INTERNATIONAL ORGANIZATION FOR STANDARDIZATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND AUDIO
ISO/IEC JTC1/SC29/WG11 N14703
July 2014, Sapporo, Japan
	Source
	JCT-VC

	Status
	Approved (tutorial information document)

	Title
	High Efficiency Video Coding (HEVC) Encoder Description v 16 (HM16)

	Author
	K. McCann, C. Rosewarne, B. Bross, M. Naccari, K. Sharman, G. Sullivan

	Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11

18th Meeting: Sapporo, JP, 30 June – 7 July 2014
	Document: JCTVC-R1002

	Title:
	High Efficiency Video Coding (HEVC) Test Model 16 (HM 16) Encoder Description

	Status:
	Output Document of JCT-VC

	Purpose:
	Report

	Author(s) or
Contact(s):
	K. McCann

C. Rosewarne
B. Bross
M. Naccari
K. Sharman

G. Sullivan
	Email:
	ken@zetacast.com
chris.rosewarne@cisra.canon.com.au
benjamin.bross@hhi.fraunhofer.de
matteo.naccari@bbc.co.uk
karl.sharman@eu.sony.com
garysull@microsoft.com

	Source:
	Editors

Abstract

The JCT-VC established the HEVC Test Model 16 at its 18th meeting in Sapporo from 30 June to 7 July 2014. This document serves as a source of general tutorial information on HEVC Version 1 and range extensions and also provides an encoder-side description of the HM-16 software.
CONTENTS

Page

1Abstract

5List of figures

7List of tables

81
Introduction

81.1
Overview of coding structures

91.2
Obtaining the HEVC test model 16

92
Scope

93
Encoder control of the HEVC test model 16

93.1
Encoder compile-time options

93.1.1
High bit depth support

103.2
Encoder configuration options

103.2.1
File, format and profile/level/tier configuration options

113.2.2
Coding tool configuration options

123.2.3
SEI message configuration options

124
Description of tools in the HEVC test model 16

124.1
Picture partitioning

124.1.1
Coding tree unit (CTU) partitioning

134.1.2
Slice and tile structures

144.1.3
Coding unit (CU) and coding tree structure

154.1.4
Prediction unit (PU) structure

164.1.5
Transform unit (TU) and transform tree structure

164.2
File and format support

174.3
Intra prediction

174.3.1
Prediction modes

194.3.2
Filtering of neighbouring samples

194.3.3
Intra boundary filter

204.3.4
4:2:2 chroma format mode adjustment

214.3.5
Reference sample filtering

214.4
Inter prediction

214.4.1
Prediction modes

224.4.1.1
Derivation of merge candidates

224.4.1.2
Spatial merge candidates

234.4.1.3
Temporal merge candidates

244.4.1.4
Generated merge candidates

244.4.2
Motion vector prediction

244.4.2.1
Derivation of motion vector prediction candidates

254.4.2.2
Spatial motion vector candidates

264.4.2.3
Temporal motion vector candidates

264.4.3
Interpolation filter

274.4.4
Weighted Prediction

274.4.4.1
High precision offsets

274.5
Transform and quantization (scaling)

284.5.1
Inverse transforms

284.5.2
1D inverse transform matrices

284.5.3
Scaling and quantization

284.5.4
Transform selection for the 4:2:2 chroma format

294.5.5
Scaling lists for the 4:4:4 chroma format

294.5.6
Scaling lists for transform skipped TUs

294.5.7
Chroma QP initialization offset table

294.5.8
Extended precision processing

304.5.9
CU-adaptive chroma QP offset

304.5.10
Quantization rounding for residual DPCM

314.6
Adaptive QP selection

314.7
Adaptive QP

314.8
Slice QP offset

324.9
Residual prediction in case of transquant bypass and transform skip

324.10
Entropy coding

324.10.1
CABAC alignment

324.11
Coefficient Coding

324.11.1
Transform skip residual rotation

334.11.2
Significance map context modelling

334.11.3
Rice parameter adaptation

334.11.4
Maximum coeff_abs_level_remaining codeword length restriction

334.12
Cross-component prediction

344.13
Loop Filtering

344.13.1
Overview of Loop filtering

344.13.2
Deblocking filter

354.13.2.1
Boundary decision

354.13.2.2
Boundary strength calculation

364.13.2.3
Threshold variables

364.13.2.4
Filter on/off decision for 4 lines

374.13.2.5
Strong/weak filter selection for 4 lines

374.13.2.6
Strong filtering

374.13.2.7
Weak filtering

384.13.2.8
Chroma filtering

384.13.3
Sample adaptive offset filter

394.13.3.1
Operation of each SAO type

394.14
Wavefront parallel processing

405
SEI messages

405.1
No Display

405.2
Time code

415.3
Chroma sampling filter hint

425.4
Temporal motion constrained tile sets

425.5
Knee function information

425.6
Mastering display colour volume

436
Profiles, Levels and Tiers

457
Description of encoding methods

457.1
Cost Functions

457.1.1
Sum of Square Error (SSE)

457.1.2
Sum of Absolute Difference (SAD)

457.1.3
Hadamard transformed SAD (SATD)

457.1.4
RD cost functions

457.1.4.1
Lagrangian constant values

467.1.4.2
Weighting factor for chroma component

467.1.4.3
SAD based cost function for prediction parameter decision

467.1.4.4
SATD based cost function for prediction parameter decision

467.1.4.5
Cost function for mode decision

467.2
Encoder configurations

467.2.1
Overview of encoder configurations

467.2.2
Intra-only configuration

477.2.3
Low-delay configurations

477.2.4
Random-access configuration

487.3
Slice partitioning operation

487.4
Derivation process for slice-level coding parameters

487.4.1
Sample Adaptive Offset (SAO) parameters

487.4.1.1
Search the SAO type with minimum rate-distortion cost

487.4.1.2
Slice level on/off Control

497.5
Derivation process for CU-level and PU-level coding parameters

497.5.1
Intra prediction mode and parameters

497.5.1.1
Rate-distortion penalty for intra coding

497.5.2
Inter prediction mode and parameters

497.5.2.1
Derivation of motion parameters

507.5.2.2
Motion estimation

527.5.2.3
Decision process on AMP mode evaluation procedure

527.5.3
Intra/Inter/PCM mode decision

547.6
Derivation process for TU-level coding parameters

547.6.1
Residual Quad-tree partitioning

557.6.2
Rate-distortion optimized quantization

557.7
Cross-component prediction

557.8
Transform skip selection

557.9
Cost mode

567.10
Inter-prediction search

567.11
Rate control

588
References

List of figures
8Figure 1‑1 – Simplified block diagram of HM encoder

13Figure 4‑1 – Example of a picture divided into CTUs.

13Figure 4‑2 – Example of slices and slice segments

14Figure 4‑3 – Examples of tiles and slices

15Figure 4‑4 – Example of coding tree structure

15Figure 4‑5 – 8 partition modes for inter PU

16Figure 4‑6 – Example of transform tree structure within CU

18Figure 4‑7 – The 33 intra prediction directions

18Figure 4‑8 – Mapping between intra prediction direction and intra prediction mode

20Figure 4‑9 – Intra boundary filter example.

21Figure 4‑10 – Intra prediction angle for 4:2:2 chroma format.

22Figure 4‑11 – Derivation process for merge candidate

23Figure 4‑12 – Positions of spatial merge candidate

23Figure 4‑13 – Positions for the second PU of Nx2N and 2NxN partitions

24Figure 4‑14 – Illustration of motion vector scaling for temporal merge candidate

24Figure 4‑15 – Candidate positions for temporal merge candidate, C3 and H

24Figure 4‑16 – Example of combined bi-predictive merge candidate

25Figure 4‑17 – Derivation process for motion vector prediction candidates

26Figure 4‑18 – Illustration of motion vector scaling for spatial motion vector candidate

27Figure 4‑19 – Lossless scaling and transformation process.

28Figure 4‑20 – Transform skip scaling and transformation process.

28Figure 4‑21 – Inverse transformation process.

29Figure 4‑22 – Square transform arrangement for the 4:2:2 chroma format.

29Figure 4‑23 – Scaling list set showing derivation of 32x32 chroma scaling lists from 16x16 chroma scaling lists

30Figure 4‑24 – Diagram showing magnitude bit depths in HEVC encoding path

31Figure 4‑25 – Dead zone uniform quantizer with rounding offset.

35Figure 4‑26 – Overall processing flow of deblocking filter process

35Figure 4‑27 – Flow diagram for Bs calculation

36Figure 4‑28 – Referred information for Bs calculation at CTU boundary

36Figure 4‑29 – Pixels involved in filter on/off decision and strong/weak filter selection

38Figure 4‑30 – Deblocking behaviour in the 4:2:2 chroma format.

39Figure 4‑31 – Four 1-D 3-pixel patterns for the pixel classification in EO

39Figure 4‑32 – Four bands are grouped together and represented by its starting band position

47Figure 7‑1 – Graphical presentation of intra-only configuration

47Figure 7‑2 – Graphical presentation of low-delay configuration

48Figure 7‑3 – Graphical presentation of random-access configuration

50Figure 7‑4 – Three step motion search strategy for integer-pel accuracy

51Figure 7‑5 – Start position selection

51Figure 7‑6 – Search patterns for the first search

54Figure 7‑7 – The schematic of Intra/Inter/PCM mode decision

List of tables

10Table 3‑1 – Encoder configuration options.

11Table 3‑2 – Encoder configuration options for control of coding tools.

12Table 3‑3 – Encoder configuration options for control of SEI messages.

19Table 4‑1 – Mapping between intra prediction direction and intra prediction mode for chroma

19Table 4‑2 – Specification of predefined threshold for various transform block sizes

20Table 4‑3 – Specification of intra prediction mode for 4:2:2 chroma (Proposal 2)

26Table 4‑4 – 8-tap DCT-IF coefficients for 1/4th luma interpolation

26Table 4‑5 – 4-tap DCT-IF coefficients for 1/8th chroma interpolation

30Table 4‑6 – g_maxTrDynamicRange[channel]

34Table 4‑7 – α Mapping Table.

36Table 4‑8 – Derivation of threshold variables from input Q

39Table 4‑9 – Specification of SAO type

39Table 4‑10 – Pixel classification rule for EO

40Table 5‑1: Command line parameters for the time code SEI message.

41Table 5‑2 – Horizontal filter type control.

41Table 5‑3 – Vertical filter type control.

42Table 5‑4 – Knee function information SEI message.

42Table 5‑5 – Mastering display colour volume SEI message.

43Table 6‑1 – Bitstream indications for format range extensions profiles.

44Table 6‑2 – Mapping between user configuration and automatically calculated bitstream format range extensions profile indication.

45Table 7‑1 – Derivation of

52Table 7‑2 – Conditions and actions for fast AMP mode evaluation

57Table 7‑3. Configuration options for rate control algorithm.

1 Introduction

The 16th HEVC test model (HM-16) was specified by decisions taken at the 18th meeting of the JCT-VC held in Sapporo from 30 June to 7 July 2014. This document provides an overview of the 16th HEVC test model. In particular, an overview of the coding tools provided by HEVC is provided, and an overview of how the encoder controls these tools is also provided. Description of configuration options to control the encoder is also included.
The 16th HEVC test model is a merging of the 15th HEVC test model (HM-15.0) and the 8th HEVC range extensions test model (HM-15.0-RExt8.1). The 15th HEVC test model is described in [1] and the 7th HEVC range extensions test model is described in [2]. References [1] and [2] form the basis for this document.
1.1 Overview of coding structures
HEVC is based on the well-known block-based hybrid coding architecture, combining motion-compensated prediction and transform coding with high-efficiency entropy coding. However, in contrast to previous video coding standards, HEVC employs a flexible quad-tree coding block partitioning structure that enables the use of large and multiple sizes of coding, prediction, and transform blocks. HEVC also employs improved intra prediction and coding, adaptive motion parameter prediction and coding, a new loop filter and an enhanced version of context-adaptive binary arithmetic coding (CABAC) entropy coding. New high level structures for parallel processing are also employed.
Figure 1‑1 shows a general block diagram of the HM encoder.
 SHAPE * MERGEFORMAT [image: image2.png]
Figure 1‑1 – Simplified block diagram of HM encoder

The picture partitioning structure is described in Section 4.1. The input video is first divided into blocks called coding tree units (CTUs), which perform a role that is broadly analogous to that of macroblocks in previous standards. The coding unit (CU) defines a region sharing the same prediction mode (intra, inter or skip) and it is represented by the leaf node of a quadtree structure. The prediction unit (PU) defines a region sharing the same prediction information. The transform unit (TU), specified by another quadtree, defines a region sharing the same transformation and quantization.
The intra prediction processes are described in Section 4.1. The best intra mode among a total of 35 modes (Planar, DC and 33 angular directions) is selected and coded. Mode dependent context sample smoothing is applied to increase prediction efficiency and the three most probable modes (MPM) are used to increase symbol coding efficiency.

The inter picture prediction processes are described in Section 4.4. The best motion parameters are selected and coded by merge mode and adaptive motion vector prediction (AMVP) mode, in which motion predictors are selected and explicitly coded among several candidates. To increase the efficiency of motion-compensated prediction, a non-cascaded interpolation structure with 1D FIR filters is used. An 8-tap or 7-tap filter is directly applied to generate the values of half-pel and quarter-pel luma samples, respectively. A 4-tap filter is utilized for chroma interpolation.

Transforms and quantization are described in Section 4.5. Residuals generated by subtracting the prediction from the input are spatially transformed and quantized. In the transform process, matrices which are approximations to DCT are used. A partial butterfly structure is implemented for the transformation, to reduce computational cost. In the case of 4x4 intra predicted residuals, an approximation to DST is used for the luma. 52-level quantization steps and rate-distortion optimized quantization (RDOQ) are used in the quantization process. Reconstructed samples are created by inverse quantization and inverse transform.

Entropy coding is described in Section 4.11. It is applied to the generated symbols and quantized transform coefficients in the encoding process using a Context-based Adaptive Binary Arithmetic Coding (CABAC) process.

Loop filtering is described in Section 4.12. After reconstruction, two in-loop filtering processes are applied to achieve better coding efficiency and visual quality: deblocking filtering and sample adaptive offset (SAO). Reconstructed CTUs are assembled to construct a picture that is stored in the decoded picture buffer to be used to encode the next picture of input video.
1.2 Obtaining the HEVC test model 16
The current version of the 16th HEVC test model (HM-16.0) is available from the following locations:

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.0
https://hevc.hhi.fraunhofer.de/trac/hevc/browser/tags/HM-16.0
2 Scope

This document provides an encoder-side description of the HEVC test model 16 (HM), which serves as a tutorial on the encoding model implemented in the HM software. The purpose of this text is to establish a common understanding on reference encoding methods supported in the HM software, in order to facilitate the assessment of the technical impact of proposed new technologies during the HEVC standardization process. Although brief descriptions of the HEVC design are provided to help understanding of the HM, the corresponding sections of the HEVC draft specification [3] should be referred to for any descriptions regarding normative processes. Documents [4] and [5] define the common test conditions and software reference configurations that should be used for experimental work.
3 Encoder control of the HEVC test model 16
3.1 Encoder compile-time options

The HEVC test model 16 includes additional compile-time options to enable adopted tools and to configure the encoder and/or decoder. Options relating to the configuration of the encoder and/or decoder are documented here.
3.1.1 High bit depth support

The following compile-time macro (#define) is used to enable the encoder and decoder to support operation with extended_precision_processing_flag set equal to one.
RExt__HIGH_BIT_DEPTH_SUPPORT
When this macro is set to 1, the FULL_NBIT and RExt__HIGH_PRECISION_FORWARD_TRANSFORM macros are also set to 1. This can also be controlled externally be the build environment.
FULL_NBIT
The FULL_NBIT macro, when enabled, results in the use of a distortion measure derived from all bits of source data, otherwise the distortion measure is scaled such that it is equivalent in magnitude to that of an 8-bit system. Note that this macro is also present in the HM software.
RExt__HIGH_PRECISION_FORWARD_TRANSFORM
When set to 0 (default) the RExt__HIGH_PRECISION_FORWARD_TRANSFORM macro results in the forward transform of the HEVC test model 16 being the transpose of the HEVC inverse transform (6-bit precision).
When set to 1, the RExt__HIGH_PRECISION_FORWARD_TRANSFORM macro results in the forward transform of the HEVC test model 16 being an integer approximation of a DCT, with 14-bit precision, formed from matrix-inverting and rounding the corresponding 6-bit precision inverse transform with scaling to produce output having magnitude that corresponds to the magnitude of the 6-bit forward transform output.
The supplied makefile for Linux includes targets that build executables with RExt__HIGH_BIT_DEPTH_SUPPORT set to zero and one.
3.2 Encoder configuration options
3.2.1 File, format and profile/level/tier configuration options

Table 3‑1 provides a list of encoder configuration options for the HEVC test model 16 associated with files, formats and profiles/levels/tiers.
Table 3‑1 – Encoder configuration options.
	Configuration option
	Section reference

	BitstreamFile
	4.2

	FrameRate
	4.2

	FrameSkip
	4.2

	FramesToBeEncoded
	4.2

	InputBitDepth
	4.2

	InputBitDepthC
	4.2

	InputChromaFormat
	4.2

	InputColourSpaceConvert
	4.2

	InputFile
	4.2

	InternalBitDepth
	4.2

	InternalBitDepthC
	4.2

	IntraConstraintFlag
	6

	Level
	6

	LowerBitRateConstraintFlag
	6

	MaxBitDepthConstraint
	6

	MaxChromaFormatConstraint
	6

	MSBExtendedBitDepth
	4.2

	MSBExtendedBitDepthC
	4.2

	MSEBasedSequencePSNR
	4.2

	OutputBitDepth
	4.2

	OutputBitDepthC
	4.2

	OutputInternalColourSpace
	4.2

	PrintFrameMSE
	4.2

	PrintSequenceMSE
	4.2

	Profile
	6

	ReconFile
	4.2

	SNRInternalColourSpace
	4.2

	SourceWidth
	4.2

	SourceHeight
	4.2

	Tier
	6

3.2.2 Coding tool configuration options
Table 3‑2 provides a list of encoder configuration options for the HEVC test model 16 associated with coding tools.
Table 3‑2 – Encoder configuration options for control of coding tools.
	Configuration option
	Section reference

	AlignCABACBeforeBypass
	4.10.1

	ChromaFormatIDC
	4.1

	CostMode
	7.9

	CrossComponentPrediction
	4.12

	ExplicitResidualDPCM
	4.9

	ExtendedPrecision
	4.5.8

	GolombRiceParameterAdaptation
	4.11.3

	HighPrecisionPredictionWeighting
	4.4.1

	ImplicitResidualDPCM
	4.9

	IntraReferenceSmoothing
	4.3.5

	LowerBitRateConstraintFlag
	6

	MaxBitDepthConstraint
	6

	MaxCUChromaQpAdjustmentDepth
	4.5.9

	MaxCUWidth
	4.1.5

	MaxCUHeight
	4.1.5

	MaxCUSize
	4.1.5

	MaxPartitionDepth
	4.1.5

	QuadtreeTULog2MaxSize
	4.1.5

	QuadtreeTULog2MinSize
	4.1.5

	QuadtreeTUMaxDepthIntra
	4.1.5

	QuadtreeTUMaxDepthInter
	4.1.5

	ReconBasedCrossCPredictionEstimate
	4.12

	ResidualRotation
	4.11.1

	SaoLumaOffsetBitShift
	4.13.3

	SaoChromaOffsetBitShift
	4.13.3

	SingleComponentLoopInterSearch
	7.10

	SingleSignificanceMapContext
	4.11.2

	TransformSkipLog2MaxSize
	4.5

3.2.3 SEI message configuration options

Table 3‑3 provides a list of encoder configuration options for the HEVC test model 16 associated with control of SEI messages.

Table 3‑3 – Encoder configuration options for control of SEI messages.
	SEIChromaSamplingFilterHint
	5.3

	SEIChromaSamplingHorizontalFilterType
	5.3

	SEIChromaSamplingVerticalFilterType
	5.3

	SEIKneeFunctionCancelFlag
	5.5

	SEIKneeFunctionId
	5.5

	SEIKneeFunctionInfo
	5.5

	SEIKneeFunctionInputDispLuminance
	5.5

	SEIKneeFunctionInputDrange
	5.5

	SEIKneeFunctionInputKneePointValue
	5.5

	SEIKneeFunctionMappingFlag
	5.5

	SEIKneeFunctionNumKneePointsMinus1
	5.5

	SEIKneeFunctionOutputDispLuminance
	5.5

	SEIKneeFunctionOutputDrange
	5.5

	SEIKneeFunctionOutputKneePointValue
	5.5

	SEIKneeFunctionPersistenceFlag
	5.5

	SEIMasteringDisplayColourVolume
	5.6

	SEIMasteringDisplayMaxLuminance
	5.6

	SEIMasteringDisplayMinLuminance
	5.6

	SEIMasteringDisplayPrimaries
	5.6

	SEIMasteringDisplayWhitePoint
	5.6

	SEINoDisplay
	5.1

	SEITempMotionConstrainedTileSets
	5.4

	SEITimeCode
	5.2

4 Description of tools in the HEVC test model 16
4.1 Picture partitioning

4.1.1 Coding tree unit (CTU) partitioning

Pictures are divided into a sequence of coding tree units (CTUs). An example of a picture divided into CTUs is shown in Figure 4‑1. Pictures are also divided into one or more colour channels. Generally, a picture includes a luma colour channel and two chroma colour channels. Each CTU includes a square block of samples, known as a ‘coding tree block’ (CTB), for each colour channel of the picture. The size of a CTU is specified with respect to the luma channel.
The size of the CTU is configured as one of 16x16, 32x32 or 64x64 luma samples.
[image: image3.emf]
Figure 4‑1 – Example of a picture divided into CTUs.
4.1.2 Slice and tile structures

A slice is a data structure that can be decoded independently from other slices of the same picture, in terms of entropy coding, signal prediction, and residual signal reconstruction. A slice can either be the entire picture or a region of a picture, which is not necessarily rectangular. A slice consists of a sequence of one or more slice segments starting with an independent slice segment and containing all subsequent dependent slice segments (if any) that precede the next independent slice segment (if any) within the same access unit.

A slice segment consists of a sequence of CTUs. An independent slice segment is a slice segment for which the values of the syntax elements of the slice segment header are not inferred from the values for a preceding slice segment. A dependent slice segment is a slice segment for which the values of some syntax elements of the slice segment header are inferred from the values for the preceding independent slice segment in decoding order. For dependent slice segments, prediction can be performed across dependent slice segment boundaries, and entropy coding is not initialized at the starting of the dependent slice segment parsing process.

An example of picture with 11 by 9 coding tree units that is partitioned into two slices is shown in Figure 4‑2, below. In this example, the first slice is composed of an independent slice segment containing 4 coding tree units, a dependent slice segment containing 32 coding tree units, and another dependent slice segment containing 24 coding tree units. The second slice consists of a single independent slice segment containing the remaining 39 coding tree units of the picture.

[image: image4.emf]slice segment

boundary

slice boundary

independent

slice segment

dependent

slice segment

Figure 4‑2 – Example of slices and slice segments

A tile is a rectangular region containing an integer number of coding tree units in coding tree block raster scan. The tile scan order is a specific sequential ordering of coding tree blocks partitioning a picture in which the coding tree blocks are ordered consecutively in coding tree block raster scan in a tile, whereas tiles in a picture are ordered consecutively in a raster scan of the tiles of the picture.

A tile may consist of coding tree units contained in more than one slice. Similarly, a slice may consist of coding tree units contained in more than one tile. Note that within the same picture, there may be both slices that contain multiple tiles and tiles that contain multiple slices.
One or both of the following conditions are fulfilled for each slice and tile:

–
All coding tree units in a slice belong to the same tile.

–
All coding tree units in a tile belong to the same slice.
One or both of the following conditions are fulfilled for each slice segment and tile:

–
All coding tree units in a slice segment belong to the same tile.

–
All coding tree units in a tile belong to the same slice segment.
Two examples of possible slice and tile structures for a picture with 11 by 9 coding tree units are shown in Figure 4‑3, below. In both examples, the picture is partitioned into two tiles, separated by a vertical tile boundary. The left-hand example shows a case in which the picture only contains one slice, starting with an independent slice segment and followed by four dependent slice segments. The right-hand example illustrates an alternative case in which the picture contains two slices in the first tile and one slice in the second tile.

[image: image5.emf]tile

boundary

Figure 4‑3 – Examples of tiles and slices
4.1.3 Coding unit (CU) and coding tree structure

The coding unit (CU) is a square region, represented as the leaf node of a quadtree partitioning of the CTU. The quadtree partitioning structure allows recursive splitting into four equally sized nodes, starting from the CTU and stopping when no further splitting is specified or when the minimum CU size is reached. The minimum CU size is generally 8x8 luma samples. Each coding unit is configured to use a particular prediction mode, and the available prediction modes are intra prediction and inter-prediction. Figure 4‑4 shows a CTU divided into multiple CUs.
[image: image6.emf]
Figure 4‑4 – Example of coding tree structure
The quadtree partitioning allows a content-adaptive coding tree structure comprised of CUs, each of which may be as large as the CTU or as small as 8x8.
The CTU size is configured with MaxCUWidth, MaxCUHeight, MaxCUSize. The minimum CU size is defined in terms of the CTU size and the maximum partition depth, as specified using MaxPartitionDepth. The maximum partition depth is defined as the maximum number of splits in the CU quadtree and one split resulting from dividing a CU into partitions for prediction (to be described below). Thus, a CTU size of 64x64 and a maximum partition depth of 4 implies a minimum CU size of 8x8.
4.1.4 Prediction unit (PU) structure

Each CU is associated with one or more prediction units (PU) according to a partition mode and all PUs associated with a given CU have the same prediction mode. Each CU includes one, two or four PUs, depending on the partition mode of the CU. Figure 4‑5 shows the eight partition modes that may be used to define the PUs for a CU.
[image: image7.wmf]PART_2Nx2N

PART_2NxN

PART_Nx2N

PART_NxN

PART_2NxnU

PART_2NxnD

PART_nLx2N

PART_nRx2N

Figure 4‑5 – 8 partition modes for inter PU
For a CU configured to use intra prediction, only square PUs are available. Thus, the available partition modes are PART_NxN and PART_2Nx2N. PART_NxN is only available when the CU size is equal to the minimum CU size.

For a CU configured to use inter-prediction, all eight partition modes are available. The availability of non-square PU sizes permits improved matching of boundaries of real objects in the picture. To reduce the worst case memory bandwidth of motion compensation, the 4x4 PU is prohibited and 4x8 and 8x4 PU sizes may only reference one reference picture. Other PU sizes can reference one or two reference picture.
A PU spans all colour channels and is associated with one prediction block (PB) for each colour channel.
4.1.5 Transform unit (TU) and transform tree structure

The transform unit (TU) is a square region defined by a quadtree partitioning of a CU. The quadtree partitioning of the CU into one or more TUs is known as a ‘residual quadtree’. Each TU is associated with one transform block (TB) per colour channel. Figure 4‑6 shows an example RQT.

[image: image8.emf]
Figure 4‑6 – Example of transform tree structure within CU

The TU shape is always square and may take the following sizes: 8x8, 16x16 and 32x32 luma samples. Each TU is associated with transform blocks for each colour channel. Generally, one TB per colour channel is associated with a given TU. Also, when the TU size is 8x8, it is possible to have four 4x4 TBs in luma and one 4x4 TB per chroma colour channel. For the 4:2:2 chroma format, two TBs per chroma colour channel are associated with a given TU.
The range of supported transform sizes is signalled in the bitstream using log2_min_luma_transform_block_size_minus2 and log2_diff_max_min_luma_transform_block_size. These values are specified using QuadtreeTULog2MaxSize and QuadtreeTULog2MinSize.
The maximum depth of the RQT is signalled in the bitstream independently for inter-predicted CUs and intra-predicted CUs using max_transform_hierarchy_depth_inter and max_transform_hierarchy_depth_intra, respectively. These values are controlled using QuadtreeTUMaxDepthInter and QuadtreeTUMaxDepthIntra, respectively.

For a CU configured to use inter-prediction, PU boundaries may occur within a given TU. For a CU configured to use intra prediction, PU boundaries cannot occur within a given TU.
4.2 File and format support

Files for use by the HEVC test model 16 are configured with the following options:

· The input YUV file (or ‘source material’) for the encoder is specified using InputFile. The source material may be either a sequence of frames (progressive mode) or a sequence of top and bottom field pairs (field coding mode) that are interleaved on an alternating line basis. When encoding interlaced source material (i.e. field coding mode selected), the encoder extracts the top and bottom fields from each field pair and encodes these as separate pictures, resulting in a doubling of the number of pictures to be encoded and halving the height of each picture to be encoded. When encoding progressive source material, each frame of the source material corresponds to one picture.
· The output bitstream for the encoder and the input bitstream for the decoder are specified using BitstreamFile.

· The encoder writes the reconstructed YUV file (i.e. prior to application of deblocking filtering and SAO) when the ReconFile option is specified. In field coding mode, the top and bottom field pictures are combined into field pairs on an alternating line basis before writing to disk. PSNR of an encoded interlace sequence is reported on the combined field pairs. The decoder writes the output YUV file (i.e. including with application of deblocking filtering and SAO) using this option.
The HEVC test model 16 includes the following options for specifying and handling the format of the source material:

· The frame rate of the source material is specified using FrameRate. The frame rate is used to calculate the bit-rate as reported by the encoder.

· The encoder can encode a subset of the frames in the source material. Encoding begins from the first frame in the source material, unless otherwise specified using FrameSkip. All frames in the source material are encoded, unless otherwise specified using FramesToBeEncoded.

· Resolution of frames in the YUV files in luma samples is specified using SourceWidth and SourceHeight.

· The MSB extended bit-depth for all colour channels is specified using MSBExtendedBitDepth. If not specified, the MSB extended bit-depth is set equal to the input bit-depth of the source YUV file. If specified at a value larger than the input bit-depth of the source YUV file, the source material bit-depth is increased by adding additional zero-valued MSBs to the specified MSB extended bit-depth.

· The MSB extended bit-depth for chroma colour channels may be overridden using MSBExtendedBitDepthC.

· The internal bit-depth for all colour channels is specified using InternalBitDepth. If this value is less than the input bit-depth, the source material is right-shifted to match the internal bit-depth. If this value is larger than the input bit-depth, the source material is left shifted (with zeros added into LSB positions) to match the internal bit-depth. If not specified, the internal bit-depth is set to the MSB extended bit-depth.
· The internal bit-depth for chroma colour channels may be overridden using InternalBitDepthC.

· Input and output bit-depth for all colour channels of the YUV files is specified using InputBitDepth and OutputBitDepth. If OutputBitDepth is not specified, then the output bit-depth is set to InternalBitDepth. If InputBitDepthC or OutputBitDepthC are specified then the input bit-depth and/or output bit-depth of the chroma colour channels is set accordingly.

· Supported chroma formats: 4:0:0, 4:2:0, 4:2:2 and 4:4:4, as configured by ChromaFormatIDC and InputChromaFormat.
· The luma channel and chroma channels bit-depth can be independently increased with zero-valued MSBs added, as configured by MSBExtendedBitDepth and MSBExtendedBitDepthC.
· To facilitate handling input data with various ordering of colour channels, the following conversions are provided in the encoder: YCbCrtoYCrCb, YCbCrtoYYY or RGBtoGBR. Corresponding conversions are provided during the PSNR calculations and in the decoder to allow producing output that is compatible with the input source material. These are configured by InputColourSpaceConvert, SNRInternalColourSpace and OutputInternalColourSpace.
· Sequence PSNR can be reported either as a linear average of frame PSNRs, or a sequence-level PSNR can be produced, as configured by MSEBasedSequencePSNR.

· Reporting of frame MSE and sequence MSE can be enabled using PrintFrameMSE and PrintSequenceMSE.
4.3 Intra prediction
4.3.1 Prediction modes
Intra prediction involves producing samples for a given prediction block (PB) using samples previously reconstructed in the considered colour channel. The intra prediction mode is separately signalled for the luma and chroma channels, with the chroma channel intra prediction mode optionally dependant on the luma channel intra prediction mode via the ‘DM_CHROMA’ mode. Although the intra prediction mode is signalled at the PB level, the intra prediction process is applied at the TB level, in accordance with the residual quad-tree hierarchy for the CU.
HEVC includes 35 intra prediction modes – a DC mode, a planar mode and 33 directional, or ‘angular’ intra prediction modes. The 33 angular intra prediction modes are illustrated in Figure 4‑7 below.

[image: image9.emf]0-5-10-15-20-25-30-30-25-20-15-10-505101520253051015202530

Figure 4‑7 – The 33 intra prediction directions

The mapping between the direction of each of the angular intra prediction modes and the intra prediction mode number is specified in Figure 4‑8, below.

[image: image10.emf]1

7

1

6

1

5

1

4

1

3

1

2

1

1

1

0

9

8

7

6

5

4

3

2

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

0 : Intra_Planar

1 : Intra_DC

Figure 4‑8 – Mapping between intra prediction direction and intra prediction mode

For PBs associated with chroma colour channels, the intra prediction mode is specified as either planar, DC, horizontal, vertical or ‘DM_CHROMA’ mode. When the DM_CHROMA mode is selected, the intra prediction mode of the luma colour channel PB is applied to the chroma colour channel PBs. Table 4‑1 shows the rule specifying the chroma colour channel PB intra prediction mode given the luma colour channel PB intra prediction mode and the ‘intra_chroma_pred_mode’ syntax element.

Table 4‑1 – Mapping between intra prediction direction and intra prediction mode for chroma
	intra_chroma_pred_mode
	Intra prediction direction

	
	0
	26
	10
	1
	X (0 <= X <= 34)

	0
	34
	0
	0
	0
	0

	1
	26
	34
	26
	26
	26

	2
	10
	10
	34
	10
	10

	3
	1
	1
	1
	34
	1

	4 (DM_CHROMA)
	0
	26
	10
	1
	X

4.3.2 Filtering of neighbouring samples

For the luma component, the neighbouring samples used for generation of intra-predicted samples are filtered. The filtering is controlled by the given intra prediction mode and transform block size. If the intra prediction mode is DC or the transform block size is equal to 4x4, neighbouring samples are not filtered. If the distance between the given intra prediction mode and vertical mode (or horizontal mode) is larger than predefined threshold, the filtering process is enabled. The predefined threshold is specified in Table 4‑2, where nT represents the TB size.
Table 4‑2 – Specification of predefined threshold for various transform block sizes
	
	nT = 8
	nT = 16
	nT = 32

	Threshold
	7
	1
	0

For neighbouring sample filtering, [1, 2, 1] filter and bi-linear filter are used. The bi-linear filtering is conditionally used if all of the following conditions are true.

–
strong_intra_smoothing_enable_flag is equal to 1

–
transform block size is equal to 32

–
Abs(p[−1][−1] + p[nT*2−1][−1] – 2*p[nT−1][−1]) < (1 << (BitDepthY − 5))

–
Abs(p[−1][−1] + p[−1][nT*2−1] – 2*p[−1][nT−1]) < (1 << (BitDepthY − 5))
4.3.3 Intra boundary filter

When reconstructing intra-predicted TBs an intra-boundary filter (IBF) may be used when predicting samples along the left and/or top edges of the TB for PBs using horizontal, vertical and DC intra prediction modes, as shown in Figure 4‑9. For horizontal and vertical intra prediction modes, the IBF is disabled when implicit RDPCM and transquant bypass are enabled. For the DC intra prediction mode, the IBF is applied to the luma channel of TBs smaller than 32x32.

[image: image11.emf]Area of the block prediction,

where the filter is applied

Block prediction in DC

mode

Block prediction in

Horizontal mode

Prediction

direction

Block prediction in

Vertical mode

Prediction

direction

Figure 4‑9 – Intra boundary filter example.
4.3.4 4:2:2 chroma format mode adjustment
When the DM_CHROMA mode is selected (i.e. intra_chroma_pred_mode is equal to 4) and the 4:2:2 chroma format is in use, the intra prediction mode for a chroma PB is derived from intra prediction mode for the corresponding luma PB and 4:2:0/4:4:4 chroma as specified in Table 4‑3.
Table 4‑3 – Specification of intra prediction mode for 4:2:2 chroma (Proposal 2)

	intra pred mode
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17

	intra pred mode for 4:2:2 chroma
	0
	1
	2
	2
	2
	2
	2
	4
	6
	8
	10
	12
	14
	16
	18
	18
	18
	18

	intra pred mode
	
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34

	intra pred mode for 4:2:2 chroma
	
	22
	22
	23
	23
	24
	24
	25
	25
	26
	27
	27
	28
	28
	29
	29
	30
	30

The result of this mapping table is illustrated in Figure 4‑10, which shows the intra prediction angles for the 4:2:2 chroma format.

[image: image12.emf]02591317-32

-26

-17

-9

-5

0

5

9

17

26

32

21201918

17

15

13

12

10

8

7

5

3

-26-21-17-13-9-5-2

26272829303125242322predModeIntra (4:2:2)

intraPredAngle

p

r

e

d

M

o

d

e

I

n

t

r

a

(

4

:

2

:

2

)

i

n

t

r

a

P

r

e

d

A

n

g

l

e

0: INTRA_PLANER

1: INTRA_DC

2

171615

14

13

12

11

10

9

8

7

6

54

32

p

r

e

d

M

o

d

e

I

n

t

r

a

191821

20

23

22

25

24

2628

27

30

29

32

31

3433

predModeIntra

existing angle

existing angle

but unused for 4:2:2 chroma

additional angle

Figure 4‑10 – Intra prediction angle for 4:2:2 chroma format.
4.3.5 Reference sample filtering
The neighbouring samples filtering process is applied to samples neighbouring the current TB associated with an intra-predicted PB. A smoothing filter is applied to the neighbouring samples prior to generation of predicted samples for the TB.

The neighbouring samples filtering process for intra prediction is skipped when intra_smoothing_disabled_flag is set to 1 (as configured by the IntraReferenceSmoothing enable flag). The intra reference smoothing filter is disabled in common test conditions [5] only when sequence-level lossless coding is used.
4.4 Inter prediction
4.4.1 Prediction modes

Each inter-predicted PU has a set of motion parameters consisting of one or two motion vectors and reference picture indices and reference picture list usage index to be used for inter-predicted sample generation and signalled in an explicit or implicit manner. When a CU is coded with skip mode, the CU is associated with one PU and has no significant residual coefficients, no coded motion vector delta or reference picture index. A merge mode is specified whereby the motion parameters for the current PU are obtained from neighbouring PUs, including spatial and temporal candidates. The merge mode can be applied to any inter-predicted PU, not only for skip mode. In any inter-predicted PU, the encoder can use merge mode or explicit transmission of motion parameters, where motion vector, corresponding reference picture index for each reference picture list and reference picture list usage flag are signalled explicitly per each PU. When the reference picture list usage index signals either one of two reference picture lists is to be used, the PU is produced from one reference block of samples. This mode is referred to as ‘uni-prediction’. For P-slices, this is the only supported mode of operation. When the reference picture list usage index signals both reference picture lists are to be used, the PU is produced from two reference blocks of samples. This mode is referred to as ‘bi-prediction’. The details are presented in the following sections.

4.4.1.1 Derivation of merge candidates

Figure 4‑11 summarizes the derivation process for merge candidates.
[image: image13.png]
Figure 4‑11 – Derivation process for merge candidate
Two types of merge candidates are considered in merge mode: spatial merge candidate and temporal merge candidate. For spatial merge candidate derivation, a maximum of four merge candidates are selected among candidates that are located in five different positions. In the process of candidate selection, duplicated candidates having the same motion parameters as the previous candidate in the processing order are removed from the candidate list. Also, candidates inside the same merge estimation region (MER) are not considered, in order to help parallel merge processing. Redundant partition shape is avoided in order to not emulate a virtual 2Nx2N partition.

For temporal merge candidate derivation, a maximum of one merge candidate is selected among two candidates. Since constant number of candidates for each PU is assumed at decoder, additional candidates are generated when the number of candidates does not reach to maximum number of merge candidate (MaxNumMergeCand) which is signalled in slice header. For B slices, combined bi-predictive candidates are generated utilizing the candidates from the list of spatio-temporal candidates. For both P- and B-slices, zero merge candidates are added at the end of the list. Between each generation step, the derivation process is stopped if the number of candidates reaches to MaxNumMergeCand. In the current common test condition, MaxNumMergeCand is set equal to five. Since the number of candidates is constant, index of best merge candidate is encoded using truncated unary binarization (TU). If the size of CU is equal to 8, all the PUs of the current CU share a single merge candidate list, which is identical to the merge candidate list of the 2Nx2N prediction unit.

4.4.1.2 Spatial merge candidates

In the derivation of spatial merge candidates, a maximum of four merge candidates are selected among candidates that are located in positions as depicted in Figure 4‑12. The order of derivation is A1 (B1 (B0 (A0 ((B2). Position B2 is considered only when any PU of position A1, B1, B0, A0 is not available or is intra coded.
[image: image14.png]
Figure 4‑12 – Positions of spatial merge candidate
For the second PU of Nx2N, nLx2N and nRx2N partitions, position A1 is not considered as a candidate to prevent 2Nx2N partition emulation. In these cases, the order of derivation is B1 (B0 (A0 (B2. Similarly, for the second PU of 2NxN, 2NxnU and 2NxnD partitions, position B1 is not used: A1 (B0 (A0 (B2. Figure 4‑13 depicts an example of candidate positions for the second PU of Nx2N and 2NxN, respectively.
[image: image15.emf]A

0

B

0

B

2

A

1

current PU

A

0

B

0

B

2

current PU

B

1

(a) second PU of Nx2N(b)second PU of 2NxN

Figure 4‑13 – Positions for the second PU of Nx2N and 2NxN partitions

4.4.1.3 Temporal merge candidates
In the derivation of temporal merge candidate, a scaled motion vector is derived based on co-located PU belonging to the picture which has the smallest POC difference with current picture within the given reference picture list. The reference picture list to be used for derivation of the co-located PU is explicitly signalled in the slice header. The scaled motion vector for temporal merge candidate is obtained as illustrated by the dotted line in Figure 4‑14, which is scaled from the motion vector of the co-located PU using the POC distances, tb and td, where tb is defined to be the POC difference between the reference picture of the current picture and the current picture and td is defined to be the POC difference between the reference picture of the co-located picture and the co-located picture. The reference picture index of temporal merge candidate is set equal to zero. A practical realization of the scaling process is described in the HEVC specification [3]. For a B-slice, two motion vectors, one is for reference picture list 0 and the other is for reference picture list 1, are obtained and combined to make the bi-predictive merge candidate.

[image: image16.emf]curr_piccol_piccol_refcurr_reftdtbcurr_PUcol_PU

Figure 4‑14 – Illustration of motion vector scaling for temporal merge candidate

The position of co-located PU is selected between two candidate positions, C3 and H, as depicted in Figure 4‑15. If PU at position H is not available, is intra coded, or is outside of the current CTU, position C3 is used. Otherwise, position H is used for the derivation of the temporal merge candidate.

[image: image17.png]
Figure 4‑15 – Candidate positions for temporal merge candidate, C3 and H

4.4.1.4 Generated merge candidates
Besides spatio-temporal merge candidates, there are two additional types of merge candidates: combined bi-predictive merge candidate and zero merge candidate. Combined bi-predictive merge candidates are generated by utilizing spatio-temporal merge candidates. Combined bi-predictive merge candidate is used for B-Slice only. For example, two candidates in the original merge candidate list, which have mvL0 and refIdxL0 or mvL1 and refIdxL1, are used to create a combined bi-predictive merge candidate as illustrated in Figure 4‑16.
[image: image18.png]
Figure 4‑16 – Example of combined bi-predictive merge candidate

4.4.2 Motion vector prediction

Motion vector prediction exploits spatio-temporal correlation of motion vector with neighbouring PUs, which is used for explicit transmission of motion parameters. It constructs a motion vector candidate list by firstly checking availability of left, above temporally neighbouring PU positions, removing redundant candidates and adding zero vector to make the candidate list to be constant length. Then, the encoder can select the best predictor from the candidate list and transmit the corresponding index indicating the chosen candidate. Similarly with merge index signalling, the index of the best motion vector candidate is encoded using truncated unary, as maximum number is equal to 2. In the following sections, details about derivation process of motion vector prediction candidate are provided.

4.4.2.1 Derivation of motion vector prediction candidates
Figure 4‑17 summarizes derivation process for motion vector prediction candidate.
[image: image19.png]
Figure 4‑17 – Derivation process for motion vector prediction candidates
In motion vector prediction, two types of motion vector candidates are considered: spatial motion vector candidate and temporal motion vector candidate. For spatial motion vector candidate derivation, two motion vector candidates are derived based on motion vectors of each PU located in five different positions as depicted in Figure 4‑13. Unless PUs in the left side of current PU are not available, one motion vector candidate is selected utilizing PUs in the left side of the current PU and one motion vector candidate is derived utilizing PUs in the above side of the current PU. Otherwise, two motion vector candidates are derived only from PUs in the above side.
For temporal motion vector candidate derivation, one motion vector candidate is selected from two candidates, which are derived based on two different co-located positions. After the first list of spatio-temporal candidates is made, duplicated motion vector candidates in the list are removed. If the number of potential candidates is larger than two, motion vector candidates whose index is larger than 1 are removed from the list. If the number of spatio-temporal motion vector candidates is smaller than two, additional zero motion vector candidates is added to the list.

4.4.2.2 Spatial motion vector candidates

In the derivation of spatial motion vector candidates, a maximum of two candidates are considered among five potential candidates, which are derived from PUs located in positions as depicted in Figure 4‑12. The candidate positions of motion vector prediction are the same as those of motion merge. The order of derivation for left side of the current PU is set as A0 (A1 (scaled A0 (scaled A1. The order of derivation for above side of the current PU is set as B0 (B1 (B2 (scaled B0 (scaled B1 (scaled B2. For each side, there are four cases which can be used as motion vector candidate. Although two cases are not required to do spatial scaling, the other two cases are. The four different cases are summarized as follows.

· No spatial scaling

· (1) Same reference picture list, and same reference picture index (same POC)

· (2) Different reference picture list, but same reference picture (same POC)

· Spatial scaling

· (3) Same reference picture list, but different reference picture (different POC)

· (4) Different reference picture list, and different reference picture (different POC)

No spatial scaling cases are checked first and spatial scaling cases are checked sequentially. Spatial scaling is considered when POC is different between the reference picture of the neighbouring PU and that of the current PU regardless of reference picture list. If all PUs of left candidates are not available or are intra coded, scaling for the above motion vector is allowed to help parallel derivation of left and above MV candidates. Otherwise, spatial scaling is not allowed for the above motion vector.

[image: image20.emf]curr_picneigh_refcurr_reftdtbcurr_PUneighbor_PU

Figure 4‑18 – Illustration of motion vector scaling for spatial motion vector candidate

In a spatial scaling process, the motion vector of the neighbouring PU is scaled in a similar manner as for temporal scaling, as depicted as Figure 4‑18. The main difference is that the reference picture list and index of current PU is given as input; the actual scaling process is the same as that of temporal scaling.

4.4.2.3 Temporal motion vector candidates
Apart for the reference picture index derivation, all processes for the derivation of temporal merge candidates are the same as for the derivation of spatial motion vector candidates. The reference picture index is signalled to the decoder.

4.4.3 Interpolation filter

For the luma interpolation filtering, an 8-tap separable DCT-based interpolation filter is used for 2/4 precision samples and a 7-tap separable DCT-based interpolation filter is used for 1/4 precisions samples, as shown in Table 4‑4.
Table 4‑4 – 8-tap DCT-IF coefficients for 1/4th luma interpolation

	Position
	Filter coefficients

	1/4
	{ -1, 4, -10, 58, 17, -5, 1 }

	2/4
	{ -1, 4, -11, 40, 40, -11, 4, -1 }

	3/4
	{ 1, -5, 17, 58, -10, 4, -1 }

Similarly, a 4-tap separable DCT-based interpolation filter is used for the chroma interpolation filter, as shown in Table 4‑5.
Table 4‑5 – 4-tap DCT-IF coefficients for 1/8th chroma interpolation

	Position
	Filter coefficients

	1/8
	{ -2, 58, 10, -2 }

	2/8
	{ -4, 54, 16, -2 }

	3/8
	{ -6, 46, 28, -4 }

	4/8
	{ -4, 36, 36, -4 }

	5/8
	{ -4, 28, 46, -6 }

	6/8
	{ -2, 16, 54, -4 }

	7/8
	{ -2, 10, 58, -2 }

For the bi-directional prediction, the bit-depth of the output of the interpolation filter is maintained to 14-bit accuracy, regardless of the source bit-depth, before the averaging of the two prediction signals. The actual averaging process is done implicitly with the bit-depth reduction process as:

predSamples[x, y] = (predSamplesL0[x, y] + predSamplesL1[x, y] + offset) >> shift

where

shift = (15 – BitDepth) and offset = 1 << (shift – 1)
4.4.4 Weighted Prediction
A weighted prediction (WP) tool is provided by HEVC. WP corresponds to the equivalent tool present in AVC and is intended to improve the performance of inter prediction when the source material is subject to illumination variations, e.g. when using fading or cross-fading. It should be noted that WP is not enabled in the HM common test conditions [4] and [5].

The principle of WP is to replace the inter prediction signal P by a linear weighted prediction signal P’ (with weight w and offset o):

Uni-prediction: P’ = w × P + o
Bi-prediction: P’ = (w0 × P0 + o0 + w1 × P1 + o1) / 2

The applicable weights and offsets are selected by the encoder and are conveyed within the bitstream. L0 and L1 suffixes define List0 and List1 of the reference pictures list, respectively. Bit depth is maintained to 14 bit accuracy before averaging the prediction signals, as for interpolation filters.

In the case of bi-prediction with at least one reference picture available in each list L0 and L1, the following formula applies to the explicit signalling of weighted prediction parameters relating to the luma channel:

predSamples[x][y] =

Clip3(0, (1 << bitDepth) − 1, (predSamplesL0 [x][y] * w0 + predSamplesL1[x][y] * w1 + ((o0 + o1 + 1) << log2WD)) >> (log2WD + 1))
where

log2WD = luma_log2_weight_denom + 14 - bitDepth

w0 = LumaWeightL0[refIdxL0], w1 = LumaWeightL1[refIdxL1]

o0 = luma_offset_l0[refIdxL0] * (1 << (bitDepth − 8))

o1 = luma_offset_l1[refIdxL1] * (1 << (bitDepth − 8))

A corresponding formula applies to the chroma channel and to the case of uni-prediction.
4.4.4.1 High precision offsets
A factor (1 << (bitDepth – 8)) is applied to the weighted prediction offsets when high_precision_offsets_enabled_flag is equal to zero. At higher bit depths, this factor increases in magnitude, reducing the performance of weighted prediction.

When the high_precision_offsets_enabled_flag is equal to one, the offsets (o0 and o1) have the same precision as the input (i.e. the factor above is removed) in order to provide enough precision for the weighted prediction process.

The high_precision_offsets_enabled_flag is configured by HighPrecisionPredictionWeighting in the encoder.
4.5 Transform and quantization (scaling)
In HM, TBs of sizes 4x4 to 32x32 are supported. A given TB can be transformed or transform skipped. TBs can also be coded losslessly.
If lossless mode and transform skip mode are not used, the scaling and transformation process at the decoder side are performed as shown in Figure 4‑19.
[image: image21.png]
Figure 4‑19 – Lossless scaling and transformation process.
When transform skip (TS) is used, a bit-shift is applied instead of a transform. TS may be applied to 4x4 TBs for Main/Main10 profiles and TBs of any sized for format range extensions profiles.
If transform skip is used, scaling and transformation process at the decoder side are as shown in Figure 4‑20.
[image: image22.png]
Figure 4‑20 – Transform skip scaling and transformation process.
For the format range extensions profiles, transform skip is supported on all TU sizes. The maximum sized TU for which transform skip is available is signaled by log2_max_transform_skip_block_size_minus2 (as configured by TransformSkipLog2MaxSize)

If lossless mode is used, scaling and transformation process at the decoder side are as follows.

4.5.1 Inverse transforms
The inverse transform is implemented as a vertical 1D transformation step operating on each column of residual coefficients (i.e. d[x][y]), following by a clipping step operating on the output of the vertical 1D transformation step (i.e. e[x][y]) and finally a horizontal 1D transformation step operating on each row of the output of the clipping step (i.e. g[x][y]). This process is illustrated in Figure 4‑21. The clipping of intermediate sample values g[x][y] ensures that these values can be represented with 16 bits.
[image: image23.png]
Figure 4‑21 – Inverse transformation process.
4.5.2 1D inverse transform matrices

The transform matrices are an approximation of mathematical DCT matrices and are rounded to 8-bit integer accuracy (including sign). The matrices are optimized for maximizing orthogonality. Smaller size transform matrices are embedded in larger size transform matrices, enabling reuse of a 32x32 matrix when performing 4x4, 8x8, 16x16, and 32x32 transforms.
A 4x4 DST is also provided and is used for residuals of intra-predicted luma transform blocks.

In the HM implementation, the transform is performed using a partial butterfly structure for low computational complexity.
4.5.3 Scaling and quantization

The quantized transform coefficients qij (i, j=0..nS-1) are derived from the transform coefficients dij (i, j=0..nS-1) as

qij = (dij * f[QP%6] + offset) >> (29 + QP/6 – nS – BitDepth), with i,j = 0,...,nS-1

where

f[x] = {26214,23302,20560,18396,16384,14564}, x=0,…,5

228+QP/6–nS-BitDepth < offset < 229+QP/6–nS-BitDepth
4.5.4 Transform selection for the 4:2:2 chroma format
When the 4:2:2 chroma format is in use, a TU has a rectangular chroma block. In this case, the rectangular chroma blocks are divided into two square TBs per channel and existing square transforms are used for the TBs. A separate coded block flag is signalled for each TB. Intra prediction reconstruction occurs separately for the two square blocks within a rectangular chroma block, enabling the lower block to be predicted from the reconstructed upper block. Deblocking of these new boundaries is described in Section 4.13.

[image: image24.emf]YCbCr

2Nx2N

NxN

NxN

NxN

NxN

N = 4, 8, 16

Figure 4‑22 – Square transform arrangement for the 4:2:2 chroma format.
4.5.5 Scaling lists for the 4:4:4 chroma format

Scaling lists are included in the picture parameter set, which must not depend on any information in the sequence parameter set (including the chroma format). Thus, the scaling list for 32x32 chroma blocks (for the 4:4:4 chroma format) is derived from the 16x16 chroma scaling list. This derivation is shown in Figure 4‑23.

[image: image25.emf]4x4

8x8

16x16

32x32

IntraInter

Cr/RCb/BY/GY/GCb/BCr/R

Cr/RY/GCb/BCr/RCb/BY/G

Cr/RCb/BY/GCr/RY/GCb/B

Cr/RCb/BY/GCr/RCb/BY/G

Figure 4‑23 – Scaling list set showing derivation of 32x32 chroma scaling lists from 16x16 chroma scaling lists
4.5.6 Scaling lists for transform skipped TUs

Scaling lists are not used for any transform-skipped TUs, other than 4x4.
4.5.7 Chroma QP initialization offset table
When the chroma format is set to 4:2:2 or 4:4:4, the chroma QPc is initialized according to the luma qPi using the formula Min(qPi, 51). In particular, the mapping relationship of Table 8-10 of [2] is not used.
4.5.8 Extended precision processing
An extended_precision_processing_flag (as configured by ExtendedPrecision) is provided to allow increased internal precision, particularly for use at higher bit depths. When this flag is set to one, the internal width of the transform and the entropy coder (g_maxTrDynamicRange[channel]in the software model) are increased according to the selected bit depth. Figure 4‑24 shows the bit depths in the HEVC encoding path.

[image: image26.emf]Transform

Stage 1Stage 2

MAX_TR_DYNAMIC_RANGE

Prediction

Intra

Inter

Transform matrices

Quantisation coefficients

& scaling lists

Quantiser

MultiplyShift

Clip to

MAX_TR_DYNAMIC_RANGE

Residual

(bitDepth)

Coefficients

(MAX_TR_DYNAMIC_RANGE)

Input

(bitDepth)

Quantised Coefficients

(MAX_TR_DYNAMIC_RANGE)

To entropy

coding

Video

source

Figure 4‑24 – Diagram showing magnitude bit depths in HEVC encoding path

Table 4‑6 shows the relationship between the internal precisions and the bit depth.
Table 4‑6 – g_maxTrDynamicRange[channel]
	extended_precision_processing_flag
	Bit depth[channel]

	
	16
	15
	14
	13
	12
	11
	10
	9
	8

	1
	22
	21
	20
	19
	18
	17
	16
	15

	0
	15

4.5.9 CU-adaptive chroma QP offset

A chroma QP offset adjustment may be signalled at the CU level, for CUs down to a particular depth (signalled via diff_cu_chroma_qp_adjustment_depth). The same QP offset may also be applied to subsequent sibling or child CUs within the CTU tree if the maximum depth is reached. This is similar in principle to the operation of delta QP signalling in the current HEVC specification. To provide additional flexibility in terms of number of offsets, each CU that invokes the mode may signal an index into an offset table. This offset table contains up to five pairs of chroma QP offset values (cb_qp_adjustment, cr_qp_adjustment). The offset table is signalled in the PPS, limiting the rate cost of providing the chroma QP offsets. If the table contains one offset then no index is signalled. The chroma QP adjustment values are restricted such that the total deviation from the luma QP is limited to ±12.
For a CU where the offset is applied, each chroma QP adjustment value in a pair is applied to the corresponding chroma component. The feature is globally enabled through use of a picture parameter set flag chroma_qp_adjustment_enabled_flag, and locally through a slice header flag slice_chroma_qp_adjustment_enabled_flag.
4.5.10 Quantization rounding for residual DPCM
Over blocks where both transform skip and Residual DPCM (RDPCM, see Section 4.9) are applied, the quantization rounding offset is different from the one used in spatially transformed blocks. More precisely, the HM-RExt 7 software applies a dead zone uniform quantizer with quantization step Q and rounding offset α as shown in Figure 4‑25. For blocks where spatial transformation is applied, α is equal to 1/3 and 1/6 for intra and inter coding modes, respectively. Conversely, over blocks where transform skip and RDPCM are used, the offset α is set equal to1/2.
[image: image27.png]
Figure 4‑25 – Dead zone uniform quantizer with rounding offset.
4.6 Adaptive QP selection
When this tool is used, the quantization parameter (QP) for each slice is changed based on the distribution of quantized coefficients in previous pictures. More specifically, for the current slice, the QP used is given as the one which minimizes the following cost measure:

[image: image28.wmf](

)

÷

ø

ö

ç

è

æ

×

-

å

å

l

i

i

l

q

q

l

c

2

,

min

where q denotes the quantization step associated to QP and cl,i denotes the i-th coefficient which is quantised to the level l. As stated above, the optimal QP derivation is computed using data from the previously coded picture to avoid two-pass encoding. The optimal quantization step q is then translated into the corresponding QP according to the mapping described in [1] and set as QP for the slice being encoded.

4.7 Adaptive QP
This tool varies the quantization parameter for each coding unit to provide improved perceived image quality. QP variation is performed using the same technique originally implemented in the MPEG-2 TM5 which works according to the following rationale: lower QP values are used on smooth image areas while higher values on highly active blocks. The activity of each CU is measured by the variance of its luma samples. More precisely, given a CU with size 2N × 2N, the luma variance of its four sub blocks with size N × N is computed first. Let σ2(i) denote the luma sample variance for sub block i. The CU activity (actCU) is then computed as:

[image: image29.wmf](

)

)

(

min

1

2

4

,..,

1

CU

i

act

i

s

=

+

=

,

In order to increase QP values on highly active image areas and decrease in smooth ones, the quantity actCU is then normalized with respect to the average activity measured over all coding units with size 2N × 2N inside one picture. Let actf denote the average activity for all CUs with size 2N × 2N belonging to picture f. The normalized CU activity norm_actCU is then given by:

[image: image30.wmf]f

CU

f

CU

CU

act

s

act

act

act

s

act

norm

×

+

+

×

=

_

,

where s denotes the scaling factor associated to the QP adaptation parameter (QPA) and computed as:

[image: image31.wmf](

)

6

/

2

QPA

s

=

.

The value for QPA is provided as input using the configuration option MaxQPAdaptationRange and has default value of 6. Finally, the coding unit QP is adjusted according to:

[image: image32.wmf]ë

û

5

.

0

)

_

(

log

6

2

+

×

+

=

CU

base

act

norm

QP

QP

,

where QPbase denotes the QP value for the slice where the coding unit belongs to and (((operator returns the largest integer smaller than or equal to the argument. The adaptive QP tool is enabled by the configuration option AdaptiveQP. The minimum CU size at which QP can be adapted according to its normalized activity is specified by the configuration option MaxCuDQPDepth whose value should always be less than the maximum CU depth.
4.8 Slice QP offset
The configuration option dQPFile allows specification of a QP offset to be applied to all slices belonging to a picture. When this option is specified with a valid file name, the encoder reads a text file with as many lines as the pictures to be encoded and stores these values in the array m_aidQP in class TAppEncCfg where the i-th entry in this array contains the QP offset applied to all slice belonging to the picturewith picture order count equal to i.

4.9 Residual prediction in case of transquant bypass and transform skip

When lossless coding is used (i.e. cu_transquant_bypass_flag is equal to one) and implicit_rdpcm_enabled_flag is equal to one, the residues obtained from intra prediction are further predicted using DPCM. Residual DPCM is only applied when the intra prediction direction is either horizontal or vertical. For residues obtained from inter prediction or intra block copy prediction, RDPCM is applied if explicit_rdpcm_enabled_flag is equal to one. In this case the encoder selects whether to apply RDPCM on the residues and if it is applied, whether to perform RDPCM along the horizontal or vertical direction. This decision is based on the sum of absolute difference (SAD) computed over the residues. The decision which minimises the SAD is selected as the best and signalled to the decoder using two binary flags: one to signal whether RDPCM is applied and one to signal the direction in which RDPCM is applied.
When lossy coding is used (i.e. cu_transquant_bypass_flag is equal to zero), RDPCM may be applied at TU level and only for those TUs which are transform skipped (e.g. 4×4 transform units). For intra TUs, RDPCM is always applied when implicit_rdpcm_enabled flag is equal to one for intra coded transform-skip TUs with horizontal or vertical intra prediction mode, so there is no additional signalling. For inter TUs or intra block copy TUs, when explicit_rdpcm_enabled_flag is equal to one, the same mechanism used for lossless coding is followed. For intra, intra block copy and inter coding, RDPCM is computed using the reconstructed residues (i.e. after inverse quantization) in order to avoid any drift between the encoder and the decoder. In particular the process can be formalized as follows. Let
[image: image33.wmf]hor

r

~

 and
[image: image34.wmf]ver

r

~

 be the residues obtained by the RDPCM application. Let
[image: image35.wmf])

,

(

ˆ

j

i

r

 be the residue obtained after inverse quantization and r(i, j) the original residue (i.e. obtained by either intra or inter prediction). Over an N×N block, the residues [image: image36.wmf]hor

r

~

 and [image: image37.wmf]ver

r

~

 are therefore defined as follows:

[image: image38.wmf]î

í

ì

-

£

£

-

£

<

-

-

-

£

£

=

=

1

0

and

1

0

))

1

,

(

ˆ

)

,

(

(

1

0

and

0

))

,

(

(

)

,

(

~

N

i

N

j

j

i

r

j

i

r

Q

N

i

j

j

i

r

Q

j

i

r

hor

[image: image39.wmf]î

í

ì

-

£

£

-

£

<

-

-

-

£

£

=

=

1

0

and

1

0

))

,

1

(

ˆ

)

,

(

(

1

0

and

0

))

,

(

(

)

,

(

~

N

j

N

i

j

i

r

j

i

r

Q

N

j

i

j

i

r

Q

j

i

r

ver

,

where Q denotes the forward quantization operation.
The implicit_rdpcm_enabled_flag and explicit_rdpcm_enabled_flag are controlled using the configuration options ImplicitResidualDPCM and ExplicitResidualDPCM respectively.
4.10 Entropy coding

HEVC uses Context Adaptive Binary Arithmetic Coding (CABAC) and variable length codes. Each syntax element is binarised using a combination of context coded bins and bypass bins. Context coded bins have an associated context, indicating the probable symbol value. The cost of coding a context coded bin depends on the probability and whether the symbol to be coded is equal to the likely symbol value. Bypass coded bins have no associated context and have an equal cost for coding each of a 0 or 1 symbol. Context coding allows adaptation to the probability distribution of symbol values for a given bin. Further adaptation is provided by context selection. A given context coded bin may use one of several contexts, the context being selected based on information previously included in the bitstream.
Variable length codes are used above the slice layer and in the slice header.
4.10.1 CABAC alignment

When cabac_bypass_alignment_enabled_flag is equal to one (as configured by AlignCABACBeforeBypass), the CABAC engine is bit-aligned (i.e. range is set to 256) prior to the coding of sign bits if there are any coefficients that require coeff_abs_level_remaining syntax elements. Note that once the CABAC engine is bit-aligned, it will remain bit-aligned until a context coded bin is encountered. Alignment prior to decoding equi-probable CABAC bins allows those bins to be read directly from the bit-stream.
Bit alignment results in bypass bins being aligned in the bitstream, i.e. a decoder can read a given bypass bin directly from the bitstream.
4.11 Coefficient Coding
4.11.1 Transform skip residual rotation

When transform_skip_rotation_enabled_flag is equal to one (as configured by ResidualRotation), the residual of a 4x4 transform-skipped block or transquant-bypass block is rotated by 180 degrees. Due to the symmetry of the scans used in HEVC, this is equivalent to reversing the scan orders.
4.11.2 Significance map context modelling
When transform_skip_context_enabled_flag is equal to one (as configured by SingleSignificanceMapContext), a separate single context is used for the sig_coeff_flag for TUs that are transform-skipped or transquant-bypassed
4.11.3 Rice parameter adaptation
When persistent_rice_adaptation_enabled_flag is equal to one (as configured by GolombRiceParameterAdaptation), an alternative mechanism for initializing the Rice parameter used for coding coeff_abs_level_remaining is available.
In this scheme, the 4×4 sub-blocks are divided into different categories (“sbType”). For each sub-block, the initial Rice parameter is derived based on previously coded sub-blocks in the same category. The categorization is based on whether the block is a transform-skip block (“isTSFlag”) or in trans-quant bypass (isTQBFlag) and whether it is the luma component

sbType = isLuma * 2 + (isTSFlag | | isTQBFlag)
Stats statCoeff are maintained for each sub-block type (sbType) depending on the absolute coefficient value (uiLevel):

if (uiLevel >= (3 << (statCoeff[sbType] / 4)))

statCoeff[sbType] ++;
else
if ((2 * uiLevel) < (1 << (statCoeff[sbType] / 4)))
statCoeff[sbType] --;

This variable is updated at most once per 4×4 sub-block using the value of the first coded coeff_abs_level_remaining of the sub-block. The entries of statCoeff are reset to 0 at the beginning of the slice (like the CABAC context variables).
The value of statCoeff is used to initialize the Rice parameter at the beginning of each 4×4 sub-block as

cRiceParam = Min(maxRicePara, statCoeff/4).
When this mechanism for initialization is enabled, the maximum Rice parameter value is unrestricted (i.e. limited only by the maximum transform dynamic range).
4.11.4 Maximum coeff_abs_level_remaining codeword length restriction
When extended_precision_processing_flag is enabled, the maximum codeword length of the coeff_abs_level_remaining syntax element is limited to 32-bits. The maximum codeword length is achieved with the Rice parameter is equal to zero. The maximum codeword length is dependent on the dynamic range of transform and quantizer stages, referred to as ‘MAX_TR_DYNAMIC_RANGE’ in the HM-RExt software. When extended_precision_processing_flag is enabled, MAX_TR_DYNAMIC_RANGE is set equal to the bit-depth plus six bits.

Binarization of coeff_abs_level_remaining is modified such that the maximum prefix length is given by:

maximumPrefixLength = 32 – (3 + MAX_TR_DYNAMIC_RANGE)

When this prefix length is reached, the corresponding suffix length is then given by:

suffixLength = MAX_TR_DYNAMIC_RANGE – rParam
This results in a maximum codeword length for coeff_abs_level_remaining of 32-bits.
4.12 Cross-component prediction
An adaptive cross-component residual prediction scheme (i.e., between colour channels) is provided, where a prediction is performed between the luma residual signal and the chroma residual signals. The chroma residual signal is predicted from the luma residual signal at the encoder side as:

[image: image40.wmf](

)

3

)

,

(

)

,

(

)

,

(

>>

¢

´

-

=

D

y

x

r

y

x

r

y

x

r

L

C

C

a

 (1)

and it is compensated at the decoder side as:

[image: image41.wmf](

)

3

)

,

(

)

,

(

)

,

(

>>

¢

´

+

¢

D

=

¢

y

x

r

y

x

r

y

x

r

L

C

C

a

(2)

where
[image: image42.wmf]C

r

 denotes the chroma residual sample at a position [image: image43.emf]

x, y()

x,y

()

,
[image: image44.wmf]L

r

¢

 denotes the reconstructed residual sample of the luma component,
[image: image45.wmf]C

r

D

 denotes the predicted signal using inter-colour prediction,
[image: image46.wmf]C

r

¢

D

denotes the reconstructed signal after coding and decoding [image: image47.wmf]C

r

D

, and
[image: image48.wmf]C

r

¢

 denotes the reconstructed chroma residual.

The variable α is chosen from
[image: image49.wmf]{

}

8

,

4

,

2

,

1

,

0

,

1

,

2

,

4

,

8

-

-

-

-

. This set of values allows good utilization of the correlation between luma and chroma residual signals, including when they are negatively correlated. The absolute value of α, abs(α) is mapped to M(α) according to Table 4‑7 before binarization. M(α) is binarized using truncated unary (TU) code and coded using CABAC, with a separate context for each bin in the TU code. If α is not zero, another bin is used to code the sign of α. At the decoder side, after CABAC decoding, M(α) is inversely mapped back to abs(α).
Table 4‑7 – α Mapping Table.

	abs(α)
	M(α)

	0
	0

	1
	1

	2
	2

	4
	3

	8
	4

This prediction is performed both for intra- and inter-coded blocks. However, in case of intra-coded blocks, only those with DM chroma mode are allowed to use this prediction.
For each TU, if the coded block flag of the luma component is zero, α is not signaled and no prediction is performed. Otherwise, α is signalled separately for each chroma component.
When encoding RGB source material, the G component should be encoded as the luma component.
The use of cross-component prediction is signalled using cross_component_prediction_enabled flag and is configured using CrossComponentPrediction.

When reconstruction based cross-component prediction estimate is enabled, use the decoded residual rather than the pre-transform encoder-side residual for determining the alpha value. This is configured using ReconBasedCrossCPredictionEstimate.

If the luma bit-depth differs from the chroma bit-depth, for cross component prediction the luma residual is scaled to align with the chroma bit-depth by either a right-shift or a left-shift operation.
4.13 Loop Filtering
4.13.1 Overview of Loop filtering

HEVC includes two processing stages in the in-loop filter: a deblocking filter and then a Sample Adaptive Offset (SAO) filter. The deblocking filter aims to reduce the visibility of blocking artefacts and is applied only to samples located at block boundaries. The SAO filter aims to improve the accuracy of the reconstruction of the original signal amplitudes and is applied adaptively to all samples, by conditionally adding an offset value to each sample based on values in look-up tables defined by the encoder.

4.13.2 Deblocking filter
A deblocking filter process is performed for each CU in the same order as the decoding process. First vertical edges are filtered (horizontal filtering) then horizontal edges are filtered (vertical filtering). Filtering is applied to 8x8 block boundaries which are determined to be filtered, both for luma and chroma components. 4x4 block boundaries are not processed in order to reduce the complexity.

Figure 4‑26 illustrates the overall flow of deblocking filter processes. A boundary can have three filtering status values: no filtering, weak filtering and strong filtering. Each filtering decision is based on boundary strength, Bs, and threshold values, β and tC.

[image: image50.emf]boundary decisionBs calculation4x4 8x8filter on/off decisionstrong/weak filter selectionstrong filteringweak filteringβ, t

C

decision

Figure 4‑26 – Overall processing flow of deblocking filter process

4.13.2.1 Boundary decision
Two kinds of boundaries are involved in the deblocking filter process: TU boundaries and PU boundaries. CU boundaries are also considered, since CU boundaries are necessarily also TU and PU boundaries. When PU shape is 2NxN (N > 4) and RQT depth is equal to 1, TU boundaries at 8x8 block grid and PU boundaries between each PU inside the CU are also involved in the filtering.

4.13.2.2 Boundary strength calculation
The boundary strength (Bs) reflects how strong a filtering process may be needed for the boundary. A value of 2 for Bs indicates strong filtering, 1 indicates weak filtering and 0 indicates no deblocking filtering.,

Let P and Q be defined as blocks which are involved in the filtering, where P represents the block located to the left (vertical edge case) or above (horizontal edge case) the boundary and Q represents the block located to the right (vertical edge case) or above (horizontal edge case) the boundary. Figure 4‑27 illustrates how the Bs value is calculated based on the intra coding mode, the existence of non-zero transform coefficients, reference picture, number of motion vectors and motion vector difference.

[image: image51.emf]P or Q is

intra

Bs = 2

YesNo

P & Q has

different ref?

Bs= 1

|MV_P

h

–MV_Q

h

| >=4 or|MV_P

v

–MV_Q

v

| >=4

Bs= 0

YesYesNoNo

P & Q has

different # of

MVs?

YesNo

P or Q has

non-0 coeff’s?

YesNo

Figure 4‑27 – Flow diagram for Bs calculation

Bs is calculated on a 4x4 block basis, but it is re-mapped to an 8x8 grid. The maximum of the two values of Bs which correspond to 8 pixels consisting of a line in the 4x4 grid is selected as the Bs for boundaries in the 8x8 grid.

At the CTU boundary, information on every second block (on a 4x4 grid) to the left or above is re-used as depicted in Figure 4‑28, in order to reduce line buffer memory requirement.

[image: image52.png]
Figure 4‑28 – Referred information for Bs calculation at CTU boundary

4.13.2.3 Threshold variables
Threshold values β′ and tC′ are involved in the filter on/off decision, strong and weak filter selection and weak filtering process. These are derived from the value of the luma quantization parameter Q as shown in Table 4‑8 .

Table 4‑8 – Derivation of threshold variables from input Q

	Q
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18

	β′
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	6
	7
	8

	tC′
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1

	Q
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37

	β′
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	20
	22
	24
	26
	28
	30
	32
	34
	36

	tC′
	1
	1
	1
	1
	1
	1
	1
	1
	2
	2
	2
	2
	3
	3
	3
	3
	4
	4
	4

	Q
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	
	
	

	β′
	38
	40
	42
	44
	46
	48
	50
	52
	54
	56
	58
	60
	62
	64
	-
	-
	
	
	

	tC′
	5
	5
	6
	6
	7
	8
	9
	10
	11
	13
	14
	16
	18
	20
	22
	24
	
	
	

The variable β is derived from β′ as follows:
β = β′ * (1 << (BitDepthY − 8))
The variable tC is derived from tC′ as follows:
tC = tC′ * (1 << (BitDepthY − 8))
4.13.2.4 Filter on/off decision for 4 lines

The filter on/off decision is made using 4 lines grouped as a unit, to reduce computational complexity. Figure 4‑29 illustrates the pixels involving in the decision. The 6 pixels in the two red boxes in the first 4 lines are used to determine whether the filter is on or off for those 4 lines. The 6 pixels in the two red boxes in the second group of 4 lines are used to determine whether the filter is on or off for the second group of 4 lines.

[image: image53.emf]p3

0

p2

0

p1

0

p0

0

q0

0

q1

0

q2

0

q3

0

p3

1

p2

1

p1

1

p0

1

q0

1

q1

1

q2

1

q3

1

p3

2

p2

2

p1

2

p0

2

q0

2

q1

2

q2

2

q3

2

p3

3

p2

3

p1

3

p0

3

q0

3

q1

3

q2

3

q3

3

p3

4

p2

4

p1

4

p0

4

q0

4

q1

4

q2

4

q3

4

p3

5

p2

5

p1

5

p0

5

q0

5

q1

5

q2

5

q3

5

p3

6

p2

6

p1

6

p0

6

q0

6

q1

6

q2

6

q3

6

p3

7

p2

7

p1

7

p0

7

q0

7

q1

7

q2

7

q3

7

first 4 linessecond 4 lines

Figure 4‑29 – Pixels involved in filter on/off decision and strong/weak filter selection

The following variables are defined:
dp0 = | p2,0 – 2*p1,0 + p0,0 |
dp3 = | p2,3 – 2*p1,3 + p0,3 |

dq0 = | q2,0 – 2*q1,0 + q0,0 |
dq3 = | q2,3 – 2*q1,3 + q0,3 |

If dp0+dq0+dp3+dq3 < β, filtering for the first four lines is turned on and the strong/weak filter selection process is applied. If this condition is not met, no filtering is done for the first 4 lines.
Additionally, if the condition is met, the variables dE, dEp1 and dEp2 are set as follows:

dE is set equal to 1
If dp0 + dp3 < (β + (β >> 1)) >> 3, the variable dEp1 is set equal to 1
If dq0 + dq3 < (β + (β >> 1)) >> 3, the variable dEq1 is set equal to 1
A filter on/off decision is made in a similar manner as described above for the second group of 4 lines.

4.13.2.5 Strong/weak filter selection for 4 lines

If filtering is turned on, a decision is made between strong and weak filtering. The pixels involved are the same as those used for the filter on/off decision, as depicted in Figure 4‑29. If the following two sets of conditions are met, a strong filter is used for filtering of the first 4 lines. Otherwise, a weak filter is used.
1) 2*(dp0+dq0) < (β >> 2), | p30 – p00 | + | q00 – q30 | < (β >> 3) and | p00 – q00 | < (5* tC + 1) >> 1
2) 2*(dp3+dq3) < (β >> 2), | p33 – p03 | + | q03 – q33 | < (β >> 3) and | p03 – q03 | < (5* tC + 1) >> 1

The decision on whether to select strong or weak filtering for the second group of 4 lines is made in a similar manner.
4.13.2.6 Strong filtering
For strong filtering, the filtered pixel values are obtained by the following equations. Note that three pixels are modified using four pixels as an input for each P and Q block, respectively.

p0’ = (p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4) >> 3

q0’ = (p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4) >> 3

p1’ = (p2 + p1 + p0 + q0 + 2) >> 2

q1’ = (p0 + q0 + q1 + q2 + 2) >> 2

p2’ = (2*p3 + 3*p2 + p1 + p0 + q0 + 4) >> 3

q2’ = (p0 + q0 + q1 + 3*q2 + 2*q3 + 4) >> 3

4.13.2.7 Weak filtering
(is defined as follows.

(= (9 * (q0 – p0) – 3 * (q1 – p1) + 8) >> 4

When abs(() is less than tC *10,

(= Clip3(- tC , tC , ()

p0’ = Clip1Y(p0 + ()

q0’ = Clip1Y(q0 - ()

If dEp1 is equal to 1,

(p = Clip3(-(tC >> 1), tC >> 1, (((p2 + p0 + 1) >> 1) – p1 + () >>1)

p1’ = Clip1Y(p1 + (p)

If dEq1 is equal to 1,

(q = Clip3(-(tC >> 1), tC >> 1, (((q2 + q0 + 1) >> 1) – q1 – () >>1)

q1’ = Clip1Y(q1 + (q)

Note that a maximum of two pixels are modified using three pixels as an input for each P and Q block, respectively.

4.13.2.8 Chroma filtering
The boundary strength Bs for chroma filtering is inherited from luma. If Bs > 1, chroma filtering is performed. No filter selection process is performed for chroma, since only one filter can be applied. The filtered sample values p0’ and q0’ are derived as follows.

(= Clip3(-tC, tC, ((((q0 – p0) << 2) + p1 – q1 + 4) >> 3))

p0’ = Clip1C(p0 + ()

q0’ = Clip1C(q0 - ()

When the 4:2:2 chroma format is in use, each chroma block has a rectangular shape and is coded using up to two square transforms. This process introduces additional boundaries between the transform blocks in chroma. These boundaries are not deblocked (blue dotted lines in Figure 4‑30.)

[image: image54.emf]32x32

transform

16x16

transform

16x16

transform

LumaChroma

8x8

transform

8x8

transform

16x16

transform

Figure 4‑30 – Deblocking behaviour in the 4:2:2 chroma format.
4.13.3 Sample adaptive offset filter

Sample adaptive offset (SAO) is applied to the reconstructed signal after the deblocking filter by using offsets specified for each CTB by the encoder. The HM encoder first makes the decision on whether or not the SAO process is to be applied for current slice. If SAO is applied for the slice, each CTB is classified as one of five SAO types as shown in Table 4‑9. The concept of SAO is to classify pixels into categories and reduces the distortion by adding an offset to pixels of each category. SAO operation includes Edge Offset (EO) which uses edge properties for pixel classification in SAO type 1-4 and Band Offset (BO) which uses pixel intensity for pixel classification in SAO type 5. Each applicable CTB has SAO parameters including sao_merge_left_flag, sao_merge_up_flag, SAO type and four offsets. If sao_merge_left_flag is equal to 1, the current CTB will reuse the SAO type and offsets of the CTB to the left. If sao_merge_up_flag is equal to 1, the current CTB will reuse SAO type and offsets of the CTB above.
Table 4‑9 – Specification of SAO type
	SAO type
	sample adaptive offset type to be used
	Number of categories

	0
	None
	0

	1
	1-D 0-degree pattern edge offset
	4

	2
	1-D 90-degree pattern edge offset
	4

	3
	1-D 135-degree pattern edge offset
	4

	4
	1-D 45-degree pattern edge offset
	4

	5
	band offset
	4

4.13.3.1 Operation of each SAO type

Edge offset uses four 1-D 3-pixel patterns for classification of the current pixel p by consideration of edge directional information, as shown in Figure 4‑31. From left to right these are: 0-degree, 90-degree, 135-degree and 45-degree.
	
	　
	　
	
	　
	　
	　
	
	　
	　
	　
	
	　
	　
	　

	　
	p
	　
	
	　
	p
	　
	
	　
	p
	　
	
	　
	p
	　

	　
	　
	　
	
	　
	　
	　
	
	　
	　
	　
	
	　
	　
	　

Figure 4‑31 – Four 1-D 3-pixel patterns for the pixel classification in EO

Each CTB is classified into one of five categories according to Table 3-9.
Table 4‑10 – Pixel classification rule for EO
	Category
	Condition
	Meaning

	0
	None of the below
	Largely monotonic

	1
	p < 2 neighbours
	Local minimum

	2
	p < 1 neighbour && p == 1 neighbour
	Edge

	3
	p > 1 neighbour && p == 1 neighbour
	Edge

	4
	p > 2 neighbours
	Local maximum

Band offset (BO) classifies all pixels in one CTB region into 32 uniform bands by using the five most significant bits of the pixel value as the band index. In other words, the pixel intensity range is divided into 32 equal segments from zero to the maximum intensity value (e.g. 255 for 8-bit pixels). Four adjacent bands are grouped together and each group is indicated by its most left-hand position as shown in Figure 4‑32. The encoder searches all position to get the group with the maximum distortion reduction by compensating offset of each band.
[image: image55.emf]Minimum pixel valueMaximum pixel valueSignal four offsets from

starting band

Starting band position

Figure 4‑32 – Four bands are grouped together and represented by its starting band position

4.13.3.1.1 Format range extensions options for SAO

Shift values for luma and chroma for the offset value are included in the PPS. There is no change to classification and the shift values are in the range of 0 to Max(BitDepth – 10, 0). The shift values for luma and chroma are configured in the encoder using SaoLumaOffsetBitShift and SaoChromaOffsetBitShift, respectively.

4.14 Wavefront parallel processing
Wavefront Parallel Processing (WPP) produces a bitstream that can be processed using one or more cores running in parallel. When WPP is used, a slice is divided into rows of CTUs. The first row is processed in an ordinary way, the second row can begin to be processed after only two CTUs have been processed in the first row, the third row can begin to be processed after only two CTUs have been processed in the second row, and so on. The context models of the entropy coder in each row are inferred from those in the preceding row with a two-CTU processing lag. WPP provides a form of processing parallelism within a slice, without the loss of compression performance that might be expected by using tiles within a slice.

The following operations are performed by the HM encoder.

- When starting the encoding of the first CTU in a CTU row, the following process is applied:

· if the last CU of the second CTU of the row above is available, the CABAC probabilities are set to the values stored in the buffer.

· if not, the CABAC probabilities are reset to the default values

- When the encoding of the second CTU in a CTU row is finished, the CABAC probabilities are stored in a buffer

- If the encoding of the last CTU in a CTU row is finished and the end of a slice has not been reached, CABAC is flushed and a byte alignment is performed.

Entry point offsets are written in the slice header. Each CTU row in the slice has an entry point offset, in byte units, that indicates where the corresponding data starts in the slice data. When WPP is used, a slice that does not start at the beginning of a CTU row does not finish after the last CTU in the same row. When a slice starts at the beginning of a CTB row, there is no constraint on where it finishes.
5 SEI messages

5.1 No Display

When SEINoDisplay is greater than zero, all pictures with a temporal layer higher than the value of SEINoDisplay are marked with an SEI message as No Display, and will subsequently be decoded but not output to the reconstructed sequence file by the decoder.
5.2 Time code
This SEI message signals the information related to the time code associated to different programmes in the elementary stream. The syntax and semantics for this SEI message is described in Section D.2.26 of [3]. The transmission of the SEI message is enabled using SEITimeCodeEnabled and the encoder allows to specify all syntax elements of this SEI message via command line parameters. More precisely, these parameters are listed in Table 5‑1 along with their brief description.
Table 5‑1: Command line parameters for the time code SEI message.
	Parameter name
	Description

	SEITimeCodeNumClockTs
	Number of time set transmitted. The value should be in the range [0..3] inclusive

	SEITimeCodeFieldBasedFlag
	Specifies whether the time code information refers to field or frame coding

	SEITimeCodeCountingType
	Counting type associated to each time set. Counting type specifies the method of dropping values of NumFrames (see below)

	SEITimeCodeFullTsFlag
	Specifies whether a full time code is available for a given time set

	SEITimeCodeDiscontinuityFlag
	Discontinuity flag associated to each time set

	SEITimeCodeCntDroppedFlag
	Counter dropped flag associated to each time set

	SEITimeCodeNumFrames
	Number of frames associated to each time set

	SEITimeCodeSecondsValue
	Value for the field associated to seconds in each time set

	SEITimeCodeMinutesValue
	Value for the field associated to minutes in each time set

	SEITimeCodeHoursValue
	Value for the field associated to hours in each time set

	SEITimeCodeSecondsFlag
	Specifies for each time set whether the field associated to seconds will be written to the message

	SEITimeCodeMinutesFlag
	Specifies for each time set whether the field associated to minutes will be written to the message

	SEITimeCodeHoursFlag
	Specifies for each time set whether the field associated to hours will be written to the message

	SEITimeCodeOffsetLength
	Length for the time code offset

	SEITimeCodeTimeOffset
	Value for the time code offset

Besides SEITimeCodeEnabled, SEITimeCodeNumClockTs, SEITimeCodeFieldBasedFlag, the remaining parameters should be specified with the following format:
--ParameterName=valueTimeSet0,..,valueTimeSetN
where N denotes the number of specified time sets.

5.3 Chroma sampling filter hint
The following configuration parameters are provided for controlling generation of Chroma sampling filter hint SEI messages by the HM-RExt encoder:

· SEIChromaSamplingFilterHint
· SEIChromaSamplingHorizontalFilterType
· SEIChromaSamplingVerticalFilterType
SEIChromaSamplingFilterHint signals insertion of a chroma sampling filter hint SEI message into the bitstream. Table 5‑2 and Table 5‑3 show how the chroma sampling filter hint SEI message contents are controlled by SEIChromaSamplingHorizontalFilterType and SEIChromaSamplingVerticalFilterType, respectively.

Table 5‑2 – Horizontal filter type control.
	SEIChromaSamplingHorizontalFilterType
	Filter coefficients

	0
	Not included in bitstream.

	1
	Use the following 3 hard-coded filter coefficients:

1, 6, 1.

	2
	ITU-T Rec. T.800 | ISO/IEC15444-1, 5/3 filter

Table 5‑3 – Vertical filter type control.
	SEIChromaSamplingVerticalFilterType
	Filter coefficients

	0
	Not included in bitstream.

	1
	Use the following 5, 3, 3 hard-coded filter coefficients:

-3, 13, 31, 23, 3, -3.

-1 ,25, 247, -15.

-20, 186, 100, -10.

	2
	ITU-T Rec. T.800 | ISO/IEC15444-1, 5/3 filter

5.4 Temporal motion constrained tile sets

NOTE: This HM-RExt encoder functionality relates to an implementation of an SEI message not currently adopted into RExt. The provided implementation is subject to further change.
The following configuration parameters are provided for controlling generation of a Temporal motion constrained tile sets SEI message by the HM-RExt encoder:

· SEITempMotionConstrainedTileSets

This SEI message can only be transmitted when tiles are enabled. The SEI message values are hard-coded in the function xCreateSEITempMotionConstrainedTileSets().
5.5 Knee function information

Table 5‑4 lists the configuration parameters provided for controlling generation of Knee function information SEI messages by the HM-RExt encoder. The default values and the usage are also documented.
Table 5‑4 – Knee function information SEI message.

	Configuration parameter
	Default value
	Usage

	SEIKneeFunctionInfo
	False
	Control generation of Knee function SEI messages

	SEIKneeFunctionId
	0
	Specifies Id of Knee function SEI message for a given session

	SEIKneeFunctionCancelFlag
	False
	Indicates that Knee function SEI message cancels the persistence or follows

	SEIKneeFunctionPersistenceFlag
	True
	Specifies the persistence of the Knee function SEI message

	SEIKneeFunctionMappingFlag
	False
	Specifies the mapping mode of the Knee function SEI message

	SEIKneeFunctionInputDrange
	1000
	Specifies the peak luminance level for the input picture of Knee function SEI messages

	SEIKneeFunctionInputDispLuminance
	100
	Specifies the expected display brightness for the input picture of Knee function SEI messages

	SEIKneeFunctionOutputDrange
	4000
	Specifies the peak luminance level for the output picture of Knee function SEI messages

	SEIKneeFunctionOutputDispLuminance
	800
	Specifies the expected display brightness for the output picture of Knee function SEI messages

	SEIKneeFunctionNumKneePointsMinus1
	2
	Specifies the number of knee points - 1

	SEIKneeFunctionInputKneePointValue
	600 800 900
	Array of input knee point

	SEIKneeFunctionOutputKneePointValue
	100 250 450
	Array of output knee point

5.6 Mastering display colour volume

Table 5‑5 lists the configuration parameters provided for controlling generation of Mastering display colour volume SEI messages by the HM-RExt encoder. The default values and the usage are also documented.

Table 5‑5 – Mastering display colour volume SEI message.

	Configuration parameter
	Default value
	Usage

	SEIMasteringDisplayColourVolume
	False
	Control generation of mastering display colour volume SEI messages

	SEIMasteringDisplayMaxLuminance
	10000
	Specifies the mastering display maximum luminance value in units of 1/10000 candela per square metre (32-bit code value)

	SEIMasteringDisplayMinLuminance
	0
	Specifies the mastering display minimum luminance value in units of 1/10000 candela per square metre (32-bit code value)

	SEIMasteringDisplayPrimaries
	0 65535
0 0
65535 0
	Mastering display primaries for all three colour planes in CIE xy coordinates (16-bit unsigned code value) in increments of 0.00002. The values should be in the range 0 to 50 000 inclusive, and the defaults will be changed in a future software revision.

	SEIMasteringDisplayWhitePoint
	21823 21823
	Mastering display white point CIE xy coordinates, in normalized increments of 0.00002 (e.g. 0.333 = 16-bit unsigned code value: 16667). The values should be in the range 0 to 50 000 inclusive, and the defaults will be changed in a future software revision.

6 Profiles, Levels and Tiers

The HEVC test model 16 uses particular tools in accordance with the specified profile. To enable the use of tools available in format range extensions profiles, the Profile encoder option is set to the value main-RExt or high-RExt.
For the main or main10 profiles, set the Profile encoder option to the value main or main10, respectively.
Further control of the profile of the format range extensions profiles is provided as shown in Table 6‑1.

Table 6‑1 – Bitstream indications for format range extensions profiles.

	Configuration option
	Description

	IntraConstraintFlag
	When the encoder is configured with IntraConstraintFlag, the general_intra_constraint_flag is set accordingly.

If this flag is set to 1, only intra slices may be used.

	LowerBitRateConstraintFlag
	When the encoder is configured with LowerBitRateConstraintFlag, the general_lower_bit_rate_constraint_flag is set accordingly.
Note that LowerBitRateConstraintFlag cannot be false if IntraConstraintFlag is false.

	MaxBitDepthConstraint
	Specifies the maximum allowed luma and chroma internal bit-depths.

If no value (or 0) is specified, the MaxBitDepthConstraint is assumed to be the internal bit depth. The value of MaxBitDepthConstraint controls the setting of the following syntax elements:

· general_max_12bit_constraint_flag
· general_max_10bit_constraint_flag
· general_max_8bit_constraint_flag

	MaxChromaFormatConstraint
	Specifies the maximum allowed chroma format.

If no value (or 0) is specified, the MaxChromaFormatConstraint is assumed to be that of the internal chroma format. The value of MaxChromaFormatConstraint controls the setting of the following syntax elements:

· general_max_422chroma_constraint_flag
· general_max_420chroma_constraint_flag
· general_max_monochrome_constraint_flag

The following syntax elements specify the profile being used:

· general_max_12bit_constraint_flag
· general_max_10bit_constraint_flag
· general_max_8bit_constraint_flag
· general_max_422chroma_constraint_flag
· general_max_420chroma_constraint_flag
· general_max_monochrome_constraint_flag
· general_intra_constraint_flag
· general_one_picture_only_constraint_flag (HM always writes a ‘0’ for this flag)
· general_lower_bit_rate_constraint_flag

· general_profile_idc (set to 4 for all profiles currently specified for the format range extensions profiles).

The encoder does not currently verify that the combination of constraints flags describe a format range extensions profile. However, it is likely that automatic generation of the constraint flags will follow the rules defined in Table 6‑2.
Table 6‑2 – Mapping between user configuration and automatically calculated bitstream format range extensions profile indication.

	Mode
	Chroma format
	General RExt tools
	Extended precision
	Chroma QP tool
	Maximum bit depth of all components

	
	
	
	
	
	8
	9, 10
	11, 12
	13, 14, 15, 16

	Intra
	4:0:0
	None
	Off
	n/a
	Main Intra
	Main 10 Intra
	Main 12 Intra
	Main 4:4:4 16 Intra

	
	4:2:0
	None
	Off
	Off
	
	
	
	

	
	
	
	
	On
	Main 4:2:2 10 Intra
	Main 4:2:2 12 Intra
	

	
	4:2:2
	None
	Off
	-
	
	
	

	
	4:4:4
	None
	Off
	-
	Main 4:4:4 Intra
	Main 4:4:4 10 Intra
	Main 4:4:4 12 Intra
	

	
	-
	Some/All
	Off
	-
	
	
	
	

	
	-
	-
	On
	-
	
	

	Inter
	4:0:0
	None
	Off
	n/a
	Monochrome 12
	Monochrome 16

	
	
	-
	On
	n/a
	
	

	
	
	Some/All
	Off
	n/a
	
	

	
	4:2:0
	None
	Off
	Off
	Main 12
	

	
	
	-
	On
	-
	
	
	
	
	
	

	
	
	Some/All
	Off
	-
	Main 4:4:4
	Main 4:4:4 10
	Main 4:4:4 12
	

	
	
	None
	Off
	On
	Main 4:2:2 10
	Main 4:2:2 12
	

	
	4:2:2
	None
	Off
	-
	
	
	n/a

	
	
	-
	On
	-
	
	
	
	
	
	

	
	
	Some/All
	Off
	-
	Main 4:4:4
	Main 4:4:4 10
	Main 4:4:4 12
	

	
	4:4:4
	-
	Off
	-
	
	
	
	

	
	
	-
	On
	-
	
	
	
	
	
	

7 Description of encoding methods
7.1 Cost Functions

Various cost functions are used in the HM software encoder to determine costs used in making encoder decisions. This section documents the cost functions used in the encoding process of the HM software.

7.1.1 Sum of Square Error (SSE)

The difference between two blocks with the same block size is produced using

Diff(i,j) = BlockA(i,j) - BlockB(i,j)

(7‑1)

SEE is computed using the following equation:

[image: image56.wmf]å

=

j

i

j

i

Diff

SSE

,

2

)

,

(

(7‑2)

7.1.2 Sum of Absolute Difference (SAD)

SAD is computed using the following equation:

[image: image57.wmf]å

=

j

i

j

i

Diff

SAD

,

)

,

(

(7‑3)

7.1.3 Hadamard transformed SAD (SATD)

Since the transformed coefficients are coded, an improved estimation of the cost of each mode can be obtained by estimating DCT with the Hadamard transform.

SATD is computed using:

[image: image58.wmf]2

/

)

)

,

(

(

,

å

=

j

i

j

i

DiffT

SATD

(7‑4)

The Hadamard transform flag can be turned on or off. SA(T)D refers to either SAD or SATD depending on the status of the Hadamard transform flag.

SAD is used when computing full-pel motion estimation while SA(T)D is used for sub-pel motion estimation.
7.1.4 RD cost functions

7.1.4.1 Lagrangian constant values

In the HM encoder, lambda values that are used for cost computation are defined as

[image: image59.wmf])

0

.

3

/

)

12

((

mode

2

*

*

-

=

QP

k

W

a

l

(7‑5)

[image: image60.wmf]l

pred
[image: image61.wmf]e

mod

l

=

(7‑6)

[image: image62.wmf]î

í

ì

-

=

0

.

1

)

_

_

_

*

05

.

0

,

5

.

0

,

0

.

0

(

3

0

.

1

frames

B

of

number

Clip

a

(7‑7)

[image: image63.wmf]k

W

represents weighting factor dependent to encoding configuration and QP offset hierarchy level of current picture within a GOP, as specified in Table 7‑1. Note that the value of
[image: image64.wmf]k

W

derived from Table 7‑1 is further modified by multiplying 0.95 when SATD based motion estimation is used.
Table 7‑1 – Derivation of [image: image65.wmf]k

W

	k
	QP offset hierarchy level
	Slice type
	Referenced
	
[image: image66.wmf]k

W

	0
	0
	I
	-
	0.57

	1
	0
	P or B
	1
	RA: 0.442

LD: 0.578

	2
	1, 2
	P or B
	1
	RA: 0.3536 * Clip3(2.0, 4.0, (QP-12)/6.0)

LD: 0.4624 * Clip3(2.0, 4.0, (QP-12)/6.0)

	4
	3
	B
	0
	RA: 0.68 * Clip3(2.0, 4.0, (QP-12)/6.0)

7.1.4.2 Weighting factor for chroma component

The following weighting parameter wchroma is used to derive lambda value
[image: image67.wmf]chroma

l

to be used for chroma-specific decisions in RDOQ and SAO processes.

[image: image68.wmf](

)

3

/

QP

QP

chroma

chroma

2

-

=

w

(7‑8)
With this parameter,
[image: image69.wmf]chroma

l

is obtained by

[image: image70.wmf]chroma

mode

/

w

chroma

l

l

=

(7‑9)
Note that the parameter wchroma is also used to define the cost function used for mode decisions in order to weight the chroma part of SSE.

7.1.4.3 SAD based cost function for prediction parameter decision
The cost for prediction parameter decision Jpred,SAD is specified by the following formula.

Jpred,SAD =SAD + λpred * Bpred,

(7‑10)

where Bpred specifies bit cost to be considered for making decision, which depends on each decision case. λpred and SAD are defined in the section 7.1.4.1 and 7.1.2, respectively.
7.1.4.4 SATD based cost function for prediction parameter decision
The cost for motion parameter decision Jpred,SATD is specified by the following formula.

Jpred,SATD =SATD + λpred * Bpred,

(7‑11)

where Bpred specifies bit cost to be considered for making decision, which depends on each decision case. λpred and SATD are defined in the section 7.1.4.1 and 7.1.3, respectively.
7.1.4.5 Cost function for mode decision
The cost for mode decision Jmode is specified by the following formula.

Jmode =(SSEluma+ wchroma *SSEchroma)+ λmode * Bmode,

(7‑12)
where Bmode specifies bit cost to be considered for mode decision, which depends on each decision case. λmode and SSE are defined in the section 7.1.4.1 and 7.1.1, respectively.
7.2 Encoder configurations

7.2.1 Overview of encoder configurations

The HM encoder supports three kinds of prediction structures, as used in the common test conditions [4] and [5]. These prediction structures are: intra-only, low-delay and random access. The reference picture list management depends on the temporal configuration.

7.2.2 Intra-only configuration

For intra-only coding, each picture in the source material is encoded as an IDR picture. No temporal reference pictures are used. QP does not change during a picture. Figure 7‑1 gives graphical presentation of an intra-only configuration, where the number associated with each picture represents the encoding order.

[image: image71.emf]

QPI

time

0135

7

2 64 8

IDR Picture

QPI

・・・・・

Figure 7‑1 – Graphical presentation of intra-only configuration

7.2.3 Low-delay configurations
Two coding configurations have been defined for testing low-delay coding performance, referred to as ‘low-delay P’ and ‘low-delay B’. For low-delay coding conditions, only the first picture in a video sequence is encoded as an IDR picture. Subsequent pictures are each encoded using a P-slice for low-delay P mode or a B-slice for low-delay B mode. For both modes, the P or B slices may only reference pictures preceding the current picture in display order. For low-delay B mode, both reference lists RefPicList0 and RefPicList1 are identical.

Figure 7‑2 shows a graphical presentation of this low-delay. The number associated with each picture represents the encoding order. The QP of each inter coded picture is derived by adding an offset to the QP of the intra coded picture depending on the temporal layer.

[image: image72.emf]

QPI

QPB

L1

=QPI+1QPB

L1

=QPI+1

QPB

L2

=QPI+2

QPB

L3

=QPI+3

time

QPB

L3

=QPI+3

QPB

L3

=QPI+3

QPB

L3

=QPI+3

QPB

L2

=QPI+2

0

1357

2

4

6

8

IDR or Intra

Picture

GPB(GeneralizedP

and B) Picture

Figure 7‑2 – Graphical presentation of low-delay configuration
7.2.4 Random-access configuration

For the random-access test condition, a hierarchical B structure is used for encoding. Figure 7‑3 shows a graphical representation of a random-access configuration, where the number associated with each picture represents the encoding order. An intra-picture is encoded at approximately one second intervals in accordance with the IntraPeriod configuration option, configured based on the frame rate of the source material. The first intra-picture of a video sequence is encoded as an IDR picture and the other intra pictures are encoded as non-IDR intra pictures (“Open GOP”). The pictures located between successive intra pictures in display order are encoded as B-pictures. The inter-predicted picture (referred to as a ‘Generalised P and B picture) in Figure 7‑3 below) is used as the lowest temporal layer that can refer to intra- or inter-pictures for inter prediction. The second and third temporal layers consist of referenced B pictures, while the highest temporal layer contains non-referenced B picture only. The QP of each inter-coded picture is derived by adding an offset to the QP of the intra-coded picture depending on the temporal layer. The reference picture list combination is used for management and entropy coding of the reference picture index.

[image: image73.png]
Figure 7‑3 – Graphical presentation of random-access configuration

7.3 Slice partitioning operation

The HM encoder can partition a picture into several slices. Slices have spatial granularity equal to CTU. The HM encoder has three ways of determining slice size: by specifying the maximum number of CTUs in a slice, by specifying the number of bytes in a slice, and by specifying the number of tiles.

7.4 Derivation process for slice-level coding parameters

7.4.1 Sample Adaptive Offset (SAO) parameters
7.4.1.1 Search the SAO type with minimum rate-distortion cost
In the HM encoder, the following process is performed to determine the SAO parameters:

1. Loop three colour components in a CTB as following

2. Collect the statistical information for all SAO type as following

2.1. Set sao_type_idx = 0

2.2. Classified pixels into categories according to sao_type_idx.

2.2.1. Calculate sum of difference between original signal and reconstructed signal in each category.

2.2.2. Calculate number of pixels in each category.

2.2.3. Calculate offsets using step 2.2.1 and step 2.2.2.

2.2.4. Calculate RD-cost according to section 3.7.2.2

2.3. Set sao_type_idx = sao_type_idx+1; if sao_type_idx <= 5, run step 2.2; otherwise, end.
3. Determine the SAO parameters with lowest rate-distortion (RD) cost among the following three items.

3.1. If left CTB is available, calculate the RD cost by reusing the SAO parameters of left CTB.

3.2. If upper CTB is available, calculate the RD cost by reusing SAO parameters of upper CTB.

3.3. Five SAO types with minimum RD-cost in step 2.

4. Update pixels in DPB according to selected SAO type by adding offset.

5. Run step1, 2, 3, and 4 for next CTB until all CTB is processed.

7.4.1.2 Slice level on/off Control
A hierarchical coding of pictures is used for both low delay and random access configurations which allows the encoder to enable or disable SAO for picture with higher QP according to the percentage of CTBs to use SAO from the previous picture with lower QP. If previous picture with lower QP had more than 25% of CTBs using SAO type from 1-5, SAO will be enabled for the current picture, otherwise SAO will be disabled for the current picture.
7.5 Derivation process for CU-level and PU-level coding parameters

7.5.1 Intra prediction mode and parameters

The encoder selects an intra prediction mode for a PU as follows:

1. A candidate mode derivation step tests all possible prediction modes for the luma PB with an approximate prediction cost Jpred,SATD specified in the section 7.1.4.4. A pre-determined number of intermediate candidates are found for each PU size (8 for 4x4 and 8x8 PUs, 3 for other PU sizes). In this step, the number of coded bits for an intra prediction mode is set to Bpred.
2. An RD optimization step, using the coding cost Jmode specified in the section 7.1.4.5, is applied to the previously determined candidate modes. During this step, prediction parameters and coefficients for luma component of the PU are accumulated into Bmode. Regarding the chroma PB mode decision, all possible intra chroma prediction modes are evaluated through RD decision process, where coded bits for intra chroma prediction mode and chroma coefficient are used as Bmode.
7.5.1.1 Rate-distortion penalty for intra coding

This tool is enabled with the configuration option RDpenalty and provides a fast mode decision for intra coding. Configuration option RDpenalty can take three values: 0 (i.e. disabled), 1 and 2. When the value is equal to one the encoder avoids splitting a transform unit when its size is smaller than 16 × 16 and its associated slice is not intra. When RDpenalty is set to 2, transform units with size 32 × 32 in non intra slices are not checked and the RQT search moves to the next level of recursion.

7.5.2 Inter prediction mode and parameters

7.5.2.1 Derivation of motion parameters

In the HM encoder, an inter-coded CU can be segmented into multiple inter-predicted PUs, each of which has a set of motion parameters consisting of one or more motion vectors (per RefPicListX), corresponding reference picture indices (ref_idx_lX) and prediction direction index (inter_pred_flag). Note that the current common test conditions those includes inter prediction coding are adopting reference picture list combination process, which is the case “X=c”. An inter-coded CU can be encoded with one of the following coding modes (“PredMode”): MODE_SKIP, MODE_INTER. For MODE_SKIP case, any sub-partitioning to smaller PUs is not allowed and its motion parameters are assigned to the CU itself, where the PU size is PART_2Nx2N. On the contrary, up to eight types of further partitioning to smaller PUs can be allowed for a CU coded with MODE_INTER. The PredMode and the CU partitioning shape (“PartMode”) are signaled by a CU level syntax element “part_type” as specified in Table 7-10 of the WD. For a MODE_INTER CU other than those having maximum depth, seven PU partitioning patterns (PART_2Nx2N, PART_2NxN, PART_Nx2N, PART_2NxnU, PART_2NxnD, PART_nLx2N and PART_nRx2N) can be selected. PART_NxN can only be chosen at maximum CU depth level but permission to set N to 4 is controlled by a specific flag in SPS (“inter_4x4_enabled_flag”). For each PU, PU-based Motion Merging (merge mode) or normal inter prediction with actually estimated motion parameters (inter mode) can be used. This section describes how luma motion parameters are obtained for each PU. It is noted that chroma motion vector are derived from luma motion vector of corresponding PU according to the normative process specified in section 8.4.2.1.10 of the WD, and the same reference picture index and prediction direction index as luma’s one are used in chroma components.

7.5.2.1.1 Motion Vector Prediction

For each PU, the best motion vector predictor is computed with the process specified as follows. Firstly, a set of motion vector predictor candidates for RefPicListX are derived with normative process specified in section 8.4.2.1.7 of the WD, by referring to motion parameters of neighbouring PUs. Then, the best one from the candidate set is determined by a criterion that selects a motion vector predictor candidate that minimizes the cost Jpred,SAD specified in the section 7.1.4.3, with setting the bits for an index specifying each motion vector predictor candidate to Bpred. The index corresponding to the selected best candidate is assigned to the mvp_idx_lX.

7.5.2.1.2 CU coding with MODE_SKIP
In the case of skip mode (i.e., PredMode == “MODE_SKIP”), motion parameters for the current CU(i.e., PART_2Nx2N PU) are derived by using merge mode. In this case, the motion parameters are determined by checking all possible merge candidates derived by the normative process specified in section 8.4.2.1.1 to 8.4.2.1.5 of the WD, and selecting the best set of motion parameters that minimizes the cost Jmode specified in the section 7.1.4.5. In this case, Bmode includes coded bits for skip_flag and merge_idx that signals position of the PU having the best motion parameters to be used for the current PU. Since prediction residual is not transmitted for skip mode, SSE is obtained by inter prediction samples.

7.5.2.1.3 CU coding with MODE_INTER
When a CU is coded with MODE_INTER, motion parameter decision for each PU is performed first based on the ME cost Jpred,SATD specified in the section 7.1.4.4.

For merge mode case, the motion parameter decision starts with checking availabilities of all neighbouring PUs to form merge candidates according to the normative process specified in the section 8.4.2.1.1 to 8.4.2.1.5 of the WD. If there is no available merge candidate, the HM encoder simply skips cost computation for merge mode and does not choose merge mode for the current PU. Otherwise(i.e., if there is at least one merge candidate), the ME cost Jpred,SATD specified in the section 7.1.4.4 is computed for all possible PUs as merge candidate and the best one is selected as the best motion parameters for the PU predicted with merge mode. SATD between source and prediction samples is used as distortion factor, and bits for merge_idx is set to Bpred.

For inter mode case, the best motion parameters are derived by invoking motion estimation process specified in the section 6.9.2.2. During the motion estimation process, the best motion parameters are obtained based on the cost function Jpred,SATD specified in the section 7.1.4.4, which is comparable with the cost of motion parameter derivation for merge mode. SATD between source and prediction samples is used as distortion factor, and bits for inter_pred_flag, ref_idx_lX, mvd_lX and mvp_idx_lX are set to Bpred.

After both of the best motion parameters are obtained, the best motion parameters are determined by comparing them and taking the better one that results in lower cost.
7.5.2.2 Motion estimation

In order to get motion vector for each PU, block matching algorithm (BMA) is performed at encoder. Motion vector accuracy supported in HEVC is quarter-pel. To generate half-pel and quarter-pel accuracy samples, interpolation filtering is performed for reference picture samples. Instead of searching all the positions for quarter-pel accuracy motion, integer-pel accuracy motion vector is obtained at first. For half-pel search, only 8 sample points around the motion vector which has the minimum cost are searched. Similarly, for quarter-pel search, 8 sample points around the motion which has the minimum cost so far are searched. The motion vector which has the minimum cost is selected as the motion vector of the PU. To get the cost, SAD is used for integer-pel motion search and SA(T)D is used for half-pel and quarter-pel motion search. The rate for motion vector is obtained by utilizing pre-calculated rate table. In the following sub-sections, algorithms for integer-pel motion search is provided in detail.

7.5.2.2.1 Integer-pel accuracy motion search

To reduce search points for integer-pel motion, 3 step motion search strategy is used. Figure 7‑4 illustrates the 3 step approach for integer-pel accuracy motion search.
[image: image74.wmf]Start position selection

First search

Refinement search

Best motion vector

Figure 7‑4 – Three step motion search strategy for integer-pel accuracy

At first, start position of the search is selected. As a default, motion vector predictor (PMV) obtained by motion vector predictor derivation process is used. Optionally, motion vectors of neighbouring positions (A, B, and C), and zero motion can be checked. In the common test condition, only PMV is used as the start position of integer-pel search.

[image: image75.wmf]Examining

PMV

Adjacent MVs?

Examining adjacent MVs

(A, B, C)

Zero MV ?

Examining zero MV

Best start position

Figure 7‑5 – Start position selection

As a second step, the first search is done using diamond search pattern or square search pattern. Currently, diamond search pattern is default, and square search pattern is used by changing input configuration. Additional raster search is performed when the difference between obtained motion vector and start position is too big. Currently, search range is set by 64 in integer-pel accuracy. Figure 7‑6 illustrates the 3 search patterns used for the first search. Red circles represent current position and coloured squares represent candidate search positions for each pattern. Same colour means positions having same distance from the start position.
[image: image76.wmf]Diamond

Square

Raster

Figure 7‑6 – Search patterns for the first search

Last step is refinement search. In this step, refinement search is performed by changing the start position to the best position from the second step. Also, diamond or square search is utilized, and refinement is stopped when 2 rounds are passed after best match.

7.5.2.2.2 Bi-predictive search strategy

In principle, bi-predictive motion search means to search two motion vectors which produce minimum error between original block (O) and predicted block with two prediction (P=P0+P1). In HM, practical strategy is implemented by utilizing iterative uni-predictive search. Bi-predictive search steps are as follows.

1) Search P1 which produces minimum error with (2O - P0), where O represents original block and P0 means predictor produced by the first motion vector. P0 is fixed in this step. To get motion vector for P1, uni-predictive motion search is utilized after setting (2O - P0) as reference samples.
2) Search P0 which produces minimum error with (2O – P1), where O represents original block and P1 means predictor produced by the second motion vector. P1 is the predictor obtained in step 1) and fixed in this step. To get P0, uni-predictive search is utilized after setting (2O – P1) as reference samples.

3) Iterate 1) and 2) until maximum number of iterations is reached. The maximum number of iteration is set by 4 unless the fast search option is enabled.
7.5.2.2.3 Fast search options

There are two options to accelerate motion estimation. The first one is using sub-sampled SAD for integer motion search. This option is only used for blocks which have larger number of rows than 8. In this method, only samples in odd-number rows are involved for SAD calculations. The second option is reducing number of iterations for bi-predictive motion search. The number of iteration is set by 4 unless the fast search option is enabled.

7.5.2.3 Decision process on AMP mode evaluation procedure
For encoder speed up, additional conditions are checked before doing motion estimation for AMP. If certain conditions are met, additional motion estimation for AMP can be skipped. Conditions of mode skipping are based on two values: the best partition mode (PartMode) before AMP modes are evaluated and the PartMode and prediction mode (PredMode) at the lower level in the CU quad-tree, the so called parent CU, which contains the current PU. The conditions and actions are specified in Table 7‑2..
Table 7‑2 – Conditions and actions for fast AMP mode evaluation
	Conditions
	Actions

	The best PartMode is SIZE_2NxN
	Try SIZE_2NxnU and SIZE_2NxnD

	The best PartMode is SIZE_Nx2N
	Try SIZE_nLx2N and SIZE_nRx2N

	The best PartMode is 2Nx2N &&
!merge mode && ! skip mode
	Try all AMP modes

	PartMode of parent CU is AMP mode
	Try merge mode only for all AMP modes

	PartMode of parent CU is PART_2Nx2N && parent CU is not skipped
	Try merge mode only for all AMP modes

	PredMode of parent CU is intra && the best PartMode is SIZE_2NxN
	Try merge mode only for SIZE_2NxnU and SIZE_2NxnD

	PredMode of parent CU is intra && the best PartMode is SIZE_Nx2N
	Try merge mode only for SIZE_nLx2N and SIZE_nRx2N

	Size of current CU is 64x64
	No AMP modes are evaluated

7.5.3 Intra/Inter/PCM mode decision

For inter coded CUs, the following mode decision process is conducted in the HM encoder. Its schematic is also shown in Figure 7‑7. Please refer to contributions about early termination for Early_CU condition, CBF_Fast condition, and Early_SKIP condition.
1. Coding costs (Jmode) for MODE_INTER with PART_2Nx2N is computed and Jmode is set to minimum CU coding cost J.
2. Check if motion vector difference of MODE_INTER with PART_2Nx2N is equal to (0, 0) and MODE_INTER with PART_2Nx2N contains no non-zero transform coefficients (Early_SKIP condition). If both are true, proceed to 17 with setting the best interim coding mode as MODE_SKIP. Otherwise, proceed to 3.
3. Check if MODE_INTER with PART_2Nx2N contains no non-zero transform coefficients (CBF_Fast condition). If the condition is true, proceed to 17 with setting the best interim coding mode as MODE_INTER with PART_2Nx2N. Otherwise, proceed to 4.
4. Jmode for MODE_SKIP is evaluated and J is set equal to Jmode if Jmode < J.
5. Check if the current CU depth is maximum and the current CU size is not 8x8 when inter_4x4_enabled_flag is zero. If the conditions are true, proceed to 6. Otherwise, proceed to 7.

6. Jmode for MODE_INTER with PART_NxN is evaluated and J is set equal to Jmode if Jmode < J. After that, check if MODE_INTER with PART_NxN contains no non-zero transform coefficients (CBF_Fast condition). If the condition is true, proceed to 17 with setting the best interim coding mode as MODE_INTER with PART_NxN. Otherwise, proceed to 7.
7. Jmode for MODE_INTER with PART_Nx2N is evaluated and J is set equal to Jmode if Jmode < J. After that, check if MODE_INTER with PART_Nx2N contains no non-zero transform coefficients (CBF_Fast condition). If the condition is true, proceed to 17 with setting the best interim coding mode as MODE_INTER with PART_Nx2N. Otherwise, proceed to 8.
8. Jmode for MODE_INTER with PART_2NxN is evaluated and J is set equal to Jmode if Jmode < J. After that, check if MODE_INTER with PART_2NxN contains no non-zero transform coefficients (CBF_Fast condition). If the condition is true, proceed to 17 with setting the best interim coding mode as MODE_INTER with PART_2NxN. Otherwise, proceed to 9.
9. Invoke a process to determine AMP mode evaluation procedure specified in 7.5.2.3. Output of this process is assigned to TestAMP_Hor and TestAMP_Ver. TestAMP_Hor specifies whether horizontal AMP modes are tested with specific ME or tested with merge mode or not tested. TestAMP_Ver specifies whether vertical AMP modes are tested with specific ME or tested with merge mode or not tested.

10. If TestAMP_Hor indicates that horizontal AMP modes are tested, MODE_INTER with PART_2NxnU is evaluated with procedure suggested by TestAMP_Hor and J is set equal to the resulting coding cost Jmode if Jmode < J. After that, check if MODE_INTER with PART_2NxnU contains no non-zero transform coefficients (CBF_Fast condition). If the condition is true, proceed to 17 with setting the best interim coding mode as MODE_INTER with PART_2NxnU. Otherwise, MODE_INTER with PART_2NxnD is evaluated with procedure suggested by TestAMP_Hor and J is set equal to the resulting coding cost Jmode if Jmode < J. After that, check if MODE_INTER with PART_2NxnD contains no non-zero transform coefficients (CBF_Fast condition). If the condition is true, proceed to 17 with setting the best interim coding mode as MODE_INTER with PART_2NxnD. Otherwise, proceed to 11.
11. If TestAMP_Ver indicates that vertical AMP modes are tested, MODE_INTER with PART_nLx2N is evaluated with procedure suggested by TestAMP_Ver and J is set equal to the resulting coding cost Jmode if Jmode < J. After that, check if MODE_INTER with PART_nLx2N contains no non-zero transform coefficients (CBF_Fast condition). If the condition is true, proceed to 17 with setting the best interim coding mode as MODE_INTER with PART_nLx2N. Otherwise, MODE_INTER with PART_nRx2N is evaluated with procedure suggested by TestAMP_Ver and J is set equal to the resulting coding cost Jmode if Jmode < J. After that, check if MODE_INTER with PART_nRx2N contains no non-zero transform coefficients (CBF_Fast condition). If the condition is true, proceed to 17 with setting the best interim coding mode as MODE_INTER with PART_nRx2N. Otherwise, proceed to 12.
12. MODE_INTRA with PART_2Nx2N is evaluated by invoking the process specified in 7.5.1, only when at least one or more non-zero transform coefficients can be found by using the best interim coding mode. J is set equal to the resulting coding cost Jmode if Jmode < J.

13. Check if the current CU depth is maximum, If the condition is true, proceed to 14. Otherwise, proceed to 15.
14. MODE_INTRA with PART_NxN is evaluated by invoking the process specified in 7.5.1, only when the current CU size is larger than minimum TU size. The resulting coding cost Jmode is set to J if Jmode < J.

15. Check if the current CU size is greater than or equal to the minimum PCM mode size specified by the log2_min_pcm_coding_block_size_minus3 value of SPS parameter. If the condition is true, proceed to 16. Otherwise, proceed to 17.
16. Check if any of the following conditions are true. If the condition is true, PCM mode is evaluated and J is set equal to the resulting coding cost Jmode if Jmode < J.

· Bit cost of J is greater than that of the PCM sample data of the input image block.
· J is greater than bit cost of the PCM sample data of the input image block multiplied by λmode.
17. Update bit cost Bmode by adding bits for CU split flag and re-compute minimum coding cost J.
18. Check if the best interim coding mode is MODE_SKIP (Early_CU condition). If the condition is true, do not proceed to the recursive mode decision at next CU level. Otherwise, go to next CU level of recursive mode decision if the current CU depth is not maximum.

[image: image77.emf]INTER_2Nx2N

Early_SKIP

SKIP

INTRA_2Nx2NINTRA_NxN

TestAMP_Ver

TestAMP_Hor

No

Yes

No

Yes

No

PCM

xCompressCUxCompressCUxCompressCUxCompressCU

Early_CU

No

END

Yes

Yes

START

Recursive call

INTER_Nx2NINTER_2NxN

INTER_2NxnUINTER_2NxnD

INTER_NxN

INTER_nLx2NINTER_nRx2N

CBF_Fast

YesNo

Refer 6,7,8,10,11

Refer 5,14

Figure 7‑7 – The schematic of Intra/Inter/PCM mode decision
For the computation of Jmode except for PCM mode, residual signal is obtained by subtracting intra or inter prediction samples from source samples and is coded with transform and quantization with quad-tree TU partitioning as specified in the section 7.6. Bits for side information (skip_flag, merge_flag, merge_idx, pred_type, pcm_flag, inter_pred_flag, reference picture indices, motion vector(s), mvp_idx, intra prediction mode signaling) and residual coded data are considered as Bmode. SSEluma and SSEchroma are obtained by using local decoded samples, except for MODE_SKIP case where prediction sample is used as local decoded samples.

For the computation of Jmode for PCM mode, bits for side information (skip_flag, pred_type, pcm_flag, pcm_alignment_zero_bit) and PCM sample data are considered as Bmode. SSEluma and SSEchroma are set to 0. (Note that in current test conditions, the PCM mode decision processes in (15) and (16) are skipped since the minimum PCM mode size is 128.)

This CU level mode decision is recursively performed for each CU depth and final distribution of CU coding modes is determined at CTU level.

7.6 Derivation process for TU-level coding parameters

7.6.1 Residual Quad-tree partitioning

The residual quadtree is a recursive representation of the partitioning of a coding unit into transform units.

The encoding process for intra-coded coding units can be summarized as follows.

–
The luma intra prediction mode (or modes for intra_split_flag equal to 1) is determined using the residual coding with the largest applicable transform size.

–
Given the determined luma intra prediction mode (or modes for intra_split_flag equal to 1), the transform tree and the corresponding luma transform coefficient levels are determined using an exhaustive subdivision process, taking into account the maximum allowed transform hierarchy depth and considering only the luma component.

–
The chroma intra prediction mode and the corresponding chroma transform coefficient levels are determined given the determined transform tree.

The encoding process for inter-coded coding units can be summarized as follows.

–
The transform tree and the corresponding luma and chroma transform coefficient levels are determined using an exhaustive subdivision process, taking into account the maximum allowed transform hierarchy depth and considering both the luma component and the chroma components.

7.6.2 Rate-distortion optimized quantization
Rate-distortion optimized quantization (RDOQ) is enabled by the encoder option --RDOQ and performs soft decision quantization for each transform coefficient by minimizing a rate-distortion Lagrangian cost function. More specifically, over a transform unit with size B each coefficient ci (for i = 0,…,B2 – 1) is quantized to the following three level values: 0, lfloor and lceil. The value for lfloor is the one computed for the selected QP and according to [1]. Conversely, lceil = lfloor + 1. For each level value l, the following Lagrangian cost function J is computed:

[image: image78.wmf])

(

)

,

(

)

,

(

l

R

l

c

D

l

c

J

i

i

×

+

=

l

where λ denotes the Lagrangian multiplier computed as described in Section 7.1.4.1, D(ci, l) is the distortion measured when ci is quantized to l and R(l) is the (estimated) coding rate associated to l. The value for l (i.e. 0, lfloor or lceil) which minimizes J is selected as the best one and the process moves to the next coefficient. The coefficients ci are processed according to the scanning order used for the transform unit where they belong to and starting from the last significant coefficient (i.e. from the one associated to i = B2 – 1). This particular processing order is used to mimic actual entropy encoding. In order to keep low computational complexity during RDOQ, the coding rate R(l) is estimated by tabularized values of entropy of the probabilities corresponding to states in CABAC coding engine. RDOQ can be used also for those transform units where the transform skip is selected. In this case the processing is identical and this option can enabled or disabled by the encoder option --RDOQTS.
7.7 Cross-component prediction
When calculating the α, the luma residual before scaling and transformation (i.e. the difference between original luma sample and its prediction) is used rather than the reconstructed luma residual signal as in Experiment 1. Specifically, at the encoder side instead of (1) below equation is used.

[image: image79.wmf](

)

3

)

,

(

)

,

(

)

,

(

>>

´

-

=

D

y

x

r

y

x

r

y

x

r

L

C

C

a

This can reduce the implementation complexity by facilitating pipelining and parallel processing as the prediction can be performed without waiting until reconstruction of luma residual signal. This requires only encoder side modification, and the decoding part is the same as Experiment 1.

7.8 Transform skip selection
The transform skip is allowed for large TUs by a RDO with the transform mode. The maximum size allowed is specified by TransformSkipLog2MaxSize. There is one fast mode decision specified by setting TransformSkipFast to 1, which skips the transform skip on luminance intra coding when the PartMode is not PART_NxN and on chrominance intra coding when all corresponding luminance TUs are not coded in transform skip mode. Therefore, to enable the transform skip on large TUs when the PartMode is PART_2Nx2N for intra coding, the TransformSkipFast option should be set to 0. Another fast method for transform skip is to disable the RDOQ when a TU chooses the transform skip mode, which is achieved by setting RDOQTS to 0.

7.9 Cost mode

The cost equation used by the encoder can be configured using CostMode. This can take one of the following four strings:
· lossy – this is the standard cost equation, where cost = distortion + (bits * lambda).
· sequence_level_lossless – this is equivalent to the HM macro cost equation, although includes distortion, which may be present in mixed lossless and lossy scenarios. Cost = (distortion / lambda) + bits.
· lossless – this is equivalent to sequence_level_lossless, but also sets QP to the value of RExt__LOSSLESS_AND_MIXED_LOSSLESS_RD_COST_TEST_QP (by default 0) (since the QP is used during the encoder search for testing intra modes). This may be deprecated in future versions in favour of the user setting the QP manually.
· mixed_lossless_lossy – this uses the same cost equation as sequence level lossless, but also uses a lambda evaluated at the value of the macro RExt__LOSSLESS_AND_MIXED_LOSSLESS_RD_COST_TEST_QP_PRIME (by default 4) to derive lambdas so that lossless coded blocks are not affected by QP during their encoder search. This affects the intra search during fast evaluation of intra directions and inter search during evaluation of motion vector cost.
7.10 Inter-prediction search
The inter-prediction search function in the encoder includes two modes of operation, a pre-existing search derived from the HM software inter search function and a ‘single component loop inter search’ mode. The single component loop inter search is enabled using SingleComponentLoopInterSearch
The pre-existing inter-prediction search function includes three loops over the colour channels, as follows:
· In the first component loop, the entropy coder is reset, blocks are transformed and quantized, then the entropy coding cost for the block is estimated.

· In the second component loop, the entropy coder is reset, then if the absolute sum of the quantized coefficients is non-zero, the block is dequantized and inverse-transformed and a cost is derived using the result of the first loop. Also, a cost is derived for the case where all residual coefficients are zero. The costs are compared and the lowest is selected. If the absolute sum of the quantized coefficients is zero, only the cost for this case is derived.

· In the third component loop, for each tested mode of transform skip and cross-component prediction the following occurs. Firstly, the entropy coder is restored and reset if the component is not Cr (i.e. cIdx < 2). Then the block is transform skipped and quantized, the block is then entropy code estimated and a cost is derived, and selected if it is an improvement upon the previous best cost.
After the three component loops, the entropy coder is restored and then reset and the decisions are encoded.

When the encoder is configured to use the single component loop inter search mode, the following occurs:

· A loop over each component occurs. For each tested mode of transform skip and (optionally) cross-component prediction, the following occurs. The entropy coder is restored and then reset. The block is then transformed and quantized. The entropy coding cost of the block is then estimated. If the absolute sum of the quantized coefficients is non-zero, the block is dequantized and inverse-transformed, otherwise the inverse-transformed block is set to all zeros. Then a cost is derived. If all optional tools are disabled, then a cost is derived for the tested mode for the case of all coefficients being zero. Then, the best cost is selected.
After the component loop, the entropy coder is restored and then reset and the decisions are encoded.

7.11 Rate control

The HM software implements a single pass rate control algorithm which provides a constant bit rate (CBR) mode. The algorithm is controlled using the RateControl configuration option and is based on a R-λ model as presented in document JCTVC-K0103 [6]. This model assumes an exponential relationship between the coding rate and the Lagrangian multiplier λ:

[image: image80.wmf]1

1

b

l

a

×

=

R

where α1 and β1 are constants dependent on the video source. The rate control process can be summarised into two main steps:

1. Bit allocation,

2. Quantization parameter derivation according to the used R-λ model.

Bit allocation is performed at the following levels of granularity: GOP, picture and CTU level. Initially, the rate controller computes the average bits per picture (RPicAvg) from the target bitrate (Rtar) and the video frame rate (f):

[image: image81.wmf]f

R

R

tar

PicAvg

=

Then, bit allocation at the GOP level is performed using a smoothing window (SW) of 40 frame lengths and taking into account the number of pictures already coded (Ncoded) and the bits spent on these pictures (Rcoded). For the current GOP the target bits (TGOP) are then given as:

[image: image82.wmf]GOP

coded

coded

PicAvg

GOP

N

SW

R

SW

N

R

T

×

-

+

×

=

)

(

where NGOP denotes the number of pictures in the current GOP. At the picture level bit allocation is performed taking into account TGOP and the bits spent over the pictures inside the current GOP and already coded (CODEDGOP). The number of bits allocated for each picture also considers a weight. The weight models the relative number of bits that should be allocated to one picture with respect to the others. As an example, in the random access coding configuration, when a hierarchical GOP structure is used, pictures belonging to lower levels of the hierarchy will receive a larger number of bits since they will serve as reference for subsequent coded pictures (i.e. at higher levels of the hierarchy). Conversely those located to the higher level of the hierarchy will receive fewer bits. The weights used in HM are selected differently depending on whether random access or low delay GOP type is used. The target coding rate for current picture (TCurrPic) is then given as:

[image: image83.wmf]CurrPic

i

i

GOP

GOP

CurrPic

CODED

T

T

w

w

×

-

=

å

Î

pictures}

coded

{not

Finally, for each CTU the bit-rate is allocated taking into account the number of bits allocated for the picture of which the CTU belongs, the number of bits spent while encoding previous CTUs (CODEDCTU) and bits spent while coding high level syntax meta-data such as the slice header, SPS, PPS. As for picture bit allocation, CTUs are differently weighted depending on their complexity. The complexity metric measures the mean of absolute differences (MAD) between the original and the predictor used to encode the current CTU for inter-predicted pictures and the sum of absolute transform differences (SATD) for intra-predicted pictures. Therefore the target bits allocated for the current CTU (TCurrCTU) is given by:

[image: image84.wmf]CurrCTU

i

i

CTU

header

CurrPic

CurrCTU

CODED

Bit

T

T

w

w

×

-

-

=

å

Î

}

CTU

coded

not

{

where BitHEADER denotes the bits spent while encoding high level syntax meta data and ωi denotes the weighting factor for each CTU.

Once the available bits have been allocated for the current CTU, the quantization parameter QP can be obtained according to the used R-λ model. More precisely, the Lagrangian multiplier is derived from TCurrCTU as follows:

[image: image85.wmf]b

a

l

÷

ø

ö

ç

è

æ

×

=

N

T

CurrCTU

where N denotes the number of pixels contained in the current CTU. From λ, QP is finally obtained as:

[image: image86.wmf](

)

ë

û

7122

.

13

ln

2005

.

4

+

×

=

l

QP

where the (((operator returns the largest integer smaller than or equal to the argument and ln(·) is the natural logarithm. Parameters α and β are initialized to average values of (3.2003 and -1.367, respectively) and then updated by least square regression once a coded picture is available. Moreover, different values are used with respect to level of hierarchy of the GOP structure.
The HM rate control algorithm allows to manually set the initial QP value used for the first coded picture using option --InitialQP=value. If value is equal to zero the algorithm automatically derives the value using the R-λ model otherwise uses the value provided by the user. The remaining parameters associated to the rate control algorithm are listed in Table 7‑3along with a brief description.

Table 7‑3. Configuration options for rate control algorithm.
	Parameter name
	Description

	TargetBitrate
	Target bitrate for the whole sequence measured in bit per second (bps)

	KeepHierarchicalBit
	Determines how bit allocation is done across different pictures. Allowed values are: 0 = uniform, 1 fixed ratio according to the used GOP structure (i.e. random access or low delay) and 2 = adaptive with respect to the source content

	LCULevelRateControl
	Switch between CTU-based or picture-based rate control

	RCLCUSeparateModel
	Selects whether to use α and β parameters on a CTU or picture basis

	RCForceIntraQP
	Force QP value for intra-pictures to be equal to the value specified with InitialQP

8 References

[1] K. McCann, B. Bross, W.-J. Han, I. K. Kim, K. Sugimoto, G. J. Sullivan, “High Efficiency Video Coding (HEVC) Test Model 15 (HM 15) Encoder Description”, JCTVC‑Q1002, June 2014.
[2] C. Rosewarne, K. Sharman, M. Naccari, G. J. Sullivan, “HEVC Range Extensions Test Model 7 Encoder Description”, JCTVC-Q1013, June 2014.

[3] D. Flynn, M. Naccari, K. Sharman, C. Rosewarne, J. Sole, G. J. Sullivan, T. Suzuki, “High Efficiency Video Coding (HEVC) Range Extensions text specification: Draft 7”, JCTVC-R1013, July 2014.
[4] F. Bossen, “Common HM test conditions and software reference configurations”, JCTVC-L1100, February 2013.
[5] C. Rosewarne, K. Sharman, D. Flynn, “Common test conditions and software reference configurations for HEVC range extensions”, JCTVC-P1006, January 2014.
[6] B. Li, H. Li, L. Li and J. Zhang, “Rate control by R-lambda model for HEVC”, JCTVC-K0103, October 2012.
r[x][y] = TransCoeffLevel[x][y]

, for non-referenced pictures

, for referenced pictures

�Add all SEI cmd line options from Section 9

CR: We have separate Latex documentation that appears quite complete wrt to config option documentation.

_1442398183.unknown

_1448436169.vsd

_1471348098.unknown

_1471354711.unknown

_1471844190.unknown

_1471846395.unknown

_1471848270.unknown

_1471848362.unknown

_1471847926.unknown

_1471844560.unknown

_1471843377.unknown

_1471350438.unknown

_1471350540.unknown

_1471350259.unknown

_1470135533.vsd
Area of the block prediction, where the filter is applied

Block prediction in DC mode

Block prediction in Horizontal mode

Prediction direction

Block prediction in
Vertical mode

Prediction direction

_1471341334.unknown

_1448440303.vsd
Drag the side handles to change the width of the text block.

Video
source

Transform

Stage 1

Stage 2

MAX_TR_DYNAMIC_RANGE

Prediction

Intra

Inter

Transform matrices

Quantisation coefficients
& scaling lists

Quantiser

Multiply

Shift

Clip to
MAX_TR_DYNAMIC_RANGE

Coefficients
(MAX_TR_DYNAMIC_RANGE)

Residual
(bitDepth)

Input
(bitDepth)

Quantised Coefficients
(MAX_TR_DYNAMIC_RANGE)

To entropy
coding

_1442398900.unknown

_1442399397.unknown

_1446360145.vsd
Luma

Chroma

32x32 transform

_1446901602.vsd
N = 4, 8, 16

Y

Cb

Cr

2Nx2N

NxN

NxN

NxN

NxN

_1442400010.unknown

_1442399045.unknown

_1442398756.unknown

_1442398764.unknown

_1442398248.unknown

_1442398749.unknown

_1419417794.unknown

_1433591170.unknown

_1434808602.vsd
4x4

8x8

16x16

32x32

Intra

Inter

Cr/R

Cb/B

Y/G

Y/G

Cb/B

Cr/R

Cr/R

Y/G

Cb/B

Cr/R

Cb/B

Y/G

Cr/R

Cb/B

Y/G

Cr/R

Y/G

Cb/B

Cr/R

Cb/B

Y/G

Cr/R

Cb/B

Y/G

_1435136817.unknown

_1433591423.unknown

_1433667325.unknown

_1433591196.unknown

_1419417798.unknown

_1419417803.unknown

_1419417805.doc
[image: image1.emf]QPI

time

0135

7

2 64 8

IDR Picture

QPI

・・・・・

_1419417806.doc
[image: image1.emf]QPI

QPB

L1

=QPI+1QPB

L1

=QPI+1

QPB

L2

=QPI+2

QPB

L3

=QPI+3

time

QPB

L3

=QPI+3

QPB

L3

=QPI+3

QPB

L3

=QPI+3

QPB

L2

=QPI+2

0

1357

2

4

6

8

IDR or Intra

Picture

GPB(GeneralizedP

and B) Picture

_1419417808.vsd
�

�

�

�

INTER_2Nx2N�

Early_SKIP�

SKIP�

INTER_2NxN�

INTER_Nx2N�

INTER_NxN�

INTRA_2Nx2N�

INTER_2NxnU�

INTER_2NxnD�

INTER_nLx2N�

INTER_nRx2N�

INTRA_NxN�

TestAMP_Ver�

TestAMP_Hor�

No�

Yes�

No�

Yes�

No�

PCM�

xCompressCU�

xCompressCU�

xCompressCU�

xCompressCU�

Early_CU�

No�

END�

Yes�

Yes�

START�

Recursive call�

CBF_Fast�

Yes�

No�

�

�

Refer 6,7,8,10,11

Refer 5,14

_1419417804.unknown

_1419417801.unknown

_1419417802.unknown

_1419417800.unknown

_1419417796.unknown

_1419417797.unknown

_1419417795.unknown

_1419417790.unknown

_1419417792.unknown

_1419417793.unknown

_1419417791.unknown

_1419417788.vsd
tile boundary

_1419417789.vsd
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

 0 : Intra_Planar
 1 : Intra_DC

_1411920737.vsd
slice segment  boundary

