INTERNATIONAL ORGANIZATION FOR STANDARDIZATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND AUDIO
ISO/IEC JTC1/SC29/WG11
MPEG/N14963
Strasbourg, FR, October 2014
	Title
	Text of ISO/IEC 23001-4:2014/PDAM1 Parser Instantiation from BSD

	Status
	PDAM

	Source
	Video Subgroup

	Editors
	Hyungyu Kim, Marco Mattavelli, Euee S. Jang

ISO/IEC JTC 1/SC 29 N
Date: 2014-10-24
ISO/IEC 23001-4:2014/PDAM 1
ISO/IEC JTC 1/SC 29/WG 11
Secretariat:
Information technology — MPEG systems technologies — Part 4: Codec configuration representation, AMENDMENT 1: Parser Instantiation from BSD
Document type: International standard

Document subtype: if applicable

Document stage: (20) Preparation

Document language: E

Technologies de l'information — Technologies des systèmes MPEG — Partie 4: Représentation de configuration codec
Warning

This document is not an ISO International Standard. It is distributed for review and comment. It is subject to change without notice and may not be referred to as an International Standard.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Copyright notice

This ISO document is a working draft or committee draft and is copyright-protected by ISO. While the reproduction of working drafts or committee drafts in any form for use by participants in the ISO standards development process is permitted without prior permission from ISO, neither this document nor any extract from it may be reproduced, stored or transmitted in any form for any other purpose without prior written permission from ISO.

Requests for permission to reproduce this document for the purpose of selling it should be addressed as shown below or to ISO's member body in the country of the requester:

ISO copyright office

Case postale 56 (CH-1211 Geneva 20

Tel. + 41 22 749 01 11

Fax + 41 22 749 09 47

E-mail copyright@iso.org

Web www.iso.org

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.

Contents
Page
ivForeword

vIntroduction

16
Model instantiation

1Annex C (normative) Specification of RVC-BSDL

1C.2
Use of prefixes in RVC-BSDL schema

2C.3
Constructs of RVC-BSDL

2C.3.1
Introduction

2C.3.2
Supported data types

4C.3.3
Supported elements

5C.3.4
Supported attributes

8C.4.3
Syntax for elements and attributes

8C.4.3
Syntax of the elements

22C.4.4
Syntax of the attributes

26C.4.4
Syntax of the expressions

26C.4.5
Syntax of the expressions

27C.4.5
Syntax of the data types

27C.4.6
Syntax of the data types

28C.5. Connections between the syntax parser and the FU network

28C.5.1
General output ports

28C.5.2
Output ports with feedback ports

30Annex I (informative) Instantiation of bitstream syntax parser from bitstream syntax descriptions

30I.1.2
Generic parser FU

32I.1.2
Implementing variable-length decoding with functional units

32I.2
Externally defined algorithms

32I.2.1
External algorithms as functional units

36I.1.3
Generation of VLD tables decoding FUs

38I.1.4
The modification of FSM in the parser FU

38I.2.1.3
The modification of FSM in the parser FU

39I.2.2
External algorithms as plugin functions

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

Amendment 1 to ISO/IEC 23001-4:2014 was prepared by Technical Committee ISO/IEC JTC 1, Information technology, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.
Introduction

This amendment is to improve description capability of RVC-BSDL as a decoder description language in order to facilitate the bitstream parser FU instantiation from BSD.
The following table shows the subclauses modified by this amendment. In this amendment, subclause renumbering is included to improve clarity of the specification. The following table briefly shows how subclauses are renumbered, added, moved, and removed in this amendment by showing their contextual correspondence.

	ISO/IEC 23001-4:2014 3rd Ed.
	AMENDMENT 1
	Added
	Renumbered
	Renamed
	Merged

	6 Model instantiation
	6 Model instantiation
	
	
	
	

	

	Annex C Specification of RVC-BSDL
	Annex C Specification of RVC-BSDL
	
	
	
	

	C.2 Use of prefixes in RVC-BSDL schema
	C.2 Use of prefixes in RVC-BSDL schema
	
	
	
	

	C.3 Constructs of RVC-BSDL
	C.3 Constructs of RVC-BSDL
	
	
	
	

	C.3.1 Introduction
	C.3.1 Introduction
	
	
	
	

	C.3.2 Supported data types
	C.3.2 Supported data types
	
	
	
	

	C.3.2.1 Built-in data types
	C.3.2.1 Built-in data types
	
	
	
	

	C.3.2.2 Additional data types
	C.3.2.2 Additional data types
	
	
	
	

	C.3.3 Supported elements
	C.3.3 Supported elements
	
	
	
	

	(not exist)
	C.3.3.1 Additional element
	X
	
	
	

	C.3.4 Supported attributes
	C.3.4 Supported attributes
	
	
	
	

	C.3.4.1 Built-in attributes
	C.3.4.1 Built-in attributes
	
	
	
	

	C.3.4.2 Additional attribute
	C.3.4.2 Additional attributes
	
	
	X
	

	C.4.3 Syntax for elements and attributes
	C.4.3 Syntax of the elements
	
	
	X
	

	(not exist)
	C.4.3.1 xsd:schema element
	X
	
	
	

	C.4.3.1 xsd:element
	C.4.3.2 xsd:element element
	
	X
	X
	

	(not exist)
	C.4.3.2.1 rvc:ext data type
	X
	
	
	

	C.4.3.2 xsd:group
	C.4.3.3 xsd:group element
	
	X
	X
	

	C.4.3.3 xsd:sequence
	C.4.3.4 xsd:sequence element
	
	X
	X
	

	C.4.3.4 xsd:choice
	C.4.3.5 xsd:choice element
	
	X
	X
	

	C.4.3.5 bs2:variable
	C.4.3.6 bs2:variable element
	
	X
	X
	

	C.4.3.6 xsd:simpleType
	C.4.3.7 xsd:simpleType element
	
	X
	X
	

	C.4.3.7 xsd:annotation
	C.4.3.8 xsd:annotation and xsd:appinfo element
	
	X
	X
	X

	C.4.3.8 xsd:appinfo
	
	
	
	X
	X

	C.4.3.9 xsd:restriction
	C.4.3.9 xsd:restriction element
	
	
	X
	

	C.4.3.10 bs2:bitLength
	C.4.3.10 bs2:bitLength element

(removed)
	
	
	X
	X

	C.4.3.11 bs2:length
	
	
	X
	X
	X

	C.4.3.12 bs2:statCode
	C.4.3.11 bs2:startCode element
	
	X
	X
	

	C.4.3.13 xsd:union
	C.4.3.12 xsd:union element and bs2:ifUnion element
	
	X
	X
	X

	C.4.3.14 bs2:ifUnion
	
	
	X
	X
	X

	(not exist)
	C.4.3.13 rvc:allocation element
	X
	
	
	

	ISO/IEC 23001-4:2014 3rd Ed.
	AMENDMENT 1
	Added
	Renumbered
	Renamed
	Merged

	(not exist)
	C.4.4 Syntax of the attributes
	X
	
	
	

	(not exist)
	C.4.4.1 bs2:if attribute
	X
	
	
	

	(not exist)
	C.4.4.2 bs2:nOccurs, rvc:iterator and rvc:iteratorInit attribute
	X
	
	
	

	(not exist)
	C.4.4.3 bs2:position attribute
	X
	
	
	

	(not exist)
	C.4.4.4 rvc:extName and rvc:extParams attribute
	X
	
	
	

	(C.3.4.2
Additional attribute)
	C.4.4.5 rvc:port attribute
	X
	
	
	

	(not exist)
	C.4.4.6 rvc:rootGroup attribute
	X
	
	
	

	(not exist)
	C.4.4.7 rvc:isArray and rvc:dimension attribute
	X
	
	
	

	C.4.4 Syntax of the expressions
	C.4.5 Syntax of the expressions
	
	X
	
	

	(not exist)
	C.4.5.1 last() function
	X
	
	
	

	(not exist)
	C.4.5.2 log2() function
	X
	
	
	

	C.4.5 Syntax of the data types
	C.4.6 Syntax of the data types
	
	X
	
	

	C.5 Connections between the syntax parser and the FU network
	C.5. Connections between the syntax parser and the FU network
	
	
	
	

	(not exist)
	C.5.1 General output ports
	X
	
	
	

	(not exist)
	C.5.2 Output ports with feedback ports
	X
	
	
	

	

	Annex I Instantiation of bitstream syntax parser from bitstream syntax descriptions
	Annex I Instantiation of bitstream syntax parser from bitstream syntax descriptions
	
	
	
	

	(not exist)
	I.1.2 Generic parser FU
	X
	
	
	

	(not exist)
	I.1.2.1 Structure
	X
	
	
	

	(not exist)
	I.1.2.2 BSD parser
	X
	
	
	

	(not exist)
	I.1.2.3. Bitstream parser engine
	X
	
	
	

	(not exist)
	I.1.2.4 GPFU plugin functions
	X
	
	
	

	(not exist)
	I.1.2.5 External Parsing FUs
	X
	
	
	

	(not exist)
	I.1.2.6 DEMUX
	X
	
	
	

	I.1.2 Implementing variable-length decoding with functional units
	I.2 Externally defined algorithms
	
	X
	X
	

	(not exist)
	I.2.1 External algorithms as functional units
	X
	
	
	

	(not exist)
	I.2.1.1 Connection of the external FUs with the bitstream parser FU
	X
	
	
	

	I.1.3 Generation of VLD tables decoding FUs
	I.2.1.2 Generation of VLD tables decoding FUs
	
	X
	
	

	I.1.4 The modification of FSM in the parser FU
	I.2.1.3 The modification of FSM in the parser FU
	
	X
	
	

	(not exist)
	I.2.2 External algorithms as plugin functions
	X
	
	
	

Information technology — MPEG systems technologies — Part 4: Codec configuration representation, AMENDMENT 1: Parser Instantiation from BSD
In 6 (Model instantiation), replace:
The tag <rvc port="…"> indicates the name of the instance of the FU into the ADM to which this element of syntax is sent.
with:
For instance, the attribute rvc:port (See C.4.3.2) indicates the name of the instance of the FU into the ADM to which this element of syntax is sent.
In C.2 (Use of prefixes in RVC-BSDL schema), replace:
Prefixes and the corresponding namespaces are specified in RVC BSDL schema.
Table C.1— Mapping of prefixes to corresponding namespaces in RVC-BSDL schemas

	Prefix
	Corresponding Namespace

	xsd
	http://www.w3.org/2001/XMLSchema

	bs0
	urn:mpeg:mpeg21:2003:01-DIA-BSDL0-NS

	bs1
	urn:mpeg:mpeg21:2003:01-DIA-BSDL1-NS

	bs2
	urn:mpeg:mpeg21:2003:01-DIA-BSDL2-NS

	rvc
	urn:mpeg:2006:01-RVC-NS

with:
Prefixes and the corresponding namespaces are specified in RVC BSDL schema. Table C.1 shows the namespaces corresponding to each XML prefix. Because only a subset of XML or BSDL constructs is supported in RVC-BSDL, normative namespaces to define the construct subset are newly defined for RVC-BSDL. The namespaces of original standards are still compatible for RVC-BSDL description but are informative only for the backward compatibility.
Table C.1 — Mapping of prefixes to corresponding namespaces in RVC-BSDL schemas

	Prefix
	Corresponding Namespace
(Normative)
	Compatible Namespace
(Informative)

	xsd
	urn:mpeg:mpegB:2014:RVC-BSDL-XSD-NS
	http://www.w3.org/2001/XMLSchema

	bs1
	urn:mpeg:mpegB:2014:RVC-BSDL-BS1-NS
	urn:mpeg:mpeg21:2003:01-DIA-BSDL1-NS

	bs2
	urn:mpeg:mpegB:2014:RVC-BSDL-BS2-NS
	urn:mpeg:mpeg21:2003:01-DIA-BSDL2-NS

	rvc
	urn:mpeg:mpegB:2014:RVC-BSDL-RVC-NS
	urn:mpeg:mpegB:2014:RVC-BSDL-RVC-NS

In C.3.1 (Introduction), replace:
This Subclause describes which BSDL constructs are supported in RVC-BSDL in the RVC framework. It includes data types, attributes and elements. The aim of the subset definition is to provide a restricted way of representing well-defined bitstreams. Thus, the processes including the validations of the bitstreams and the generation of efficient implementations capable of parsing the bitstreams — described using RVC-BSDL — become simpler. The specification of the BSDL constructs listed below can be found in ISO/IEC 23001‑5:2008.
with:
This Subclause describes which XML or BSDL constructs are supported in RVC-BSDL in the RVC framework. It includes data types, attributes and elements. The aim of the subset definition is to provide a restricted way of representing well-defined bitstreams. Thus, the processes including the validations of the bitstreams and the generation of efficient implementations capable of parsing the bitstreams — described using RVC-BSDL — become simpler. The specification of the BSDL constructs listed below can be found in ISO/IEC 23001‑5:2008. The constructs that are not described in this Subclause should not be considered to be supported in the RVC-BSDL syntax.
In C.3.2.1 (Built-in data types), replace:
Table C.2 — List of XML Schema data types supported or not supported by RVC-BSDL
	Data Type
	Supported by RVC-BSDL?

	xsd:hexBinary
	Yes

	xsd:long
	Yes

	xsd:int
	Yes

	xsd:short
	Yes

	xsd:byte
	Yes

	xsd:unsignedLong
	Yes

	xsd:unsignedInt
	Yes

	xsd:unsignedShort
	Yes

	xsd:unsignedByte
	Yes

	xsd:string
	No

	xsd:normalizedString
	No

	xsd:float
	No

	xsd:double
	No

	xsd:base64Binary
	No

with:
Table C.2 — List of XML Schema data types supported by RVC-BSDL
	Data Type
	Supported by RVC-BSDL

	xsd:hexBinary
	Yes

	xsd:long
	Yes

	xsd:int
	Yes

	xsd:short
	Yes

	xsd:byte
	Yes

	xsd:unsignedLong
	Yes

	xsd:unsignedInt
	Yes

	xsd:unsignedShort
	Yes

	xsd:unsignedByte
	Yes

And replace:
Table C.3 — List of BSDL built-in data types supported or not supported by RVC-BSDL

	Data Type
	Supported by RVC-BSDL?

	bs1:byteRange
	Yes

	bs1:align32
	Yes

	bs1:align16
	Yes

	bs1:align8
	Yes

	bs1:b1 - bs1:b32
	Yes

	bs1:bitstreamSegment
	No

	bs1:stringUTF16NT
	No

	bs1:stringUTF8
	No

	bs1:stringUTF16BENT
	No

	bs1:stringUTF16LENT
	No

	bs1:stringUTF8NT
	No

	bs1:stringUTF16
	No

	bs1:stringUTF16BE
	No

	bs1:stringUTF16LE
	No

	bs1:longLE
	No

	bs1:intLE
	No

	bs1:shortLE
	No

	bs1:unsignedLongLE
	No

	bs1:unsignedIntLE
	No

	bs1:unsignedShortLE
	No

	bs1:unsignedExpGolomb
	No

	bs1:signedExpGolomb
	No

with:
Table C.3 — List of BSDL built-in data types supported by RVC-BSDL

	Data Type
	Supported by RVC-BSDL

	bs1:byteRange
	Yes

	bs1:align32
	Yes

	bs1:align16
	Yes

	bs1:align8
	Yes

	bs1:b1 - bs1:b32
	Yes

In C.3.2.1 (Additional data types), replace the entire content of Annex C.3.2.2 with:
Table C.4 shows the additional data type in RVC-BSDL.

Table C.4 — List of additional data type in RVC-BSDL

	Data Type
	Described in

	rvc:ext
	Subclause C.4.3.2.1

NOTE
Parts of the original content of C.3.2.2 can be found in new subclause C.4.3.2.1 “rvc:ext data type”.
In C.3.3 (Supported elements), replace:
This Subclause describes which BSDL facets are supported in RVC-BSDL within the RVC framework. The allowed BSDL-2 elements are described in Table C.4. The allowed BSDL-1 elements are described in Table C.5. The allowed XML built-in elements are reported in Table C.6.
with:
This Subclause describes which BSDL facets are supported in RVC-BSDL within the RVC framework. No BSDL-1 elements are supported in RVC-BSDL. The allowed BSDL-2 elements are described in Table C.5. The allowed XML built-in elements are reported in Table C.6.
And replace:
Table C.4 — The BSDL-2 elements supported or not supported by RVC-BSDL
	Element name
	Supported by RVC-BSDL?

	bs2:length
	Yes (see C.4.3.11)

	bs2:bitLength
	Yes (see C.4.3.10)

	bs2:startCode
	Yes (see C.4.3.12)

	bs2:endCode
	No

	bs2:escape
	No

	bs2:cdata
	No

	bs2:log2()
	No

	bs2:ifUnion
	Yes (see C.4.3.14)

	bs2:parameter
	No

	bs2:xpathScript
	No

	bs2:variable
	Yes (see C.4.3.5)

with:
Table C.5 — The BSDL-2 elements supported by RVC-BSDL
	Element name
	Supported by RVC-BSDL

	bs2:bitLength
	Yes (see C.4.3.10)

	bs2:startCode
	Yes (see C.4.3.12)

	bs2:ifUnion
	Yes (see C.4.3.14)

	bs2:variable
	Yes (see C.4.3.5)

Remove Table C.5, “The BSDL-1 elements supported or not supported by RVC-BSDL”
And replace:
Table C.6 — The XML standard elements supported or not supported by RVC-BSDL

	Element name
	Supported by RVC-BSDL?

	xsd:sequence
	Yes (see C.4.3.3)

	xsd:choice
	Yes (see C.4.3.4)

	xsd:all
	No

	xsd:group
	Yes (see C.4.3.2)

	xsd:element
	Yes (see C.4.3.1)

	xsd:simpleType
	Yes (see C.4.3.6)

	xsd:complexType
	No

	xsd:maxExclusive
	No

	xsd:fixed
	No

	xsd:annotation
	Yes (see C.4.3.7)

	xsd:appinfo
	Yes (see C.4.3.8)

	xsd:MinOccurs
	No

	xsd:MaxOccurs
	No

	xsd:default
	No

	xsd:union
	Yes (see C.4.3.13)

	xsd:length
	Yes (see C.4.3.11)

with:
Table C.6 — The XML standard elements supported by RVC-BSDL

	Element name
	Supported by RVC-BSDL?

	xsd:schema
	Yes (see C.4.3.)

	xsd:sequence
	Yes (see C.4.3.3)

	xsd:choice
	Yes (see C.4.3.4)

	xsd:group
	Yes (see C.4.3.2)

	xsd:element
	Yes (see C.4.3.1)

	xsd:simpleType
	Yes (see C.4.3.6)

	xsd:annotation
	Yes (see C.4.3.7)

	xsd:appinfo
	Yes (see C.4.3.8)

	xsd:union
	Yes (see C.4.3.13)

	xsd:length
	Yes (see C.4.3.11)

Add subclause C.3.3.1 and Table C.7, as follows:
C.3.3.1
Additional element
Table C.7 shows the additional element in RVC-BSDL.

Table C.7 — List of additional element in RVC-BSDL

	Element name
	Described in

	rvc:allocation
	Subclause C.4.3.14

In C.3.4.1 (Built-in attributes), replace:

The allowed BSDL-1 attributes are described in Table C.7.
with:
No BSDL-1 attributes are supported in RVC-BSDL.
Remove Table C.7, “The BSDL-1 attributes supported or not supported by RVC-BSDL”.
And replace:
Table C.8 — The BSDL-2 attributes supported or not supported by RVC-BSDL
	Attribute name
	Supported by RVC-BSDL?

	bs2:nOccurs
	Yes

	bs2:if
	Yes

	bs2:ifNext
	Yes

	bs2:rootElement
	Yes

	bs2:ifNextMask
	No

	bs2:ifNextSkip
	No

	bs2:removeEmPrevByte
	No

	bs2:layerLength
	No

	bs2:assignPre
	No

	bs2:assignPost
	No

	bs2:bsdlVersion
	No

	bs2:requiredExtensions
	No

	bs2:startContext
	No

	bs2:stopContext
	No

	bs2:redefineMarker
	No

	bs2:position
	Yes

with:
Table C.8 — The BSDL-2 attributes supported by RVC-BSDL
	Attribute name
	Supported by RVC-BSDL

	bs2:nOccurs
	Yes

	bs2:if
	Yes

	bs2:ifNext
	Yes

	bs2:position
	Yes

	bs2:partContext
	Yes

	bs2:bsdlVersion
	Yes

And replace:
Table C.9 — The XML attributes supported or not supported by RVC-BSDL

	Attribute name
	Supported by the RVC framework?

	minOccurs
	No

	maxOccurs
	No

	fixed
	Yes

with:
Table C.9 — The XML attributes supported by RVC-BSDL

	Attribute name
	Supported by RVC-BSDL

	fixed
	Yes

	name
	Yes

	value
	Yes

Rename C.3.4.2 (Additional attribute) to:
C.3.4.2
Additional attributes

Replace the entire content of C.3.4.2 with:
Table C.10 shows the additional attributes in RVC-BSDL.

Table C.10 — List of additional attributes in RVC-BSDL

	Attribute name
	Described in

	rvc:extName
	Subclause C.4.4.4

	rvc:extParams
	Subclause C.4.4.4

	rvc:port
	Subclause C.4.4.5

	rvc:rootGroup
	Subclause C.4.4.6

	rvc:isArray
	Subclause C.4.3.13

	rvc:dimension
	Subclause C.4.3.14

NOTE
Parts of the original content of C.4.3.2 can be found in new subclause C.4.4.5 “rvc:port attribute”
Modify C.4.3 as follows, which includes the following changes:

· Renaming C.4.3 to “Syntax of the elements”.
· Renumbering C.4.3.1-C.4.3.6 to C.4.3.2-C.4.3.7
· Renumbering C.4.3.12 to C.4.3.11.

· Merging C.4.3.7 “xsd:annotation” and C.4.3.8 “xsd:appinfo” to C.4.3.8 “xsd:annotation and xsd:appinfo element”
· Merging C.4.3.10 “bs2:bitLength” and C.4.3.11 “bs2:length” to C.4.3.10 “bs2:bitLength element”

· Merging Subclause C.4.3.13 “xsd:union” and C.4.3.14 “bs2:ifUnion” to Subclause C.4.3.12 “xsd:union element and bs2:ifUnion element”

· Adding C.4.3.1 “xsd:schema element”.
· Adding C.4.3.13 “rvc:allocation element”.
· Replacing the entire content of all subclauses in C.4.3 with improved specification structures, new functionalities, new examples, and bug-fixes.
· Renaming all subclauses in C.4.3 to have the word “element” for consistency.
Replace C.4.3 and its subordinate subclauses with the following:
C.4.3
Syntax of the elements
This Subclause describes the syntax of the XML elements within the RVC-BSDL grammar.
C.4.3.1
xsd:schema element
This element is the top level element of RVC-BSDL schema description.

Syntax
<xsd:schema

bs2:bsdlVersion = "ISO/IEC 23001-4:2014"

rvc:rootGroup = "string"
>

Children: {xsd:group, xsd:simpleType, xsd:annotation}
</xsd:schema>

Semantics
The bs2:bsdlVersion attribute must be annotated to specify the version of RVC-BSDL that used for the current BSD. The value of the bs2:bsdlVersion attribute should be “ISO/IEC 23001-4:2014”.

The rvc:rootGroup attribute can be used to specify an xsd:group element that describes the top-level bitstream hierarchy group within the given BSD. Differently from BSDL, RVC-BSDL do not allow xsd:element as a top-level construct of the bitstream syntax. Therefore, bs2:rootElement attribute, which is a BSDL-2 attribute to designate the top-level bitstream hierarchy, is not applicable in RVC-BSDL. As a replacement, RVC-BSDL defines rvc:rootGroup to designate the top level of a bitstream syntax. The bitstream syntax parser FU instantiated from the given BSD should start its bitstream parsing process from the top-level hierarchy group. When the rvc:rootGroup attribute is not defined, the xsd:group element that first appears on the RVC-BSDL schema should be considered as the top-level hierarchy.
For the compatibility and authoring purpose, attributes specified in XML schema recommendation (e.g., XML namespace designation) can be used within xsd:schema element.
Example

The example below shows a typical RVC-BSDL schema declaration using xsd:schema.
<xsd:schema xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="urn:mpeg:mpegB:2014:RVC-BSDL-XSD-NS"

xmlns:bs1="urn:mpeg:mpegB:2014:RVC-BSDL-BSDL1-NS"

xmlns:bs2="urn:mpeg:mpegB:2014:RVC-BSDL-BSDL2-NS"

xmlns:rvc="urn:mpeg:mpegB:2014:RVC-BSDL-NS"

xmlns:m4v="urn:mpeg:mpeg4:profile:visual:simple"

xsi:schemaLocation="

urn:mpeg:mpegB:2013:RVC-BSDL-XSD-NS

./n_xsd/MPEGB-RVC-BSDL-XSD.xsd

urn:mpeg:mpegB:2013:RVC-BSDL-BSDL1-NS
./n_xsd/MPEGB-RVC-BSDL-BS1.xsd

urn:mpeg:mpegB:2013:RVC-BSDL-BSDL2-NS
./n_xsd/MPEGB-RVC-BSDL-BS2.xsd

urn:mpeg:mpegB:2013:RVC-BSDL-NS

./n_xsd/MPEGB-RVC-BSDL-RVC.xsd

bs2:bsdlVersion = "ISO/IEC 23001-4:2014"

rvc:rootGroup="bitstream">
C.4.3.2
xsd:element element
This element is used to define an element of syntax. A syntax element defined by this element can be one of the following cases:

· A fixed-length bitstream syntax element, which type is one of the fixed-length bit types derived from BSDL-1 (e.g., bs1:b8).
· A variable-length bitstream syntax element, which type is one of the user-defined types declared within the same BSD using xsd:simpletype element. (See C.4.3.7 also)
· A variable-length bitstream syntax element, which type is defined as rvc:ext and to be parsed by an external FU or a plugin function in the parser. (See C.4.3.2.1 also)
· A placeholder syntax element that is not actually derived from the bitstream. Placeholder syntax elements without type attribue can be used to contain bs2:variable elements to define necessary data calculation process or port output behaviors during the bitstream parsing process. (See C.4.3.6 also)
Syntax

<xsd:element

name = "string"

type = "(bs1:b1 - bs1:b32 | rvc:ext | bs1:align8 | bs1:align16 | bs1:align32 | user-defined type)"

bs2:partContext = "(true | false)"

bs2:position = "Expression{, Expression}”

bs2:if = "Expression"

bs2:ifNext = "NumericLiteral(, NumericLiteral)"

bs2:nOccurs = "(Expression | unbounded)"

rvc:iterator = "Expression"

rvc:iteratorInit = "Expression"

value = "Expression"

fixed = "Expression"

rvc:port = "string"

rvc:extName = "string"

rvc:extParams = "Expression">

Children: xsd:annotation
</xsd:element>

Semantics

The name attribute defines the name of the syntax element. When the bs2:partContext attribute is true, the name attribute is also used as the name of an internal variable where the parsed data is stored.
The type attribute defines the type, in other words, the length of the syntax element. The bitstream parser FU should perform the bitstream parsing according to the given type of the syntax element. Use of user-defined type defined by xsd:simpleType element is also allowed. If the type attribute is not defined, no data is read nor parsed from the bitstream.
When the type attribute is set to rvc:ext, the syntax element must be parsed by an external FU or a plugin function. See C.4.3.2.1 for the details.
The value attribute can be used to define post-processing of the value read from the bitstream. Within the expression, the last() function (see C.4.5.1) is used to represent the value read from the bitstream. This attribute can conveniently be used to describe syntax elements which value is not encoded as is in the bitstream.
The fixed attribute forces a specific value to the given syntax element. When the value read from the bitstream is different from the value defined by the fixed attribute, the syntax parser FU may consider this as an error. This functionality can be used to define syntax element with predefined value (e.g., marker bit).
The rvc:port attribute defines the name of the output port where the data parsed from the current syntax element to be exported. For more information about the communication between the parser and the FU, see Annex I.1.2.

If the bs2:partContext attribute is set to true, the parsed data should be stored in an internal variable by the syntax parser FU. Additionally, if the bs2:position attribute is set, the internal variable should be an array-typed variable, and the array index is given by bs2:position attribute. See C.4.3.3 for the syntax of bs2:position attribute.
About the attributes describing conditional statements, see C.4.4.1 (bs2:if) and C.4.4.2 (bs2:nOccurs, rvc:iterator, and rvc:iteratorInit) for their syntax and semantics.

Example

The example below shows some typical xsd:element declarations.

<xsd:element name="sps_video_parameter_set_id" type="bs1:b4"/>
<xsd:element name="sps_max_sub_layers_minus1" type="bs1:b3"
bs2:partContext="true"/>
<xsd:element name="sps_temporal_id_nesting_flag" type="bs1:b1"/>
[…]
<xsd:element name="sps_seq_parameter_set_id" type="rvc:ext"
rvc:extName="EF_EXP_GOLOMB_U" bs2:partContext="true">

<xsd:annotation><xsd:appinfo>

<bs2:variable name="sps_id" value="sps_seq_parameter_set_id"/>

</xsd:appinfo></xsd:annotation>
</xsd:element>
[…]
<xsd:element name="sps_chroma_format_idc" type="rvc:ext"
rvc:extName="EF_EXP_GOLOMB_U" bs2:partContext="true" bs2:position="sps_id"/>
The example below shows a placeholder syntax element. This element is declared to describe variable control and port output behavior without reading bitstream.

<xsd:element name="init_token">

<xsd:annotation>

<xsd:appinfo>

<bs2:variable value="vop_quant" rvc:port="P_QP"/>

<bs2:variable name="ac_coded" value="CBP[block_id]==1"

rvc:port="P_ACCODED"/>

<bs2:variable value="ac_pred_flag" rvc:port="P_ACPRED"/>

<bs2:variable value="fourmv" rvc:port="P_FOURMV"/>

<bs2:variable value="0" rvc:port="P_MOTION" bs2:if="btype_intra"/>

<bs2:variable value="2" rvc:port="P_BTYPE" bs2:if="btype_intra"/>

<bs2:variable value="1" rvc:port="P_MOTION" bs2:if="not btype_intra"/>

<bs2:variable value="1" rvc:port="P_BTYPE" bs2:if="not btype_intra"/>

</xsd:appinfo>

</xsd:annotation>
</xsd:element>
The example below shows a usage of value post-processing using the value attribute. The syntax element is encoded as vps_max_sub_layers_minus1 in the bitstream. The inline post-processing expression described in the value attribute recovers the actual semantic value, vps_max_sub_layers, by a simple addition. Such operation can be performed without declaring a bs2:variable element.

<xsd:element name="vps_max_sub_layers" type="bs1:b3" bs2:partContext="true"

value="last()+1"/>
C.4.3.2.1
rvc:ext data type

It may happen that processing tasks associated to the parsing of a segment of the bitstream are not described in the RVC-BSDL schema. This is the case for bitstream segments for which VLD, CAVLD or CABAC decoding algorithms need to be applied. The data type rvc:ext indicates a portion of bitstream that needs to be decoded by an externally defined algorithm. The rvc:ext can be used to define the following cases of externally defined algorithm: 1) Specific FUs available in the RMC toolbox and 2) Predefined functions that can be integrated within the bitstream parser FU during the parser instantiation process. The rvc:ext type can be only applied to an xsd:element element. An example of Variable Length Decoding is provided below:

<xsd:element name="DCTCoefficient" type="rvc:ext" rvc:extName="VLD" rvc:extParams="MV_START_INDEX"/>
For external Functional Unit
A communication scheme (described in 0) is set up to make the link with this external Functional Unit. The rvc:extName and rvc:extParams attribute helps in making this link by specifying the name of the ports used to connect the parser and the Functional Unit.
Connections with an external FU are necessary to decode the DCT coefficients, which are Variable Length Codes. These coefficients shall be decoded using ISO/IEC 14496-2:2004, Table B.16 (the VLC table). Thus a connection is established between the parser and the corresponding Functional Unit to decode this element of syntax. Example of such a communication protocol is shown in details in Annex I.2.2 (External algorithms as Functional Units).
For parser plugin function
In the case of the bitstream syntax element can be decoded by a predefined function in the to-be-instantiated bitstream parser FU, rvc:ext can be used to designate the function and to provide necessary parameters to the function. The name of plugin function should be defined in rvc:extName attribute and rvc:extParams attriute should be used to deliver necessary parameters to the function. The detailed interaction mecanism is described in Annex I.3.2 (External algorithms as plugin functions).
C.4.3.3
xsd:group element

The xsd:group element is used to define a set of elements of syntax. This element allows having a hierarchical bitstream description. In a BSDL schema, there are several ways of accessing different levels of hierarchy in the bitstream. However in RVC-BSDL, only the xsd:group element shall be used to express different levels of hierarchy into the bitstream.
Syntax
When declaring an xsd:group:
<xsd:group

name = "string"

>

Children: {xsd:sequence, xsd:choice}
</xsd:group>

When calling an xsd:group:
<xsd:group

ref = "string"

bs2:if = "Expression"

bs2:ifNext = "NumericLiteral(, NumericLiteral)"

bs2:nOccurs = "(Expression | unbounded)"

rvc:iterator = "Expression"

rvc:iteratorInit = "Expression"

>

Children: none

</xsd:group>

Semantics

The xsd:group element can be used in two different cases: the declaration case and the calling case.

An xsd:group element that appears directly under the xsd:schema element is considered as a group declaration. A group may represent a specific bitstream hierarchy and may contain several syntax elements.

An xsd:group element under the xsd:sequence or xsd:choice element is considered as a group calling. The ref attribute is used to designate the name of the xsd:group to be called.

The xsd:group element can be used hierarchically: that is, a called xsd:group element may call other xsd:group element again.
When calling a group, conditional and loop statements can be used. About the attributes describing conditional statements, see C.4.4.1 and C.4.4.2 for their syntax and semantics.
Example

The example below shows how to use the xsd:group element. During the bitstream parsing process, when the parser meets this element:
<xsd:group ref="GroupOfVideoObjectPlane"/>

The parser refers to the definition of the group, which is:
<xsd:group name="GroupOfVideoObjectPlane">

 <xsd:sequence>

 <xsd:element name="group_of_vop_start_code" type="bs1:b32"/>

 <xsd:element name="time_code" type="bs1:b18"/>

 <xsd:element name="closed_gov" type="bs1:b1"/>

 <xsd:element name="broken_link" type="bs1:b1"/>

 <xsd:element name="next_start_code" type="bs1:align8"/>

 <xsd:group ref="user_data" bs2:ifNext="1B2"/>

 </xsd:sequence>

</xsd:group>

The above example shows a way to express a hierarchy in the bitstream.

C.4.3.4
xsd:sequence element
The xsd:sequence element constructs a block of sequentially arranged syntax elements.

NOTE
The xsd:sequence element can be used to implement if, for, or while statement on BSD.
Syntax

<xsd:sequence

bs2:if = "Expression"

bs2:ifNext = "NumericLiteral(, NumericLiteral)"

bs2:nOccurs = "(Expression | unbounded)"

rvc:iterator = "Expression"

rvc:iteratorInit = "Expression"

>

Children: {xsd:sequence, xsd:choice, xsd:group, xsd:element}

</xsd:sequence>

Semantics

The xsd:sequence element can be used hierarchically within the scope of other xsd:sequence element to gather a list of consecutive elements of syntax which have conditions in common.
BSDL attributes for conditional statements, such as bs2:if or bs2:nOccurs, can be used to apply a specific condition to a block of elements. About the attributes describing conditional statements, see C.4.4.1 and C.4.4.2 for their syntax and semantics.

Example

The elements requested_upstream_message_type and newpred_segment_type exists only if the variable newpred_enable equals to “1”.
<xsd:sequence bs2:if="newpred_enable = 1">

 <xsd:element name="requested_upstream_message_type" type="bs1:b2"/>

 <xsd:element name="newpred_segment_type" type="bs1:b1"/>

</xsd:sequence>

C.4.3.5
xsd:choice element
The xsd:choice element is used to make a choice between two or several elements of syntax.
NOTE
The xsd:choice element can be used to implement if-elseif-else or switch-case structure on BSD.
Syntax

<xsd:choice

bs2:if = "Expression"

bs2:ifNext = "NumericLiteral(, NumericLiteral)"

bs2:nOccurs = "(Expression | unbounded)"

rvc:iterator = "Expression"

rvc:iteratorInit = "Expression"

>
Children: {xsd:sequence, xsd:choice, xsd:group, xsd:element}
</xsd:choice>

Semantics

The children elements of xsd:choice should have a bs2:if or bs2:ifNext attribute in order to be able to decide which element must be chosen. The condition on each element must be defined such as only one choice must be possible. The evaluation of conditions of the children elements must be done in consecutive order. Once a child element is chosen, condition evaluation for the remaining children elements will be ignored.

A child element without conditional statement means that the condition is always true; in other words, the child element will always be chosen when no other child element is chosen before. Therefore, an xsd:group or an xsd:element without condition can be used like “else” statement in if-else structure or “default” case in switch-case structure.
Example
This examples describes a simple if-else structure. The first child element of xsd:choice, next_sc, is only parsed when vop_coded equals to 0. On the other hand, the second child element, VOPdata group, is only called when the above element is not processed.
<xsd:choice>
 <xsd:element name="next_sc" type="bs1:align8" bs2:if="vop_coded = 0"/>

 <xsd:group ref="VOPData"/>

</xsd:choice>
C.4.3.6
bs2:variable element

The data parsed from the bitstream may need to be stored in the internal variable managed by the syntax parser FU in order to control the further parsing process or to perform port output behavior. The bs2:variable element allows access to the internal variables within during the syntax parsing process. While xsd:element element with bs2:partContext attribute stores data read from the bitstream, the bs2:variable element can assign arbitrary value into variable using mathematical or logical expressions.
Syntax

<bs2:variable

name = "string"

value = "Expression{, Expression}"

bs2:position = "Expression{, Expression})"

rvc:port = "string"

bs2:if = "Expression"
>

Children: none

</bs2:variable>

Semantics

In RVC-BSDL, the use of name, value, and rvc:port attributes under the bs2:variable element is optional. The combination of these attributes should be translated to the various bitstream parser actions as follows:
· name + value: The value defined in th value attribute is assigned to the internal memory which name is defined in the name attribute. If the variable is not yet defined, try to define it.
· name + port: The value in the memory which name is defined in the name attribute is exported through the output port of the syntax parser FU which name is designated in rvc:port attribute.
· value + port: The value defined in value attribute is exported through the output port of the parser FU designated in rvc:port attribute. The value will not be saved in the internal memory in this case.

· name + value + port: The value defined in value attribute is assigned to the memory which name is defined in name attribute, and then is exported through the output port of the parser FU designated in rvc:port attribute.
If the bs2:position attribute is defined, the variable should be considered as an array-type. The array index is defined by the value of the bs2:position attribute. Access to multi-dimension array is allowed by describing more than one indexes separated by comma (“,”). Also, batch assignment into an array-typed variable can be described by describing more than one expressions separated by comma (“,”) in value attribute. See C.4.4.3 for the syntax of bs2:position attribute.

Conditional variable assignment can be described by adding bs2:if attribute. See C.4.4.1 for its syntax and semantics.

Example

The following use case of bs2:variable element defines a new memory location, mb_type, and store a value that is derived from the element of syntax being decoded.

<xsd:element name="mcbpc" type ="rvc:ext" rvc:extName="Algo_VLDtableB7_MPEG4part2">

 <xsd:annotation> <xsd:appinfo>

 <bs2:variable name="mb_type" value = "bitand(last(),7)"/>

 </xsd:appinfo> </xsd:annotation>

</xsd:element>

...

<xsd:group ref="motion_vector" bs2:nOccurs="4" bs2:if="mb_type=2"/>
In the following case, an array-typed variable, sps_sl, is being updated.
<bs2:variable name="sps_sl" bs2:position="sps_id, sps_size_id, sps_matrix_id, k" value="sps_sl_dc[sps_id][sps_size_id][sps_matrix_id-delta][k]"/>
In the following example, an array-typed variable, default_scaling_list_inter, is declared by batch assignment for array.

<bs2:variable name="default_scaling_list_inter" value="16, 16, 16, 16, 17, ..., 71, 91"/>

// default_scaling_list_inter[4] = 17
C.4.3.7
xsd:simpleType element
This element is used to define a new type of xsd:element element.
Syntax

<xsd:simpleType

name= "string"

>

Children: (xsd:union | xsd:restriction)

</xsd:simpleType>
Semantics
The cases in which a new type must be defined are when:
· The type of the current element is conditioned by a variable assigned during the parsing process. In this case, the xsd:union child element is used.

· The length in bits of the current element is defined by a variable assigned during the parsing process. In this case, the children elements xsd:restriction and (xsd:length or xsd:bitlength) are used.
· To test the bitstream through look-ahead parsing with an xsd:startcode element (see C.4.3.12).
Example
To see different examples of definition of a new type, refer to the subclauses C.4.3.9-C.4.3.12.
C.4.3.8
xsd:annotation and xsd:appinfo element
BSDL-2 and RVC-BSDL introduces a set of new XML elements to specify the bitstream parsing process in detail. Since XML Schema does not allow a user to add his own facets, such new elements must be used via the annotation mechanism of the XML schema. Therefore, the new elements must be described as children elements of the xsd:annotation/xsd:appinfo combination.
Syntax

The syntax of xsd:annotation element is:

<xsd:annotation>

Children: xsd:appinfo

</xsd:annotation>

The syntax of xsd:appinfo element when it is used within the scope of an xsd:schema element is:

<xsd:appinfo>

Children: {rvc:allocation}
</xsd:appinfo>

The syntax of xsd:appinfo element when it is used within the scope of an xsd:element element is:

<xsd:appinfo>

Children: {bs2:variable}
</xsd:appinfo>

The syntax of xsd:appinfo element when it is used within the scope of an xsd:union element is:

<xsd:appinfo>

Children: {bs2:ifUnion}

</xsd:appinfo>

The syntax of xsd:appinfo element when it is used within the scope of an xsd:restriction element is:

<xsd:appinfo>

Children: (bs2:bitLength | bs2:startcode)

</xsd:appinfo>

Semantics
According to the parent element in which this element is called, there are several possibilities in the semantics of xsd:annotation/xsd:appinfo combination:
· If the parent element is an xsd:schema element, the annotation mechanism is used for the declaration and initializaiton of internal variables in the parser FU. (See C.4.3.13)

· If the parent element is an xsd:element element, the bs2:variable element can be used to save variables. (See C.4.3.6)
· If the parent element is an xsd:simpleType element that defined with xsd:union, the bs2:ifUnion elements can be used to define a new user-defined type. (See C.4.3.12)
· If the parent element is an xsd:simpleType element that defined with xsd:restriction, one of the following elements can be used to define a new user-defined type: bs2:bitLength or bs2:startcode. (See C.4.3.8-C.4.3.11)
Example

The example usage of xsd:annotation and xsd:appinfo can be found in C.4.3.2, C.4.3.6, C.4.3.10-12, C.4.4.1, and C.4.4.2.
C.4.3.9
xsd:restriction element
This element is used to specify data accuracy. The actual child element of this element are bs2:bitLength or bs2:startcode.
Syntax

<xsd:restriction

base = "(bs1:b32 | bs1:byteRange)"

>

Children: xsd:annotation

</xsd:restriction>

Semantics

The base type should corresponds with the data type restriction method declared within the xsd:restriction element. The base type must be bs1:b32 when the child element is bs2:bitLength, while the bs1:byteRange data type should be used when the child element is the bs2:startcode element.
Example

The usage of xsd:restriction element is shown in C.4.3.10 and C.4.3.11.
C.4.3.10
bs2:bitLength element
This element specifies the size in bits of the current element, which has been defined as a new type using the xsd:simpleType construct.
Syntax

<bs2:bitLength

value = "Expression"

>

Children: none

</bs2:bitLength>
Semantics

The value attribute defines the length of the syntax element. The size in bits of the current element can be stored in a variable, which has been assigned during the parsing process.
Example

The VOPTimeIncrementType type instantiates elements of size defined in the variable vopTimeIncrementBits.
<xsd:simpleType name="VOPTimeIncrementType">

 <xsd:restriction base="bs1:b32">

 <xsd:annotation><xsd:appinfo>

 <bs2:bitLength value="vopTimeIncrementBits"/>

 </xsd:appinfo></xsd:annotation>

 </xsd:restriction>

</xsd:simpleType>

This type can be used by an xsd:element declaration as the following example:
<xsd:element name="VOPTimeIncrement" type="VOPTimeIncrementType"/>
C.4.3.11 bs2:startCode element
In some coding formats, a data segment is read until a start code a found. A start code consists of one or more byte-sequences that indicate the start of a new data segment. For example in ISO/IEC 1449-10 (Advanced Video Coding), the content of a NALUnit is read until the start code 0x00000001 is seen (which indicates the start of the subsequent NAL Unit). The bs2:startCode element is used to process such a data segment.
Syntax

<bs2:startCode

value = "HexadecimalValue">

Children: none

</bs2:startCode>

Semantics

The value defined in the value attribute should be interpret as the starting bits of the next syntax element. Look-ahead parsing should be used to test the following bits.
The bs1:byteRange data type is only allowed when it is used with the bs2:startCode element.
Example

The type rbspType allows bitstream parser FU to parse bitstream continuously until it finds a new start code starting with “00000001” bit. The following bitstream syntax element could be a 32-bit start code since the bitstream reading pointer will not be moved when the bits defined in bs2:startCode element is tested.
<xsd:simpleType name="rbspType">

 <xsd:restriction base="bs1:byteRange">

 <xsd:annotation> <xsd:appinfo>

 <bs2:startCode value="00000001"/>

 </xsd:appinfo> </xsd:annotation>

 </xsd:restriction>

</xsd:simpleType>

C.4.3.12
xsd:union element and bs2:ifUnion element
The combination of these elements allows users to choose the type of an element among a list of member types according to some conditions defined in the bs2:ifUnion element.
Syntax
The syntax of xsd:union element is:

<xsd:union

memberTypes = "{bs1:b1 - bs1:b32 | bs1:align8 | user-defined type}"
>

Children: xsd:annotation

</xsd:union>

The syntax of bs2:ifUnion element is:

<bs2:ifUnion

value= "Expression"

>

Children: none

</bs2:ifUnion>

Semantics

The bs2:ifUnion element specifies the conditions under which the corresponding type is chosen. The number of bs2:ifUnion elements that must appear is equal to the number of member types defined in the above xsd:union element.
Example

The type SpriteType instantiates elements of type bs1:b1 or bs1:b2. The type bs1:b1 is chosen if the condition “volVersion = 1” is true. The type bs1:b2 is chosen if the condition “volVersion = 1” is false.
<xsd:simpleType name="SpriteType">

 <xsd:union memberTypes="bs1:b1 bs1:b2">

 <xsd:annotation><xsd:appinfo>

 <bs2:ifUnion value="volVersion = 1"/>

 <bs2:ifUnion value="volVersion != 1"/>

 </xsd:appinfo></xsd:annotation>

 </xsd:union>

</xsd:simpleType>
C.4.3.13
rvc:allocation element
The rvc:allocation element in RVC-BSDL allows description of the list of internal variables which are necessary in controlling the bitstream parsing process. Information described in this element can be used by the parser instantiation mechanism or the bitstream parser itself to estimate the size of variable memory. Especially, this element is useful when using array-typed variables of multiple dimension.
Syntax
<rvc:allocation

name = "Expression"

rvc:isArray = "(true | false)"

rvc:dimension = "NumericLiteral {, NumericLiteral}"

value = "Expression{, Expression}">

Children: none
</rvc:allocation>
Semantics

A single rvc:allocation element represents a single internal variable. The name attribute defines the name of the variable, which can be used as identifier in xsd:element and bs2:variable element. The value of name attribute should be unique among all rvc:allocation declarations.

The rvc:isArray attribute defines whether the given variable is an array-type one or not. The variable should be considered as an array when this attribute is set to true.

The rvc:dimension attribute defines the dimension and the depth per dimension for the variable. More than one depth, separated by comma (“,”), can be described to declare multi-dimensional array variable.

The value attribute can be used to define initial value(s) to the allocated variable. The syntax is same with that of the bs2:variable element.
Example

The example below declares an array-typed internal variable, which is four-dimensional.
<rvc:allocation name="sps_sl" rvc:isArray="true" rvc:dimension="15,4,6,64"/>
(End of replacement text for C.4.3 and its subclauses.)
Renumber C.4.4 “Syntax of the expressions” to C.4.5.
Add C.4.4 and subordinate subclauses as follows:
C.4.4
Syntax of the attributes
This Subclause describes the syntax of the attributes used with the schema elements.
NOTE

The syntax of the attributes that are derived from the existing standards (e.g., XML schema or BSDL) is as described in the respective standards. This Subclause only describes new functionalities on the existing attributes and new attributes defined by RVC-BSDL.
C.4.4.1
bs2:if attribute

The bs2:if attribute specifies a conditional test to determine a syntax element is to be parsed or not. Differently from BSDL-2, bs2:if attribute in RVC-BSDL schema is described in a simplified expression syntax, which is defined in C.4.5. Also, it should be noted that bs2:if attribute is newly allowed for bs2:variable element in RVC-BSDL.
Syntax
This attribute is allowed for the following elements:
· Syntax element blocks (xsd:sequence and xsd:choice)
· Bitstream syntax elements (xsd:element, xsd:group of the group calling case)

· Variable manipulation (bs2:variable)

Semantics
If the bs2:if attribute is defined for an xsd:element element that contains bs2:variable elements as children, all contained bs2:variable elements are also affected by bs2:if condition of their parent element. Meanwhile, if bs2:if attribute is defined for a single bs2:variable element, the conditional test only affects the single element.
Example
The following example shows an xsd:element that contains several bs2:variable calculations. If the bs2:if condition of xsd:element element (“btype_isQ==1”) is evaluated as false, the two-bit-length bitstream syntax element (“dquant”) is not read from the bitstream, and all bs2:variable elements contained within the element is also negated. On the other hand, if the bs2:condition of bs2:variable element (e.g., “dquant==0”) is evaluated as false, only a single bs2:variable element is negated.
<xsd:element name="dquant" type="bs1:b2" bs2:if="btype_isQ == 1" bs2:partContext="true">

<xsd:annotation><xsd:appinfo>

<bs2:variable name="vop_quant" value="vop_quant-1" bs2:if="dquant==0"/>

<bs2:variable name="vop_quant" value="vop_quant-2" bs2:if="dquant==1"/>

<bs2:variable name="vop_quant" value="vop_quant+1" bs2:if="dquant==2"/>

<bs2:variable name="vop_quant" value="vop_quant+2" bs2:if="dquant==3"/>

<bs2:variable name="vop_quant" value="31" bs2:if="vop_quant>31"/>

<bs2:variable name="vop_quant" value="1" bs2:if="1>vop_quant"/>

</xsd:appinfo></xsd:annotation>
</xsd:element>
C.4.4.2
bs2:nOccurs, rvc:iterator and rvc:iteratorInit attribute

The bs2:nOccurs attribute specifies the number of occurrences of a single syntax element or a block of syntax elements. The value of this attribute may be a number or an expression; in either case, the evaluated number signifies the number of repetition. Differently from BSDL-2, bs2:if attribute in RVC-BSDL schema is described in a simplified expression syntax, which is defined in C.4.5. Also, it should be noted that bs2:nOccurs attribute is newly allowed for bs2:variable element in RVC-BSDL.
Syntax
This attribute is allowed for the following elements:
· Syntax element blocks (xsd:sequence and xsd:choice)
· Bitstream syntax elements (xsd:element, xsd:group of the group calling case)

· Variable manipulation (bs2:variable)

Semantics

In RVC-BSDL, when the value of a bs2:nOccurs attribute is set to “unbounded”, this should be interpret as an infinite loop. In this case, a bs2:if attribute can be used along to define break condition for the loop. The combination of “bs2:nOccurs="unbounded"” and a bs2:if attribute should be interpret that this syntax element (or this block of elements) should repeatedly be parsed while the expression given in the bs2:if attribute is evaluated as true. The condition described in bs2:if should be tested before of each repetition like a typical “while” statement.

The rvc:iterator attribute can be used along with bs2:nOccurs attribute to designate specific internal variable as an incremental iterator. The initial value of the iterator variable can be set by rvc:iteratorInit attribute; otherwise, the initial value is zero (0) by default. The iterator variable will be increased by one for every loop evoked by bs2:nOccurs attribute. The loop will be stopped when the value iterator variable equals to the value assigned in bs2:nOccurs attribute.
Example

The following example shows a usage of bs2:nOccurs with rvc:iterator. The iterator variable (“i”) contributes to the control flow within the conditional loop defined using xsd:sequence.

<xsd:sequence rvc:iterator="i" bs2:nOccurs="vps_num_hrd_parameters">

<xsd:element name="hrd_layer_set_idx" type="rvc:ext"
rvc:extName="EF_EXP_GOLOMB_U"/>

<xsd:element name="cprms_present_flag" bs2:if="i==0"/>
</xsd:sequence>
The following example shows more complicated control flow that exploits both rvc:iterator and rvc:iteratorInit attributes.

<xsd:sequence rvc:iterator="i" rvc:iteratorInit="pcRPS[STRPS_sps_id][STRPS_idx][0]" bs2:nOccurs="pcRPS[STRPS_sps_id][STRPS_idx][2]">

<xsd:element name="delta_poc_s1_minus1" type="rvc:ext"

rvc:extName="EF_EXP_GOLOMB_U" bs2:partContext="true">

<xsd:annotation><xsd:appinfo>

<bs2:variable name="t1" value="3+i"/>

<bs2:variable name="prev" value="delta_poc_s1_minus1-1"/>

<bs2:variable name="pcRPS" bs2:position="STRPS_sps_id, STRPS_idx, t1"

value="prev"/>

</xsd:appinfo></xsd:annotation>

</xsd:element>

<xsd:element name="used_by_curr_pic_s1_flag" type="bs1:b1"

bs2:partContext="true">

<xsd:annotation><xsd:appinfo>

<bs2:variable name="t1" value="67+i"/>

<bs2:variable name="pcRPS" bs2:position="STRPS_sps_id, STRPS_idx, t1"

value="used_by_curr_pic_s1_flag"/>

</xsd:appinfo></xsd:annotation>

</xsd:element>

</xsd:sequence>
C.4.4.3
bs2:position attribute

The bs2:position attribute specifies access to array-typed internal variable (i.e., “node-set” in BSDL).

Syntax
This attribute is allowed for xsd:element element and bs2:variable element.

Semantics

The semantics of this attribute is changed from its original form in BSDL-2 as follows:

· The use of the bs2:position attribute is newly allowed for the xsd:element element to facilitate data management during the bitstream parsing process. See C.4.3.2 for more information.

· The value of a bs2:position attribute should be described in a simplified expression syntax, which is defined in C.4.5.

· Notation of multiple dimension array index is allowed. Each array index should be separated by comma (“,”) with each other.

Example

The usage of the bs2:position attribute can be found in C.4.3.2 (xsd:element) and C.4.3.6 (bs2:variable).
C.4.4.4

rvc:extName and rvc:extParams attribute

These attributes describe the communication scheme with external functions or other FUs during the bitstream parsing process.
Syntax

These attributes are only allowed for xsd:element element which type is “rvc:ext”.

Semantics

The rvc:extName and rvc:extParams attributes are used to describe the bitstream syntax elements that should be parsed by externally defined algorithms. These elements only can be used in an xsd:element element which type is set to “rvc:ext”, and definition of rvc:extName attribute is compulsory in this case.

The rvc:extName attribute indicates the unique name or identifier of an external algorithm. The name may represent the name of an externally defined FU or the identifier of plugin parsing function within the bitstream parser FU. The rvc:extParams attribute can be used to define parameters for the external algorithm. Multiple parameters should be separated with comma (,).
NOTE
See Annex I.2 for the further details on the communication scheme between the syntax parser FU and the external algorithms.

Example

An example of these attributes can be found in C.4.3.2.1 (rvc:ext).

C.4.4.5
rvc:port attribute

This attribute specifies the token output from the syntax parser FU.
Syntax

This attribute is allowed for xsd:element element and bs2:variable element.

Semantics

The parsers built from RVC decoder configurations generate data tokens on different output ports. Consequently, a mechanism specifying the correspondence between the tokens, corresponding to the different elements of syntax and the output ports on which they have to be sent as output tokens, is necessary to fully specify a decoder configuration. A special attribute has been added in order to define the port on which the data is sent. The rvc:port attribute is used to indicate that the corresponding element of syntax must be available outside the parser for further processing operated by the network of FUs. This attribute is applied to xsd:element (C.4.3.2) and bs2:variable (C.4.3.6).

Example

An example is given below:
<xsd:element name="video_object_layer_width" type="bs1:b13" rvc:port="width"/>

Thus, the element “video_object_layer_width” is available as a token on the port “width” of the parser. Obviously, the connections of the parser to the network of FUs are reported in the description of the RVC decoder configuration connected to the port “width.” It is available in the specification of the FU Network Description (FND), which is given as an input of the whole framework (see Figure 2). In the above example, the corresponding FND must contain the description of a link connecting the output port “width” of the parser and an input port of an FU.
C.4.4.6
rvc:rootGroup attribute
This attribute is only allowed for xsd:schema element: see C.4.3.1 for its syntax and usage.

C.4.4.7
rvc:isArray and rvc:dimension attribute
These attributes are only allowed for rvc:allocation element: see C.4.3.13 for their syntax and usage.
Renumber C.4.4 “Syntax of the expressions” to C.4.5, and replace its entire content as follows:
C.4.5
Syntax of the expressions
This Subclause describes the syntax of the expressions used in the attributes.
Expression →
PrimaryExpression
| UnaryOperator PrimaryExpression
| PrimaryExpression Operator PrimaryExpression
PrimaryExpression →
'max('Expression','Expression')'
| 'min('Expression','Expression')'
| 'numbits('Expression')'
| 'bitand('Expression','Expression')'
| 'bitor('Expression','Expression')'
| 'bitnot('Expression')'
| 'rshift('Expression','Expression')'
| 'lshift('Expression','Expression')'
| 'log2('Expression')'
| 'last()'
| ExpressionLiteral
ExpressionLiteral → NumericLiteral | VariableExpression | true | false
VariableExpression → VariableName{ArrayIndex}
ArrayIndex → '['Expression']'{ArrayIndex}

UnaryOperator → ('not')

Operator → ('=' | 'lt' | 'lte' | '>' | '>=' | '!= ' | 'and' | 'or' | '*' | '/' | '+' | '-' | '^' | 'mod')
The VariableName is the name of an element appears on the current BSD or the name of a variable defined by bs2:variable element. Accordingly, it should be a qualified name for an XML element. RVC-BSDL do not use XPath model to designate a specific element or variable: all elements and variables are considered global in the parser FU and therefore are accessible from any expression syntax without path designation. See the following example:
<xsd:sequence bs2:if="video_object_layer_shape != 2 and vop_coding_type = 1">

<xsd:element name="vop_rounding_type" type="bs1:b1"/>
</xsd:sequence>
A variable can be considered as an array type if it is followed by square bracket.
<bs2:variable name="CBP[4]" value="bitand(rshift(cbpc,4),1)"/>
Multiple dimension is allowed for the array notation.

<bs2:variable name="pcRPS" bs2:position="sps_id, t1, i" value="pcRPS[sps_id][short_term_ref_pic_set_idx][i]"/>
Additionally, less-than (“<”) and less-than-or-equal (“<=”) operators are not available in RVC-BSDL because the use of less-than symbol (“<”) within attribute value is not allowed in the XML grammar. When describing mathematical expressions, these operators should be replaced with literals (“lt” and “lte”) or bypassed by exchanging the order of operands. (e.g., from “x<5” to “5>x”).
Add C.4.5.1 and C.4.5.2 as follows:

C.4.5.1
last() function
The last() function is a predefined function that returns the value of the latest bitstream syntax element that is parsed, regardless of whether the syntax element is marked with bs2:partContext or not. The following example shows a use case of last() function.
<xsd:element name="vop_time_increment_resolution" type="bs1:b16">

<xsd:annotation>

<xsd:appinfo>

<bs2:variable name="vopTimeIncrementBits" value="numbits(last())"/>

</xsd:appinfo>

</xsd:annotation>

</xsd:element>
In this example, the bs2:variable can use the value read by the xsd:element “vop_time_increment_resoltion” even though the element is not specified as a named variable by bs2:partContext="true".
C.4.5.2
log2() function
The log2() function returns the base 2 logarithm of the given value. The decimal points are truncated. This function can be used to calculate the minimum number of bits to represent the given value in unsigned binary integer (i.e., as a “numbits” function). For instance, log2(14) returns 4, as 1410 is 11102.
Replace the entire content of C.4.5 with C.4.6 as follows:

C.4.6
Syntax of the data types

This Subclause describes the syntax of the data types.
NumericLiteral → IntegerLiteral | '0x'HexadecimalValue

IntegerLiteral → IntegerDigit{IntegerDigit}
IntegerDigit → ('0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9')
HexadecimalValue → HexadecimalDigit{HexadecimalDigit}
HexadecimalDigit → ('0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' | 'A' | 'B' | 'C' | 'D' | 'E' | 'F')
Replace the entire content of C.5 and add C.5.1 and C.5.2 as follows:
C.5. Connections between the syntax parser and the FU network

The Syntax Parser and the network of FU must be connected together. Thus, a communication scheme between the syntax parser and Functional Unit is necessary.
C.5.1
General output ports
For each distinguishable names designated for rvc:port attribute in the RVC-BSDL description, output ports must be created for the syntax parser FU. The following code creates an output port named “ACPRED”.
<xsd:element name="AC_pred_flag" type="bs1:b1" bs2:partContext="true" rvc:port="ACPRED"/>

C.5.2
Output ports with feedback ports
The following code shows an example of BSD, illustrating the connection of the Syntax parser to an FU with feedback ports generated by the element with rvc:ext datatype.
<xsd:element name="mcbpc" type="rvc:ext" rvc:extName="EF_VLD" rvc:extParams="16" bs2:partContext="true"/>

The element name “mcbpc” is decoded by an external algorithm: it is indicated by the data type rvc:ext. The name of external algorithm, “EF_VLD”, is designated by rvc:extName attribute. When the external algorithm “EF_VLD” is not available as a plugin function within the instantiated parser FU, communication should be established between the syntax parser FU and an external FU.

Whenever a connection to a Functional Unit is establish, the induced ports of the parser are:

· Bitstream output port: an output port which name is value of the rvc:extName attribute (e.g., mcbpc. This port is always created. It is used to send the bitstream to be parsed to the FU.

· Parameter output port: an output port which name is value of the rvc:extParams attribute (e.g., 16). This port is created only when the rvc:extParams attribute is set. It is used to send the necessary parameters to the FU.

· Status feedback port: an input port which name is value of the rvc:port attribute followed by the suffix “_f” (e.g. algo_mv_f). This port is always created. It is used to acknowledge the status of the FU each time the parser sends data.

· Value feedback port: an input port which name is value of the rvc:port attribute followed by the suffix “_data” (e.g. algo_mv_data). This port is created only when the attribute bs2:partContext is set to “true” in the current element. It is used to return the decoded value to the parser, which can use this value to continue its parsing process.

In order to know if the parser can go to the next element of syntax or not, a communication protocol between the syntax parser and the FU has been defined:

a) The parser sends data on the port EF_VLD and parameters on the port EF_VLD_p
b) The FU receives the data and warns the parser (though the EF_VLD_f port)
1) if it needs more data (value of the data to return to the parser = false), goto a)
2) or if it has finished (value of the data to return to the parser = true), goto c)
c) The value received via the input port EF_VLD_data is set as the value of the syntax element in the parser
d) The parser can continue parsing the other elements of syntax.

Note that the value returned through the value feedback port can be sent through a designated output port if the element has rvc:port attribute. The ports used for the connection with the bitstream parsing FUs are separated from the general output ports described in C.5.1.
The example of VLD decoding process using such communication scheme is shown in Annex I.

In Annex I (Instantiation of bitstream syntax parser from bitstream syntax descriptions), add a paragraph after the annex title as follows:
This Annex describes an informative examples of the methods to instantiate bitstream syntax parser FU from the given bitstream syntax description written in RVC-BSDL.
After the paragraph that ends with “… Collecting all of the RVC-CAL syntax into a single stylesheet also means that an alternative stylesheet could be provided in place of the RVC-CAL sheet.”, Add new I.1.2 and subordinate subclauses, as shown below:
I.1.2
Generic parser FU
This Subclause describes the generic parser FU (GPFU) methodology as a bitstream parser FU instantiation method. The GPFU is a configurable bitstream parser FU pre-defined in the tool library of which the behavior is configured during run-time according to a BSD. The GPFU approach provides a run-time configurable parser FU on top of executable BSD.

I.1.2.1
Structures
Figure I,2 shows the concept of the GPFU and the basic structure of the GPFU is depicted in Figure I.3. A GPFU can be implemented using the functional components described below. The combination of the functional components described in Figure I.3 can be implemented in a consolidated form (i.e., as a granular FU) to maximize compatibility with the built-in versions of bitstream syntax parser FU.
[image: image1.png]
Figure I.1 — Concept of generic parser FU
[image: image2.png]
Figure I.2 — Basic structure of generic parser FU
I.1.2.2
BSD parser
The XML-based RVC-BSDL BSD must be parsed in order to be put into GPFU as an input. The BSD parser reads a given BSD and parses the BSD to run the GPFU. The output of the BSD parser is used by the bitstream parser engine to configure bitstream parsing process during the run-time. The output can be an intermediate format translated from RVC-BSDL to facilitate the parser engine configuration process.
I.1.2.3.
Bitstream parser engine

The bitstream parser engine is the core of the GPFU. The bitstream parsing and the port output behaviour is conducted within this engine. The parser engine includes generic bitstream parsing functions which can be executed according to the bitstream syntax and parsing description included in the given BSD. For efficient run-time bitstream parsing behaviour, the parsr engine may receive a preprocessed BSD (e.g., translated in an intermediate format) from the BSD parser. The parser engine also may call plugin functions nested within the GPFU or external FUs that are able to process a part of bitstream using specific algorithms such as entropy decoding.
I.1.2.4
GPFU plugin functions
The plugin functions in GPFU should be able to respond to a parameterized function call evoked by the script engine. BSD parser may parameterize the plugin function prior to the bitstream parsing process. Such parameterization structure allows the GPFU plugin functions to be codec independent as much as possible. More details of the communication with the plugin function with BSD are described in I.3.2.
I.1.2.5
External Parsing FUs

Some of the bitstream parsing algorithms may be implemented as a separated external FU (i.e., actor). In that case, the GPFU may use the external FU to parse some part of the given bitstream. The mechanism to use such external FU is described in I.2.
I.1.2.6
DEMUX
Because the GPFU may not aware how the rest of FU network is composed, the GPFU produces generalized outputs through a generalized ports which consists of data port and the token type indication port. The generalized token output should be processed by a management FU working as a DEMUX by distributing the tokens to proper FUs via proper ports. A simple data type casting (e.g., integer size specification or Boolean value generation) can be applied on data during the demultiplexing process to meet the implementation specific data types of tokens.

Rename and renumber I.1.2:

I.1.2
Implementing variable-length decoding with functional units

as:

I.2
Externally defined algorithms
In I.2, replace:

VLD tables necessary for the decoding of the variable-length codes are defined as standard FU in the MPEG video tool library.
with:
VLD tables necessary for the decoding of the variable-length codes can be defined in two different methods: as standard FU in the MPEG video tool library or as predefined parser functions.
And break the text after the sentence that ends with “… as standard FU in the MPEG video tool library or as predefined parser functions.” and create new subclauses I.2.1 and I.2.1.1 as shown below:
I.2.1
External algorithms as functional units
I.2.1.1
Connection of the external FUs with the bitstream parser FU
(The following paragraphs then become part of the new I.2.1.1 while their contents remain unchanged, as “Figure I.2 illustrates an example case of how variable length codes are parsed …”)
And replace:

The connections between the Syntax Parser and the Functional Unit in charge of decoding the element of syntax are:

· a connection from the parser to the FU to send the bits (the destination is specified using the rvc:port attribute)

· two connections from the FU to the parser: one to indicate to the parser whether the decoding process is finished or not, and another to send the decoded value, which may be reused by the parser. Such connections are respectively named adding the suffix “_f” and “d” to the rvc:port attribute indicating the name of the output port of the parser.

The attribute rvc:port is used to indicate to which parser output port the bits have to be sent, This attribute is compulsory whenever an FU is necessary to decoder a piece of bitstream. Picture illustrating the relation between output ports labeled by the RVC-BSDL schema describing a bitstream syntax element and the network of FUs described by FND are reported in Figure I.2.

[image: image3]
Figure I.2 — Illustration of the relation between the Syntax Parser and the Functional Unit

In case of the bs0: variable is set to “false”, the connection “data” does not appear because the syntax parser does not need the results of the decoding.

with:
In the BSD written in RVC-BSDL, an xsd:element element should be declared with the rvc:ext datatype to indicate the element should be processed by an external algorithm. The rvc:extName attribute is used to indicate to which parser output port the bits have to be sent; this attribute is compulsory whenever an FU is necessary to decoder a piece of bitstream. The connections between the Syntax Parser and the Functional Unit in charge of decoding the element of syntax are:

· A connection from the parser to the FU to send the bits. The name of the port to be generated is specified using the rvc:extName attribute.

· A connection from the parser to the FU to send parameters to perform bitstream parsing process. The name of the port to be generated is defined by adding suffix “_p” to the rvc:extName attribute. This port is optional and only required when there is external function parameters defined by rvc:extParams attribute.
· Two connections from the FU to the parser: one to indicate to the parser whether the decoding process is finished or not, and another to send the decoded value, which may be reused by the parser. Such connections are respectively named adding the suffix “_f” and “_d” to the rvc:extName attribute indicating the name of the output port of the parser.

Picture illustrating the relation between output ports labeled by the RVC-BSDL schema describing a bitstream syntax element and the network of FUs described by FND are reported in Figure I.2. When the bs2:partContext is set to “false”, the connection “data” may not need to be opened because the syntax parser does not need the results of the decoding.

[image: image4.png]
Figure I.2 — Illustration of the relation between the Syntax Parser and the Functional Unit
Renumber:

I.1.3
Generation of VLD tables decoding FUs

to:

I.2.1.2
Generation of VLD tables decoding FUs
Replace:

actor VLD_mcbpc_intra(int VLD_DATA_SZ, int VLD_ADDR_SZ)

String bits ==> int(size=2) finish, int(size=VLD_DATA_SIZE) data:

int START_INDEX = 0;

int(size=VLD_ADDR_SZ) vld_index;

int(size=VLD_DATA_SZ) vld_codeword := 1;

// ********** automatically generated part ********

list(type:int(size=VLD_DATA_SZ), size=16)

vld_table = [10, 12, 18, 58, 26, 76, 34, 16, 42, 50, 1, 80, 144, 208, 140, 204];

// **

procedure start_vld_engine(int index)

begin

vld_index := index;

vld_codeword := 2;

end

 function vld_success() --> bool: vld_codeword & 3 = 0 end

 function vld_continue() --> bool: vold_codeword & 3 = 2 end

 function vld_failure() --> bool: vld_codeword & 1 = 1 end

 function vld_result() --> int(size=VLD_DATA_SZ): vld_codeword >> 2 end

 start_VLD: action ==>

 do

 start_vld_engine(START_INDEX);

 end

 read_in_bits: action bits:[b] ==>

 do

 vld_codeword := vld_table[vld_index + if b="1" then 1 else 0 end];

 vld_index := vld_codeword >> 2;

 end

 continue_VLD: action ==> finish:[f]

 guard

 vld_continue()

 var

 int(size=2) f := 0

 end

 fail_VLD: action ==>

 guard

 vld_failure()

 do

 // VLD FAILURE end

 finish_VLD: action ==> finish:[f], data:[d]

 guard

 vld_success()

 var

 int(size=2) f := 2,

 int(size=VLD_DATA_SZ) d := vld_result()

 end

 schedule fsm start_VLD:

 start_VLD (start_VLD) --> read_in_bits;

 read_in_bits (read_in_bits) --> process;

 process (continue_VLD) --> read_in_bits;

 process (fail_VLD) --> start_VLD;

 process (finish_VLD) --> start_VLD;

 end

end

with:
actor VLD_mcbpc_intra(int VLD_DATA_SZ, int VLD_ADDR_SZ)

String bits, int(size=8) params ==> int(size=2) finish, int(size=VLD_DATA_SIZE) data:

int(size=VLD_ADDR_SZ) vld_index;

int(size=VLD_DATA_SZ) vld_codeword := 1;

// ********** automatically generated part ********

list(type:int(size=VLD_DATA_SZ), size=16)

vld_table = [10, 12, 18, 58, 26, 76, 34, 16, 42, 50, 1, 80, 144, 208, 140, 204];

// **

procedure start_vld_engine(int index)

begin

vld_index := index;

vld_codeword := 2;

end

 function vld_success() --> bool: vld_codeword & 3 = 0 end

 function vld_continue() --> bool: vold_codeword & 3 = 2 end

 function vld_failure() --> bool: vld_codeword & 1 = 1 end

 function vld_result() --> int(size=VLD_DATA_SZ): vld_codeword >> 2 end

 start_VLD: action START_INDEX:[params] ==>

 do

 start_vld_engine(START_INDEX);

 end

 read_in_bits: action bits:[b] ==>

 do

 vld_codeword := vld_table[vld_index + if b="1" then 1 else 0 end];

 vld_index := vld_codeword >> 2;

 end

 continue_VLD: action ==> finish:[f]

 guard

 vld_continue()

 var

 int(size=2) f := 0

 end

 fail_VLD: action ==>

 guard

 vld_failure()

 do

 // VLD FAILURE end

 finish_VLD: action ==> finish:[f], data:[d]

 guard

 vld_success()

 var

 int(size=2) f := 2,

 int(size=VLD_DATA_SZ) d := vld_result()

 end

 schedule fsm start_VLD:

 start_VLD (start_VLD) --> read_in_bits;

 read_in_bits (read_in_bits) --> process;

 process (continue_VLD) --> read_in_bits;

 process (fail_VLD) --> start_VLD;

 process (finish_VLD) --> start_VLD;

 end

end

Renumber:

I.1.4
The modification of FSM in the parser FU
to:

I.2.1.3
The modification of FSM in the parser FU
Replace:

DCT_Coeff.read: action ==>

guard

readDone()

end

DCT_Coeff.output: action ==> B16: [current]

do

current := read_result_in_progress ;

end

DCT_Coeff.finish: action B16_f: [finish] ==>

guard

finish

do

setRead(M4V_NEXT_ELEMENT_LENGTH);

end

DCT_Coeff.notFinished: action B16_f: [finish] ==>

guard

not finish

do

setRead(M4V_VLC_LENGTH);

end

[…]

// Finite State Machine

Previous_state (previous_action) --> DCT_Coeff_exists;

DCT_Coeff_exists (DCT_Coeff.read) --> DCT_Coeff_output;

DCT_Coeff_output
(DCT_Coeff.output) --> DCT_Coeff_result;

DCT_Coeff_result
(DCT_Coeff.notFinished) --> DCT_Coeff_exists;

DCT_Coeff_result
(DCT_Coeff.finish) --> Next_state;

It shows the actions and the finite state machine generated for handling the communication between itself and external VLD FUs. When the parser meets a variable length code, these actions are generated. First, the parser reads one bit from the bitstream input port (DCT_Coeff.read action). The following step consists in sending the bit to the corresponding VLD table; it is done in action DCT_Coeff.output. Then, the parser waits for a token coming from the VLD FU. This token (finish) indicates if a matching has been found in the table or not. If yes, the value of finish is true and the action DCT_Coeff.finish is fired and the number of bits to read for the next element is set. If not, the value of finish is false and the DCT_Coeff.notFinished is fired and one more bit must be read (M4V_VLC_LENGTH = 1). The finite state machine summarizes the transitions.
with:
mcbpc.read: action ==>

guard

readDone()

end

mcbpc.output: action ==> Algo_VLDTableB6: [current], Algo_VLDTableB6_p: [0]
do

current := read_result_in_progress ;

end

mcbpc.finish: action Algo_VLDTableB6_f: [finish] ==>

guard

finish

do

setRead(M4V_NEXT_ELEMENT_LENGTH);

end

mcbpc.notFinished: action Algo_VLDTableB6_f: [finish] ==>

guard

not finish

do

setRead(M4V_VLC_LENGTH);

end

[…]

// Finite State Machine

Previous_state (previous_action) --> mcbpc_exists;

mcbpc_exists (mcbpc.read) --> mcbpc_output;

mcbpc_output
(mcbpc.output) --> mcbpc_result;

mcbpc_result
(mcbpc.notFinished) --> mcbpc_exists;

mcbpc_result
(mcbpc.finish) --> Next_state;

It shows the actions and the finite state machine generated for handling the communication between itself and external VLD FUs. When the parser meets a variable length code, these actions are generated. First, the parser reads one bit from the bitstream input port (mcbpc.read action). The following step consists in sending the bit to the corresponding VLD table; it is done in action mcbpc.output. Then, the parser waits for a token coming from the VLD FU. This token (finish) indicates if a matching has been found in the table or not. If yes, the value of finish is true and the action mcbpc.finish is fired and the number of bits to read for the next element is set. If not, the value of finish is false and the mcbpc.notFinished is fired and one more bit must be read (M4V_VLC_LENGTH = 1). The finite state machine summarizes the transitions.
Add I.2.2 as follows:

I.2.2
External algorithms as plugin functions
Plugin functions are the functions that can be predefined within the bitstream parser FU (e.g., GPFU) and can be called during the bitstream parsing process. Such functions can be included in the bitstream parser during the instantiation process. For example,
· For the RVC-CAL parser FU instantiation process, plugin functions can be included within the CAL templates and can be connected to the bitstream parsing flow during the instantiation.
· For the generic parser FU approach, plugin functions can be a part of generic parser FU implementation.
The plugin functions perform specific bitstream parsing actions within the bitstream parser FU. For example, a VLD plugin function consumes a set of bits from the input port and produces the VLD result values. The values can be used within the bitstream parser or can be used to generate output tokens of the parser FU. This process do not involves other FUs outside of the bitstream parser FU; therefore, a high level of reconfigurability can be assured.
In the BSD written in RVC-BSDL, the plugin function can be called by using the rvc:ext datatype. The description written in RVC-BSDL can be processed using the following rules:
· rvc:extName attribute indicates the name or identifier of the plugin function to be called.
· rvc:extParams attribute is used to send parameters to the plugin function. Each parameter can be an RVC-BSDL expression and is separated by comma with each other.
The bitstream parser is assumed to be able to launch the plugin function with the designated name or identifier and the given parameters. If the plugin function makes an output as a result of the bitstream parsing process, the output value is handled in the same way as the values retrieved from the fixed-length bitstream syntax elements. Figure I.3 illustrates the relationship between the parser FU and the plugin function.

[image: image5.png]
Figure I.3 — Illustration of the relation between the Syntax Parser and the plugin function
The RVC-CAL source code below shows an example implementation of a plugin function, which performs MPEG-4 variable length decoding (VLD).

action BYTE:[b] ==>

guard

(not isFifoFull(fifo)) and isParserInitDone

var

uint(size=4) fifo_idx = fifo[FIFO_IDX]

do

fifo[fifo_idx] := b;

fifo[FIFO_CPT_BITS] := fifo[FIFO_CPT_BITS] + 8;

fifo[FIFO_IDX] := (fifo_idx + 1) & (FIFO_SIZE - 1);

end

[…]

int(size=VLD_ADDR_SZ) vld_index; ext_func.VLD: action ==>

guard

BSD_param_set[1] = EF_VLD

end

//new

VLD.proc_new: action ==>

guard

isFifoFull(fifo)

var

uint(size=32) res[1]

do

start_vld_engine(plugin_parameter[1]);

while (not (vld_success() or vld_failure())) do

getBits(1,fifo,res);

vld_codeword := MPEG4_PART2_VLD_table[vld_index + res[0]];

vld_index := (vld_codeword >> 2);

end

if (vld_success()) then

return_value := vld_result();

end

end

int vld_index;

int vld_codeword := 1;

function vld_success() --> bool : (vld_codeword & 3) = 0 end

function vld_failure() --> bool : (vld_codeword & 1) = 1 end

function vld_result() --> int : (vld_codeword >> 2) end

procedure start_vld_engine(int index)

begin

vld_index := index;

vld_codeword := 2;

end

VLD_success: action ==>

guard vld_success() end

VLD_failure: action ==>

guard vld_failure() end

[…]

// Finite State Machine
Previous_state (previous_action) --> VLD;
VLD (VLD.proc_new) --> VLD2;

VLD2 (VLD_success) --> Next State;

VLD2 (VLD_failure) --> fatal_error;
The MPEG-4 VLD plugin function shares the FIFO queue of the syntax parser FU with other fixed-length bitstream parsing functionalities. When the plugin function is called by the finite state machine, the plugin function directly manipulates FIFO queue to conduct the VLD process. When the decoding is completed, the decoded value is stored in a variable named return_value and can either be used by further bitstream parsing processes or be exported via an output port.
[image: image6.png]