 REF DDOrganization * CHARFORMAT

WORKING DRAFT

 SET DDOrganization "© ISO/IEC 2014 – All rights reserved" © ISO/IEC 2014 – All rights reserved

 SET LibEnteteISO "ISO/IEC WD xxxxx-xx" ISO/IEC WD xxxxx-xx

 SET LIBTypeTitreISO " 63" 63

 SET DDTITLE4 "Part xx: Internet video coding (IVC)" Part xx: Internet video coding (IVC)

 SET DDTITLE3 "Information technology — Coding of audio-vidual objects" Information technology — Coding of audio-vidual objects

 SET DDTITLE2 "Élément introductif — Élément central — Partie xx: Titre de la partie" Élément introductif — Élément central — Partie xx: Titre de la partie

 SET DDTITLE1 "Information technology — Coding of audio-vidual objects — Part xx: Internet video coding (IVC)" Information technology — Coding of audio-vidual objects — Part xx: Internet video coding (IVC)

 SET DDDocLanguage "E" E

 SET DDWorkDocDate "2014-04-04" 2014-04-04

 SET DDDocStage "(20) Preparatory" (20) Preparatory

 SET DDOrganization3 "ISO/IEC" ISO/IEC

 SET DDOrganization1 "ISO/IEC J" ISO/IEC J

 SET DDBASEYEAR ""

 SET DDAmno ""

 SET DDDocSubType ""

 SET DDDocType "International Standard" International Standard

 SET DDpubYear "2014" 2014

 SET DDWorkDocNo ""

 SET DDRefNoPart "ISO/IEC xxxxx" ISO/IEC xxxxx

 SET DDRefGen "ISO/IEC xxxxx‑xx" ISO/IEC xxxxx‑xx

 SET DDRefNum "ISO/IEC WD xxxxx-xx" ISO/IEC WD xxxxx-xx

 SET DDSCSecr ""

 SET DDSecr ""

 SET DDSCTitle "Coding of audio, picture, multimedia and hypermedia information" Coding of audio, picture, multimedia and hypermedia information

 SET DDTCTitle "Information technology" Information technology

 SET DDWGNum "11" 11

 SET DDSCNum "29" 29

 SET DDTCNum "1" 1

 SET LIBLANG " 2" 2

 SET libH2NAME "見出し 2" 見出し 2

 SET libH1NAME "見出し 1" 見出し 1

 SET LibDesc ""

 SET LibDescD ""

 SET LibDescE ""

 SET LibDescF ""

 SET NATSubVer "0" 0

 SET CENSubVer "2" 2

 SET ISOSubVer ""

 SET LIBVerMSDN "STD Version 2.1c2" STD Version 2.1c2

 SET LIBStageCode "10" 10

 SET LibRpl ""

 SET LibICS ""

 SET LIBFIL " 4" 4

 SET LIBEnFileName "C:\Users\shinji_w\Desktop\ISO-IEC_11111-1_(E).doc" C:\Users\shinji_w\Desktop\ISO-IEC_11111-1_(E).doc

 SET LIBFrFileName ""

 SET LIBDeFileName ""

 SET LIBNatFileName ""

 SET LIBFileOld ""

 SET LIBTypeTitreCEN ""

 SET LIBTypeTitreNAT ""

 SET LibEnteteCEN ""

 SET LibEnteteNAT ""

 SET LIBASynchroVF ""

 SET LIBASynchroVE ""

 SET LIBASynchroVD "" ISO/IEC JTC 1/SC 29 N 15159 REF DDWorkDocNo * CHARFORMAT
Date: 2015-03-06
ISO/IEC WD xxxxx-xx
ISO/IEC JTC 1/SC 29/WG 11
Secretariat: REF DDSecr * CHARFORMAT
Information technology — Coding of audio-vidual objects — Part xx: Internet video coding (IVC)
Élément introductif — Élément central — Partie xx: Titre de la partie

Warning

This document is not an ISO International Standard. It is distributed for review and comment. It is subject to change without notice and may not be referred to as an International Standard.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Copyright notice

This ISO document is a working draft or committee draft and is copyright-protected by ISO. While the reproduction of working drafts or committee drafts in any form for use by participants in the ISO standards development process is permitted without prior permission from ISO, neither this document nor any extract from it may be reproduced, stored or transmitted in any form for any other purpose without prior written permission from ISO.

Requests for permission to reproduce this document for the purpose of selling it should be addressed as shown below or to ISO's member body in the country of the requester:

[Indicate the full address, telephone number, fax number, telex number, and electronic mail address, as appropriate, of the Copyright Manger of the ISO member body responsible for the secretariat of the TC or SC within the framework of which the working document has been prepared.]

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.
Contents
Page
ivForeword

Introduction
v
1
Scope
1
2
Normative references
1
3
Definitions, abbreviated terms, and Conventions
1
3.1
Definitions
1
3.2
Abbreviated terms
7
3.3
Conventions
8
4
Bitstream syntax, semantics, and structure of coded video data
15
4.1
Structure of coded video data
15
4.2
Bitstream syntax
18
4.3
Video bitstream semantics
25
5
Parsing Process
31
5.1
ue(v)
31
5.2
ae(v)
32
6
Decoding Process
48
6.1
High-level syntax structure
48
6.2
Picture Header Decoding
48
6.3
Slice decoding
49
6.4
Macroblock decoding
49
6.5
Inverse scanning
53
6.6
Inverse quantization
55
6.7
Inverse transform process
59
6.8
Intra prediction
64
6.9
Inter prediction
71
6.10
Loop Filtering
83

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC xxxxx‑xx was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.

This second/third/... edition cancels and replaces the first/second/... edition (), [clause(s) / subclause(s) / table(s) / figure(s) / annex(es)] of which [has / have] been technically revised.

ISO/IEC xxxxx consists of the following parts, under the general title Information technology — Coding of audio-vidual objects:

· Part xx: Internet video coding (IVC)

· Part [n]:

· Part [n+1]:

Introduction

<TBD>
Information technology — Coding of audio-vidual objects — Part xx: Internet video coding (IVC)
1 Scope
This part of ISO/IEC xxxx specifies MPEG Internet Video Coding.

<TBD>

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC XXXXX, Information technology —
3 Definitions, abbreviated terms, and Conventions
For the purposes of this International Standard, the following terms and definitions apply.

3.1 Definitions
3.1.1 AC coefficient

Any transform coefficient whose frequency indexes are non-zero in at least one dimension.
3.1.2 Backward prediction

The process of predicting the current picture by using future pictures in the display order as reference pictures
3.1.3 Bidirectional prediction

The process of predicting the current picture by the past reference pictures and future reference pictures in the display order.

3.1.4 Bidirectional inter decoded picture

Decoded pictures using bidirectional prediction in inter prediction.

3.1.5 Bit string

Ordered string with limited number of bits. The left most bit is the most significant bit (MSB), the right most bit is the least significant bit (LSB).

3.1.6 Bitstream

The binary bit stream generated by encoding the frame.

3.1.7 Bitstream buffer

The buffer which stores the bitstream.

3.1.8 Bitstream order

The order in the bitstream where the encoded frame located, that is the same as the frame order in the decoding process.

3.1.9 Block

An M(N sample value matrix or transform coefficient matrix (M columns and N rows).

3.1.10 Block scan

Specified serial ordering of quantized coefficients.

3.1.11 Byte

8-bit bit string.

3.1.12 Byte alignment

Starting from the first bit in the bitstream, one bit is byte aligned if the position of the bit is an integer multiple of eight.

3.1.13 Coded picture

The representation of one picture after the encoding process.

3.1.14 Compensation

Obtaining the addition of the decoded residual and the corresponding prediction values.

3.1.15 Component

One of the three picture sample value matrices (one luma matrix and two chroma matrices) or its single sample value.

3.1.16 Chroma

Sample value matrix or single sample value of one of the two colour difference signals.

Notes: symbols of chroma are Cr and Cb.

3.1.17 DC coefficient

A transform coefficient whose frequency indexes are zero in both dimensions
3.1.18 Decode processing

Including the analyzing processing and the decoding processing.
3.1.19 Decoded picture

The reconstructed picture out of the bitstream by the decoder.

3.1.20 Decoded picture buffer

The buffer used for saving the decoded pictures for prediction as well as output reordering and output timing.

3.1.21 Decoder

One embodiment of the decoding process.
3.1.22 Decoding order

The order of decoding frames, which depends on the relationship of inter prediction.
3.1.23 Decoding process

The process that derives decoded pictures from syntax elements.

3.1.24 Dequantization

The process in which transform coefficients are obtained after scaling the quantized coefficients.

3.1.25 Display order

The order of displaying decoded pictures.
3.1.26 Encoder

The realization of the encoding process.

3.1.27 Encoding presentation

The representation after the encoding process

3.1.28 Encoding process

The process that generates the bitstream that conforms to the description provided in this document.

Note: This part doesn’t specify the encoding process.
3.1.29 Forbidden

Define some special syntax elements, which should not exist in the bitstream which conforms to the syntax defined in this part. The reason for forbidden is to avoid the pseudo initial code in the bitstream.
3.1.30 Forward prediction

The process of predicting the current picture by the past reference pictures in the display order.

3.1.31 Forward inter decoded picture

Decoded pictures using only forward prediction in inter prediction.

3.1.32 Flag

A binary variable.

3.1.33 Frame

The representation of video signals in the space domain, Composed of one luma sample matrix (Y) and two chroma sample matrices (Cb and Cr).

3.1.34 Inter coding

Coding one macroblock or picture using inter prediction.

3.1.35 Inter prediction

The process of deriving the prediction value for the current picture (or field) using previously decoded pictures (or fields).

3.1.36 Intra coding

Coding one macroblock or picture using intra prediction.

3.1.37 Intra decoded picture

The decoded picture using only intra prediction. If the I frame uses field coding, the first field can only use intra prediction.

3.1.38 Intra prediction

The process of deriving the prediction value for the current sample using previously decoded sample values in the same decoded picture (or field).

3.1.39 Inverse transform

The process in which transform coefficient matrix is transformed into spatial sample value matrix.
3.1.40 Layer

Layered structure in bitstream, of which higher layer includes lower layer. The coding layers ranging from high to low are respectively: sequence, picture, slice, macroblock and block.

3.1.41 Level

A defined set of constraints on the values for the syntax elements and syntax element parameters under certain level

3.1.42 Luma

Sample value matrix or single sample value representing the luma signal.

Note: the symbol representing luma is Y.

3.1.43 Macroblock

Includes a 16(16 luma sample value block and its corresponding chroma sample value blocks.

3.1.44 Macroblock address

Starting from the upper left macroblock and numbering according to the order of raster scan, with an initial number 0.

3.1.45 Macroblock line

Consecutive macroblocks within the same vertical position that start from the left coded picture boundary to the right. The height of one macroblock line is 16 samples.

3.1.46 Macroblock position

The two-dimensional coordinates of one macroblock in a picture denoted by (x,y).The coordinate of the top left macroblock (x,y) is equal to (0,0); x is incremented by 1 for each macroblock column from left to right; y is incremented by 1 for each macroblock row from top to bottom.
3.1.47 Motion vector

A two-dimensional vector used for inter prediction which refers the current picture to the reference picture, the value of which provides the coordinate offsets between the current picture and the reference picture.
3.1.48 Non-reference picture

Picture not used for inter prediction of subsequent pictures in the decoding process
3.1.49 Output order

The order of outputting decoded pictures, which is the same as the display order.
3.1.50 Output processing

The process of deriving the output frame or field from the decoded picture.

3.1.51 Output reorder delay

The delay between the beginning of decoding one frame in the bitstream and the output of the decoded picture, which is caused by the difference between the display order and the decoding order.

3.1.52 Parse

The procedure of getting the syntax element from the bitstream.

3.1.53 Partitioning

The process of dividing a set into subsets such that each element in the set belong to only one of the subsets.
3.1.54 Picture reordering

The process of reordering the decoded pictures if the decoding order is different from the output order.

3.1.55 Prediction

The implementation of the prediction process.

3.1.56 Prediction process

The process of estimating the decoded sample value or data element using a predictor.

3.1.57 Prediction value

The value, which is the combination of the previously decoded sample values or data elements, used in the decoding process of the next sample value/data element.
3.1.58 Profile

A subset of syntax, semantics and algorithms defined in this part.
3.1.59 Quantization parameter

The parameter that dequantizes the quantized coefficients in the decoding process.

3.1.60 Quantized coefficient

Transform coefficients before dequantization.

3.1.61 Random access

The ability to decode the bit-stream and restore the decoded picture from a point which is not the starting point.

3.1.62 Random access point

The point which can be accessed randomly in the bit-stream.

3.1.63 Raster scan

Maps a two dimensional rectangular raster into a one dimensional raster, in which the entry of the one dimensional raster starts from the first row of the two dimensional raster, and the scanning then goes through the second row and the third row, and so on. Each raster row is scanned in the left to right order.
3.1.64 Reference index

The order indication of the reference frame in the frame buffer in the decoding process.

3.1.65 Reference picture

Picture for inter prediction of subsequent pictures in the decoding process.
3.1.66 Reserved

A special syntax element value which will be used to extend this part in the future.

Note: These values should not exist in the bitstream which conforms to the syntax defined in this part.
3.1.67 Residual

The differences between the reconstructed samples and the corresponding prediction values.

3.1.68 Run

A number of data elements of the same value in the decoding process. On one hand, it means the number of zero coefficients before a non-zero coefficient in the block scan; on the other hand, it means the number of skipped macroblocks.
3.1.69 Sample

The basic elements that compose the picture.
3.1.70 Sample value

The amplitude value of a sample.

3.1.71 Sequence

The highest level syntax structure of coding bitstream, including one or several consecutive coded pictures.
3.1.72 Skipped macroblock

Macroblock without other encoding data except for the indicator “skipped”.
3.1.73 Slice

Several consecutive macroblock rows in the raster scan order.

3.1.74 Slice header

One part of the encoded slice which is the encoding presentation for the public data of macroblocks in the slice.

3.1.75 Source

The term describing the raw video clips or some of their attributes before the encoding process.

3.1.76 Start code

A 32-bit codeword which is unique in the whole bitstream. Start code has a lot of usages, one of which is to identify the start point of the syntax structure in the bitstream.

3.1.77 Stuffing bits

The bit string which is inserted into bit-stream during encoding process and should be aborted during the decoding process.

3.1.78 Syntax element

The analysis result of the data unit in the bitstream.

3.1.79 Transform coefficient

A scalar in the transform domain.

3.1.80 Variable length coding

A reversible entropy coding process, which distributes short codewords to the high-frequency symbols and distributes long codewords to the low-frequency symbols.

3.1.81 Width height ratio

The ratio of the horizontal distance between columns to the vertical distance between rows of the luma samples in one frame.

Shown as h ÷ v, where h is the horizontal width and v is the vertical height.
3.1.82 X-profile decoder

The decoder which is able to decode the bitstream which satisfies the specifications of a certain profile.

3.2 Abbreviated terms

BBV: Bitstream Buffer Verifier

CBR: Constant Bit Rate

LSB: Least Significant Bit

MB: Macroblock

MSB: Most Significant Bit

VBR: Variable Bit Rate

VLC: Variable Length Coding

3.3 Conventions

The mathematical operators and their precedence rules used to describe this Specification are similar to those used in the C programming language. However, operators of integer divisions with truncation and of rounding are specifically defined. If not specifically explained, numbering and counting begin from zero.

3.3.1 Arithmetic operators

+

 Addition
–

Subtraction (as a binary operator) or negation (as a unary prefix operator)

×

Multiplication

ab

 Exponential operation. a is raised to power of b. also it can represent superscript.

/
 Integer division with truncation of the result toward zero. For example, 7/4 and –7/–4 are truncated to 1 and –7/4 and 7/–4 are truncated to –1.
[image: image2.wmf]b

a

 Division in mathematical equations where no truncation or rounding is intended

[image: image3.wmf]å

=

b

a

i

i

f

)

(

The summation of the f (i) with i taking integral values from a up to, b (including b)

a % b

Remainder from division of a by b. both a and b are positive integers

3.3.2 Logical operators

a && b
 Logical AND operation between a and b

a || b
 Logical OR operation between a and b

!

 Logical NOT operation

3.3.3 Relational operators

>

Greater than

>=

Greater than or equal to

<

Less than

<=

Less than or equal to

==

Equal to

!

 Not equal to

3.3.4 Bitwise operators

&

AND operation

|

OR operation

~

Negation operation

a >> b
Shift a in 2’s complement binary integer representation format to the right by b bit positions. This operator is only defined with b, a positive integer

a << b
Shift a in 2’s complement binary integer representation format to the left by b bit positions. This operator is only defined with b, a positive integer

3.3.5 Assignment

=
 Assignment operator

++
 Increment, x++ is equivalent to x = x + 1. When this operator is used for an array index, the variable value is obtained before the auto increment operation
--
 Decrement, i.e. x– – is equivalent to x = x - 1. When this operator is used for an array index, the variable value is obtained before the auto decrement operation

+=
 Addition assignment operator, for example x += 3 corresponds to x = x + 3, x += (-3) is equivalent to x = x + (-3)

-=
 Subtraction assignment operator，for example x -= 3 corresponds to x = x - 3, x -= (-3) is equivalent to x = x - (-3)

3.3.6 Mathematical functions
	Abs(x) =
	[image: image4.wmf];0

;0

xx

xx

>=

ì

í

-<

î

	(3-1)

	Ceil(x)

	takes the smallest integer not smaller than x
	(3-2)

	Clip1(x) =
	Clip3(0, 255, x)

	(3-3)

	Clip3(a,b,c) =
	[image: image5.png]1

c<a
c>b
else

	(3-4)

	Floor(x)
	takes the biggest integer not bigger than x
	(3-5)

	Log2(x)

	logarithm number of x with base 2
	(3-6)

	Log10(x)
	logarithm number of x with base 10
	(3-7)

	Median(x,y,z) =
	x + y + z – Min(x, Min(y, z)) – Max(x, Max(y, z))
	(3-8)

	Min(x, y) =
	[image: image6.wmf];

;

xxy

yxy

<=

ì

í

>

î

	(3-9)

	Max(x, y) =
	[image: image7.wmf];

;

xxy

yxy

>=

ì

í

<

î

	(3-10)

	Round(x) =
	Sign(x) (Floor(Abs(x) + 0.5)
	(3-11)

	Sign(x) =
	[image: image8.wmf]î

í

ì

<

-

>=

0

1

0

1

x

x

	(3-12)

3.3.7 Description of bitsteam syntax parsing process and decoding process

3.3.7.1 Method of describing bitstream syntax

The description style of the syntax is similar to C programming language. Syntax elements in the bitstream are represented in bold type. Each syntax element is described by its name (all lower case letters with underscore characters) and one or two descriptors for its method of coded representation. The decoding process behaves according to the value of the syntax element and to the values of previously decoded syntax elements. When a value of a syntax element is used in the syntax tables or the text, it appears in regular (i.e. not bold) type.

In some cases the syntax tables may use the values of other variables derived from syntax elements values. Such variables appear in the syntax tables, or text, named by a mixture of lower case and upper case letter and without any underscore characters. Variables starting with an upper case letter are derived for the decoding of the current syntax structure and all depending on syntax structures. Variables starting with an upper case letter may be used in the decoding process for later syntax structures mentioning the originating syntax structure of the variable. Variables starting with a lower case letter are only used within the subclause from which they are derived.

The association of values and names is specified in the text. In some cases, “mnemonic” names for syntax element values or variable values are used interchangeably with their numerical values. The names are constructed from one or more groups of letters separated by an underscore character. Each group starts with an upper case letter and may contain more upper case letters.

Hexadecimal notation, indicated by prefixing the hexadecimal number by “0x”, may be used when the number of bits is an integer multiple of 4. For example, “0x1a” represents a bit-string “0001 1010”.

A value equal to 0 represents a FALSE condition in a test statement. The value TRUE is represented by any other value other than zero.

An example of pseudo bistream description syntax is shown below. When a syntax element appears, this means that a data element is read from the bitstream.
	
	descriptor

	/* A statement can be a syntax element with associated descriptor or can be an expression used to specify its existence, type, and value, as in the following examples */
	

	syntax_element
	ue(v)

	conditioning statement
	

	/* A group of statements enclosed in brackets is a compound statement and is treated functionally as a single statement. */
	

	{
	

	
statement
	

	
statement
	

	
…
	

	}
	

	/* A “while” structure specifies that the statement is to be evaluated repeatedly while the condition remains true. */
	

	while (condition)
	

	
statement
	

	/* A “do … while” structure executes the statement once, and then tests the condition. It repeatedly evaluates the statement while the condition remains true. */
	

	do
	

	
statement
	

	while (condition)
	

	/* An “if … else” structure tests the condition first. If it is true, the primary statement is evaluated. Otherwise, the alternative statement is evaluated. If the alternative statement is unnecessary to be evaluated, the “else” and corresponding alternative statement can be omitted. */
	

	if (condition)
	

	
primary statement
	

	else
	

	
alternative statement
	

	/* A “for” structure evaluates the initial statement at the beginning then tests the condition. If it is true, the primary and subsequent statements are evaluated until the condition becomes false. */
	

	for (initial statement; condition; subsequent statement)
	

	
primary statement
	

Parse and decoding process are described using text and C-like pseudo language.

3.3.7.2 Functions

Functions used for syntax description are explained in this section. It is assumed that the decoder has a bitstream position indicator. This bitstream position indicator locates the position of the bit that is going to be read right next. A function consists of its name and a sequence of parameters inside of parentheses. A function may not have any parameters.

byte_aligned()

The function byte_aligned () returns TRUE if the current position is on a byte boundary. Otherwise, it returns FALSE.

next_bits(n)

The function returns the next n bits from the bitstream, MSB first. The current bitstream position indicator is not changed. If the remaining number of bits to be read are less than n, then returns 0.

byte_aligned_next_bits(n)

If the current position of the bitstream is not byte aligned, returns n bits beginning from the next byte aligned position, MSB first. The current bitstream position indicator is not changed. If the current position of the bitstream is byte aligned, returns n bits from the current position, MSB first. The current bitstream position is not changed. If the remaining number of bits to be read is less than n, then returns 0.

next_start_code()

The next_start_code() function locates the next start code. It is defined in the table below.

	next_start_code() {
	Descriptor

	
stuffing_bit
	'1'

	 while (! byte_aligned())
	

	 stuffing_bit
	'0'

	
while (next_bits(24) != '0000 0000 0000 0000 0000 0001')
	

	

stuffing_byte
	'0000 0000'

	}
	

The stuffing_bytes shall appear after a picture header and before a slice header start code. urns 0. position which is going to be read. he primary statement, else executes alternative statem

is_end_of_slice()

This function tests if the current position is at the end of the slice. The function’s definition is shown in the table below.

	is_end_of_slice () {
	descriptor

	if (byte_aligned () {
	

	if (next_bits(32) == 0x80000001
	

	return TRUE; // end of slice
	

	}
	

	else {
	

	if ((byte_aligned_next_bits(24) == 0x000001) && is_stuffing_pattern())
	

	return TRUE; // end of slice
	

	}
	

	return FALSE;
	

	}
	

is_stuffing_pattern()

This function tests whether the remaining bits of the current byte or the next byte (in case the current position is byte aligned), are stuffing bits. The function’s definition is shown in the table below.

	is_stuffing_pattern () {
	descriptor

	
if (next_bits(8-n) == (1<< (7-n)))
// n：0～7，for shifting the bitstream position indicator in the current byte, when n is 0, the bitstream position indicator indicates the MSB of the current byte.
	

	 return TRUE;
	

	 else
	

	 return FALSE;
	

	}
	

read_bits(n)

This function returns n bits of the bitstream from the current position, MSB first. The bitstream position indicator advances n bits. If n is equal to 0, then returns 0. And the bitstream position indicator does not move.

Functions can be also used for describing parsing process and decoding process.

3.3.7.3 Descriptor

The descriptors below represent different parsing processes of syntax elements.

The descriptors below specify the parsing process of syntax elements.

b(8)
A byte with arbitrary value (8 bits). The parsing process for this descriptor is specified by the return value of read_bits(8).

f(n)
A bit string with n bits. The parsing process is specified by the returned value of read_bits(n).

i(n)
Signed integer with n bits. In syntax table, if n is ‘v’, the number of bits is determined by other syntax elements. The parsing process is specified by the return value of read_bits(n), interpreted as two’s complement representation with MSB first.

r(n)
N bits ‘0’. The parsing process is specified by the returned value of read_bits(n).

u(n)
Unsigned integer with n bits. In syntax table, if n is ‘v’, the number of bits is determined by other syntax elements. The parsing process is specified by the returned value of read_bits(n), interpreted as two’s complement representation with MSB first.

ue(v)
Unsigned integer Exp-Golomb-coded syntax element with the first bit on left. The parsing process is specified in subclause 5.1.

3.3.7.4 Reserved, forbidden and marker bit

In the bitstream syntax defined by this Standard, the value of some syntax elements is marked as ‘reserved’ or ‘forbidden’.

The term ‘reserved’, when used in the clauses specifying some values of a particular syntax element, is for future uses. These values shall not be used in the bitstreams conforming to this Standard, but may be used in future extensions of this Standard.

The term ‘forbidden’ specifies some values of syntax elements that shall not be used in the bitstreams conforming to this Standard.

marker_bit specifies a bit with value 1.

reserved_bits specifies that some particular syntax elements are used for future extension of this Standard. The decode processing shall ignore these bits. In the series of consecutive reserved_bits bytes there shall not be a string of more than 21 consecutive ‘0’.

4 Bitstream syntax, semantics, and structure of coded video data
4.1 Structure of coded video data

This section explains the structure of coded bitstream, relationships between layers and processing order.

4.1.1 Video sequence

The highest syntactic structure of the coded video bitstream is the video sequence. A video sequence commences with a sequence header which is followed by one or more coded pictures. In front of each picture, a picture header is present. The order of the coded pictures in the coded bitstream is the bitstream order. The bitstream order is same as the decoding order. The decoding order is not necessarily same as the display order. The video sequence is terminated by a sequence_end_code.

This Specification deals with coding of progressive sequences.

A frame consists of three sample matrices of integers: a luminance sample matrix (Y), and two chrominance sample matrices (Cb and Cr).

An element of each color sample matrix has integer value. The relationship between these Y, Cb and Cr components and the primary (analogue) Red, Green and Blue Signals, the chromaticity of these primaries and the transfer characteristics of the source frame may be specified in the bitstream. This information does not affect the decoding process.

The output of the decoding process is a series of frames. Reconstructed frames are separated in time by a frame period.

4.1.2 Sequence header

A video sequence header commences with sequence header start code and is followed by a series of coded picture data. A sequence header is allowed to be repeatedly present in bitstream. This sequence header is called repeat sequence header. The main purpose of repeat sequence header is providing with random access functionality. The first coded picture after a sequence header should be I frame. The first P frame after a sequence header only refers to pictures appeared after the sequence header. If a bitstream is edited so that all of the data preceding any of the repeat sequence headers is removed (or alternatively random access is made to that sequence header), then the resulting bitstream shall be a legal bitstream that complies with this specification.

4.1.3 Picture

A picture is a frame. Its coded data starts with a picture start code and ends with a sequence start code, a sequence end code or another picture start code. The decode process of a picture includes parsing processing and decoding processing.

4.1.4 Color format

In 4:2:0 format, the Cb and Cr matrices shall be one half the size of the Y-matrix in both horizontal and vertical dimensions. The luminance and chrominance samples are positioned as shown in Figure 4-1.

[image: image9.wmf]
[image: image10.wmf]Luminance sample [image: image11.wmf]Chrominance sample

Figure 4-1 Position of luminance and chrominance samples in 4:2:0 format

4.1.5 Picture types

This specification defines 2 types of decoded pictures:

a non-bidirectional Predictive-decoded (P);

a Bidirectional predictive-decoded (B) picture.
This specification defines 3 frame types of P picture, which can be used for non-reference P frame coding. It is defined in the table below. A non-reference P frame is not used as a reference frame for montion compensated inter-frame prediction. A non-reference P frame with reference picture buffer (RPB) swapping is referred as a non-reference P frame accompanied with the operation of RPB swapping. After decoding a non-reference P frame with RPB swapping, the newest two decoded pictures placed in RPB change their position in the buffer each other.

Table 4-1 P frame types
	P frame type
	value

	P frame
	1

	Non-reference P frame
	2

	Non-reference P frame with RPB swapping
	3

4.1.6 Order between pictures

If there is no B frames in a video sequence, the decoding order and the display order are same. If a video sequence contains more than one B frame, the decoding order is not same as the display order so that before the decoded pictures are output to display, they need to be reordered. The re-ordering is performed according to the following rules:

If there are no decoded frames, and the current frame is not coded with only intra blocks, no frame is output. If there are no decoded frames, and the current frame is coded with only intra blocks, the frame is reconstructed and marked as P-frame;

If the current frame to decode is a B-frame, the output frame is the frame reconstructed from that B frame;

If the current frame to decode is a P-frame and a previously decoded P-frame exists, the output frame is the frame reconstructed from the previously decoded P-frame. If previously decoded P-frame does not exist, no frame is output;

After all the steps are finished, if there are still frames not output in the buffer, output those frames.

The following is an example for explaining re-ordering: there are two coded B-frames between successive coded P-frames. The P-frame with only intra coded blocks is marked as “I”. Frame ‘1I’ is used to form a prediction for frame ‘4P’. Frames ‘4P’ and ‘1I’ are both used to form predictions for frames ‘2B’ and ‘3B’. Therefore the order of coded frames in the coded sequence shall be ‘1I’, ‘4P’, ‘2B’, ‘3B’. However, the decoder shall display them in the order ‘1I’, ‘2B’, ‘3B’, ‘4P’.

Encoder input order：

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13

	I
	B
	B
	P
	B
	B
	P
	B
	B
	I
	B
	B
	P

Decoding order ：

	1
	4
	2
	3
	7
	5
	6
	10
	8
	9
	13
	11
	12

	I
	P
	B
	B
	P
	B
	B
	I
	B
	B
	P
	B
	B

Decoder output (display order)：

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13

	I
	B
	B
	P
	B
	B
	P
	B
	B
	I
	B
	B
	P

Figure 4-2 Encoder input order and decoder order

4.1.7 Reference picture

P frame can use eight (at maximum) forward frames as reference; B frame can refer to one forward reference frame and one backward reference frame.

In a situation where a pixel indicated by a motion vector is outside of the reference picture boundary, the nearest integer sample inside a picture from the indicated outside position shall be used for boundary padding. For luminance sample matrix, pixels in a reference block shall not surpass 16 pixels both horizontally and vertically from the reference picture boundary. For chrominance sample matrix, if color format is 4:2:0, pixels in a reference block shall not surpass 8 pixels both horizontally and vertically from the reference picture boundary.

4.1.8 Slice

Slice is a series of one or more macroblocks in the order of raster scan. Macroblocks of a slice shall not overlap and also slices shall not overlap. The position of slices may change from picture to picture. The decoding process of a macroblock inside a slice should not use data in the other slices of the same picture.

4.1.9 Macroblock

A picture is partitioned into macroblocks. The top-left corner of macroblock shall not surpass the boundary of picture. For interlace case, when two coded fields for a frame appears in sequence in the bitstream, any macroblock shall consist of pixels from the same field data.

A macroblock is partitioned for motion compensation as shown in Figure 4-3. The number inside a rectangle indicates the order of motion vectors and reference indices after partitioning in the bitstream.

[image: image12.png]16x16

16x8

8x16

8x8

16x16 16x8 8x16 8x8
Figure 4-3 Macroblock partition

4.1.10 8x8 block

For 4:2:0 format, a macroblock contains 4 blocks of 8x8 luminance (Y) block and 2 chrominance blocks of 8x8 size (one Cb and one Cr). The numbers shown in Figure 4 indicate the order of 8x8 blocks in a macroblock.

[image: image13.wmf]0

4

5

1

2

3

Y

Cb

Cr

Figure 4-4 partitioning of a macroblock into 8x8 blocks (4:2:0 format)

4.2 Bitstream syntax

4.2.1 Start codes

Start codes are specific bit strings that do not otherwise occur in the video stream. Each start code consists of a start code prefix followed by a start code value. The start code prefix is the bit string ‘0000 0000 0000 0000 0000 0001’.All the start codes shall be byte aligned.

Start code value is an 8 bit integer. The following table 4-1 shows various start code values used in this Specification.

Table 4-1 Start code value
	Start code type
	Start code value (Hexadecimal)

	slice_start_code
	00 ~ AF

	video_sequence_start_code
	B0

	video_sequence_end_code
	B1

	user_data_start_code
	B2

	i_picture_start_code
	B3

	reserved
	B4

	extension_start_code
	B5

	pb_picture_start_code
	B6

	video_edit_code
	B7

	reserved
	B8

	System start code
	B9 ~ FF

When assigning some values, certain syntax elements may contain the same bit string as in start code prefix. These are called as start code emulation.

To prevent the appearance of start code emulation in bitstream, encoding shall be performed in the following manner: when writing a target bit into bitstream, if the bit is the second LSB of a byte, the encoder shall check 22 bits before the target bit. If all these preceding 22 bits are ‘0’, ‘10’ shall be inserted so that the target bit becomes the MSB of the next byte.

The decoding process shall be as follows: when reading a target byte, the decoder shall check the two bytes before the target byte and the target byte. If these three bytes form the bit string ‘0000 0000 0000 0000 0000 0010’, the two LSBs of the target byte shall be dropped. This Standard does not specify the way of dropping the two bits. Any methods can be used to achieve this purpose.

The above method shall not be applied to data in the sequence header, sequence display extension, copyright extension, user data, camera parameter extension, picture display extension, region extension and reserved_extension_data_byte.
4.2.2 Video sequence

	video_sequence() {
	descriptor

	do {
	

	sequence_header()
	

	extension_and_user_data(0)
	

	do {
	

	if (next_bits(32) == i_picture_start_code)
	

	i_picture_header()
	

	else
	

	pb_picture_header()
	

	extension_and_user_data(1)
	

	picture_data()
	

	} while ((next_bits(32) == pb_picture_start_code) || (next_bits(32) == i_picture_start_code))
	

	} while ((next_bits(32) ! = video_sequence_end_code) && (next_bits(32) != video_edit_code))
	

	if (next_bits(32) == video_sequence_end_code)
	

	video_sequence_end_code
	f(32)

	if (next_bits(32) == video_edit_code)
	

	video_edit_code
	f(32)

	}
	

4.2.2.1 Sequence header

	sequence_header() {
	descriptor

	video_sequence_start_code
	f(32)

	profile_id
	u(8)

	level_id
	u(8)

	horizontal_size
	u(14)

	vertical_size
	u(14)

	chroma_format
	u(2)

	sample_precision
	u(3)

	aspect_ratio
	u(4)

	frame_rate_code
	u(4)

	bit_rate_lower
	u(18)

	marker_bit
	f(1)

	bit_rate_upper
	u(12)

	low_delay
	u(1)

	marker_bit
	f(1)

	bbv_buffer_size
	u(18)

	abt_enable
	u(1)

	if_type
	u(1)

	reserved_bits
	r(4)

	next_start_code()
	

	}
	

4.2.3 Extension and user data

	extension_and_user_data(i) {
	descriptor

	while ((next_bits(32) == extension_start_code) || (next_bits(32) == user_data_start_code)) {
	

	if (next_bits(32) == extension_start_code)
	

	extension_data(i)
	

	if (next_bits(32) == user_data_start_code)
	

	user_data()
	

	}
	

	}
	

4.2.3.1 Extension data

	extension_data(i) {
	descriptor

	while (next_bits(32) == extension_start_code) {
	

	extension_start_code
	f(32)

	while (next_bits(24) != ‘0000 0000 0000 0000 0000 0001’)
	

	extension_data_byte
	u(8)

	}
	

4.2.3.2 User data

	user_data() {
	descriptor

	user_data_start_code
	f(32)

	while (next_bits(24) ! = ‘0000 0000 0000 0000 0000 0001’) {
	

	user_data
	b(8)

	}
	

	}
	

4.2.4 Picture

4.2.4.1 I Picture header

	i_picture_header() {
	descriptor

	i_picture_start_code
	f(32)

	bbv_delay
	u(16)

	time_code_flag
	u(1)

	if (time_code_flag = = ‘1’)
	

	time_code
	u(24)

	marker_bit
	f(1)

	picture_distance
	u(8)

	if (low_delay = = ‘1’)
	

	 bbv_check_times
	ue(v)

	fixed_picture_qp
	u(1)

	picture_qp
	u(6)

	reserved_bits
	r(4)

	next_start_code()
	

	}
	

4.2.4.2 PB Picture header

	pb_picture_header() {
	descriptor

	pb_picture_start_code
	f(32)

	bbv_delay
	

	picture_coding_type
	u(2)

	picture_distance
	u(8)

	if (low_delay == ‘1’)
	

	 bbv_check_times
	ue(v)

	fixed_picture_qp
	u(1)

	picture_qp
	u(6)

	no_forward_reference_flag
	u(1)

	reserved_bits
	r(3)

	
next_start_code()
	

	}
	

4.2.4.3 Picture data

	picture_data() {
	descriptor

	do {
	

	slice()
	

	} while (next_bits(32) = = slice_start_code)
	

	}
	

4.2.5 Slice

	slice() {
	Descriptor

	slice_start_code
	f(32)

	if (vertical_size >MaxVerticalPositionLsb)
	

	slice_vertical_position_extension
	 u(3)

	if (fixed_picture_qp = = ‘0’) {
	

	fixed_slice_qp
	u(1)

	 slice_qp
	u(6)

	}
	

	while (! byte_aligned())
	

	aec_byte_alignment_bit
	f(1)

	do {
	

	if (! is_end_of_slice()) {
	

	macroblock()
	

	aec_mb_stuffing_bit
	ae(v)

	}
	

	} while (! is_end_of_slice())
	

	next_start_code()
	

	}
	

Note: MaxVerticalPositionLsb is 2800.
4.2.6 Macroblock

	macroblock() {
	descriptor

	if(PictureType!=0)
	

	mb_part_type
	ae(v)

	If(PictureType == ‘B_IMG’ && MbPartType != ‘B_Skip’) {
	

	If(MbPartType == ‘B_16x16’)
	

	mb_pred_type
	ae(v)

	 else if(MbPartType == ‘B_16x8’ || MbPartType == ‘B_8x16’) {
	

	mb_pred_type

	ae(v)

	mb_pred_type
	ae(v)

	 }
	

	 else if(MbPartType == ‘B_8x8’) {
	

	mb_pred_type

	ae(v)

	mb_pred_type

	ae(v)

	mb_pred_type

	ae(v)

	mb_pred_type
	ae(v)

	}
	

	}
	

	 else if (PictureType == ‘P_IMG’) {
	

	If (MbPartType == ‘P_16x16’ || MbPartType == ‘P_Skip’)
	

	mb_pred_type
	ae(v)

	else if (MbPartType == ‘P_16x8’ || MbPartType == ‘P_8x16’) {
	

	mb_pred_type
	ae(v)

	mb_pred_type
	ae(v)

	}
	

	else if (MbPartType == ‘P_8x8’) {
	

	mb_pred_type
	ae(v)

	mb_pred_type
	ae(v)

	mb_pred_type
	ae(v)

	mb_pred_type
	ae(v)

	}
	

	}
	

	}
	

	If(PictureType == 0 || MbPartType == ‘I_Block ’)
	

	mb_trans_type
	ae(v)

	If(PictureType == 1 && img->number > 1){
	

	if (MbPartType != ‘I_ Block ‘) {
	

	for (i=0; i<MvNum; i++)
	

	 reference_frame_index
	ae(v)

	}
	

	}
	

	 if (MbPartType == ‘I_Block ’) {
	

	If(mb_trans_type == 0){
	

	intra_luma_pred_mode
	ae(v)

	 if (chroma_format != ‘00’)
	

	intra_chroma_pred_mode
	ae(v)

	}
	

	else {
	

	for (i=0; i<4; i++) {
	

	intra_luma_pred_mode
	ae(v)

	 if (chroma_format != ‘00’)
	

	intra_chroma_pred_mode
	ae(v)

	}
	

	}
	

	 }
	

	for (i = 0; i < MvNum; i++) {
	

	mv_diff_x
	ae(v)

	mv_diff_y
	ae(v)

	}
	

	Cbp
	ae(v)

	if (MbCBP > 0 && ! FixedQP)
	

	 mb_qp_delta
	ae(v)

	for (i = 0; i < LumaBlockNum; i++)
	

	block(i)
	

	if (chroma_format == ‘01’) {
	

	for (i = LumaBlockNum; i < (LumaBlockNum + ChromaBlockNum); i++)
	

	block(i)
	

	 }
	

	}
	

	}
	

	
	

	
	

Note: LumaBlockNum is 4, and ChromaBlockNum is 2.

4.2.7 Block

	block(i) {
	descriptor

	if (i<(LumaBlockNum + ChromaBlockNum) && MbCBP & (1 << i)) {
	

	do {
	

	trans_coefficient
	ae(v)

	} while (trans_coefficient != ‘EOB’)
	

	}
	

	}
	

Note: LumaBlockNum is 4, and ChromaBlockNum is 2.
4.3 Video bitstream semantics

4.3.1 Video sequence

video_sequence_end_code - bit string ‘0x000001B1’. It terminates a video sequence.
video_edit_code - bit string ‘0x000001B7’. It means that there may be missing reference pictures for the successive B picture that immediately follow I-picture. This B picture cannot be decoded correctly.
4.3.2 Sequence header

video_sequence_start_code – bit string ‘0x000001B0’. It identifies the start of a sequence.

profile_id – 8-bits unsigned integer. It specifies the profile of a bitstream. The high-order 6-bits of profile_id is group_id, and the low-order 2-bits of profile_id is category_id.

level_id – 8-bits unsigned integer. It specifies the level of a bitstream.

Refer to Annex B for details of profiles and levels.

progressive_sequence – flag. It specifies the scan format in a sequence. ‘1’ means there are only progressive pictures in a sequence. ‘0’ means the sequence may contain progressive and interlaced pictures.

horizontal_size – 14-bits unsigned integer. It specifies the width of display area (align with the left boundary of picture) of the luma component, i.e. the number of samples in horizontal direction.

Width of display area calculated in MB unit is:

MbWidth = (horizontal_size + 15) / 16

horizontal_size shall not be 0. The unit of horizontal_size shall be the samples per line of picture. The top-left sample of the display region shall be aligned with the top-left sample of decoded picture.

vertical_size – 14-bits unsigned integer. It specifies the height of display area (align with the top boundary of picture) of the luminance component, i.e. the number of samples in vertical direction.

In video sequence bitstream, if two fields of an interlaced picture appear in alternate order (i.e., the value of progressive_sequence is ‘0’), the height of display area in MB unit is:

MbHeight = 2 (((vertical_size + 31) / 32)

Otherwise, the height of display area in MB unit is:

MbHeight = (vertical_size + 15) / 16

vertical_size shall not be 0. The unit of vertical_size shall be line of picture

NOTE – The relation of horizontal_size, vertical_size and picture boundaries is shown in Figure 14. In Figure 14, solid line represents the boundaries of display area, which the width and the height are determined by horizontal_size and vertical_size respectively; dash line represents the boundaries of picture, which the width and the height are determined by MbWidth and MbHeight respectively. For example, if the horizontal_size is 1920, and vertical_size is 1080, the MbWidth (16 is 1920, and the MbHeight (16 is 1088.

[image: image14.emf]horizontal_size

v

e

r

t

i

c

a

l

_

s

i

z

e

MbWidth

´

16

M

b

H

e

i

g

h

t

´

1

6

Figure 4-5 Picture boundaries
chroma_format – 2-bits unsigned integer. It specifies the chroma component format. Refer to Table 4-2.

Table 4-2 Chroma format

	chroma_format
	Description

	00
	Reserved

	01
	4:2:0

	10
	Reserved

	11
	Reserved

sample_precision – 3-bits unsigned integer. It specifies the precision of luma and chroma samples. Refer to Table 4-3.

Table 4-3 Sample precision

	sample_precision
	Description

	000
	Forbidden

	001
	The precision of luma and chroma sample is 8-bits.

	010
	Reserved

	011
	Reserved

	100
	Reserved

	101
	Reserved

	110
	Reserved

	111
	Reserved

aspect_ratio – 4-bits unsigned integer. It specifies the sample aspect ratio (SAR) or display aspect ratio (DAR) of reconstructed pictures. See Table 4-4.

Table 4-4 Aspect ratio information
	aspect_ratio
	SAR
	DAR

	0000
	Forbidden
	Forbidden

	0001
	1.0
	–

	0010
	–
	4 (3

	0011
	–
	16 (9

	0100
	–
	2.21 (1

	0101 – 1111
	–
	Reserved

If sequence display extension is absent in bitstream, the whole reconstructed picture will be mapped to the whole active display area.
SAR = (DAR (vertical_size) (horizontal_size
NOTE – In this case, horizontal_size and vertical_size are restricted by the SAR and selected DAR of a source picture.

If sequence display extension is present in bitstream,

SAR = (DAR (display_vertical_size) (display_horizontal_size

frame_rate_code – 4-bits unsigned integer. It specifies the frame rate. Refer to Table 4-5.

Table 4-5 Frame rate codes

	frame_rate_code
	Frame rate

	0000
	Forbidden

	0001
	24000 (1001 (23.967…)

	0010
	24

	0011
	25

	0100
	30000 (1001 (29.97…)

	0101
	30

	0110
	50

	0111
	60000 (1001 (59.94…)

	1000
	60

	1001 – 1111
	Reserved

The time interval between two successive pictures is reciprocal of frame rate. The time interval between two successive fields in an interlaced picture is half of the reciprocal of frame rate.

bit_rate_lower – low-order 18 bits of BitRate.

bit_rate_upper – high-order 12 bits of BitRate.

BitRate = (bit_rate_upper << 18) + bit_rate_lower

BitRate is calculated in 400bits/s and it is a ceiling integer. BitRate shall not be 0.

low_delay – flag. ‘1’ means that when B-picture is present in video sequence, it is decoded as P picture, picture reordering delay is not present, and “big picture” may be present in bitstream (See Annex C); ‘0’ means that B-picture can be present in video sequence, picture reordering delay may exist, and “big picture” shall not present in bitstream.

bbv_buffer_size – 18-bits unsigned integer. It specifies the requirement for bitstream buffer size of BBV for decoding (See Annex C). BBS is the minimum bitstream buffer size in bits for video decoding, and it is calculated as:

BBS = 16 (1024 (bbv_buffer_size
abt_enable – flag. ‘1’ means that either 16x16,8x8 or 4x4 transform can be used in transform coding; "0" means only 8x8 transform can be used in transform coding.

if_type – flag. ‘1’ means that either 4-tap, 6-tap or 10-tap filter can be used in luma componetn interpolation. ‘0’ means that only 6-tap filter can be used in luma component interpolation.

4.3.3 Extension data and user data
extension_start_code - The extension_start_code is the bit string ‘0x000001B5’ in hexadecimal. It identifies the beginning of video extension data.
user_data_start_code - The user_data_start_code is the bit string ‘0x000001B2’ in hexadecimal. It identifies the beginning of user data. The user data continues until receipt of another start code.

4.3.3.1 Extension data

extension_data_byte - The extension_data_byte is an 8-bit unsigned integer which is used for identifying the video extension data.
4.3.3.2 user_data

This is an 8-bit integer. User data is defined by users for their specific applications. In the series of consecutive user_data bytes there shall not be a string of 23 or more consecutive zero bits.

4.3.4 Picture

4.3.4.1 I Picture header

i_picture_start_code – bit string ‘0x000001B3’. It is the start code of I pictures.

bbv_delay – 16-bits unsigned integer.
time_code_flag – flag. ‘1’ indicates that time_code is present in bitstream. ‘0’ indicates that no time_code is present in bitstream.

time_code – 24-bits unsigned integer comprising DropFrameFlag, TimeCodeHours, TimeCodeMinutes, TimeCodeSeconds and TimeCodePictures. See Table 4-6. All these are unsigned integers expressed by using supplemental codes. These parameters correspond to those specified in IEC 60461. The time_code describes the time starting from the first frame with picture_distance 0 to the current frame.

Table 4-6 Time code

	time_code
	Value
	Descriptor

	DropFrameFlag
	
	u(1)

	TimeCodeHours
	0..23
	u(5)

	TimeCodeMinutes
	0..59
	u(6)

	TimeCodeSeconds
	0..59
	u(6)

	TimeCodePictures
	0..59
	u(6)

picture_distance – 8-bits unsigned integer. Picture_distance is equal to the picture_distance of previous picture (display order) plus 1, plus the number of skipped pictures between current picture and previous picture (between the sequence_start_code and the first sequence_end_code (or sequence_edit_code) after it, the number of skipped pictures between two consecutive pictures shall be less than 32, and the sum of the number of skipped pictures and the number of B-pictures between two adjacent non-bidirectional inter decoded pictures shall be less than 127), in modulo 256 operation.
bbv_check_times – If low_delay is equal to ‘0’, bbv_check_times shall not be present in bitstream and BbvCheckTimes is set to 0. If bbv_check_times is present in bitstream, BbvCheckTimes is obtained after parsing bbv_check_times. The value of bbv_check_times shall be less than 216-1.

BbvCheckTimes plus 1 indicates the times BBV buffer has been checked. BbvCheckTimes greater than 0 denotes that current picture is a “big picture”

fixed_picture_qp – flag. ‘1’ indicates the quantization parameter does not change in the picture. ‘0’ indicates the quantization parameter may change.

Picture_qp – 6-bits unsigned integer. It specifies the quantization parameter of the picture, ranging from 0 to 63 inclusive.

4.3.4.2 PB Picture header

pb_picture_start_code – bit string ‘0x000001B6’. It is the start code of P or B.

Picture_coding_type – 2-bits unsigned integer. It specifies the coding type of a picture. See Table 4-7.
Table 4-7 Coding type of a picture

	picture_coding_type
	Coding type

	00
	Forbidden

	01
	Forward inter prediction (P)

	10
	Bidirectional inter prediction (B)

	11
	Reserved

See subclause 4.3.3.1 for other syntax elements of PB picture header.
When low_delay i ‘1’ and picture_coding_type is “10”, the current picture is decoded as P picture.
no_forward_reference_flag – flag. ‘1’ means that current picture shall not use prior reference pictures for forward prediction. ‘0’ means that current picture can use prior reference pictures for forward prediction.

4.3.5 Slice

slice_start_code – a string of 32 bits. The first 24 bits have the value ‘0x000001’ and the last 8 bits are the slice_vertical_position ranging from 0x00 to 0xAF.

slice_vertical_position – 8-bits unsigned integer with range 0x00 to 0xAF. It gives MbRow, the vertical position of the first macroblock in the slice, in macroblock units.
If vertical_size of a coded frame is greater than 2800, MbRow depends on slice_vertical_position and slice_vertical_position_extension.

slice_vertical_position_extension – 3-bits unsigned integer. If vertical_size of a coded frame is less than or equal to 2800, slice_vertical_position_extension shall not be present in bitstream.

MbRow is derived as:

if (vertical_size > 2800)

MbRow = (slice_vertical_position_extension << 7) + slice_vertical_position

else

MbRow = slice_vertical_position

fixed_slice_qp – flag. It is set to ‘1’ to indicate that the quantization parameter in the slice does not change, while ‘0’ means that the quantization parameter may change.

slice_qp – 6-bit unsigned integer. It specifies the quantization parameter of a slice, ranging from 0 to 63 inclusive.

aec_byte_alignment_bit – shall be ‘1’.
aec_mb_stuffing_bit – flag. The aec_mb_stuffing_bit of the last macroblock of a slice shall be ‘1’.

4.3.6 Macroblock
mb_part_type – It determines the partition type of a macroblock. The semantics depends on the type of picture, PictureStructure, EnhancedStereoMode and skip_mode_flag. See subclause 5.4.2 for parsing process.See subclause 6.4.2 for decoding process.
mb_trans_type – It determines the transform type of a macroblock. It is equal to 0 or 1. The semantics depends on the type of picture. See subclause 5.4.2 for parsing process. See subclause 6.4.2 for decoding process.
reference_frame_index – It determines the reference frame of a macroblock. See subclause 6.9.1 for decoding process.
mb_pred_type – 1-bit or 2-bits unsigned integer. Prediction type of each macroblock partition. See subclause 5.4.2 for parsing process. See subclause 6.4.2 for decoding process.
mv_diff_x, mv_diff_y – the value of motion vector difference. it is in one-quarter luma sample units, in range from -4096 to 4095 (the range is -1024 to 1023.75 in luma sample units). Decoder decodes all forward motion vectors first, and then decodes all backward motion vectors. See subclause 5.4.2 for parsing process. See subclause 6.9.1 for decoding process.

cbp – A 4 bits unsigned integer MbCBP is obtained after parsing process of cbp. In format of 4:2:0, it specifies which of the four luma blocks and two chroma blocks in the index numbers from 0 to 5 of a macroblock may contain nonzero quantization coefficients. A 6 bits unsigned integer MbCBP is obtained after parsing process of cbp. See subclause 5.4.2 for parsing process.

mb_qp_delta – It gives the increment of current quantization coefficients relative to predicted quantization coefficients. See subclause 5.4.2 for parsing process.

4.3.7 Block

trans_coefficient – If aec_enable is ‘1’, it is used to specify run length and nonzero quantization coefficient. See subclause 5.4.2 for parsing process.

5 Parsing Process

5.1 ue(v)

The syntax elements described by ue(v) use zero-order Exp-Golomb codes. The parsing process is as follows:

ue(v): The value of syntax element is equal to CodeNum.
When parsing zero-order Exp-Golomb codes, the first nonzero bit is found from the current position of the bitstream while counting the number of zero bits (leadingZeroBits). Then, CodeNum is calculated according to leadingZeroBits. The pseudo-code is as follows:

leadingZeroBits = -1;

for (b = 0; ! b; leadingZeroBits++)

 b = read_bits(1)

CodeNum = 2leadingZeroBits – 1 + read_bits(leadingZeroBits)

Table 5-1 gives the structure of zero-order Exp-Golomb codes. The bit string of Exp-Golomb codes is divided into ‘prefix’ and ‘suffix’. Prefix consists of leadingZeroBits consecutive ‘0’ and a ‘1’. Suffix consists of leadingZeroBits bits, i.e the xi string in the table 5-1. The value of xi is either ‘0’ or ‘1’.
Table 5-1 zero-order Exp-Golomb codes

	Order
	Code structure
	Range of CodeNum

	k = 0
	1
	0

	
	0 1 x0
	1-2

	
	0 0 1 x1 x0
	3-6

	
	0 0 0 1 x2 x1 x0
	7-14

	

5.2 ae(v)

5.2.1 Description
Parsing of the element syntax described by ae(v) is shown as follows:

Initialization before parsing slice, refer to subclause 5.2.2;
Binarization of the syntax element, refer to subclause 5.2.3;
Parsing the bins of the syntax element, refer to subclause 5.2.4:

The index of the bin in the binary string is binIdx, which is associated with a unique context ctxIdx, refer subclause 5.2.4.2;

Parsing the bin according to the ctxIdx, refer subclause 5.2.4.3;

Compare the binary string obtained from parsing the bins with the binary string obtained from the binarization. If there is a binary string which is equal to the parsing binary string, output the value of the syntax element; else continue parsing.

The Pseudo code of parsing is illustrated as follows:
if (the current syntax element is the first one in the slice) {
Initialize all context models;
Initialize the advanced entropy coder
}
Binarization of the syntax element
binIdx = -1
do {
binIdx++
Get the ctxIdx corresponding to the binIdx
Get the context model according to the ctxIdx
Parsing the bin according to the ctxIdx
} while ((b0,…,bbinIdx) is not in the binary string of syntax element)
Output the value of the syntax element

5.2.2 Initialization
5.2.2.1 Initialization of context model

Initialize mps, cycno, and lgmps of each context model. The number of bits of mps, cycno and lgmps are 1, 2 and 11, respectively. mps and cycno should be initialized to 0, and lgmps are initialized to 1023.

5.2.2.2 Initialization of advanced entropy code decoder

rS1, rT1, valueS and valueT are the state variables of advanced entropy code decoder. The precision of rS1 and rT1 are 8 bits, valueS is represented by 32 bits and valueT is represented by 9 bits. rS1 is initialized to 0; rT1 is initialized to 0xFF.

The initialization of valueS and valueT is illustrated as follows:
valueS = 0

valueT = read_bits(9)

while (! ((valueT >> 8) & 0x01)) {

valueT = (valueT << 1) | read_bits(1)

valueS++

}

valueT = valueT & 0xFF

5.2.3 Binarization

Binarization of each syntax element is specified as follows:
· Binarization of mb_qp_delta and mb_part_type of P frame: Value of syntax element is synElVal, the relation between synElVal and binary string is shown in Table 5-2.

Table 5-2 Relation between synEIVal and binary string

	Value of synElVal
	Binary string

	0
	1
	
	
	
	
	

	1
	0
	1
	
	
	
	

	2
	0
	0
	1
	
	
	

	3
	0
	0
	0
	1
	
	

	4
	0
	0
	0
	0
	1
	

	5
	0
	0
	0
	0
	0
	1

	…
	
	
	
	
	
	

	binIdx
	0
	1
	2
	3
	4
	5

· Binarization of mb_part_type of B frame: value of syntax element is synElVal, the relation between synElVal and binary string is shown in Table 5-3.

Table 5-3 Relation between synEIVal and binary string

	Value of synElVal
	Binary string

	0
	0
	
	
	
	
	

	1
	1
	1
	
	
	
	

	2
	1
	0
	1
	
	
	

	3
	1
	0
	0
	1
	
	

	4
	1
	0
	0
	0
	1
	

	5
	1
	0
	0
	0
	0
	1

	…
	
	
	
	
	
	

	binIdx
	0
	1
	2
	3
	4
	5

· Binarization of mb_pred_type: value of syntax element is synElVal, the relationship between synElVal and binary string is shown in Table 5-4.

Table 5-4 Relation between synEIVal and binary string

	Value of synElVal
	Binary string

	
	1bit
	2bits

	0
	0
	0
	0

	1
	1
	0
	1

	2
	-
	1
	0

	3
	
	1
	1

	binIdx
	0
	0
	1

· Binarization of mv_diff_x and mv_diff_y: the syntax elements consist of mvdAbs and mvdSign, firstly parse the mvdAbs and then parse mvdSign. The parsing of the value of mvdAbs synElVal and mvdSign is shown in subclause 5.2.4. The relation between synElval and binary string is shown in Table 5-5. In Table 5-5, if the synElVal is greater than or equal to 3 and synElVal is odd, the first 4 bins of the binary string are ‘1110’, other bins is the 0 order ExGolomb representation of (synElVal-3)/2 as shown in Table 8. If synELVal is greater than 3 and it is even, the first 4 bins are ‘1111’, other bins are 0 order ExGolomb representation of (synElVal-3)/2. If synElVal is equal to 0, mvdSign is not parsed. If mvdSign is equal to 0, mvdAbs is synElVal; if mvdSign is equal to 1, mvdAbs is –synElVal.

Table 5-5 Relation between synEIVal and binary string

	Value of synElVal
	Binary String

	0
	0
	
	
	
	
	
	
	
	
	
	

	1
	1
	0
	
	
	
	
	
	
	
	
	

	2
	1
	1
	0
	
	
	
	
	
	
	
	

	3
	1
	1
	1
	0
	1
	
	
	
	
	
	

	4
	1
	1
	1
	1
	1
	
	
	
	
	
	

	5
	1
	1
	1
	0
	0
	1
	0
	
	
	
	

	6
	1
	1
	1
	1
	0
	1
	0
	
	
	
	

	7
	1
	1
	1
	0
	0
	1
	1
	
	
	
	

	8
	1
	1
	1
	1
	0
	1
	1
	
	
	
	

	9
	1
	1
	1
	0
	0
	0
	1
	0
	0
	
	

	10
	1
	1
	1
	1
	0
	0
	1
	0
	0
	
	

	11
	1
	1
	1
	0
	0
	0
	1
	0
	1
	
	

	12
	1
	1
	1
	1
	0
	0
	1
	0
	1
	
	

	13
	1
	1
	1
	0
	0
	0
	1
	1
	0
	
	

	14
	1
	1
	1
	1
	0
	0
	1
	1
	0
	
	

	…
	
	
	
	
	
	
	
	
	
	
	

	binIdx
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

· Binarization of cbp: Value of syntax element is synElVal, if synElVal is less than 16; the prefix of the binary string is the first 4 bins of synElVal, and the suffix is ‘0’; if synElVal is greater than 15 and less than 31, the binary string consists of the first 4 prefix bins of synElVal, and other bins are ‘100’; if synElVal is greater than 31 and less than or equal to 47, the binary string consist of the first 4 prefix bins of synElVal, and other bins are ‘101’; if synElVal is greater than 47, the binary string consists of the first 4 prefix bins of synElVal, and other bins are ‘11’. The relation between synElVal and binary string is shown in Table 5-6.

Table 5-6 Relation between synEIVal and binary string

	synElVal
	Binary String

	
	4-bits-prefix
	suffix

	1
	1
	0
	0
	0
	0
	
	

	2
	0
	1
	0
	0
	0
	
	

	3
	1
	1
	0
	0
	0
	
	

	…
	
	
	
	
	
	
	

	15
	1
	1
	1
	1
	0
	
	

	16
	0
	0
	0
	0
	1
	0
	0

	17
	1
	0
	0
	0
	1
	0
	0

	…
	
	
	
	
	
	
	

	31
	1
	1
	1
	1
	1
	0
	0

	32
	0
	0
	0
	0
	1
	0
	1

	33
	1
	0
	0
	0
	1
	0
	1

	…
	
	
	
	
	
	
	

	47
	1
	1
	1
	1
	1
	0
	1

	48
	0
	0
	0
	0
	1
	1
	

	49
	1
	0
	0
	0
	1
	1
	

	…
	
	
	
	
	
	
	

	63
	1
	1
	1
	1
	1
	1
	

	binIdx
	0
	1
	2
	3
	4
	5
	6

· Binarization of reference_frame_index of P frame: Value of syntax element is synElVal, the relation between synElVal and binary string is shown in Table 5-7.

Table 5-7 Relation between synEIVal and binary string

	Value of synElVal
	Binary string
	ref_idx

	0
	1
	
	
	
	
	
	0

	1
	0
	1
	
	
	
	
	1

	2
	0
	0
	1
	
	
	
	3

	3
	0
	0
	0
	1
	
	
	7

	4
	0
	0
	0
	0
	1
	
	11

	5
	0
	0
	0
	0
	0
	1
	15

	…
	
	
	
	
	
	
	…

	binIdx
	0
	1
	2
	3
	4
	5
	…

· Binarization of trans_coefficient: the syntax elements consist of coeffLevel, coeffSign and coeffRun. Firstly coeffLevel is obtained from trans_coefficient, if coeffLevel is the first one of the block or not equal to 0, continue parsing to get coeffSign and coeffRun. AbsLevel is equal to the value of synElVal which is obtained through looking up Table 5-1 by using coeffLevel. coeffSign is a binary symbol, which is equal to 0 or 1. RunVal is equal to the value of synElVal which is obtained by through looking up Table 5-1 through RunVal.

· Binarization of intra_luma_pred_mode: value of syntax element is synElVal, the relation between synElVal and binary string in Table C-1.

Table C-1 Relation between synEIVal and binary string

	Value of synElVal
	Binary string

	0
	1
	
	
	

	1
	0
	1
	
	

	2
	0
	0
	1
	

	3
	0
	0
	0
	1

	4
	0
	0
	0
	0

	binIdx
	0
	1
	2
	3

· Binarization of intra_chroma_pred_mode: value of syntax element is synElVal, the relation between synElVal and binary string in Table C-2.

Table C-2 Relation between synEIVal and binary string

	Value of synElVal
	Binary string

	0
	1
	
	

	1
	0
	1
	

	2
	0
	0
	1

	3
	0
	0
	0

	binIdx
	0
	1
	2

5.2.4 Parsing Binary String

5.2.4.1 Description

For each bin, set the contextWeight 0.If bin is mvdSign or coeffSign or is the 0 order Ex-Golomb part of mv_diff_x and mv_diff_y, set BypassFlag to 1; otherwise, BypassFlag to 0. When parsing bins, if BypassFlag is equal to 0, set ctxIdx according to binIdx firstly (as shown in 5.2.4.2), and then parsing bins (as shown in 5.2.4.3); otherwies, parsing bins directly (as shown in 5.2.4.3).
In parsing process, binIdx is initialized to 0, and when a bin is parsed, binIdx is increased by 1, compare the resulting binary string with binary string from Table 9 to Table 13 to get synElVal.
5.2.4.2 Determine ctxIdx

Determine ctxIdx according to initialized index and ctxIdxInc. Initialized index of syntax elements is shown in Table 5-7.

Table 5-7 Initialized index of syntax elements
	Syntax element
	Type
	Initialized index

	mb_trans_type
	
	3

	mb_part_type
	
	4

	mb_pred_type
	
	19

	intra_luma_pred_mode
	
	22

	intra_chroma_pred_mode
	
	26

	reference_frame_index
	
	30

	mv_diff_x
	
	36

	mv_diff_y
	
	42

	Cbp
	
	48

	mb_qp_delta
	
	54

	trans_coefficient
	Luma
	58

	
	Chroma
	124

The process of determining ctxIdx of syntax element is specified as follows:

Determine ctxIdx of mb_part_type:

Set ctxIdxInc according to binIdx:

If current frame is P frame:

 ctxIdxInc = Min(binIdx, 3)

Otherwise, if current frame is B frame and binIdx equal to 0:

 ctxIdxInc = 5 + a + b
If the left neighbouring block A (or upper neighbouring block B) of the current block E is marked as “available”, and A (or B) is not ‘P_16x16 (Skip)’, or ‘B_Skip’, then a (or b) is set to 1; otherwise, a (or b) is set to 0. Refer to subclause 6.4.3 for the relation of A, B and E.

Otherwise, if current frame is B frame and binIdx <= 2:

 ctxIdxInc = 6 + binIdx

Otherwise, if current frame is B frame and binIdx > 2:

 ctxIdxInc = 8
Compute ctxIdx:

 ctxIdx = initialized index + ctxIdxInc

Determine ctxIdx of mb_pred_type:

Set ctxIdxInc according to binIdx:

If binIdx is equal to 0:

 ctxIdxInc = 0

Otherwise, if the first bin of the \binary string is equal to ‘0’:

 ctxIdxInc = 1

 Otherwise,
 ctxIdxInc = 2

Compute ctxIdx:

 ctxIdx = initialized index + ctxIdxInc
Determine ctxIdx of intra_luma_pred_mode:

 ctxIdx = initialized index + binIdx
Determine ctxIdx of intra_chroma_pred_mode:

 ctxIdx = initialized index + binIdx
Determine ctxIdx of mv_diff_x and mv_diff_y：

Set binIdx according to ctxIdxInc:

If binIdx is equal to 0:

 if (mvda < 2)

 ctxIdxInc = 0

 else if (mvda < 16)

 ctxIdxInc = 1

 else

 ctxIdxInc = 2

Otherwise, if binIdx is equal to 1:

 ctxIdxInc = 3

 Otherwise, if binIdx is equal to 2:

 ctxIdxInc = 4

 Otherwise, if binIdx is equal to 3:

 ctxIdxInc = 5

Otherwise, BypassFlag is set to 1

Compute ctxIdx:

 ctxIdx = Initialized index + ctxIdxInc

If the left neighbouring 8(8 block A of current block E is marked as “available” and mv_diff_x or mv_diff_y presents in the bit stream, mvda is set as follows:

If the current block E is forward prediction and A is forward prediction or Bi-prediction block, mvda of A is the absolute value of mv_diff_x and mv_diff_y.

Otherwise, if E is Bi-prediction block and A is forward or Bi-prediction block, mvda is the absolute value of mv_diff_x and mv_diff_y of A.

Otherwise, if E is backward prediction block and A is backward prediction block, mvda is the absolute value of mv_diff_x and mv_diff_y of A.

Otherwise, mvda is set to 0.

If the left neighbouring 8(8 block A of current block E is marked as “not available”, then mvda is set to 0. Refer to subclause 6.4.3 for the relation of A, B and E.

Determine ctxIdx of cbp:

Set binIdx according to ctxIdxInc:

If binIdx is not greater than 3:

 ctxIdxInc = a + 2 (b

Otherwise, if binIdx is equal to 4:

 ctxIdxInc = 4

Otherwise

 ctxIdxInc = 5

Compute ctxIdx:

 ctxIdx = Initialized index + ctxIdxInc

If left neighbouring 8(8 block A (or upper neighbouring block B) of current block E is marked as “available” and there are not nonzero coefficients in A (or B), then a (or b) is set to 1; otherwise, a (or b) is set to 0. Refer to subclause 6.4.3 for the relation of A, B and E.

Determine ctxIdx of mb_qp_delta：

Set binIdx according to ctxIdxInc:

If binIdx is equal to 0:

 if (PreviousDeltaQP != 0)

 ctxIdxInc = 1

 else

 ctxIdxInc = 0

Otherwise, if binIdx is equal to 1:

 ctxIdxInc = 2

 Otherwise,
 ctxIdxInc = 3

Compute ctxIdx:

 ctxIdx = Initialized index + ctxIdxInc

Determine ctxIdx of coeffLevel trans_coefficient：

Set binIdx according to ctxIdxInc:

If binIdx is not equal to 0 or IMax is equal to 0:

 contextWeighting = 0

 ctxIdxInc = priIdx (3 + secIdx – (priIdx != 0)

Otherwise,
 contextWeighting = 1

 ctxIdxInc = priIdx (3 + secIdx - 1

 ctxIdxIncW = 14 + (pos >> 5) (16 + ((pos >> 1) & 0x0F)

Compute ctxIdx:

 ctxIdx = initialized index + ctxIdxInc

If contextWeighting = 1, then ctxIdxW = initialized index + ctxIdxIncW, where priIdx and secIdx are shown in Table 15 and Table 16, respectively. pos is the position of the quantized coefficients in the inverse scanning method. For each 8(8 block, pos shall be initialized to 0. IMax is the maximum value of the decoded coefficients of current 8(8 block. For each 8(8 block, IMax shall be initialized to 0.

Determine ctxIdx of coeffRun of trans_coefficient：

Set ctxIdxInc according to binIdx and AbsLevel：

 ctxIdxInc = priIdx (4 + secIdx

Compute ctxIdx：

 ctxIdx = Initialized index + 46 + ctxIdxInc

where priIdx and secIdx are shown in Table 5-8 and Table 5-9, respectively.

Table 5-8 Relation between priIdx and lMax
	lMax
	priIdx

	0
	0

	1
	1

	2
	2

	3
	3

	4
	3

	>= 5
	4

Table 5-9 Relation between coeffLevel, coeffRun and secIdx

	secIdx
	Description

	
	coeffLevel
	coeffRun

	
	lMax == 0
	lMax != 0
	

	0
	binIdx=0
	binIdx=0
	AbsLevel=1，and binIdx=0

	1
	binIdx>=1
	binIdx=1
	AbsLevel=1，and binIdx>=1

	2
	-
	binIdx>=2
	AbsLevel>1，and binIdx=0

	3
	-
	-
	AbsLevel>1，and binIdx>=1

5.2.4.3 Parsing bins

5.2.4.3.1 Parsing process

The process of parsing bins is specified as follows:

Parsing bin to get its value of binVal

If BypassFlag = 1, execute decode_bypass procedure (refer to subclause 5.2.4.3.3).
Otherwise, if current syntax element is aec_mb_stuffing_bit, then execute decode_aec_stuffing_bit procedure (refer to subclause 5.2.4.3.4).

Otherwise, execute decode_decision procedure (refer to subclause 5.2.4.3.2).

If binVal is equal to 0, set bin to ‘0’. If binVal is equal to 1, set bin to ‘1’.
5.2.4.3.2 decode_decision

If contextWeighting is equal to 1, the inputs of decode_decision procedure are rS1, rT1, valueS, valueT and the context model ctx1 and ctx2; otherwise, the inputs of decode_decision procedure are rS1, rT1, valueS, valueT and context model ctx. The output of decode_decision procedure is the value of bin binVal.
The Pseudo code of decode_decision procedure is shown as follows:

decode_decision()

{

if (contextWeighting == 1) {

if (ctx1->mps == ctx2->mps) {

predMps = ctx1->mps

lgPmps = (ctx1->lgPmps + ctx2->lgPmps) / 2

}

else {

if (ctx1->lgPmps < ctx2->lgPmps) {

predMps = ctx1->mps

lgPmps = 1023 - ((ctx2->lgPmps – ctx1->lgPmps) >> 1)

}

else {

predMps = ctx2->mps

lgPmps = 1023 - ((ctx1->lgPmps – ctx2->lgPmps) >> 1)

}

}

}

else {

 predMps = ctx->mps

 lgPmps = ctx->lgPmps
 }
 if (rT1 >= (lgPmps >> 2)) {
 rS2 = rS1
 rT2 = rT1 - (lgPmps >> 2)
 sFlag = 0
}

else {

 rS2 = rS1 + 1

 rT2 = 256 + rT1 - (lgPmps >> 2)

 sFlag = 1
 }
 if(rS2 > valueS || (rS2 == valueS && valueT >= rT2)) {
 binVal = ! predMps
 if (sFlag == 0)
 tRlps = lgPmps >> 2
 else
 tRlps = rT1 + (lgPmps >> 2)
 if (rS2 == valueS)
 valueT = valueT - rT2
 else
 valueT = 256 + ((valueT << 1) | read_bits(1)) - rT2
 while (tRlps < 0x100) {
 tRlps = tRlps << 1
 valueT = (valueT << 1) | read_bits(1)
 }
 rS1 = 0
 rT1 = tRlps & 0xFF
 valueS = 0
 while (valueT < 0x100) {
 valueS++
 valueT = (valueT << 1) | read_bits(1)
 }
 valueT = valueT & 0xFF
 }
 else {
 binVal = predMps
 rS1 = rS2
 rT1 = rT2
}
if (contextWeighting == 1) {
 ctx1 = update_ctx(binVal, ctx1)
 ctx2 = update_ctx(binVal, ctx2)
}
else
 ctx = update_ctx(binVal, ctx)
return (binVal)
}
5.2.4.3.3 decode_bypass

The inputs of decode_bypass procedure are rS1, rS2, valueS and valueT. The output of decode_bypass procedure is binVal.
The pseudo code of decode_bypass procedure is shown as follows:

decode_bypass()

{

 predMps = 0

 lgPmps = 1023
 if (rT1 >= (lgPmps >> 2)) {
 rS2 = rS1
 rT2 = rT1 - (lgPmps >> 2)
 sFlag = 0
 }

 else {

 rS2 = rS1 + 1

 rT2 = 256 + rT1 - (lgPmps >> 2)

 sFlag = 1
 }
 if(rS2 > valueS || (rS2 == valueS && valueT >= rT2)) {
 binVal = ! predMps
 if (sFlag == 0)
 tRlps = lgPmps >> 2
 else
 tRlps = rT1 + (lgPmps >> 2)
 if (rS2 == valueS)
valueT = valueT - rT2
 else

valueT = ((valueT << 1) | read_bits(1)) - rT2 + 256
 while (tRlps < 0x100) {
 tRlps = tRlps << 1
valueT = (valueT << 1) | read_bits(1)
 }
 rS1 = 0
 rT1 = tRlps & 0xFF
 valueS = 0
 while (valueT < 0x100) {
valueS++

valueT = (valueT << 1) | read_bits(1)
 }
 valueT = valueT & 0xFF
 }
 else {
 binVal = predMps
 rS1 = rS2
 rT1 = rT2
 }
 return (binVal)
}
5.2.4.3.4 decode_aec_stuffing_bit

The inputs of decode_aec_stuffing_bit procedure are rS1, rS2, valueS and valueT. The output of decode_aec_stuffing_bit procedure is binVal.
The pseudo code of decode_aec_stuffing_bit procedure is shown as follows:

decode_aec_stuffing_bit()

{

 predMps = 0

 lgPmps = 4

if (rT1 >= (lgPmps >> 2)) {

rS2 = rS1

rT2 = rT1 - (lgPmps >> 2)

sFlag = 0

 }

 else {

 rS2 = rS1 + 1

 rT2 = 256 + rT1 - (lgPmps >> 2)

 sFlag = 1

}

if(rS2 > valueS || (rS2 == valueS && valueT >= rT2)) {

binVal = ! predMps

if (sFlag == 0)

tRlps = lgPmps >> 2

else

tRlps = rT1 + (lgPmps >> 2)

if (rS2 == valueS)

valueT = valueT – rT2

else

valueT = 256 + ((valueT << 1) | read_bits(1)) – rT2

while (tRlps < 0x100) {

tRlps = tRlps << 1

valueT = (valueT << 1) | read_bits(1)

}

rS1 = 0

rT1 = tRlps & 0xFF

valueS = 0

while (valueT < 0x100) {

valueS++

valueT = (valueT << 1) | read_bits(1)

}

valueT = valueT & 0xFF

}

else {

binVal = predMps

rS1 = rS2

rT1 = rT2

}

return (binVal)

}

5.2.4.3.5 update_ctx

The inputs of update_ctx procedure are binVal and ctx. The output of update_ctx procedure is the updated ctx.

The pseudo code of update_ctx procedure is shown as follows:

update_ctx()

{

if (ctx->cycno <= 1)

cwr = 3

else if (ctx->cycno == 2)

cwr = 4

else

cwr = 5

if (binVal != ctx->mps) {

if (ctx->cycno <= 2)

ctx->cycno = ctx->cycno + 1

else

ctx->cycno = 3

}

else if (ctx->cycno == 0)

ctx->cycno = 1

if (binVal == ctx->mps)

ctx->lgPmps = ctx->lgPmps – (ctx->lgPmps >> cwr) - (ctx->lgPmps >> (cwr+2))

else {

switch (cwr) {

case 3:

ctx->lgPmps = ctx->lgPmps + 197

break

case 4:

ctx->lgPmps = ctx->lgPmps + 95

break

default:

ctx->lgPmps = ctx->lgPmps + 46

}

if (ctx->lgPmps > 1023) {

ctx->lgPmps = 2047 - ctx->lgPmps

ctx->mps = ! (ctx->mps)

}

}

return (ctx)

}

6 Decoding Process

This chapter defines video decoding process.

The video decoding process is shown in figure 6-1.
[image: image15.wmf]Variable

Length

Decoding

Inverse

Quantis-

ation

Inverse

Scan

Motion

Compen-

sation

Inverse

DCT

Frame-

store

Memory

f

[

y

][

x

]

F

[

v

][

u

]

QF

[

v

][

u

]

QFS

[

n

]

Coded

Data

Decoded

samples

d

[

y

][

x

]

Figure 6-1 video decoding process
6.1 High-level syntax structure

The reconstructed frames shall be output from the decoding process at regular intervals of the frame period.

6.2 Picture Header Decoding

Picture header decoding process is as follows:

If the start code of current picture is ‘0x00001B3’, it is I-picture and PictureType is 0.
If the start code of current picture is ‘0x00001B6’ and picture_code_type is ‘01’, it is P-picture and PictureType is 1.
If the start code of current picture is ‘0x00001B6’ and picture_code_type is ‘10’, it is B-picture and PictureType is 2.

The predictive quantization parameter PreviousQP is initialised to picture_qp. The increment of predictive quantization parameter PreviousDeltaQP is initialised to 0. A fixed quantization parameter FixedQP is equal to fixed_picture_qp. The macroblock index of current picture MbIndex is initialised to 0.
6.3 Slice decoding

The slice decoding process is as follows:

MBIndex is equal to MbRow (MbWidth + MbColumn. predQuantCoeffMatirx[i, j] (i, j = 0~7) is initialised to 0.
If fixed_picture_qp is ‘0’, predictive quantization parameter of a slice PreviousQP is equal to slice_qp. The increment of predictive quantization parameter PreviousDeltaQP is initialised to 0. The fixed quantization parameter flag FixedQP is equal to fixed_slice_qp.

6.4 Macroblock decoding

6.4.1 Initialization
After that, decode macroblock in the index number MbIndex. After decoding, MbIndex is incremented by 1.

MbCodingType is set to 0.

6.4.2 Macroblock Types

The decoding process for MbPartType and MbPredType is as follows:

If current picture is I picture

MbPartType is ‘I_Block’, and MvNum is 0.

If current picture is a P-picture

Refer to Table 6-1(a) to find the relation between MbPartType and MbPartTypeIndex.

Refer to Table 6-1(b) and Table 6-1(c) to find the relation between MbPredType and MbPredTypeIndex.
Refer to Table 6-1(d) to find the relation between ‘I_Block’ and MbTransformType.
If current picture is a B-picture

Refer to Table 6-2(a) to find the relation between MbPartType and MbPartTypeIndex.
Refer to Table 6-2(b) and Table 6-2(c) to find the relation between MbPredType and MbPredTypeIndex.
Refer to Table 6-2(d) to find the relation between ‘I_Block’ and MbTransformType.
Table 6-1 (a) MbPartTypes of P macroblocks

	MbPartTypeIndex
	MbPartType
	MbPredTypeNum
	Class of MbType
	MbTransformType

	0
	P_16x16
	1
	P macroblock
	Trans_16x16

	1
	P_8x16
	2
	P macroblock
	Trans_16x16

	2
	P_16x8
	2
	P macroblock
	Trans_16x16

	3
	I_Block
	0
	I macroblock
	Trans_16x16, Trans_8x8

	4
	P_8x8
	4
	P macroblock
	Trans_8x8

Table 6-1 (b) MbPredTypes of P_16x16 macroblock
	MbPredIndex
	MbPredType
	MbPartMvNum
	MbPartPredMode

	0
	Skip
	0
	forward

	2
	Fwd
	1
	forward

	3
	Mh
	1
	multiple-hypothesis

Table 6-1 (c) MbPredTypes of P_16x8, P_8x16, and P_8x8 macroblocks
	MbPredIndex
	MbPredType
	MbPartMvNum
	MbPartPredMode

	0
	Fwd
	1
	forward

	1
	Mh
	1
	multiple-hypothesis

Table 6-1 (c) MbTransformTypes of I_Block macroblock
	MbTransformIndex
	MbTransformType
	MvNum
	MbPredMode

	0
	Trans_16x16
	0
	none

	1
	Trans_8x8
	0
	none

	2
	Trans_4x4
	0
	none

Table 6-2 (a) MbPartTypes of B macroblocks
	MbPartTypeIndex
	MbPartType
	MbPredTypeNum
	Class of MbType
	MbTransformType

	0
	B_Skip
	0
	B macroblock
	Trans_16x16

	1
	B_16x16
	1
	B macroblock
	Trans_16x16

	2
	B_8x16
	2
	B macroblock
	Trans_16x16

	3
	B_16x8
	2
	B macroblock
	Trans_16x16

	4
	I_Block
	0
	I macroblock
	Trans_16x16, Trans_8x8

	5
	B_8x8
	4
	B macroblock
	Trans_8x8

Table 6-2 (b) MbPredTypes of B_16x16, B_16x8, and B_8x16 macroblocks
	MbPredIndex
	MbPredType
	MbPartMvNum
	MbPartPredMode

	0
	Bck
	1
	Backward

	2
	Fwd
	1
	Forward

	3
	Sym
	2
	Bidirectional

Table 6-2 (c) MbPredTypes of P_8x8 macroblock
	MbPredIndex
	MbPartType
	MbPartMvNum
	MbPartPredMode

	0
	Skip
	0
	Bidirectional

	1
	Fwd
	1
	Forward

	2
	Bck
	1
	Backward

	3
	Sym
	2
	Bidirectional

Table 6-2 (d) MbTransformTypes of I_Block macroblock
	MbTransformIndex
	MbTransformType
	MvNum
	MbPredMode

	0
	Trans_16x16
	0
	none

	1
	Trans_8x8
	0
	none

In Table 6-1 and Table 6-2, ‘Skip’ means skip mode, ‘Sym’ means symmetrical mode, and ‘Mh’ means multiple-hypothesis mode. MvNum indicates the number of motion vectors of macroblock in the bitstream. The symmetrical mode is a bidirectional prediction mode in which only forward reference index and forward motion vectors are present in the bitstream. The derivation process of backward motion vectors is described in subclause 6.9.2.4. The derivation process of motion vectors of multiple-hypothesis mode is describled in subclause 6.9.2.4.
6.4.3 Macroblock Transform Types

The decoding process for MbTransformType is as follows:

a) If current picture is I picture

The MbTransformType is decided by the value of mb_trans_type. If mb_trans_type is 0, then MbTransformType is “Trans_16x16”; otherwise, MbTransformType is “Trans_8x8”.
b) If current picture is a P-picture

Refer to Table 6-1(a) to find the relation between MbPartType and MbTransformType.

Refer to Table 6-1(d) to find the relation between ‘I_Block’ and MbTransformType.
c) If current picture is a B-picture

Refer to Table 6-2(a) to find the relation between MbPartType and MbTransformType.

Refer to Table 6-2(d) to find the relation between ‘I_Block’ and MbTransformType.
6.4.4 Neighbouring Block
A block E and its neighbouring blocks A, B, C and D are as shown in Figure 2. In Figure 6-2, the size of block E can be 16(16, or 8(8. Block A is the left neighbouring block of block E, and block B is the upper neighbouring block of block E. Assuming that the coordinate in picture of the top-left corner of block E is (x0, y0), the coordinate of the top-right corner of block E is (x1, y1). Block X (X can be A, B, C or D) represents a coded block, and its coordinates are shown in Table 6-4.

All coordinates in Table 6-4 are coordinates of sample in picture.

[image: image16.emf]D B C

A

E

Figure 6-2 Block E and its neighbouring blocks

Table 6-4 Coordinates of neighbouring blocks

	PictureStructure
	top-right corner of A
	bottom-left corner of B
	bottom-left corner of C
	bottom-right corner of D

	1
	(x0-1,y0)
	(x0,y0-1)
	(x1+1,y1-1)
	(x0-1,y0-1)

If a block is “not exist” or it is undecoded, the block is marked as “unavailable”; otherwise the block is marked as “available”. If a sample of picture is undecoded, or the block containing the sample is marked as “not exist”, the sample is marked as “not available”; otherwise the sample is marked as “available”.

6.5 Inverse scanning

6.5.1 Inverse scanning process for block coefficients in Zigzag order
(1) When MbTransformType is “Trans_4x4”
Input of this process is an array Q with size of 16. The elements of the array is qn, with 0≤n≤15.

Output of this process is a two-dimensional array C with size of 4×4. The elements of the array is cij, with 0≤i≤3，0≤j≤3.

The conversion between the array Q and C is: cij= qn , and the relationship between i, j and n is defined as follows.
IVC_SCAN4[4x4] = {

0, 1, 4, 8,

 5, 2, 3, 6,

 9, 12, 13, 10,

 7, 11, 14, 15 };
 i = IVC_SCAN4[n] / 4;
j = IVC_SCAN4[n] % 4;
(2) When MbTransformType is “Trans_8x8”

Input of this process is an array Q with size of 64. The elements of the array is qn, with 0≤n≤63.

Output of this process is a two-dimensional array C with size of 8×8. The elements of the array is cij, with 0≤i≤7，0≤j≤7.

The conversion between the array Q and C is: cij= qn , and Table 6-5 shows the mapping from the index n of Q to the indices i and j of the array C.
Table 6-5 Inverse scanning order of 8×8 block
	n
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	i
	0
	1
	0
	0
	1
	2
	3
	2
	1
	0
	0
	1
	2
	3
	4
	5

	j
	0
	0
	1
	2
	1
	0
	0
	1
	2
	3
	4
	3
	2
	1
	0
	0

	n
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31

	i
	4
	3
	2
	1
	0
	0
	1
	2
	3
	4
	5
	6
	7
	6
	5
	4

	j
	1
	2
	3
	4
	5
	6
	5
	4
	3
	2
	1
	0
	0
	1
	2
	3

	n
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47

	i
	3
	2
	1
	0
	1
	2
	3
	4
	5
	6
	7
	7
	6
	5
	4
	3

	j
	4
	5
	6
	7
	7
	6
	5
	4
	3
	2
	1
	2
	3
	4
	5
	6

	n
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63

	i
	2
	3
	4
	5
	6
	7
	7
	6
	5
	4
	5
	6
	7
	7
	6
	7

	j
	7
	7
	6
	5
	4
	3
	4
	5
	6
	7
	7
	6
	5
	6
	7
	7

(3) When MbTransformType is “Trans_16x16”
Input of this process is an array Q with size of 256. The elements of the array is qn, with 0≤n≤255.

Output of this process is a two-dimensional array C with size of 16×16. The elements of the array is cij, with 0≤i≤16，0≤j≤16.

The conversion between the array Q and C is: cij= qn , and the relationship between i, j and n is defined as follows.
IVC_SCAN16[16*16] = {

 0, 1, 16, 32, 17, 2, 3, 18, 33, 48, 64, 49, 34, 19, 4, 5,

 20, 35, 50, 65, 80, 96, 81, 66, 51, 36, 21, 6, 7, 22, 37, 52,

 67, 82, 97, 112, 128, 113, 98, 83, 68, 53, 38, 23, 8, 9, 24, 39,

 54, 69, 84, 99, 114, 129, 144, 160, 145, 130, 115, 100, 85, 70, 55, 40,

 25, 10, 11, 26, 41, 56, 71, 86, 101, 116, 131, 146, 161, 176, 192, 177,

 162, 147, 132, 117, 102, 87, 72, 57, 42, 27, 12, 13, 28, 43, 58, 73,

 88, 103, 118, 133, 148, 163, 178, 193, 208, 224, 209, 194, 179, 164, 149, 134,

 119, 104, 89, 74, 59, 44, 29, 14, 15, 30, 45, 60, 75, 90, 105, 120,

 135, 150, 165, 180, 195, 210, 225, 240, 241, 226, 211, 196, 181, 166, 151, 136,

 121, 106, 91, 76, 61, 46, 31, 47, 62, 77, 92, 107, 122, 137, 152, 167,

 182, 197, 212, 227, 242, 243, 228, 213, 198, 183, 168, 153, 138, 123, 108, 93,

 78, 63, 79, 94, 109, 124, 139, 154, 169, 184, 199, 214, 229, 244, 245, 230,

 215, 200, 185, 170, 155, 140, 125, 110, 95, 111, 126, 141, 156, 171, 186, 201,

 216, 231, 246, 247, 232, 217, 202, 187, 172, 157, 142, 127, 143, 158, 173, 188,

 203, 218, 233, 248, 249, 234, 219, 204, 189, 174, 159, 175, 190, 205, 220, 235,

 250, 251, 236, 221, 206, 191, 207, 222, 237, 252, 253, 238, 223, 239, 254, 255

};
i = IVC_SCAN16[n] / 16;
j = IVC_SCAN16[n] % 16;
6.6 Inverse quantization

6.6.1 Quantization parameter

The range of luma and chroma quantization parameters shall be 0~63 inclusive.

If the current block is a luma block, quantization parameter QP of the block is equal to CurrentQP of the macroblock which it belongs to. Then use CurrentQP as index to get QP of Cb and Cr chroma block from Table 6-6.
Table 6-6 CurrentQPCb, CurrentQPCr and QP of chroma block

	CurrentQP
	Chroma QP

	< 43
	CurrentQP

	43
	42

	44
	43

	45
	43

	46
	44

	47
	44

	48
	45

	49
	45

	50
	46

	51
	46

	52
	47

	53
	47

	54
	48

	55
	48

	56
	48

	57
	49

	58
	49

	59
	49

	60
	50

	61
	50

	62
	50

	63
	51

6.6.2 Inverse quantization process
This clause specifies the process to transform two dimensional quantization coefficient array QuantCoeffMatrix to two dimensional transform coefficient array CoeffMatrix using quantization parameter QP.
Two dimensional transform coefficients array CoeffMatrix is obtained by:
CoeffMatrix [i,j] = (QuantCoeffMatrix[i,j] (DequantTable(QP) + 2ShiftTable(QP)-2) >> (ShiftTable(QP)-1) i,j=0~7 (6-1)

DequantTable and ShiftTable are defined in Table 6-7.
Table 6-7 DequantTable and ShiftTable

	QP
	DequantTable(QP)
	ShiftTable(QP)

	0
	32768
	14

	1
	36061
	14

	2
	38968
	14

	3
	42495
	14

	4
	46341
	14

	5
	50535
	14

	6
	55437
	14

	7
	60424
	14

	8
	32932
	13

	9
	35734
	13

	10
	38968
	13

	11
	42495
	13

	12
	46177
	13

	13
	50535
	13

	14
	55109
	13

	15
	59933
	13

	16
	65535
	13

	17
	35734
	12

	18
	38968
	12

	19
	42577
	12

	20
	46341
	12

	21
	50617
	12

	22
	55027
	12

	23
	60097
	12

	24
	32809
	11

	25
	35734
	11

	26
	38968
	11

	27
	42454
	11

	28
	46382
	11

	29
	50576
	11

	30
	55109
	11

	31
	60056
	11

	32
	65535
	11

	33
	35734
	10

	34
	38968
	10

	35
	42495
	10

	36
	46320
	10

	37
	50515
	10

	38
	55109
	10

	39
	60076
	10

	40
	65535
	10

	41
	35744
	9

	42
	38968
	9

	43
	42495
	9

	44
	46341
	9

	45
	50535
	9

	46
	55099
	9

	47
	60087
	9

	48
	65535
	9

	49
	35734
	8

	50
	38973
	8

	51
	42500
	8

	52
	46341
	8

	53
	50535
	8

	54
	55109
	8

	55
	60097
	8

	56
	32771
	7

	57
	35734
	7

	58
	38965
	7

	59
	42497
	7

	60
	46341
	7

	61
	50535
	7

	62
	55109
	7

	63
	60099
	7

6.7 Inverse transform process

6.7.1 Inverse transform for 4×4 block
This process of transform is applied to each 4x4 block when MbTransformType is “Trans_4x4”

Inputs of this process are

— the variables of BitDepth

— a two-dimensional array D with size of 4×4. The elements of the array is Dij, with 0≤i≤3， 0≤j≤3
Output of this process is a two-dimensional array R with size of 4×4. The elements of the array is Rij, with 0≤i≤3, 0≤j≤3.
The inverse transform process is equivalent to the following.
The 4x4 DCT transform core T4 is defined as
T4[4][4] = {
{128， 128， 128， 128}，

{167， 69， -69， -167}，
{128， -128， -128， 128}，
{69， -167， 167， -69}
}
Step1, horizontal inverse transform for the array D is done:
H = D (T4T
Here, H’ is the temporary result, TT4 is the transpose of T4
Step2, vertical inverse transform on H’ is done:
H = T4T (H
Step3, shift operation on H is done:
Ri,j = sign(abs(Hi,j) + (1<<15)) >> 16
6.7.2 Inverse transform for 8×8 block
This process of transform is applied to each 8x8 block when MbTransformType is “Trans_8x8”

Inputs of this process are:

— the variables of BitDepth

— a two-dimensional array D with size of 8×8. The elements of the array is dij, with 0≤i≤7， 0≤j≤7

Output of this process is a two-dimensional array R with size of 8×8. The elements of the array is rij, with 0≤i≤7, 0≤j≤7

The inverse transform process is equivalent to the following.

First, horizontal transform for the array D is done:

Step 1, with i = 0, 1, … , 7
ei0 = (di0 + di4)*181>>7

ei1 = (di0 - di4)*181>>7

ei2 = (di2*196>>8) - (di6*473>>8)

ei3 = (di2*473>>8) + (di6*196>>8)

ti4 = di1 - di7
ti7 = di1 + di7
ti5 = di3*181>>7

ti6 = di5*181>>7

ei4 = ti4 + ti6
ei5 = ti7 - ti5
ei6 = ti4 - ti6
ei7 = ti7 + ti5
Data in the bitstream shall ensure that any element dij, tij and eij must be in the range of integer values from -2(BitDepth+7) to 2(BitDepth+7)-1, inclusive.

Step 2, with i = 0, 1, … , 7

fi0 = ei0 + ei3
fi3 = ei0 - ei3
fi1 = ei1 + ei2
fi2 = ei1 - ei2
fi4 = (ei4*301>>8) - (ei7*201>>8)

fi7 = (ei4*201>>8) + (ei7*301>>8)

fi5 = (ei5*710>>9) - (ei6*141>>9)

fi6 = (ei5*141>>9) + (ei6*710>>9)

Data in the bitstream shall ensure that any element fij must be in the range of integer values from -2(BitDepth+7) to 2(BitDepth+7)-1, inclusive.

Step 3, with i = 0, 1, … , 7

gi0 = fi0 + fi7
gi7 = fi0 - fi7
gi1 = fi1 + fi6
gi6 = fi1 - fi6
gi2 = fi2 + fi5
gi5 = fi2 - fi5
gi3 = fi3 + fi4
gi4 = fi3 - fi4
Data in the bitstream shall ensure that any element gij must be in the range of integer values from -2(BitDepth+7) to 2(BitDepth+7)-1, inclusive.

And then, vertical transform for the resulting matrix is done:

Step 1, with j = 0, 1, … , 7

h0j = (g0j + g4j)*181>>7

h1j = (g0j - g4j)*181>>7

h2j = (g2j*196>>8) - (g6j*473>>8)

h3j = (g2j*473>>8) + (g6j*196>>8)

t4j = g1j - g7j
t7j = g1j + g7j
t5j = g3j*181>>7

t6j = g5j*181>>7

h4j = t4j + t6j
h5j = t7j - t5j
h6j = t4j - t6j
h7j = t7j + t5j
Data in the bitstream shall ensure that any element hij must be in the range of integer values from -2(BitDepth+7) to 2(BitDepth+7)-1, inclusive.
Step 2, with j = 0, 1, … , 7

m0j = h0j + h3j
m3j = h0j - h3j
m1j = h1j + h2j
m2j = h1j - h2j
m4j = (h4j*301>>8) - (h7j*201>>8)

m7j = (h4j*201>>8) + (h7j*301>>8)

m5j = (h5j*710>>9) - (h6j*141>>9)

m6j = (h5j*141>>9) + (h6j*710>>9)

Data in the bitstream shall ensure that any element mij must be in the range of integer values from -2(BitDepth+7) to 2(BitDepth+7)-1, inclusive.

Step 3, with j = 0, 1, … , 7

n0j = m0j + m7j
n7j = m0j - m7j
n1j = m1j + m6j
n6j = m1j - m6j
n2j = m2j + m5j
n5j = m2j - m5j
n3j = m3j + m4j
n4j = m3j - m4j
Data in the bitstream shall ensure that any element nij must be in the range of integer values from -2(BitDepth+7) to 2(BitDepth+7)-1, inclusive.

At last, after horizontal and vertical transform, the final constructed value is derived as

rij = Sign ((Abs(nij) + 16)>>5, nij), with i=0,1…,7, j=0,1,…,7

6.7.3 Inverse transform for 16×16 block
This process of transform is applied to each 16x16 block when MbTransformType is “Trans_16x16”

Inputs of this process are

— the variables of BitDepth

— a two-dimensional array D with size of 16×16. The elements of the array is Dij, with 0≤i≤15， 0≤j≤15
Output of this process is a two-dimensional array R with size of 16×16. The elements of the array is Rij, with 0≤i≤15, 0≤j≤15.
The inverse transform process is equivalent to the following.
The 16x16 DCT transform core T16 is defined as
T16[16][16] = {
{ 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32},

{ 45, 43, 40, 35, 29, 21, 13, 4, -4,-13,-21,-29,-35,-40,-43,-45},

{ 44, 38, 25, 9, -9,-25,-38,-44,-44,-38,-25, -9, 9, 25, 38, 44},

{ 43, 29, 4,-21,-40,-45,-35,-13, 13, 35, 45, 40, 21, -4,-29,-43},

{ 42, 17,-17,-42,-42,-17, 17, 42, 42, 17,-17,-42,-42,-17, 17, 42},

{ 40, 4,-35,-43,-13, 29, 45, 21,-21,-45,-29, 13, 43, 35, -4,-40},

{ 38, -9,-44,-25, 25, 44, 9,-38,-38, 9, 44, 25,-25,-44, -9, 38},

{ 35,-21,-43, 4, 45, 13,-40,-29, 29, 40,-13,-45, -4, 43, 21,-35},

{ 32,-32,-32, 32, 32,-32,-32, 32, 32,-32,-32, 32, 32,-32,-32, 32},

{ 29,-40,-13, 45, -4,-43, 21, 35,-35,-21, 43, 4,-45, 13, 40,-29},

{ 25,-44, 9, 38,-38, -9, 44,-25,-25, 44, -9,-38, 38, 9,-44, 25},

{ 21,-45, 29, 13,-43, 35, 4,-40, 40, -4,-35, 43,-13,-29, 45,-21},

{ 17,-42, 42,-17,-17, 42,-42, 17, 17,-42, 42,-17,-17, 42,-42, 17},

{ 13,-35, 45,-40, 21, 4,-29, 43,-43, 29, -4,-21, 40,-45, 35,-13},

{ 9,-25, 38,-44, 44,-38, 25, -9, -9, 25,-38, 44,-44, 38,-25, 9},

{ 4,-13, 21,-29, 35,-40, 43,-45, 45,-43, 40,-35, 29,-21, 13, -4}

}
Step1, horizontal inverse transform for the array D is done:
H = D (T16T
Here, H’ is the temporary result, TT16 is the transpose of T16
Step2, vertical inverse transform on H’ is done:
H = TNT (H
Step3, shift operation on H is done:
Ri,j = sign(abs(Hi,j) + (1<<13)) >> 14
6.8 Intra prediction

6.8.1 Intra Prediction modes
The blocksize of each luma block for intra prediction can be 8x8 or 16x16, which is decided by the value of MbTransformType. If MbTransformType is “Trans_8x8”, then the blocksize is 8x8; otherwise, the blocksize is 16x16
Every block of a macroblock uses the following methods to specify the intra prediction mode:

· If current block E is a luma block,

BypassFlag is set to 0, and intra_luma_pred_mode is derived from parsing.
· If current block E is a chroma block,
the intra prediction mode IntraChromaPredMode of the block in the index numbers of 4 or 5 is equal to intra_chroma_pred_mode.

The relation between value of IntraLumaPredMode value and luma intra prediction mode is shown in Table C-8. The relation between values of IntraChromaPredMode value and chroma intra prediction mode is shown in Table C-9.

Table C-8 luma intra prediction mode

	IntraLumaPredMode
	Name

	0
	Intra_Vertical

	1
	Intra_Horizontal

	2
	Intra_DC

	3
	Intra_Down_Left

	4
	Intra_Down_Right

Table C-9 8(8 Chroma intra prediction mode

	IntraChromaPredMode
	Name

	0
	Intra_Chroma_DC

	1
	Intra_Chroma_Horizontal

	2
	Intra_Chroma_Vertical

	3
	Intra_Chroma_Plane

For the luma intra prediction mode in Table C-8, refer to Figure C-1.

[image: image17.png]

(a) 4x4 block intra prediction
[image: image18.png]

(b) 8x8 block intra prediction
[image: image19.png]A

\4

— 16 —

(c) 16x6 block intra prediction
Figure C-3 All intra prediction modes for luma
6.8.2 Reference Sample Calculation

Let the decoded picture sample matrix of current block be I;
if blocsize of I is 4x4, I can either indicate a luma sample matrix, the reference samples for I is obtained by the following process: Let the coordinates of upper left corner sample of current block be (x0, y0). The reference samples for current block are obtained by:
· If the samples with coordinates (x0+i-1, y0-1) (i=1~4) are “available”, then r[i] are equal to I[x0+i-1, y0-1], and r[i] are “available”; otherwise, r[i] are “not available”.

· If the samples with coordinates (x0+i-1, y0-1) (i=5~8) are “available”, then r[i] are equal to I[x0+i-1, y0-1], and r[i] are “available”; otherwise, r[i] are equal to r[4], and availability of r[i] follows the availability of r[4].

· If the samples with coordinates (x0-1, y0+i-1) (i=1~4) are “available”, then c[i] are equal to I[x0-1, y0+i-1], and c[i] are “available”; otherwise, c[i] are “not available”.

· If the samples with coordinates (x0-1, y0+i-1) (i=5~8) are “available”, then c[i] are equal to I[x0-1, y0+i-1], and c[i] are “available”; otherwise, c[i] are equal to c[4], and availability of c[i] follows the availability of c[4].

· If the sample with coordinate (x0-1, y0-1) is “available”, then r[0] is equal to I[x0-1, y0-1], and r[0] is “available”; otherwise:

If r[1] is “available” and c[1] is “not available”, then r[0] is equal to r[1], and r[0] is “available”;

Otherwise, if c[1] is “available”, and r[1] is “not available”, then r[0] is equal to c[1], and r[0] is “available”;

Otherwise, if both r[1] and c[1] are “available”, then r[0] is equal to r[1], and r[0] is “available”; otherwise, r[0] is “not available”.
if blocsize of I is 8x8, I can either indicate a luma or a chroma sample matrix, the reference samples for I is obtained by the following process: Let the coordinates of upper left corner sample of current block be (x0, y0). The reference samples for current block are obtained by:
· If the samples with coordinates (x0+i-1, y0-1) (i=1~8) are “available”, then r[i] are equal to I[x0+i-1, y0-1], and r[i] are “available”; otherwise, r[i] are “not available”.

· If the samples with coordinates (x0+i-1, y0-1) (i=9~16) are “available”, then r[i] are equal to I[x0+i-1, y0-1], and r[i] are “available”; otherwise, r[i] are equal to r[8], and availability of r[i] follows the availability of r[8].

· If the samples with coordinates (x0-1, y0+i-1) (i=1~8) are “available”, then c[i] are equal to I[x0-1, y0+i-1], and c[i] are “available”; otherwise, c[i] are “not available”.

· If the samples with coordinates (x0-1, y0+i-1) (i=9~16) are “available”, then c[i] are equal to I[x0-1, y0+i-1], and c[i] are “available”; otherwise, c[i] are equal to c[8], and availability of c[i] follows the availability of c[8].

· If the sample with coordinate (x0-1, y0-1) is “available”, then r[0] is equal to I[x0-1, y0-1], and r[0] is “available”; otherwise:

If r[1] is “available” and c[1] is “not available”, then r[0] is equal to r[1], and r[0] is “available”;

Otherwise, if c[1] is “available”, and r[1] is “not available”, then r[0] is equal to c[1], and r[0] is “available”;

Otherwise, if both r[1] and c[1] are “available”, then r[0] is equal to r[1], and r[0] is “available”; otherwise, r[0] is “not available”.

If blocsize of I is 16x16, I indicates a luma sample matrix, the reference samples for I is obtained by the following process: Let the coordinates of upper left corner sample of current block be (x0, y0). The reference samples for current block are obtained by:
· If the samples with coordinates (x0+i-1, y0-1) (i=1~16) are “available”, then r[i] are equal to I[x0+i-1, y0-1], and r[i] are “available”; otherwise, r[i] are “not available”.

· If the samples with coordinates (x0+i-1, y0-1) (i=17~32) are “available”, then r[i] are equal to I[x0+i-1, y0-1], and r[i] are “available”; otherwise, r[i] are equal to r[16], and availability of r[i] follows the availability of r[16].

· If the samples with coordinates (x0-1, y0+i-1) (i=1~16) are “available”, then c[i] are equal to I[x0-1, y0+i-1], and c[i] are “available”; otherwise, c[i] are “not available”.

· If the samples with coordinates (x0-1, y0+i-1) (i=17~32) are “available”, then c[i] are equal to I[x0-1, y0+i-1], and c[i] are “available”; otherwise, c[i] are equal to c[16], and availability of c[i] follows the availability of c[16].

· If the sample with coordinate (x0-1, y0-1) is “available”, then r[0] is equal to I[x0-1, y0-1], and r[0] is “available”; otherwise:

If r[1] is “available” and c[1] is “not available”, then r[0] is equal to r[1], and r[0] is “available”;

Otherwise, if c[1] is “available”, and r[1] is “not available”, then r[0] is equal to c[1], and r[0] is “available”;

Otherwise, if both r[1] and c[1] are “available”, then r[0] is equal to r[1], and r[0] is “available”; otherwise, r[0] is “not available”.

6.8.3 Intra Prediction for Luma Block

This subclause specifies the intra prediction method for luma block according to IntraLumaPredMode.
When the blocksize of luma block is 4x4:
· IntraLumaPredMode is 0 (Intra_Vertical prediction)

This mode shall be used only when r[i] (i=1~4) is “available”.
 predMatrix[x,y] = r[x+1] (x,y=0~3)

· IntraLumaPredMode is 1 (Intra_Horizontal prediction)

This mode shall be used only when c[i] (i=1~4) is “available”.

 predMatrix[x,y] = c[y+1] (x,y=0~3)

· IntraLumaPredMode is 2 (Intra_DC prediction)

If both r[i] and c[i] (i=0~5) are “available”,

 predMatrix[x,y] = {(r[x-1]+4(r[x]+6(r[x+1]+4(r[x+2]+r[x+3]+8)>>4 + (c[y-1] +4(c[y]+6(c[y+1]+4(c[y+2]+c[y+3]+8)>>4}>>1
 (x,y=0~3);

Otherwise, if only r[i] (i=0~5) is “available”, then

 predMatrix[x,y] = (r[x-1]+4(r[x]+6(r[x+1]+4(r[x+2]+r[x+3]+8)>>4 (x,y=0~3);

Otherwise, if only c[i] (i=0~5) is “available”, then

 predMatrix[x,y] = (c[y-1] +4(c[y]+6(c[y+1]+4(c[y+2]+c[y+3]+8)>>4 (x,y=0~3);

Otherwise, predMatrix[x,y] = 2n-1 (x,y=0~3; n is the precision of sample)

· IntraLumaPredMode is 3 (Intra_Down_Left prediction)

This mode shall be used only when both r[i] and c[i] (i=1~8) are “available”.

 predMatrix[x,y] = (r[x+y+2] + c[x+y+2] >>1 (x,y=0~3)

· IntraLumaPredMode is 4 (Intra_Down_Right prediction)

This mode shall be used only when both r[i] and c[i] (i=0~8) are “available”.

 If x is equal to y, then

 predMatrix[x,y] = r[0] (x,y=0~3);

 Otherwise, if x is greater than y, then

 predMatrix[x,y] = r[x-y] (x,y=0~3);

 Otherwise, if y is greater than x, then

 predMatrix[x,y] = c[y-x] (x,y=0~3)
When the blocksize of luma block is 8x8:
· IntraLumaPredMode is 0 (Intra_Vertical prediction)

This mode shall be used only when r[i] (i=1~8) is “available”.
 predMatrix[x,y] = r[x+1] (x,y=0~7)

· IntraLumaPredMode is 1 (Intra_Horizontal prediction)

This mode shall be used only when c[i] (i=1~8) is “available”.

 predMatrix[x,y] = c[y+1] (x,y=0~7)

· IntraLumaPredMode is 2 (Intra_DC prediction)

 If both r[i] and c[i] (i=0~9) are “available”,

 predMatrix[x,y] = {(r[x-1]+4(r[x]+6(r[x+1]+4(r[x+2]+r[x+3]+8)>>4 + (c[y-1] +4(c[y]+6(c[y+1]+4(c[y+2]+c[y+3]+8)>>4}>>1
 (x,y=0~7);

 Otherwise, if only r[i] (i=0~9) is “available”, then

 predMatrix[x,y] = (r[x-1]+4(r[x]+6(r[x+1]+4(r[x+2]+r[x+3]+8)>>4 (x,y=0~7);

 Otherwise, if only c[i] (i=0~9) is “available”, then

 predMatrix[x,y] = (c[y-1] +4(c[y]+6(c[y+1]+4(c[y+2]+c[y+3]+8)>>4 (x,y=0~7);

 Otherwise, predMatrix[x,y] = 2n-1 (x,y=0~7; n is the precision of sample)

· IntraLumaPredMode is 3 (Intra_Down_Left prediction)

This mode shall be used only when both r[i] and c[i] (i=1~16) are “available”.

 predMatrix[x,y] = (r[x+y+2] + c[x+y+2] >>1 (x,y=0~7)

· IntraLumaPredMode is 4 (Intra_Down_Right prediction)

This mode shall be used only when both r[i] and c[i] (i=0~16) are “available”.

 If x is equal to y, then

 predMatrix[x,y] = r[0] (x,y=0~7);

 Otherwise, if x is greater than y, then

 predMatrix[x,y] = r[x-y] (x,y=0~7);

 Otherwise, if y is greater than x, then

 predMatrix[x,y] = c[y-x] (x,y=0~7)
 When the blocksize of luma block is 16x16:
· IntraLumaPredMode is 0 (Intra_Vertical prediction)

This mode shall be used only when r[i] (i=1~16) is “available”.
 predMatrix[x,y] = r[x+1] (x,y=0~15)

· IntraLumaPredMode is 1 (Intra_Horizontal prediction)

This mode shall be used only when c[i] (i=1~16) is “available”.

 predMatrix[x,y] = c[y+1] (x,y=0~15)

· IntraLumaPredMode is 2 (Intra_DC prediction)

 If both r[i] and c[i] (i=0~17) are “available”,

 predMatrix[x,y] = {(r[x-1]+4(r[x]+6(r[x+1]+4(r[x+2]+r[x+3]+8)>>4 + (c[y-1] +4(c[y]+6(c[y+1]+4(c[y+2]+c[y+3]+8)>>4}>>1
 (x,y=0~7);

 Otherwise, if only r[i] (i=0~17) is “available”, then

 predMatrix[x,y] = (r[x-1]+4(r[x]+6(r[x+1]+4(r[x+2]+r[x+3]+8)>>4 (x,y=0~7);

 Otherwise, if only c[i] (i=0~17) is “available”, then

 predMatrix[x,y] = (c[y-1] +4(c[y]+6(c[y+1]+4(c[y+2]+c[y+3]+8)>>4 (x,y=0~7);

 Otherwise, predMatrix[x,y] = 2n-1 (x,y=0~7; n is the precision of sample)

· IntraLumaPredMode is 3 (Intra_Down_Left prediction)

This mode shall be used only when both r[i] and c[i] (i=1~32) are “available”.

 predMatrix[x,y] = (r[x+y+2] + c[x+y+2] >>1 (x,y=0~15)

· IntraLumaPredMode is 4 (Intra_Down_Right prediction)

This mode shall be used only when both r[i] and c[i] (i=0~32) are “available”.

 If x is equal to y, then

 predMatrix[x,y] = r[0] (x,y=0~15);

 Otherwise, if x is greater than y, then

 predMatrix[x,y] = r[x-y] (x,y=0~15);

 Otherwise, if y is greater than x, then

 predMatrix[x,y] = c[y-x] (x,y=0~15)
6.8.4 Intra Prediction for 8(8 Chroma Block

This subclause specifies the intra prediction method for chroma block according to IntraChromaPredMode.

· IntraChromaPredMode is 0 (Intra_Chroma_DC prediction)

 If r[i],c[i]（i=0~9) are “available”, then

 predMatrix[x,y] = ((r[x]+2(r[x+1]+r[x+2]+2)>>2+(c[y]+2(c[y+1]+c[y+2]+2)>>2)>>1
 (x,y=0~7);

 Otherwise, if r[i]（i=0~9) is “available”, then

 predMatrix[x,y] = (r[x]+2(r[x+1]+r[x+2]+2)>>2 (x,y=0~7);

 Otherwise, if c[i]（i=0~9) is “available”, then

 predMatrix[x,y] = (c[y]+2(c[y+1]+c[y+2]+2)>>2 (x,y=0~7);

 Otherwise, predMatrix[x,y] = 128 (x, y=0~7)

· IntraChromaPredMode is 1 (Intra Chroma_Horizontal prediction)

This mode shall be used only when c[i] (i=1..8) is “available”.
 predMatrix[x,y] = c[y+1] (x, y=0..7)

· IntraChromaPredMode is 2 (Intra_Chroma_Vertical prediction)

This mode shall be used only when r[i] (i=1..8) is “available”.

 predMatrix[x,y] = r[x+1] (x, y=0..7)

· IntraChromaPredMode is 3, (Intra_Chroma_Plane prediction)

This mode shall be used only when both r[i] and c[i] (i=1..8) are “available”.

 Let ih =
[image: image20.wmf]3

0

(1)([5][3])

i

iriri

=

+´+--

å

, iv =
[image: image21.wmf]3

0

(1)([5][3])

i

icici

=

+´+--

å

,

 ia = (r[8]+c[8])<<4, ib = (17 (ih+16)>>5, ic = (17 (iv+16)>>5,

 Then,
 predMatrix[x,y] = Clip1((ia+(x-3) (ib+(y-3) (ic+16)>>5) (x, y = 0~7)
6.9 Inter prediction

6.9.1 Reference frame index
It is used for selection of reference frame among decoded frames in DPB.
6.9.2 Motion vectors

When coding motion vectors, only the differentials between motion vectors and their predicted ones are coded. In order to decode them, the decoder should save four motion vectors (every motion vector has one horizontal component and one vertical component) labelled as PMV[r][s][t]. For every predicted value, firstly, its corresponding motion vector is derived labelled as vector’[r][s][t]. Then the motion vector is scaled depending on video signal’s format and finally we get the motion vector vector[r][s][t]. Table 6-8 shows the index’s meaning in PMV[r][s][t], vector’[r][s][t] and vector[r][s][t].

Table 6-8 Meanings of index in PMV[r][s][t], vector[r][s][t] and vector[r][s][t]

	
	0
	1

	R
	the first motion vector in current macroblock
	the second motion vector in current macroblock

	S
	forward motion vector
	backward motion vector

	T
	horizontal component
	vertical component

	Note: r can be 2 or 3 which indicates current macroblock’s third and fourth motion vector.

6.9.2.1 Description

DistanceIndex is defined as follows: DistanceIndex is equal to picture_distance times 2.

The distance between current block (belongs to current picture) and the reference block (belongs to the reference picture) pointed to by its motion vector, BlockDistance, is calculated as follows:

· If the reference block is located before the current block (in display order), BlockDistance is equal to the DistanceIndex of current block minus the DistanceIndex of reference block, followed by addition of 512 in modulo 512 operation.

· If the reference block is located after the current block (in display order), BlockDistance is equal to the DistanceIndex of reference block minus the DistanceIndex of current block, followed by addition of 512 in modulo 512 operation.

6.9.2.2 Luma motion vectors prediction

If the current macroblock mode is skip, the motion vectors prediction please refer to 6.9.5.
The motion vectors of four neighboring blocks are used for the motion vector prediction process. Given E is a macro-block under motion estimation, and A, B, C and D are its neighboring 4(4 blocks, as shown in Figure 6-2.
· Inputs are the motion vectors of A, B, C and D, which are (MVAX, MVAY), (MVBX, MVBY), (MVCX, MVCY) and (MVDX, MVDY) respectively.
· Output is the motion vector predictior of (MVEPREDX, MVEPREDY) for block E.
The following rules are applied in sequential order to determine the motion vector predictor (MVEPREDX, MVEPREDY):

If the motion vector of A, B, or D is unavailable, then its motion vector is sent as zero, and if the motion vector of C is not available the motion vector of C is set as the motion vector of D.

If only one of the motion vector of A, B, C is available, the motion vector of the available block is (MVXx, MVXy), then,

 MVPREDx = MVXx
 MVPREDy = MVXy

Otherwise, For MVPREDx,
· If MVAX < 0 and MVBX > 0 and MVCX > 0, or MVAX > 0 and MVBX < 0 and MVCX < 0, then,
MVEPREDX = (MVBX + MVCX)/2;
· Otherwise, if MVBX < 0 and MVAX > 0 and MVCX > 0, or MVBX > 0 and MVAX < 0 and MVCX < 0, then,
MVEPREDX = (MVAX + MVCX)/2;

· Otherwise, if MVCX < 0 and MVAX > 0 and MVBX > 0, or MVCX > 0 and MVAX < 0 and MVBX < 0, MVEPREDX = (MVAX + MVBX)/2;

· Otherwise, calculate the distance of every two candidates, namely ABSVABX、ABSVBCX and ABSVCAX, where,
ABSVABX = |MVAX – MVBX|

ABSVBCX = |MVBX – MVCX|

ABSVCAX = |MVCX – MVAX|

1) If ABSVABX < ABSVBCX and ABSVABX <ABSVCAX, then,

MVEPREDX = (MVAX + MVBX)/2;

2) Otherwise, If ABSVBCX < ABSVABX and ABSVBCX < ABSVCAX, then,
MVEPREDX = (MVBX + MVCX)/2;

3) Otherwise, MVEPREDX = (MVAX + MVCX)/2.

For MVPREDy,
· If MVAy < 0 and MVBy > 0 and MVCy > 0, or MVAy > 0 and MVBy < 0 and MVCy < 0, then,
MVEPREDy = (MVBy + MVCy)/2;
· Otherwise, if MVBy < 0 and MVAy > 0 and MVCy > 0, or MVBy > 0 and MVAy < 0 and MVCy < 0, then,
MVEPREDy = (MVAy + MVCy)/2;

· Otherwise, if MVCy < 0 and MVAy > 0 and MVBy > 0, or MVCy > 0 and MVAy < 0 and MVBy < 0,
MVEPREDy = (MVAy + MVBy)/2;

· Otherwise, calculate the distance of every two candidates, namely ABSVABY、ABSVBCY and ABSVCAY, where,
ABSVABY = |MVAy–MVBy|

ABSVBCY = |MVBy – MVCy|

ABSVCAY = |MVCy – MVAy|

1) If ABSVABY < ABSVBCX and ABSVABY <ABSVCAY, then,

MVEPREDy = (MVAy + MVBy)/2;

2) Otherwise, If ABSVBCY< ABSVABY and ABSVBCY < ABSVCAY, then,
MVEPREDy = (MVBy + MVCy)/2;

3) Otherwise, MVEPREDy = (MVAy + MVCy)/2
.
6.9.2.3 Decoding luma motion vectors

The current block’s motion vector is equal to the sum of predicted motion vector and the differentials decoded by mv_diff_x and mv_diff_y. If the current macroblock or subblock mode is skip, then the motion vector is the predicted one.
6.9.2.4 Luma Motion Vector Derivation Process

If the type of current macroblock or sub-macroblock is skip mode, B skip mode or symmetrical mode, the motion vector is derived according to following methods; otherwise, motion vectors obtained in subclause 6.9.1.3 are assigned to the corresponding block in the order of macroblock partitioning.

· If current macroblock type is ‘P_Skip’:

If the upper neighbouring macroblock B or left neighbouring macroblock A of current macroblock is marked as “not available”, mvE is a zero vector.

Obtain mvA, mvB, if mvA is a zero vector and the reference picture of macroblock A is same as the reference picture of current block, or if mvB is a zero vector and the reference picture of macroblock B is same as the reference picture of current block, then mvE is a zero vector.

In other cases, obtain MVEPred with motion vector prediction method, mvE = MVEPred.

· If current macroblock type is ‘B_Skip’, or current sub-block type is ‘SB_Skip_8x8’, the derivation process of motion vector of each 8(8 block’s is as follows:
Step 1:

If the type of the block corresponding to the upper left corner of current 8(8 block in backward reference picture is ‘I_Block’, then both forward and backward reference picture of current block are the default reference pictures, i.e. the pictures with reference indices 0 in Figure 3. The forward and backward motion vectors of current block are predicted forward and backward motion vectors of the macroblock containing current block. The predicted forward and backward motion vectors are obtained according to motion vector prediction method.
Otherwise:

Forward and backward reference pictures of current block are the default reference pictures, i.e. reference pictures with reference indices 0 in Figure 6-3. The forward distance index is DistanceIndexFw, and backward distance index is DistanceIndexBw. The forward and backward BlockDistance are BlockDistanceFw and BlockDistanceBw.

The motion vector of the block corresponding to upper left corner of current block in backward reference picture is mvRef (mvRef_x, mvRef_y). The distance index of the block is DistanceIndexCol. The distance index of the reference picture pointed by the motion vector is DistanceIndexRef.

Step 2:

 BlockDistanceRef = (DistanceIndexCol – DistanceIndexRef + 512) % 512 (6-10)
 Let the distance index of current block be DistanceIndexCur, then,
BlockDistanceFw = (DistanceIndexCur – DistanceIndexFw + 512) % 512 (6-11)

BlockDistanceBw = (DistanceIndexBw – DistanceIndexCur + 512) % 512 (6-12)

Step 3:

If mvRef_x is less than 0,

mvFw_x = ‑(((16384/BlockDistanceRef) ((1 - mvRef_x (BlockDistanceFw)-1)>>14 (6-13)

otherwise,
mvFw_x = ((16384/BlockDistanceRef) ((1 + mvRef_x (BlockDistanceFw)-1)>>14 (6-14)

If mvRef_y is less than 0,

mvBw_y = ((16384/BlockDistanceRef) ((1 - mvRef_y (BlockDistanceBw)-1)>>14 (6-15)

otherwise,
mvBw_y = ‑(((16384/BlockDistanceRef) ((1 + mvRef_y (BlockDistanceBw)-1)>>14) (6-16)

[image: image22.emf]BlockDistanceRef

BlockDistanceFw

mvRef

mvFw

mvBw

......

Current block in direct mode

The block corresponded by

current block in direct mode

Backward Reference Forward Reference

BlockDistanceBw

Current B

Figure 6-4 Derivation process of motion vectors in B skip mode

· If the macroblock type is symmetrical mode, motion vector is derived as follows: both forward and backward reference picture of current block are the default reference pictures, i.e. the pictures with reference indices 0. The forward motion vector of block in symmetrical mode mvFw can be obtained by using the method specified in subclause 6.9.2.2 and 6.9.2.3.

The backward motion vector mvBw (mvBw_x, mvBw_y) is:

mvBw_x = -((mvFw_x (BlockDistanceBw ((512 / BlockDistanceFw) + 256) >> 9) (6-17)

mvBw_y = -(((mvFw_y) (BlockDistanceBw ((512 / BlockDistanceFw) + 256) >> 9) (6-18)

[image: image23.emf]BlockDistanceFw

mvFw

mvBw

......

Current block in symmetrical mode

Backward Reference Forward Reference

BlockDistanceBw

Current B

Figure 6-5 Symmetrical mode
· If the macroblock type is mutiple-hyphothesis mode, the two motion vectors are derived as follows: the forward reference picture of current block is deteremined by the syntax element of reference_frame_index. The first motion vector of block in mutiple-hyphothesis mode mvFirst is obtained by the motion vector prediction method specified in subclause 6.9.2.2. The second motion vector of block in mutiple-hyphothesis mode mvSecond is obtained by using the method specified in subclause 6.9.2.2 and 6.9.2.3. In the process of motion compensation of mutiple-hyphothesis mode, the first prediction is obtained by the first motion vector of mvFirst, and the second prediction is obtained by the second motion vector of mvSecond.
6.9.2.5 Motion vectors for chrominance components

Motion vectors for chrominance components can get by scaling the luminance component.
If the current block is not an intra block, both the horizontal and vertical components of the motion vector are scaled by dividing by two. That is

 vector[r][s][0] = vector’[r][s][0] / 2; (6-19)

 vector[r][s][1] = vector’[r][s][1] / 2; (6-20)

6.9.3 Forming predictors

Predictors are formed by reading prediction samples from the reference frames. A given sample is predicted by reading the corresponding sample in the reference frame offset by the motion vector.

A positive value of the horizontal component of a motion vector indicates that the prediction is made from samples (in the reference frame) that lie to the right of the samples being predicted. A positive value of the vertical component of a motion vector indicates that the prediction is made from samples (in the reference frame) that lie the below the samples being predicted.

Interpolated sample values at half and quarter luma positions are interpolated, the corresponding reference samples are obtained according to the motion vector. If a reference sample is located outside reference picture in the interpolation process, the nearest integer sample within the picture (sample at picture edge or corner), i.e. the sample at the location to which the motion vector points outside the reference picture, shall be used instead.
6.9.4 Luma Sample Interpolation Process
Inputs to this process are:

–
a luma location in full-sample units (xIntL, yIntL),

–
a luma location in fractional-sample units (dx, dy),

–
the luma reference sample array refPicLXL.

Output of this process is a predicted luma sample value predSampleLXL[xL, yL]

[image: image24.emf]A

-1,-1

A

0,-1

a

0,-1

b

0,-1

c

0,-1

A

1,-1

A

-1,0

A

0,0

A

1,0

A

-1,1

A

0,1

A

1,1

a

0,1

b

0,1

c

0,1

a

0,0

b

0,0

c

0,0

d

0,0

h

0,0

n

0,0

e

0,0

i

0,0

p

0,0

f

0,0

j

0,0

q

0,0

g

0,0

k

0,0

r

0,0

d

-1,0

h

-1,0

n

-1,0

d

1,0

h

1,0

n

1,0

A

2,-1

A

2,0

A

2,1

d

2,0

h

2,0

n

2,0

A

-1,2

A

0,2

A

1,2

a

0,2

b

0,2

c

0,2

A

2,2

Figure 6-6 Integer samples (shaded blocks with upper-case letters) and fractional sample positions (un-shaded blocks with lower-case letters) for quarter sample luma interpolation

In Figure 6-4, the positions labelled with upper-case letters Ai, j within shaded blocks represent luma samples at full-sample locations inside the given two-dimensional array refPicLXL of luma samples. These samples may be used for generating the predicted luma sample value predSampleLXL[xL, yL]. The locations (xAi, j, yAi, j) for each of the corresponding luma samples Ai, j inside the given array refPicLXL of luma samples are derived as follows:

xAi, j = Clip3(0, pic_width_in_luma_samples − 1, xIntL +i)
(6‑21)
yAi, j = Clip3(0, pic_height_in_luma_samples − 1, yIntL +j)
(6‑22)
The positions labelled with lower-case letters within un-shaded blocks represent luma samples at quarter-pel sample fractional locations. The luma location offset in fractional-sample units (dx, dy) specifies which of the generated luma samples at full-sample and fractional-sample locations is assigned to the predicted luma sample value predSampleLXL[xL, yL]. This assignment is done according to Table 6-9. The value of predSampleLXL[xL, yL] shall be the output.

Variables shift1, shift2 are derived as follows.

–
The variable shift1 is set equal to 6, and the variable shift2 is set equal to 12.

Given the luma samples Ai, j at full-sample locations (xAi, j, yAi, j), the luma samples ‘a0,0’ to ‘r0,0’ at fractional sample positions are derived by the following equations.
if vertical_size is larger than or equal to 1600,
–
The samples labelled a0,0, b0,0, c0,0, d0,0, h0,0, and n0,0 shall be derived by applying the 4-tap filter to the nearest integer position samples:
	a’0,0 = (− 6*A−1,0 + 56*A0,0 +15*A1,0 − 1*A2,0)
	(6-23)

	b’0,0 = (− 4*A−1,0 + 36*A0,0 + 36*A1,0 − 4*A2,0)

	(6-24)

	c’0,0 = (− 1*A−1,0 + 56*A0,0 + 15*A1,0 − 6*A2,0)
	(6-25)

	d’0,0 = (− 6*A0,−1 + 56*A0,0 + 15*A0,1 − 1*A0,2)
	(6-26)

	h’0,0 = (− 4*A0,−1 + 36*A0,0 + 36*A0,1 − 4*A0,2)
	(6-27)

	n’0,0 = (− 1*A0,−1 + 15*A0,0 + 56*A0,1 − 6*A0,2)
	(6-28)

	a0,0 = a’0,0 >> shift1
	(6-29)

	b0,0 = b’0,0 >> shift1
	(6-30)

	c0,0 = c’0,0 >> shift1
	(6-31)

	d0,0 = d’0,0 >> shift1
	(6-32)

	h0,0 = h’0,0 >> shift1
	(6-33)

	n0,0 = n’0,0 >> shift1
	(6-34)

–
The samples labelled e0,0, i0,0, p0,0, f0,0, j0,0, q0,0, g0,0, k0,0 and r0,0 shall be derived by applying the 4-tap filter to the samples a’0,i, b’0,i and c0,i where i = −2..3 in vertical direction:
	e0,0 = (− 6*a’0,−1 + 56*a’0,0 +
15*a’0,1 − 1*a’0,2) >> shift2
	(6-35)

	i0,0 = (− 4*a’0,−1 + 36*a’0,0 +
 36*a’0,1 − 4*a’0,2) >> shift2
	(6-36)

	p0,0 = (− 1*a’0,−1 + 15*a’0,0 +
 56*a’0,1 − 6*a’0,2) >> shift2
	(6-37)

	f0,0 = (− 6*b’0,−1 + 56*b’0,0 +
 15*b’0,1 − 1*b’0,2) >> shift2
	(6-38)

	j0,0 = (− 4*b’0,−1 + 36*b’0,0 +
 36*b’0,1 − 4*b’0,2) >> shift2
	(6-39)

	q0,0 = (− 1*b’0,−1 + 15*b’0,0 +
 56*b’0,1 − 6*b’0,2) >> shift2
	(6-40)

	g0,0 = (− 6*c’0,−1 + 56*c’0,0 +
 15*c’0,1 − 1*c’0,2) >> shift2
	(6-41)

	k0,0 = (− 4*c’0,−1 + 36*c’0,0 +
 36*c’0,1 − 4*c’0,2) >> shift2
	(6-42)

	r0,0 = (−1*c’0,−1 + 15*c’0,0 +56*c’0,1 − 1*c’0,2) >> shift2
	(6-43)

else if vertical_size is larger than or equal to 720,
–
The samples labelled a0,0, b0,0, c0,0, d0,0, h0,0, and n0,0 shall be derived by applying the 6-tap filter to the nearest integer position samples:
	a’0,0 = (2*A−2,0 − 9*A−1,0 + 57*A0,0 + 17*A1,0 − 4*A2,0 + 1*A3,0)
	(6-44)

	b’0,0 = (2*A−2,0 − 9*A−1,0 + 39*A0,0 + 39*A1,0 − 9*A2,0 + 2*A3,0)
	(6-45)

	c’0,0 = (1*A−2,0 − 4*A−1,0 + 17*A0,0 +
 57*A1,0 − 9*A2,0 + 2*A3,0)
	(6-46)

	d’0,0 = (2*A0,−2 − 9*A0,−1 + 57*A0,0 + 17*A0,1 − 4*A0,2 + 1*A0,3)
	(6-47)

	h’0,0 = (2*A0,−2 − 9*A0,−1 + 39*A0,0 + 39*A0,1 − 9*A0,2 + 2*A0,3)
	(6-48)

	n’0,0 = (1* A0,−2 − 4*A0,−1 + 17*A0,0 + 57*A0,1 − 9*A0,2 + 2*A0,3)
	(6-49)

	a0,0 = a’0,0 >> shift1
	(6-50)

	b0,0 = b’0,0 >> shift1
	(6-51)

	c0,0 = c’0,0 >> shift1
	(6-52)

	d0,0 = d’0,0 >> shift1
	(6-53)

	h0,0 = h’0,0 >> shift1
	(6-54)

	n0,0 = n’0,0 >> shift1
	(6-55)

–
The samples labelled e0,0, i0,0, p0,0, f0,0, j0,0, q0,0, g0,0, k0,0 and r0,0 shall be derived by applying the 6-tap filter to the samples a’0,i, b’0,i and c0,i where i = −2..3 in vertical direction:
	e0,0 = (2*a’0,−2 − 9*a’0,−1 + 57*a’0,0 +
 17*a’0,1 − 4*a’0,2 + a’0,3) >> shift2
	(6-56)

	i0,0 = (2*a’0,−2 − 9*a’0,−1 + 39*a’0,0 +
 39*a’0,1 − 9*a’0,2 + 2*a’0,3) >> shift2
	(6-57)

	p0,0 = (a’0,−2 − 4*a’0,−1 + 17*a’0,0 +
 57*a’0,1 − 9*a’0,2 + 2*a’0,3) >> shift2
	(6-58)

	f0,0 = (2*b’0,−2 − 9*b’0,−1 + 57*b’0,0 +
 17*b’0,1 − 4*b’0,2 + b’0,3) >> shift2
	(6-59)

	j0,0 = (2*b’0,−2 − 9*b’0,−1 + 39*b’0,0 +
 39*b’0,1 − 9*b’0,2 + 2*b’0,3) >> shift2
	(6-60)

	q0,0 = (b’0,−2 − 4*b’0,−1 + 17*b’0,0 +
 57*b’0,1 − 9*b’0,2 + 2*b’0,3) >> shift2
	(6-61)

	g0,0 = (2*c’0,−2 − 9*c’0,−1 + 57*c’0,0 +
 17*c’0,1 − 4*c’0,2 + c’0,3) >> shift2
	(6-62)

	k0,0 = (2*c’0,−2 − 9*c’0,−1 + 39*c’0,0 +
 39*c’0,1 − 9*c’0,2 + 2*c’0,3) >> shift2
	(6-63)

	r0,0 = (c’0,−2 −4*c’0,−1 + 17*c’0,0 +57*c’0,1 − 9*c’0,2 + 2*c’0,3) >> shift2
	(6-64)

else
–
The samples labelled a0,0, b0,0, c0,0, d0,0, h0,0, and n0,0 shall be derived by applying the following 10-tap filter to the nearest integer position samples:
	a’0,0 = (A−4,0 −2*A−3,0 + 4*A−2,0 − 10*A−1,0 + 57*A0,0 + 19*A1,0 − 7*A2,0 + 3*A3,0 - A4,0)
	(6-65)

	b’0,0 = (A−4,0 −2*A−3,0 + 5*A−2,0 − 12*A−1,0 + 40*A0,0 + 40*A1,0 − 12*A2,0 + 5*A3,0 - 2*A4,0 + A5,0)
	(6-66)

	c’0,0 = (−A−3,0 + 3*A−2,0 − 7*A−1,0 + 19*A0,0 + 57*A1,0 − 10*A2,0 + 4*A3,0 – 2*A4,0 + A5,0)
	(6-67)

	d’0,0 = (A0,−4 – 2*A0,−3 + 4*A0,−2 − 10*A0,−1 + 57*A0,0 + 19*A0,1 − 7*A0,2 + 3*A0,3 − A0,4)
	(6-68)

	h’0,0 = (A0,−4 – 2*A0,−3 + 5*A0,−2 − 12*A0,−1 + 40*A0,0 + 40*A0,1 − 12*A0,2 + 5*A0,3 − 2*A0,4 + A0,5)
	(6-69)

	n’0,0 = (− A0,−3 + 3*A0,−2 − 7*A0,−1 + 19*A0,0 + 57*A0,1 − 10*A0,2 + 4*A0,3 −2*A0,4 + A0,5)
	(6-70)

	a0,0 = a’0,0 >> shift1
	(6-71)

	b0,0 = b’0,0 >> shift1
	(6-72)

	c0,0 = c’0,0 >> shift1
	(6-73)

	d0,0 = d’0,0 >> shift1
	(6-74)

	h0,0 = h’0,0 >> shift1
	(6-75)

	n0,0 = n’0,0 >> shift1
	(6-76)

–
The samples labelled e0,0, i0,0, p0,0, f0,0, j0,0, q0,0, g0,0, k0,0 and r0,0 shall be derived by applying the following 10-tap filter to the samples a’0,i, b’0,i and c0,i where i = −4..5 in vertical direction:
	e0,0 = (a’0,−4 – 2*a’0,−3 + 4*a’0,−2 − 10*a’0,−1 + 57*a’0,0 +19*a’0,1 − 7*a’0,2 + 3*a’0,3 - a’0,4) >> shift2
	(6-77)

	i0,0 = (a’0,−4 – 2*a’0,−3 + 5*a’0,−2 − 12*a’0,−1 + 40*a’0,0 +40*a’0,1 − 12*a’0,2 + 5*a’0,3 – 2*a’0,4 + a’0,5) >> shift2
	(6-78)

	p0,0 = (-a’0,−3 + 3*a’0,−2 − 7*a’0,−1 + 19*a’0,0 +57*a’0,1 − 10*a’0,2 + 4*a’0,3 – 2*a’0,4 + a’0,5) >> shift2
	(6-79)

	f0,0 = (b’0,−4 – 2*b’0,−3 + 4*b’0,−2 − 10*b’0,−1 + 57*b’0,0 +19*b’0,1 − 7*a’0,2 + 3*b’0,3 - b’0,4) >> shift2
	(6-80)

	j0,0 = (b’0,−4 – 2*b’0,−3 + 5*b’0,−2 − 12*b’0,−1 + 40*b’0,0 +40*b’0,1 − 12*b’0,2 + 5*b’0,3 – 2*b’0,4 + b’0,5) >> shift2
	(6-81)

	q0,0 = (-b’0,−3 + 3*b’0,−2 − 7*b’0,−1 + 19*b’0,0 +57*b’0,1 − 10*b’0,2 + 4*b’0,3 – 2*b’0,4 + b’0,5) >> shift2
	(6-82)

	g0,0 = (c’0,−4 – 2*c’0,−3 + 4*c’0,−2 − 10*c’0,−1 + 57*c’0,0 +19*c’0,1 − 7*c’0,2 + 3*c’0,3 - c’0,4)>> shift2
	(6-83)

	k0,0 = (c’0,−4 – 2*c’0,−3 + 5*c’0,−2 − 12*c’0,−1 + 40*c’0,0 +40*c’0,1 − 12*c’0,2 + 5*c’0,3 – 2*c’0,4 + c’0,5)>> shift2
	(6-84)

	r0,0 = (-c’0,−3 + 3*c’0,−2 − 7*c’0,−1 + 19*c’0,0 +57*c’0,1 − 10*c’0,2 + 4*c’0,3 – 2*c’0,4 + c’0,5) >> shift2
	(6-85)

Table 6‑9 – Assignment of the luma prediction sample predSampleLXL[xL, yL]
	dx
	0
	0
	0
	0
	1
	1
	1
	1
	2
	2
	2
	2
	3
	3
	3
	3

	dy
	0
	1
	2
	3
	0
	1
	2
	3
	0
	1
	2
	3
	0
	1
	2
	3

	predSampleLXL[xL, yL]
	A << shift3
	D
	h
	N
	a
	e
	i
	p
	b
	f
	j
	q
	c
	g
	k
	R

6.9.5 Chroma Sample Interpolation Process

The interpolated values of chroma samples use the motion vector mvC, which is derived from the luma motion vector mvE whose horizontal component is mvE_x and vertical component is mvE_y. The horizontal component of mvC is mvC_x, while the vertical component is mvC_y. The unit of mvC is 1/8 sample unit; If chroma_format is equal to ‘01’, mvC_x = mvE_x and mvC_y = mvE_y. Chroma sample interpolation is shown in Figure 6-5. dx and dy are the horizontal and vertical distance from predicted sample to A respectively. dx is equal to mvC_x & 7, dy is equal to mvC_y & 7. The relation between variable positions and reference samples is shown in Figure 6-5.

[image: image25]
Figure 6-7 Relation between variable positions and reference samples

A two-dimensional array is defined as:

C[8][4] = {

 { 0, 64, 0, 0 },
 { -4, 62, 6, 0 },

 { -6, 56, 15, -1 },

 { -5, 47, 25, -3 },

 { -4, 36, 36, -4 },

 { -3, 25, 47, -5 },

 { -1, 15, 56, -6 },

 { 0, 6, 62, -4 }
}
The elements of interpolated sample matrix predMatrix[y][x] are calculated as:
if(dx == 0)

 predMatrix[x,y] = (C[dy][0](Ax,y-1 + C[dy][1](Ax,y-1 + C[dy][2](Ax,y-1 + C[dy][3](Ax,y-1 + 32)/64; (6-86)

else if (dy == 0)

 predMatrix[x,y] = (C[dx][0])(Ax-1,y + C[dx][1](Ax,y + C[dx][2](Ax+1,y + C[dx][3](Ax+2,y + 32)/64; (6-87)

else

 predMatrix[x,y] = (C[dy][0](a’x,y-1(dx,0) + C[dy][1](a’x,y(dx,0) + C[dy][2](a’x,y+1(dx,0) + C[dy][3](a’x,y+2(dx,0) + 2048)/4096, (6-88)

where a’x,y-1(dx, 0), a’x,y(dx, 0), a’x,y+1(dx, 0) and a’x,y+2(dx, 0), is calculated by:

 a’x,y-1(dx, 0) = C[dx][0](Ax-1,y-1 + C[dx][1](Ax,y-1 + C[dx][2](Ax+1,y-1 + C[dx][3](Ax+2,y-1, (6-89)

a’x,y(dx, 0) = C[dx][0](Ax-1,y + C[dx][1](Ax,y + C[dx][2](Ax+1,y + C[dx][3](Ax+2,y, (6-90)

a’x,y+1(dx, 0) = C[dx][0](Ax-1,y+1 + C[dx][1](Ax,y+1 + C[dx][2](Ax+1,y+1 + C[dx][3](Ax+2,y+1, (6-91)
a’x,y+2(dx, 0) = C[dx][0](Ax-1,y+2 + C[dx][1](Ax,y+2 + C[dx][2](Ax+1,y+2 + C[dx][3](Ax+2,y+2. (6-92)

6.9.6 Skipped mode macroblocks

A skipped macroblock is a macroblock for which no residual data is encoded. The decoder shall form a prediction for skipped macroblocks which shall then be used as the final decoded sample values. A skipped macroblock should be derived as follows.
The coding block-size should be 16x16. If the left block exists and is not intra coded, the block mode should be equal to the mode of the left block. Otherwise, if the picture type is P, the block mode should be forward; if the picture type is B, it should be bi-directional. The MVD equals to 0. The residue block is an all-zero block.

6.9.7 Combining predictions

The final stage is to combine the various predictions together in order to form the final prediction blocks. For B frames, if bi-direction prediction is executed, the final prediction value should be an average of forward and backward prediction. If forward prediction is denoted as pel_pred_forward[y][x] and backward prediction is pel_pred_backward[y][x], then the final prediction can be calculated as:

pel_pred[y][x] = (pel_pred_forward[y][x] + pel_pred_backward[y][x])/2; (6-93)

For P frames, if mutiple-hypothesis prediction is executed, the final prediction value should be an average of first and second prediction. If first prediction is denoted as pel_pred_first[y][x] and second prediction is pel_pred_second[y][x], then the final prediction can be calculated as:

pel_pred[y][x] = (pel_pred_first[y][x] + pel_pred_second[y][x])/2; (6-94)

6.9.8 Reconstruction
The prediction blocks have been formed and added to its corresponding residuals to get reconstructed picture. The transform data f[y][x] shall be added to the prediction data p[y][x] and saturated to form the final decoded samples d[y][x] as follows;

for (y=0; y<size; y++) {

for (x=0; x<size; x++) {

d[y][x] = f[y][x]+p[y][x];

if (d[y][x] < 0) d[y][x] = 0;

if (d[y][x] > 255) d[y][x] = 255;

}

}
6.9.9 Reference picture buffer management

There are at most 32 reference picture buffers for P picture and B picture inter-prediction, and at most eight reference pictures are practically used for the P picture prediction, indicated by reference_frame_idx. The pictures in the reference picture buffer are used for P picture inter-prediction. The picture in first reference picture buffer and the picture in the second reference picture are used for B picture forward inter-prediction and backward prediction respectively. At the beginning of decoding a sequence, the 32 reference picture buffers are empty. After a picture is reconstructed, the reference picture buffer is updated as following.

After an I picture or a reference P picture is reconstructed, if the first buffer is empty, its reconstruction picture is placed in the first reference picture buffer; otherwise, if the first reference picture buffer is not empty, the picture in the first reference buffer is moved to the second reference picture buffer, and the reconstruction picture is placed in the first reference picture buffer. If the fifth reference picture buffer is empty, the process is maintained. If all the buffers are filled with the reconstructed pictures, the 32nd reference picture is removed and other pictures are moved to the next buffers, respectively. The last reconstructed picture is placed in the first reference picture buffer.
After a B picture is reconstructed, the reference picture buffers are unchanged.After a non-reference P frame with RPB swapping is reconstructed, the reference picture butter swapping is occurred. The picture in the first reference picture buffer and the picture in the second reference picture buffer change their positions each other. As a result, the picture in the first reference picture buffer is placed in moved to the second reference picture buffer, and the picture in the second reference picture buffer is moved to the first reference picture buffer
6.10 Loop Filtering
Loop filtering takes a macroblock as a unit. If the level difference between the two pixels in the same block and the adjacent block around the edge meets certain conditions, the edge is filtered. Except for image edge and slice edge, all edges shall be filtered. Here, the edge is defined as edge between all 8x8 blocks inside the macroblock, and the upper and left edges of current macroblock. Chrominance block follows luminance block. There are three kinds of filtering methods: strong loop filtering, normal loop filtering and weak loop filtering. The order of vertical and horizontal filtering for each of the macroblocks is shown in Figure 8-1.

[image: image26.emf]3 1

4

6

1 3

4

6 5

2

Luma edge of

macrobloc

k

Chroma edge of

macroblock(Cb or Cr)

 SHAPE * MERGEFORMAT

Note: Solid lines represent vertical edge of macroblock, bold dashed lines represent horizontal edge, and thin dashed line represent edge of next macroblock.

In order to determine if loop filtering is used, we should check the intra level between two pixels in the same block, the inter level of two pixels at the border in two adjacent blocks and difference of the above two levels.

Loop filtering is applied when all of three conditions are satisfied. These conditions are, specifically:

(1). When the intra level between two pixels in the same block is less than a predetermined level, Beta.
(2). When the inter level of two pixels at the border in two adjacent blocks is greater than the intra level between two pixels in the same block.
(3). When the inter level of two pixels at the border in two adjacent blocks is less than a predetermined level, Alpha.
When the intra level of two pixels which are separated by a pixel at the border in the same block is smaller than Beta, normal filtering is applied on the edge. Otherwise, weak filtering is used. The normal filtering modifies two pixels at the border in each of the two adjacent blocks and weak filtering modifies only one pixels in each block.

For the luminance macroblock edge, strong filtering is used when both of the intra levels of two pixels at the border of each block are smaller than the smaller one between Beta and 3, and the intra levels of two pixels which are separated by two pixels at the border in the same block is also less than Beta. Strong filtering modifies three pixels in each block. Besides, for the chrominance block edge, if either of the intra levels of two pixels at the border of each block is smaller than Beta and not small than 3, weak filtering is used to replace normal filtering.
Figure 8-2 indicates 6 sampling positions around two vertical or horizontal sides of p and q (the edge is expressed in bold line).

[image: image28]
Figure 8-2. Horizontal or vertical edge sample of 8x8 block

The conditions of loop filtering are:

(1). abs(p0 – p1) < (&& abs(q0 – q1) < (;
(2). abs(q0 – p0) > abs(p0 – p1) && abs(q0 – p0) > abs(q0 – q1);
(3). abs(q0 – p0) < (
(4). abs(p2 – p0) < (&& abs(q2 – q0) < (;
(5). abs(p3 – p0) < (&& abs(q3 – q0) < (;
(6). abs(p0 – p1) < min(3, () && abs(q0 – q1) < min (3, ();
 The predetermined levels, α and β can be gotten from the stream directly in the decoder.

If only (1) (2) (3) are satisfied, weak loop filtering is applied. Weak filtering process is shown as follows:
P0 = ((p0– q0) + 2) >> 2) + p0;
Q0 = ((q0–p0) + 2) >> 2) + q0;
 P0 and Q0 are sample values obtained after filtering process of p0 and q0.
If only (1)(2)(3)(4) are satisfied, normal loop filtering is applied. But for chrominance component, if (6) are not satisfied, weak loop filtering is used to replace normal loop filtering. Normal filtering process is shown as follows:

P1 = ((3 * (p2- q0) + 4 * (p0 – q0) + 8 * (q0 – p1) + 8) >> 4) + p1;
P0 = (((p2 – q0) + 4 * (p1 – q0) + (q1 – p0) + 9 * (q0 – p0) + 8) >> 4) + p0;
Q0 = (((q2 – p0) + 4 * (q1 – p0) + (p1 – q0) + 9 * (p0 – q0) + 8) >> 4) + q0;
 Q1 = ((3 * (q2- p0) + 4 * (q0 – p0) + 8 * (p0 – q1) + 8) >> 4) + q1;
P1, P0, Q0 and Q1 are sample values obtained after filtering process of p1, p0, q0 and q1 respectively.
For macroblock luminance edges, if all of the six conditions are satisfied, strong loop filtering is applied. Strong filtering process is shown as follows:
P2 = ((4 * (p0- q0) + 5 * (q0 – p2) + 4) >> 3) + p2;
P1 = ((16 * (q0- p1) + 6 * (p2 – q0) + 7 * (p0 – q0) + 8) >> 4) + p1;
P0 = ((9 * (p2- q0) + 6 * (q2 – p0) + 17 * (q0 – p0) + 16) >> 5) + p0;
Q0 = ((9 * (q2- p0) + 6 * (p2 – q0) + 17 * (p0 – q0) + 16) >> 5) + q0;
 Q1 = ((16 * (p0- q1) + 6 * (q2 – p0) + 7 * (q0 – p0) + 8) >> 4) + q1;
Q2 = ((4 * (q0- p0) + 5 * (p0 – q2) + 4) >> 3)) + q2;
P2, P1, P0, Q0, Q1 and Q2 are sample values obtained after filtering process of p2, p1, p0, q0, q1 and q2 respectively.

Figure 8-1. The order of filtered edges in a macroblock(4:2:0 format)

Document type: International Standard
Document subtype: REF DDDocSubType * CHARFORMAT
Document stage: (20) Preparatory
Document language: E
C:\Users\shinji_w\Desktop\ISO-IEC_11111-1_(E).doc STD Version 2.1c2

[image: image29.png]p3

pl

pOIqO

ql

q2

q3

[image: image30.png]Acrya

Agy

Actya

Acizy1

Acryn

dx

Acyi

Acry

Acyi2

dy

Acry

Aczy

Acryn

Acizyn

Aciiy

Acizya

_1453462928.vsd
D

B

C

A

E

_1453462931.unknown

_1453462933.vsd

3
1
4
6
1
3
4
6
5
2
Luma edge of
macroblock
Chroma edge of
macroblock(Cb or Cr)

_1453462932.vsd

_1453462930.unknown

_1453462927.vsd
horizontal_size

vertical_size

MbWidth ´ 16

MbHeight ´ 16

