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Abstract

The JCT-VC established HEVC screen content coding test model 2 at its 18th meeting (June 30th to July 11th, 2014, Sapporo, Japan). This document serves as a source of general tutorial information and also provides an encoder-side description of test model 2.
1 Introduction 
The JCT-VC established HEVC screen content coding test model 2 (SCM 2) at its 18th meeting (June 30th to July 11th, 2014, Sapporo, Japan). The main changes from SCM 1 to SCM 2 are the addition of palette mode, residual adaptive colour transform (ACT), modifications to the block vector predictor and block vector difference coding for intra block copy (IBC). This document describes only the additional encoder aspects that were adopted during HEVC screen content coding (SCC) extension development. For an understanding of the encoder upon which SCM 2 is built, please refer to HEVC test model 16 encoder description, JCTVC-R1002 [1], and the reference software, HEVC-15.0+RExt-8.0+SCM-2.0, which can be accessed via 

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-15.0+RExt-8.0+SCM-2.0/
2 Scope
This document provides an encoder-side description of the HEVC Screen content coding test model 2 (SCM 2), which serves as a tutorial for the encoding model implemented in the HM-15.0+RExt-8.0+SCM-2.0 software. The purpose of this document is to share a common understanding of the reference encoding methods supported in the HM-15.0+RExt-8.0+SCM-2.0 software, in order to facilitate the assessment of the technical impact of the proposed new technologies during the standardization process. The common test conditions and software reference configurations that should be used for experimental work are described in JCTVC-R1015 [2].
3 Test model description

3.1 General overview

The only changes in SCM 1 with respect to the HEVC Range extensions test model 7 [2] are in block vector search for intra block copy (Intra BC) and inter modes. The search method for the inter mode is modified to make it more suitable for screen content. For the Intra BC mode, the chroma SAD is used in the search for the optimal block vector. Additionally the search area for the block vectors for the intra BC and inter modes is expanded to include the entire picture.
The main changes from SCM 1 to SCM 2 are the addition of palette mode, residual adaptive colour transform (ACT), modifications to the block vector predictor and block vector difference coding for intra block copy (IBC). 
3.2 Intra BC block vector search
In order to evaluate the rate-distortion (RD) cost of using the Intra BC mode, for each CU, block matching (BM) is performed at the encoder to find the optimal block vector (BV). In SCM, first a local area search is performed. This is followed by a search over the entire picture for certain CU sizes.

3.2.1 Local block vector search for Intra BC mode
Compared to HEVC Range extensions test model 7, the following modifications are made to the local block vector search in SCM. In order to find the optimal block vector from the local region, luma as well as chroma information is utilized. In the first step, the four best block vectors are selected according to their RD cost, where
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Note that only the SAD of the luma component is used in this step. In the second step, both the luma and chroma components are used in the calculation of the SAD for the four best block vectors selected from step 1. The block vector with the minimum RD cost is selected as the locally optimal block vector, 
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The RD cost corresponding to 
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3.2.2 Global vector search for Intra BC mode

In addition to the local search, the entire picture is searched for 8×8 and 16×16 blocks. If slices/tiles are used, instead of the entire picture, the current slice/tile is searched. For 16×16 blocks, only a one-dimensional search is conducted over the entire picture. This means that only the block vectors with at least one zero component are searched, i.e. the search is horizontal or vertical only. For 8×8 blocks, a hash-based search is used to speed up the full picture search. The bit-length of the hash table entry is 16. Each node in the hash table records the position of each block vector candidate in the picture. With the hash table, only the block vector candidates having the same hash entry value as that of the current block are examined. 
The 16-bit hash entries for the current block and the reference block are calculated using the original pixel values. Let Grad denote the gradient of an 8×8 block and let DC0, DC1, DC2 and DC3 denote the DC values of the four 4×4 sub-blocks of the 8×8 block. Then, the 16-bit hash entry H is calculated as
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where MSB(X, n) represents the n most significant bits of X.
For 8×8 and 16×16 blocks, let the block vector with the minimum RD cost corresponding to the full-picture search be denoted by 
[image: image7.wmf]global

opt

BV

 and the corresponding RD cost be denoted by 
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 are compared to choose the block vector with the minimum RD cost. 

3.2.3 IntraBC block vector prediction

The candidate list of Intra BC block vector prediction is constructed in the following order:

1) Two candidates from spatial neighboring blocks (a1 and b1 in Figure 1)

2) Last 2 coded BVs of Intra BC blocks within the current CTB

3) Preset constant values of (-2*CU_width, 0) and (-CU_width, 0)
The first two available and different entries in the list will become the two candidate predictors, a 1-bit flag is used for the current Intra BC coded block to signal which one is used for block vector prediction.
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Figure 1: Spatial candidates for Intra BC block vector prediction
3.2.4 IntraBC block vector difference coding
The BV (BV_x, BV_y) of an Intra BC coded block is predictive coded, using the block vector prediction method in 3.2.3.
The BVD (block vector difference) (BVD_x, BVD_y) is defined as follows:
BVD_x = BV_x – BVP_x
BVD_y = BV_y – BVP_y
where BVP (BVP_x, BVP_y) is the block vector predictor.
Each of the BVD component is coded as follows: first, one flag indicates whether this BVD component is zero. When the BVD component is not zero, Exp-Golomb codes with order 3 are used to encode the remaining absolute level of the BVD component. At last, one flag is used to code its sign.

3.3 Inter block search
Compared to the HEVC Range extensions test model 7, SCM modifies the inter block search in two ways. The inter search is modified to adapt to the characteristics commonly found in screen content sequences. Furthermore, the inter block search is extended to the whole picture using hash-based techniques.
3.3.1 Inter search modification
The inter search in HEVC Range extensions test model 7 is modified in the following three ways to better match with the characteristics of the screen content sequences.
· Multistage approximate SAD computation: To begin with, the SAD between the current block and the candidate block is computed using only 2 lines. This SAD value is normalized to account for the subsampling and the normalized SAD is used to calculate the RD cost. If the RD cost is greater than or equal to the best RD cost so far, the search moves on to the next candidate block. Otherwise, another SAD is calculated by taking two additional lines into account and the whole process is repeated. Thus, for a 16×16 block, SAD is computed based on 2 lines (0 and 8), 4 lines (0, 4, 8, and 12), 8 lines and 16 lines of the block.

· Modified initial search: Due to the non-monotonic error pattern exhibited by non-camera-captured sequences, the exponentially expanding diamond that is used in the HEVC Range extensions test model 7 is not efficient as it may either miss one of the best candidates or falsely infer the best candidate to be within the initial search region around the best predictor. Instead, in SCM 1, a uniform diamond pattern search is employed in a smaller search area around the best predictor to better capture the local minima.
In HEVC Range extensions test model 7, an initial block vector is derived from available predictors based on the minimum RD cost. Then, exponentially expanding diamonds up to size 64 are tested as candidates. Instead, in SCM 1, the search space is restricted to 
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 around the best predictor position. Then, this restricted search space is uniformly traversed with a step-size of 4 and fixed diamonds as shown in Figure 2. 

· Modified early skip detection: In HEVC Range extensions test model 7 fast inter search, the early skip is activated when the optimal motion vector for 2N×2N mode is (0, 0) or when the residual signal of merge motion vector is less than a threshold. In SCM 1, early skip detection is based only on the residual signal of the merge motion vector.
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Figure 2: Search candidates for the modified method
3.3.2 Hash-based inter search
Hash-based search is applied only to 2N×2N blocks. An eighteen bit hash based on original pixels is used. The first 2 bits are determined by the block size, e.g. 00 for 8x8, 01 for 16x16, 10 for 32x32, and 11 for 64x64. The remaining 16 bits are determined by the original pixels.

For one block, two hash values are calculated in a similar way but with different CRC truncated polynomials. The first hash value is used for retrieval and the second hash value is used to exclude some of the hash conflicts. The hash value is calculated as follows:

· For each row, calculate the 16-bit CRC value for all the pixels Hash[i].

· Group the row hash values together (Hash[0]Hash[1]…) and then calculate the 24-bit CRC value H.

· The lower 16 bits of H will be used as the lower 16 bits of hash value of the current block.

To avoid the scenario when one hash value corresponds to many entries, the blocks satisfying one of the following conditions are not added into the hash table

· There is only one pixel value in every row; or

· There is only one pixel value in every column.

After building the hash table, the motion search is performed as follows. For each 2N×2N block,

· Perform hash based search first.

· If hash match is found, skip the normal integer pixel motion search. Otherwise, perform normal integer pixel motion search.

Early termination based on hash search is also applied. If all of the following conditions are satisfied, the RD optimization process will be terminated without checking other modes and CU splitting.

· Hash match is found.

· The quality of the reference block is no worse than the expected quality of the current block (the QP of the reference block is no greater than the QP of the current block).

· Current CU depth is 0.
3.4 Palette mode

The palette mode was adopted into the HEVC SCC test model 2 at the Sapporo meeting. The palette mode is signalled at the CU level and is typically used when most of the pixels in the CU can be represented by a small set of representative colour values. 

A brief overview of the palette mode for lossy and lossless coding, as well as some encoder side considerations will be given next. More details on the palette mode can be found in HEVC Screen Content Coding Draft Text 1 (JCTVC-R1005) [3] and the contribution JCTVC-R0348 [4].

3.4.1 Overview of palette mode
The basic idea behind a palette mode is that the samples in the CU are represented by a small set of representative colour values. This set is referred to as the palette. It is also possible to indicate a sample that is outside the palette by signalling an escape symbol followed by (possibly quantized) component values. This is illustrated in Figure 3. 
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Figure 3: Example of a block coded in palette mode
In this example, the palette size is 4. The first 3 samples use palette entries 2, 0, and 3, respectively, for reconstruction. The blue sample represents an escape symbol. For decoding a palette-coded block, the decoder needs to have the following information:

· The palette entries
· Palette indices or escape symbol for each sample. In case of escape symbol, additional component values (possibly quantized).
In addition, on the encoder side the appropriate palette to be used with that CU needs to be derived.

3.4.2 Palette derivation
In SCM2.0, the maximum palette size is 31. One additional index is allocated to escape symbol. Thus, the maximum number of palette indices is 32. In SCM-2.0 software, for the derivation of the palette for lossy coding, a modified k-means clustering algorithm is used. The first sample of the block is added to the palette. Then, for each subsequent sample from the block, the sum of absolute distances (SAD) from each of the current palette entries is calculated. If the distortion for each of the components is less than a threshold value for the palette entry corresponding to the minimum SAD, the sample is added to the cluster belonging to the palette entry. Otherwise, the sample is added as a new palette entry.

In the next step, the clusters are sorted in a decreasing order of frequency. Then, the palette entry corresponding to each entry is updated. Normally, the cluster centroid is used as the new palette entry. But a rate-distortion analysis is performed to analyze whether any entry from the palette predictor (described in section 3.4.3) may be more suitable to be used as the updated palette entry instead of the centroid when the cost of coding the palette entries is taken into account. This process is continued till the all the clusters are processed or the maximum palette size is reached. Finally, if a cluster has only a single sample and the corresponding palette entry is not in the palette predictor, the sample is converted to an escape symbol. Additionally, duplicate palette entries are removed and their clusters are merged.

For lossless coding, a different derivation process is used. A histogram of the samples in the CU is calculated. The histogram is sorted in decreasing order of frequency. Then, starting with the most frequent histogram entry, each entry is added to the palette. For histogram entries that occur only once are converted to escape symbols if they are not a part of the palette predictor.

3.4.3 Coding of the palette entries
For coding of the palette entries, a palette predictor is maintained. In SCM-2.0, the maximum size of the palette predictor is 64. The palette predictor is reset at the beginning of each CTB row. For each entry in the palette predictor, a reuse flag is signalled to indicate whether it is part of the current palette. This is illustrated in Figure 4. After this, the number of new palette entries are signalled using truncated unary code. Finally, the component values for the new palette entries are signalled.
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Figure 4: Use of palette predictor to signal palette entries
3.4.4 Coding of palette indices
The palette indices are coded using horizontal and vertical traverse scans as shown in Figure 5. The scan order is explicitly signalled in the bitstream using the palette_transpose_flag. For the rest of the subsection it is assumed that the scan is horizontal.
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Figure 5: Horizontal and vertical traverse scans
The palette indices are coded using two main modes: 'INDEX' and 'COPY_ABOVE'. The escape symbol is also signalled as an 'INDEX' mode. It is assigned an index equal to the maximum palette size (31). The mode is signalled using a flag except for the top row or when the previous mode was 'COPY_ABOVE'. In the 'COPY_ABOVE' mode, the palette index of the sample in the row above is copied. It is not possible to copy the index corresponding to the escape symbol. In the 'INDEX' mode, the palette index is explicitly signalled. For both 'INDEX' and 'COPY_ABOVE' modes, a run value is signalled which specifies the number of subsequent samples that are also coded using the same mode. For an escape symbol, no run is signalled. The coding of palette indices is illustrated in Figure 6.
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Figure 6: Coding of palette indices
3.5 Adaptive Colour Transform (ACT)

The Adaptive Colour Transform (ACT) coding tool was adopted into the HEVC SCC test model 2 at the Sapporo meeting. ACT performs in-loop colour space conversion in the prediction residual domain using colour transform matrices based on the YCoCg and YCoCg-R colour spaces. ACT is turned on or off adaptively at the CU level using the flag cu_residual_act_flag. ACT can be combined together with another inter component de-correlation method called Cross Component Prediction (CCP) that is already supported in HEVC Rext [5]. When both are enabled, ACT is performed after CCP at the decoder, as shown in Figure 7. 

A brief overview of ACT for lossy and lossless coding, as well as some encoder side considerations will be given next. More details on ACT can be found in SCC Draft 1 (JCTVC-R1005) and the contribution JCTVC-R0147.
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Figure 7: SCC decoder flow of in-loop ACT
3.5.1 ACT in lossy coding
For lossy coding, ACT uses the following colour space conversion equations: 
Forward:  
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Inverse:
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where (C0, C1, C2) and (C’0, C’1, C’2) are the colour components before and after colour space conversion, respectively. The forward colour transform from (C0, C1, C2) to (C’0, C’1, C’2) is not normalized, with its norm being roughly equal to 
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 for C0 and C2 and equal to 
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for C1. In order to compensate for the non-normalized nature of the forward transform, delta QPs of (-5, -3, -5) are applied to (C’0, C’1, C’2), respectively. In other words, for a given “normal” QP for the CU, if ACT is turned on, then the quantization parameter is set equal to (QP − 5, QP − 3, QP −5) for (C’0, C’1, C’2), respectively. The adjusted quantization parameter only affects the quantization and inverse quantization of the residuals in the CU. For deblocking, the “normal” QP value is still used.
3.5.2 ACT in lossless coding

For lossless coding (that is, cu_transquant_bypass_flag equal to 1), colour space conversion based on the YCoCg-R space (the reversible version of YCoCg) as depicted in Figure 8 is used in ACT. The reversible colour space transform increases the intermediate bit depth by 1 bit after forward transform. Note that the QP adjustment discussed in 3.5.1 does not apply, as quantization is not performed when cu_transquant_bypass_flag is equal to 1.
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(a) Forward reversible colour transform
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Figure 8: Flow chart of lifting operations of forward and inverse ACT in lossless coding
3.5.3 Encoder optimization for ACT
Care is taken on the encoder side when performing ACT, in order to avoid doubling the encoder complexity by searching all the possible modes twice - in both the original colour space and the converted colour space. The following fast encoding methods are employed in SCM2.0. 
· For intra mode coding, the best luma and chroma modes are decided once and shared between the two colour spaces. Further, when ACT is on (cu_residual_act_flag = 1), chroma components will share the same prediction mode as the luma component. That is, the only chroma prediction mode tested is the DM mode; other chroma prediction modes are not checked. This is the same as with the CCP encoder in HEVC Rext.
· For IntraBC and inter modes, block vector search or motion estimation is performed only once. The block vectors and motion vectors are shared between the two colour spaces. Further, for RGB sequences, block vector search for IntraBC mode is conducted in the converted (i.e., YCoCg) colour space. 
· The order of checking the rate-distortion cost of enabling and disabling ACT depends on the original video content. For RGB sequences, the RD cost for enabling ACT is checked first; for YCbCr sequences, the RD cost for disabling ACT is checked first. Rate distortion cost of the second colour space is invoked only when there is at least one non-zero coefficient in the first colour space. 
· RD cost of parent CU is used to decide whether to check the RD cost in the second colour space for the current CU. For example, if for the parent CU, the RD cost of the first colour space is smaller than that of the second colour space, then for the current CU, the second colour space is not considered. 
Another encoder optimization technique for ACT is the chroma lambda adjustment method. Specifically, the chroma lambda used to calculate RD cost is increased compared to that for the luma component. The chroma lambda value is modified based on the input QP, using the following equation: 
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and Table 1 specifies the mapping between QP and delta(QP). 
Table 1: Specification of delta(QP) used in chroma lambda adjustment for ACT
	QP
	[0, 14]
	[15, 29]
	[30, 36]
	[37, 38]
	[39, 40]
	[41, 42]
	[43, 52]

	delta(QP)
	0
	-1
	-2
	-3
	-4
	-5
	-6
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