384
	

	
	SAOC 3D Decoder, bsDoubleFrameLengthFlag=1

Core frame length = 1024
	FD
	1408
	

	
	SAOC 3D Decoder, bsDoubleFrameLengthFlag=1

Core frame length = 2048
	FD
	2432
	

	
	HOA Decoder
	TD
	0
	

	
	HOA Decoder with multiband DRC-1
	TD, FD, TD 
	577
	

	Mixing
	Mixer
	FD, TD
	0
	0

	Maximum accumulated delay: core output to mixer:
	4033

	Post-processing
	QMF-Analysis
	TD, FD
	320
	320

	
	QMF-Synthesis
	FD, TD
	257
	257

	
	DRC-2
	if multiband: FD
else: neutral
	0
	

	
	FD Binauralizer
	FD
	0
	

	
	TD Binauralizer
	TD
	0
	

	End of chain
	DRC-3 (only singleband)
	TD
	0
	

	
	Loudness Normalization
	TD
	0
	

	
	Peak Limiter (not normative)
	TD
	n.a.
	

	
	LS Distance Compensation
	TD
	0
	

	Maximum accumulated delay: core output to decoder output:
	4610


Replace 4.4.2 with 

4.4.2 Mixing

· The mixer may operate in TD or in FD
After 4.4.2 add a new subclause (4.4.3): 
4.4.3 DRC-1 Operation Domains (DRC in Rendering Context)

· If multiband DRC-1 data is present in the bitstream for a DRC-1 module

· the corresponding DRC-1 processing block should operate in FD
After subclause 4.4, add the following subclause 

4.5
Decoder Delay
If a constant decoder delay application is signaled in the bistream (receiverDelayCompensation==1, as defined in 5.2.2) then the decoding and rendering delay from the IMDCT output of the core decoder to the mixing block of the MPEG-H 3D Audio decoder shall be kept constant by introducing delay lines where required. Similarly, the overall delay from the IMDCT output to the decoder output shall be kept constant by introducing delay lines where required. The constant delay values that shall be fulfilled are determined by the Maximum accumulated delay numbers in Table 1.

Further, all side-info utilized in the rendering blocks as well as for DRC processing shall be sent aligned to the IMDCT output waveforms. The rendering and DRC side-info shall be applied delayed in the rendering/DRC blocks. The side-information delays are determined by the delays the waveforms encounter in the processing pipeline from the IMDCT output until reaching the corresponding rendering/DRC blocks. The following kinds of side-information shall be aligned to the iMDCT output waveforms and shall be applied delayed as defined above:

· OAM object metadata

· DRC side-information

· SAOC side- information

· HOA side- information
In Table 2 in 5.2.2.1, General Configuration Syntax, replace 
coreQmfDelayCompensation 

with 
reserved
In Table 2 in 5.3.2, General Configuration Data Elements, replace 
coreQmfDelayCompensation
This flag forces the MPEG-H 3D Audio Core coder to apply a delay compensation for the case that eSBR is not applied. If its value is 0, no delay compensation shall be applied. If its value is 1, a delay of 577 samples shall be applied to all audio elements which do not use eSBR, i.e. which do not employ a QMF analysis during decoding.
Further, if processing blocks immediately following the MPEG-H 3D Audio Core require QMF domain input, the delay is bypassed and the output is fed to a QMF analysis instead, such that the MPEG-H 3D Audio Core decoder and the subsequent processing blocks can be efficiently combined in the QMF domain.
Audio elements which do employ eSBR are not affected.

receiverDelayCompensation
This flag forces the format converter to apply a delay compensation for the case that it is not active. When its value is 0, no delay compensation shall be applied in the bypass path. When its value is 1, a delay of 4033 samples shall be applied, when the format converter is fed with time-domain input, a delay of 2432 samples (corresponding to 38 QMF time slots) shall be applied, when the format converter is fed with QMF domain input.
with 
reserved
reserved.

receiverDelayCompensation
This flag forces the decoder to operate in a constant delay. The decoder delay shall be kept constant by employing appropriate delay lines to obtain the delays noted in Table 1.
7.3 Broadcast Contribution Mode Operation of MPEG-H
Add the following new subclause "4.5 Contribution Mode of MPEG-H 3d audio":

4.5 Contribution Mode of MPEG-H 3d audio

A value of speakerLayoutType == 3 as defined in Table 41 in the signaling of the referenceLayout in the mpegh3daConfig() indicates that MPEG-H 3D audio shall operate in Contribution Mode. In Contribution Mode the rendering context shall operate in a pass-through mode, i.e. the format converter shall apply an identity matrix to the signal. Contribution Mode bitstreams shall have the following additional restrictions:
· bsNumSignalGroups == 0 (one single signal group)

· SignalGroupType == 0 (channel signal group)

· differsFromReferenceLayout[0] == 0 (no audioChannelLayout in the signal group)
· core coder delay lines for compensation of SBR, MPS212, shall be applied

· Content of extension elements shall not be processed in the decoder but shall be made available to an external framework 
In 5.3.3 replace Table 41:
Table 41 — Meaning of speakerLayoutType
	Value
	Meaning

	0
	Loudspeaker layout ist signaled by means of ChannelConfiguration index as defined in ISO/IEC 23001-8.

	1
	Loudspeaker layout ist signaled by means of a list of LoudspeakerGeometry indices as defined in ISO/IEC 23001-8

	2
	Loudspeaker layout is signaled by means of a list of explicit geometric position information.

	3
	Reserved


with:
Table 41 — Meaning of speakerLayoutType
	Value
	Meaning

	0
	Loudspeaker layout is signaled by means of ChannelConfiguration index as defined in ISO/IEC 23001-8.

	1
	Loudspeaker layout is signaled by means of a list of LoudspeakerGeometry indices as defined in ISO/IEC 23001-8

	2
	Loudspeaker layout is signaled by means of a list of explicit geometric position information.

	3
	Contribution Mode: No associated loudspeaker layout; Renderers shall operate as defined in 4.5. This value is only allowed when signaling the referenceLayout.


8 Layered Coding for HOA based content

In Table 120 – Syntax of HOADecoderConfig replace:

	
SingleLayer;
	1
	bslbf


With:

	
if(SingleLayer == 0){
	1
	bslbf

	

HOALayerChBits = ceil(log2(NumOfAdditionalCoders));
	
	

	

NumHOACannelsLayer[0] = codedLayerCh + 











MinNumOfCoeffsForAmbHOA;
	HOALayerChBits
	uimsbf

	

remainingCh = numHOATransportChannels – 











NumHOACannelsLayer[0];
	
	

	

NumLayers = 1;
	
	

	

while (remainingCh>1) {
	
	

	


HOALayerChBits = ceil(log2(remainingCh));
	
	

	


NumHOACannelsLayer[NumLayers] = codedLayerCh + 1;
	HOALayerChBits
	uimsbf

	


remainingCh = remainingCh – 









NumHOACannelsLayer[NumLayers];
	
	

	


NumLayers++;
	
	

	

}
	
	

	

if (remainingCh) {
	
	

	


NumHOACannelsLayer[NumLayers] = 1;
	
	

	


NumLayers++;
	
	

	

}
	
	

	
}
	
	


Replace "Table 128 – SingleLayer definition" with the following table and add the additional definitions of elements following the new Table 128 :

Table 128 — SingleLayer definition

	Value
	Meaning

	0
	/* reserved */

	1
	HOA signal is provided in a single layer


With:

Table 128 — SingleLayer definition

	Value
	Meaning

	0
	HOA signal is provided in multiple layers; enables the signaling of the distribution of the HOA transport channels into the different layers

	1
	HOA signal is provided in a single layer


codedLayerCh
This element indicates for the first (i.e. base) layer the number of included transport signals, which is given by codedLayerCh + MinNumOfCoeffsForAmbHOA. For the higher (i.e enhancement) layers, this element indicates the number of additional signals included into an enhancement layer compared to the next lower layer, which is given by codedLayerCh + 1.
HOALayerChBits
This element indicates the number of bits for reading codedLayerCh.
NumLayers
This element indicates (after the reading of the HOADecoderConfig()) the total number of layers within the bit stream.

NumHOACannelsLayer
This element is an array consisting of NumLayers elements, of which the i-th element indicates the number of transport signals included in the i-th layer.
Add the following subclause after subclause "12.4.1.2 Global Parameter"
12.4.1.x
Frame and user dependent parameters

[image: image2848.png]
Number of all actually used layers for the [image: image2850.png]-th frame (to be specified) at the decoder side. Note that in the case of layered coding (indicated by SingleLayer==0) this number must be less or equal to the total number of layers present in the bit stream, i.e. [image: image2852.png]. In the case of single-layered coding (indicated by SingleLayer==1) [image: image2854.png] is set to one.

Dependent on the choice of [image: image2856.png] the number [image: image2858.png] of additional transport channels actually used for spatial HOA decoding (i.e. additional to the [image: image2860.png] channels that are implicitely always used) is computed as follows:

if(SingleLayer | (!SingleLayer & [image: image2862.png] NumLayers))
{


[image: image2864.png] = NumOfAdditionalCoders;
}

else

{


[image: image2866.png]  = NumHOACannelsLayer[0] - MinNumOfCoeffsForAmbHOA;


for (m=1; m < [image: image2868.png] ; m++){



[image: image2870.png]  += NumHOACannelsLayer[m];


}
}
The number is required to extract from the total side information the part that is relevant for the actually used transport signals. For this reason, in the following, it is used for the conversion of the bit stream parameters to the parameters used in the description of the actual spatial HOA decoding in subclause 12.4.2.
In subclause "12.4.1.5 Assigment vector [image: image2872.png]" replace NumOfAdditionalCoders by [image: image2874.png]
12.4.1.5 Assigment vector [image: image2876.png]
for (i=0; i <[image: image2878.png]; i++){


if(ChannelType[i]==2){



[image: image2880.png][i+1] = AmbCoeffIdx[i];

}


else{



[image: image2882.png][i+1]=0;


}

}

nIdx = 1;

for (i= [image: image2884.png]; i < NumHOATransportChannels; i++){


[image: image2886.png][i+1]=nIdx;


nIdx++;

}

In subclause "12.4.1.6 Tuple set [image: image2888.png]" replace NumOfAdditionalCoders by [image: image2890.png]
12.4.1.6 Tuple set [image: image2892.png]
[image: image2894.png]=[image: image2896.png];

for (i=0; i < [image: image2898.png]; i++){


if(ChannelType[i]==0){



[image: image2900.png]=[image: image2902.png];


}

}

In subclause "12.4.1.7 The sets [image: image2904.png], [image: image2906.png] and [image: image2908.png]" replace NumOfAdditionalCoders by [image: image2910.png]
12.4.1.7 The sets [image: image2912.png], [image: image2914.png] and [image: image2916.png]  

[image: image2918.png];

[image: image2920.png];

[image: image2922.png];

for (i=0; i < [image: image2924.png]; i++){


switch(AmbCoeffTransitionState[i]){



case 0:



{

[image: image2926.png]=[image: image2928.png];

break;



}



case 1:



{

[image: image2930.png]=[image: image2932.png];

break;



}



case 2:



{

[image: image2934.png]=[image: image2936.png];



}


}

}

In subclause "12.4.1.10.6 Tuple set [image: image2938.png]" replace NumOfAdditionalCoders by [image: image2940.png]
12.4.1.10.6 Tuple set [image: image2942.png]
[image: image2944.png]=[image: image2946.png];

for (i=0; i < [image: image2948.png]; i++){


if(ChannelType[i]==1){



[image: image2950.png]=[image: image2952.png];


}

}

In subclause 12.4.2.4.2 Compute HOA representation of active directional signals replace:

The sample values of the faded out and faded in directional HOA components are then determined by 

[image: image2953.png]
[image: image2954.png]
where [image: image2956.png] denotes the set of those first elements of [image: image2958.png] where the corresponding second element is non-zero.
With:

In the case of single-layered coding (indicated by SingleLayer==1 (see Table 120)), the sample values of the faded out and faded in directional HOA components are then determined by 

[image: image2959.png]
[image: image2960.png]
where [image: image2962.png] denotes the set of those first elements of [image: image2964.png] where the corresponding second element is non-zero.

In the case of multiple layered coding (indicated by SingelLayer==0 (see Table 120)), the sample values of the faded out and faded in directional HOA components are then determined by 

[image: image2966.png],

[image: image2967.png]
where [image: image2969.png] denotes the set of those first elements of [image: image2971.png] where the corresponding second element is zero.
Replace subclause "12.4.2.x Preliminary HOA composition" by:
12.4.2.x Preliminary HOA composition
In case of single layered coding:
In the case of single-layered coding (indicated by SingleLayer==1 (see Table 120)), the frame [image: image2973.png] of the preliminary decoded HOA representation is computed by 

[image: image2974.png]
Additionally, the frame [image: image2976.png] of a modified version of the preliminary decoded HOA representation is computed by 

[image: image2977.png]
This modified HOA representation is assumed to be successively input to the PAR decoder instead of the original version [image: image2979.png] to avoid signal discontinuities after performing on [image: image2981.png] the truncation and coefficient selection (see  subclause 12.4.2.x.2  Truncation and Coefficient Selection). 
In case of multiple layered coding:

In the case of multiple layered coding (indicated by SingelLayer==0 (see Table 120)), the coefficient sequences [image: image2983.png], of the preliminary decoded HOA representation [image: image2985.png] are computed by 

[image: image2986.png]
This means that the transmitted coefficient sequences with indices [image: image2988.png] actually represent the original HOA representation instead of its ambient component. Hence, for the transmitted coefficient sequences which are neither faded in nor faded out within the current frame, nothing has to be added to them. For the transmitted coefficient sequences that are faded in (or faded out) within the current frame, i.e those with indices [image: image2990.png], the corresponding coefficient sequences of the predominant sound HOA representation [image: image2992.png] are added, which are supposed to have been appropriately faded out (or faded in) at the Predominant Sound Synthesis. 
Similarly, the coefficient sequences [image: image2994.png] of the modified version of the preliminary decoded HOA frame [image: image2996.png] are computed by
[image: image2997.png]
Note that if the number of actually used layers changes between two successive frames (i.e. if [image: image2999.png]), with the above computation there occurs in general a discontinuity in all coefficient sequences of the preliminary decoded HOA representation and its modified version between the ([image: image3001.png])-th and [image: image3003.png]-th frame. One possible solution for this problem is to introduce an additional delay of one frame within the preliminary HOA composition and to fade out and fade in the coefficient sequences at the discontinuity.

9 SAOC signaling update

Add in “Table 4 — Syntax of Signals3d()”:
	

if ( SignalGroupType[grp] == SignalGroupTypeSAOC ) {
	
	

	


numSAOCTransportChannels += bsNumberOfSignals[grp] + 1;

	


saocDmxLayoutPresent;
	1
	bslbf

	


if ( saocDmxLayoutPresent == 1 ) {
	
	

	



saocDmxChannelLayout = SpeakerConfig3d(); 
	
	

	


}
	
	

	 

}
	
	


Add in “15.4 Definition of mae_metaDataElementIDs”:

   else if ( SignalGroupType[grp] == SignalGroupTypeSAOC ) {

      for ( id = 0; id < numSpeakers + bsNumSaocObjects; id++ )  {

         mae_metaDataElementID++; 

      }
      if(saocDmxLayoutPresent == 1) {

         mae_metaDataElementID++;

      }

    }
Add in “5.3.2
General Configuration Data Elements”:

saocDmxLayoutPresent
This flag indicates if the SAOC audio transport channels contain a meaningful downmix of the input channels and objects. If downmixLayoutPresent == 1 the saocDmxChannelLayout is associated with the SAOC audio transport channels and SAOC 3D decoding is not mandatory. The SAOC audio transport channels can be further processed as signals of type SignalGroupTypeChannels with the audio channel layout saocDmxChannelLayout. If the SAOC audio transport channels are processed as signals of type SignalGroupTypeChannels the SAOC payload is discarded.
saocDmxChannelLayout
This structure describes the loudspeaker layout of the SAOC audio transport channels, if  saocDmxLayoutPresent == 1.
10 Tool for Advanced Loudness Control

Add new mae_dataType in Table 144:
Table 144 — Syntax of mae_Data()

	Syntax
	No. of bits
	Mnemonic

	mae_Data()
	
	

	{
	
	

	
mae_numDataSets;
	4
	uimsbf

	
for (dscr = 0; dscr < mae_bsNumDataSets; dscr ++) {
	
	

	

mae_dataType[dscr];
	4
	uimsbf

	

mae_dataLength[dscr];
	16 
	uimsbf

	

switch (mae_dataType[dscr] ) {
	
	

	

case ID_MAE_GROUP_DESCRIPTION:
	
	

	


mae_Description( ID_MAE_GROUP_DESCRIPTION );
	
	

	


break;
	
	

	

case ID_ MAE_SWITCHGROUP_DESCRIPTION:
	
	

	


mae_Description( ID_MAE_SWITCHGROUP_DESCRIPTION );

	


break;
	
	

	

case ID_ MAE_GROUPPRESET_DESCRIPTION:
	
	

	


mae_Description( ID_MAE_GROUPPRESET_DESCRIPTION );
	

	


break;
	
	

	

case ID_ MAE_GROUP_CONTENT:
	
	

	


mae_ContentData(); 
	
	

	


Break;
	
	

	

case ID_MAE_GROUP_COMPOSITE:
	
	

	


mae_CompositePair()
	
	

	


break;
	
	

	

case ID_MAE_SCREEN_SIZE:
	
	

	


mae_ProductionScreenSizeData();
	
	

	


break;
	
	

	

case ID_MAE_LOUDNESS_COMPENSATION:
	
	

	


mae_LoudnessCompensationData(mae_numGroups, 












mae_numGroupPresets);
	
	

	


break;
	
	

	

default:
	
	

	


while (mae_dataLength[dscr] ) {
	
	

	



tmp;
	8
	uimsbf

	


}
	
	

	


break;
	
	

	

}
	
	

	
}
	
	

	}
	
	


Add new Table after Table 151:
Table AMD11.1 — Syntax of mae_LoudnessCompensationData()
	Syntax
	No. of bits
	Mnemonic

	mae_LoudnessCompensationData(numGroups,numGroupPresets)
	
	

	{
	
	

	
mae_loudnessCompGroupLoudnessPresent;
	1
	bslbf

	
if ( mae_loudnessCompGroupLoudnessPresent == 1 ) {
	
	

	

for( grp=0; grp<numGroups; grp++ ) {
	
	

	


mae_bsLoudnessCompGroupLoudness[grp];
	8
	uimsbf

	

}
	
	

	
} else {
	
	

	

/* not present or provided by mpegh3daLoudnessInfoSet() */
	
	

	
}
	
	

	
mae_loudnessCompDefaultParamsPresent;
	1
	bslbf

	
if (mae_loudnessCompDefaultParamsPresent == 1 ) {
	
	

	

for( grp=0; grp<numGroups; grp++ ) {
	
	

	


groupID = mae_groupID[grp];
	
	

	


mae_loudnessCompDefaultIncludeGroup[grp];
	1
	bslbf

	

}
	
	

	

mae_loudnessCompDefaultMinMaxGainPresent;
	1
	bslbf

	

if ( mae_loudnessCompDefaultMinMaxGainPresent == 1 ) {
	
	

	


mae_bsLoudnessCompDefaultMinGain;
	4
	uimsbf

	


mae_bsLoudnessCompDefaultMaxGain;
	4
	uimsbf

	

}
	
	

	
}
	
	

	
for ( gp=0; gp<numGroupPresets; gp++ ) {
	
	

	

groupPresetID = mae_groupPresetID[gp];
	
	

	

mae_loudnessCompPresetParamsPresent[gp];
	1
	bslbf

	

if (mae_loudnessCompPresetParamsPresent[gp] == 1 ) {
	
	

	


for ( grp=0; grp<numGroups; grp++ ) {
	
	

	



groupID = mae_groupID[grp];
	
	

	



mae_loudnessCompPresetIncludeGroup[gp][grp];
	1
	bslbf

	


}
	
	

	


mae_loudnessCompPresetMinMaxGainPresent[gp];
	1
	bslbf

	


if ( mae_loudnessCompPresetMinMaxGainPresent[gp] ) {
	
	

	



mae_bsLoudnessCompPresetMinGain[gp];
	4
	uimsbf

	



mae_bsLoudnessCompPresetMaxGain[gp];
	4
	uimsbf

	


}
	
	

	

}
	
	

	
}
	
	

	}
	
	


Add new mae_dataType in Table 152:
Table 152 — Value of mae_dataType
	mae_dataType
	value
	meaning

	ID_MAE_GROUP_DESCRIPTION
	0
	Group description follows in the bitstream

	ID_MAE_SWITCHGROUP_DESCRIPTION
	1
	Switch group description follows in the bitstream

	ID_ MAE_GROUP_CONTENT
	2
	Group content information follows in the bitstream

	ID_MAE_GROUP_COMPOSITE
	3
	Composite pair information follows in the bitstream

	ID_MAE_SCREEN_SIZE
	4
	Information about the local screen size follows in the bitstream

	ID_MAE_GROUPPRESET_DESCRIPTION
	5
	Group preset description follows in the bitstream 

	ID_MAE_LOUDNESS_COMPENSATION
	6
	Loudness compensation information follows in the bitstream

	reserved
	7 - 15
	n/a


Add new semantics at end of Section 15.3:
mae_loudnessCompGroupLoudnessPresent
A field that indicates whether group loudness values for loudness compensation follow in the bitstream. 

mae_bsLoudnessCompGroupLoudness
A field that signals a loudness value for the current metadata element group (groupID).


loudnessCompGroupLoudness in dB = 0.25 · 











mae_bsLoudnessCompGroupLoudness - 57.75

mae_loudnessCompDefaultParamsPresent
A field that indicates whether loudness compensation parameters for the default scene follow in the bitstream. If not present, all metadata element groups shall be incorporated in the computation of the loudness compensation gain.

mae_loudnessCompDefaultIncludeGroup
A field that signals whether the current metadata element group (groupID) shall be incorporated in the computation of the loudness compensation gain of the default scene.

mae_loudnessCompDefaultMinMaxGainPresent
A field that indicates whether min/max values for loudness compensation gain of the default scene follow in the bitstream.

mae_bsLoudnessCompDefaultMinGain
A field that signals a minimum value for the loudness compensation gain of the default scene. It can take values between 0 and minus 42 dB in 3 dB steps. A value of minus infinity can be signaled by the largest number of mae_bsLoudnessCompDefaultMinGain (15). If not present the default value is minus infinity.


loudnessCompDefaultMinGain in dB = -3 · 














mae_bsLoudnessCompDefaultMinGain
mae_bsLoudnessCompDefaultMaxGain
A field that signals a maximum value for the loudness compensation gain of the default scene. It can take values between 0 and 45 dB in 3 dB steps. If not present the default value is plus 21 dB.


loudnessCompDefaultMaxGain in dB = 3 · 














mae_bsLoudnessCompDefaultMaxGain
mae_loudnessCompPresetParamsPresent
A field that indicates whether loudness compensation parameters for the current preset (groupPresetID) follow in the bitstream. If not present, all metadata element groups shall be incorporated in the computation of the loudness compensation gain.

mae_loudnessCompPresetIncludeGroup
A field that signals whether the current metadata element group (groupID) shall be incorporated in the computation of the loudness compensation gain of the current preset (groupPresetID).

mae_loudnessCompPresetMinMaxGainPresent
A field that indicates whether min/max values for loudness compensation gain of the current preset (groupPresetID) follow in the bitstream.

mae_loudnessCompPresetMinGain
A field that signals a minimum value for the loudness compensation gain of the current preset (groupPresetID). It can take values between 0 and minus 42 dB in 3 dB steps. A value of minus infinity can be signaled by the largest number of mae_bsLoudnessCompPresetMinGain (15). If not present the default value is minus infinity.


loudnessCompPresetMinGain in dB = -3 · 














mae_bsLoudnessCompPresetMinGain
mae_loudnessCompPresetMaxGain
A field that signals a maximum value for the loudness compensation gain of the current preset (groupPresetID). It can take values between 0 and 45 dB in 3 dB steps. If not present the default value is plus 21 dB.


loudnessCompPresetMaxGain in dB = 3 · 














mae_bsLoudnessCompPresetMaxGain
Add new sub-clause after 15.4:

15.5 Loudness Compensation after Gain Interactivity

An important feature of MPEG-H 3DA is the support of user interaction at the decoder: The user can, e.g. adjust the volume of metadata element groups or even switch them on and off. Changing the level of groups also implies that the overall loudness of the rendered audio scene is changed compared to the unmodified case.
The loudness normalization feature as specified in sub-clause 6.4.7, applies to unmodified reference scenes dependent on the selected preset, target layout or DRC configuration. The loudness compensation tool specified in this sub-clause operates in addition to loudness normalization according to 6.4.7 and compensates for any loudness change relative to the unmodified reference scene due to user interaction with the reference scene.

If the structure mae_LoudnessCompensationData() is present in the metadata bitstream (mae_dataType == ID_MAE_LOUDNESS_COMPENSATION), the loudness compensation tool shall be enabled. If not present, the loudness compensation tool shall be disabled by default.

If the loudness compensation tool is enabled, a loudness compensation gain shall be computed after any gain interaction or preset selection according to Table AMD11.2. The computed compensation gain should be applied to each channel within the loudness normalization stage according to sub-clause 6.4.7. The input parameters for the computation of the loudness compensation gain are extracted as specified in Table AMD11.3. 

Group loudness values can be either transmitted within mae_LoudnessCompensationData() by using mae_loudnessCompGroupLoudnessPresent==1 (see 15.2) or within mpegh3aLoudnessInfoSet() by using loudnessInfoType==1 (see 6.3). If group loudness values for one or more metadata element groups are missing within mpegh3aLoudnessInfoSet(), the loudness compensation gain shall be computed as listed in Table AMD11.2 for groupLoudnessValueMissingFlag==1. 

Table AMD11.2 — Pseudo Code for Computation of Loudness Compensation Gain
	computeLoudnessCompensationGain(
numGroups,









includeGroup[],









groupLoudnessValueMissingFlag,









groupLoudness[],









groupGainDefaultDb[],









groupGainInteractivityDb[],









groupStateDefault[],









groupStateInteractivity[],









minGainDb,









maxGainDb)
{

/* init */

loudnessReference = 0;

loudnessAfterInteract = 0;


/* compute components of loudness compensation gain */

for (n=0; n<numGroups; n++) {


if (groupLoudnessValueMissingFlag == 0) { 



tmp1 = pow(10, (groupGainDefaultDb[n] + groupLoudness[n]) / 10.0);



tmp2 = pow(10, (groupGainInteractivityDb[n] + groupLoudness[n]) / 10.0);


} else { /* group loudness value missing for one or more groups */



tmp1 = pow(10, groupGainDefaultDb[n] / 10.0);



tmp2 = pow(10, groupGainInteractivityDb[n] / 10.0);


}


loudnessReference += includeGroup[n]*groupStateDefault[n] * tmp1;


loudnessAfterInteract += includeGroup[n]*groupStateInteractivity[n] * tmp2;

}


/* loudness compensation gain in dB */

loudnessCompensationGainDb = 10 * log10(










loudnessReference / loudnessAfterInteract);


/* clip loudness compensation gain to min/max gain */

if (loudnessCompensationGainDb < minGainDb) {


loudnessCompensationGainDb = minGainDb;

}

if (loudnessCompensationGainDb > maxGainDb) {


loudnessCompensationGainDb = maxGainDb;

}


return loudnessCompensationGainDb;
}


Table AMD11.3 — Input Parameters for Computation of Loudness Compensation Gain
	Input Parameters
	Default Scene
(no preset selected)
	Preset Scene
(groupPresetID selected, 
gp is the index of the selected preset)

	numGroups
	mae_numGroups
	mae_numGroups

	includeGroup[]
	mae_loudnessCompDefault-IncludeGroup[]
	mae_loudnessCompPreset-IncludeGroup[gp][]

	groupLoudness[]
	loudnessCompGroupLoudness[] if present; alternatively, extracted from mpegh3daLoudnessInfoSet().
	loudnessCompGroupLoudness[] if present; alternatively, extracted from mpegh3daLoudnessInfoSet().

	groupGainDefaultDb[]
	0 dB for all groups.
	If present, groupPresetGain[gp][] and otherwise 0 dB for all groups.

	groupGainInteractivityDb[]
	Current interactivity gain in dB.
	Current interactivity gain in dB.

	groupStateDefault[]
	“1” for groups that are switched on in the default scene, “0” for groups that are switched off.
	“1” for groups that are switched on in the preset definition, “0” for groups that are switched off. For groups that are not explicitly referenced in the preset definition, the respective state of the default scene applies.

	groupStateInteractivity[]
	“1” for groups that are switched on after interactivity, “0” for groups that are switched off.
	“1” for groups that are switched on after interactivity, “0” for groups that are switched off.

	minGain
	loudnessCompDefaultMinGain
	loudnessCompPresetMinGain[gp]

	maxGain
	loudnessCompDefaultMaxGain
	loudnessCompPresetMaxGain[gp]


11 Frequency-Domain Prediction and Time-Domain Post-Filtering
In Table 33 – Syntax of StereoCoreToolInfo(),replace: 

	

}
	
	

	

if (tns_active) {
	
	


with:

	

}
	
	

	

if (common_ltpf) {
	1
	uimsbf

	


if (ltpf_data_present) {
	1
	uimsbf

	



ltpf_pitch_lag_index;
	9
	uimsbf

	



ltpf_gain_index;
	2
	uimsbf

	


}
	
	

	

}
	
	

	

if (tns_active) {
	
	


In Table 34 – Syntax of fd_channel_stream(), replace:
	
}
	
	

	
scale_factor_data();
	
	


with:

	
}
	
	

	
if (!common_ltpf) {
	
	

	

if (ltpf_data_present) {
	1
	uimsbf

	


ltpf_pitch_lag_index;
	9
	uimsbf

	


ltpf_gain_index;
	2
	uimsbf

	

}
	
	

	
}
	
	

	
if ((!indepFlag) && 

           (window_sequence != EIGHT_SHORT_SEQUENCE)) {


 (window_sequence != EIGHT_SHORT_SEQUENCE)) {
	
	

	
	
	

	

if (fdp_data_present) {


	1
	uimsbf

	


fdp_spacing_index;
	8
	uimsbf

	

}
	
	

	
} else {
	
	

	

fdp_data_present = 0;
	
	

	
}
	
	

	
scale_factor_data();
	
	


In 5.2.3.2 Subsidiary payloads, add the following table (based on Table 37 in ISO/IEC 23003-3:2012):
Table AMD12.1 — Syntax of tcx_coding()

	Syntax
	No. of bits
	Mnemonic

	tcx_coding(lg, first_tcx_flag, indepFlag)
	
	

	{
	
	

	
noise_factor;
	3
	uimsbf

	
global_gain;
	7
	uimsbf

	
	
	

	
if (lg == ccfl) {
	
	

	

if (ltpf_data_present) {
	1
	uimsbf

	


ltpf_pitch_lag_index;
	9
	uimsbf

	


ltpf_gain_index;
	2
	uimsbf

	

}
	
	

	
} else {
	
	

	

ltpf_data_present = 0;
	
	

	
}
	
	

	
	
	

	
if ((indepFlag == 0) && (lg == ccfl)) {
	
	

	

if (fdp_data_present) {
	1
	uimsbf

	


fdp_spacing_index;
	8
	uimsbf

	

}
	
	

	
} else {
	
	

	

fdp_data_present = 0;
	
	

	
}
	
	

	[editorial note: changes to tcx_coding of clause 2 go here]
	
	

	
	
	

	
if (first_tcx_flag ) {
	
	

	

if (indepFlag) {
	
	

	


arith_reset_flag = 1;
	
	

	

} else {
	
	

	


arith_reset_flag;
	1
	uimsbf

	

}
	
	

	
} else {
	
	

	

arith_reset_flag = 0;
	
	

	
}
	
	

	
arith_data(lg, arith_reset_flag);
	
	

	}
	
	


At the end of 5.5 add the following subclauses:

5.5.X
Frequency Domain Prediction

5.5.X.1
    Tool Description

The frequency domain prediction (FDP) tool can be utilized for subjective quality improvement of low-frequency harmonic signal components. It is largely designed in a fixed-point way in order to ensure consistent operation across different platforms. FDP is applied individually for each channel of the given element in the TNS filtered (and in the case of channel pair elements, the joint-stereo coded) MDCT spectral domain, as obtained after the entropy decoding and noise filling steps, and is supported in both the MDCT based TCX and FD coding modes.

5.5.X.2
    Operational Constraints

The FDP tool is only available in dependently coded channels/frames (i. e. indepFlag == 0) which are transform coded using the maximum MDCT length (i. e. largest available mod[k] in case of TCX and window_sequence != EIGHT_SHORT_SEQUENCE in case of FD coding) and for which no transition from TCX to FD coding, or vice versa, occurred between the last and current frame. If these requirements are not satisfied, the FDP indicator, fdp_data_present, should equal zero, and all FDP helper states (see below) must be set to zero.

5.5.X.3
    Terms and Definitions

fdp_data_present
binary flag indicating whether the FDP tool is active (1) or disabled (0) in the channel.

fdp_spacing_index
eight-bit integer holding the harmonic spacing index used during the FDP processing.

ccfl
coreCoderFrameLength, the transform length, see ISO/IEC 23003-3:2012, subcl. 6.1.

g
re-scaling gain, based on global_gain value, see ISO/IEC 23003-3:2012, subcl. 7.15.

lg
number of quantized MDCT bins, see ISO/IEC 23003-3:2012, subcl. 6.2.9.2 and 7.15.

noiseFillingStartOffset
noise filling start line, defined depending on ccfl in ISO/IEC 23003-3:2012, Table 109.

samplingFrequency
core-coder sample rate defined by usacSamplingFrequency(Index) located in Table 2.

harmonicSpacing
helper element, unsigned integer holding a harmonic spacing value for FDP decoding.

predictionBandwidth
helper element, unsigned integer holding the maximum line count for FDP decoding.

quantSpecPrev[ ][ ]
helper array, internal signed-integer MDCT line memory for the inter-frame prediction.

fdp_exp[ ]
constant array holding the integer line-expansion data NINT(64 · i 4/3), with 0 ≤ i ≤ 181.

fdp_scf[ ]
constant array holding the integer scale-factor power data NINT(2(s+1)/4) with 0 ≤ s ≤ 63.

fdp_sin[ ]
constant array holding the integer values NINT(4096 · sin(π · i / 256)), with 0 ≤ i ≤ 128.

fdp_int[ ]
output array holding the signed-integer predictor values derived during FDP decoding.

5.5.X.4
    Decoding Process

The FDP decoding procedure is performed in four consecutive operations, which are described in the following.

Step 1:
Derivation of Harmonic Spacing Value

If fdp_data_present == 0, this step is skipped. Otherwise, harmonicSpacing is derived from fdp_spacing_index:

harmonicSpacing = (894 · 512 + fdp_spacing_value) / (2 · fdp_spacing_value)

with fdp_spacing_value = 894 / 3 – fdp_spacing_index. The division in the above equation is an integer division.

Step 2:
Determination of Prediction Bandwidth

If ccfl ≠ 768 and samplingFrequency ≥ 44100 Hz (i. e. usacSamplingFrequencyIndex < 5), predictionBandwidth equals 132. Otherwise, predictionBandwidth equals the long-window-sequence value of noiseFillingStartOffset. Also, predictionBandwidth is limited to lg, the number of quantized MDCT lines given by the arithmetic decoder:

predictionBandwidth = min(lg, predictionBandwidth).

Step 3:
Execution of MDCT-Domain Prediction

The FDP decoding process, which returns the predictor values fdp_int[i], 0 ≤ i < predictionBandwidth, depends on the mode of the current frame and channel. If fdp_data_present == 0, all fdp_int[i] = 0. Otherwise, in case of FD coding, FDP decoding is applied to the expanded, scaled MDCT values outputSpecCurr[i] after noise filling:

  harmIndex = -128, compIndex = 256; /* harmonic and compare indices */

  quantSpecPrev[1][0] = 0;

  s1 = 0;  s2 = -128 * 12*12 /*fdPredGain^2*/; /* reset coefficients */

  if (fdp_data_present) { /* FDP active and allowed, obtain estimate */

    for (i = 0; i < predictionBandwidth; i++) {

      if (abs(i * 256 - harmIndex) >= 384) {  /* bin is not harmonic */

        fdp_int[i] = 0;

      } else {  /* bin is part of the currently active harmonic line */

        reg32 = s1 * quantSpecPrev[0][i] + s2 * quantSpecPrev[1][i];

        fdp_int[i] = sign(reg32) * (((unsigned int)abs(reg32) + 16384) >> 15);

        outputSpecCurr[i] += i_gain * fdp_int[i]; /* actual decoding */

      }

      if (i * 256 == compIndex) {   /* update indices and LPC coeffs */

        harmIndex += harmonicSpacing;

        compIndex = harmIndex & 255;

        if (compIndex > 128) {

          compIndex = 256 - compIndex; /* exploit trigonom. symmetry */

        }

        s1 = 12 /*fdPredGain*/ * fdp_sin[compIndex];

        compIndex = harmIndex >> 8;  /* integer unscaled harm. index */

        if ((compIndex & 1) == 0) {

          s1 *= -1; /* negate first LPC coeff for even harm. indices */

        }

        compIndex = 512 + compIndex * 256;   /* update compare index */

      }

    }

  }

Note that, in case of MDCT based TCX coding in the given frame and channel (core_mode[ch] == 1), inverse gain i_gain = 64 / g, i. e. an amplified version of the re-scaling gain, and in case of FD coding, i_gain = 512.

Step 4:
Update of Spectral Prediction Memory

For each line at index 0 ≤ i < predictionBandwidth an integer representation x_int[i] of the expanded, scaled line value is computed. In case of FD coding, this depends on the quantized value x_ac_quant[i] and its associated scale factor scf[sfb] for band sfb (see ISO 23003-3:2012, subcl. 7.1 and 7.2). If scf[sfb] < 21, x_int[i] = fdp_int[i]. Otherwise,
x[i] = fdp_exp[min(abs(x_ac_quant[i]), 181)] · fdp_scf[min(scf[sfb] – 21, 63)],

x_int[i] = sign(x_ac_quant[i]) · ((x[i] + 512) >> 10) + fdp_int[i]  (“>>” is a binary shift).

In case of MDCT based TCX coding, x_int[i] is derived from the x_tcx_invquant[i] coefficients and the gain g:

x_int[i] = x_tcx_invquant[i] · NINT(g / 64) + fdp_int[i].

For all 0 ≤ i < predictionBandwidth, the update is finalized using quantSpecPrev[1][i] = quantSpecPrev[0][i] and, afterwards,

quantSpecPrev[0][i] = min(max(x_int[i], –31775), 31775).

Note: all x_int[ ] associated with uncoded scale factor bands (i. e. bands whose sfb ≥ max_sfb) must equal zero.

5.5.Y
Long-Term Postfilter

5.5.Y.1
    Tool Description

The long-term postfilter (LTPF) tool can be utilized for subjective quality improvement of low-frequency harmonic signal components. LTPF is applied individually for each channel of the given element in the time domain as obtained after FD/LPD decoding. More specifically, it is applied on the time-domain signal obtained after the overlap-and-add operation in case of the FD mode (see 7.9.3.3 in ISO/IEC 23003-3) and after the bass postfilter in case of the LPD mode (see. 7.17 in ISO/IEC 23003-3).

5.5.Y.2
    Operational Constraints

The LTPF tool is supported in both the FD mode and in the longest MDCT based TCX mode, but not in the shorter MDCT based TCX modes nor in the ACELP mode. However, to avoid any discontinuities that could be introduced when switching from a frame where the tool is supported to a frame where the tool is not supported, the LTPF decoding process is still applied in the modes where the tool is not supported but with ltpf_data_present equal zero.

5.5.Y.3
    Terms and Definitions

ltpf_data_present
binary flag indicating whether the LTPF tool is active (1) or disabled (0) in the channel.

ltpf_pitch_lag_index
nine-bit integer holding the pitch lag index used during the LTPF decoding process. 

ltpf_gain_index
two-bit integer holding the gain index used during the LTPF decoding process.

pit_int
integer part of the pitch lag used during the LTPF decoding process. 

pit_fr
fractional part of the pitch lag used during the LTPF decoding process. 

gain
gain used during the LTPF decoding process. 

Fs
the sampling frequency at which the core coder operates.
ccfl


core coder frame length in samples

5.5.Y.4
    Decoding Process

[editorial note: insert heading "General" to avoid hanging paragraph and renumber following subclauses accordingly]
The LTPF tool processes the output signal of the FD/LPD core decoder with an IIR filter, whose coefficients are derived from three parameters that are decoded from the bit stream. These parameters are estimated at the encoder side on a frame of length ccfl whose middle point coincides with the middle point of the MDCT window. The frame of output signal coming from the FD/LPD core decoder is however delayed by ccfl/2. At the decoder side, the LTPF tool then filters the first half of the current frame using the parameters decoded in the previous frame and filters the second half of the current frame using the parameters decoded in the current frame. To avoid any discontinuities that could be introduced when the filter parameters change between the previous and the current frame, the beginning portion of the second half of the current frame is processed with a transition filter.
The decoding of the filter parameters is described in 5.5.Y.4.1. The IIR filtering of the core decoder output signal is described in 5.5.Y.4.2. The transition filter used to remove possible discontinuities is described in 5.5.Y.4.3.
5.5.Y.4.1 Decoding of the filter parameters

[editorial note: insert heading "General" to avoid hanging paragraph and renumber following subclauses accordingly]
There are three parameters per frame: the integer part of the pitch lag, the fractional part of the pitch lag, and the gain. If ltpf_data_present equals zero, then the three parameters are set to zero. Otherwise, the parameters are decoded as described in the following subclauses.

5.5.Y.4.1.1 Decoding of the integer and fractional parts of the pitch lag

A fractional pitch delay is used with resolutions 1⁄2 in the range [pit_min, pit_fr2-1⁄2], integers only in the range [pit_fr2, pit_fr1-1], and integers with increments by 2 in the range [pit_fr1, pit_max]. pit_min, pit_fr2, pit_fr1 and pit_max are the boundaries of the segments of the quantizers which depend on Fs and they are determined as follows:

pit_min = round( 34 * ( Fs / 2 ) / 12800 ) * 2;

pit_fr2 = 324 - pit_min;

pit_fr1 = 320;

pit_max = 54 + 6 * pit_min;

The integer and fractional parts of the pitch lag are then decoded as follows:

if ( ltpf_pitch_lag_index < (pit_fr2-pit_min)*2 ) 

{

  pit_int = pit_min + (ltpf_pitch_lag_index/2);

  pit_fr = ltpf_pitch_lag_index – (pit_int - pitmin)*2;

} 

else if ( ltpf_pitch_lag_index < (pit_fr2-pit_min)*2 + (pit_fr1-pit_fr2) ) 

{

  pit_int = pit_fr2 + ltpf_pitch_lag_index - (pit_fr2-pit_min)*2;

  pit_fr = 0;

} 

else 

{

  pit_int = (ltpf_pitch_lag_index-(pit_fr2-pit_min)*2-(pit_fr1-pit_fr2))*2 + pit_fr1;

  pit_fr = 0;

}

5.5.Y.4.1.2 Decoding of the gain

The gain is decoded as follows:

gain = ( ltpf_gain_index + 1 ) * 0.0625;

5.5.Y.4.2 IIR filtering

The LTPF processes the core decoder output with an IIR filter whose coefficients are derived from the integer and fractional parts of the pitch lag and from the gain. The IIR filter is implemented with the function given below, assuming filtering a portion of signal, where *x points to the first sample of the portion of input signal, *y points to the first sample of the portion of output signal, and N is the length of the portion of signal.

function ltpf_filter( *x, *y, N, gain, ltpf_gain_index, pit_int, pit_fr )

if ( gain == 0 )

{

  for ( n = 0; n < N; n++ )

  {

    y[n] = x[n];

  }

}

else

{

  for ( n = 0; n < N; n++ )

  {

    s1 = 0;

    for ( k = 0; k < 8; k++ )

    {

      s1 += y[n-pit_int+k-4] * ltpf_filter_coef1[pit_fr][k];

    }

    s2 = 0;

    for ( k = 0; k < 7; k++ )

    {

      s2 += x[n-k] * ltpf_filter_coef2[ltpf_gain_index][k];

    }

    y[n] = x[n] + gain * s1 - 0.95 * gain * s2;

  }

}

The two tables ltpf_filter_coef1 and ltpf_filter_coef2 are given below:

ltpf_filter_coef1[2][8] =

{

  {0.0000000,0.0304386,0.1162701,0.2195613,0.2674597,0.2195613,0.1162701,0.0304386},

  {0.0076226,0.0676508,0.1700032,0.2547232,0.2547232,0.1700032,0.0676508,0.0076226}

}

ltpf_filter_coef2[4][7] =

{

  {0.27150189,0.44286013,0.23027992,0.05759155,-0.00172290,-0.00045168,-0.00005891},

  {0.27581838,0.44682277,0.22783915,0.05410054,-0.00353758,-0.00092331,-0.00011995},

  {0.28044685,0.45103979,0.22519192,0.05037740,-0.00545541,-0.00141719,-0.00018336},

  {0.28543320,0.45554676,0.22230634,0.04638935,-0.00749011,-0.00193612,-0.00024943}

}

5.5.Y.4.3 Transition filtering

The first half of the current frame is always filtered with the function ltpf_filter using the parameters of the previous frame and N=ccfl/2.

If the parameters of the current frame are the same as the ones from the previous frame, the second half of the current frame is also filtered with the function ltpf_filter using the same parameters and N=ccfl/2. However, if the parameters change between the previous and the current frame, a discontinuity can be introduced. In that case, the beginning portion (ccfl/8 samples) of the second half of the current frame is processed with a transition filter described in the following. The remaining 3*ccfl/8 samples are then processed with the function ltpf_filter using the parameters from the current frame and N=3*ccfl/8.

Three cases are considered:

a) The gain of the previous frame is equal to zero and the gain of the current frame is not equal to zero

A simple fade-in mechanism is used where the function ltpf_filter is applied using the filter parameters of the current frame, N=ccfl/8, and changing the line of code

    y[n] = x[n] + gain * s1 - 0.95 * gain * s2;

by the following lines of code

    y[n] = x[n] + alpha * ( gain * s1 - 0.95 * gain * s2 );

    alpha += 1/N;

and by setting alpha to zero at the beginning of the function. 

b) The gain of the previous frame is not equal to zero and the gain of the current frame is equal to zero

A simple fade-out mechanism is used where the function ltpf_filter is applied using the filter parameters of the previous frame, N=ccfl/8, and changing the line of code

    y[n] = x[n] + gain * s1 - 0.95 * gain * s2;

by the following lines of code

    y[n] = x[n] + alpha * ( gain * s1 - 0.95 * gain * s2 );

    alpha -= 1/N;

and by setting alpha to one at the beginning of the function.

c) The gain of the previous frame is not equal to zero and the gain of the current frame is not equal to zero

The discontinuity is removed using the zero-impulse-response (ZIR) of a LPC synthesis filter estimated on the previous frame, and with memories computed using the filter parameters of the current frame.

The coefficients of the LPC synthesis filter are estimated using the classic autocorrelation and levinson-durbin approach and is implemented using the function given below, where x[] is the portion of LTPF output signal corresponding to the last ccfl/4 samples, a[] are the LPC coefficients, N=ccfl/4 is the length of the portion of signal, and M=24 is the order of the LPC synthesis filter.

function ltpf_get_lpc( x[], a[], N, M )

for ( m = 0; m <= M; m++ )

{

  s = 0.0;

  for ( n = 0; n < N-m; n++ )

  {

    s += x[n] * x[n+m];

  }

  r[m] = s;

}

if (r[0] < 100.0)

{

  r[0] = 100.0;

}

r[0] *= 1.0001;

a[0] = 1.0;

rc[0] = -r[1] / r[0];

a[1] = rc[0];

sigma2 = r[0] + r[1] * rc[0];

for ( m = 2; m <= M; m++ )

{

  sum = 0.0f;

  for ( i = 0; i < m; i++ )

  {

    sum += r[m-i] * a[i];

  }

  rc[m-1] = -sum / sigma2;

  sigma2 = sigma2 * ( 1.0 - rc[m-1] * rc[m-1] );

  if ( sigma2 <= 1.0E-09 )

  {

    sigma2 = 1.0E-09;

    for ( i = m; i <= M; i++ )

    {

      rc[i-1] = 0.0;

      a[i] = 0.0;

    }

    break;

  }

  for ( i = 1; I <= (m/2); i++ )

  {

    value = a[i] + rc[m-1] * a[m-i];

    a[m-i] += rc[m-1] * a[i];

    a[i] = value;

  }

  a[m] = rc[m-1];

}

Then, the ZIR of the LPC synthesis filter is computed using the following function, where *x points to the first sample of the beginning portion of the second half of the current frame of input signal, *y points to the first sample of the beginning portion of the second half of the current frame of output signal, and Lz=ccfl/8 is the length of the ZIR.

function ltpf_get_zir( *x, *y, a[], zir[], M, Lz )

for ( m = 0; m < M; n++ )

{

  s1 = 0;

  for ( k = 0; k < 8; k++ )

  {

    s1 += y[m-M-pit_int+k-4] * ltpf_filter_coef1[pit_fr][k];

  }

  s2 = 0;

  for ( k = 0; k < 7; k++ )

  {

    s2 += x[m-M-k] * ltpf_filter_coef2[ltpf_gain_index][k];

  }

  buf[n] = ( x[m-M] - 0.95 * gain * s2 ) – ( y[m-M] - gain * s1 );

}

for ( i = 0; i < Lz; i++ )

{

  for ( j = 1; j <= M; j++ )

  {

    buf[M+i] -= a[M] * buf[M+i-j];

  }

}

for ( i = 0; i < Lz/2; i++ )

{

  zir[i] = buf[M+i];

}

alpha = 1;

for ( i = Lz/2; i < Lz; i++ )

{

  zir[i] = buf[M+i]*alpha; 

  alpha -= 2/Lz;

}

And finally, the function ltpf_filter is applied using the filter parameters of the current frame, N=ccfl/8, and changing the line of code

    y[n] = x[n] + gain * s1 - 0.95 * gain * s2;

by the following line of code

    y[n] = x[n] + gain * s1 - 0.95 * gain * s2 – zir[n];
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