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[bookmark: _Toc364163647][bookmark: _Toc385337816]Foreword
[bookmark: _Toc364163648]ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of the joint technical committee is to prepare International Standards. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.
ISO/IEC 23008‑3 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.
This second/third/... edition cancels and replaces the first/second/... edition (), [clause(s) / subclause(s) / table(s) / figure(s) / annex(es)] of which [has / have] been technically revised.
ISO/IEC 23008 consists of the following parts, under the general title Information technology — High efficiency coding and media delivery in heterogeneous environments:
Part 1: MPEG media transport (MMT)
Part 2: High efficiency video coding 
Part 3: 3D audio
Part 4: Reference software for MPEG media transport
Part 5: Reference software for high efficiency video coding
Part 6: Reference software for 3D audio
Part 7: Conformance for MPEG media transport
Part 8: HEVC conformance testing
Part 9: ???
Part 10: MPEG media transport forward error correction (FEC) codes
Part 11: MPEG media transport composition information
Part 12: Image file format
Part 13: Implementation Guidelines for MPEG media transport
[ed: list must be updated once this document is final]

[bookmark: _Toc385337817]Introduction
3D sound systems are able to realize a significantly enhanced sound experience relative to current widespread 5.1 channel audio programs and playback systems. These systems demand high quality audio coding and error-free transmission in order to keep the timbre, sound localization and sound envelopment of the original audio program. Presentation over headphones with suitable spatialization are also considered.
This part of ISO/IEC 23008-3 "High Efficiency Coding and Media Delivery in Heterogeneous Environments — Part 3: 3D Audio" provides means for all scenarios where there is a need to compress a multi-channel audio program (e.g. 22.2 channel program) and to render it to the native target number of loudspeakers. In order to reach a wide market, a 3D Audio program is able to be downmixed to a lower hierarchy of loudspeakers, for example 10.1 or 8.1 channels. In addition, all scenarios support a level of random access to facilitate broadcast break-in, and “trick modes” such as fast forward when playing from stored media.
The main focus of this specification are applications such as audio for Home Theatres where the audio presentation is immersive, involving many loudspeakers (e.g. from 10 to more than 20) surrounding the listener and placed below, at and above ear-level. Moreover applications as Personal TV, TV for SmartPhones and Multi-channel Audio-only Programs are envisioned. These require that 3D Audio encoding/decoding systems are able to operate at low bitrates appropriate for efficient transmission over a cellular channel. At the same time the sense of envelopment and accurate sonic localization even for systems having a tablet-sized visual displays with speakers built into the device and headphone listening are maintained.
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Information technology — High efficiency coding and media delivery in heterogeneous environments — Part 3: 3D audio
[bookmark: _Toc364163649][bookmark: _Toc385337818]Scope
This part of ISO/IEC 23008-3 specifies technology which supports the efficient transmission of 3D audio signals and flexible rendering for the playback of 3D audio in a wide variety of listening scenarios. These include 3D home theater setups, 22.2 loudspeaker systems, automotive entertainment systems and playback over headphones connected to a tablet or smartphone.
[bookmark: _Toc368312619][bookmark: _Toc385337819]Normative references
The following documents, in whole or in part, are normatively referenced in this document and are indispensible for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
ISO/IEC 14496‑3:2009, Information technology — Coding of audio-visual objects — Part 3: Audio
ISO/IEC 23001-8:2013, Information technology — MPEG systems technologies — Part 8: Coding-independent code-points
ISO/IEC 23003‑1:2007, Information technology — MPEG audio technologies — Part 1: MPEG Surround
ISO/IEC 23003-2:2010, Information technology — MPEG audio technologies — Part 2: Spatial Audio Object Coding (SAOC)
ISO/IEC 23003-3:2012, Information technology — MPEG audio technologies — Part 3: Unified speech and audio coding
ISO/IEC 23003-4:20XX, Information technology — MPEG audio technologies — Part 4: Dynamic range control
[bookmark: _Toc303957009][bookmark: _Toc368312620][bookmark: _Toc385337820]Terms, definitions and mnemonics
[bookmark: _Toc368312621][bookmark: _Toc385337821]Terms and Definitions
[bookmark: OLE_LINK3]For the purposes of this document, the terms and definitions given in ISO/IEC 14496-3:2009, 1.3 (Terms and definitions), in ISO/IEC 14496-3:2009, 1.4 (Symbols and abbreviations) and in ISO/IEC 23003-3:2012, 3.1 (Terms and definitions) apply.
[bookmark: _Toc361740874][bookmark: _Toc394389715][bookmark: _Toc402950146][bookmark: _Toc415014031][bookmark: _Toc419889697][bookmark: _Toc437860796][bookmark: _Toc438629734][bookmark: _Toc497148958][bookmark: _Toc517062405][bookmark: _Toc194918907][bookmark: _Toc368312622][bookmark: _Toc385337822]Mnemonics
The following mnemonics are defined to describe the different data types used in the coded bitstream payload.
bslbf	Bit string, left bit first, where “left” is the order in which bit strings are written in ISO/IEC 14496. Bit strings are written as a string of 1s and 0s within single quote marks, for example '1000 0001'. Blanks within a bit string are for ease of reading and have no significance.
uimsbf	Unsigned integer, most significant bit first.
vlclbf	Variable length code, left bit first, where “left” refers to the order in which the variable length codes are written.
tcimsbf 	Two's complement integer, most significant (sign) bit first.
[bookmark: _Toc385337823]Technical Overview
[bookmark: _Toc209501393][bookmark: _Toc211264284][bookmark: _Toc368312617][bookmark: _Toc385337824]Decoder block diagram
[ed: everything encoder related should really go into an informative annex]
The 3D Audio Codec System is based on an MPEG-D USAC Codec for coding of channel and object signals. To increase the efficiency for coding a large amount of objects, MPEG SAOC technology has been adopted. Several types of renderers perform the tasks of rendering objects to channels, rendering channels to headphones or rendering channels to a different loudspeaker setup.
When object signals are explicitly transmitted or parametrically encoded using SAOC, the corresponding Object Metadata information is compressed and multiplexed into the 3D-Audio bitstream. 
Figure 1 shows the different algorithmic blocks of the 3D-Audio system.

[image: ]
[bookmark: _Ref368312054][bookmark: _Ref368310072]Figure 1 — Block diagram of the 3D-Audio decoder.
(DRC: Dynamc Range Control, SAOC: Spatial Audio Object Coding, HOA: Higher Order Ambisonics, LN: Loudness Normalization, PL: Peak Limiter)

[bookmark: _Toc209501394][bookmark: _Toc211264285][bookmark: _Toc368312618][bookmark: _Toc385337825]Overview over the codec building blocks
The MPEG-H 3DA Core Codec for loudspeaker-channel signals, discrete object signals, object downmix signals and pre-rendered signals is based on MPEG-D USAC technology. It handles the coding of the multitude of signals by creating channel- and object-mapping information based on the geometric and semantic information of the input’s channel and object assignment. This mapping information describes how input channels and objects are mapped to channel elements (CPEs, SCEs, LFEs) and the corresponding information is transmitted to the decoder.
The coding of objects is possible in different ways, depending on the rate/distortion requirements and the interactivity requirements for the renderer. The following object coding variants are possible:
Prerendered objects: Object signals are prerendered and mixed to the 22.2 channel signals before encoding. The subsequent coding chain sees 22.2 channel signals.
Discrete object waveforms: Objects are supplied as monophonic waveforms to the encoder. The encoder uses single channel elements SCEs to transmit the objects in addition to the channel signals. The decoded objects are rendered and mixed at the receiver side. Compressed object metadata information is transmitted to the receiver/renderer alongside.
Parametric object waveforms: Object properties and their relation to each other are described by means of SAOC parameters. The downmix of the object signals is coded with the MPEG-H 3D audio core codecUSAC. The parametric information is transmitted alongside. The number of downmix channels is chosen depending on the number of objects and the overall data rate. Compressed object metadata information is transmitted to the SAOC renderer.
The SAOC Encoder and Decoder for object signals are based on MPEG SAOC technology.  The system is capable of recreating, modifying and rendering a number of audio objects based on a smaller number of transmitted channels and additional parametric data (OLDs, IOCs, DMGs). 
The SAOC decoder reconstructs the object/channel signals from the decoded SAOC transport channels and parametric information, and generates the output audio scene based on the reproduction layout, the decompressed object metadata information and optionally on the user interaction information.    
The Object Metadata Codec efficiently codes the associated metadata that specifies the geometrical position and volume of each object in 3D space by quantization of the object properties in time and space. The compressed object metadata is transmitted to the receiver as side information.
The Object Renderer utilizes the compressed object metadata to generate object waveforms according to the given reproduction format. Each object is rendered to certain output channels according to its metadata. The output of this block results from the sum of the partial results. 
If both channel based content as well as discrete/parametric objects are decoded, the channel based waveforms and the rendered object waveforms are delay-aligned and sample-wise added by the Mixer before providing the resulting waveforms (or before feeding them to a postprocessor module like the binaural renderer or the loudspeaker renderer module). 
The Binaural Renderer module produces a binaural downmix of the multichannel audio material, such that each input channel is represented by a virtual sound source. The processing is conducted frame-wise in the QMF domain. The binauralization is based on measured binaural room impulse responses. 
The Loudspeaker Renderer converts between the transmitted channel configuration and the desired reproduction format. It is thus called ‘format converter’. The format converter performs conversions to lower numbers of output channels, i.e. it creates downmixes. The system automatically generates optimized downmix matrices for the given combination of input and output formats and applies these matrices in a downmix process. The format converter allows for standard loudspeaker configurations as well as for random configurations with non-standard loudspeaker positions.
[bookmark: _Toc303957015][bookmark: _Toc385337826]Efficient combination of decoder modules
If the SBR tool in the MPEG-H 3D audio core USAC 3D decoder is active, the decoder can be efficiently combined with all subsequent decoder modules by connecting them directly in the QMF domain. Therefore the subsequent modules shall not perform QMF analysis or synthesis filtering. A final QMF synthesis stage shall be applied for the output channels.
[bookmark: _Toc367288267][bookmark: _Ref369683600][bookmark: _Toc385337827]MPEG-H 3D audio core USAC 3D Ddecoder
[bookmark: _Toc385337828]Terms and Definitions
[bookmark: _Toc385337829]Joint Stereo
The MDCT domain based joint stereo coding tool with the possibility of Complex Stereo Prediction as defined in ISO/IEC 23003-3:2012, subclause 7.7.
[bookmark: _Toc385337830]MPEG Surround based stereo (MPS 212)
The MPEG Surround 2-1-2 based stereo tool working in QMF domain as defined in ISO/IEC 23003-3:2012, subclause 7.11, with the possibility of using residual coding (Unified Stereo) as described in ISO/IEC 23003-3:2012, Annex B.21.
[bookmark: _Toc367288272][bookmark: _Toc385337831]Syntax
[bookmark: _Toc385337832]General
The bit stream syntax is based on ISO/IEC 23003-3:2012, clause 5.
Modifications and amendments to the existing bit stream syntax are listed below.
[bookmark: _Toc367288270][bookmark: _Toc385337833]Decoder configuration
[bookmark: _Ref373487603]General Configuration Syntax
[bookmark: _Ref382913825]Table 1 — Syntax of mpegh3daConfig()
	Syntax
	No. of bits
	Mnemonic

	mpegh3daConfig()
	
	

	{
	
	

		usacSamplingFrequencyIndex;
	5
	bslbf

		if (usacSamplingFrequencyIndex == 0x1f) {
	
	

			usacSamplingFrequency;
	24
	uimsbf

		}
	
	

		coreSbrFrameLengthIndex;
	3
	uimsbf

		referenceLayout = SpeakerConfig3d();
	
	

		numObjects = escapedValue(5, 8, 16);;
	5,13,29
	uimsbf

		if (numObjects > 0) {
	
	

			differsFromReferenceLayout;
	1
	uimsbf

			if (differsFromReferenceLayout==1) {
	
	

				audioChannelLayout = SpeakerConfig3d();
	
	

			}
	
	

			else {
	
	

				audioChannelLayout = referenceLayout;
	
	

			}
	
	

		} else { /* no objects present */
	
	

			audioChannelLayout = referenceLayout;
	
	

		}
	
	

		FrameworkConfig3d();
	
	

		mpegh3daDecoderConfig();
	
	

		if (usacConfigExtensionPresent) {
	1
	uimsbf

			mpegh3daConfigExtension();
	
	

		}
	
	

	}
	
	



[bookmark: _Ref376867085]Table 2 — Syntax of FrameworkConfig3d()
	Syntax
	No. of bits
	Mnemonic

	FrameworkConfig3d()
	
	

	{
	
	

		Signals3d();
	
	

	}
	
	



[bookmark: _Ref376867094]Table 3 — Syntax of Signals3d()
	Syntax
	No. of bits
	Mnemonic

	Signals3d()
	
	

	{
	
	

		numAudioChannels                   = escapedValue(5, 8, 16);
	
	

		numAudioObjects                      = escapedValue(5, 8, 16);
	
	

		numSAOCTransportChannels  = escapedValue(5, 8, 16);
	
	

		numHOATransportChannels    = escapedValue(5, 8, 16);
	
	

	}
	
	



	Syntax
	No. of bits
	Mnemonic

	Signals3d()
	
	

	{
	
	

		bsNumSignalGroups;
	5
	uimsbf

		for ( grp = 0; grp < bsNumSignalGroups + 1 ; grp++ ) {
	
	

			signalGroupType[grp];
	3
	bslbf

			bsNumberOfSignals[grp]  = escapedValue(5, 8, 16);
	
	

			if ( SignalGroupType[grp] == SignalGroupTypeChannels ) {
	
	

				numAudioChannels = bsNumberOfSignals[grp] + 1;
	
	

				differsFromReferenceLayout;
	1
	bslbf

				if(differsFromReferenceLayout) {
	
	

					audioChannelLayout = SpeakerConfig3d(); 
	
	

				}
	
	

				else {
	
	

					audioChannelLayout = referenceLayout;
	
	

				}
	
	

	 		}
	
	

			if ( SignalGroupType[grp] == SignalGroupTypeObject ) {
	
	

				numAudioObjects = bsNumberOfSignals[grp] + 1;
	
	

	 		}
	
	

			if ( SignalGroupType[grp] == SignalGroupTypeSAOC ) {
	
	

				numSAOCTransportChannels = bsNumberOfSignals[grp] + 1;

	 		}
	
	

			if ( SignalGroupType[grp] == SignalGroupTypeHOA ) {
	
	

				numHOATransportChannels = bsNumberOfSignals[grp] + 1;

	 		}
	
	

		}
	
	

	}
	
	


[edit: replace if-cascade with switch statement]

[bookmark: _Ref383535546]Loudspeaker Configuration Syntax
[bookmark: _Ref376867172]Table 4 — Syntax of SpeakerConfig3d()
	Syntax
	No. of bits
	Mnemonic

	SpeakerConfig3d()
	
	

	{
	
	

		speakerLayoutType;
	2
	uimsbf

		if (speakerLayoutType == 0 ) {
	
	

			CICPspeakerLayoutIdx;
	6
	uimsbf

		}
	
	

		else {
	
	

			numSpeakers = escapedValue(5, 8, 16) + 1;
	
	

			if (speakerLayoutType == 1 ) {
	
	

				for (i = 0; i < numSpeakers; i++) {
	
	

					CICPspeakerIdx;
	7
	uimsbf

				}
	
	

			}
	
	

			if (speakerLayoutType == 2 ) {
	
	

				mpegh3daFlexibleSpeakerConfig(numSpeakers);
	
	

			}
	
	

		}
	
	

	}
	
	



[bookmark: _Ref376867114]Table 5 — Syntax of mpegh3daFlexibleSpeakerConfig()
	Syntax
	No. of bits
	Mnemonic

	mpegh3daFlexibleSpeakerConfig(numSpeakers)
	
	

	{
	
	

		angularPrecision;
	1
	uimsbf

		for (i = 0; i < numSpeakers; i++) {
	
	

			mpegh3daSpeakerDescription();
	
	

			if ((AzimuthAngle != 0°) && (AzimuthAngle != 180°)) { 
	
	NOTE

				alsoAddSymmetricPair;
	1
	uimsbf

				if (alsoAddSymmetricPair) {
	
	

					(also add the speaker with the opposite AzimuthDirection);
					(also add the speaker with the opposite AzimuthDirection);
	

					i++;
	
	

				}
	
	

			}
	
	

		}
	
	

	}
	
	

	NOTE: The value of AzimuthAngle can be calculated using Table 6.



[bookmark: _Ref383515185]Table 6 — Syntax of mpegh3daSpeakerDescription()
	Syntax
	No. of bits
	Mnemonic

	mpegh3daSpeakerDescription()
	
	

	{ 
	
	

		isCICPspeakerIdx
	1
	uimsbf

		if (isCICPspeakerIdx) {
	
	

			CICPspeakerIdx;
	7
	uimsbf

		} 
	
	

		else {
	
	

			ElevationClass;
	2
	uimsbf

			if (ElevationClass == 3) {
	
	

				ElevationAngleIdx; 
	5, 7
	uimsbf

				if (ElevationAngle != 0°) {
	
	NOTE

					ElevationDirection; 
	1
	uimsbf

				}
	
	

			}
	
	

			AzimuthAngleIdx;
	6, 8
	uimsbf

			if ((AzimuthAngle != 0°) && (AzimuthAngle != 180°)) {
	
	NOTE

				AzimuthDirection; 
	1
	uimsbf

			}
	
	

			isLFE;
	1
	uimsbf

		}
	
	

	}
	
	

	
	
	

	NOTE: The number of bits for ElevationAngleIdx and AzimuthAngleIdx depends on the value of angularPrecision according to Table 35. The value of ElevationAngle and AzimuthAngle can be derived from Table 37 and Table 39, respectively. In case isCICPspeakerIdx is one, ElevationAngle and AzimuthAngle are definedsignaled by means of a LoudspeakerGeometry as defined in ISO/MPEG 23001-8.



Core Decoder Configuration
Table 7 – Syntax of mpegh3daDecoderConfig()
	Syntax
	No. of bits
	Mnemonic

	mpegh3daDecoderConfig()
	
	

	{
	
	

		numElements = escapedValue(4,8,16) + 1;
	
	

		elementLengthPresent
	1
	

	
	
	

		for (elemIdx=0; elemIdx<numElements; ++elemIdx) {
	
	

			usacElementType[elemIdx]
	2
	uimsbf

			switch (usacElementType[elemIdx]) {
	
	

			case ID_USAC_SCE:
			mpegh3daSingleChannelElementConfig(sbrRatioIndex); 
			break;
	
	

			case ID_USAC_CPE:
			mpegh3daChannelPairElementConfig(sbrRatioIndex);
			break;
	
	

			case ID_USAC_LFE:
	
	

				mpegh3daLfeElementConfig(); 
			break;
	
	

			case ID_USAC_EXT:
	
	

				mpegh3daExtElementConfig();
			break;
	
	

		}
	
	

	}
	
	

	NOTE: mpegh3daSingleChannelElementConfig(), mpegh3daChannelPairElementConfig(), mpegh3daLfeElementConfig() and mpegh3daExtElementConfig() signaled at position elemIdx refer to the corresponding elements in mpegh3daFrame() at the respective position elemIdx.



Table 8 – Syntax of mpegh3daSingleChannelElementConfig()
	Syntax
	No. of bits
	Mnemonic

	mpegh3daSingleChannelElementConfig(sbrRatioIndex)
	
	

	{
	
	

		mpegh3daCoreConfig();
	
	

		if (sbrRatioIndex > 0) {
	
	

			SbrConfig();
	
	

		}
	
	

	}
	
	



Table 9 — Syntax of mpegh3daChannelPairElementConfig()
	Syntax
	No. of bits
	Mnemonic

	mpegh3daChannelPairElementConfig(sbrRatioIndex)
	
	

	{
	
	

		mpegh3daCoreConfig();
	
	

		if (sbrRatioIndex > 0) {
	
	

			SbrConfig();
	
	

			stereoConfigIndex;
	2
	uimsbf

		} else {
	
	

			stereoConfigIndex = 0;
	
	

		}
	
	

		if (stereoConfigIndex > 0) {
	
	

			Mps212Config(stereoConfigIndex);
	
	

		}
	
	

		qceIndex;
	2
	uimsbf

		If(qceIndex > 0) {
	
	

			shiftIndex0;
	1
	uimsbf

			if(shiftIndex0 > 0) {
	
	

				shiftChannel0;
	nBits1)
	

			}
	
	

		}
	
	

		shiftIndex1;
	1
	uimsbf

		if(shiftIndex1 > 0) {
	
	

			shiftChannel1;
	nBits1)
	

		}
	
	

	}
	
	

	1) nBits = ceil(log2(numAudioChannels + numAudioObjects + numHOATransportChannels + numSAOCTransportChannels - 1))



Table 10 — Syntax of mpegh3daCoreConfig()
	Syntax
	No. of bits
	Mnemonic

	mpegh3daCoreConfig()
	
	

	{
	
	

		tw_mdct;
	1
	bslbf

		noiseFilling;
	1
	bslbf

		if (enhancedNoiseFilling) {
		reserved;
		igfUseWhitening;
		igfAfterTnsSynth;
		igfIndependentTiling;
		igfStartIndex;
		igfUseHighRes;
		igfStopIndex;
	}
	1
1
1
1
1
4
1
3
	bslbf
bslbf
bslbf
bslbf
bslbf
uimsbf
bslbf
uimsbf

	}
	
	



Table 11 — Syntax of mpegh3daLfeElementConfig()
	Syntax
	No. of bits
	Mnemonic

	mpegh3daLfeElementConfig()
	
	

	{
	
	

		tw_mdct = 0;
	
	

		noiseFilling = 0;
	
	

		enhancedNoiseFilling = 0;
	
	

	}
	
	



[bookmark: _Ref369617560][bookmark: _Ref369617556]Table 12 — Syntax of mpegh3daExtElementConfig()
	Syntax
	No. of bits
	Mnemonic

	mpegh3daExtElementConfig()
	
	

	{
	
	

		usacExtElementType			= escapedValue(4, 8, 16);
	
	

		usacExtElementConfigLength	= escapedValue(4, 8, 16);
	
	

	
	
	

		if (usacExtElementDefaultLengthPresent) {
	1
	uimsbf

			usacExtElementDefaultLength = escapedValue(8, 16, 0) + 1;
	
	

		} else {
	
	

			usacExtElementDefaultLength = 0;
	
	

		}
	
	

	
	
	

		usacExtElementPayloadFrag;
	1
	uimsbf

	
	
	

		switch (usacExtElementType) {
	
	

		case ID_EXT_ELE_FILL:
	
	

			break;
	
	

		case ID_EXT_ELE_MPEGS:
	
	

			SpatialSpecificConfig();
	
	

			break;
	
	

		case ID_EXT_ELE_SAOC:
	
	

			SAOCSpecificConfig();
	
	

			break;
	
	

		case ID_EXT_ELE_SAOC_3D:
	
	

			SAOC3DSpecificConfig();
	
	

			break;
	
	

		case ID_EXT_ELE_AUDIOPREROLL:
	
	

			break;
	
	

		case ID_EXT_ELE_UNI_DRC:
	
	

			mpegh3daUniDrcConfig();
	
	

			break;
	
	

		case ID_EXT_ELE_OBJ_METADATA:
	
	

			ObjectMetadataConfig();
	
	

			break;
	
	

		case ID_EXT_ELE_HOA:
	
	

			HOAConfig();
	
	

			break;
	
	

		default:
	NOTE
	

			while (usacExtElementConfigLength--) {
	
	

				tmp;
	8
	uimsbf

			}
	
	

			break;
	
	

		}
	
	

	}
	
	

	NOTE: The default entry for the usacExtElementType is used for unknown extElementTypes so that legacy decoders can cope with future extensions.



[bookmark: _Ref259095949]Table 13 — Syntax of mpegh3daConfigExtension()
	Syntax
	No. of bits
	Mnemonic

	mpegh3daConfigExtension()
	
	

	{
	
	

		numConfigExtensions = escapedValue(2,4,8) + 1;
	
	

	
	
	

		for (confExtIdx=0; confExtIdx<numConfigExtensions; confExtIdx++) {

			usacConfigExtType[confExtIdx] 		= escapedValue(4,8,16);
	

			usacConfigExtLength[confExtIdx] 	= escapedValue(4,8,16);
	
	

	
	
	

			switch (usacConfigExtType[confExtIdx]) {
	
	

			case ID_CONFIG_EXT_FILL:
	
	

				while (usacConfigExtLength[confExtIdx]--) {
	
	

					fill_byte[i]; /* should be '10100101' */
	8
	uimsbf

				}
	
	

				break;
	
	

			case ID_CONFIG_EXT_DOWNMIX:
	
	

				downmixConfig()
	

				break;
	
	

			case ID_CONFIG_EXT_LOUDNESS_INFO:
	
	

				loudnessInfoSet ();
	

				break;
	
	

			case ID_CONFIG_EXT_AUDIOSCENE_INFO:
	
	

				mae_AudioSceneInfo();
	
	

				break;
	
	

			default:
	
	

				while (usacConfigExtLength[confExtIdx]--) {
	
	

					tmp;
	8
	uimsbf

				}
	
	

				break;
	
	

			}
	
	

		}
	
	

	}
	
	



Table 14 — References to USAC configuration syntactic elements
	Syntax of
	Please see

	escapedValue()
	ISO/IEC 23003-3:2012, 5.2, Table 16

	SbrConfig()
	ISO/IEC 23003-3:2012, 5.2, Table 11

	Mps212Config()
	ISO/IEC 23003-3:2012, 5.2, Table 13



[bookmark: _Toc367288271]Syntax of downmix matrix elements
Table 15 — Syntax of downmixConfig()
	Syntax
	No. of bits
	Mnemonic

	downmixConfig ()
	
	

	{
	
	

		downmixConfigType;
	2
	uimsbf

		if (downmixConfigType == 0 || downmixConfigType == 2) {
	
	

			passiveDownmixFlag
	1
	uimsbf

			reserved
	5
	uimsbf

		} 
	
	

		if (downmixConfigType == 1 || downmixConfigType == 2) {
	
	

			DownmixMatrixSet()
	
	

		}
	
	

	}
	
	



[bookmark: _Ref259096591]Table 16 — Syntax of DownmixMatrixSet()
	Syntax
	No. of bits
	Mnemonic

	DownmixMatrixSet()
	
	

	{
	
	

		downmixIdCount;
	5
	uimsbf

		for (k=0; k< downmixIdCount; ++k) {
	
	

			downmixId;
	7
	uimsbf

			downmixType;
	2
	uimsbf

			if (downmixType == 0) {
	
	

				CICPspeakerLayoutIdx;
	6
	uimsbf

			} else if (downmixType == 1) {
	
	

				CICPspeakerLayoutIdx;
	6
	uimsbf

				DmxMatrixLenBits = escapedValue(8,8,12);
	8..28
	

				DownmixMatrix(inputConfig(audioChannelConfig),
	DmxMatrixLenBits

								inputCount(audioChannelConfig), 
	

								outputConfig(CICPspeakerLayoutIdx), 
	

								outputCount(CICPspeakerLayoutIdx) );
	

			}
	
	

		}
	
	

	}
	
	



Table 17 – Syntax of DownmixMatrix()
	Syntax
	No. of bits
	Mnemonic

	DownmixMatrix(inputConfig, inputCount, outputConfig, outputCount)
	
	

	{
	
	

	    equalizerPresent;
	1
	uimsbf

	    if (equalizerPresent) {
	
	

	        EqualizerConfig (inputConfig, inputCount);
	
	

	    }
	
	

	
	
	

	    precisionLevel;
	2
	uimsbf

	    maxGain = escapedValue(3, 4, 0);
	
	

	    minGain = (-1) × (escapedValue(4, 5, 0) + 1);
	
	

	
	
	

	    (compactInputConfig, compactInputCount) = ConvertToCompactConfig(inputConfig, inputCount);

	    (compactOutputConfig, compactOutputCount) = ConvertToCompactConfig(outputConfig, outputCount);

	
	
	

	    isAllSeparable;
	1
	uimsbf

	    if (!isAllSeparable) {
	
	

	        for (i = 0; i < compactOutputCount; i++) {
	
	

	            if (compactOutputConfig[i].pairType == SYMMETRIC) {
	
	

	                isSeparable[i];
	1
	uimsbf

	            }
	
	

	        }
	
	

	    } else {
	
	

	        for (i = 0; i < compactOutputCount; i++) {
	
	

	            if (compactOutputConfig[i].pairType == SYMMETRIC) {
	
	

	                isSeparable[i] = 1;
	
	

	            }
	
	

	        }
	
	

	    }
	
	

	    isAllSymmetric;
	1
	uimsbf

	    if (!isAllSymmetric) {
	
	

	        for (i = 0; i < compactOutputCount; i++) {
	
	

	            isSymmetric[i];
	1
	uimsbf

	        }
	
	

	    } else {
	
	

	        for (i = 0; i < compactOutputCount; i++) {
	
	

	            isSymmetric[i] = 1;
	
	

		}
	
	

	    }
	
	

	
	
	

	    mixLFEOnlyToLFE;
	1
	uimsbf

	    rawCodingCompactMatrix;
	1
	uimsbf

	    if (rawCodingCompactMatrix) {
	
	

	        for (i = 0; i < compactInputCount; i++) {
	
	

	            for (j = 0; j < compactOutputCount; j++) {
	
	

	                if (!mixLFEOnlyToLFE || (compactInputConfig[i].isLFE ==
	
	

	                        compactOutputConfig[j].isLFE)) {
	
	

	                    compactDownmixMatrix[i][j];
	1
	uimsbf

	                } else {
	
	

	                    compactDownmixMatrix[i][j] = 0;
	
	

	                }
	
	

	            }
	
	

	        }
	
	

	    } else {
	
	

	        totalCount = CalculateTotalCount();
	
	

	        useCompactTemplate;
	1
	uimsbf

	        nBits = 3; if (totalCount >= 256) nBits = 4;
	
	

	        runLGRParam;
	nBits
	uimsbf

	        count = 0;
	
	

	        while (count < totalCount) {
	
	

	            zeroRunLength; 
	varies
	bslbf

			/* limited Golomb-Rice using p = runLGRparam  and N = totalCount+1*/

	            flatCompactMatrix[count .. count + zeroRunLength] = {0, ..., 0, 1};
	
	

	            count += zeroRunLength + 1;
	
	

	        }
	
	

	
	
	

	        count = 0;
	
	

	        compactTemplate = 
					FindCompactTemplate(inputConfig, inputCount, outputConfig, outputCount);

	        for (i = 0; i < compactInputCount; i++) {
	
	

	            for (j = 0; j < compactOutputCount; j++) {
	
	

	                if (mixLFEOnlyToLFE && compactInputConfig[i].isLFE &&
	
	

	                        compactOutputConfig[j].isLFE) {
	
	

	                    compactDownmixMatrix[i][j];
	1
	uimsbf

	                } else if (mixLFEOnlyToLFE && 
					(compactInputConfig[i].isLFE || compactOutputConfig[j].isLFE))  {

	                    compactDownmixMatrix[i][j] = 0;
	
	

	                } else {
	
	

	                    compactDownmixMatrix[i][j] = flatCompactMatrix[count++];
	
	

				if (useCompactTemplate) {
	
	

					compactDownmixMatrix[i][j] ^= compactTemplate[i][j];
	
	

				}
	
	

	                }
	
	

	            }
	
	

	        }
	
	

	
	
	

	    fullForAsymmetricInputs;
	1
	uimsbf

	    rawCodingNonzeros;
	1
	uimsbf

	    if (!rawCodingNonzeros) {
	
	

	        gainLGRParam;
	3
	uimsbf

	        gainTableSize = generateGainTable(maxGain, minGain, precisionLevel);
	
	

	    }
	
	

	    for (i = 0; i < compactInputCount; i++) {
	
	

	        iType = compactInputConfig[i].pairType;
	
	

	        for (j = 0; j < compactOutputCount; j++) {
	
	

	            oType = compactOutputConfig[j].pairType;
	
	

	            i1 = compactInputConfig[i].originalPosition;
	
	

	            o1 = compactOutputConfig[j].originalPosition;
	
	

	
	
	

	            if ((iType != SYMMETRIC) && (oType != SYMMETRIC)) {
	
	

	                downmixMatrix[i1][o1] = 0.0;
	
	

	                if (!compactDownmixMatrix[i][j]) continue;
	
	

	
	
	

	                downmixMatrix[i1][o1] = DecodeGainValue();
	
	

	            } else if (iType != SYMMETRIC) {
	
	

	                o2 = compactOutputConfig[j].SymmetricPair.originalPosition;
	
	

	                downmixMatrix[i1][o1] = 0.0;
	
	

	                downmixMatrix[i1][o2] = 0.0;
	
	

	                if (!compactDownmixMatrix[i][j]) continue;
	
	

	
	
	

	                downmixMatrix[i1][o1] = DecodeGainValue();
	
	

	                useFull = (iType == ASYMMETRIC) && fullForAsymmetricInputs;
	
	

	                if (isSymmetric[j] && !useFull) {
	
	

	                    downmixMatrix[i1][o2] = downmixMatrix[i1][o1];
	
	

	                } else {
	
	

	                    downmixMatrix[i1][o2] = DecodeGainValue();
	
	

	                }
	
	

	            } else if (oType != SYMMETRIC) {
	
	

	                i2 = compactInputConfig[i].SymmetricPair.originalPosition;
	
	

	                downmixMatrix[i1][o1] = 0.0;
	
	

	                downmixMatrix[i2][o1] = 0.0;
	
	

	                if (!compactDownmixMatrix[i][j]) continue;
	
	

	
	
	

	                downmixMatrix[i1][o1] = DecodeGainValue();
	
	

	                if (isSymmetric[j]) {
	
	

	                    downmixMatrix[i2][o1] = downmixMatrix[i1][o1];
	
	

	                } else {
	
	

	                    downmixMatrix[i2][o1] = DecodeGainValue();
	
	

	                }
	
	

	            } else {
	
	

	                i2 = compactInputConfig[i].SymmetricPair.originalPosition;
	
	

	                o2 = compactOutputConfig[j].SymmetricPair.originalPosition;
	
	

	                downmixMatrix[i1][o1] = 0.0;
	
	

	                downmixMatrix[i1][o2] = 0.0;
	
	

	                downmixMatrix[i2][o1] = 0.0;
	
	

	                downmixMatrix[i2][o2] = 0.0;
	
	

	                if (!compactDownmixMatrix[i][j]) continue;
	
	

	
	
	

	                downmixMatrix[i1][o1] = DecodeGainValue();
	
	

	                if (isSeparable[j] && isSymmetric[j]) {
	
	

	                    downmixMatrix[i2][o2] = downmixMatrix[i1][o1];
	
	

	                } else if (!isSeparable[j] && isSymmetric[j]) {
	
	

	                    downmixMatrix[i1][o2] = DecodeGainValue();
	
	

	                    downmixMatrix[i2][o1] = downmixMatrix[i1][o2];
	
	

	                    downmixMatrix[i2][o2] = downmixMatrix[i1][o1];
	
	

	                } else if (isSeparable[j] && !isSymmetric[j]) {
	
	

	                    downmixMatrix[i2][o2] = DecodeGainValue();
	
	

	                } else {
	
	

	                    downmixMatrix[i1][o2] = DecodeGainValue();
	
	

	                    downmixMatrix[i2][o1] = DecodeGainValue();
	
	

	                    downmixMatrix[i2][o2] = DecodeGainValue();
	
	

	                }
	
	

	            }
	
	

	        }
	
	

	    }
	
	

	}
	
	

	
	
	



Table 18 – Syntax of DecodeGainValue
	Syntax
	No. of bits
	Mnemonic

	DecodeGainValue()
	
	

	{
	
	

		if (rawCodingNonzeros) {
	
	

			nAlphabet = (maxGain - minGain) * 2 ^ precisionLevel + 2;
	
	

			gainValueIndex = ReadRange(nAlphabet);
	
	

			gainValue = maxGain - gainValueIndex / 2 ^ precisonLevel;
	
	

		} else {
	
	

			gainValueIndex; 
	varies
	bslbf

			/* limited Golomb-Rice using p = gainLGRParam and N = gainTableSize*/

			gainValue = gainTable[gainValueIndex];
	
	

		}
	
	

		if (gainValue < minGain) gainValue = -infinity;
	
	

		return gainValue;
	
	

	}
	
	

	
	
	



Table 19 - Syntax of ReadRange
	Syntax
	No. of bits
	Mnemonic

	ReadRange(alphabetSize)
	
	

	{
	
	

	    nBits = floor(log2(alphabetSize));
	
	

	    nUnused = 2 ^ (nBits + 1) - alphabetSize;
	
	

	    range;
	nBits
	uimsbf

	    if (range >= nUnused) {
	
	

	        rangeExtra;
	1
	uimsbf

	        range = range * 2 - nUnused + rangeExtra;
	
	

	    }
	
	

	    return range;
	
	

	}
	
	

	
	
	



Table 20 - Syntax of EqualizerConfig
	Syntax
	No. of bits
	Mnemonic

	EqualizerConfig(inputConfig, inputCount)
	
	

	{
	
	

		numEqualizers = escapedValue(3, 5, 0) + 1;
	
	

	
	
	

		eqPrecisionLevel;
	2
	uimsbf

		eqExtendedRange;
	1
	uimsbf

		for (i = 0; i < numEqualizers; i++) {
	
	

			numSections = escapedValue(2, 4, 0) + 1;
	
	

			lastCenterFreqP10 = 0;
	
	

			lastCenterFreqLd2 = 10;
	
	

			maxCenterFreqLd2 = 99;
	
	

			for (j = 0; j < numSections; j++) {
	
	

				centerFreqP10 = lastCenterFreqP10 + ReadRange(4 - lastCenterFreqP10);

				if (centerFreqP10 > lastCenterFreqP10) { lastCenterFreqLd2 = 10;}

				if (centerFreqP10 == 3) { maxCenterFreqLd2 = 24; }
	
	

				centerFreqLd2 = lastCenterFreqLd2 +
	
	

					ReadRange(1 + maxCenterFreqLd2 - lastCenterFreqLd2);

				lastCenterFreqP10 = centerFreqP10;
	
	

				lastCenterFreqLd2 = centerFreqLd2;
	
	

	
	
	

				qFactorIndex;
	5
	uimsbf

				if (qFactorIndex > 19) {
	
	

					qFactorExtra;
	3
	uimsbf

				}
	
	

				cgBits = 4 + eqExtendedRange + eqPrecisionLevel;
	
	

				centerGainIndex;
	cgBits
	uimsbf

			}
	
	

			sgBits = 4 + eqExtendedRange + min(eqPrecisionLevel + 1, 3);
	
	

			scalingGainIndex;
	sgBits
	uimsbf

		}
	
	

	
	
	

		for (i = 0; i < inputCount; i++) {
	
	

			hasEqualizer[i];
	1
	uimsbf

			if (hasEqualizer[i]) {
	
	

				equalizerIndex[i] = ReadRange(numEqualizers);
	
	

			} else {
	
	

				equalizerIndex[i] = -1;
	
	

			}
	
	

		}
	
	

	}
	
	



[bookmark: _Toc385337834]USAC MPEG-H 3d audio core 3D bitstream payloads
[bookmark: _Ref385339335]Payloads for MPEG-H 3d audio core USAC 3D
The bit stream syntax is based on ISO/IEC 23003-3:2012, subclause 5.3.1. Modifications and amendments are listed below.
Table 21 – Syntax of mpegh3daFrame(),
top level payload for MPEG-H 3D audio coreaudio object type USAC
	Syntax
	No. of bits
	Mnemonic

	mpegh3daFrame()
	
	

	{
	
	

		usacIndependencyFlag;
	1
	uimsbf

	
	
	

		for (elemIdx=0; elemIdx<numElements; ++elemIdx) {
	
	

			if (	(usacElementType[elemIdx] != ID_USAC_EXT)  &&
	
	

				(elementLengthPresent == 1) 	) {
	
	

				elementLength
	16
	uimsbf

			}
	
	

			switch (usacElementType[elemIdx]) {
	
	

			case ID_USAC_SCE:
	
	

				mpegh3daSingleChannelElement(usacIndependencyFlag);
	elementLength, NOTE 1

				break;
	
	

			case ID_USAC_CPE:
	
	

				mpegh3daChannelPairElement(usacIndependencyFlag);
	elementLength, NOTE 1

				break;
	
	

			case ID_USAC_LFE:
	
	

				mpegh3daLfeElement(usacIndependencyFlag);
	elementLength, NOTE 1

				break;
	
	

			case ID_USAC_EXT:
	
	

				mpegh3daExtElement(usacIndependencyFlag);
			break;
	
	

		}
	
	

	}
	
	

	NOTE 1: If present, elementLength represents the length of the corresponding element it refers to in number of bits.



Table 22 – Syntax of mpegh3daSingleChannelElement()
	Syntax
	No. of bits
	Mnemonic

	mpegh3daSingleChannelElement(indepFlag)
	
	

	{
	
	

		mpegh3daCoreCoderData(1, indepFlag);
	
	

	
	
	

		if (sbrRatioIndex > 0) {
	
	

			UsacSbrData(1, indepFlag);
	
	

		}
	
	

	}	
	
	



Table 23 – Syntax of mpegh3daChannelPairElement()
	Syntax
	No. of bits
	Mnemonic

	mpegh3daChannelPairElement(indepFlag)
	
	

	{
	
	

		if (stereoConfigIndex == 1) {
	
	

			nrCoreCoderChannels = 1;
	
	

		} else {
	
	

			nrCoreCoderChannels = 2;
	
	

		}
	
	

	
	
	

		mpegh3daCoreCoderData(nrCoreCoderChannels, indepFlag);
	
	

	
	
	

		if (sbrRatioIndex > 0) {
	
	

			if (stereoConfigIndex == 0 || stereoConfigIndex == 3) {
	
	

				nrSbrChannels = 2;
	
	

			} else {
	
	

				nrSbrChannels = 1;
	
	

			}
	
	

			UsacSbrData(nrSbrChannels, indepFlag);
	
	

		}
	
	

	
	
	

		if (stereoConfigIndex > 0) {
	
	

			Mps212Data(indepFlag);
	
	

		}
	
	

	}
	
	



Table 24 – Syntax of mpegh3daLfeElement()
	Syntax
	No. of bits
	Mnemonic

	mpegh3daLfeElement(indepFlag)
	
	

	{
	
	

		fd_channel_stream(0,0,0,0, indepFlag);
	
	

	}
	
	



Table 25– Syntax of ics_info()
	Syntax
	No. of bits
	Mnemonic

	ics_info()
	
	

	{
	
	

		window_sequence;
	2
	uimsbf

		window_shape;
	1
	uimsbf

		if (window_sequence == EIGHT_SHORT_SEQUENCE) {
	
	

			max_sfb;
	4
	uimsbf

			scale_factor_grouping;
	7
	uimsbf

		}
	
	

		else {
	
	

			max_sfb;
	6
	uimsbf

		}
	
	

	}
	
	



Subsidiary payloads

Table 26 – Syntax of mpegh3daCoreCoderData()
	Syntax
	No. of bits
	Mnemonic

	mpegh3daCoreCoderData(nrChannels, indepFlag)

	{
	
	

		for (ch=0; ch < nrChannels; ch++) {
	
	

			core_mode[ch];
	1
	uimsbf 

		}
	
	

	
	
	

		if (nrChannels == 2) {
	
	

			StereoCoreToolInfo(core_mode);
	
	

		}
	
	

	
	
	

		for (ch=0; ch<nrChannels; ch++) {
	
	

			if (core_mode[ch] == 1) {
	
	

				lpd_channel_stream(indepFlag);
	
	

			}
	
	

			else {
	
	

				if ( (nrChannels == 1) || (core_mode[0] != core_mode[1]) ) {
	
	

					tns_data_present[ch];
	1
	uimsbf

				}
	
	

				fd_channel_stream(common_window, common_tw, 
				tns_data_present[ch], noiseFilling, indepFlag);
	
	

			}
	
	

		}
	
	

	}
	
	



Table 27 — Syntax of StereoCoreToolInfo()
	Syntax
	No. of bits
	Mnemonic

	StereoCoreToolInfo(core_mode)
	
	

	{
	
	

		if (core_mode[0] == 0 && core_mode[1] == 0) {
	
	

			tns_active;
	1
	uimsbf

			if (common_window) {
	1
	uimsbf

				ics_info();
	
	

				if (common_max_sfb) {
	1
	uimsbf

					max_sfb1 = max_sfb;
	
	

				} else {
	
	

					if (window_sequence == EIGHT_SHORT_SEQUENCE) {
	

						max_sfb1;
	4
	uimsbf

					} else {

	
	

						max_sfb1;
	6
	uimsbf

					}
	
	

				}
	
	

				max_sfb_ste = max(max_sfb, max_sfb1);
	
	

				if (enhancedNoiseFilling && !igfIndependentTiling) {
	
	

					max_sfb_ste = min(max_sfb_ste, igf_sfb_start);
	
	

				}
	
	

				ms_mask_present;
	2
	uimsbf

				if (ms_mask_present == 1) {
	
	

					for (g = 0; g < num_window_groups; g++) {
	
	

						for (sfb = 0; sfb < max_sfb_ste; sfb++) {
	
	

							ms_used[g][sfb];
	1
	uimsbf

						}
	
	

					}
	
	

				}
	
	

				if (ms_mask_present == 3) {
	
	

					cplx_pred_data();
	
	

				} else {
	
	

					for (g = 0; g < num_window_groups; g++) {
	
	

						for (sfb = 0; sfb < max_sfb_ste; sfb++) {
	
	

							alpha_q_re[g][sfb] = 0;
	
	

							alpha_q_im[g][sfb] = 0;
	
	

						}
	
	

					}
	
	

				}
	
	

	

	
	

				if (enhancedNoiseFilling && !igfIndependentTiling) {
	
	

					igf_ms_mask_present;
	2
	uimsbf

					if (igf_ms_mask_present == 1) {
	
	

						for (g = 0; g < num_window_groups; g++) {
	
	

							for (sfb = igf_sfb_start; sfb < igf_sfb_stop; sfb += (2 – igfUseHighRes)) {

								ms_used[g][sfb];
	1
	uimsbf

								if (!igfUseHighRes && (sfb + 1) < igf_sfb_stop) {

									ms_used[g][sfb+1] = ms_used[g][sfb];
	
	

								}
	
	

							}
	
	

						}
	
	

					}
	
	

					if (igf_ms_mask_present == 3) {
	
	

						igf_stereo_pred_data();
	
	

					} else {
	
	

						for (g = 0; g < num_window_groups; g++) {
	
	

							for (sfb = max_sfb_ste; sfb < igf_sfb_stop; sfb++) {
	

								alpha_q_re[g][sfb] = 0;
	
	

								alpha_q_im[g][sfb] = 0;
	
	

							}
	
	

						}
	
	

					}
	
	

				}
	
	

			}

	
	

			if (tw_mdct) {
	
	

				if (common_tw) {
	1
	uimsbf

					tw_data();
	
	

				}
	
	

			}
	
	

			if (tns_active) {
	
	

				if (common_window) {
	
	

					common_tns;
	1
	uimsbf

				} else {
	
	

					common_tns = 0;


	
	

				}
	
	

				if (!enhancedNoiseFilling || igfAfterTnsSynth) {
	
	

					tns_on_lr;



}
	1
	uimsbf

				} else {
	
	

					tns_on_lr = 1;
	
	

				}
	
	

				if (common_tns) {
	
	

					tns_data();
	
	

					tns_data_present[0] = 0;
	
	

					tns_data_present[1] = 0;
	
	

				} else {
	
	

					if (tns_present_both) {
	1
	uimsbf

						tns_data_present[0] = 1;
	
	

						tns_data_present[1] = 1;
	
	

					} else {
	
	

						tns_data_present[1];
	1
	uimsbf

						tns_data_present[0] = 1 – tns_data_present[1];
	
	

					}
	
	

				}
	
	

			} else {
	
	

				common_tns = 0;
	
	

				tns_data_present[0] = 0;
	
	

				tns_data_present[1] = 0;
	
	

			}
	
	

		} else {
	
	

			common_window = 0;
	
	

			common_tw = 0;
	
	

		}
	
	

	}
	
	



[bookmark: _Ref369874987]Table 28 — Syntax of fd_channel_stream()
	Syntax
	No. of bits
	Mnemonic

	fd_channel_stream(common_window, common_tw, tns_data_present, noiseFilling, indepFlag)

	{
	
	

		global_gain;
	8
	uimsbf

		if (noiseFilling) {
	
	

			noise_level;
	3
	uimsbf

			noise_offset;
	5
	uimsbf

		} else {
	
	

			noise_level = 0;
	
	

		}
	
	

		if (!common_window) {
	
	

			ics_info();
	
	

		}
	
	

		if (tw_mdct && !common_tw) {
	
	

			tw_data();
	
	

		}

	
	

		if (enhancedNoiseFilling) {
	
	

			igf_data(indepFlag);
	
	

		}
	
	

		scale_factor_data();
	
	

	
	
	

		if (enhancedNoiseFilling) {
		igf_AllZero
		igf_level(igf_AllZero, indepFlag);
		if (!igf_AllZero) {
			igf_data(indepFlag);
		} else {
			igfPrevTileIdx = {3};
			igf_PrevWhiteningLevel = {0};
		}
	}
	
1
0…
	
uimsbf
NOTE

		if (tns_data_present) {
	
	

			tns_data();
	
	

		}
	
	

		ac_spectral_data(indepFlag);
	
	

	
	
	

		if (fac_data_present) {
	1
	uimsbf

			fac_length = (window_sequence == EIGHT_SHORT_SEQUENCE) ? ccfl/16 : ccfl/8;

			fac_data(1, fac_length);
	
	

		}
	
	

	}
	
	

	NOTE: For details on igf_level() see 5.5.4.
	
	



Table 29 — Syntax of igf_stereo_pred_data()
	Syntax
	No. of bits
	Mnemonic

	igf_stereo_pred_data(igf_sfb_start, igf_sfb_stop, indepFlag)
	
	

	{
	
	

		igf_stereo_pred_all;
	1
	uimsbf

		if (igf_stereo_pred_all == 0) {
	
	

			for (g = 0; g < num_window_groups; g++) {
	
	

				for (sfb = igf_sfb_start; sfb < igf_sfb_stop; sfb += SFB_PER_PRED_BAND) {

					cplx_pred_used[g][sfb];
	1
	uimsbf

					if ((sfb + 1) < igf_sfb_stop) {
	
	

					    cplx_pred_used[g][sfb+1] = cplx_pred_used[g][sfb];

					}
	
	

				}
	
	

			}
	
	

		} else {
	
	

			for (g = 0; g < num_window_groups; g++) {
	
	

				for (sfb = igf_sfb_start; sfb < igf_sfb_stop; sfb++) {
	
	

					cplx_pred_used[g][sfb] = 1;
	
	

				}
	
	

			}
	
	

		}
	
	

		igf_pred_dir;
	1
	uimsbf

		if (indepFlag) {
	
	

			igf_delta_code_time = 0;
	
	

		} else {
	
	

			igf_delta_code_time;
	1
	uimsbf

		}
	
	

		for (g = 0; g < num_window_groups; g++) {
	
	

			for (sfb = igf_sfb_start; sfb < igf_sfb_stop; sfb += SFB_PER_PRED_BAND) {

				if (cplx_pred_used[g][sfb]) {
	
	

					hcod_sf[dpcm_alpha_q_re[g][sfb]];
	1..19
	vlclbf

				} else {
	
	

					alpha_q_re[g][sfb] = 0;
	
	

				}
	
	

				alpha_q_im[g][sfb] = 0;
	
	

			}
	
	

		}
	
	

	}
	
	



[bookmark: _Ref370200311]Table 30 — Syntax of igf_data()
	Syntax
	No. of bits
	Mnemonic

	igf_data(indepFlag)
	
	

	{
	
	

		if (!indepFlag) {
	
	

			if (igf_UsePrevTileIdx) {
	1
	uimsbf

				for (i = 0; i < igfNTiles; i++) {
	
	

					igfCurrTileIdx[ i ] = igfPrevTileIdx[ i ];
	
	

				}
	
	

			}
	
	

		} else {
	
	

			for (i = 0; i < igfNTiles; i++) {
	
	

				igfCurrTileIdx[ i ];
	2
	uimsbf

			}
	
	

		}
	
	

		for (i = igfNTiles; i < 4; i++) {
	
	

			igfCurrTileIdx[ i ] = 3;
	
	

			igfPrevTileIdx[ i ] = 3;
	
	

		}
	
	

		for (i = 0; i < igfNTiles; i++) {
	
	

			igfPrevTileIdx[ i ] = igfCurrTileIdx[ i ];
	
	

		}
	
	

		if (igfUseWhitening && window_sequence != EIGHT_SHORT_SEQENCE) {
	

			if (indepFlag) {
	

				igf_UsePrevWhiteningLevel = 0;
	

			} else {
	

				igf_UsePrevWhiteningLevel;
	1
	uimsbf

			}
	
	

			if (igf_UsePrevWhiteningLevel) {
	
	

				for (i = 0; i < igfNTiles; i++) {
	
	

					igf_WhiteningLevel[ i ] = igf_PrevWhiteningLevel[ i ];
	
	

				}
	
	

			} else {
	
	

				if (igf_WhiteningLevel[0]) {
	1
	uimsbf

					igf_WhiteningLevel[0] = 1 + tmp;
	1
	uimsbf

				}
	
	

				if (remainingTilesDifferent) {
	1
	uimsbf

					for (i = 1; i < igfNTiles; i++) {
	
	

						if (igf_WhiteningLevel[ i ]) {
	1
	uimsbf

							igf_WhiteningLevel[ i ] = 1 + tmp;
	1
	uimsbf

						}
	
	

					}
	
	

				} else {
	
	

					for (i = 1; i < igfNTiles; i++) {
	
	

						igf_WhiteningLevel[ i ] = igf_WhiteningLevel[0];
	
	

					}
	
	

				}
	
	

			}
	
	

		}
	
	

		for (i = igfNTiles; i < 4; i++) {
	
	

			igf_WhiteningLevel[ i ] = 0;
	
	

			igf_PrevWhiteningLevel[ i ] = 0;
	
	

		}
	
	

	}
	
	



Table 31 – References to USAC syntactic elements
	Syntax of
	Please see

	ics_info()
	ISO/IEC 23003-3:2012, 5.2, Table 22

	tw_data()
	ISO/IEC 23003-3:2012, 5.2, Table 27

	tns_data()
	ISO/IEC 23003-3:2012, 5.2, Table 29

	ac_spectral_data()
	ISO/IEC 23003-3:2012, 5.2, Table 30

	fac_data()
	ISO/IEC 23003-3:2012, 5.2, Table 39



Extension Payloads
Table 32 – Syntax of AudioPreRoll()
	Syntax
	No. of bits
	Mnemonic

	AudioPreRoll()
	
	

	{
	
	

		configLen = escapedValue(4,4,8);
	4..16
	

		Config()
	8*configLen
	

	
	
	

		numPreRollFrames = escapedValue(2,4,0);
	2..6
	

	
	
	

		for (frameIdx=0; frameIdx < numPreRollFrames; ++frameIdx) {
	
	

			auLen = escapedValued(16,16,0)
	16..32
	uimsbf

			AccessUnit()
	8*auLen
	

		}
	
	

	}
	
	



[bookmark: _Toc385337835]Data Structure
[bookmark: _Toc385337836]General
The data structure is based on ISO/IEC 23003-3:2012, subclause 6.
Modifications and amendments are listed below.
[bookmark: _Ref369872977][bookmark: _Toc385337837]General Configuration Data Elements
referenceLayout	This structure describes the loudspeaker layout which the content of the present audio stream was originally designed or produced for. In that sense it represents the optimal loudspeaker layout from the content creator's perspective. This layout also acts as default rendering layout in the case where the targetLayout is not known to the decoder. The referenceLayout must contain a specific and real layout. A ChannelConfiguration value of 0 ("any setup") of ISO/IEC 23001-8 is not allowed. 
If there are no audio objects conveyed in the stream (numObjects=0) then referenceLayout=audioChannelLayout.
audioChannelLayout	This structure describes the loudspeaker layout for which there is channel based audio content present in the bit stream. If the audioChannelLayout is different from the referenceLayout (differsFromReferenceLayout==1), then the audioChannelLayout shall be smaller than the referenceLayout.
targetLayout	This structure describes the target loudspeaker layout, i.e. the actual loudspeaker constellation which the audio content shall be rendered to. This information will typically come from outside of the decoder. If the targetLayout is unknown, it shall be assumed that targetLayout = referenceLayout.
bsNumSignalGroups	This field defines the number of signal groups that are present in the bitstream.
signalGroupType	This field defines the type of a signal group. 
Table 33 — Value of signalGroupType
	signalGroupType
	value
	meaning

	SignalGroupTypeChannels
	0
	Signal group contains channel signals, i.e. signals that should be played back from one static position, e.g. by a specific loudspeaker

	SignalGroupTypeObject
	1
	Signal group contains object signals, i.e. signals that should be rendered to the reproduction layout

	SignalGroupTypeSAOC
	2
	Signal group contains SAOC signals

	SignalGroupTypeHOA
	3
	Signal group contains HOA signals

	reserved
	4 - 7
	n.a.




numObjects	This number describes the number of object signals. Object signals are represented by elements of type mpegh3daSingleChannelElement(). These elements are located after the elements defined by the channelConfigurationIndex.
differsFromReferenceLayout	This flag defines indicates ifwhether the layout for which the signal group (of type SignalGroupTypeChannels) is intended differs from the reference layout.
NOTE	The signal groups are represented by audio data elements which are configured in the mpegh3daDecoderConfig(). In case the signal groups require an extension payload the corresponding mpegh3daExtElementConfig() shall directly follow the configuration elements for the audio data.
numAudioChannels	Explicit number of audio channels that are conveyed in the present stream by means of SCEs, CPEs, QCEs, and LFEs. The value of this bit stream field shall correspond to the number of channels as signaled with the help of audioChannelLayout. In the element loop of mpegh3daDecoderConfig() these elements shall be located before all object related elements.
numAudioObjects	Explicit number of audio objects channels that are conveyed in the present stream by means of SCEs and that are further processed in the object renderer. In the element loop of mpegh3daDecoderConfig() these elements shall be located after all audio channel related elements.
numSAOCTransportChannels	Explicit number of SAOC audio transport channels that are conveyed in the present stream by means of SCEs and that are further processed in the SAOC 3D Decoder. In the element loop of mpegh3daDecoderConfig() these elements shall be located after all audio channel and audio object related elements.
numHOATransportChannels	Explicit number of HOA transport channels that are conveyed in the present stream by means of SCEs, CPEs, QCEs and that are further processed in the HOA Decoder. In the element loop of mpegh3daDecoderConfig() these elements shall be located after all audio channel, audio object and SAOC related elements.[ed: allow QCE for HOA?]
[bookmark: _Toc385337838]Loudspeaker Configuration Data Elements
speakerLayoutType	This field indicates by which means the loudspeaker layout is conveyed in the bitstream element according to Table 34
[bookmark: _Ref382913892]Table 34 — Meaning of speakerLayoutType
	Value
	Meaning

	0
	Loudspeaker layout ist signaled by means of ChannelConfiguration index as defined in ISO/IEC 23001-8.

	1
	Loudspeaker layout ist signaled by means of a list of LoudspeakerGeometry indices as defined in ISO/IEC 23001-8

	2
	Loudspeaker layout is signaled by means of a list of explicit geometric position information.

	3
	Reserved



CICPspeakerLayoutIdx	ChannelConfiguration value as defined in ISO/MPEG 23001-8
CICPspeakerIdx	LoudspeakerGeometry value as defined in ISO/MPEG 23001-8
angularPrecision	This flag signals the angular precision of loudspeaker geometry information according to Table 35
[bookmark: _Ref382914463]Table 35 — Meaning of angularPrecision
	Value of angularPrecision
	angular precision in degrees (°)
	Number of bits used for coding of bit stream field:

	
	
	ElevationAngleIdx
	AzimuthAngleIdx

	0
	5
	5
	6

	1
	1
	7
	8



alsoAddSymmetricPair	This flag signals if a symmetric pair on the horizontal plane is directly following
isCICPspeakerIdx	This flag signals if the loudspeaker position is signaled by means of a LoudspeakerGeometry according to ISO/IEC 23001-8.
ElevationClass	Indicates loudspeaker elevation by means of a simple middle/upper/lower layer indication according to Table 36.
[bookmark: _Ref382916212]Table 36 — Meaning of ElevationClass field
	Value
	Meaning
	ElevationAngle

	0
	Loudspeaker is located in the Middle Layer.
	0°

	1
	Loudspeaker is located in the Upper Layer.
	35°

	2
	Loudspeaker is located in the Lower Layer
	-15°

	3
	Loudspeaker position signaled explicitly
	N.A.



ElevationAngleIdx	Index for calculating the elevation (i.e. vertical) angle for a given loudspeaker according to Table 37.
[bookmark: _Ref376867135]Table 37 — Calculation of ElevationAngle from ElevationAngleIdx
	ElevationAngleIdx
	angularPrecision == 0
	angularPrecision == 1

	0-18
	ElevationAngle = ElevationAngleIdx * 5°
	ElevationAngle = ElevationAngleIdx * 1°

	19-31
	reserved
	

	32-90
	N.A.
	

	91-127
	N.A.
	reserved



ElevationDirection	This flag signals the elevation direction according to Table 38.
[bookmark: _Ref382915010]Table 38 — Meaning of ElevationDirection
	Value of ElevationDirection
	Direction

	0
	Upwards

	1
	Downwards



AzimuthAngleIdx	Index for calculating the azimuth (i.e. horizontal) angle for a given loudspeaker according to Table 39.
[bookmark: _Ref376867145]Table 39 — Calculation AzimuthAngle from AzimuthAngleIdx
	AzimuthAngleIdx
	angularPrecision == 0
	angularPrecision == 1

	0-36
	AzimuthAngle = AzimuthAngleIdx * 5°
	AzimuthAngle = AzimuthAngleIdx * 1°

	37-180
	N.A.
	

	181-255
	N.A.
	reserved



AzimuthDirection	This flag signals the azimuth direction according to Table 40
[bookmark: _Ref382915013]Table 40 — Meaning of AzimuthDirection
	Value of AzimuthDirection
	Direction

	0
	Counter-clockwise

	1
	clockwise



isLFE	This flag signals if the given loudspeaker is an LFE loudspeaker

[bookmark: _Toc385337839]Core Decoder Configuration Data Elements
qceIndex	This index describes whether two subsequent elements of type mpegh3daChannelPairElement() are treated as a Quadruple Channel Element (QCE). The different QCE modes are given in Table 41. The qceIndex shall be the same for the two subsequent elements forming one QCE. 
[bookmark: _Ref368668878]Table 41 — Value of qceIndex
	qceIndex
	meaning

	0
	Stereo CPE

	1
	QCE without residual

	2
	QCE with residual

	3
	-reserved-



shiftIndex0	This flag signals if the first channel in the element is the next non-assigned channel or if the element is shifted in the channel map relative to the next non-assigned channel.
shiftIndex1	This flag signals if the second channel in element is the next non-assigned channel or if the second channel in the element is shifted in the channel map relative to the next non-assigned channel.
shiftChannel0	Offset by which the first channel in the element is shifted relative to the next non-assigned channel.
shiftChannel1	Offset by which the second channel in the element is shifted relative to the next non-assigned channel.
enhancedNoiseFilling	This flag signals the usage of the Enhanced Noise Filling tool. 
reserved	reserved bit.
igfUseWhitening	This flag signals the usage of IGF spectral whitening.
igfAfterTnsSynth	This flag signals that IGF should be applied after TNS synthesis filtering.
igfIndependentTiling	This flag signals that IGF is applied in discrete channel mode.
igfStartIndex	This flag signals the IGF start index, which is mapped to a scalefactor band index.
igfStopIndex	This flag signals the IGF stop index, which is mapped to a scalefactor band index.
igfUseHighRes	This flag signals that for every scalefactor band in IGF range a IGF level value is transmitted. If the flag is zero, low resolution is used which implies, that for two scalefactor bands only one IGF level value is transmitted.
igfCurrTileIdx[ ]	vector of length 4 containing the tile index.
igf_data()	Syntax element which reads IGF tile and whitening side information for each channel ch.
igf_level()	Syntax element which reads the IGF level information for each channel ch.
igf_AllZero	This flag signals that all levels in IGF range are zero.
igf_UsePrevTileIdx	This flag signals that previous values of tile indices should be used.
igf_UsePrevWhiteningLevel	This flag signals that previous values of whitening levels should be used.
igf_WhiteningLevel[ ]	This values describe which whitening should be used, see Table 42.
igf_ms_mask_present	this two bit field indicates that the MS mask is:
00 All zeros.
01 A mask of max_sfb bands of ms_used follows this field.
10 All ones.
11 M/S coding is disabled, real stereo prediction is enabled.
igf_pred_dir	Indicates the direction of prediction (same as cplx_pred_dir).
[bookmark: _Ref370031655]Table 42 — Value of igf_WhiteningLevel
	igf_WhiteningLevel
	Meaning

	0
	use medium whitening

	1
	do not use whitening

	2
	use pseudo-random noise



usacExtElementType	This element allows to signal bit stream extensions types. The meaning of usacExtElementType is defined in Table 43.
[bookmark: _Ref368668892]Table 43 — Value of usacExtElementType
	usacExtElementType
	Value

	ID_EXT_ELE_FILL
	0

	ID_EXT_ELE_MPEGS
	1

	ID_EXT_ELE_SAOC
	2

	ID_EXT_ELE_AUDIOPREROLL
	3

	ID_EXT_ELE_UNI_DRC
	4

	ID_EXT_ELE_OBJ_METADATA
	5

	ID_EXT_ELE_SAOC_3D
	6

	ID_EXT_ELE_HOA
	7

	/* reserved for ISO use */
	8-127

	/* reserved for use outside of ISO scope */
	128 and higher

	NOTE: Application-specific usacExtElementType values are mandated to be in the space reserved for use outside of ISO scope. These are skipped by a decoder as a minimum of structure is required by the decoder to skip these extensions.



usacExtElementSegmentData 
The concatenation of all usacExtElementSegmentData from mpegh3daExtElement() of consecutive frames, starting from the mpegh3daExtElement() with usacExtElementStart==1 up to and including the mpegh3daExtElement() with usacExtElementStop==1 forms one data block. In case a complete data block is contained in one mpegh3daExtElement(), usacExtElementStart and usacExtElementStop shall both be set to 1. The data blocks are interpreted as a byte aligned extension payload depending on usacExtElementType according to Table 44.
[bookmark: _Ref370031683]Table 44 — Interpretation of data blocks for extension payload decoding
	usacExtElementType
	The concatenated usacExtElementSegmentData represents:

	ID_EXT_ELE_FIL
	Series of fill_byte

	ID_EXT_ELE_MPEGS
	SpatialFrame()

	ID_EXT_ELE_SAOC
	SaocFrame()

	ID_EXT_ELE_AUDIOPREROLL
	AudioPreRoll()

	ID_EXT_ELE_UNI_DRC
	uniDrcGain() as defined in ISO/IEC 23003-4

	ID_EXT_ELE_OBJ_METADATA
	object_metadata() 

	ID_EXT_ELE_SAOC_3D
	Saoc3DFrame()

	ID_EXT_ELE_HOA
	HOAFrame()

	unknown
	unknown data. The data block shall be discarded.



usacConfigExtType	This element allows to signal configuration extension types. The meaning of usacConfigExtType is defined in Table 45.
[bookmark: _Ref289867634]Table 45 — Value of usacConfigExtType
	usacConfigExtType
	Value

	ID_CONFIG_EXT_FILL
	0

	ID_CONFIG_EXT_DOWNMIX
	1

	ID_CONFIG_EXT_LOUDNESS_INFO
	2

	ID_CONFIG_EXT_AUDIOSCENE_INFO
	3

	/* reserved for ISO use */
	4-127

	/* reserved for use outside of ISO scope */
	128 and higher



[bookmark: _Toc385337840]Downmix Matrix Data Elements
[bookmark: _Toc209501112][bookmark: _Toc209501255][bookmark: _Toc209501417][bookmark: _Toc237684874]downmixConfigType	This parameter allows to signal whether active downmix control parameters (value 0) or downmix matrices (value 1) or both (value 2) are transmitted. Value 3 is reserved.
reserved	These bits are reserved for technology currently under consideration.
[edit: this bit stream field can be removed if TuC is eventually not adopted.]
downmixIdCount	number of downmixId definitions present in the bit stream element
downmixId	This field uniquely defines an ID for a default downmix matrix available on decoder side or a transmitted downmix matrix. downmixId has two reserved values, which are forbidden, namely 0x0 and 0x7F. All other values can be freely chosen. Further details on the usage of downmixId can be found in clause 6.
downmixType	This index defines whether a downmixId is connected with a default downmix matrix available on decoder side or a transmitted downmix matrix. 
Table 46 — Value of downmixType
	downmixType
	meaning

	0
	Format conversion with default downmix matrix available on decoder side

	1
	Format conversion with transmitted downmix  matrix

	2
	-reserved-

	3
	-reserved-



CICPspeakerLayoutIdx	This value describes the target loudspeaker layout for the given downmix matrix. The value corresponds to ChannelConfiguration as defined in  ISO/IEC 23001-8.
DmxMatrixLenBits	length of the following bit stream element in bits
	paramConfig,
inputConfig,
outputConfig
	Channel configuration vectors specifying the information about each speaker. The information is assumed to be known from the channel configurations of the input and output layouts. Each entry, paramConfig[i], is a structure with the members:
AzimuthAngle, 	the absolute value of the speaker azimuth angle;
AzimuthDirection, 	the azimuth direction, 0 (left) or 1 (right);
ElevationAngle, 	the absolute value of the speaker elevation angle;
ElevationDirection, 	the elevation direction, 0 (up) or 1 (down);
isLFE, 	indicates whether the speaker is a LFE speaker.

	paramCount,
inputCount,
outputCount
	Number of speakers in the corresponding channel configuration vectors.

	compactParamConfig,
compactInputConfig,
compactOutputConfig
	Compact channel configuration vectors specifying the information about each speaker group. Each entry, compactParamConfig[i], is a structure with the members:
pairType, 	type of the speaker group, which can be SYMMETRIC (a symmetric pair of two speakers), CENTER, or ASYMMETRIC;
isLFE, 	indicates whether the speaker group consists of LFE speakers;
originalPosition, 	position in the original channel configuration of the first (i.e. left) speaker, or the only speaker, in the group;
symmetricPair.originalPosition, 	position in the original channel configuration of the second (i.e. right) speaker in the group, for SYMMETRIC groups only.

	compactParamCount,
compactInputCount,
compactOutputCount
	Number of speaker groups in the corresponding compact channel configuration vectors.

	equalizerPresent
	Boolean indicating whether equalizer information that is to be applied to the input channels is present.

	
precisionLevel
	Precision used for uniform quantization of the gains according to Table 47.


[bookmark: _Ref370219595]Table 47 – Uniform quantization step size of gain depending on precisionLevel
	precisionLevel
	smallest quantization step size [dB]

	0
	1

	1
	0.5

	2
	0.25

	3
	reserved



	maxGain
	Maximum actual gain in the matrix, expressed in dB:
possible values from 0 to 22.

	minGain
	Minimum actual gain in the matrix, expressed in dB:
possible values from -1 to -47.

	isAllSeparable
	Boolean indicating whether all the output speaker groups satisfy the separability property.

	isSeparable[i]
	Boolean indicating whether the output speaker group with index i satisfies the separability property.

	isAllSymmetric
	Boolean indicating whether all the output speaker groups satisfy the symmetry property.

	isSymmetric[i]
	Boolean indicating whether the output speaker group with index i satisfies the symmetry property.

	mixLFEOnlyToLFE
	Boolean indicating whether the LFE speakers are mixed only to LFE speakers and, at the same time, the non-LFE speakers are mixed only to non-LFE speakers.

	rawCodingCompactMatrix
	Boolean indicating whether compactDownmixMatrix is coded raw (using one bit per entry) or it is coded using run-length coding followed by limited Golomb-Rice.

	compactDownmixMatrix[i][j]
	An entry in compactDownmixMatrix corresponding to input speaker group i and output speaker group j, indicating whether any of the associated gains is nonzero:
0 = all gains are zero, 1 = at least one gain is nonzero.

	useCompactTemplate
	Boolean indicating whether to apply an element-wise XOR to compactDownmixMatrix with a predefined compact template matrix, to improve the efficiency of the run-length coding.

	runLGRParam
	Limited Golomb-Rice parameter p used to code the zero run-lengths in the linearized flatCompactMatrix.

	flatCompactMatrix
	Linearized version of compactDownmixMatrix with the predefined compact template matrix already applied;
When mixLFEOnlyToLFE is enabled, it does not include the entries known to be zero (due to mixing between non-LFE and LFE) or those used for LFE to LFE mixing.

	compactTemplate
	Predefined compact template matrix, having “typical” entries, which is XORed element-wise to compactDownmixMatrix, in order to improve coding efficiency by creating mostly zero value entries.

	zeroRunLength
	The length of a zero run always followeed by a one, in the flatCompactMatrix, which is coded with limited Golomb-Rice coding, using the parameter runLGRParam.

	fullForAsymmetricInputs
	Boolean indicating whether to ignore the symmetry property for every asymmetric input speaker group;
When enabled, every asymmetric input speaker group will have two gain values decoded for each symmetric output speaker group with index i, regardless of isSymmetric[i].

	gainTable
	Dynamically generated gain table which contains the list of all possible gains between minGain and maxGain with precision precisionLevel.

	rawCodingNonzeros
	Boolean indicating whether the nonzero gain values are coded raw (uniform coding, using the ReadRange function) or their indexes in the gainTable list are coded using limited Golomb-Rice coding.

	gainLGRParam
	Limited Golomb-Rice parameter p used to code the nonzero gain indexes, computed by searching each gain in the gainTable list.



[bookmark: _Toc385337841]Configuration Element Descriptions
[bookmark: _Toc385337842]General
The configuration elements are based on ISO/IEC 23003-3:2012, subclause 6.1. Additional information is given in the following subclause.
The mapping of core audio elements to audio channels is applied according to the following rule:
1. Obtain the number of audio channels (numAudioChannels) from Signals3d()
1. Determine the already decoded successive elements until the currently processed element from mpegh3daDecoderConfig()
1. Decode shiftChannel0 and shiftChannel1 from corresponding USAC-3D CPE elements. The default value for shiftChannel0 and shiftChannel1 shall be zero.

The decoding procedure can be described as follows:
Create an array with the size of the number of all loudspeaker signals and initialize it with -1.
[bookmark: _Ref383644359]Determine the smallest non-assigned channel ch that is missing in the array starting with ch=0.
Proceed to the next position pos in the array that equals -1. i.e. find the smallest pos such that array[pos] = -1.
if shiftIndexX is zero: write the channel index ch into the array at the position pos. i.e. array[pos] = ch.
[bookmark: _Ref383644374]if shiftIndexX is greater than zero: increment ch by (shiftIndexX+1) and write it into the array at the position pos. i.e. array[pos] = ch + shiftIndexX + 1
[bookmark: _Ref383644411]Repeat b) - e) for all channels in an element.
Repeat b) - f) for all successive elements.

[bookmark: _Toc383694934][bookmark: _Toc385337843]Downmix configuration
General
Downmix matrix coefficients and/or active downmix setting parameters may be transmitted by the encoder to enable control over the format conversion process at the decoder. Transmission is facilitated by means of a mpegh3daConfigExtension of Type ID_CONFIG_EXT_DOWNMIX for downmixType == 1. The mpegh3daConfigExtension may contain downmix matrices as well as an active downmix setting parameter. If downmix matrices are transmitted, each downmix matrix signals its associated target speaker layout that determines the matrix dimensions and identifies which kind of downmix matrix operation the transmitted coefficients are suitable for.
The transmission of a unique downmixId allows referencing to a default downmix matrix available on decoder side, or to a transmitted downmix matrix from outside of the audio stream, e.g. from Dynamic Range Compression related information in higher Systems layers.
Data Elements and Variables
downmixConfigType	This parameter allows to signal whether an active downmix control parameter (value 0) or downmix matrices (value 1) or both (value 2) are transmitted. Value 3 is reserved.
passiveDownmixFlag	Signals that a passive downmix shall be applied in the format converter downmix if value=1. If not transmitted, passiveDownmixFlag shall be set to 0, resulting in the application of the active downmix processing of the format converter downmix.

Golomb-Rice Coding
Golomb-Rice coding is used to code any non-negative integer , using a given non-negative integer parameter  as follows: first code the number  using unary coding, as  one bits followed by a terminating zero bit; then code the number  uniformly using  bits.
Limited Golomb-Rice coding is a trivial variant used when it is known in advance that , for a given integer . It does not include the terminating zero bit when coding the maximum possible value of , which is . More exactly, to encode  we write only  one bits, but not the terminating zero bit, which is not needed because the decoder can implicitly detect this condition.
Helper Functions
The function ConvertToCompactConfig() described below is used to convert the given paramConfig configuration consisting of paramCount speakers into the compact compactParamConfig configuration consisting of compactParamCount speaker groups. The compactParamConfig[i].pairType field can be SYMMETRIC (S), when the group represents a pair of symmetric speakers, CENTER (C), when the group represents a center speaker, or ASYMMETRIC (A), when the group represents a speaker without a symmetric pair.
ConvertToCompactConfig(paramConfig, paramCount)
{
    for (i = 0; i < paramCount; ++i) {
        alreadyUsed[i] = 0;
    }

    idx = 0;
    for (i = 0; i < paramCount; ++i) {
        if (alreadyUsed[i]) continue;
        compactParamConfig[idx].isLFE = paramConfig[i].isLFE;

        if ((paramConfig[i].AzimuthAngle == 0) ||
                (paramConfig[i].AzimuthAngle == 180°) {
            compactParamConfig[idx].pairType = CENTER;
            compactParamConfig[idx].originalPosition = i;
        } else {
            j = SearchForSymmetricSpeaker(paramConfig, paramCount, i);
            if (j != -1) {
                compactParamConfig[idx].pairType = SYMMETRIC;
                if (paramConfig.AzimuthDirection == 0) {
                    compactParamConfig[idx].originalPosition = i;
                    compactParamConfig[idx].symmetricPair.originalPosition = j;
                } else {
                    compactParamConfig[idx].originalPosition = j;
                    compactParamConfig[idx].symmetricPair.originalPosition = i;
                }
                alreadyUsed[j] = 1;
            } else {
                compactParamConfig[idx].pairType = ASYMMETRIC;
                compactParamConfig[idx].originalPosition = i;
            }
        }
        idx++;
    }

    compactParamCount = idx;

    return (compactParamConfig, compactParamCount);
}


CalculateTotalCount()
{
    if (mixLFEOnlyToLFE) {
        compactInputLFECount = 0;
        compactOutputLFECount = 0;
        for (i = 0; i < compactInputCount; i++) {
            if (compactInputConfig[i].isLFE) compactInputLFECount++;
        }
        for (i = 0; i < compactOutputCount; i++) {
            if (compactOutputConfig[i].isLFE) compactOutputLFECount++;
        }
        totalCount = (compactInputCount - compactInputLFECount) *
            (compactOutputCount - compactOutputLFECount);
    } else {
        totalCount = compactInputCount * compactOutputCount;
    }
    return totalCount;
}

The function FindCompactTemplate(inputConfig, inputCount, outputConfig, outputCount) is used to find a compact template matrix matching the input channel configuration represented by inputConfig and inputCount, and the output channel configuration represented by outputConfig and outputCount.
The compact template matrix is found by searching in a predefined list of compact template matrices, available at both the encoder and decoder, for the one with the same the list of input speakers as inputConfig and the same list of output speakers as outputConfig. 
Use of template matrices for efficient coding of downmix matrices is only allowed when both the input and output channel configurations exactly correspond to a codepoint ChannelConfiguration of ISO/IEC 23001‑8 and if an exactly matching template matrix is defined in this standard. This ensures that the correct order of channels are obeyed at the decoder as well as at the encoder. Template matrices are defined in this standard only for pairs of ChannelConfiguration codepoints. For matching of a template matrix, if an input or output configuration is given, instead of a ChannelConfiguration codepoint, as a list of predefined speakers indexes or geometry description according to section 5.2.2.2, an additional check shall be made to verify whether this provided description exactly matches a ChannelConfiguration codepoint. In case of an exact match, the corresponding ChannelConfiguration codepoint will be therefore used in the selection procedure of a matching template matrix.
The function SearchForSymmetricSpeaker(paramConfig, paramCount, i) is used to search the channel configuration represented by paramConfig and paramCount for the symmetric speaker corresponding to the speaker paramConfig[i]. This symmetric speaker, paramConfig[j], shall be situated after the speaker paramConfig[i], therefore j can be in the range i+1 to paramCount – 1, inclusive.

Gain Value Quantization
The function readRange() is used to read a uniformly distributed integer in the range [0 alphabetSize-1] inclusive.
The function generateGainTable(maxGain, minGain, precisionLevel) is used to dynamically generate the gain table gainTable which contains the list of all possible gains between minGain and maxGain with precision precisionLevel. The table is terminated by adding an element signaling minus infinity dB gain having the placeholder value minGain-1. The order of the values is chosen so that the most frequently used values and also more “round” values would be typically closer to the beginning of the list. The gain table of length gainTableSize with the list of all possible gain values is generated as follows:
1. add integer multiples of 3 dB, going down from 0 dB to minGain;
1. add integer multiples of 3 dB, going up from 3 dB to maxGain;
1. add remaining integer multiples of 1 dB, going down from 0 dB to minGain;
1. add remaining integer multiples of 1 dB, going up from 1 dB to maxGain;
1. stop here if precisionLevel is 0 (corresponding to 1 dB) and add minGain-1;
1. add remaining integer multiples of 0.5 dB, going down from 0 dB to minGain;
1. add remaining integer multiples of 0.5 dB, going up from 0.5 dB to maxGain;
1. stop here if precisionLevel is 1 (corresponding to 0.5 dB) and add minGain-1;
1. add remaining integer multiples of 0.25 dB, going down from 0 dB to minGain;
1. add remaining integer multiples of 0.25 dB, going up from 0.25 dB to maxGain;
1. add minGain-1.
EXAMPLE	When maxGain is 2 dB and minGain is -6 dB, and precisionLevel is 0.5 dB, the following list is created:
 0, -3, -6, -1, -2, -4, -5, 1, 2, -0.5, -1.5, -2.5, -3.5, -4.5, -5.5, 0.5, 1.5, -7.
Equalizer Config
	numEqualizers
	Number of different equalizer filters present

	eqPrecisionLevel
	Precision used for uniform quantization of the gains:
0 = 1 dB, 1 = 0.5 dB, 2 = 0.25 dB, 3 = 0.1 dB

	eqExtendedRange
	Boolean indicating whether to use an extended range for the gains; if enabled, the available range is doubled

	numSections
	Number of sections of an equalizer filter, each one being a peak filter

	centerFreqLd2
	The leading two decimal digits of the center frequency for a peak filter; the maximum range is 10 .. 99

	centerFreqP10
	Number of zeros to be appended to centerFreqLd2; the maximum range is 0 .. 3

	qFactorIndex
	Quality factor index for a peak filter

	qFactorExtra
	Extra bits for decoding a quality factor larger than 1.0

	centerGainIndex
	Gain at the center frequency for a peak filter

	scalingGainIndex
	Scaling gain for an equalizer filter

	hasEqualizer[i]
	Boolean indicating whether the input channel with index i has an equalizer associated to it

	equalizerIndex[i]
	The index of the equalizer associated with the input channel with index i



Decoding of Downmix Coefficients
The syntax element DownmixMatrixSet() contains one or more downmix matrices that may be applied to achieve a format conversion to a desired loudspeaker layout. A given bit stream must not contain more than one instance of DownmixMatrixSet().
The syntax element DownmixMatrix() contains the downmix matrix information. The decoder first reads the equalizer information represented by the syntax element EqualizerConfig(), if enabled. The fields precisionLevel, maxGain, and minGain are then read. The input and output configurations are converted to compact configurations using the function ConvertToCompactConfig(). Then, the flags indicating if the separability and symmetry properties are satisfied for each output speaker group are read.
The significance matrix compactDownmixMatrix is then read, either a) raw using one bit per entry, or b) using the limited Golomb-Rice coding of the run lengths, and then copying the decoded bits from flatCompactMatrix to compactDownmixMatrix and applying the compactTemplate matrix.
Finally, the nonzero gains are read. For each nonzero entry of compactDownmixMatrix, depending on the field pairType of the corresponding input group and the field pairType of the corresponding output group, a sub-matrix of size up to 2 by 2 has to be reconstructed. Using the associated separability and symmetry properties, a number of gain values are read using the function DecodeGainValue(). A gain value can be decoded uniformly, by using the function ReadRange(), or using the limited Golomb-Rice decoding of the index of the gain in the gainTable table, which contains all the possible gain values.
Decoding of Equalizer Config
The syntax element EqualizerConfig() contains the equalizer information that is to be applied to the input channels. A number of numEqualizers equalizer filters is first decoded and thereafter selected for specific input channels using equalizerIndex[i]. The fields eqPrecisionLevel and eqExtendedRange indicate the quantization precision and the available range of the scaling gains and of the peak filter gains.
Each equalizer filter is a serial cascade consisting in a number of numSections of peak filters and one scalingGain. Each peak filter is fully defined by its centerFreq, qualityFactor, and centerGain.
The centerFreq parameters of the peak filters which belong to a given equalizer filter must be given in ascending order. The parameter is limited to 10 .. 24000 Hz inclusive, and it is calculated as

The qualityFactor parameter of the peak filter can represent values between 0.05 and 1.0 inclusive with a precision of 0.05 and from 1.1 to 10.6 inclusive with a precision of 0.1 and it is calculated as

The vector eqPrecisions gives the precision in dB corresponding to a given eqPrecisionLevel, and the eqMinRanges and eqMaxRanges matrices give the minimum and maximum values in dB for the gains corresponding to a given eqExtendedRange and eqPrecisionLevel.
eqPrecisions[4] = {1.0, 0.5, 0.25, 0.1};
eqMinRanges[2][4] = {{-8.0, -8.0, -8.0, -6.4}, {-16.0, -16.0, -16.0, -12.8}};
eqMaxRanges[2][4] = {{7.0, 7.5, 7.75, 6.3}, {15.0, 15.5, 15.75, 12.7}};
The parameter scalingGain uses the precision level , which is the next better precision level if not already the last one. The mappings from the fields centerGainIndex and scalingGainIndex to the gain parameters centerGain and scalingGain are calculated as



[bookmark: _Toc385337844]Tool Descriptions
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[bookmark: _Toc415010905][bookmark: _Toc433012587][bookmark: _Toc438629462][bookmark: _Toc516649509][bookmark: _Toc209501419][bookmark: _Toc237684876][bookmark: _Toc366508163][bookmark: _Toc366576340]Tool description
The Quad Channel Element (QCE) is a method for joint coding of four channels for more efficient coding of horizontally and vertically distributed channels. A QCE consists of two consecutive CPEs and is formed by hierarchically combining the Joint Stereo tool with possibility of Complex Stereo Prediction in horizontal direction and the MPEG Surround based stereo tool in vertical direction. This is achieved by enabling both stereo tools and swapping output channels between applying the tools. Stereo SBR is performed in horizontal direction to preserve the left-right relations of high frequencies.
[bookmark: _Toc415010906][bookmark: _Toc433012588][bookmark: _Toc438629463][bookmark: _Toc516649510][bookmark: _Toc209501420][bookmark: _Toc237684877][bookmark: _Toc366508164][bookmark: _Toc366576341]Terms and Definitions
Help elements:
cplx_out_dmx_L[ ]	First channel of first CPE after complex prediction stereo decoding.
cplx_out_dmx_R[ ]	Second channel of first CPE after complex prediction stereo decoding.
cplx_out_res_L[ ]	Second CPE after complex prediction stereo decoding.
(zero if qceIndex = 1)
cplx_out_res_R[ ]	Second channel of second CPE after complex prediction stereo decoding. (zero if qceIndex = 1)
mps_out_L_1[ ]	First output channel of first MPS box.
mps_out_L_2 [ ]	Second output channel of first MPS box.
mps_out_R_1[ ]	First output channel of second MPS box.
mps_out_R_2[ ]	Second output channel of second MPS box.
sbr_out_L_1[ ]	First output channel of first Stereo SBR box.
sbr_out_R_1[ ]	Second output channel of first Stereo SBR box.
sbr_out_L_2[ ]	First output channel of second Stereo SBR box.
sbr_out_R_2[ ]	Second output channel of second Stereo SBR box.

[bookmark: _Toc415010907][bookmark: _Toc433012589][bookmark: _Toc438629464][bookmark: _Ref515178741][bookmark: _Toc516649511][bookmark: _Toc209501421][bookmark: _Toc237684878][bookmark: _Toc366508165][bookmark: _Toc366576342]Decoding process
The syntax element qceIndex in mpegh3daChannelPairElementConfig() indicates whether a CPE belongs to a QCE and if residual coding is used. In case that qceIndex is unequal 0, the current CPE forms a QCE together with its subsequent element which shall be a CPE having the same qceIndex. Stereo SBR is always used for the QCE, thus the syntax item stereoConfigIndex shall be 3 and bsStereoSbr shall be 1. 
In case of qceIndex == 1 only the payloads for MPEG Surround and SBR and no relevant audio signal data is contained in the second CPE and the syntax element bsResidualCoding is set to 0.
The presence of a residual signal in the second CPE is indicated by qceIndex == 2. In this case the syntax element bsResidualCoding is set to 1.
Decoding of Joint Stereo is performed as described in ISO/IEC 23003-3:2012, subclause 7.7. The resulting output of the first CPE are the MPS downmix signals cplx_out_dmx_L[] and cplx_out_dmx_R[]. If residual coding is used (i.e. qceIndex == 2), the output of the second CPE are the MPS residual signals cplx_out_res_L[], cplx_out_res_R[], if no residual signal has been transmitted (i.e. qceIndex == 1), zero signals are inserted.
The structure of the QCE decoding process is illustrated in the following schematics (Figure 2).
[image: ]
[bookmark: _Ref370032560][bookmark: _Ref366508193][bookmark: _Ref366508121]Figure 2 —QCE Decoder Schematics 
Before applying MPEG Surround decoding, the second channel of the first element (cplx_out_dmx_R[]) and the first channel of the second element (cplx_out_res_L[]) are swapped. 
Decoding of MPEG Surround with residual is performed as described in ISO/IEC 23003-3:2012, subclause 7.11. Decoding of MPEG Surround without residual using SBR as defined in ISO/IEC 23003-3:2012, subclause 7.11.2.7 (Figure 23), is modified so that Stereo SBR is also used for bsResidualCoding == 1, resulting in the following decoder schematics (see Figure 3). 
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[bookmark: _Ref370032600]Figure 3 — bsResidualCoding == 0, bsStereoSbr == 1
Before applying Stereo SBR, the second channel of the first element (mps_out_L_2[]) and the first channel of the second element (mps_out_R_1[]) are swapped to allow right-left Stereo SBR. After application of Stereo SBR, the second output channel of the first element (sbr_out_R_1[]) and the first channel of the second element (sbr_out_L_2[])  are swapped again to restore the input channel order. 
[bookmark: _Toc385337846]Transform Splitting
Tool Description
When Transform splitting (TS) is active in a long transform, two half-length MDCTs are employed instead of one full-length MDCT. The coefficients of the two MDCTs are transmitted in a line-by-line interleaved fashion as a traditional frequency domain (FD) transform, with the coefficients of the first-in-time MDCT placed at even and the coefficients of the second-in-time MDCT placed at odd indices.
Operational Constraints
TS can only be used in a FD long-start or stop-start window (window_sequence == 1). Also, TS can only be applied when noiseFilling is 1 in mpegh3daCoreConfig( ). When TS is signaled, all FD tools except for TNS and inverse MDCT operate on the interleaved (long) set of TS coefficients. This allows the reuse of the scalefactor band offset and long-transform arithmetic coder tables as well as the window shapes and overlap lengths.
Terms and Definitions
Help Elements:
common_window	indicates if channel 0 and channel 1 of a CPE use identical window parameters (see ISO/IEC 23003-3:2012 subclause 6.2.5.1.1).
window_sequence	FD window sequence type for the current frame and channel (see ISO/IEC 23003-3:2012 subclause 6.2.9).
tns_on_lr	indicates the mode of operation for TNS filtering (see ISO/IEC 23003-3:2012 subclause 7.8.2).
noiseFilling	this flag signals the usage of the noise filling of spectral holes in the FD core coder (see ISO/IEC 23003-3:2012 subclause 6.1.1.1).
noise_offset	noise-fill offset to modify scale factors of zero-quantized bands (see ISO/IEC 23003-3:2012 subclause 7.2).
noise_level	noise-fill level representing amplitude of added spectrum noise (see ISO/IEC 23003-3:2012 subclause 7.2).
split_transform	binary flag indicating whether TS is utilized in the current frame and channel.
half_transform_length	one half of coreCoderFrameLength (ccfl, the transform length, see ISO/IEC 23003-3:2012 subclause 6.1.1).
half_lowpass_line	one half of the number of MDCT lines transmitted for the current channel.

Decoding Process
The decoding of an FD (stop-)start transform with TS is performed in three sequential steps as follows.
Decoding of split_transform and half_lowpass_line
The help element split_transform does not represent an independent bit-stream element but is derived from the noise filling elements, noise_offset and noise_level, and in case of a mpegh3daChannelPairElement(), the common_window flag in StereoCoreToolInfo(). If noiseFilling == 0, split_transform is 0. Otherwise,
if ((noiseFilling != 0) && 
    (noise_level == 0) && 
    (noise_offset != 0) && 
    (window_sequence == 1)) {
  split_transform = 1;
  noise_level     = (noise_offset & 28) / 4;
  noise_offset    = (noise_offset & 3) * 8;
}
else {
  split_transform = 0;
}

In other words, if split_transform == 1, noise_offset contains 5 bits of noise filling data, which are then rearranged. Since this operation changes the values of noise_level and noise_offset, it must be executed before the noise filling process of ISO/IEC 23003-3:2012 subclause 7.2. 
Furthermore, if common_window == 1 in a mpegh3daChannelPairElement(), split_transform is determined only in the left (first) channel; the right channel’s split_transform is set equal to (i.e. copied from) the left channel’s split_transform, and the following pseudo-code is not executed in the right channel.
The help element half_lowpass_line is determined from the “long” scalefactor band offset table, swb_offset_long_window, and the max_sfb of the current channel, or in case of stereo and common_window == 1, max_sfb_ste.


Based on the enhancedNoiseFilling flag, half_lowpass_line is derived:
if (enhancedNoiseFilling != 0) {
  lowpass_sfb = max(lowpass_sfb, m_igFStopSfb);
}
half_lowpass_line = swb_offset_long_window[lowpass_sfb] / 2;


[bookmark: _Ref370032868]De-interleaving of Half-length Spectra for Temporal Noise Shaping
After spectrum de-quantization, noise filling, and scalefactor application and prior to the application of Temporal Noise Shaping (TNS), the TS coefficients in spec[ ] are de-interleaved using a helper buffer[ ]:
for (i = 0, i2 = 0; i < half_lowpass_line; i += 1, i2 += 2) {
  spec[i]   = spec[i2];	/* isolate 1st window */
  buffer[i] = spec[i2+1];	/* isolate 2nd window */
}
for (i = 0; i < half_lowpass_line; i += 1) {
  spec[i+half_lowpass_line] = buffer[i];	/* copy 2nd window */
}

The in-place de-interleaving effectively places the two half-length TS spectra on top of each other, and the TNS tool now operates as usual on the resulting full-length pseudo-spectrum.
Temporary Re-interleaving, Two sequential Inverse MDCTs
If common_window == 1 in the current frame or the stereo decoding is performed after TNS decoding (tns_on_lr == 0 in ISO/IEC 23003-3:2012 subclause 7.8), spec[ ] must be re-interleaved temporarily into a full-length spectrum:
for (i = 0; i < half_lowpass_line; i += 1) {
  buffer[i] = spec[i];	/* copy 1st window */
}
for (i = 0, i2 = 0; i < half_lowpass_line; i += 1, i2 += 2) {
  spec[i2]   = buffer[i];	/* merge 1st window */
  spec[i2+1] = spec[i+half_lowpass_line];	/* merge 2nd window */
}

The resulting pseudo-spectrum is used for stereo decoding (ISO/IEC 23003-3:2012 subclause 7.7) and to update dmx_re_prev[ ] (ISO/IEC 23003-3:2012 subclause 7.7.2 and 5.5.2.6). In case of tns_on_lr == 0, the stereo-decoded full-length spectra are again de-interleaved by repeating the process of subclause 5.5.2.4.2. Finally, the 2 inverse MDCTs are calculated with ccfl and the channel’s window_shape of the current and last frame.
Filterbank and block switching
IMDCT
The processing for TS follows the description given in ISO/IEC 23003-3:2012 subclause "7.9 Filterbank and block switching". The following additions shall be taken into account.
The TS coefficients in spec[ ] are de-interleaved using a helper buffer[ ] with N, the window length based on the window_sequence value:
for (i = 0, i2 = 0; i < N/2; i += 1, i2 += 2) {
  spec[0][i]   = spec[i2];	/* isolate 1st window */
  buffer[i] = spec[i2+1];	/* isolate 2nd window */
}
for (i = 0; i < N/2; i += 1) {
  spec[1][i] = buffer[i];	/* copy 2nd window */
}

The IMDCT for the half-length TS spectrum is then defined as: 


where:
n = sample index
k = spectral coefficient index


Subsequent windowing and block switching steps are defined in the next subclauses.
Transform Splitting with STOP_START_SEQUENCE
The STOP_START_SEQUENCE in combination with transform splitting is depicted in Figure 4. It comprises two overlapped and added half-length windows with a length of  N_l/2  which is 1024 (960, 768). N_s is set to 256 (240, 192) respectively.



[bookmark: _Ref370033097]Figure 4 — Transform splitting for STOP_START_WINDOW
The windows (0,1) for the two half-length IMDCTs are given as follows:



where for the first IMDCT the windows

,


are applied and for the second IMDCT the windows

 ,


are applied.
The overlap and add between the the two half-length windows resulting in the windowed time domain values zi,n is described as follows. Here, N_l  is set to 2048 (1920, 1536), N_s to 256 (240, 192) respectively:


Transform Splitting with LONG_START_SEQUENCE
The LONG_START_SEQUENCE in combination with transform splitting is depicted in Figure 5.


[bookmark: _Ref370033142]Figure 5 — Transform splitting for LONG_START_WINDOW
It comprises three windows defined as follows, where N_l/  is set to 1024 (960, 768),  N_s is set to 256 (240, 192) respectively.





The left/right window halves are given by:

 ,


The third window equals the left half of a LONG_START_WINDOW:


with



The overlap and add between the the two half-length windows resulting in intermediate windowed time domain values  is described as follows. Here, N_l  is set to 2048 (1920, 1536), N_s to 256 (240, 192) respectively.


 The final windowed time domain values Zi,n are obtained by applying W2:


[bookmark: _Ref370032996]Modification to Complex Prediction Stereo Decoding
Since the FD stereo tools operate on an interleaved pseudo-spectrum when TS is active in a channel pair, no changes are necessary to the underlying M/S or Complex Prediction processing. However, the derivation of the previous frame’s downmix dmx_re_prev[ ] and the computation of the downmix MDST dmx_im[ ] in ISO/IEC 23003-3:2012 subclause 7.7.2 need to be adapted if TS is used in either channel in the last or current frame:
use_prev_frame must be 0 if the TS activity changed in either channel from last to current frame. In other words, dmx_re_prev[ ] must not be used in that case due to transform length switching.
If TS was or is active, dmx_re_prev[ ] and dmx_re[ ] are interleaved pseudo-spectra and must be de-interleaved into their corresponding two half-length TS spectra for correct MDST calculation.
Upon TS activity, 2 half-length MDST downmixes are computed using adapted filter coefficients (filter_coefs in Table 48 and Table 49) and interleaved into a full-length spectrum dmx_im[ ] (just like dmx_re[ ]).
window_sequence: Downmix MDST estimates are computed for each group window pair. use_prev_frame is evaluated only for the first of the two half-window pairs. For the remaining window pair, the preceding window pair is always used in the MDST estimate, which implies use_prev_frame = 1.
Window shapes: The MDST estimation parameters for the current window, which are filter coefficients as described below, depend on the shapes of the left and right window halves. For the first window, this means that the filter parameters are a function of the current and previous frames’ window_shape flags. The remaining window is only affected by the current window_shape.
[bookmark: _Ref370033209][bookmark: _Ref370033205]Table 48 — MDST Filter Parameters for Current Window (filter_coefs)
	Current Window Sequence
	Left Half: Sine Shape
Right Half: Sine Shape
	Left Half: KBD Shape
Right Half: KBD Shape

	LONG_START_SEQUENCE STOP_START_SEQUENCE
	[0.185618, 0.000000,  0.627371,
0.000000,
-0.627371,  0.000000, -0.185618]
	
[ 0.204932, 0.000000,  0.634159,
 0.000000, 
-0.634159,  0.000000, -0.204932]


	Current Window Sequence
	Left Half: Sine Shape
Right Half: KBD Shape
	Left Half: KBD Shape
Right Half: Sine Shape

	LONG_START_SEQUENCE STOP_START_SEQUENCE
	[0.194609,  0.006202,  0.630536,  0.000000,
 -0.630536, -0.006202, -0.194609]
	
[0.194609, -0.006202,  0.630536,  0.000000,
 -0.630536, 0.006202, -0.194609]




[bookmark: _Ref370033249]Table 49 — MDST Filter Parameters for Previous Window (filter_coefs_prev)
	Current Window Sequence
	Left Half of Current Window: Sine Shape
	Left Half of Current Window: KBD Shape

	LONG_START_SEQUENCE STOP_START_SEQUENCE
	
[0.069608,  0.075028,  0.078423,
 0.079580,
  0.078423,  0.075028,  0.069608 ]

	[0.042172,  0.043458,  0.044248,
 0.044514,
  0.044248,  0.043458,  0.042172]



[bookmark: _Toc272942382][bookmark: _Toc273028635][bookmark: _Toc303957036][bookmark: _Toc385337847]MPEG Surround for Mono to Stereo upmixing
Calculation of pre-matrix M1 and mix-matrix M2
General

[bookmark: _Toc117242048][bookmark: _Ref123634112][bookmark: _Ref123984644][bookmark: _Ref129157827][bookmark: _Ref140387625][bookmark: _Toc144706418][bookmark: _Toc144709864][bookmark: _Toc147135775]The calculation of mix-matrix M2, which is a interpolated version of , is done according to ISO/IEC 23003‑3:2012, 7.11.2.3, but with the modifications described in the following subclause.
[bookmark: _Ref368662364]Upmix without decorrelation
In case a format conversion step is included, the 4.3.3	MPEG Surround for Mono to Stereo upmixing tool is modified as follows.


10.3.1 defines a downmixing matrix which is used to calculate a mix matrix as follows. Here Nin is the number of source channels and Nout is the number of destination channels.
MMix = zero Nin x Nin Matrix 
for i = 1 to Nout
	for j = 1 to Nin
		set_j = 0
		if  MDmx(i, j) > 0.0
			set_j = 1
		end
		for k = 1 to Nin
			set_k = 0
			if  MDmx(i, k) > 0.0
				set_k = 1
			end
			if  set_j == 1 and set_k == 1
				MMix(j, k)= 1
			end
		end
	end
end






Each OTT decoding block yields two output signals corresponding to channel number i and j. If the mix matrix equals one, decorrelation is switched off for this decoding block which means that the elements  and  of the upmix matrix shall be calculated by setting .

Combined Parametric and Residual Decoding (Hybrid Residual Coding)
Overview
In addition to using either decorrelator based mono to stereo upmixing or residual coding as described in ISO/IEC 23003-3:2012, subclause 7.11.1, Hybrid Residual Coding allows a signal dependent combination of both modes. Residual signal and decorrelator output are blended together, using time and frequency dependent weighting factors depending on the signal energies and the spatial parameters, as illustrated in the schematics below (Figure 6 ).
[image: ]
[bookmark: _Ref370033369]Figure 6 — Schematics of Hybrid Residual Decoder
Decoding process

Hybrid Residual Coding mode is indicated by the syntax elements bsResidualCoding == 1 and bsResidualBands == 1 in Mps212Config(). The calculation of mix-matrix M2 is performed as if bsResidualCoding == 0, following the calculation in ISO/IEC 23003-3:2012, subclause 7.11.2.3. The matrix  for the decorrelator based part is defined as



The upmixing process is split up into Downmix, decorrelator output and residual. The upmixed Downmix  is calculated using:



The upmixed decorrelator output  is calculated using:



The upmixed residual signal  is calculated using:




The energies of the upmixed residual signal  and of the upmixed decorrelator output are calculated per hybrid band as sum over both output channels ch and all timeslots ts and of one frame as:





The upmixed decorrelator output is weighted using a weighting factor calculated for each hybrid band per frame as:


With ε a small number to prevent division by zero (ε = 1e-9).
All three upmix signals are added to form the decoded output signal. 
[bookmark: _Ref370030379][bookmark: _Toc385337848]Enhanced Noise Filling
Introduction
[bookmark: _Toc237684880]The enhanced noise filling is achieved through a tool named Intelligent Gap Filling (IGF). IGF extends the noise filling in the decoder to alternatively exploit neighboring spectral portions, predefined source tiles, for filling spectral gaps in predefined target tiles. These gaps originate from coarse quantization in the encoder. Using these tiles for gap filling often provides a perceptually better match than just injecting random noise. The additional side information, igf_data(), conveys control data, e.g. tile source and tile target information, tile target level, etc.
Data Elements
indepFlag	the MPEG-H 3D audio USAC independency flag.
pred_dir	indicates the direction of prediction (see ISO/IEC 23003-3:2012, 7.7.2)
ms_used[ ][ ]	one-bit flag per scalefactor band indicating that M/S coding or prediction is being used in windowgroup g and scalefactor band sfb, shared with the joint stereo tool (ISO/IEC 23003-3:2012 subclause 7.7).
cplx_pred_used[g][sfb]	One-bit flag per window group g and scalefactor band sfb (after mapping from prediction bands), shared with the complex stereo prediction tool (see ISO/IEC 23003-3:2012 subclause 7.7.2).
Helper Elements
igfStartSfbLB	the IGF start scalefactor band index used with a long window sequence.
igfStartSfbSB	the IGF start scalefactor band index used with a short window sequence.
igfStopSfbLB	the IGF stop scalefactor band index used with a long window sequence.
igfStopSfbSB	the IGF stop scalefactor band index used with a shortwindow sequence.
igfMin	is a subband index; this index is sampling frequency and core coder framelength dependent and determine a minimal frequency which is used to assign a source tile range.
igfBgn	the IGF start subband; this helper element is used for both, long and short window sequences and is mapped for every frame.
igfEnd	the IGF stop subband; this helper element is used for both, long and short window sequences and is mapped for every frame.
igfP	is 1 if the flag igfUseHighRes is set to one, 2 otherwise.
m_igfStartSfb	the mapped IGF start scalefactorband; this helper element is used for both, long and short window sequences and is mapped for every frame.
m_igfStopSfb	the mapped IGF stop scalefactorband; this helper element is used for both, long and short window sequences and is mapped for every frame.
tile[ ]	vector of length 4 containing width information.
igfNTiles	number of target tiles in IGF range.
sbs	start subband of the current target tile.
rng	length of the IGF range in subbands.
ch	channel in scope, this value is either 0 or 1.
sfb	scafactor band in scope.
num_windows[ch]	contains the current number of windows.
num_window_groups[ch]	contains the number of window groups.
sb	index of the source subband.
tb	index of the target subband.
tileIdx	index of the IGF target tile in which a tb under scope is located.
group_len	identifies the actual length of a window group.
igf_sN[ ]	vector containing information on energies per scalefactor which have been not quantized to zero.
igf_pN[ ]	vector containing information on energies per scalefactor which will be copied from the source tile range.
wg, wa	counter for the actual window (0,1,…,7).
w	the window index in a window group.
window_sequence	signals the USAC window sequence.
isShortWindow	1 if window_sequence == EIGHT_SHORT_SEQUENCE, else 0.
pMDCT[ ]	array containing the MDCT spectrum.
pMDCT_flat[ ]	array containing the whitened MDCT spectrum.
width	number of lines in the sfb under scope.
E	energy for the current subband.
val	spectral values for the current IGF subband.
noise_offset	noise-fill offset to modify scale factors of zero-quantized bands (see ISO/IEC 23003-3:2012 subclause 7.2).
noise_level	noise-fill level representing amplitude of added spectrum noise (see ISO/IEC 23003-3:2012 subclause 7.2).
stereo_filling	flag indicating whether SF is utilized in the current frame and channel.
IGF Signal Processing
 Mapping of IGF bitstream elements
[bookmark: _Ref370307306]Helper Elements
swb_offset_long[ ]	offset table for scalefactor bands to use with long windows.
swb_offset_short[ ]	offset table for scalefactor bands to use with short windows.
num_swb_short_window	number of scalefactor bands with a short window sequence.
num_swb_long_window	number of scalefactor bands with a long window sequence.
sampleRate	sampling rate of the core coder.
bl	length of the current block in dependency of the window sequence.
[bookmark: _Ref369888116]Detailed description
The bit stream elements igfStartIndex and igfStopIndex are mapped to scale factor band indices:
igfStartSfbLB = min(11 + igfStartIndex * 2, num_swb_long_window – 5)
If igfStopIndex is not 7, calculate:
igfStopSfbLB = min( num_swb_long_window, max( igfStartSfbLB + ( ( ( num_swb_long_window-(igfStartSfbLB +1 ) ) * ( igfStopIndex +1 ) ) >> 3), igfStartSfbLB + 2) )

If igfStopIndex equals 7, set:
igfStopSfbLB = num_swb_long_window

For the appropriate start and stop boundaries for IGF with short window sequence calculate:
igfStartSfbSB = -1;
for (sfb = 0; sfb < num_swb_short_window; sfb++) {
  if (swb_offset_short[sfb] >= swb_offset_long[igfStartSfbLB] >> 3) {
    if (igfStartSfbSB < 0) igfStartSfbSB = sfb;
  }
}
igfStopSfbSB = -1;
for (sfb = 0; sfb < num_swb_short_window; sfb++) {
  if (swb_offset_short[sfb] >= swb_offset_long[igfStopSfbLB] >> 3) {
    if (igfStopSfbSB < 0) igfStopSfbSB = sfb;
  }
}

The final mapping to m_igfStartSfb, igfBgn and m_igfStopSfb, igfEnd depends on the window sequence in the actual processed frame. 
if (window_sequence == EIGHT_SHORT_SEQUENCE) {
  m_igfStartSfb = igfStartSfbSB;
  m_igfStopSfb  = igfStopSfbSB;
  igfBgn = swb_offset_short[m_igfStartSfb];
  igfEnd = swb_offset_short[m_igfStopSfb];
  swb_offset = swb_offset_short;
} else {
  m_igfStartSfb = igfStartSfbLB;
  m_igfStopSfb  = igfStopSfbLB;
  igfBgn = swb_offset_long[m_igfStartSfb];
  igfEnd = swb_offset_long[m_igfStopSfb];
  swb_offset = swb_offset_long;
}

If the bitstream element igfUseHighRes equals zero, the IGF frequency resolution will be reduced by pairing IGF scalefactor bands. 
igfMin is the lowest IGF source subband and it is calculated as follows:
igfMin = sb + (sb mod 2)
where

sb = INT(1125 * bl * (2 / sampleRate))

The helper element bl is mapped according to Table 50:
[bookmark: _Ref369860389]Table 50 - Value of bl
	window_sequence
	bl

	EIGHT_SHORT_SEQUENCE
	ccfl / 8

	All other sequences
	ccfl



[bookmark: _Ref369860666]Computing IGF tiles
IGF works with so called tiles to determine target regions shown in Figure 7.
[image: IGF_tiles]
[bookmark: _Ref370034905]Figure 7 - Computing target tiles, overview
The flowchart in Figure 8 produces the tile vector tile[ ] of length 4 containing the width of each IGF target tile. Please note that this flowchart is used for both, short and long window sequences.
[image: get_IGF_tile()_fixed]
[bookmark: _Ref370034906]Figure 8 - flowchart for calculation of tile width and number of tiles

Decoding of IGF levels
Helper Elements
igf_curr[ch][ ][ ]	vector containing the IGF levels for the current window.
igf_prev[ch][ ]	vector containing the IGF levels for the previous window.
igf_arith_t[ch]	time index, to be increment per window since the last reset.
igf_prevD[ch]	context form the window before the previous window.
prev_num_windows[ch]	contains the previous number of windows.
Decoding Process
The subroutine igf_level() is performed as outlined below. Please note that all helper elements associated with igf_level() needs their own instance of context memory per USAC audio element (CPE, SCE) and per channel ch in case of CPE, for proper decoding.

First of all, the context memory (igf_prev, igf_prevD, igf_arith_t) of the IGF arithmetic coder, together with other helper elements, needs a reset under the following conditions:
if (igf_AllZero || indepFlag || (num_windows[ch] != prev_num_windows[ch])) {
  igf_curr[ch] = {0};
  igf_prev[ch] = {0};
  igf_arith_t[ch] = 0;
  igf_prevD[ch] = 0;
  prev_num_windows[ch] = 0;
}

If the bitstream element igf_AllZero is not true, the subroutine igf_arith_decode() (see 5.5.4.4.4.1) is called as outlined below:
if (!igf_AllZero) {
  for (g = 0; g < num_window_groups; g++) {
    igf_curr[ch][g] = igf_arith_decode(igf_arith_t[ch], igf_prev[ch], igf_prevD[ch])
    igf_prevD[ch] = igf_prev[m_igfStartSfb];
    for (sfb = m_igfStartSfb; sfb < m_igfStopSfb; sfb++) {
      igf_prev[ch][sfb] = igf_curr[ch][g][sfb];
      igf_curr[ch][g][sfb] = igf_curr[ch][g][sfb] * igFP;
    }
    igf_arith_t[ch]++;
  }
  arith_decode_flush(); /* push back 14 bits to the bitstream */
}

The result, quantized energy information of scalefactor bands in the IGF region, is stored in igf_curr[ ][ ][ ]. For requantization use the formula:  

igf_curr[ch][g][sfb] = 2^(igf_curr[ch][g][sfb]*0.25)

for each channel ch, windowgroup g and scalefactor band sfb in scope.

[bookmark: _Ref369860498]Arithmetic decoding of IGF average levels
[bookmark: _Ref370307410]Helper Elements
nBits	number of bits to read.
nBitRead	decoded number read, of length nBits bits.
cfTable[ ]	cumulative frequency table.
tableOffset	offset to frequency table.
decRes	decoded prection residual.
extra	the position of the residual in one tail of the distribution.
pred	predicted value computed using the neighbors.
t	time index since the last reset.
prevD	first IGF scf value from the previous frame.
ctx	index to the context containing the probability distribution.
Decoding Process
The IGF scalefactors are encoded by using the function arith_decode() as in ISO/IEC 23003-3:2012 subclause 7.4.3, and by using new probability tables (cf_se01, cf_se02[ ], cf_se10, cf_se20[ ], cf_se11[ ][ ], cf_off_se01, cf_off_se02[ ], cf_off_se10, cf_off_se20[ ] and cf_off_se11[ ][ ]), see Annex A.
The subroutine igf_level(), see Table 28, provides a vector containing the IGF average energy information per IGF scalefactor, called SFE, of the MDCT spectral lines for each scale factor band or group of scale factor bands.
We take into account the SFEs from up to previous two frames and the already decoded SFEs from the current frame to derive a context providing the probability distribution for coding. We also employ a fixed linear predictor in each context, based on the same data as used for the quantized context, and decode the prediction residuals instead of the original values. For large prediction residuals, outside of the center of the coding distribution, escape coding is used.
arith_decode_bits(nBits)
{
    cf_for_bit[2] = {8192, 0};
    nBitRead = 0;
    for (i = nBits - 1; i >= 0; --i) {
        bit = arith_decode(cf_for_bit, 2);
        nBitRead = nBitRead + (bit << i);
    }
    return nBitRead;
}

The helper function arith_decode_bits() uses the USAC arithmetic decoder function arith_decode() to obtain a value of length nBits bits from the bit stream.
arith_decode_residual(cfTable, tableOffset)
{
    val = arith_decode(cfTable, 27);
    if ((val != 0) && (val != 26)) {
        decRes = val - 13;
    } else {
        extra = arith_decode_bits(4);
        if (extra == 15) {
            extra = 15 + arith_decode_bits(7);
        }
        if (val == 0) {
            decRes = -13 - extra;
        } else {
            decRes = 13 + extra;
        }
    }
    decRes -= tableOffset;
    return decRes;
}

The helper function arith_decode_residual() returns the decoded residual value, which has to be added to the predicted value (pred) to obtain the original value.
igf_arith_decode(t, igf_prev, prevD)
{
    igf_prev += igfStartSfb;
    igf_curr = {0};
    igf_curr += igfStartSfb;
    igfInc = igfP;
    if (isShortBlock) igfInc = 1;
    for (f = 0; f < m_igfStopSfb - m_igfStartSfb; f += igfInc) {
        if (t == 0) {
            if (f == 0) {
                igf_curr[f] = arith_decode_bits(7);
            } else if (f == igfInc) {
                pred = igf_curr[f - igfInc];
                igf_curr[f] = pred + arith_decode_residual(cf_se01, cf_off_se01);
            } else {
                pred = igf_curr[f - igfInc];
                ctx = quant_ctx(igf_curr[f - igfInc] - igf_curr[f - 2 * igfInc]);
                igf_curr[f] = pred + arith_decode_residual(
                    cf_se02[3 + ctx], cf_off_se02[3 + ctx]);
            }
        } else if (f == 0) {
            if (t == 1) {
                pred = igf_prev[f];
                igf_curr[f] = pred + arith_decode_residual(cf_se10, cf_off_se10);
            } else {
                pred = igf_prev[f];
                ctx = quant_ctx(igf_prev[f] - prevD);
                igf_curr[f] = pred + arith_decode_residual(
                    cf_se20[3 + ctx], cf_off_se20[3 + ctx]);
            }
        } else {
            pred = igf_prev[f] + igf_curr[f - igfInc] - igf_prev[f - igfInc];
            ctx_f = quant_ctx(igf_prev[f] - igf_prev[f - igfInc]);
            ctx_t = quant_ctx(igf_curr[f - igfInc] - igf_prev[f - igfInc]);
            igf_curr[f] = pred + arith_decode_residual(
                cf_se11[3 + ctx_t][3 + ctx_f],
                cf_off_se11[3 + ctx_t][3 + ctx_f]);
        }
        for (z = f + 1; z < min(f + igfInc, m_igfStopSfb - m_igfStartSfb); ++z) {
            igf_curr[z] = igf_curr[f];
        }
    }
    igf_curr -= igfStartSfb;
    return igf_curr; 
}

The quantization function quant_ctx(), limits large integer values to ±3. It is defined as:
quant_ctx(x) = x; for |x| ≤ 3 and
quant_ctx(x) = 3 · sign(x); for |x| > 3
Applying IGF
Introduction
In the course of decoding, transmitted MDCT values are already dequantized and USAC noise filling may be already applied up to the subband swb_offset[m_igfStartSfb]-1. If there is Complex Prediction or MS-Stereo signaled this shall be applied up to the subband swb_offset[max_sfb_ste]-1 of the MDCT data prior to IGF as well.
Please note that the Temporal Noise Shaping (TNS) tool was extended in case of IGF to additionally perform Temporal Tile Shaping (TTS) on IGF tiles. Therefore, the TNS shaping filters are also applied on IGF generated frequency tiles if indicated by igfAfterTnsSynth. The following flowchart (Figure 9) shows the position of the IGF tool in dependency of igfAfterTnsSynth in the core coder.
[image: igfAfterTNSSynth]
[bookmark: _Ref370035164]Figure 9 - Position of IGF in the core coder
Helper Elements
top	TNS stop band, see 14496-3:2009 subclause 4.6.9
Decoding Process
There are two options to apply IGF, signaled with igfAfterTnsSynth: 
· before TNS synthesis; IGF is applied to the TNS residual, and subsequently TNS/TTS is applied.
· after TNS synthesis; IGF is applied to the fully reconstructed and TNS filtered core coder signal.
Please note that the behavior of TNS changes in case of IGF. The following code sequence adjusts the TNS stop band according to the IGF start and stop scale factor band offset indices:
nbands = max_sfb;
if (enhancedNoiseFilling) {
  if (!igfAfterTnsSynth) {
    if (!isShortWindow) {
      if (igfStopSfbLB > nbands) nbands = igfStopSfbLB;
    } else {
      if (igfStopSfbSB > nbands) nbands = igfStopSfbSB;
    }
  } else {
    if (!isShortWindow) {
      if (igfStartSfbLB < nbands) nbands = igfStartSfbLB;
    } else {
      if (igfStartSfbSB < nbands) nbands = igfStartSfbSB;
    }
  }
  top = MIN(top, nbands);
}

[bookmark: _Ref369860785]Computing a source subband in IGF
Helper Elements
oS	offset between sb and tb.
nST	number of source tiles.
src	length of the IGF source range in subbands.
Detailed description
While applying IGF, target subbands (tb) are identified which have been quantized to zero by the encoder. For each of those target subbands a source subband (sb) is obtained with the flowchart below (Figure 10). Please note that for each element and each channel, there could be a different set of igfCurrTileIdx obtained from the bitstream.
[image: get_igf_sb]
[bookmark: _Ref370035355]Figure 10 - Flowchart for computing a source subband sb
The function “calculate oS()” returns the offset oS between sb and tb using the following formula:
oS = INT((-0.5 * igfCurrTileIdx[ch][i] + 2.5) * tile[i] + sbs – igfBgn)
where tile[ ] is a vector with a maximum length of 4 containing the width of each IGF target tile according to 5.5.4.4.2.
The helper function get_IGF_tile_idx() identifies the tile where tb is located.
get_IGF_tile_idx(tb, igfBgn, igfNTiles, tile[]) {
  sbs = igfBgn;
  for (tileIdx = 0; tileIdx < igfNTiles; tileIdx ++) {
    sbs += tile[tileIdx];
    if (tb < sbs) break;
  }
  return tileIdx;
}

Requirements
The computing of a source subband sb is constrained to the following requirement for the transmitted igfCurrTileIdx.
igfCurrTileIdx[ch][i] + nST[i]  >= 4, for i = 0, 1, .., igfNTiles
The vector nST shall be computed as follows:
nST[i] = max( 1, min( (src / (tile[i] / 2)) – 1, 4 ) ), for i = 0, 1, ..., igfNTiles
Spectral whitening in IGF
To reduce tonality or spectral tilt of an IGF tile, the following procedure uses the MDCT signal, if the bitstream element igfUseWhitening is equal to 1, to produce the whitened spectrum pMDCT_flat[ ], which is further used in IGF_mono() and IGF_stereo().
igf_apply_whitening(pMDCT[],pMDCT_flat[])
{
  stop = swb_offset[m_igfStartSfb];
  for (i = igfMin -3; i < stop; i++) {
    power_spec[i] = pMDCT[i] * pMDCT[i];
  }

  for (i = igfMin; i < stop-3; i++) {
    env[i] = 1e-3;
    for (j = -3; j <= 3; j++) {
      env[i] += power_spec[i+j];
    }
  }

  for (i = stop-3; i < stop; i++) {
    env[i] = env[stop-4];
  }

  for (i = igfMin; i < stop; i++) {
    n = INT(log(env[i])/log(2));
    pMDCT_flat[i] = pMDCT[i] * pow(2, 21 – 0.5 * n);
  }
}

[bookmark: _Ref370196771]Single/Dual channel processing in IGF
Helper Elements
randomSign()	function returning (pseudo) random sign as defined in ISO/IEC 23003-3:2012 subclause 7.2.4 using latest seed state from USAC noise filling.
Decoding Process
If IGF is applied in the discrete channel mode, e.g. in a SCE element or in a CPE element which does not make use of joint stereo feature (igfIndependentTiling is true) the following calling sequence shall be applied:
IGF_mono(ch, num_window_groups, group_len) {
  if (!isShortWindow && igfUseWhitening) {
    igf_apply_whitening (pMDCT, pMDCT_flat);
  }
  wg = wa = 0;
  for (g = 0; g < num_window_groups; g++) {
    igf_sN[ch] = {0};
    igf_pN[ch] = {0};
    for (w = 0; w < group_len[g]; w++) {
       IGF_calc_mono(ch, wg, group_len[g]);
       wg++;
    }
    for (w = 0; w < group_len[g]; w++) {
       IGF_apply_mono(ch, wa);
       wa++;
    }
  }
}

IGF_calc_mono() is used to compute the vectors igf_sN[ ] and igf_pN[ ] respectively. The subroutine get_IGF_sb() is described in 5.5.4.4.6. Please note that igfCurrTileIdx[ch] is a vector of length 4, describing the current tile indices of the current channel ch, where ch is 0 in a SCE and ch is 0 or 1 in a CPE.
IGF_calc_mono(ch, w, group_len) {
  igfInc = igfP;
  if (isShortBlock) igfInc = 1;
  for (sfb = m_igfStartSfb; sfb < m_igfStopSfb; sfb += igfInc) {
    width = (swb_offset[MIN(sfb + igfInc, m_igfStopSfb)] - swb_offset[sfb]);
    E = 1.12E-38;
    for (bin = 0; bin < width; bin++) {
      tb = swb_offset[sfb]+bin;
      E += pMDCT[w][tb] * pMDCT[w][tb];
    }
    igf_sN[ch][sfb] += E/group_len;
    E = 1.12E-38;
    for (bin = 0; bin < width; bin++) {
      tb = swb_offset[sfb]+bin;
      if (pMDCT[w][tb] == 0) {
        sb = get_IGF_sb(igfCurrTileIdx[ch], tb);
        val = pMDCT[w][sb];
        if (!isShortWindow && igfUseWhitening) {
          tileIdx = get_IGF_tile_idx(tb);
          if (igf_WhiteningLevel[tileIdx] == 0) {
            val = pMDCT_flat[w][sb];
          }
          if (igf_WhiteningLevel[tileIdx] == 2) {
            val = randomSign()*pow(2,21);
          }
        }
        E += val * val;
      }
    }
    igf_pN[ch][sfb] += E/group_len;
  }
}

IGF_apply_mono() will fill spectral gaps with previous calculated values:
IGF_apply_mono(ch, w) {

  igfInc = igfP;
  if (isShortBlock) igfInc = 1;
  for (sfb = m_igfStartSfb; sfb < m_igfStopSfb; sfb+= igfInc) {	
    width = (swb_offset[MIN(sfb + igfInc, m_igfStopSfb)] - swb_offset[sfb]);
    
    dE = igf_curr[sfb];
    sN = igf_sN[ch][sfb];
    pN = igf_pN[ch][sfb];
    mN = (dE*dE)*width -sN;
  
    if (mN > 0 && pN > 0) {
      gn = min(10, sqrt(mN/pN));
    } else {
      gn = 0;
    }
    for (bin = 0; bin < width; bin++) {
      tb = swb_offset[sfb]+bin;
      if (pMDCT[w][tb] == 0) {
        sb = get_IGF_sb(igfCurrTileIdx[ch], tb);
        val = pMDCT[w][sb];
        if (!isShortWindow && igfUseWhitening) {
          tileIdx = get_IGF_tile_idx(tb);
          if (igf_WhiteningLevel[tileIdx] == 0) {
            val = pMDCT_flat[w][sb];
          }
          if (igf_WhiteningLevel[tileIdx] == 2) {
            val = randomSign()*pow(2,21);
          }
        }
        pMDCT[w][tb] = gn * val;
      }
    }
  }
}

Stereo Filling in IGF
Introduction
When stereo filling (SF) is active in a FD-only CPE, the MDCT coefficients of empty (i.e. fully zero-quantized) scale factor bands of the right (second) channel are replaced by a sum or difference of the corresponding decoded left and right channels MDCT coefficients of the previous frame. If USAC noise filling is active for the second channel, pseudo-random values are also added to each coefficient. The resulting coefficients of each scale factor band are then scaled such that the RMS (root of the mean coefficient square) of each band matches the value transmitted by way of that band’s scale factor. See in ISO/IEC 23003-3:2012 subclause 7.3.
Helper Elements
downmix_prev[ ][ ]	downmix (i.e. sum or difference) of the previous frame’s left & right channels.
noiseFillingStartOffset	line index at or above which noise filling is used (ISO/IEC 23003-3:2012, 7.2).
sfbWidth[ ]	array containing the number of lines per sfb.
energy[ ]	energy of the signal per sfb.
energy_dmx[ ]	energy of the downmix signal per sfb.
spectrum[ ][ ]	MDCT spectrum for group g after noise filling (i.e. x_ac_invquant[g][ ][sfb][ ]).
window	indices of windows of group in scope, i.e. all windows belonging to group g.
Operational Constraints
SF can only be used in the right FD channel of a common FD channel pair element (CPE), i.e. a channel pair element transmitting a StereoCoreToolInfo() with common_window == 1. Besides, due to its signaling, SF can only be applied when noiseFilling == 1 in mpegh3daCoreConfig(). If either of the channels in the pair is in LPD core_mode, SF is not used, even if the right channel is in FD mode.
Decoding Process
The decoding of a joint-stereo coded FD channel with SF is executed in 3 sequential steps as follows.
Step 1: Decoding of stereo_filling
stereo_filling does not represent an independent bit-stream element but is derived from the noise-fill elements, noise_offset and noise_level, in a mpegh3daChannelPairElement() and the common_window flag in StereoCoreToolInfo(). If noiseFilling == 0 or common_window == 0 or the current channel is the left (first) channel in the element, stereo_filling is 0, and the stereo filling process ends. Otherwise,
if ((noiseFilling != 0) && 
    (noise_level == 0) && 
    (noise_offset != 0) && 
    (common_window != 0)) {
  stereo_filling = 1;
  noise_level    = (noise_offset & 28) / 4;
  noise_offset   = (noise_offset & 3) * 8;
}
else {
  stereo_filling = 0;
}

In other words, if stereo_filling == 1, noise_offset contains 5 bits of noise filling data, which are then rearranged. Since this operation alters the values of noise_level and noise_offset, it must be performed before the noise filling process as in ISO/IEC 23003-3:2012 subclause 7.2. Moreover, the above pseudo-code is not executed in the left channel of a mpegh3daChannelPairElement() or any other element.
Step 2: Calculation of downmix_prev
downmix_prev[ ], the spectral mix which is to be used for stereo filling, is identical to the dmx_re_prev[ ] used for the MDST spectrum estimation in complex stereo prediction (see ISO/IEC 23003-3:2012 subclause 7.7.2.3). This means that:
· All coefficients of downmix_prev[ ] must be zero if any of the channels of the frame and element with which the downmixing is performed – i.e. the frame before the currently decoded one – use core_mode == 1 (LPD) or if the channels use unequal transform lengths (split_transform == 1 or block switching to window_sequence == EIGHT_SHORT_SEQUENCE in only one channel).
· All coefficients of downmix_prev[ ] must be zero during the stereo filling process if the channel’s transform length changed from the last to the current frame (i.e. split_transform == 1 preceded by split_transform == 0, or window_sequence == EIGHT_SHORT_SEQUENCE preceded by window_sequence != EIGHT_SHORT_SEQUENCE, or vice versa resp.) in the current element or usacIndependencyFlag == 1.
· If transform splitting is applied in the channels of the previous or current frame, downmix_prev[ ] represents a line-by-line interleaved spectral downmix. See the transform splitting tool for details.
· If complex stereo prediction is not utilized in the current frame and element, pred_dir equals 0.
Consequently, the previous downmix only has to be computed once for both tools, saving complexity. The only difference between downmix_prev[ ] and dmx_re_prev[ ] in ISO/IEC 23003-3:2012 subclause 7.7.2 is the behavior when complex stereo prediction is not currently used, or when it is active but use_prev_frame == 0. In that case, downmix_prev[ ] is computed for stereo filling decoding according to ISO/IEC 23003-3:2012 subclause 7.7.2.3 even though dmx_re_prev[ ] is not needed for complex stereo prediction decoding and is, therefore, undefined/zero.
Step 3: Stereo Filling of Empty Scale Factor Bands
If stereo_filling == 1, the following procedure is carried out after the noise filling process in all initially empty scale factor bands sfb at or above noiseFillingStartOffset (see FD noise filling) and below max_sfb_ste, i.e. all bands in which all MDCT lines were quantized to zero. First, the energies energy[ ] and energy_dmx[ ] of the given sfb and the corresponding lines in downmix_prev[ ], respectively, are computed via sums of the squares:
energy_dmx[sfb] = 1e-8;
energy[sfb] = 0;
for (index = swb_offset[sfb]; index < swb_offset[sfb+1]; index++) {
  energy_dmx[sfb] += downmix_prev[window][index] * downmix_prev[window][index];
  spectrum[window][index] *= 4;
  energy[sfb] += spectrum[window][index] * spectrum[window][index];
}

Then, given sfbWidth[ ] containing the number of lines per sfb,
if (energy[sfb] < sfbWidth[sfb]) { 
  tmp = sqrt((sfbWidth[sfb] – energy[sfb]) / energy_dmx[sfb]);
  factor = 0;
  for (index = swb_offset[sfb]; index < swb_offset[sfb+1]; index++) {
    spectrum[window][index] += downmix_prev[window][index] * tmp;
    factor += spectrum[window][index] * spectrum[window][index];
  }
  if ((factor != sfbWidth[sfb]) && (factor > 0)) {
    factor = sqrt(sfbWidth[sfb] / (factor + 1e-8));
    for (index = swb_offset[sfb]; index < swb_offset[sfb+1]; index++) {
      spectrum[window][index] *= factor;
    }
  }
}

for the spectrum of each group window. Then the scale factors are applied on the resulting spectrum as in 7.3 of ISO/IEC 23003-3:2012, with the scale factors of the empty bands being processed like regular scale factors.
MS and Complex Prediction processing in IGF
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IGF stereo coding is applied to CPEs where igfIndependentTiling is zero and then replaces the channel-wise decoding in 5.5.4.4.8.
The IGF joint stereo tool is based on the joint stereo tool, the decoding after filling is done the same way, in comparison to independent patching the residuals are transformed from the already decoded left/right values to the appropriate mid/side values for bands where joint stereo is active.
Helper Elements
l_spec[ ]	Array containing the left channel spectrum of the respective channel pair.
r_spec[ ]	Array containing the right channel spectrum of the respective channel pair.
l_pMDCT_flat[ ]	Array containing the left channel whitened spectrum.
r_pMDCT_flat[ ]	Array containing the right channel whitend spectrum. 
l_E, r_E	Energies for the current subband, for the left and right channel respectively.
l_igf_sN[ ], r_igf_sN[ ]	vectors containing information on energies per scalefactor which have been not quantized to zero, for the left and right channel respectively.
l_igf_pN[ ], r_igf_pN[ ]	vector containing information on energies per scalefactor which will be copied from the source tile range, for the left and right channel respectively.
l_sb, r_sb	current IGF source subbands, for the left and right channel respectively.
l_val, r_val	left and right spectral values for the current IGF subband.
sfb_per_ms_band	Number of scalefactor bands per M/S band, dependent on igfUseHighRes.
SFB_PER_PRED_BAND	Number of scalefactor bands per complex prediction band, equal to 2.
dpcm_alpha_q_re[ ][ ]	Differentially coded real part of prediction coefficient of group g, scalefactor band sfb.
alpha_q[ ][ ]	real or imaginary parts of prediction coefficients.
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The decoding of MS and Complex Prediction is divided into 3 parts as follows.
Part 1: Decoding of prediction coefficients
Equal to the decoding of the complex prediction coefficients, but only for the real part as in ISO/IEC 23003-3:2012 subclause 7.7.2.3.2.
Part 2: Inverse quantization of prediction coefficients 
Equal to the inverse quantization of the complex prediction coefficients as in ISO/IEC 23003-3:2012 subclause 7.7.2.3.3.
Part 3: IGF apply joint stereo process 
If IGF is used in a joint stereo manner (igfIndependentTiling is false) the following calling sequnce shall be applied:
IGF_stereo(num_window_groups, num_windows, group_len) {
  If (!isShortWindow && igfUseWhitening) {
    igf_apply_whitening (l_spec, l_pMDCT_flat);
    igf_apply_whitening (r_spec, r_pMDCT_flat);
  }

  wg = wa = 0;
  for (g = 0; g < num_window_groups; g++) {
    l_igf_sN = {0};
    r_igf_sN = {0};
    l_igf_pN = {0};
    r_igf_pN = {0};
    for (w = 0; w < group_len[g]; w++) {
       IGF_calc_stereo(wg, group_len[g]);
       wg++;
    }
    for (w = 0; w < group_len[g]; w++) {
       IGF_apply_stereo(wa);
       wa++;
    }
  }
}

IGF_calc_stereo() is used to compute the value sets igf_sN and igf_pN respectively. The subroutine get_IGF_sb() is described in 5.5.4.4.6. Please note that igfCurrTileIdx[0] is a vector of length 4, describing the current tile indices of channel 0, and igfCurrTileIdx[1] is a vector of length 4 too, describing the current tile indices of channel 1 of the actual CPE element.
IGF_calc_stereo(ch, w, group_len) {
  igfInc = igfP;
  if (isShortBlock) igfInc = 1;
  for (sfb = m_igfStartSfb; sfb < m_igfStopSfb; sfb+=igfInc) {
    width = (swb_offset[MIN(sfb + igfInc, m_igfStopSfb)] - swb_offset[sfb]);
    
    r_E = 1.12E-38; l_E = 1.12E-38; 

    for (bin = 0; bin < width; bin++) {
      tb = swb_offset[sfb]+bin;
      l_E   += l_spec[w][tb] * l_spec[w][tb];
      r_E   += r_spec[w][tb] * r_spec[w][tb];
    }
    l_igf_sN[sfb] += l_E/group_len;
    r_igf_sN[sfb] += r_E/group_len;

    r_E = 1.12E-38; l_E = 1.12E-38; 
    for (bin = 0 ; bin < width ; bin++) {
      tb = swb_offset[sfb]+bin;
      l_sb = get_IGF_sb(igfCurrTileIdx[0], tb);
      r_sb = get_IGF_sb(igfCurrTileIdx[1], tb);
      l_val = l_spec[w][l_sb];
      r_val = r_spec[w][r_sb];
      if (!isShortWindow && igfUseWhitening) {
        l_tileIdx = get_IGF_tile_idx(tb);
        if (l_igf_WhiteningLevel[l_tileIdx] == 0) {
          l_val = l_pMDCT_flat[w][l_sb];
        }
        if (l_igf_WhiteningLevel[l_tileIdx] == 2) {
          l_val = randomSign()*pow(2,21);
        }
        r_tileIdx = get_IGF_tile_idx(tb);
        if (r_igf_WhiteningLevel[r_tileIdx] == 0) {
          r_val = r_pMDCT_flat[w][r_sb];
        }
        if (r_igf_WhiteningLevel[r_tileIdx] == 2) {
          r_val = randomSign()*pow(2,21);
        }
      }
      if (ms_used[g][sfb] || cplx_pred_used[g][sfb]) {
        tmp = l_val;
        l_val = 0.5 * (tmp + r_val);
        r_val = 0.5 * (tmp - r_val);
      }
      if (l_spec[w][tb] == 0) {
        l_E += l_val * l_val;
      }
      if (r_spec[w][tb] == 0) {
        r_E += r_val * r_val;
      }
    }
    l_igf_pN[sfb] += l_E/group_len;
    r_igf_pN[sfb] += r_E/group_len;
  }
}

IGF_apply_stereo will fill spectral gaps with previous calculated values:
IGF_apply_stereo(w) {
  igfInc = igfP;
  if (isShortBlock) igfInc = 1;
  for (sfb = m_igfStartSfb; sfb < m_igfStopSfb; sfb += igfInc) {
    width = (swb_offset[MIN(sfb + igfInc, m_igfStopSfb)] - swb_offset[sfb]);
    
    l_dE = l_igf_curr[sfb];
    r_dE = r_igf_curr[sfb];
    l_sN = l_igf_sN[sfb];
    r_sN = r_igf_sN[sfb];
    l_pN = l_igf_pN[ch][sfb];
    r_pN = r_igf_pN[ch][sfb];
    l_mN = (l_dE*l_dE) * width – l_sN;
    r_mN = (r_dE*r_dE) * width – r_sN;

  
    if (l_mN > 0 && l_pN > 0) {
      l_gn = min(10, sqrt(l_mN/l_pN));
    } else {
      l_gn = 0;
    }
    if (r_mN > 0 && r_pN > 0) {
      r_gn = min(10, sqrt(r_mN/r_pN));
    } else {
      r_gn = 0;
    }
    for (bin = 0; bin < width; bin++) {
      tb = swb_offset[sfb]+bin;
      l_sb= get_IGF_sb(igfCurrTileIdx[0], tb);
      r_sb= get_IGF_sb(igfCurrTileIdx[1], tb);
      l_val = l_spec[w][l_sb];
      r_val = r_spec[w][r_sb];
      if (!isShortWindow && igfUseWhitening) {
        l_tileIdx = get_IGF_tile_idx(tb);
        if (l_igf_WhiteningLevel[l_tileIdx] == 0) {
          l_val = l_pMDCT_flat[w][l_sb];
        }
        if (l_igf_WhiteningLevel[l_tileIdx] == 2) {
          l_val = randomSign()*pow(2,21);
        }
        r_tileIdx = get_IGF_tile_idx(tb);
        if (r_igf_WhiteningLevel[r_tileIdx] == 0) {
          r_val = r_pMDCT_flat[w][r_sb];
        }
        if (r_igf_WhiteningLevel[r_tileIdx] == 2) {
          r_val = randomSign()*pow(2,21);
        }
      }
      if (ms_used[g][sfb] || cplx_pred_used[g][sfb]) {
        tmp = l_val;
        l_val = 0.5 * (tmp + r_val);
        r_val = 0.5 * (tmp - r_val);
      }
      if (l_spec[w][tb] == 0) {
        l_spec[w][tb] = l_gn * l_val;
      }
      if (r_spec[w][tb] == 0) {
        r_spec[w][tb] = r_gn * r_val;
      }
    }
  }
}

After the filling process, the upmix is now applied from band subband swb_offset[m_igfStartSfb] to subband swb_offset[m_igfStopSfb] as described in 7.7 of ISO/IEC 23003-3:2012, replacing pred_dir by igf_pred_dir if prediction is active. Note that since only real prediction is used, no MDST has to be generated for these bands.

[bookmark: _Toc385337849]Audio Pre-Roll
General
The AudioPreRoll() syntax element is used to transmit audio information of previous frames along with the data of the present frame. The additional audio data can be used to compensate the decoder startup delay (pre-roll), thus enabling random access at stream access points (SAP) that make use of AudioPreRoll().
A mpegh3daExtElement() with the usacExtElementType of ID_EXT_ELE_AUDIOPREROLL shall be used to transmit the AudioPreRoll().
Semantics
configLen	Size of the configuration syntax element in bytes.
Config()	The decoder configuration syntax element. In the context of this standard this shall be the Mpegh3daConfig() as defined in 5.2.2.1. The Config() field may be transmitted to be able to respond to changes in the audio configuration (e.g. switching of streams).
numPreRollFrames	The number of pre-roll access units (AUs) transmitted as audio pre-roll data. The reasonable number of AUs depends on the decoder start-up delay.
auLen 	AU length in bytes.
AccessUnit()	The pre-roll AU(s).
NOTE	The pre-roll data carried in the extension element may be transmitted "out of band", i. e. the buffer requirements may not be satisfied
In order to use AudioPreRoll() for both random access and bitrate adaptation the following restrictions apply:
1. The first element of every frame shall be an extension element (mpegh3daExtElement) of type ID_EXT_ELE_AUDIOPREROLL.
1. The corresponding mpegh3daExtElement() shall be configured as described in Table 51.
1. Consequently, if pre-roll data is present, this mpegh3daFrame() shall start with the following bit sequence:
16. "1": usacIndependencyFlag.
16. "1": usacExtElementPresent (referring to audio pre-roll extension element).
16. "0": usacExtElementUseDefaultLength (referring to audio pre-roll extension element).
1. If no AudioPreRoll() is transmitted, the extension payload shall not be present (usacExtElementPresent = 0).
1. The pre-roll frames with index “0” shall be independently decodable, i.e. usacIndependencyFlag shall be set to “1”.
18. If an extension element (mpegh3daExtElement) of type ID_EXT_ELE_SAOC_3D is present, in the pre-roll frames with index “0” bsIndependencyFlag shall be set to “1” in the extension payload Saoc3DFrame(). 
[bookmark: _Ref369687595]Table 51 – Setup of mpegh3daExtElementConfig() for AudioPreRoll()
	Bitstream Field
	Value

	usacExtElementType
	ID_EXT_ELE_AUDIOPREROLL 

	usacExtElementConfigLength
	0

	usacExtElementDefaultLengthPresent
	0

	usacExtElementPayloadFrag
	0



Decoding Process
This section describes the decoding process for both random access / immediate play-out and bitrate adoption scenarios.
Random access and immediate play-out
Random access and immediate play-out is possible at every frame that utilizes the AudioPreRoll() structure as described in this subclause. The following pseudo-code describes the decoding process:
if(usacIndependencyFlag == 1){
  if(usacExtElementPresent == 1){
    
    /* In this case usacExtElementUseDefaultLength must be 0! */
    if(usacExtElementUseDefaultLength != 0) goto error;
    
    /* Not used */
    getmpegh3daExtElementPayloadLength();
    
    /* Check for presence of config and re-initialize if necessary */
    int configLen = getConfigLen();
    if(configLen > 0){
      config c = getConfig(configLen);
      ReConfigureDecoder(c);
      if (ID_EXT_ELE_SAOC_3D) { /*if SAOC 3D payload is present in the bitstream */
        config saoc3dConfig = getSaoc3dConfig(c);
        ReConfigureSaoc3dDecoder(saoc3dConfig);
      }
    }
    
    /* Get pre-roll AUs and decode, discard output samples */
    int numPreRollFrames = getNumPreRollFrames();
    for(auIdx = 0; auIdx < numPreRollFrames; auIdx++)
      int auLen = getAuLen();
      AU nextAU = getPreRollAU(auLen);
      if (ID_EXT_ELE_SAOC_3D) { /*if SAOC 3D payload is present in the bitstream */
        frame nextSaoc3dFrame = Saoc3DFrame(nextAU);
        [outSamplesFrame, saocInSamplesFrame] = DecodeAU(nextAU);
        saocOutSamplesFrame = Saoc3dDecode(saocInSamplesFrame, nextSaoc3dFrame);
        /* outSamplesFrame and saocOutSamplesFrame are discarded */
      } else {
        DecodeAU(nextAU);
      }
    }
  }
}
/* Internal decoder states are initialized at this point. Continue normal decoding */
Bitrate adaption
Bitrate adaption may be utilized by switching between different encoded representations of the same audio content. The AudioPreRoll() structure as described in this subclause may be used for that purpose. The decoding process in case of bitrate adaption is described by the following pseudo-code:
if(usacIndependencyFlag == 1){
  if(usacExtElementPresent == 1{
    
    /* In this case usacExtElementUseDefaultLength must be 0! */
    if(usacExtElementUseDefaultLength != 0) goto error;
    
    /* Not used */
    getmpegh3daExtElementPayloadLength();
    
    int configLen = getConfigLen();
    if(configLen > 0){
      config newConfig = getConfig(configLen);
      
      /* Configuration did not change, skip AudioPreRoll and continue decoding as normal */
      if(newConfig == currentConfig){
        SkipAudioPreRoll();
        goto finish;
      }

      /* Configuration changed, prepare for bitstream switching*/
      outSamplesFlush = FlushDecoder();
      ReConfigureDecoder(c);
      
      if (ID_EXT_ELE_SAOC_3D) { /*if SAOC 3D payload is present in the bitstream */
        int differentSaoc3dStream = 0;
        config newSaoc3dConfig = getSaoc3dConfig(newConfig);
        if (newSaoc3dConfig != currentSaoc3dConfig) {
          differentSaoc3dStream = 1;
          ReConfigureSaoc3dDecoder(newSaoc3dConfig);
        }
      }

      /* Get pre-roll AUs and decode, discard output samples */
      int numPreRollFrames = getNumPreRollFrames();
      for(auIdx = 0; auIdx < numPreRollFrames; auIdx++)
        int auLen = getAuLen();
        AU nextAU = getPreRollAU(auLen);
        /*if SAOC 3D payload is present in the bitstream */
        if (ID_EXT_ELE_SAOC_3D) && (differentSaoc3dStream == 1) { 
          frame nextSaoc3dFrame = Saoc3DFrame(); 
          [outSamplesFrame, saocInSamplesFrame] = DecodeAU(nextAU);
          saocOutSamplesFrame = Saoc3dDecode(saocInSamplesFrame, nextSaoc3dFrame);
          /* outSamplesFrame and saocOutSamplesFrame are discarded */
        } else {
          DecodeAU(nextAU);
        }
      }
      
      /* Get “regular” AU and decode */
      AU au = mpegh3daFrame();
      /*if SAOC 3D payload is present in the bitstream */
      if (ID_EXT_ELE_SAOC_3D) && (differentSaoc3dStream == 1) { 
        frame Saoc3dFrame = Saoc3DFrame();
        [outSamplesFrame, saocInSamplesFrame] = DecodeAU(au);
	     saocOutSamplesFrame = Saoc3dDecode(saocInSamplesFrame, Saoc3dFrame);    
      } else {
        outSamplesFrame = DecodeAU(au);
      }
      
      /* Apply crossfade only on the non-SAOC output samples*/
      for(i = 0; i < 128; i++){
        outSamples[i] = outSamplesFlush[i] * (1-i/127) +
                        outSamplesFrame[i] * (i/127)
      }
      for(i = 128; i < outputFrameLength; i++){
        outSamples[i] = outSamplesFrame[i];
      }
    }
  }
}

If a configuration change is detected by the decoder the following steps shall be applied:
1. Flush the internal decoder states and buffers (FlushDecoder()), i.e. decode a hypothetical access unit composed of all zero samples. Store the resulting output samples corresponding to non-SAOC transport channels (outSamplesFlush) in a temporary buffer.
1. Re-initialize the decoder with the new configuration (ReConfigureDecoder()).
1. If an SAOC 3D configuration change is presenthappened, re-initialize the SAOC 3D decoder with the new configuration (ReConfigureSaoc3dDecoder).
1. Decode all contained pre-roll AUs and discard the resulting output samples corresponding to non-SAOC transport channels.
The output samples corresponding to SAOC transport channels (saocInSamplesFrame), if anypresent, are further decoded together with the SAOC 3D payload (nextSaoc3dFrame) by the SAOC 3D decoder. Discard the output samples of the SAOC 3D decoder.
1. Decode the current AU (mpegh3daFrame()). Store the resulting output samples corresponding to non‑SAOC transport channels (outSamplesFrame) in a temporary buffer.
Decode the output samples corresponding to SAOC transport channels (saocInSamplesFrame), if present, together with the SAOC 3D payload (Saoc3dFrame).  Store the output of the SAOC 3D decoder in a temporary buffer (saocOutSamplesFrame).
1. To avoid switching artifacts apply a linear cross-fade of length 128 on outSamplesFlush and outSamplesFrame. Play-out the result of the cross-fade (outSamples) and the SAOC 3D decoder output (saocOutSamplesFrame).
If the decoded signal is available in the QMF domain, no cross-fade is applied.
[bookmark: _Toc211175455][bookmark: _Toc211175459][bookmark: _Ref259095263][bookmark: _Toc237684883][bookmark: _Ref370038008][bookmark: _Toc385337850]Dynamic Range Control and Loudness Processing
[bookmark: _Toc385337851]Introduction
This clause describes the decoding process of loudness metadata and dynamic range control (DRC) metadata. These are needed for different tasks including loudness monitoring and normalization, dynamic range control in noisy and quiet playback environments, or for other audio enhancement scenarios.
[bookmark: _Toc385337852]Description
Coding, transmission and application of loudness information and dynamic range control gains shall be based on ISO/IEC 23003-4.
[bookmark: _Toc385337853]Syntax
[bookmark: _Toc385337854]Loudness Metadata
The loudness metadata is located in a mpegh3daConfigExtension() as defined in Table 13. The content of loudnessInfoSet() is listed in Table 52. loudnessInfo() is defined in ISO/IEC 23003-4. Other syntax elements are either defined in 6.3.3 or in other parts of this standard. 
[bookmark: _Ref248401779]Table 52 – Syntax of loudnessInfoSet()
	Syntax
	No. of bits
	Mnemonic

	loudnessInfoSet ()
	
	

	{
	
	

		loudnessInfoCount;
	6
	uimsbf

		for (i=0; i<loudnessInfoCount; i++) {
	
	

			loudnessInfoType;
	1..2
	vlclbf

			if (loudnessInfoType == 2) {
	
	

				mae_groupID;
	7
	uimsbf

			} else if (loudnessInfoType == 3) {
	
	

				mae_groupCollectionID;
	5
	uimsbf

			}
	
	

			loudnessInfo();
	
	

		}
	
	

		loudnessInfoAlbumPresent;
	1
	uimsbf

		if (loudnessInfoAlbumPresent) {
	
	

			loudnessInfoAlbumCount;
	6
	uimsbf

			for (i=0; i< loudnessInfoAlbumCount; i++) {
	
	

				loudnessInfoType = 0;
	
	

				loudnessInfo();
	
	

			}
	
	

		}
	
	

	}
	
	



[bookmark: _Toc385337855]Dynamic Range Control Metadata
The dynamic range control (DRC) metadata is located in an mpegh3daExtElementConfig() and mpegh3daExtElement() defined in Table 12 and Table 44. The static DRC metadata is defined by mpegh3daUniDrcConfig() listed in Table 53. The dynamic DRC metadata is defined by uniDrcGain() listed in ISO/IEC 23003-4. drcCoefficients(), drcInstructions(), drcSampleRate, drcFrameSize, and baseChannelCount are defined in ISO/IEC 23003-4. Other syntax elements are either defined in 6.3.3 or in other parts of this standard. If loudnessInfoSetPresent == 1, the loudnessInfoSet() in mpegh3daExtElementConfig() takes precedence over a present loudnessInfoSet() in mpegh3daConfigExtension(). 
[bookmark: _Ref257231340]Table 53 – Syntax of mpegh3daUniDrcConfig()
	Syntax
	No. of bits
	Mnemonic

	mpegh3daUniDrcConfig()
	
	

	{
	
	

		drcSampleRate = samplingFrequencyFromUsacConfigsampling frequency as determined from mpegh3daConfig();

		drcFrameSizePresent;
	1
	uimsbf

		if (drcFrameSizePresent == 1) {
	
	

			drcFrameSize;
	15
	uimsbf

		}
	
	

		drcCoefficientsCount;
	3
	uimsbf

		drcInstructionsCount;
	6
	uimsbf

		mpegh3daUniDrcChannelLayout();
	
	

		for (i=0; i< drcCoefficientsCount; i++) {
	
	

			drcCoefficients();
	
	

		}
	
	uimsbf

		for (i=0; i< drcInstructionsCount; i++) {
	
	

			drcInstructionsType;
	1..2
	vlclbf

			if (drcInstructionsType == 2) {
	
	

				mae_groupID;
	7
	uimsbf

			} else if (drcInstructionsType == 3) {
	
	

				mae_groupCollectionID;
	5
	uimsbf

			}			
	
	

			drcInstructions();
	
	

		}
	
	

		loudnessInfoSetPresent;
	
	

		if (loudnessInfoSetPresent == 1) {
	1
	uimsbf

			loudnessInfoSet();
	
	

		}
	
	

	}
	
	



[bookmark: _Ref257231060]Table 54 – Syntax of mpegh3daUniDrcChannelLayout()
	Syntax
	No. of bits
	Mnemonic

	mpegh3daUniDrcChannelLayout ()
	
	

	{
	
	

		baseChannelCount  = 0;
	
	

		baseChannelCount += numAudioChannels; 	NOTE: from Signals3d()

		baseChannelCount += numAudioObjects; 	NOTE: from Signals3d()

		if (numSAOCTransportChannels) {
	
	

			baseChannelCount += NumInputSignals; 	NOTE: from SAOC3DSpecificConfig()

		}
	
	

		if (numHOATransportChannels) {
	
	

			baseChannelCount += NumOfHoaCoeffs 	NOTE: from HoaConfig()

		}
	
	

	}
	
	



[bookmark: _Ref257231373][bookmark: _Toc385337856]Data Elements
loudnessInfoType	This field signals if the following loudnessInfo() block refers to a fixed audio scene (default), to a specific audio element (mae_groupID), or to a combination of audio elements (mae_groupCollectionID).
Table 55 — Coding and meaning of loudnessInfoType
	loudnessInfoType (value)
	binary encoding
	codeword size [bits]
	meaning

	0
	‘0’
	1
	loudnessInfo() for fixed audio scene (default) 

	2
	‘10’
	2
	loudnessInfo() for mae_groupID

	3
	‘11’
	2
	loudnessInfo() for mae_groupCollectionID



drcInstructionType	This field signals if the following drcInstructions() block refers to a fixed audio scene (default), to a specific audio element (mae_groupID), or to a combination of audio elements (mae_groupCollectionID).
Table 56 — Coding and meaning of drcInstructionType
	drcInstructionType (value)
	binary encoding
	codeword size [bits]
	meaning

	0
	‘0’
	1
	drcInstructions() for fixed audio scene (default) 

	2
	‘10’
	2
	drcInstructions () for mae_groupID

	3
	‘11’
	2
	drcInstructions () for mae_groupCollectionID



[bookmark: _Toc385337857]Decoding Process
[bookmark: _Toc385337858]General
The decoding and application of dynamic range control gains and loudness normalization gains is basically in general identical to the specification in ISO/IEC 23003-4. Therefore, in the following subclauses only provide differences and specific MPEG-H related configuration details are provided. A high-level block diagram of the complete MPEG-H decoder processing chain including blocks for dynamic range control, loudness normalization and peak limiting is depicted in Figure 11. 
[image: MPEG-3D-Audio:meetingdocs:MPEG108_Input:our_input:Proposed_Text_on_DRC_in_MPEG_H:draft:MPEG-H_DRC_v04.pdf]
[bookmark: _Ref259096422]Figure 11 – MPEG-H decoder processing chain including blocks for dynamic range control, loudness normalization and peak limiting.

[bookmark: _Toc385337859]Dynamic Range Control
There are three DRC decoders (denoted by DRC-1, DRC-2, DRC-3) available in the MPEG-H decoder processing chain. All three decoders are identical and conform to ISO/IEC 23003-4. Each decoder addresses different tasks and scenarios. The decoded gains are applied by multiplication to the audio signal in the time- or frequency-domain as shown in Figure 11 Figure 1. 
The DRC-1 decoder addresses dynamic range control for individual channels, individual objects, SAOC 3D content and HOA content. Additionally, the DRC-1 decoder shall support multi-band DRC in the 64-band QMF-domain. Dependent on the availability of the QMF representation of the audio signal, single-band DRC gains should be either applied in the time-domain or in the QMF-domain. Further details on the DRC application to SAOC 3D and HOA content are defined in 6.4.5 and 6.4.6. 
The DRC-2 decoder addresses dynamic range control for the entire audio scene. The DRC-2 decoder shall also support multi-band DRC in the 64-band QMF-domain. Dependent on the availability of the QMF representation of the audio signal, single-band DRC gains should be either applied in the time-domain or in the QMF-domain. DRC sets designed for DRC-2 are restricted to one DRC channel group to be compatible to all target rendering layouts after the mixer module. Thus, the DRC-2 decoder is also best suited for simple DRC tasks especially in case of low-complexity requirements. 
Note that in MPEG-H multi-band DRC gains shall be always applied in the QMF-domain or in the SAOC processing band domain. The usage of the multi-band DRC filterbank defined in ISO/IEC 23003-4 is forbidden.
The DRC-3 decoder addresses dynamic range control and/or playback level dependent guided clipping prevention for specific target channel configurations. The DRC-3 decoder shall always operate in the time-domain. Thus, DRC-3 only supports single-band DRC. However, it shall support multiple DRC channel groups. Note that the gain application of DRC-2 and DRC-3 can be only combined if both operate in the time-domain. 
Due to general restrictions in ISO/IEC 23003-4, either one or two DRC decoders are active simultaneously to achieve one specific DRC effect. Note that the DRC-3 decoder is only suited for a restricted number of target configurations. In all cases the DRC decoders shall provide gains suitable for the present audio signal representation according to the downsampling and frequency mapping rules defined in ISO/IEC 23003-4. Note that if one DRC decoder is used to apply a non-DRC effect like,such as  e.g. fading or ducking, all three DRC decoders can be active simultaneously if the others additionally serve a specific DRC effect.
[bookmark: _Ref257231659][bookmark: _Toc385337860]Usage of downmixId in MPEG-H
According to ISO/IEC 23003-4, a field termed downmixId defines if a DRC set can be applied to a specific channel layout. In case of loudness metadata, downmixId refers to a specific measurement channel layout. The meaning of downmixId is uniquely defined by its attached downmix matrix in the downmixInstructions() payload. 
In MPEG-H, downmixInstructions() is replaced by downmixMatrixSet() as defined in Table 16, which allows to define a downmixId not only for transmitted downmix matrices, but also for default downmix matrices available on decoder side (format converter) and specific BRIR sets (binauralizer). According to ISO/IEC 23003-4, downmixId has two reserved values, namely 0x0 and 0x7F, which equally holds for MPEG-H.
A downmixId of 0x0 indicates that a DRC set shall be applied to the unmodified USAC MPEG-H 3D audio core decoder output by the DRC-1 decoder. On encoder side, the DRC sequences have to be sequentially assigned to the mixed-content multi-channel output of the MPEG-H 3D audio core USAC 3D decoder. For combined channel-, object-, SAOC- and HOA-content, the size of the DRC assignment loop is defined by the baseChannelCount, which is the sum of all channels, all objects, all internal SAOC 3D channels/objects and the square of HoaOrder+1, NumOfHoaCoeffs (see definition in Table 54). In case of loudness metadata a downmixId of 0x0 shall refer to the reference layout (referenceLayout) specified in UsacConfigmpegh3daConfig(). 
A downmixId of 0x7F indicates that a DRC set shall be applied by the DRC-2 decoder. In contrast to the description in ISO/IEC 23003-4, it is not allowed to freely choose the application position of DRC sets coded with a downmixId of 0x7F. For example, the clipping behavior for one specific downmix configuration will be different if a DRC set is applied before or after the format conversion. Note that DRC-2 sets can be always applied independent of the actual target layout. In case of loudness metadata a downmixId of 0x7F shall also refer to the reference layout (referenceLayout) specified in mpegh3daUsacConfig(). 
All other downmixId values indicate that a DRC set shall be applied to a specific target layout by the DRC-3 decoder. In case of loudness metadata all other downmixId values shall refer the target layout coded by downmixId.
The MPEG-H meaning of downmixId is again summarized in Table 57.
[bookmark: _Ref257230947]Table 57 – Meaning of downmixId in MPEG-H
	Metadata Type
	downmixId = 0x0
	downmixId = 0x7F
	downmixId != 0x0 && downmixId != 0x7F

	drcInstructions()
(DRC set)
	Shall be applied by DRC-1.
	Shall be applied by DRC-2.
	Shall be applied by DRC-3.

	loudnessInfo()
(loudness metadata)
	Measurement of reference layout.
	Measurement of reference layout.
	Measurement of target layout specified by downmixId.



[bookmark: _Toc385337861]DRC Set Selection Process
The DRC set selection process shall be implemented according to ISO/IEC 23003-4. Note that dmxInstructions() is replaced by downmixMatrixSet() in MPEG-H. downmixMatrixSet() is defined in Table 16 . 
If information on present audio elements is available (mae_groupID/mae_groupCollectionID), the pre-selection process specified in ISO/IEC 23003-4 shall be extended by two additional rules as listed in Table 58. If information on present audio elements is not available to the selection process, DRC sets and loudness metadata with defined group identifiers (mae_groupID/mae_groupCollectionID) shall be ignored by the DRC and loudness selection process. 
[bookmark: _Ref257232279]Table 58 — Requirements for DRC pre-selection (additional MPEG-H rules).
	Requirement
	Applicability
	Comment

	mae_groupCollectionID matches.
	If mae_groupCollectionID is present.
	The mae_groupCollectionID of the DRC set equals the present mae_groupCollectionID. If at least one DRC set has a matching mae_groupCollectionID, the pre-selection based on mae_groupID shall be omitted. If no DRC set has a matching mae_groupCollectionID, the pre-selection shall continue with the pre-selection based on mae_groupID. If several mae_groupCollectionID’s are present, the matching shall be done separately for each identifier.

	mae_groupID matches.
	If mae_groupID is present and no match was found in mae_groupCollectionID pre-selection.
	The mae_groupID of the DRC set equals the present mae_groupID. If no DRC set has a matching mae_groupID, all DRC sets with undefined mae_groupID and undefined mae_groupCollectionID are selected. If several mae_groupID’s are present, the matching shall be done separately for each identifier.



[bookmark: _Ref256931575][bookmark: _Toc385337862]DRC-1 for SAOC 3D Content

For SAOC 3D, the DRC-1 decoder shall produce one DRC gain  per QMF time slot n, per SAOC 3D processing band m and per internal SOAC 3D channel/object i. Appropriate down-sampling and frequency mapping rules are specified in ISO/IEC 23003-4.


The decoded DRC gains are always applied to the SAOC 3D processing bands. More precisely, the gains are applied on the SAOC 3D rendering matrix. The corresponding SAOC 3D rendering coefficients are defined for each parameter time slot  and processing band . Note that the SAOC 3D decoder has to provide the number of processing bands to the DRC decoder. The corresponding center frequencies can be derived from ISO/IEC 23003-1.

The final SAOC 3D DRC rendering matrix is computed by replacing the SAOC 3D unmodified rendering matrix  defined in 9.5.3.4 by:

,




where  of size  represents the DRC gain matrix associated with the channel-content input and  of size  represents the DRC gain matrix associated with the object-content input.


The DRC gain matrices are defined for each parameter time slot  and processing band and given by:

,
and

,


where  represents the last time slot in parameter set .
[bookmark: _Ref256931596][bookmark: _Toc385337863]DRC-1 for HOA Content
General
The DRC-1 gains for HOA are applied to the HOA signal before rendering and might be combined with rendering. The DRC-1 gains for HOA can be applied in the time-domain or in the QMF-domain.
Application of DRC-1 Gains in the Time-Domain
The DRC decoder shall provide  gain values  according to the number of HOA coefficient channels of the HOA signal .  is the HOA order.  
Application of DRC gains to the HOA signals:

where  is a vector of one time sample of HOA coefficients (), and  and its inverse   are matrices related to a Discrete Spherical Harmonics Transform (DSHT) optimized for DRC purposes. 
Informative remark: To decrease the computational load by  operations per sample, it can be advantageous to include the rendering step and calculate the loudspeaker signals directly by:    where  is the rendering matrix and    can be pre-computed.
If all gains  have the same value of , a single DRC channel group has been used. This case shall be flagged by the DRC-1 decoder because in this case the calculation of spatial filter is not needed and the calculation simplifies to 
Calculation of DSHT matrices for DRC-1 Gains
The matrices to determine the spatial filter  and its inverse   are calculated as follows:
A set of spherical positions   with   and related quadrature gains   are selected indexed by the HOA order  from F.20 Fehler! Verweisquelle konnte nicht gefunden werden. Fehler! Verweisquelle konnte nicht gefunden werden..  A mode matrix  related to these positions is calculated. A first prototype matrix is calculated by . A compact singular value decomposition is performed  and a new prototype matrix is calculated by:  This matrix is normalized by:  .  A row-vector  is calculated by  , where   is a row vector of  all zero elements except for the first element with a value of one.   denotes the sum of rows of . The optimized DSHT matrix  is now derived by 
Application of DRC-1 Gains in the QMF-Domain
The DRC-1 decoder provides a gain value  for every time frequency tile ( for  spatial channels. The gains for time slot n and frequency band  are arranged in . 
Multi-band DRC gains are applied in the QMF-domain. The processing steps are shown in Figure 12. The reconstructed HOA signal is transformed into spatial domain by (inverse DSHT):  , where  is a block of  HOA samples and   is a block of spatial samples matching the input time granularity of the QMF filter bank. Then the QMF analysis filter bank is applied. Let   denote the vector of spatial channels per time frequency tile . Then the DRC gains are applied:  To minimize the computational complexity the DSHT and rendering to loudspeaker channels are combined: ,  where   denotes the HOA rendering matrix. The QMF signals then can be fed to the mixer for further processing.  
[image: ]
[bookmark: _Ref383014370]Figure 12 – DRC-1 gain application for HOA in the QMF-domain combined with rendering step. 
If only a single DRC channel group is present, this should be flagged by the DRC-1 decoder because again computational simplifications are possible (Figure 13). In this case the gains in vector  all share the same value of . The QMF filter bank can be directly applied to the HOA signal and the gain  can be multiplied in the QMF-domain. The resulting loudspeaker channels in the QMF-domain after rendering are obtained by .
[image: ]
[bookmark: _Ref257463622]Figure 13 - DRC-1 gain application for HOA in the QMF-domain combined with rendering step for the simple case of a single DRC channel group.
Tables for the application DRC in HOA can be found in F.20
[bookmark: _Toc385337864]Loudness Normalization
Loudness normalization shall be done in the time-domain after DRC-3. The processing shall be done according to ISO/IEC 23003-4. Note that the normalization gain also depends on the result of the DRC set selection process as shown in Figure 11 Figure 1.
[bookmark: _Toc385337865]Peak Limiter 
The peak limiter is informative but strongly recommended. Further details are specified in the informative Annex D. If present Tthe peak limiter shall be placed at the very end of the audio processing chain. The processing shall be done according to ISO/IEC 23003-4. 
[bookmark: _Toc385337866]Time-Synchronization of DRC gains
According to ISO/IEC 23003-4, the decoded DRC gains are synchronized to the audio signal at the decoder. 
In MPEG-H, additional audio delay can occur on decoder side due to additional QMF transforms or other optional tools like, e.g. format conversion or binaural rendering. Therefore, the decoded DRC gains shall be synchronized to the lowest possible audio signal delay at their application location. If additional audio delay is present at their application location on decoder side, the decoded DRC gains shall be delayed after the DRC gain decoder for correct time-synchronization to the audio signal.
[bookmark: _Toc385337867]Object Metadata Decoding
[bookmark: _Toc385337868]Introduction
[bookmark: _Toc352734654][bookmark: _Toc352734847][bookmark: _Toc361740904][bookmark: _Toc415010913][bookmark: _Toc433012595][bookmark: _Toc438629470][bookmark: _Toc516649517][bookmark: _Toc209501424][bookmark: _Toc237684884][bookmark: _Toc237684887]This clause describes the decoding process of object metadata, i.e. geometrical data for audio objects.  These are needed to apply the object rendering described in 8.
[bookmark: _Toc385337869]Description
Metadata is conveyed for every audio object as given spatial positions (azimuth, elevation, and radius) and a linear gain at defined timestamps.
The units of decoded values for the components are given in Table 59.
[bookmark: _Ref369702422]Table 59 – Units of the decoded object metadata components
	component
	unit
	value range

	azimuth
	° (degree)
	-180; 180

	elevation
	° (degree)
	-90; 90

	radius
	m (meter)
	0; 1000

	gain
	none (linear)
	0; 1000



[bookmark: _Toc209501404][bookmark: _Toc272942330][bookmark: _Toc385337870]Syntax
[bookmark: _Toc368309635][bookmark: _Toc385337871]Object  Metadata Configuration
As mentioned in the USAC extension payload (see Table 12), the ObjectMetadataConfig() specifies the metadata decoding method.
Table 60 — Syntax of ObjectMetadataConfig()
	Syntax
	No. of bits
	Mnemonic

	ObjectMetadataConfig()
	
	

	{
	
	

		lowDelayMetadataCoding;
	1
	bslbf

		hasCoreLength;
	1
	bslbf

		if (!hasCoreLength) {
	
	

			frameLength;
	6
	uimsbf

		}
	
	

	}
	
	



If the flag lowDelayMetadataCoding is true, Low Delay object metadata are present in the bit stream and therefore, the Low Delay object metadata syntax must be used. Otherwise, efficient object metadata are present int the bit stream and the according syntax must be used.
[ed: consider renaming the object_metadata syntax elements to reflect low delay aspect]
[bookmark: _Ref370039353][bookmark: _Toc385337872]Efficient Object Metadata Decoding
Payloads for object_metadata()
Table 61 — Syntax of object_metadata()
	Syntax
	No. of bits
	Mnemonic

	object_metadata()
	
	

	{
	
	

		for (o=1:num_objects) {
	
	

			object_priority[o];
	3
	uimsbf

		}
	
	

		intracoded_object_metadata();
	
	

		has_differential_metadata;
	1
	bslbf

		if (has_differential_metadata) {
	
	

			differential_object_metadata();
	
	

		}
	
	

	}
	
	



Table 62 — Syntax of intracoded_object_metadata()
	Syntax
	No. of bits
	Mnemonic

	intracoded_object_metadata()

	{
	
	

		ifperiod;
	6
	uimsbf

		if (num_objects>1) {
	
	

			common_azimuth;
	1
	bslbf

			if (common_azimuth) {
	
	

				default_azimuth;
	8
	tcimsbf

			}
	
	

			else {
	
	

				for (o=1:num_objects) {
	
	

					position_azimuth[o];
	8
	tcimsbf

				}
	
	

			}
	
	

			common_elevation;
	1
	bslbf

			if (common_elevation) {
	
	

				default_elevation;
	6
	tcimsbf

			}
	
	

			else {
	
	

				for (o=1:num_objects) {
	
	

					position_elevation[o];
	6
	tcimsbf

				}
	
	

			}
	
	

			common_radius;
	1
	bslbf

			if (common_radius) {
	
	

				default_radius;
	4
	uimsbf

			}
	
	

			else {
	
	

				for (o=1:num_objects) {
	
	

					position_radius[o];
	4
	uimsbf

				}
	
	

			}
	
	

			common_gain;
	1
	bslbf

			if (common_gain) {
	
	

				default_gain;
	7
	tcimsbf

			}
	
	

			else {
	
	

				for (o=1:num_objects) {
	
	

					gain_factor[o];
	7
	tcimsbf

				}
	
	

			}
	
	

		}
	
	

		else {
	
	

			position_azimuth;
	8
	tcimsbf

			position_elevation;
	6
	tcimsbf

			position_radius;
	4
	uimsbf

			gain_factor;
	7
	tcimsbf

		}
	
	

	}
	
	



Table 63 — Syntax of differential_object_metadata()
	Syntax
	No. of bits
	Mnemonic

	differential_object_metadata() {
	
	

		bits_per_point;
	4
	uimsbf

		fixed_azimuth;
	1
	bslbf

		if (!fixed_azimuth) {
	
	

			for (o=1:num_objects) {
	
	

				flag_azimuth;
	1
	bslbf

				if (flag_azimuth) {
	
	

					num_points_azimuth = offset_data(bits_per_point);
	
	

					nbits_azimuth;
	3
	uimsbf

					for (p=1:num_points_azimuth) {
	
	

						differential_azimuth[o][p];
	nbits_azimuth + 2
	tcimsbf

					}
	
	

				}
	
	

			}
	
	

		}
	
	

		fixed_elevation;
	1
	bslbf

		if (!fixed_elevation) {
	
	

			for (o=1:num_objects) {
	
	

				flag_elevation;
	1
	bslbf

				if (flag_elevation) {
	
	

					num_points_elevation = offset_data(bits_per_point);
	
	

					nbits_elevation;
	3
	uimsbf

					for (p=1:num_points_elevation) {
	
	

						differential_elevation[o][p];
	nbits_elevation + 2
	tcimsbf

					}
	
	

				}
	
	

			}
	
	

		}
	
	

		fixed_radius;
	1
	bslbf

		if (!fixed_radius) {
	
	

			for (o=1:num_objects) {
	
	

				flag_radius;
	1
	bslbf

				if (flag_radius) {
	
	

					num_points_radius = offset_data(bits_per_point);
	
	

					nbits_radius;
	3
	uimsbf

					for (p=1:num_points_radius) {
	
	

						differential_radius[o][p];
	nbits_radius + 2
	tcimsbf

					}
	
	

				}
	
	

			}
	
	

		}
	
	

		fixed_gain;
	1
	bslbf

		if (!fixed_gain) {
	
	

			for (o=1:num_objects) {
	
	

				flag_gain;
	1
	bslbf

				if (flag_gain) {
	
	

					num_points_gain = offset_data(bits_per_point);
	
	

					nbits_gain;
	3
	uimsbf

					for (p=1:num_points_gain) {
	
	

						differential_gain[o][p];
	nbits_gain + 2
	tcimsbf

					}
	
	

				}
	
	

			}
	
	

		}
	
	

	}
	
	



Table 64 — Syntax of offset_data()
	Syntax
	No. of bits
	Mnemonic

	int offset_data(bits_per_point) {
	
	

		bitfield_syntax;
	1
	bslbf

		if (bitfield_syntax) {
	
	

			offset_bitfield;
	ifperiod*
	bslbf

			num_points = sum(offset_bitfield);
	
	

		}
	
	

		else {
	
	

			npoints;
	bits_per_point
	uimsbf

			num_points = npoints + 1;
	
	

			for (p=1:num_points) {
	
	

				foffset[p];
	ceil(log2(ifperiod*))
	uimsbf

			}
	
	

		}
	
	

		return num_points;
	
	

	}
	
	

	* Known from the intracoded object metadata for this current iframe_period
	
	



[bookmark: _Toc385337873]Object Metadata Decoding with Low Delay
Payloads for object metadata
Table 65 — Syntax of object_metadata()
	Syntax
	No. of bits
	Mnemonic

	object_metadata()
	
	

	{
	
	

		for (o=1:num_objects) {
	
	

			object_priority[o];
	3
	uimsbf

		}
	
	

		has_intracoded_object_metadata;
	1
	bslbf

		if (has_intracoded_object_metadata) {
	
	

			intracoded_object_metadata();
	
	

		}
	
	

		else {
	
	

			dynamic_object_metadata();
	
	

		}
	
	

	}
	
	



Table 66 — Syntax of intracoded_object_metadata()
	Syntax
	No. of bits
	Mnemonic

	intracoded_object_metadata()

	{
	
	

		if (num_objects>1) {
	
	

			fixed_azimuth;
	1
	bslbf

			if (fixed_azimuth) {
	
	

				default_azimuth;
	8
	tcimsbf

			}
	
	

			else {
	
	

				common_azimuth;
	1
	bslbf

				if (common_azimuth) {
	
	

					default_azimuth;
	8
	tcimsbf

				}
	
	

				else {
	
	

					for (o=1:num_objects) {
	
	

						position_azimuth[o];
	8
	tcimsbf

					}
	
	

				}
	
	

			}
	
	

			fixed_elevation;
	1
	bslbf

			if (fixed_elevation) {
	
	

				default_elevation;
	6
	tcimsbf

			}
	
	

			else {
	
	

				common_ elevation;
	1
	bslbf

				if (common_elevation) {
	
	

					default_elevation;
	6
	tcimsbf

				}
	
	

				else {
	
	

					for (o=1:num_objects) {
	
	

						position_elevation[o];
	6
	tcimsbf

					}
	
	

				}
	
	

			}
	
	

			fixed_radius;
	1
	bslbf

			if (fixed_radius) {
	
	

				default_radius;
	4
	uimsbf

			}
	
	

			else {
	
	

				common_radius;
	1
	bslbf

				if (common_radius) {
	
	

					default_radius;
	4
	uimsbf

				}
	
	

				else {
	
	

					for (o=1:num_objects) {
	
	

						position_ radius[o];
	4
	uimsbf

					}
	
	

				}
	
	

			}
	
	

			fixed_gain;
	1
	bslbf

			if (fixed_gain) {
	
	

				default_gain;
	7
	tcimsbf

			}
	
	

			else {
	
	

				common_gain;
	1
	bslbf

				if (common_gain) {
	
	

					default_gain;
	7
	tcimsbf

				}
	
	

				else {
	
	

					for (o=1:num_objects) {
	
	

						gain_factor[o];
	7
	tcimsbf

					}
	
	

				}
	
	

			}
	
	

		}
	
	

		else {
	
	

			position_azimuth;
	8
	tcimsbf

			position_elevation;
	6
	tcimsbf

			position_radius;
	4
	uimsbf

			gain_factor;
	7
	tcimsbf

		}
	
	

	}
	
	



Table 67 — Syntax of dynamic_object_metadata()
	Syntax
	No. of bits
	Mnemonic

	dynamic_object_metadata() {
	
	

		flag_absolute;
	1
	bslbf

		for (o=1:num_objects) {
	
	

			has_object_metadata;
	1
	bslbf

			if (has_object_metadata) {
	
	

				single_dynamic_object_metadata( flag_absolute );
	
	

			}
	
	

		}
	
	

	}
	
	



Table 68 — Syntax of dynamic_object_metadata()
	Syntax
	No. of bits
	Mnemonic

	single_dynamic_object_metadata (  flag_absolute ) {
	
	

		if ( flag_absolute ) {
	
	

			if (!fixed_azimuth*) {
	
	

				position_azimuth;
	8
	tcimsbf

			}
	
	

			if (!fixed_elevation*) {
	
	

				position_elevation;
	6
	tcimsbf

			}
	
	

			if (!fixed_radius*) {
	
	

				position_radius;
	4
	uimsbf

			}
	
	

			if (!fixed_gain*) {
	
	

				gain_ factor;
	7
	tcimsbf

			}
	
	

		}
	
	

		else {
	
	

			nbits;
	3
	uimsbf

			if (!fixed_azimuth*) {
	
	

				flag_azimuth;
	1
	bslbf

				if (flag_azimuth)  {
	
	

					position_azimuth_difference;
	num_bits
	tcimsbf

				}
	
	

			}
	
	

			if (!fixed_elevation*) {
	
	

				flag_elevation;
	1
	bslbf

				if (flag_elevation)  {
	
	

					position_elevation_difference;
	min(num_bits,7)
	tcimsbf

				}
	
	

			}
	
	

			if (!fixed_radius*) {
	
	

				flag_radius;
	1
	bslbf

				if (flag_radius)  {
	
	

					position_radius_difference;
	min(num_bits,5)
	tcimsbf

				}
	
	

			}
	
	

			if (!fixed_gain*) {
	
	

				flag_gain;
	1
	bslbf

				if (flag_gain)  {
	
	

					gain_factor_difference ;
	min(num_bits,8)
	tcimsbf

				}
	
	

			}
	
	

	Note: num_bits = nbits + 2;
* Given by the preceding intracoded_object_metadata()-frame
	
	



[bookmark: _Toc366757785][bookmark: _Toc385337874]Data Structure
[bookmark: _Toc385337875]Definition of ObjectMetadataConfig() payloads
lowDelayMetadataCoding	indicates whether Object Metadata Decoding with Low Delay is used. Otherwise, Efficient Object Metadata are present in the bit stream.
hasCoreLength	indicates whether the core coder works with the same number of audio samples per channel as the object metadata coder.
frameLength	if the frame length (in audio samples) of the core coder does not match the time resolution of the object metadata coder, the frameLength defines the size (in audio samples) of a time slice for which a set of object metadata is available.
[bookmark: _Toc385337876]Efficient Object Metadata Decoding
Definition of object metadata payloads
Definition of object_metadata() payloads
object_priority	Reserved
has_differential_metadata	indicates whether differential object metadata are present in the bit stream.
Definition of intracoded_object_metadata() payloads
ifperiod	defines the number of audio frames for which OAM data are processed in intracoded_object_metadata() minus 1 (iframe_period = ifperiod + 1).
common_azimuth	indicates whether a common azimuth angle is used for all objects.
default_azimuth	defines the value of the common azimuth angle.
position_azimuth	if there is no common azimuth value, a value for each object is transmitted.
common_elevation	indicates whether a common elevation angle is used for all objects.
default_elevation	defines the value of the common elevation angle.
position_elevation	if there is no common elevation value, a value for each object is transmitted.
common_radius	indicates whether a common radius value is used for all objects.
default_radius	defines the value of the common radius.
position_radius	if there is no common radius value, a value for each object is transmitted.
common_gain	indicates whether a common gain value is used for all objects.
default_gain	defines the value of the common gain factor.
gain_factor	if there is no common gain value, a value for each object is transmitted.
position_azimuth	if there is only one object, this is its azimuth angle.
position_elevation	if there is only one object, this is its elevation angle.
position_radius 	if there is only one object, this is its radius.
gain_factor	if there is only one object, this is its gain factor.
Definition of differential_object_metadata() payloads
bits_per_point	number of bits required to represent number of polygon points (used in offset_data()).
fixed_azimuth	flag indicating whether the azimuth value is fixed for all objects.
flag_azimuth	flag per object indicating whether the azimuth value changes for this iframe_period.
nbits_azimuth	how many bits are required to represent the differential value minus 2.
differential_azimuth	value of the difference between the linearly interpolated and  the actual value.
fixed_elevation	flag indicating whether the elevation value is fixed for all objects.
flag_elevation	flag per object indicating whether the elevation value changes for this iframe_period.
nbits_elevation 	how many bits are required to represent the differential value minus 2.
differential_elevation	value of the difference between the linearly interpolated and the actual value.
fixed_radius 	flag indicating whether the radius is fixed for all objects.
flag_radius 	flag per object indicating whether the radius changes for this iframe_period.
nbits_radius	how many bits are required to represent the differential value minus 2.
differential_radius 	value of the difference between the linearly interpolated and the actual value.
fixed_gain	flag indicating whether the gain factor is fixed for all objects.
flag_gain	flag per object indicating whether the gain radius changes for this iframe_period.
nbits_gain	how many bits are required to represent the differential value minus 2.
differential_gain	value of the difference between the linearly interpolated and the actual value.
Definition of offset_data() payloads
bitfield_syntax	flag indicating whether a vector with polygon time slice indices is present in the bit stream.
offset_bitfield	bool array containing ifperiod flags for each time slice whether they are polygon points or not.
npoints	number of polygon points minus 1 (num_points = npoints + 1).
foffset	time slice indices of the polygon points within iframe_period (frame_offset = foffset+1).
[bookmark: _Toc352734656][bookmark: _Toc352734849][bookmark: _Toc361740906][bookmark: _Toc415010915][bookmark: _Toc433012597][bookmark: _Toc438629472][bookmark: _Ref503261768][bookmark: _Toc516649519][bookmark: _Toc209501426][bookmark: _Toc237684886][bookmark: _Toc368309637]Decoding process
Each audio object has associated object metadata that describe the temporal change of its position, given in spherical coordinates [azimuth, elevation, radius], and a linear gain that is applied by the object renderer. Each of these four components is generally described by a discrete time signal y(n). In the following, the discrete time index n is denoted as time slice to avoid confusion with the sample index of the audio signal that is sampled at a much greater sampling rate.
The general idea of encoding the object metadata is to segment y(n) into periods of a fixed length and to approximate these periods by means of polygons. Each transmitted frame contains at least one new polygon point, i.e. the final value. The oam decoder always stores the last polygon point of a frame and uses it as a starting point for the consecutive frame. This is important for the first frame since there is no previous value in this case.
Each OAM frame consists of iframe_period time slices which correspond to the audio frame length (per channel) of the core coder each (in case, hasCoreLength is true). 
Decoding the transmitted Data


First, as shown in Figure 14 by the dashed line, the values in between the last intracoded object metadata value  and the value of the current intracoded object metadata are calculated for each component (azimuth, elevation, radius, and gain) using linear interpolation. 


In case differential object metadata values are present in the bit stream, these are also used to calculate interpolated values. Those describe the difference between the interpolated intracoded object metadata values and the desired object metadata values. Hence, the interpolated output valuesare retrieved by summing up the components of the interpolated intracoded object metadata and – if present in the bit stream - the interpolated differential object metadata for each time slice(depicted in Figure 14 as the dotted line).








In Figure 14, there are num_points = 2 new polygon points given by differential_object_metadata() and the iframe_period is 14. The given polygon points are denoted as, , , and  which can be values for azimuth, elevation, radius, and gain. Each of these has a distinct time slice index which is denoted as, ,  and. The indices of these given values are referred to as p = {0,1,2,3}.




The corresponding payload element name for time indices in case of differential object metadata is frame_offset[p] = foffset[p] +1 for p = {1, 2}. The indices  to  represent the scale of the output time axis. For each  an interpolated  has to be calculated, as shown in Figure 15. 


[image: ]
[bookmark: _Ref369243808][bookmark: _Ref369243792]Figure 14 — Interpolation in between the given polygon points. The dashed line depicts the first step (interpolation of intracoded object metadata). The dotted line shows the result of both interpolation steps.
The positions (x-values) of the polygon points can be either given in form of a sequence of integer values of the size num_points, indicated by bitfield_syntax = 0. But they can also be given by the boolean array offset_bitfield, indicated by bitfield_syntax = 1. In the latter case, offset_bitfield[n] = 1 indicates the presence of a polygon point at time slice n. An offset_bitfield has the length of ifperiod time slices since the first polygon point is always known from the previous frame and polygon point for the last time slice is given by the intracoded object metadata.

The formula for the linear interpolation process is:





where xin is the current time index within the period [xp, xp+1] that is specified by the frame_offset values. This yields the output depicted in Figure 15.
[image: ]
[bookmark: _Ref369244897]Figure 15 — Interpolated output values yi for each time slice xi.

Post Processing of Object Metadata
Scaling of Object Metadata
Apply scaling factors to revert encoder scaling of the input data for each component of every object.
descale_multidata()
{
	for (o = 0; o < num_objects; o++)
		azimuth[o] = azimuth[o] * 1.5;

	for (o = 0; o < num_objects; o++)
		elevation[o] = elevation[o] * 3.0;

	for (o = 0; o < num_objects; o++)
		radius[o] = pow(2.0, (radius[o] / 3.0)) / 2.0;

	for (o = 0; o < num_objects; o++)
		gain[o] = pow(10.0, (gain[o] - 32.0) / 40.0);
}

Limiting the Object Metadata
Apply limiting to the decoded values to keep the values within a valid range.
limit_range()
{
	minval = -180;
	maxval =  180;
	for (o = 0; o < num_objects; o++)
		azimuth[o] = MIN(MAX(azimuth[o], minval), maxval);

	minval = -90;
	maxval =  90;
	for (o = 0; o < num_objects; o++)
		elevation[o] = MIN(MAX(elevation[o], minval), maxval);

	minval =    0;
	maxval = 1000;
	for (o = 0; o < num_objects; o++)
		radius[o] = MIN(MAX(radius[o], minval), maxval);

	minval =    0;
	maxval = 1000;
	for (o = 0; o < num_objects; o++)
		gain[o] = MIN(MAX(gain[o], minval), maxval);
}

[bookmark: _Ref370039376][bookmark: _Toc385337877]Object Metadata Decoding with Low Delay
Definition of object metadata payloads
Definition of object_metadata() payloads
object_priority	Reserved
has_intracoded_object_metadata 	indicates whether the current frame is intracoded or differentially coded.
Definition of intracoded_object_metadata() payloads
fixed_azimuth	flag indicating whether the azimuth value is fixed for all object and not transmitted in case of dynamic_object_metadata().
default_azimuth	defines the value of the fixed or common azimuth angle.
common_azimuth	indicates whether a common azimuth angle is used is used for all objects.
position_azimuth	if there is no common azimuth value, a value for each object is transmitted.
fixed_elevation	flag indicating whether the elevation value is fixed for all object and not transmitted in case of dynamic_object_metadata().
default_elevation	defines the value of the fixed or common elevation angle.
common_elevation	indicates whether a common elevation angle is used for all objects.
position_elevation	if there is no common elevation value, a value for each object is transmitted.
fixed_radius 	flag indicating whether the radius is fixed for all object and not transmitted in case of dynamic_object_metadata().
default_radius	defines the value of the fixed or common radius.
common_radius	indicates whether a common radius value is used for all objects.
position_radius	if there is no common radius value, a value for each object is transmitted.
fixed_gain	flag indicating whether the gain factor is fixed for all object and not transmitted in case of dynamic_object_metadata().
default_gain	defines the value of the fixed or common gain factor.
common_gain	indicates whether a common gain value is used for all objects.
gain_factor	if there is no common gain value, a value for each object is transmitted.
position_azimuth	if there is only one object, this is its azimuth angle.
position_elevation	if there is only one object, this is its elevation angle.
position_radius 	if there is only one object, this is its radius.
gain_factor	if there is only one object, this is its gain factor.
Definition of dynamic_object_metadata() payloads
flag_absolute	indicates whether the values of the components are transmitted differentially or in absolute values.
has_object_metadata	indicates whether there are object metadata present in the bit stream or not.
Definition of single_dynamic_object_metadata() payloads
position_azimuth	the absolute value of the azimuth angle if the value is not fixed.
position_elevation	the absolute value of the elevation angle if the value is not fixed.
position_radius	the absolute value of the radius if the value is not fixed.
gain_factor	the absolute value of the gain factor if the value is not fixed.
nbits	how many bits are required to represent the differential values.
flag_azimuth	flag per object indicating whether the azimuth value changes.
position_azimuth_difference	difference between the previous and the active value.
flag_elevation	flag per object indicating whether the elevation value changes.
position_elevation_difference	value of the difference between the previous and the active value.
flag_radius 	flag per object indicating whether the radius changes.
position_radius_difference	difference between the previous and the active value.
flag_gain	flag per object indicating whether the gain radius changes.
gain_factor_difference	difference between the previous and the active value.
Decoding process
Object Metadata with Low Delay is a modified DPCM procedure. It allows switching between differentially and absolutely coded values.
Decoding the transmitted Data
In case intracoded object metadata are present in the bit stream, the object metadata values can be read from the bit stream directly. If dynamic object metadata are in the bit stream, the object metadata values can be read from the bit stream as well when flag_absolute is true. Otherwise, the following equation is to be used


where y denotes the output value, d is the difference value read from the bit stream and n is the active time slice for each component.
Post Processing of Object Metadata
Scaling of Object Metadata
Apply scaling factor to revert encoder scaling of the input data for each component of every object.
descale_multidata()
{
	for (o = 0; o < num_objects; o++)
		azimuth[o] = azimuth[o] * 1.5;

	for (o = 0; o < num_objects; o++)
		elevation[o] = elevation[o] * 3.0;

	for (o = 0; o < num_objects; o++)
		radius[o] = pow(2.0, (radius[o] / 3.0)) / 2.0;

	for (o = 0; o < num_objects; o++)
		gain[o] = pow(10.0, (gain[o] - 32.0) / 40.0);
}

Limiting the Object Metadata
Apply limiting to the decoded values for each component of every object to keep the values within a valid range.
limit_range()
{
	minval = -180;
	maxval =  180;
	for (o = 0; o < num_objects; o++)
		azimuth[o] = MIN(MAX(azimuth[o], minval), maxval);

	minval = -90;
	maxval =  90;
	for (o = 0; o < num_objects; o++)
		elevation[o] = MIN(MAX(elevation[o], minval), maxval);

	minval =    0;
	maxval = 1000;
	for (o = 0; o < num_objects; o++)
		radius[o] = MIN(MAX(radius[o], minval), maxval);

	minval =    0;
	maxval = 1000;
	for (o = 0; o < num_objects; o++)
		gain[o] = MIN(MAX(gain[o], minval), maxval);
}
[bookmark: _Ref370141910][bookmark: _Toc385337878]Object Rendering
[bookmark: _Toc237684888][bookmark: _Toc369597098][bookmark: _Toc385337879]Description
The audio object rendering is carried out as a process converting/rendering the object based audio signals into a channel based representation.
[bookmark: _Toc237684889][bookmark: _Toc369597099][bookmark: _Toc385337880]Terms and Definitions

			Unit length vector representing the direction of the audio object.

			Unit length vector representing the direction of loudspeaker n.


			Triplet of unit length loudspeaker vectors  in matrix form.

			Object position: radius in [m].

			Object position: elevation angle in [°].

			Object position: azimuth angle in [°].

			Audio object linear gain factor.

			Matrix with audio samples of all objects (rows: 			  				objects, columns: samples).

			Matrix with speaker samples (rows: speakers, columns: samples).
[bookmark: result_box5]Audio object			Audio + Metadata.
VBAP			Vector Base Amplitude Panning [1].
[bookmark: _Ref385244848][bookmark: _Toc385337881]Input data

[bookmark: result_box6]Audio objects consist of audio data  and metadata. Metadata is conveyed for every audio object at defined timestamps. The Metadata consists of the following data per audio object:



Spherical coordinates with radius  [m], elevation angle  [°] and azimuth angle  [°]:

	 (see Figure 16).

Linear gain factor .
[image: spherical_coordinates]
[bookmark: _Ref369597666]Figure 16 — Interpolation in between polygon points

Additionally the following definitions apply:

Forward looking (frontal direction) is along the x-axis: . 

Azimuth () angle increases with counter clockwise rotation.

		Left hemisphere.

 	Right hemisphere.

 		Upper hemisphere.

 		Lower hemisphere.
The calculations described here require Cartesian coordinates. For this purpose, the coordinates are converted according to:

	
[bookmark: _Toc369597100][bookmark: _Toc385337882]Processing
[bookmark: _Toc383592105][bookmark: _Toc383592106][bookmark: _Toc383592107][bookmark: _Toc383592108][bookmark: _Toc383592109][bookmark: _Toc383592112][bookmark: _Toc383592113][bookmark: _Toc383592115][bookmark: _Toc383592116][bookmark: _Toc383592182][bookmark: _Toc383592254][bookmark: _Toc383592461][bookmark: _Toc383592462][bookmark: _Toc383592464][bookmark: _Toc383592465][bookmark: _Toc383592466][bookmark: _Toc383592467][bookmark: _Toc383592468][bookmark: _Toc383592469][bookmark: _Toc383592470][bookmark: _Toc383592471][bookmark: _Toc383592472][bookmark: _Toc383592474][bookmark: _Toc383592475][bookmark: _Toc383592476][bookmark: _Toc383592477][bookmark: _Toc383592478][bookmark: _Toc383592479][bookmark: _Toc383592483][bookmark: _Toc383592484][bookmark: _Toc383592485][bookmark: _Toc383592510][bookmark: _Toc383592513][bookmark: _Toc383592514][bookmark: _Toc383592517][bookmark: _Toc383592520][bookmark: _Toc383592521][bookmark: _Toc383592522][bookmark: _Toc383592524][bookmark: _Toc383592528][bookmark: _Toc383592530][bookmark: _Toc383592531][bookmark: _Toc383592533][bookmark: _Toc383592537][bookmark: _Toc383592538][bookmark: _Toc383592539][bookmark: _Toc383592540][bookmark: _Toc383592541][bookmark: _Toc383592544][bookmark: _Toc383592545][bookmark: _Toc383592547][bookmark: _Toc383592548][bookmark: _Toc383592550][bookmark: _Toc383592551][bookmark: _Toc383592553][bookmark: _Toc383592554][bookmark: _Toc383592556][bookmark: _Toc383592558][bookmark: _Toc383592560][bookmark: _Toc383592561][bookmark: _Toc383592562][bookmark: _Toc383592563][bookmark: _Toc382919436][bookmark: _Toc385337883]Imaginary Loudspeakers
Not all considered loudspeaker setups are complete 3D setups that cover all solid angles. Hence, with regard to the triangulation that is needed for the VBAP rendering algorithm, there are voids in the triangulation surface which can be seen as invalid solid angles.  These voids are filled by adding imaginary loudspeakers. The object renderer first computes the panning gains for the extended set of loudspeakers which also includes these imaginary loudspeakers (see section 8.4.3). In a second step, a downmix matrix is applied to the gain vector which equally distributes the sound energy of each imaginary loudspeaker among his neighbors by applying a weighting factor of 1/sqrt(N) where N is the number of neighbors. Finally the down-mixed gain vector is power normalized.
For all other setups iImaginary loudspeakers are added according to the following rules where the tolerances defined in Table 84 are taken into account to match actual speaker positions (i.e. actual azimuth, elevation angles) to the channel labels used in the following rules to define sub-sets of loudspeakers:
1. If no loudspeaker exists above 45° elevation, add an imaginary loudspeaker at [0°,90°].
2. If no loudspeaker exists below -45° elevation, add an imaginary loudspeaker at [0°,-90°].
3. If exactly one of the loudspeaker sub-sets 
· sub-set A: {CH_M_L030, CH_M_R030, CH_U_L030, CH_U_R030} 
or
· sub-set B: {CH_M_L045, CH_M_R045, CH_U_L045, CH_U_R045}
exists, but no other loudspeaker exists within the quadrilateral defined by the actual positions of the 4 sub-set loudspeakers, then add an imaginary loudspeaker at the mean azimuth angle of those 4 sub-set loudspeakers and the mean elevation angle of those 4 sub-set loudspeakers, where the mean angles shall be derived from the actual azimuth and elevation angles of those 4 sub-set loudspeakers.
4. If exactly one of the sub-sets 
· sub-set C: {CH_M_L110, CH_M_R110, CH_U_L110, CH_U_R110}
or 
· sub-set D: {CH_M_L135, CH_M_R135, CH_U_L135, CH_U_R135} 
exists, but no other loudspeaker exists within the quadrilateral defined by the actual positions of the 4 sub-set loudspeakers, then add an imaginary loudspeaker at the mean azimuth angle of those 4 sub-set loudspeakers plus 180° and the mean elevation angle of those 4 sub-set loudspeakers, where the mean angles shall be derived from the actual azimuth and elevation angles of those 4 sub-set loudspeakers.
5. Sort all loudspeakers with an absolute elevation angle smaller than or equal to 45° according to their azimuth angle and fill gaps greater than 160° by the minimum number of equally spaced imaginary speakers with 0° elevation.
[bookmark: _Toc382919437][bookmark: _Ref385268493][bookmark: _Toc385337884]Dividing the Loudspeaker Setup into a Triangle Mesh
Triangle Meshes for 22.2, 10.1, 8.1, and 5.1General
The following speaker configurations are supported by tabulated triangle meshes: 5.1, 8.1, 10.1 and 22.2. All other setups are handled by the triangulation algorithm decribed in 8.4.2.2.
To calculate 3D VBAP, a triangulation of the convex hull around the given loudspeaker setup is required. Within this hull loudspeaker triplets are defined that consist of three adjacent speaker positions in 3D space. Each loudspeaker triplet must fulfil the following requirements in order to generate useful results:
The vectors from the listener position to the triangle corners must be linearly independent.
Must not intersect with any other loudspeaker triplet.
The triangulation in 3D space can be done in several different ways and there are many ways to divide a loudspeaker setup into triangles. The presented solution uses a manually defined triangulation. A list with all defined triangulation triplets is given in , , and  with reference to loudspeaker definitions given in Fehler! Verweisquelle konnte nicht gefunden werden.. Please note that the additional triangles for the areas covered by the imaginary loudspeakers are defined by the imaginary loudspeaker and two successive neighbors.

[image: triangulation]
Figure 17 —Triangulation example – 
Triplet tabc defined by Spka, Spkb, Spkc, vectors.

[bookmark: _Ref382838622]Automatic Triangulation
For other setups then 22.2, 10.1, or 8.1 tThe triangulation mesh is determined by means of a Delaunay triangulation algorithm. As all vertices, i.e. the loudspeaker positions, are located on a sphere surface, the Delaunay solution can be found by calculating the convex hull of the given vertex set. The automatic triangulation algorithm uses the QuickHull algorithm which was extended to yield left-right and front-back symmetric triangulation meshes:
1. Sort all vertices in ascending order according to the vertex index specified in Listing 1.
2. Choose any sub-set of the vertices with a convex hull as initial polyhedron.
3. Extend the initial polyhedron sequentially by the sorted list of vertices. If the new vertex is located outside of the polyhedron or on its surface, replace those surface patches by the triangles that are defined by the new vertex and the border (the outer edges) of those surface patches.
For numerical reasons, we test if the distance from the vertex to a surface is greater than -1µm. As a result, the lastly added vertex defines the sub-division of a planar polyeder into triangles.

	vertex_index.m

	
 function index = vertex_index(azimuth, elevation)

 azimuth   = 180 - mod(180 - azimuth, 360);
 elevation = max(-90, min(90, elevation));
 idx_azi   = round(abs(90 - abs(azimuth)));
 idx_ele   = round(abs(elevation));
 index     = idx_azi + 181 * idx_ele;



[bookmark: _Ref382840519]Listing 1: Computation of the Vertex Index

[bookmark: _Ref382907149][bookmark: _Toc382919438][bookmark: _Toc385337885]Rendering Algorithm
The rendering is based on VBAP. For 2D and 3D setups there are slightly different approaches. The algorithm and descriptions are based on [1]. As all setups are extended by imaginary loudspeakers to a complete 3D setup, the latter is used for rendering.
2D VBAP
Definitions
In a planar loudspeaker setup all speakers are in the same plane as the listener. For this purpose a pair-wise amplitude panning method is used. An object-based audio signal is applied to a maximum of two loudspeakers at a time and no special triangulation is needed. All calculations are performed pairwise for all adjacent speaker pairs. An example is given in .
Table 69 — Example for a Planar Loudspeaker SetupLoudspeaker pairs for 5.1.
	n
	First Speaker
	Second Speaker

	1
	CH_M_000
	CH_M_L030

	2
	CH_M_L030
	CH_M_L110

	3
	CH_M_L110
	CH_M_R110

	4
	CH_M_R110
	CH_M_R030

	5
	CH_M_R030
	CH_M_000



Calculations for one pair of adjacent loudspeakers




Let andbe the unit length 2D position vectors with the directions of a loudspeaker pair
relative to the listener position, and  a unit length vector with the direction of the audio object. For the calculation of  the z-value of the object positions is ignored.




Now  is expressed as the linear weighted sum of  and : 
[image: 2d_co]
Figure 18 —Audio object described as linear combination of speaker vectors


Factors  and  are used in VBAP as gain factors applied to the audio object signals:

	

To calculate  the loudspeaker pair can be formulated as a two-dimensional vector base.

E.g. Matrix notation of vector base for speaker 1 and 2, consisting of the two unit vectors pointing to the speakers:

	

Audio object vector  expressed as a linear combination in matrix notation:

	
The gain factors can be calculated, transposing the formula to:

	
[bookmark: _Ref383164882]Result selection
Only the gain factors of one single loudspeaker pair are chosen as the result. The optimum gain factors maximize the result for:
1. number of positive gain factors
1. 

highest smallest gain factor (max. ) 
Where 1) has a greater priority than 2).
Finally a power normalization is applied to the gain factors:

	

To accomplish this, the gain factors are scaled accordingly. In addition, the audio object’s linear gain factor  is applied: 

	
3D VBAP
A triplet-wise panning is used for 3D setups, and as all setups are extended by imaginary loudspeakers, if necessary, triplet-wise panning is used for all setups. For this, the audio object is applied to a maximum of three loudspeakers. The calculations for 3D VBAP are substantially similar to the 2D calculations. All calculations are performed for each loudspeaker triplet. The triplets are defined by the loudspeaker triangulation (see 8.4.2).


The audio object vector  is expressed as a linear combination of the loudspeaker triplet :

	
In matrix form and transposed, gain factors can be calculated using the formula:

	

Gain factors are calculated for all loudspeaker triplets. The optimum result gain factors are selected using the same approach as described for 2D VBAP. Finally, the audio object’s gain factor  is applied and scaling/normalization is performed:

	
[bookmark: _Ref385244434]Audio Processing
The audio processing function transforms audio objects into channel based speaker signals.



Let  be the audio samples of all objects in matrix representation with dimension - number of objects, - number of audio samples per audio processing block. Each row contains the audio samples of one object.

	



Let  be the gain factors of all audio objects and loudspeakers in matrix representation with dimension - number of objects, - number of speakers. Each column contains all gain factors for one audio object.

	
Note: There will be a maximum of three non-zero values per column.

Matrix  contains the output samples that can be calculated with the formula:

	

Each row in  contains the output audio samples for one speaker.
Gain Factor Crossfading

Metadata is conveyed for every audio object at defined timestamps. To get a smooth transition when metadata changes, the matrices are interpolated linear between adjacent timestamps and applied on a per sample basis. 
Audio Processing in QMF-Domain

Alternatively, object rendering can be performed in QMF-domain using QMF-transformed audio signals. In QMF-domain, the input data is given by a three-dimensional matrix with complex elements where o denotes the object index, n denotes the slot index, and k denotes the band index. As the VBAP panning gains are frequency independent, object rendering in QMF-domain is realized analogously to the time domain processing,
Yk = GXk  ,
where

	Xk =
denotes the two-dimensional sub-set of the input data matrix that belongs to QMF band k. The matrix

	Yk = 

denotes the two-dimensional sub-set of the output data matrix with complex elements where s denotes the speaker index, n denotes the slot index, and k denotes the band index. The gain factor cross-fading is realized analogously to the time domain processing with the only difference that the cross-fading relates to slot indices instead of sample indices.
Time-Alignment
Object rendering requires object metadata side information embedded into a MPEG-H 3D audio USAC 3D bitstream (see Clause 6) in combination with the audio signals which are related to each audio object. Both data streams must be time-aligned for proper rendering. This time-alignment is realized by the encoder such that the first frame of the current decoded object metadata, which specifies the metadata values over a period of iframe_period frames, is applied to the current audio data frame. 

[bookmark: _Toc367183714][bookmark: _Toc368295655][bookmark: _Toc368309642][bookmark: _Toc385337886]SAOC 3D 
[bookmark: _Toc198441719][bookmark: _Toc255558664][bookmark: _Toc256000493][bookmark: _Toc368309643][bookmark: _Toc385337887]Description
Spatial Audio Object Coding 3D Audio reproduction (SAOC 3D) is based on MPEG SAOC technology ISO/IEC 23003-2:2010. The SAOC 3D technology is used to enable interactive rendering functionality for audio object-based content.
[bookmark: _Toc383592570][bookmark: _Toc383592571][bookmark: _Toc383592572][bookmark: _Toc383592574][bookmark: _Toc383592575][bookmark: _Toc383592576][bookmark: _Toc383592577][bookmark: _Toc383592578][bookmark: _Toc252805969][bookmark: _Toc252869035][bookmark: _Toc253739575][bookmark: _Toc253745535][bookmark: _Toc254342015][bookmark: _Toc254342174][bookmark: _Toc255215883][bookmark: _Toc255216167][bookmark: _Toc255216249][bookmark: _Toc255216332][bookmark: _Toc255216413][bookmark: _Toc255216495][bookmark: _Toc255216576][bookmark: _Toc255216657][bookmark: _Toc255217419][bookmark: _Toc385337888]Definitions
K	is the number of hybrid subbands.
L	is the number of parameter sets.

	is the number of used decorrelators. 

	is the number of processing bands. 

	is the number of QMF subbands depending on sampling frequency.

	is the number of SAOC 3D input signals (channels and objects).

	is the number of SAOC 3D input channels.

	is the number of SAOC 3D input audio objects.

	is the number of SAOC 3D downmix signals (channel and object signals).

	is the number of SAOC 3D downmix signals for channel inputs.

	is the number of SAOC 3D downmix signals object inputs.

	is the number of premix channels.

	is the number of SAOC 3D output channels.



	is the time and frequency variant rendering matrix, defined for all parameter time slots  and all processing bands.



	is a vector with the hybrid subband (encoder) input channels, defined for all time slots  and all hybrid subbands .



	is a vector with the hybrid subband (decoder) input signals (downmix), defined for all  time slots  and all hybrid subbands .



	is a vector with the (decoder) output hybrid subband signals, which are fed into the hybrid synthesis filter banks, defined for all time slots  and all hybrid subbands .



	is a vector with the parametrically estimated hybrid subband signals, defined for all time slots  and all hybrid subbands .



	is a vector with the decorrelated hybrid subband signals, defined for all time slots  and all hybrid subbands .

	is the downmixing matrix.

	is the three dimensional matrix holding the dequantized, and mapped DMG data for every input signal, downmix channel, and parameter set. 


	is the four dimensional matrix holding the dequantized, and mapped IOC data for every input channel pair, every parameter set, and  bands.


	is the three dimensional matrix holding the dequantized, and mapped OLD data for every input channel, every parameter set, and  bands.


	is the main diagonal of matrix .


	is a matrix containing the elements from the main diagonal of matrix  on the main diagonal and zero values on the off-diagonal positions.


	is a constant used to avoid division by zero .
SAOC 3D	Spatial Audio Object Coding for 3D Audio reproduction.

[bookmark: _Ref238269136][bookmark: _Toc255558674][bookmark: _Toc256000503][bookmark: _Toc385337889]Delay and synchronization
The SAOC 3D decoder introduces a delay when processing the time domain signal coming from a downmix decoder. The transmission of the SAOC 3D side information with respect to the transmission of the coded downmix signal is done in such a manner that there is no need to further delay the downmix signal before the SAOC processing.
[bookmark: _Toc367183716][bookmark: _Toc368295657][bookmark: _Toc368309649][bookmark: _Toc174266778][bookmark: _Toc385337890] Syntax
[bookmark: _Toc238561154][bookmark: _Toc367183717][bookmark: _Toc368295658][bookmark: _Toc368309650][bookmark: _Toc385337891]Payloads for SAOC 3D
Table 70 – Syntax of SAOC3DSpecificConfig()
	Syntax
	No. of bits
	Mnemonic

	SAOC3DSpecificConfig()
	
	

	{
	
	

		bsSamplingFrequencyIndex;
	4
	uimsbf

		if ( bsSamplingFrequencyIndex == 15 ) {
	
	

			bsSamplingFrequency;
	24
	uimsbf

		}
	
	

		bsFreqRes;
	3
	uimsbf

		bsFrameLength;
	7
	uimsbf

		bsNumSaocDmxChannels;
	5
	uimsbf

		bsNumSaocDmxObjects;
	5
	uimsbf

		bsDecorrelationMethod;
	1
	uimsbf

		NumInputSignals = 0;
	
	

		if (bsNumSaocDmxChannels > 0) {
	
	

			saocChannelLayout = SpeakerConfig3d();
	
	

			NumSaocChannels = SAOC3DgetNumChannels(saocChannelLayout);			 Note 1

			NumInputSignals += NumSaocChannels;
	
	

		}
	
	

		bsNumSaocObjects;
	8
	uimsbf

		NumInputSignals += bsNumSaocObjects;
	
	

		for ( i=0; i<NumSaocChannels; i++ ) {
	
	

			bsRelatedTo[i][i] = 1;
	
	

			for( j=i+1; j< NumSaocChannels; j++ ) {
	
		

				bsRelatedTo[i][j];
	1
	uimsbf

				bsRelatedTo[j][i] = bsRelatedTo[i][j];
	
	

			}
	
	

		}
	
	

		for ( i=NumSaocChannels; i<NumInputSignals; i++ ) {
	
	

			for( j=0; j<NumSaocChannels; j++ ) {
	
		

				bsRelatedTo[i][j] = 0;
	
	

				bsRelatedTo[j][i] = 0;
	
	

			}
	
	

		}
	
	

		for ( i=NumSaocChannels; i<NumInputSignals; i++ ) {
	
	

			bsRelatedTo[i][i] = 1;
	
	

			for( j=i+1; j<NumInputSignals; j++ ) {
	
		

				bsRelatedTo[i][j];
	1
	uimsbf

				bsRelatedTo[j][i] = bsRelatedTo[i][j];
	
	

			 }
	
	

		}
	
	

		bsOneIOC;
	1
	uimsbf

		reserved
	3
	

		bsSaocDmxMethod;
	1
	uimsbf

		if (bsSaocDmxMethod == 1) {
	
	

			NumPremixedChannels = SAOC3DgetNumChannels(referenceLayout);
	
	Note 2,3

		}
	
	

		bsDualMode;
	1
	uimsbf

		if (bsDualMode) {
	
	

			bsBandsLow;
	5
	uimsbf

			bsBandsHigh = numBands;
	
	Note 1

		} else {
	
	

			bsBandsLow = numBands;
	
	

		}
	
	

		bsDcuFlag;
	1
	uimsbf

		if ( bsDcuFlag == 1 )  {
	
	

			bsDcuMandatory;
	1
	uimsbf

			bsDcuDynamic;
	1
	uimsbf

			if ( bsDcuDynamic == 0 ) {
	
	

				bsDcuMode;
	1
	uimsbf

				bsDcuParam;
	4
	uimsbf

			}
	
	

		} else {
	
	

			bsDcuMandatory = 0;
	
	

			bsDcuDynamic = 0;
	
	

			bsDcuMode = 0;
	
	

			bsDcuParam = 0;
	
	

		}
	
	

		ByteAlign();
	
	

		SAOC3DExtensionConfig();
	
	

	}
	
	

	Note 1:	numBands is defined in Table 33 in ISO/IEC 23003-2:2010.
Note 2:	SAOC3DgetNumChannels() defines the number of SAOC 3D input channels from data obtained by the bitstream syntax element SpeakerConfig3d().
Note 3:	referenceLayout is defined in 5.3.2.



Table 71 – Syntax of SAOC3DgetNumChannels()
	Syntax
	No. of bits
	Mnemonic

	SAOC3DgetNumChannels(Layout)
	
	Note 1

	{
	
	

		numChannels = numSpeakers;
	
	Note 2

		for (i = 0; i < numSpeakers; i++) {
	
	

			if (Layout.isLFE[i] == 1) {
	
	

				numChannels = numChannels - 1;
	
	

			}
	
	

		}
	
	

		return numChannels;
	
	

	}
	
	

	Note 1:	The function SAOC3DgetNumChannels() returns the number of available non-LFE channels numChannels.
Note 2:	numSpeakers is defined in Syntax of SpeakerConfig3d().



Table 72 – Syntax of Saoc3DFrame()
	Syntax
	No. of bits
	Mnemonic

	Saoc3DFrame()
	
	

	{
	
	

		SAOC3DFramingInfo();
	
	

		bsIndependencyFlag;
	1
	uimsbf

		for( i=0; i<NumInputSignals; i++ ) {
	
	

			idxOLD[i] = EcDataSaoc(OLD, i, numBands);
	
	

		}
	
	

		k=0;
	
	

		iocIdx1=0;
	
	

		iocIdx2=0;
	
	

		for( i=0; i<NumInputSignals; i++ ) {
	
	

		idxIOC[i][i] = 0;
	
	

			for( j=i+1; j<NumInputSignals; j++ ) {
	
	

				if ( bsRelatedTo[i][j] != 0 ) {
	
	

					if ( bsOneIOC == 0 ) {
	
	

						idxIOC[i][j] = EcDataSaoc(IOC, k, numBands);
	
	

						k++;
	
	

					} else {
	
	

						if ( k == 0 ) 
	
	

							idxIOC[i][j] = EcDataSaoc(IOC, k, numBands);
	
	

							k++;
	
	

							iocIdx1=i;
	
	

							iocIdx2=j;
	
	

						} else {
	
	

							idxIOC[i][j] = idxIOC[iocIdx1][iocIdx2];
	
	

						}
	
	

					}
	
	

				} else {
	
	

					idxIOC[i][j] = 5;
	
	

				}
	
	

			idxIOC[j][i] = idxIOC[i][j];
	
	

			}
	
	

		}
	
	

		if (bsNumSaocDmxObjects==0)  {
	
	

			for( i=0; i< bsNumSaocDmxChannels; i++ ) {
	
	

				idxDMG[i] = EcDataSaoc(DMG, 0,  NumInputSignals);
	
	

			}
	
	

		}  else {
	
	

			dmgIdx = 0;
	
	

			for( i=0; i<bsNumSaocDmxChannels; i++ ) {
	
	

				idxDMG[i] = EcDataSaoc(DMG, 0, NumSaocChannels);
	
	

			}
	
	

			dmgIdx = bsNumSaocDmxChannels;
	
	

			if (bsSaocDmxMethod == 0) {
	
	

				for( i=dmgIdx; i<dmgIdx + bsNumSaocDmxObjects; i++ ) {
	
	

					idxDMG[i] = EcDataSaoc(DMG, 0,  bsNumSaocObjects);
	
	

				}
	
	

			}  else {
	
	

				for( i=dmgIdx; i<dmgIdx + bsNumSaocDmxObjects; i++ ) {
	
	

					idxDMG[i] = EcDataSaoc(DMG, 0, NumPremixedChannels);
	
	

				}
	
	

			}
	
	

		}
	
	

		if ( bsDcuFlag == 1 ) && ( bsDcuDynamic == 1 ) {
	
	

			if ( bsIndependencyFlag == 1 ) {
	
	

				bsDcuDynamicUpdate = 1;
	
	

			} else {
	
	

				bsDcuDynamicUpdate;
	1
	uimsbf

			}
	
	

			if ( bsDcuDynamicUpdate == 1 ) {
	
	

				bsDcuMode;
	1
	uimsbf

				bsDcuParam;
	4
	uimsbf

			}
	
	

		}
	
	

		ByteAlign();
	
	

	      SAOC3DExtensionFrame();
	
	

	}
	
	

	Note 1:	numBands is defined in Table 33 in ISO/IEC 23003-2:2010.



Table 73 – Syntax of SAOC3DFramingInfo()
	Syntax
	No. of bits
	Mnemonic

	SAOC3DFramingInfo()
	
	

	{
	
	

		bsFramingType;
	1
	uimsbf

		bsNumParamSets;
	3
	uimsbf

		if (bsFramingType) {
	
	

			for (ps=0; ps<numParamSets; ps++) {
	
	Note 1

				bsParamSlot[ps];
	nBitsParamSlot
	uimsbf
Note 2

			}
	
	

		}
	
	

	}
	
	

	Note 1:	numParamSets is defined by numParamSets = bsNumParamSets + 1.
Note 2: nBitsParamSlot is defined according to nBitsParamSlot = ceil(log2(numSlots)).



[bookmark: _Toc383592655][bookmark: _Toc383592675][bookmark: _Toc367183721][bookmark: _Toc368295662][bookmark: _Toc368309654][bookmark: _Toc385337892]Definition of SAOC 3D payloads
The following tables contain definitions of used SAOC 3D bitstream syntactic elements and variables:

Table 74 – Definitions of SAOC 3D syntactic elements
	SAOC 3D syntactic elements
	Definition*)
	Reference

	EcDataSaoc()
	EcDataSaoc()
	Tabel 22

	SAOC3DExtensionConfig()
	SAOCExtensionConfig()
	Tabel 6

	SAOC3DExtensionConfigData(bsSaoc3DExtType)
	N/A
	

	SAOC3DExtensionFrame()
	SAOCExtensionFrame()
	Tabel 27

	SAOC3DExtensionFrameData(bsSaoc3DExtType)
	N/A
	

	ByteAlign()
	ByteAlign()
	

	*) defined in ISO/IEC 23003-2:2010
	
	



Table 75 – Definitions of SAOC 3D bitsream variables
	SAOC 3D bitsream variables
	Definition*)

	bsSamplingFrequencyIndex
	bsSamplingFrequencyIndex

	bsSamplingFrequency
	bsSamplingFrequency

	bsFrameLength
	bsFrameLength

	bsDcuFlag
	bsDcuFlag

	bsOneIOC
	bsOneIOC

	bsDcuMode
	bsDcuMode

	bsDcuMandatory
	bsDcuMandatory

	bsDcuDynamic
	bsDcuDynamic

	bsDcuDynamicUpdate	
	bsDcuDynamicUpdate	

	bsDcuParam
	bsDcuParam

	bsIndependencyFlag
	bsIndependencyFlag

	bsRelatedTo
	bsRelatedTo

	*) defined in ISO/IEC 23003-2:2010
	
	



saocChannelLayout	Defines the input channel layout for which SAOC 3D parameters are transmitted.

NumSaocChannels	Defines the number of input channels for which SAOC 3D parameters are transmitted.
bsNumSaocObjects	Defines the number of input objects for which SAOC 3D parameters are transmitted.
[bookmark: _Toc174266776]bsNumSaocDmxChannels
		Defines the number of SAOC 3D downmix channels for channel based content.
bsNumSaocDmxObjects	
		Defines the number of SAOC 3D downmix channels for object based content.
Table 76 – Definition of decoding mode
	bsNumSaocDmxObjects
	Mode
	Meaning

	0
	Combined
	
All input signals are combined into  channels

	1 … 31
	Independent
	

The channel-based and object-based signals are downmixed independently into  and  channels



bsSaocDmxMethod	Defines the downmix matrix mode and number of premixing channels according to:
[bookmark: _Ref369716394]Table 77 – bsSaocDmxMethod
	bsSaocDmxMethod
	Mode
	Meaning

	0
	Direct
	Downmix matrix is defined directly by DMGs.

	1
	Premixing
	Downmix matrix is defined as a product of the matrix obtained from the dequantized DMGs and a premixing matrix obtained from the spatial information of the input audio objects and the reference layout. The Premixing mode can be used only if the reference layout is defined in mpegh3daConfig().



NumPremixedChannels

		Defines the number of premixing channels () for the input audio objects.
bsDecorrelationMethod
		Defines the decorrelation method according to:
[bookmark: _Ref369716415]Table 78 – bsDecorrelationMethod
	bsDecorrelationMethod
	Meaning

	0
	Energy compensation mode

	1
	Covariance adjustment mode



bsDualMode	Indicates if decoding operates in different modes for a low and high band range according to:
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]Table 79 – bsDualMode
	bsDualMode
	Meaning

	0
	Same decoding mode for full band range (i.e., no separate high band range)

	1 
	Different decoding modes for low and high band ranges



bsBandsLow	Defines the number of parameter bands for which decoding should be processed according to energy prediction based scheme. 
		Prediction based scheme should be used for the parameter band range:
0 <= pb < bsTttBandsLow.	
		Energy based scheme should be used for the parameter band range: bsBandsLow <= pb < numBands.
bsSaocExtType	Indicates type of the SAOC 3D extension data according to:
[bookmark: _Ref133226908][bookmark: _Ref196121219][bookmark: _Ref367192974]Table 80 – bsSaoc3DExtType
	bsSaoc3DExtTyp
	Meaning
	SAOC3DExtensionFrameData()

	0 ... 7
	N/A
	present

	8 ... 15
	N/A
	not present


[bookmark: _Toc383581635][bookmark: _Toc383641504]
[bookmark: _Toc368295663][bookmark: _Toc368309655][bookmark: _Toc385337893]  SAOC 3D processing
[bookmark: _Ref252869005][bookmark: _Toc255558680][bookmark: _Toc329183219][bookmark: _Ref370309794][bookmark: _Toc385337894]Compressed data stream decoding and dequantization of SAOC 3D data
The dequantization of the DMG, OLD, IOC parameters follows the same rules as defined in ISO/IEC 23003-2:2010.
[bookmark: _Toc385337895]Time/frequency tranforms
The hybrid filterbank described in ISO/IEC 23003-1:2007 is applied.
[bookmark: _Toc255558684][bookmark: _Toc256000513][bookmark: _Toc368295666][bookmark: _Toc368309658][bookmark: _Toc385337896]Signals and parameters
Dimensionality of signals and parameters




The audio signals are defined for every time slot  and every hybrid subband . The corresponding SAOC 3D parameters are defined for each parameter time slot  and processing band . The subsequent mapping between the hybrid and parameter domain is specified by Table A.31 of ISO/IEC 23003-1:2007. Hence, all calculations are performed with respect to the certain time/band indices and the corresponding dimensionalities are implied for each introduced variable.




The data available at the SAOC 3D decoder consists of the multi-channel downmix signal , the covariance matrix ,  the rendering matrix  and downmix matrix .
Object parameters




The covariance matrix  of size  with elements  represents an approximation of the original signal covariance matrix  and is obtained from the OLD and IOC parameters as

	.
Here, the dequantized object parameters are obtained as


	,	.
[bookmark: _Ref369270865]Downmix matrix





The downmix matrix  applied to the input audio signals  determines the downmix signal as . The downmix matrix  of size  is obtained as:

.
· “Direct mode” (bsSaocDmxMethod == 0):


The matrix  of size  is defined as: 

	. 
· “Premixing mode” (bsSaocDmxMethod == 1):


The matrix  of size  is defined as:

 	.


The premixing matrix of size  is received as an input to the SAOC 3D decoder from the object renderer as a function of decoded object metadata and channel configuration of the reference output format (number and geometric positions of premixed channels, “referenceLayout”).



The matrix   of size  for the “direct mode” or of size for the “premixing mode” is obtained from the DMG parameters as:

	.
Here, the dequantized downmix parameters are obtained as:

	.
[bookmark: _Ref259096794][bookmark: _Toc368295667][bookmark: _Ref368305354][bookmark: _Ref368305359][bookmark: _Toc368309659]Rendering matrix



The rendering matrix  applied to the input audio signals  determines the target rendered output .


The rendering matrix  of size  is given by:

	,




where the matrix   of size  is associated with input channels and matrix  of size  is associated with input objects.

The rendering matrix  is received as an input to the SAOC 3D decoder from the format converter as a function of the: channel configuration of the channels for which SAOC 3D parameters are transmitted (number and geometric positions of SAOC 3D input channels, saocChannelLayout) and the reproduction layout which is received as input to the SAOC 3D decoder:.

	,

where matrix  is defined in 10.2.2. The downmix matrix MDMX is not necessarily identical to the one which is used for regular audio channels, but is just computed in the same way by the format converter

The rendering matrix  is received as an input to the SAOC 3D decoder from the object renderer as a function of decoded object metadata and the reproduction layout which is received as input to the SAOC 3D decoder.:

,

where matrix is defined in 8.4.3.3.

Target output covariance matrix



The covariance matrix  of size  representing an approximation of the target output signal covariance  is obtained as:

.
[bookmark: _Toc370310464][bookmark: _Ref368061676][bookmark: _Toc368295669][bookmark: _Toc368309661][bookmark: _Toc385337897]SAOC 3D decoding 
Overview
The method for obtaining an output signal using SAOC 3D parameters and rendering information is described. The basic structure of the SAOC 3D decoder consisting of the parameter processor and the downmix processor is depicted in Figure 19.
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[bookmark: _Ref379974785]Figure 19 – Structure of the SAOC 3D decoder

SAOC 3D downmix processor
The detailed structure of the SAOC 3D downmix processor is depicted in Figure 20:






decor.















[bookmark: _Ref379974879]Figure 20 - Structure of the downmix processor



The output signal  is computed from the signals  and  as:

.




The  signals and  are calculated from the downmix signal  and the decorrelated signal  as:

,

.
[bookmark: _Toc367183726][bookmark: _Ref367786357][bookmark: _Ref368059544][bookmark: _Ref368059551][bookmark: _Toc368295670][bookmark: _Toc368309662]	Parametric unmixing matrix 

The parametric unmixing matrix  is obtained according to the “decoding mode” as:
· „Combined decoding mode“ (bsNumSaocDmxObjects == 0):

 .



The matrix  of size  for  is derived according to 9.5.4.2.4.
· „Independent decoding mode“ (bsNumSaocDmxObjects >= 1):



	, , . 





The channel based covariance matrix  of size  and the object based covariance matrix   of size  are obtained from the covariance matrix  by selecting only the corresponding main diagonal blocks:

.

The object-channel cross-covariance matrix  is not evaluated.





The channel based downmix matrix  of size  and the object based downmix matrix   of size  are obtained from the downmix matrix  by selecting only the corresponding main diagonal blocks:

.






The matrices  of size  for  and  of size  for  are derived according to 9.5.4.2.4.
	Decorrelation 

The pre-processing matrix  is defined for different output configurations in Annex B. 

The post-processing matrix  is obtained as:

.

The matrix  is derived according to 9.5.4.2.4.



The decorrelated signals  are created from the decorrelator described in 6.6.2 of ISO/IEC 23003-1:2007, with bsDecorrConfig == 0 and a decorrelator index  according to Table B.1 and Table B.2 in Annex B. Hence, the function  denotes the decorrelation process:

.

[bookmark: _Toc211076099][bookmark: _Toc211175514][bookmark: _Toc211175515][bookmark: _Toc210486841][bookmark: _Toc210568113][bookmark: _Toc370310466][bookmark: _Toc237684895]	Mixing matrix 
The following covariance matrices notation is introduced:


- The matrix  representing the covariance of the parametrically estimated signal  and defined as:

.


- The matrix  representing the covariance matrix of the decorrelated signal  and defined as:

.

- The matrix  describing difference between the target output covariance and the covariance of the parametrically estimated signals and computed as:

	.


The mixing matrix  of size  is given by:

	.


The limitation matrix of size  is given by: 

,



where  is a constant used to limit the amount of decorrelated component added to the output signals. The matrix  representing the estimated covariance matrix of the decorrelated signals after the mixing matrix  has been applied, and defined as:

.



The mixing matrices ,  of size  are obtained according to the “decorrelation method” as:
[bookmark: _Toc370310467]- „Energy compensation method” (bsDecorrelationMethod == 0):

	, 


- “Covariance adjustment method” (bsDecorrelationMethod == 1):

,

.



The matrices  and  are determined as the singular value decomposition of the matrix  as:

.



The matrices  and  are determined as the singular value decomposition of the matrix  as:

	.
[bookmark: _Ref379975409]	Regularized inverse operation


The regularized inverse matrix  approximating  is calculated as:

.



The matrices  and  are determined as the singular value decomposition of the matrix  as:

.


The regularized inverse  of the diagonal singular value matrix  is computed according to 9.5.4.2.5.
[bookmark: _Ref379972448]	Regularization of singular values


The regularized inverse operation  used for the diagonal singular value matix  is determined as:





The relative regularization scalar  is determined using absolute threshold  and maximal value of  as:


,	.
[bookmark: _Toc383592683][bookmark: _Toc368295671][bookmark: _Toc368309663][bookmark: _Toc370310468][bookmark: OLE_LINK5][bookmark: _Toc385337898]Dual mode






The SAOC 3D decoder can use an alternative scheme for calculation of the parameters  and  for the upper frequency range, defined by parameter bands . This scheme is particularly useful for downmix signals where the upper frequency range is coded by a non-waveform preserving coding algorithm e.g. SBR in High Efficiency AAC. The matrices ,  and  are determined as:

	,

,

.

The matrix is defined as:

.



The matrix  of size  for  is derived according to 9.5.4.2.5.


The gain matrix  of size  is given by:




The energy upmix vector  of size  is given by:

	.
[bookmark: _Toc385337899]Loudspeaker Rendering/Format Conversion
[bookmark: _Toc385337900]Description
The loudspeaker renderer is a downmixer that converts multichannel signals from transmitted channel configurations with [image: ] channels to desired reproduction formats with [image: ] channels. It is thus also called ‘format converter’. The system consists of two major building blocks:
· 
· An initialization algorithm that takes into account static parameters like the input and output format,
· a signal adaptive downmixing process that operates in a subband domain.
[image: ]
Figure 21 – Main building blocks of the format converter

In the initialization phase the format converter automatically generates optimized downmixing parameters (like the downmixing matrix) for the given combination of input and output formats: It applies an algorithm that selects for each input loudspeaker the most appropriate mapping rule from a list of rules that has been designed to incorporate psychoacoustic considerations. Each rule describes the mapping from one input channel to one or several output loudspeaker channels.
Input channels are 
· either mapped to a single output channel, 
· or panned to two output channels, 
· or (in case of the ‘Voice of God’ channel) distributed over a larger number of output cannels.
The optimal mapping for each input channel is selected depending on the list of output loudspeakers that are available in the desired output format. Each mapping defines downmix gains for the input channel under consideration as well as potentially also an equalizer that is applied to the input channel under consideration.
Output setups with non-standard loudspeaker positions can be signaled to the system by providing the azimuth and elevation deviations from a regular loudspeaker setup. Further, distance variations of the desired target loudspeaker positions are taken into account.
The actual downmixing of the audio signals is performed on a hybrid QMF subband representation of the signals. The algorithm makes use of two mechanisms to avoid signal deteriorations like comb-filtering, coloration, or modulation artifacts:
· Phase-alignment of the multichannel input signals: Correlated input signals that differ in phase are aligned prior to downmixing them. The alignment process makes use of an attraction measure to only align the relevant channels for the relevant time-frequency tiles and to avoid modifications of other parts of the input signal. The alignment is further regularized to avoid artifacts due to rapid changes of the alignment phase modification terms. The phase-alignment improves the output signal quality by avoiding narrow spectral notches due to out-of-phase signal cancellations that could not be compensated for by energy normalization because of a limited frequency resolution. It further reduces the need of boosting signals in the energy preserving normalization, thus minimizes modulation artifacts.
· Normalization of the downmix process to preserve the input energies (except for the desired energy scaling that may be inherent in the downmix matrix).
[bookmark: _Toc385337901]Definitions
[bookmark: _Toc385337902]General remarks
Audio signals that are fed into the format converter are referred to as input signals in the following. Audio signals that are the result of the format conversion process are referred to as output signals. Note that the audio input signals of the format converter are audio output signals of the core decoder. 
Vectors and matrices are denoted by bold-faced symbols. Vector elements or matrix elements are denoted as italic variables supplemented by indices indicating the row/column of the vector/matrix element in the vector/matrix, e.g. [image: ] denotes a vector and its elements. Similarly, [image: ]denotes the element in the[image: ]th row and [image: ]th column of a matrix[image: ]. 
[bookmark: _Ref385244389][bookmark: _Toc385337903]Variable definitions
[image: ]	Number of channels in the input channel configuration.
[image: ]	Number of channels in the output channel configuration.
[image: ]	Downmix matrix containing real-valued non-negative downmix coefficients (downmix gains). [image: ]is of dimension ([image: ]x [image: ]).
[image: ]	Matrix consisting of gain values per processing band determining frequency responses of equalizing filters.
[image: ]	Vector signalling which equalizer filters to apply to the input channels (if any).
[image: ]	Frame length measured in time domain audio samples.
ν	Time domain sample index.
[image: ]	QMF time slot index (= subband sample index).
[image: ]	Frame length measured in QMF slots.
[image: ]	Frame index (frame number).
[image: ]	Number of hybrid QMF frequency bands, [image: ]= 71.
[image: ]	QMF band index (1..64) or hybrid QMF band index (1.. [image: ]).
[image: ]	Channel indices.
[image: ]	Numerical constant, [image: ].
[bookmark: _Toc385337904]Processing
[bookmark: _Ref385268155][bookmark: _Toc385337905]Initialization of the format converter
General description of the initialization
The initialization of the format converter is carried out before processing of the audio samples delivered by the core decoder takes place. 
· The initialization takes into account as input parameters
· The sampling rate of the audio data to process.
· The channel configuration of the audio data to process with the format converter (number and geometric positions of input channels).
· The channel configuration of the desired output format (number and geometric positions of output channels).
· Optional: Parameters signaling the deviation of the output loudspeaker positions from a standard loudspeaker setup (random setup functionality).
It returns 
· A frequency dependent downmix matrix [image: ] that is applied in the audio signal processing of the format converter. [image: ] is also taken into account in the core decoding process, see  5.5.3.1.2.
· Trim gain and delay values ([image: ] and[image: ]) to compensate for varying loudspeaker distances.
The input parameters to the initialization algorithm are listed in Table 82 Fehler! Verweisquelle konnte nicht gefunden werden..
Table 81 – Format converter initialization input parameters
	
	Input format: number of channels and nominal channel setup geometry

	
	Output format: number of channels and nominal channel setup geometry

	fs
	Sampling frequency in Hertz.

	[image: ]
	For each output channel A, an azimuth angle is specified, determining the deviation from the standard format loudspeaker azimuth.

	[image: ]
	For each output channel A, an elevation angle is specified, determining the deviation from the standard format loudspeaker elevation.

	[image: ]
	For each output channel A, the distance of the loudspeaker to the central listening position is specified in meters.

	Nmaxdelay
	Maximum delay that can be used for trim [samples]



Table 49 lists the output parameters that are derived during the initialization of the format converter.
[bookmark: _Ref385268883]Table 82 – Format converter initialization output parameters
	[image: ]
	Downmix matrix [linear gains]

	[image: ]
	Trim gain [linear] for each output channel A

	[image: ]
	Trim delay [samples] for each output channel A



Assignment of format converter channel labels to input/output format channels
The format converter initialization is based on a system of rules that are defined in terms of format converter channel labels, see Table 84Fehler! Verweisquelle konnte nicht gefunden werden.. To allow the application of the initialization rules, the channel labels have to be assigned to the channels of the input and output formats. Each format converter channel label is associated with a segment of the surface of the unit sphere, as defined in Table 84. The segments are designed non-overlapping.
The assignment of channel labels to channels is done by geometrically matching the segments to the position data associated with the channels of the input and output formats. The azimuth and elevation angles in degrees of the position data associated with the channels shall be rounded towards the nearest integer number before performing the channel label assignment. Note that the nominal channel positions shall be applied in the following matching to channel label sectors, i.e. the azimuth and elevation angles without taking into account potential angle deviations  signalled in[image: ] and/or [image: ] .
For each channel that is not an LFE (low-frequency effects) channel:
If the nominal position of the current channel, defined by its azimuth angle and elevation angle, is within or on the border of one of the segments defined in Table 84 Fehler! Verweisquelle konnte nicht gefunden werden., then:
Assign the corresponding channel label (e.g.  CH_M_L030) associated with the matching segment.
Add the angle differences between the nominal position of the current channel and the nominal position associated with the matching segment (i.e. the angles in the second and third column of Fehler! Verweisquelle konnte nicht gefunden werden. Table 84) to the angle deviations stored in [image: ] and [image: ].
Else (i.e. no matching sector found), then:
Assign the CH_EMPTY label.

If an input or output format contains exactly one LFE channel, then the label CH_LFE12 shall be assigned to this channel. 
If an input or output format contains exactly two LFE channels, then the labels CH_LFE12 and CH_LFE23 shall be assigned to the two LFE channels in the order that minimizes the maximum azimuth distance from the channels to the assigned CH_LFE12 and CH_LFE23 nominal azimuth positions.
If an input or output format contains more than 2 LFE channels, then those 2 LFE channels out of the considered setup shall be selected that minimize the maximum azimuth distance to the CH_LFE12 and CH_LFE23 nominal azimuth positions. The labels CH_LFE12 and CH_LFE23 shall be assigned as in the case of two LFE channels. The remaining LFE channels shall not be considered further in the calculation of downmix coefficients, i.e. the corresponding lines/columns of the downmix matrix shall remain filled with zeros.
Handling for unknown input channels
If the label CH_EMPTY is assigned to an input channel, this channel shall be considered unknown to the rules-based initialization and the downmix coefficients for mapping this input channel to the output channels shall be derived as described in subclause 10.3.1.6.6.
Handling for unknown output formats
If the output format contains at least one channel with the label CH_EMPTY assigned to it, or if at least one channel label is assigned to more than one channel of the output format, the output format shall be considered unknown and the derivation of the downmixing coefficients shall be carried out as described in subclause 10.3.1.6.6. The rules-based derivation of downmix coefficients shall not be applied for unknown output formats.
Handling of deviations from standard loudspeaker positions
If the below conditions are not met, the rules-based initialization is considered to have failed, the ouput format shall be considered to be unknown, and the downmixing gains shall be obtained as defined in subclause 10.3.1.6.6
The absolute values of [image: ]and [image: ]shall not exceed 35 and 55 degrees, respectively. The minimum angle between any loudspeaker pair (without LFE channels) shall not be smaller than 15 degrees.
The values of [image: ]shall be such that the ordering by azimuth angles of the horizontal loudspeakers does not change. Likewise, the ordering of the height and low loudspeakers shall not change.
The values of [image: ]shall be such that the ordering by elevation angles of loudspeakers which are (approximately) above/below each other does not change. To verify this, the following procedure is applied:
For each row of Fehler! Verweisquelle konnte nicht gefunden werden.,Table 89 which contains two or three channels of the output format, do:
· Order the channels by elevation without randomization
· Order the channels by elevation with considering randomization
· If the two orderings differ, return an initialization error
If the below conditions are not met, converter initialization is considered to have failed, and an error shall be returned.
The loudspeaker distances [image: ]shall be between 0.4 and 200 meters. The ratio between the largest and smallest loudspeaker distance shall not exceed 4. The largest computed trim delay shall not exceed Nmaxdelay.
Derivation of trim parameters
Trim parameters are derived to compensate for the effects of non-uniform loudspeaker distances. They comprise
[image: ]:	trim delay in samples for each output channel A,
[image: ]:	trim gain (linear gain value) for each output channel A,
and are computed as a function of the loudspeaker distances in[image: ]:
[image: ] ,
[image: ] .
If the largest  exceeds Nmaxdelay, then initialization failed and an error shall be returned.

Rules-Based Initialization algorithm
The rules-based initialization algorithm is defined in the following. It shall not be applied if the output format is considered unknown as defined above. Note that the following description makes use of the intermediate parameters defined in Table 50 only for clarity reasons. An implementation may omit the introduction of these intermediate parameters. 
Table 83 – Format converter initialization intermediate parameters
	[image: ]
	Vector of converter source channels [input channel indices]

	[image: ]
	· Vector converter destination channels [output channel indices]

	[image: ]
	Vector of converter gains [linear]

	[image: ]
	Vector of converter EQ indices

	[image: ]
	Matrix containing equalizer gain values for all EQ indices and frequency bands



The intermediate parameters describe the dowmixing parameters in a mapping-oriented way, i.e. as sets of parameters[image: ],[image: ],[image: ],[image: ]  per mapping i.

The format converter initialization output parameters are derived as described in the following steps:
Random setups Pre-Processing:
Random output loudspeaker setups, i.e. output setups that contain loudspeakers at positions deviating from the positions defined for the desired output format are signalled by specifying the loudspeaker position deviation angles as input parameters [image: ]and [image: ]. The angle deviations are taken into account as a pre-processing step: 
Modify in Table 51 the channels’ azimuth and elevation angles by adding [image: ]and [image: ]to the corresponding channels’ azimuth and elevation angles.

Derivation of input channel/output channel mapping parameters:
The parameters vectors[image: ], [image: ], [image: ], [image: ]define the mapping of input channels to output channels. For each mapping i from an input channel to an output channel with non-zero downmix gain they define the downmix gain as well as an equalizer index that indicates which equalizer curve has to be applied to the input channel under consideration in mapping i.
The elements of the parameter vectors[image: ], [image: ], [image: ], [image: ]are derived by the following algorithm:
Initialize the mapping counter i:   [image: ];
For each input channel, ignoring channels with label CH_EMPTY assigned to them:
If the input channel also exists in the output format (e.g. input channel under consideration is CH_M_R030 and channel CH_M_R030 exists in the output format), then:
[image: ] = index of source channel in input (Example: channel CH_M_R030 in FORMAT_5_2_1 is at second place according to Table 52, i.e. has index 2 in this format)
[image: ] = index of same channel in output
[image: ] = 1.0
[image: ] = 0
[image: ]
Else (i.e. if the input channel does not exist in the output format)
search the first entry of this channel in the Source column of Table 53, for which the channels in the corresponding row of the Destination column exist. The ALL_U destination shall be considered valid (i.e. the relevant output channels exist) if the output format contains at least one “CH_U_” channel. The ALL_M destination shall be considered valid (i.e. the relevant output channels exist) if the output format contains at least one “CH_M_” channel. If for no entry in Table 86 corresponding to the input channel the channels in the Destination column exist, the rules-based initialization shall terminate and the downmix gains shall be derived according to subclause 10.3.1.6.6.
If Destination column contains ALL_U, then:
For each output channel x with “CH_U_” in its name, do:
[image: ] = index of source channel in input 
[image: ] = index of channel x in output
[image: ] = (value of Gain column) / sqrt(number of “CH_U_” output channels)
[image: ] = value of EQ column
[image: ]
Else if Destination column contains ALL_M, then:
For each output channel x with “CH_M_” in its name, do:
[image: ] = index of source channel in input
[image: ] = index of channel x in output
[image: ] = (value of Gain column) / sqrt(number of “CH_M_” output channels)
[image: ] = value of EQ column
[image: ]
Else If there is one channel in the Destination column, then:
[image: ] = index of source channel in input
[image: ] = index of destination channel in output
[image: ] = value of Gain column
[image: ] = value of EQ column
[image: ]
Else (two channels in Destination column)
[image: ] = index of source channel in input
[image: ] = index of first destination channel in output
[image: ] = (value of Gain column) * [image: ]
[image: ] = value of EQ column
[image: ]

[image: ] = [image: ]
[image: ] = index of second destination channel in output
[image: ] = (value of Gain column) * [image: ]
[image: ] = [image: ]
[image: ]
The gains [image: ] and [image: ] are computed by applying tangent law amplitude panning in the following way:
· Unwrap source destination channel azimuth angles to be positive.
· The azimuth angles of the destination channels are [image: ] and [image: ] (see Table 51).
· The azimuth angle of the source channel ( = panning target) is [image: ].
· [image: ]   
· [image: ]
· [image: ]
· [image: ]

Derivation of equalizer gains [image: ]:	
[image: ]consists of gain values per frequency band k and equalizer index e. The 5 predefined equalizers are combinations of different peak filters. Each equalizer is a serial cascade of one or more peak filters and a gain:
[image: ]
where band(k) is the normalized center frequency of frequency band k, specified in Table 54, fs is the sampling frequency, and function peak() is for negative G
[image: ]

and otherwise
[image: ]
The parameters for the equalizers are specified in Table 5.
Post-Processing for Random Setups
Once the output parameters are computed, they are modified related to the specific random azimuth and elevations angles. This step has only to be carried out, if not all [image: ] are zero. Definition of the post-processing algorithm:

For each element i in [image: ], do:
if output channel with index [image: ] is a horizontal channel by definition (i.e. output channel label contains the label ‘_M_’), and
if this output channel is now a height channel (elevation in range 0..60 degrees), and
if input channel with index [image: ] is a height channel (i.e. label contains ‘_U_’), then
· h = min(elevation of randomized output channel, 35) / 35
· [image: ]
· Apply compensation gain to DMX gain: [image: ]
·  Define new equalizer with a new index e, where [image: ]
· [image: ]
else if input channel with index [image: ] is a horizontal channel (label contains ‘_M_’)
· h = min(elevation of randomized output channel, 35) / 35
· Define new equalizer with a new index e, where [image: ]
· [image: ]
 
Explanation of the post-processing steps defined above: 
h is a normalized elevation parameter indicating the elevation of a nominally horizontal output channel (‘_M_’) due to a random setup elevation offset [image: ]. For zero elevation offset h=0 follows and effectively no post-processing is applied.
The rules table (Table 53) in general applies a gain of 0.85 when mapping an upper input channel (‘_U_’ in channel label) to one or several horizontal output channels (‘_M_’ in channel label(s)). In case the output channel gets elevated due to a random setup elevation offset [image: ], the gain of 0.85 is partially (0<h<1) or fully (h=1) compensated for. Similarly the equalizer definitions fade towards a flat EQ-curve ([image: ]) for h approaching h =1.
In case a horizontal input channel gets mapped to an output channel that gets elevated due to a random setup elevation offset [image: ], the equalizer [image: ] is partially (0<h<1) or fully (h=1) applied.

Derivation of rules-based initialization downmix matrix:
[image: ]is derived by rearranging the temporary parameters from the mapping-oriented representation (enumerated by mapping counter i) to a channel-oriented representation as defined in the following:
Initialize [image: ]as an [image: ]x [image: ] zero matrix for all processing bands k.
For each i do:
If ([image: ])
[image: ]
Else
		[image: ]
where [image: ] denotes the matrix element in the [image: ]th row and [image: ]th column of [image: ]. Note that after the rules-based initialization this matrix of downmix coefficients will contain columns of zeros, if unknown channels are present in the input format. Those columns are filled with downmix gains as described in subclause 10.3.1.6.6.
[bookmark: _Ref383158320][bookmark: _Ref383019157]VBAP-based downmix coefficients derivation
Handling of unknown output formats:
In case the output format is considered unknown, the downmix coefficients for all input channels shall be derived as follows:


Each channel of the input setup is regarded as a static audio object at the position defined by the azimuth and elevation angles associated with the input channel. For each input channel the mixing gains to all output loudspeakers are calculated as VBAP panning gains according to subclause 8.4.3, where the same output format shall be signaled to the VBAP algorithm as to the format converter. The panning gain vectors  shall be post-processed according to subclause 10.3.1.6.7.
The downmix matrix [image: ]is finally derived by filling each matrix column with the post-processed panning gain vector elements of the corresponding input channel, independently of the processing band index k.
Handling of unknown input channels:
In case the input format contains unknown input channels, the downmix coefficients for these channels shall be derived as follows:


Each unknown channel of the input setup is regarded as a static audio object at the position defined by the azimuth and elevation angles associated with the input channel. For each unknown input channel the mixing gains to all output loudspeakers are calculated as VBAP panning gains according to subclause 8.4.3, where the same output format shall be signaled to the VBAP algorithm as to the format converter. The panning gain vectors  shall be post-processed according to subclause 10.3.1.6.7.
The downmix matrix [image: ]is finally derived by filling each matrix column corresponding to an unknown input channel with the post-processed panning gain vector elements of the corresponding unknown input channel, independently of the processing band index k.
[bookmark: _Ref383165396]VBAP gains post-processing
The mixing gains obtained from the VBAP rendering algorithm shall be post-processed to avoid excessive use of phantom sources. Therefore, small matrix gains are set to zero, followed by a renormalization of the panning gains to ensure energy-preservation:

For each panning gain vector  do:
If the vector contains at least one panning gain that exceeds the threshold value 0.3, then
Set all vector elements smaller or equal to 0.3 to the value 0.0
Normalize the gain vector such that the sum of squares of the vector elements remains the same as before the post-processing
Format converter initialization tables
Table 84 lists channel labels, corresponding azimuth and elevation angles, and associated sectors. The sectors are defined as points on the unit sphere, whose azimuth/elevation angles are within or on the borders of the intervals given by the azimuth/elevation start and end values in the table, connecting azimuth start and end values in counter-clockwise direction and connecting elevation start and end values in direction of increasing elevation angles.
[bookmark: _Ref384996983]Table 84 – Channels definitions: Channel labels, corresponding azimuth and elevation angles, and associated sectors
	LoudspeakerGeometry 
as defined in ISO/IEC 23001‑8)
	Channel
	Azimuth [deg]
	Elevation [deg]
	Azimuth start angle of sector [deg]
	Azimuth end angle of sector [deg]
	Elevation start angle of sector [deg]
	Elevation end angle of sector [deg]
	Ch. is LFE
	Position is relative

	
	CH_EMPTY
	n/a
	n/a
	n/a
	n/a
	n/a
	n/a
	0
	0

	0
	CH_M_L030
	+30
	0
	+23
	+37
	-9
	+20
	0
	0

	1
	CH_M_R030
	-30
	0
	-37
	-23
	-9
	+20
	0
	0

	2
	CH_M_000
	0
	0
	-7
	+7
	-9
	+20
	0
	0

	3
	CH_LFE1
	+450
	n/a
	n/a
	n/a
	n/a
	n/a
	1
	0

	4
	CH_M_L110
	+110
	0
	+101
	+124
	-45
	+20
	0
	0

	5
	CH_M_R110
	-110
	0
	-124
	-101
	-45
	+20
	0
	0

	6
	CH_M_L022
	+22
	0
	+8
	+22
	-9
	+20
	0
	0

	7
	CH_M_R022
	-22
	0
	-22
	-8
	-9
	+20
	0
	0

	8
	CH_M_L135
	+135
	0
	125125
	142157
	-45
	+20
	0
	0

	9
	CH_M_R135
	-135
	0
	-142-157
	-125-125
	-45
	+20
	0
	0

	10
	CH_M_180
	180
	0
	158
	-158
	-45
	+20
	0
	0

	13
	CH_M_L090
	+90
	0
	+76
	+100
	-45
	+20
	0
	0

	14
	CH_M_R090
	-90
	0
	-100
	-76
	-45
	+20
	0
	0

	15
	CH_M_L060
	+60
	0
	+53
	+75
	-9
	+20
	0
	0

	16
	CH_M_R060
	-60
	0
	-75
	-53
	-9
	+20
	0
	0

	17
	CH_U_L030
	+30
	+35
	+11
	+37
	+21
	+60
	0
	0

	18
	CH_U_R030
	-30
	+35
	-37
	-11
	+21
	+60
	0
	0

	19
	CH_U_000
	0
	+35
	-10
	+10
	+21
	+60
	0
	0

	20
	CH_U_L135
	+135
	+35
	+125
	+157
	+21
	+60
	0
	0

	21
	CH_U_R135
	-135
	+35
	-157
	-125
	+21
	+60
	0
	0

	22
	CH_U_180
	180
	+35
	+158
	-158
	+21
	+60
	0
	0

	23
	CH_U_L090
	+90
	+35
	+67
	+100
	+21
	+60
	0
	0

	24
	CH_U_R090
	-90
	+35
	-100
	-67
	+21
	+60
	0
	0

	25
	CH_T_000
	0
	+90
	-180
	+180
	+61
	+90
	0
	0

	26
	CH_LFE2
	+-45
	n/a
	n/a
	n/a
	n/a
	n/a
	1
	0

	27
	CH_L_L045
	+45
	-15
	+11
	+75
	-45
	-10
	0
	0

	28
	CH_L_R045
	-45
	-15
	-75
	-11
	-45
	-10
	0
	0

	29
	CH_L_000
	0
	-15
	-10
	+10
	-45
	-10
	0
	0

	30
	CH_U_L110
	+110
	+35
	+101
	+124
	+21
	+60
	0
	0

	31
	CH_U_R110
	-110
	+35
	-124
	-101
	+21
	+60
	0
	0

	32
	CH_U_L045
	+45
	+35
	+38
	+66
	+21
	+60
	0
	0

	33
	CH_U_R045
	-45
	+35
	-66
	-38
	+21
	+60
	0
	0

	34
	CH_M_L045
	+45
	0
	+38
	+52
	-9
	+20
	0
	0

	35
	CH_M_R045
	-45
	0
	-52
	-38
	-9
	+20
	0
	0

	36
	CH_LFE3
	-45
	n/a
	n/a
	n/a
	n/a
	n/a
	1
	0

	37
	CH_M_LSCR
	+60
	0
	[ed: needs to be filled in]
	
	
	
	0
	1

	38
	CH_M_RSCR
	-60
	0
	
	
	
	
	0
	1

	39
	CH_M_LSCH
	+30
	0
	
	
	
	
	0
	1

	40
	CH_M_RSCH
	-30
	0
	
	
	
	
	0
	1

	41
	CH_M_L150
	+150
	0
	143
	157
	-45
	+20
	0
	0

	42
	CH_M_R150
	-150
	0
	-157
	-143
	-45
	+20
	0
	0




[bookmark: _Ref385316204]Table 85 – Formats with corresponding number of channels and channel ordering
	Loudspeaker Layout Index or ChannelConfiguration 
as defined in ISO/IEC 23001‑8
	Number of Channels
	Channels (with ordering)

	1
	1
	CH_M_000

	2
	2
	CH_M_L030, CH_M_R030

	3
	3
	CH_M_L030, CH_M_R030, CH_M_000

	4
	4
	CH_M_L030, CH_M_R030, CH_M_000, CH_M180

	5
	5
	CH_M_L030, CH_M_R030, CH_M_000, CH_M_L110, CH_M_R110

	6
	6
	CH_M_L030, CH_M_R030, CH_M_000, CH_LFE1, CH_M_L110, CH_M_R110

	7
	8
	CH_M_L030, CH_M_R030, CH_M_000, CH_LFE1, CH_M_L110, CH_M_R110, CH_M_L060, CH_M_R060

	8
	
	n.a.

	9
	3
	CH_M_L030, CH_M_R030, CH_M_180

	10
	4
	CH_M_L030, CH_M_R030, CH_M_L110, CH_M_R110

	11
	7
	CH_M_L030, CH_M_R030, CH_M_000, CH_LFE1, CH_M_L110, CH_M_R110, CH_M_180

	12
	8
	CH_M_L030, CH_M_R030, CH_M_000, CH_LFE1, CH_M_L110, CH_M_R110, CH_M_L135, CH_M_R135

	13
	24
	CH_M_LSCR, CH_M_RSCR, CH_M_000, CH_LFE12, CH_M_L135, CH_M_R135, CH_M_LSCH, CH_M_RSCH, CH_M_180, CH_LFE23, CH_M_L090, CH_M_R090, CH_U_L045, CH_U_R045, CH_U_000, CH_T_000, CH_U_L135, CH_U_R135, CH_U_L090, CH_U_R090, CH_U_180, CH_L_000, CH_L_L045, CH_L_R045

	14
	8
	CH_M_L030, CH_M_R030, CH_M_000, CH_LFE1, CH_M_L110, CH_M_R110, CH_U_L030, CH_U_R030

	15
	12
	CH_M_L030, CH_M_R030, CH_M_000, CH_LFE12, CH_M_L135, CH_M_R135, CH_LFE23, CH_M_L090, CH_M_R090, CH_U_L045, CH_U_R045, CH_U_180

	16
	10
	CH_M_L030, CH_M_R030, CH_M_000, CH_LFE1, CH_M_L110, CH_M_R110, CH_U_L030, CH_U_R030, CH_U_L110, CH_U_R110

	17
	12
	CH_M_L030, CH_M_R030, CH_M_000, CH_LFE1, CH_M_L110, CH_M_R110, CH_U_L030, CH_U_R030, CH_U_000, CH_U_L110, CH_U_R110, CH_T_000

	18
	14
	CH_M_L030, CH_M_R030, CH_M_000, CH_LFE1, CH_M_L110, CH_M_R110, CH_M_L150, CH_M_R150, CH_U_L030, CH_U_R030, CH_U_000, CH_U_L110, CH_U_R110, CH_T_000



[bookmark: _Ref383158063]Table 86 – Converter rules matrix
	Source
	Destination
	Gain
	EQ index

	CH_M_000
	CH_M_L022, CH_M_R022
	1.0
	0 (off)         

	CH_M_000
	CH_M_L030, CH_M_R030
	1.0
	0 (off)         

	CH_M_L022
	CH_M_000, CH_M_L030
	1.0
	0 (off)         

	CH_M_L022
	CH_M_L030
	1.0 
	0 (off)         

	CH_M_R022
	CH_M_000, CH_M_R030
	1.0
	0 (off)         

	CH_M_R022
	CH_M_R030
	1.0 
	0 (off)         

	CH_M_L045
	CH_L_030, CH_M_L060
	1.0
	0 (off)         

	CH_M_L045
	CH_M_L030
	1.0 
	0 (off)         

	CH_M_R045
	CH_R_030, CH_M_R060
	1.0
	0 (off)         

	CH_M_R045
	CH_M_R030
	1.0 
	0 (off)         

	CH_M_L060
	CH_M_L045, CH_M_L110
	1.0
	0 (off)         

	CH_M_L060
	CH_M_L030, CH_M_L110
	1.0
	0 (off)         

	CH_M_L060
	CH_M_L030
	0.8 
	0 (off)         

	CH_M_R060
	CH_M_R045,  CH_M_R110,
	1.0    
	0 (off)         

	CH_M_R060
	CH_M_R030,  CH_M_R110,
	1.0    
	0 (off)         

	CH_M_R060
	CH_M_R030,
	0.8
	0 (off)         

	CH_M_L090
	CH_M_L045, CH_M_L110
	1.0
	0 (off)         

	CH_M_L090
	CH_M_L030, CH_M_L110
	1.0
	0 (off)         

	CH_M_L090
	CH_M_L030
	0.8 
	0 (off)         

	CH_M_R090
	CH_M_R045,  CH_M_R110
	1.0 
	0 (off)         

	CH_M_R090
	CH_M_R030,  CH_M_R110
	1.0 
	0 (off)         

	CH_M_R090
	CH_M_R030
	0.8
	0 (off)         

	CH_M_L110
	CH_M_L135
	1.0
	0 (off)         

	CH_M_L110
	CH_M_L090
	0.8
	0 (off)         

	CH_M_L110
	CH_M_L045
	0.8
	0 (off)         

	CH_M_L110
	CH_M_L030
	0.8
	0 (off)         

	CH_M_R110
	CH_M_R135
	1.0
	0 (off)         

	CH_M_R110
	CH_M_R090
	0.8
	0 (off)         

	CH_M_R110
	CH_M_R045
	0.8
	0 (off)         

	CH_M_R110
	CH_M_R030
	0.8
	0 (off)         

	CH_M_L135
	CH_M_L110
	1.0
	0 (off)         

	CH_M_L135
	CH_M_L150
	1.0
	0 (off)         

	CH_M_L135
	CH_M_L090
	0.8
	0 (off)         

	CH_M_L135
	CH_M_L045
	0.8
	0 (off)         

	CH_M_L135
	CH_M_L030
	0.8
	0 (off)         

	CH_M_R135
	CH_M_R110
	1.0
	0 (off)         

	CH_M_R135
	CH_M_R150
	1.0
	0 (off)         

	CH_M_R135
	CH_M_R090
	0.8
	0 (off)         

	CH_M_R135
	CH_M_R045
	0.8
	0 (off)         

	CH_M_R135
	CH_M_R030
	0.8
	0 (off)         

	CH_M_L150
	CH_M_L135
	1.0
	0 (off)         

	CH_M_L150
	CH_M_L110
	1.0
	0 (off)         

	CH_M_L150
	CH_M_L045
	0.8
	0 (off)         

	CH_M_L150
	CH_M_L030
	0.8
	0 (off)         

	CH_M_R150
	CH_M_R135
	1.0
	0 (off)         

	CH_M_R150
	CH_M_R110
	1.0
	0 (off)         

	CH_M_R150
	CH_M_R045
	0.8
	0 (off)         

	CH_M_R150
	CH_M_R030
	0.8
	0 (off)         

	CH_M_180
	CH_M_R150,  CH_M_L150
	1.0
	0 (off)         

	CH_M_180
	CH_M_R135,  CH_M_L135
	1.0
	0 (off)         

	CH_M_180
	CH_M_R110,  CH_M_L110
	1.0
	0 (off)         

	CH_M_180
	CH_M_R090,  CH_M_L090
	0.8
	0 (off)         

	CH_M_180
	CH_M_R045,  CH_M_L045
	0.6
	0 (off)         

	CH_M_180
	CH_M_R030,  CH_M_L030
	0.6
	0 (off)         

	CH_U_000
	CH_U_L030,  CH_U_R030
	1.0
	0 (off)         

	CH_U_000
	CH_M_L030,  CH_M_R030
	0.85
	0 (off)         

	CH_U_L045
	CH_U_L030
	1.0
	0 (off)         

	CH_U_L045
	CH_M_L045
	0.85
	1

	CH_U_L045
	CH_M_L030
	0.85
	1

	CH_U_R045
	CH_U_R030
	1.0
	0 (off)         

	CH_U_R045
	CH_M_R045
	0.85
	1

	CH_U_R045
	CH_M_R030
	0.85
	1

	CH_U_L030
	CH_U_L045
	1.0
	0 (off)         

	CH_U_L030
	CH_M_L030
	0.85
	1

	CH_U_R030
	CH_U_R045
	1.0
	0 (off)         

	CH_U_R030
	CH_M_R030
	0.85
	1

	CH_U_L090
	CH_U_L030,  CH_U_L110
	1.0
	0 (off)         

	CH_U_L090
	CH_U_L030,  CH_U_L135
	1.0
	0 (off)         

	CH_U_L090
	CH_U_L045
	0.8
	0 (off)         

	CH_U_L090
	CH_U_L030
	0.8
	0 (off)         

	CH_U_L090
	CH_M_L045,  CH_M_L110
	0.85
	2

	CH_U_L090
	CH_M_L030,  CH_M_L110
	0.85
	2

	CH_U_L090
	CH_M_L030
	0.85
	2

	CH_U_R090
	CH_U_R030,  CH_U_R110
	1.0
	0 (off)         

	CH_U_R090
	CH_U_R030,  CH_U_R135
	1.0
	0 (off)         

	CH_U_R090
	CH_U_R045
	0.8
	0 (off)         

	CH_U_R090
	CH_U_R030
	0.8
	0 (off)         

	CH_U_R090
	CH_M_R045,  CH_M_R110
	0.85
	2

	CH_U_R090
	CH_M_R030,  CH_M_R110
	0.85
	2

	CH_U_R090
	CH_M_R030
	0.85
	2

	CH_U_L110
	CH_U_L135
	1.0
	0 (off)         

	CH_U_L110
	CH_U_L045
	0.8
	0 (off)         

	CH_U_L110
	CH_U_L030
	0.8
	0 (off)         

	CH_U_L110
	CH_M_L110
	0.85
	2

	CH_U_L110
	CH_M_L045
	0.85
	2

	CH_U_L110
	CH_M_L030
	0.85
	2

	CH_U_R110
	CH_U_R135
	1.0
	0 (off)         

	CH_U_R110
	CH_U_R045
	0.8
	0 (off)         

	CH_U_R110
	CH_U_R030
	0.8
	0 (off)         

	CH_U_R110
	CH_M_R110
	0.85
	2

	CH_U_R110
	CH_M_R045
	0.85
	2

	CH_U_R110
	CH_M_R030
	0.85
	2

	CH_U_L135
	CH_U_L110
	1.0
	0 (off)         

	CH_U_L135
	CH_U_L045
	0.8
	0 (off)         

	CH_U_L135
	CH_U_L030
	0.8
	0 (off)         

	CH_U_L135
	CH_M_L110
	0.85
	2

	CH_U_L135
	CH_M_L045
	0.85
	2

	CH_U_L135
	CH_M_L030
	0.85
	2

	CH_U_R135
	CH_U_R110
	1.0
	0 (off)         

	CH_U_R135
	CH_U_R045
	0.8
	0 (off)         

	CH_U_R135
	CH_U_R030
	0.8
	0 (off)         

	CH_U_R135
	CH_M_R110
	0.85
	2

	CH_U_R135
	CH_M_R045
	0.85
	2

	CH_U_R135
	CH_M_R030
	0.85
	2

	CH_U_180
	CH_U_R135,  CH_U_L135
	1.0
	0 (off)         

	CH_U_180
	CH_U_R110,  CH_U_L110
	1.0
	0 (off)         

	CH_U_180
	CH_M_180
	0.85
	2

	CH_U_180
	CH_M_R110,  CH_M_L110
	0.85
	2

	CH_U_180
	CH_U_R030, CH_U_L030
	0.8
	0 (off)         

	CH_U_180
	CH_M_R030,  CH_M_L030
	0.85
	2

	CH_T_000
	ALL_U
	1.0
	3

	CH_T_000
	ALL_M
	1.0
	4

	CH_L_000
	CH_M_000
	1.0
	0 (off)         

	CH_L_000
	CH_M_L030,  CH_M_R030
	1.0
	0 (off)         

	CH_L_L045
	CH_M_L045
	1.0
	0 (off)         

	CH_L_L045
	CH_M_L030
	1.0
	0 (off)         

	CH_L_R045
	CH_M_R045
	1.0
	0 (off)         

	CH_L_R045
	CH_M_R030
	1.0
	0 (off)         

	CH_LFE12
	CH_LFE23
	1.0
	0 (off)         

	CH_LFE12
	CH_M_L030,  CH_M_R030
	1.0
	0 (off)         

	CH_LFE23
	CH_LFE12
	1.0
	0 (off)         

	CH_LFE23
	CH_M_L030,  CH_M_R030
	1.0
	0 (off)         



Table 87 – Normalized center frequencies of the 71 filter-bank bands
	Normalized Frequency [0, 1]

	0.00458330

	0.00083333

	0.00208330

	0.00587500

	0.00979170

	0.01429200

	0.01979200

	0.02700000

	0.03541700

	0.04262500

	0.05675000

	0.07237500

	0.08800000

	0.10362000

	0.11925000

	0.13487000

	0.15050000

	0.16612000

	0.18175000

	0.19737000

	0.21300000

	0.22862000

	0.24425000

	0.25988000

	0.27550000

	0.29113000

	0.30675000

	0.32238000

	0.33800000

	0.35363000

	0.36925000

	0.38488000

	0.40050000

	0.41613000

	0.43175000

	0.44738000

	0.46300000

	0.47863000

	0.49425000

	0.50987000

	0.52550000

	0.54112000

	0.55675000

	0.57237000

	0.58800000

	0.60362000

	0.61925000

	0.63487000

	0.65050000

	0.66612000

	0.68175000

	0.69737000

	0.71300000

	0.72862000

	0.74425000

	0.75987000

	0.77550000

	0.79112000

	0.80675000

	0.82237000

	0.83800000

	0.85362000

	0.86925000

	0.88487000

	0.90050000

	0.91612000

	0.93175000

	0.94737000

	0.96300000

	0.97454000

	0.99904000



Table 88 – Equalizer parameters
	Equalizer
	Pf [Hz]
	PQ
	Pg[dB]
	g [dB]

	[image: ]
	12000
	0.3
	-2
	1.0

	[image: ]
	12000
	0.3
	-3.5
	1.0

	[image: ]
	200,1300, 600
	0.3, 0.5, 1.0
	-6.5, 1.8, 2.0
	0.7

	[image: ]
	5000, 1100
	1.0, 0.8
	4.5, 1.8
	-3.1

	[image: ]
	35
	0.25
	-1.3
	1.0



[bookmark: _Ref385269536]Table 89 – Vertically corresponding channels: Each row lists channels which are considered to be above/below each other. 
	CH_L_000
	 CH_M_000
	  CH_U_000

	CH_L_L045
	CH_M_L030
	 CH_U_L030

	CH_L_L045
	CH_M_L030
	 CH_U_L045

	CH_L_L045
	CH_M_L045
	 CH_U_L030

	CH_L_L045
	CH_M_L045
	 CH_U_L045

	CH_L_L045
	CH_M_L060
	 CH_U_L030

	CH_L_L045
	CH_M_L060
	 CH_U_L045

	CH_L_R045
	CH_M_R030
	 CH_U_R030

	CH_L_R045
	CH_M_R030
	 CH_U_R045

	CH_L_R045
	CH_M_R045
	 CH_U_R030

	CH_L_R045
	CH_M_R045
	 CH_U_R045

	CH_L_R045
	CH_M_R060
	 CH_U_R030

	CH_L_R045
	CH_M_R060
	 CH_U_R045

	CH_M_180
	 CH_U_180
	

	CH_M_L090
	CH_U_L090
	

	CH_M_L110
	CH_U_L110
	

	CH_M_L135
	CH_U_L135
	

	CH_M_L090
	CH_U_L110
	

	CH_M_L090
	CH_U_L135
	

	CH_M_L110
	CH_U_L090
	

	CH_M_L110
	CH_U_L135
	

	CH_M_L135
	CH_U_L090
	

	CH_M_L135
	CH_U_L135
	

	CH_M_R090
	CH_U_R090
	

	CH_M_R110
	CH_U_R110
	

	CH_M_R135
	CH_U_R135
	

	CH_M_R090
	CH_U_R110
	

	CH_M_R090
	CH_U_R135
	

	CH_M_R110
	CH_U_R090
	

	CH_M_R110
	CH_U_R135
	

	CH_M_R135
	CH_U_R090
	

	CH_M_R135
	CH_U_R135
	



[bookmark: _Toc385337906]Audio signal processing
The audio processing block of the format converter obtains time domain audio samples for [image: ]channels from the core decoder and generates a downmixed time domain audio output signal consisting of [image: ]channels.
The processing takes as input
· the audio data decoded by the core decoder,
· the static downmix matrix [image: ]returned by the initialization of the format converter,
· the trim parameters [image: ], [image: ]
It returns an [image: ]-channel time domain output signal for the OutConf channel configuration signaled during the initialization of the format converter.
The format converter operates on contiguous, non-overlapping frames of length [image: ]time domain samples of the input audio signals and outputs one frame of[image: ]samples per processed input frame of length[image: ].

T/F-transform (hybrid QMF analysis)
As the first processing step the converter transforms [image: ]samples of the [image: ]channel time domain input signal [image: ] to a hybrid QMF [image: ]channel signal representation consisting of [image: ]QMF time slots (slot index [image: ]) and [image: ] frequency bands (band index [image: ]). A QMF analysis according to ISO/IEC 14496-3:2009, subclause 4.6.18.4, is performed first
[image: ]

followed by a hybrid analysis
[image: ]
The hybrid filtering shall be carried out as described in 8.6.4.3 of ISO/IEC 14496-3:2009 for the 10,20 bands configuration of parametric stereo, resulting in a 71-band hybrid QMF domain representation. 

Covariance analysis

Note that for clarity the frequency band parameter (superscript ) is omitted in the following equations if it is not required for the presentation.





Let be a monotonically increasing frame index denoting the current frame of input data, e.g.  for frame , starting at for the first frame of input data after initialization of the format converter. An analysis frame of length  is formulated from the input hybrid QMF spectra as

     .




Note that is a row vector with elements in case of input channels. The covariance matrix is analysed from four quarter segments of , so that

,






where denotes the transpose and denotes the complex conjugate of a variable and  is anxmatrix for each .




Note that and are the same as  and , correspondingly, and are not necessary to be re-calculated. The covariance matrices of the four quarter segments are added with center weighting assuming a staircase shape:

.


The final estimation for the covariance matrix  is obtained by modifying the entries of with a small channel dependent offset









where the two indices in a notation  denote the matrix element in the th row and th column of . From the covariance matrix  inter-channel correlation coefficients between the channels and  are derived as

.

Phase-alignment matrix formulation
General
The [image: ] values are mapped to an attraction measure matrix [image: ]with elements
[image: ] ,
where PasMax, PasCurveSlope, PasCurveShift are derived from Table 90
[bookmark: _Ref385339059]Table 90 — phase attraction mapping curve parameters
	passiveDownmixFlag
	PasMax
	PasCurveSlope
	PasCurveShift

	0
	0.25
	0.625
	-0.3

	1
	0
	0
	0




An intermediate phase-aligning mixing matrix  is formulated. With 

   and


the matrix elements are derived as

.


The intermediate phase-aligning mixing matrix  is modified to avoid abrupt phase shifts, resulting in. This is a recursive process, running for each frame F, processing the frequency bands k in ascending order. 
The regularization against phase shifts takes place in two stages: In the first stage, the regularization performs amplitude-weighted phase comparison against the previous frame, previous band, while also linking the phase-attracted channels. In the second stage, the regularization limits the update rate of the phase coefficients in comparison to the previous frame only.



Both regularization stages make use of a phase update limiting parameter, , which is formulated as function of an onset measure  so that a low energy portion of a signal does not affect the phase processing after an onset:

,

.

Regularization Stage 1:



Stage 1 recursively takes into account comparison values  from the last frame index (F-1) as well as for the last processing band (k-1). is derived from at the end of the regularization process. The first step of regularization stage 1 combines the comparison data across frequency and time as follows:
if (F=0)


else (i.e. for F>0)


where the complex conjugate processing for the third band (k=3) accounts for the complex conjugate properties of the filterbank.






The frequency index k is omitted in the following since the inter-band dependency is now contained in the matrix. The phase change of the current unregularized phase-aligning matrix  relative to is measured by amplitude weighting with  and comparison against , forming  with elements

 .

To also take into account the interdependent channels in the regularization, the relevant entries are intermixed with the attraction matrix ,

.

The phase values of the elements of matrix are

.


To avoid constant phase offsets, is adjusted towards zero by :



Regularization Stage 2:
In stage 2 of the regularization another phase comparison parameter, only across time, is formulated:






The final regularization parameter is such that is as close as possible to , but not further than  in respect to . Let unwrap() be a function that maps any angular parameter to the corresponding angle in the interval . The final phase parameter is formulated as


and the modified, i.e. phase-regularized, mixing matrix elements are obtained as

.

Finally, is derived by amplitude weighting the regularized downmixing coefficients,

.

Note that is used in the time and frequency recursive formulation of regularization stage 1.
Energy Scaling:

An energy scaling is applied to the mixing matrix to obtain the final phase-aligning mixing matrix. With 

, 

where denotes the conjugate transpose operator, and

,

,


where the limits are defined as and , the final phase-aligning mixing matrix elements follow as
[image: ],
where AES = (1 – passiveDownmixFlag).
Calculation of output data

The output signals for the current frame  are formulated by linearly interpolating the mixing matrices from the previous frame to the current frame,

.
Note that the input audio for the above mixing procedure is the first half of the analysis window.

F/T-transform (hybrid QMF synthesis)
Note that the processing steps described above have to be carried out for each hybrid QMF band [image: ](recursively, for ascending [image: ]). In the following formulations the band index [image: ] is reintroduced, i.e. [image: ]. The hybrid QMF frequency domain output signal [image: ]is transformed to an [image: ]-channel time domain signal frame of length [image: ] time domain samples per output channel[image: ], yielding the time domain output signal[image: ]:
The hybrid synthesis 
[image: ]
is carried out as defined in Figure 8.21 of ISO/IEC 14496-3:2009, i.e. by summing the sub-subbands of the three lowest QMF subbands to obtain the three lowest QMF subbands of the 64band QMF representation. The subsequent QMF synthesis 
[image: ]
shall be carried out as defined in ISO/IEC 14496-3:2009, subclause 4.6.18.4.

Trim functionality for radius variations
If the output loudspeaker positions differ in radius (i.e. if [image: ] is not the same for all output channels[image: ]) the compensation parameters derived in the initialization shall be applied to the output signals:
The loudspeaker signal of output channel [image: ]shall be delayed by [image: ] time domain samples and the signal shall also be multiplied by the linear gain[image: ].

[bookmark: _Toc382915978][bookmark: _Toc385337907]Higher Order Ambisonics (HOA)
[bookmark: _Toc382915979][bookmark: _Toc385337908]Technical Overview
A block diagram of the HOA decoder architecture is depicted in Figure 22. First, the input bit stream is de-multiplexed and decoded by the MPEG-H 3D audio core decoder into  PCM transport channels plus the HOA bit stream that contains parameters required to recompose the full HOA representation from these PCM signals. In the successive spatial decoding component, first, the actual value range of these signals is reconstructed by the inverse gain control processing. In a next step, the  signals are re-distributed to provide the  pre-dominant signals and  HOA coefficient signals representing the more ambient HOA components.
[image: ]
[bookmark: _Ref362339707]Figure 22 — Simplified block diagram of the decoder 

The fixed subset of the  HOA coefficient signals is re-correlated, this means the decorrelation at the HOA encoding stage is reversed. Next, all of the  HOA coefficient signals are used to create the ambient HOA components. The predominant HOA components are synthesized from the  predominant signals and the corresponding parameters. Finally, the predominant and the ambient HOA components are composed into the desired full HOA representation, which is then rendered to a given loudspeaker setup. 
[bookmark: _Toc252655912][bookmark: _Toc382391585][bookmark: _Toc382915980][bookmark: _Toc385337909]Overview of the decoder tools
HOA Decoding Tools
The inputs of the HOA frame converter are the HOA configuration data HOAConfig() and the HOA Frame HOAFrame(), as it is depicted in Figure 23. The variables of Figure 23 are defined in sections 11.3 and 11.4.1.

[image: ]
[bookmark: _Ref369619081]Figure 23 — The architecture of the HOA decoder tools

The HOA frame converter (Convert) and the MPEG-H 3D audio core decoder provide the data for the 
1. Spatial HOA Decoding.
25. The Spatial HOA Decoding re-creates the HOA time domain signals of the previous frame from the signals  and from the spatial side information provided by the HOA Frame Converter. The Spatial HOA decoding consists of the following coding tools, which are described in section 11.4.
0. Inverse Gain Control
0. Channel Reassignment
0. Predominant Sound Synthesis
0. Ambient Synthesis
0. HOA Compositions
HOA Renderer
The HOA Renderer converts the HOA signal matrix  to the loudspeaker signals  using the loudspeaker position matrix  and the HOAConfig() (see subclause 11.3.1) for its initialization.
[bookmark: _Toc382915981][bookmark: _Toc385337910]Syntax
[bookmark: _Toc382915982][bookmark: _Toc385337911]Configuration of HOA elements
[bookmark: _Ref382389720]Table 91 — Syntax of HOAConfig()
	Syntax
	No. of bits
	Mnemonic

	HOAConfig()
	
	

	{
	
	

		HoaOrder = escapedValue(3,5,0);
	
	

		NumOfHoaCoeffs = ( HoaOrder + 1 )^2;
	
	

		UsesNfc;
	1
	bslbf

		if (UsesNfc) {
	
	

			NfcReferenceDistance;
	32
	bslbf

		}
	
	

		HOADecoderConfig();
	
	

	}
	
	

	NOTE: HoaOrder = 30 … 38 are reserved.



[bookmark: _Ref383275275][bookmark: _Ref383275244]Table 92 — Syntax of HOADecoderConfig()
	Syntax
	No. of bits
	Mnemonic

	HOADecoderConfig(numHOATransportChannels)
	
	

	{
	
	

		MinAmbHoaOrder = escapedValue(3,5,0) – 1;
	
	

		MinNumOfCoeffsForAmbHOA = (MinAmbHoaOrder + 1)^2;
	
	

		NumOfAdditionalCoders =  numHOATransportChannels - MinNumOfCoeffsForAmbHOA;
	
	

		MaxNoOfDirSigsForPrediction = MaxNoOfDirSigsForPrediction + 1;
	2
	uimsbf

		NoOfBitsPerScalefactor = NoOfBitsPerScalefactor + 1;
	4
	uimsbf

		CodedSpatialInterpolationTime;
	3
	uimsbf

		SpatialInterpolationMethod;
	1
	bslbf

		CodedVVecLength;
	2
	uimsbf

		MaxGainCorrAmpExp;
	3
	uimsbf

		MaxNumAddActiveAmbCoeffs = NumOfHoaCoeffs – 
								       MinNumOfCoeffsForAmbHOA;
	
	

		AmbAsignmBits = ceil( log2( MaxNumAddActiveAmbCoeffs ) );
	
	

		ActivePredIdsBits = ceil( log2( NumOfHoaCoeffs ) );
	
	

		i = 1;
	
	

	· 	while( i * ActivePredIdsBits 
		   + ceil( log2( i ) ) < NumOfHoaCoeffs ){
	
	

			i++;
	
	

		}
	
	

		NumActivePredIdsBits = ceil( log2( max( 1, i – 1 ) ) );
	
	

		GainCorrPrevAmpExpBits = ceil( log2( ceil( log2( 
								        2 * NumOfHoaCoeffs ) )		     2 * NumOfHoaCoeffs ) )
								     + MaxGainCorrAmpExp + 1 ) );		   + MaxGainCorrAmpExp + 1 ) );
	
	

		for (i=0; i<NumOfAdditionalCoders; ++i){
	
	

			AmbCoeffTransitionState[i] = 3;
	
	

		}
	
	

	}
	
	

	NOTE: MinAmbHoaOrder = 30 … 37 are reserved.



[bookmark: _Toc382915983][bookmark: _Toc385337912]Payloads of HOA elements
Table 93 — Syntax of HOAFrame
	Syntax
	No. of bits
	Mnemonic

	HOAFrame(usacIndependencyFlag)
	
	

	{
	
	

		NumOfDirSigs = 0;
	
	

		NumOfVecSigs = 0;
	
	

		NumOfContAddHoaChans = 0;
	
	

		if(usacIndependencyFlag){
	
	

			hoaIndependencyFlag = usacIndependencyFlag;
	
	

		}
	
	

		else{
	
	

			hoaIndependencyFlag;
	1
	bslbf

		}S
	
	

		for(i=0; i< NumOfAdditionalCoders; ++i){
	
	

			ChannelSideInfoData(i);
	
	

			HOAGainCorrectionData(i);
	
	

			switch ChannelType[i] {
	
	

			case 0:
	
	

				DirSigChannelIds[NumOfDirSigs] = i + 1;
	
	

				NumOfDirSigs++;
	
	

				break;
	
	

			case 1:
	
	

				VecSigChannelIds[NumOfVecSigs] = i + 1;
	
	

				NumOfVecSigs++;
	
	

				break;
	
	

			case 2:
	
	

				if (AmbCoeffTransitionState[i] == 0) {
	
	

					ContAddHoaCoeff [NumOfContAddHoaChans] = 
												AmbCoeffIdx[i];
	
	

					NumOfContAddHoaChans++;
	
	

				}
	
	

				break;
	
	

			}
	
	

		}
	
	

	
	
	

		for ( i= NumOfAdditionalCoders; 
			i< NumHOATransportChannels; ++i){
	
	

			HOAGainCorrectionData(i);
	
	

		}
	
	

	
	
	

	       for(i=0; i< NumOfVecSigs; ++i){
	
	

	            VVectorData ( VecSigChannelIds(i) );
	
	

	       }
	
	

	
	
	

		HOAPredictionInfo( DirSigChannelIds, NumOfDirSigs )
	
	

		byte_alignment();
	
	

	}
	
	



Table 94 — Syntax of ChannelSideInfoData(i)
	Syntax
	No. of bits
	Mnemonic

	ChannelSideInfoData(i)
	
	

	{
	
	

		ChannelType[i]
	2
	uimsbf

		switch ChannelType[i]
	
	

		{
	
	

			case 0:
	
	

				ActiveDirsIds[i];
	10
	uimsbf

				break;
	
	

			case 1:
	
	

				if(hoaIndependencyFlag){
	
	

					NbitsQ(k)[i]
	4
	uimsbf

					if (NbitsQ(k)[i] >= 6) {
	
	

						PFlag(k)[i] = 0;
	
	

						CbFlag(k)[i];
	1
	bslbf

					}
	
	

				}
	
	

				else{
	
	

					bA;
	1
	bslbf

					bB;
	1
	bslbf

					if ((bA + bB) == 0) {
	
	

						NbitsQ(k)[i] = NbitsQ(k-1)[i];
	
	

						PFlag(k)[i] = PFlag(k-1)[i];
	
	

						CbFlag(k)[i] = CbFlag(k-1)[i];
	
	

					}
	
	

					else{
	
	

						NbitsQ(k)[i]  = (8*bA)+(4*bB)+uintC;
	2
	uimsbf

						if (NbitsQ(k)[i] >= 6) {
	
	

						PFlag(k)[i];
	1
	bslbf

						CbFlag(k)[i];
	1
	bslbf

						}
	
	

					}
	
	

				}
	
	

				break;
	
	

			case 2:
	
	

				AddAmbHoaInfoChannel(i);
	
	

				break;
	
	

			default:
	
	

		}
	
	

	}
	
	

	NOTE: Nbits = 4 is reserved  



[bookmark: _Ref382385327]Table 95 — ChannelType definition
	NOTE: ChannelType:
	0 :	Direction-based Signal
	1 :	Vector-based Signal
	2 :	Additional Ambient HOA Coefficient
	3:	Empty




Table 96 — Syntax of AddAmbHoaInfoChannel(i)
	Syntax
	No. of bits
	Mnemonic

	HOAAddAmbInfoChannel(i)
	
	

	{
	
	

		if(hoaIndependencyFlag){
	
	

			AmbCoeffTransitionState[i]; 
	2
	uimsbf

			AmbCoeffIdx[i] =	CodedAmbCoeffIdx + 1 
							+ MinNumOfCoeffsForAmbHOA;
	AmbAsignmBits 
	uimsbf

		}
	
	

		else {
	
	

			if(AmbCoeffIdxTransition == 1) {
	1
	bslbf

				if (AmbCoeffTransitionState[i]  > 1) {
	
	

					AmbCoeffTransitionState[i] = 1;  
	
	

					AmbCoeffIdx[i] = 	CodedAmbCoeffIdx + 1 
									+ MinNumOfCoeffsForAmbHOA;
	AmbAsignmBits 
	uimsbf

				}
	
	

				else { 
	
	

					AmbCoeffTransitionState[i] = 2;
	
	

				}
	
	

			}
	
	

			else {
	
	

				AmbCoeffTransitionState[i] = 0;
	
	

			}
	
	

		}
	
	

	}
	
	

	NOTE: 	
	The AmbCoeffIdx of the preceding frame is used under the following conditions
		if (AmbCoeffIdxTransitionState ==0)
		if (AmbCoeffIdxTransitionState == 2) 

AmbCoeffTransitionState:
	0:	No transition (continuous Additional Ambient HOA Coefficient)
	1:	Fade-in of Additional Ambient HOA Coefficient
	2:	Fade-out of Additional Ambient HOA Coefficient
	3:	Initial value



Table 97 — Syntax of HOAGainCorrectionData()
	Syntax
	No. of bits
	Mnemonic

	HOAGainCorrectionData(i)
	
	

	{
	
	

		if(hoaIndependencyFlag){
	
	

	· 		GainCorrPrevAmpExp[i] =	GainCorrPrevAmpExp 
									- ceil( log2( 2 * NumHoaCoeffs ) );
	GainCorrPrevAmpExpBits
	uimsbf

		}
	
	

		n=0;
	
	

		while(1) {
	
	

			CodedGainCorrectionExp[i][n]
	1
	bslbf

			if(CodedGainCorrectionExp[i][n])
	
	

				break;
	
	

			n++;
	
	

		}
	
	

	
	
	

		GainCorrectionException[i];
	1
	bslbf

	}
	
	



Table 98 — Syntax of VVectorData()
	Syntax
	No. of bits
	Mnemonic

	VVectorData(i)
	
	

	{
	
	

		if (NbitsQ(k)[i] == 5){
	
	

			for (m=0; m< VVecLength; ++m){
	
	

				aVal[i][m] = (VecVal  / 128.0) – 1.0;
	8
	uimsbf

		}
	elseif(NbitsQ(k)[i]  >= 6){
	
	

			for (m=0; m< VVecLength; ++m){
	
	

				huffIdx = huffSelect(VVecCoeffId[m], PFlag[i], CbFlag[i]);
	
	

				cid = huffDecode(NbitsQ[i], huffIdx, huffVal);
	dynamic
	huffDecode

				aVal[i][m] = 0.0;
	
	

				if ( cid > 0 ) {
	
	

					aVal[i][m] = sgn = (sgnVal * 2) - 1;
	1
	bslbf

					if (cid > 1) {
	
	

						aVal[i][m] =  sgn * (2.0^(cid -1 ) + intAddVal);
	cid-1
	uimsbf

					}
	
	

				}
	
	

			}
	
	

		}
	
	

	}
	
	

	NOTE: See section 11.4.1.9.1 for computation of VVecLength
	
	




Table 99 — Syntax of HOAPredictionInfo(DirSigChannelIds, NumOfDirSigs)
	Syntax
	No. of bits
	Mnemonic

	HOAPredictionInfo(DirSigChannelIds, NumOfDirSigs)
	
	

	{
	
	

		PredIdsBits = ceil( log2( NumOfDirSigs + 1 ) );
	
	

		if(PSPredictionActive){
	1
	bslbf

			NumActivePred = 0;
	
	

			if(KindOfCodedPredIds){
	1
	bslbf

				NumActivePred = NumActivePredIds + 1;
	NumActivePredIdsBits
	uimsbf

				i=0;
	
	

				while( i < NumActivePred){
	
	

					PredIds[i] = PredIds[i] + 1;
	ActivePredIdsBits
	uimsbf

					i++;
	
	

				}
	
	

			}
	
	

			else{
	
	

				for (i=0; i<(HoaOrder +1)^2; i++) {
	
	

					if(ActivePred[i]) {
	1
	bslbf

						NumActivePred ++;
	
	

					}
	
	

				}
	
	

			}
	
	

			NumOfGains=0;
	
	

			for (i=0; i<NumActivePred * MaxNoOfDirSigsForPrediction; i++) {
	
	

				if( PredDirSigIds[i] > 0 ){
	PredIdsBits
	uimsbf

					PredDirSigIds[i] = 
							DirSigChannelIds[PredDirSigIds[i] - 1 ];
	
	

					NumOfGains++;
	
	

				}
	
	

			}
	
	

			n=0;
	
	

			for (i=0; i< NumOfGains; i++) {
	
	

				if (PredDirSigIds[i]>0) {
	
	

					PredGains[n];
	NoOfBitsPerScalefactor
	bslbf

					n++;
	
	

				}
	
	

			}
	
	

		}
	
	

	}
	
	



[bookmark: _Ref382913221][bookmark: _Toc382915984][bookmark: _Toc385337913]Data Structure
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HOAConfig()	This element contains information about the audio content
[bookmark: _Ref291072403]HoaOrder	This element determines the HOA order of the coded signal by HoaOrder = HoaOrder +1.
NumOfHoaCoeffs	This element determines the number of HOA coefficients of the coded HOA representation, which is equal to the number of HOA coefficients to be reconstructed. 
UsesNfc	This element determines whether or not the HOA Near Field Compensation (NFC) has been applied to the coded signal. 
NfcReferenceDistance	This element determines the radius in meter that has been used for the HOA NFC. 
HOADecoderConfig()	This element contains information to initialize the HOA spatial decoder.
MinAmbHoaOrder	This element determines the minimum HOA order used for the coding of the ambient HOA representation by MinAmbHoaOrder  = MinAmbHoaOrder - 1. The value -1 indicates that the number of decorrelated ambiance coefficients is equal to zero. Thus the HOA representation is transmitted without a residual ambiance HOA representation of lower order and all transport channels have a flexible channel type. The value 6 is used to extend the HOA order signaling. 
MinNumOfCoeffsForAmbHOA	This element determines the minimum number of ambient HOA coefficients.
NumOfAdditionalCoders	This element determines the number of additional transport channels used for coding the directional and/or additional HOA coefficients of the ambient component. These transport channels have a flexible ChannelType that is defined in Table 95.
MaxNoOfDirSigsForPrediction	This element determines the number of directional signals used for the prediction of the predominant sound components.
NoOfBitsPerScalefactor	This element determines the number of bits for reading PredGains[n]. 
CodedSpatialInterpolationTime	This element determines the time of the spatio-temporal interpolation of the Vector-based directional signals as defined in Table 100.
SpatialInterpolationMethod	This element determines the interpolation method applied during the spatio-temporal interpolation of the vector-based signals.
CodedVVecLength	This element indicates the length of the transmitted data vector used to synthesize the vector-based signals. 
MaxGainCorrAmpExp	Gives the exponent of basis two of the maximum, accumulated amplification that has been used in the gain correction tool of the HOA spatial encoder for amplification of signals of the transport channel. This value is required to compute the number of bits for reading MaxGainCorrPrevAmpExp when the IndependencyFlag is set to true.
MaxNumAddActiveAmbCoeffs	This element determines the maximum number of additional HOA channels that can be used additionally for the coding of the ambient HOA representation. 
AmbAsignmBits	This element determines the number of bits that are required for reading CodedAmbCoeffIdx[i].
ActivePredIdsBits	This element determines the number of bits for reading ActivePredIds.
NumActivePredIdsBits	This element determines the number of bits for reading NumActivePredIds.
GainCorrPrevAmpExtBits	This element determines the number of bits for reading MaxGainCorrPrevAmpExp. 
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HOAFrame()
The HOAFrame() holds the information that is required to decode the 1024 samples of a HOA frame of order HoaOrder. 
HOAFrame()	This block of data contains the data required to decode one frame of 1024 samples of the coded HOA representation.
NumOfDirSigs	This elements determines the number of active directional signals in the current HOAFrame(). 
NumOfVecSigs	This element determines the number of active vector-based signals in the current HOAFrame().
NumOfContAddHoaChans	This element determines the number of additional ambient HOA channels the current HOAFrame().
hoaIndependencyFlag	This flag signals that the current frame is an independent frame that can be decoded without having knowledge about the previous frame. The flag is only read from the bit stream if the global usacIndependencyFlag is unset. Otherwise this flag is equal to the usacIndependencyFlag.
ChannelSideInfoData(i)	This payload holds the side information for the i-th of the NumOfAdditionalCoders channels of flexible ChannelType. 
HOAGainCorrectionData(i)	This payload contains data for the inverse gain correction of channel i.
DirSigChannelIds[NumOfDirSigs]	This element stores the channel index of each active directional signal of the current frame. 
VecSigChannelIds[NumOfVecSigs]	This element stores the channel index of each active vector-based signal of the current frame.
ContAddHoaCoeff [NumOfContAddHoaChans] 
	This element stores the HOA coefficient number of each additional ambient HOA channel for which the AmbCoeffTransitionState word is of value 0 in the current frame.
HOAPredictionInfo( DirSigChannelIds, NumOfDirSigs )
	This payload contains data for the prediction of dominant sound sources from the active directional signals of the current frame.
ChannelSideInfoData(i)
This payload holds the side information for the i-th channel. The size and the data of the payload depend on the type of the channel. 
ChannelType[i]	This element stores the type of the i-th channel which is defined inTable 95.
ActiveDirsIds[i]	This element indicates the direction of the active directional signal using an index of the 900 predefined, uniformly distributed points from Annex F.7. The code word 0 is used for signaling the end of a directional signal. 
PFlag[i]	The prediction flag used for the Huffman decoding of the V-vector associated with the Vector-based signal of the i-th channel.
CbFlag[i]	The codebook flag used for the Huffman decoding of the V-vector associated with the Vector-based signal of the i-th channel.
NbitsQ[i]	This index determines the Huffman table used for the Huffman decoding of the data associated with the Vector-based signal of the i-th channel. The code word 5 determines the use of a uniform 8bit dequantizer. The two MSBs 00 determines reusing the NbitsQ[i], PFlag[i] and CbFlag[i] data of the previous frame (k-1).   
bA, bB						The msb (bA) and second msb (bB) of the NbitsQ[i] field.
uintC						The code word of the remaining two bits of the NbitsQ[i] field.
AddAmbHoaInfoChannel(i)	This payload holds the information for additional ambient HOA coefficients.
 
AddAmbHoaInfoChannel(i)
This payload contains the information required to add an additional ambient HOA coefficient to the reconstructed HOA representation.
AmbCoeffTransitionState	This decoder-internal variable tracks the state of the life-cycle of an additional ambient HOA coefficient. Those states are Fade-in, Continous State, and Fade-out. The AmbCoeffIdxTransition signals a change of the state in the bitstream. When an additional ambient HOA coefficient is faded in, the CodedAmbCoeffIdx word is sent to signal the new AmbCoeffIdx. In all other states, the AmbCoeffIdx of the previous frame is used.
AmbCoeffIdxTransition	This element indicates that in this frame an additional ambient HOA coefficient is either being faded in or faded out. This flag will update the decoder-internal AmbCoeffTransitionState variable for this transport channel accordingly (see Table 6).
CodedAmbCoeffIdx	This element reads the coded index of the additional ambient HOA coefficient.
AmbCoeffIdx[i]	This element determines the index of the HOA signal where channel i contributes to the reconstructed HOA representation. 

HOAGainCorrectionData(i)
This structure comprises the parameters for the inverse gain correction of the spatial HOA decoding tool for the i-th transport channel.
HOAGainCorrectionData()	This payload comprises the parameters for the inverse gain correction.
GainCorrPrevAmpExp[i]	This element gives the amplification as an exponent to the basis of two that has been applied to the signal of the transport channel i in the previous frame. It is only required to send if the IndependencyFlag is set to true for starting decoding at the current frame. The value range of the element is from –ceil(log2(2*NumOfHoaCoeffs) to MaxGainCorrAmpExp, where the lower bound is the maximal amplitude of any transport channel signal. This bound is computed from the assumption that all spatial domain signals of the encoded HOA representation have absolute amplitudes less than one. The spatial domain signals are computed by the multiplication of the HOA representation with the inverse of the modematrix created from the uniformly distributed positions selected for the input’s HOA order from F.1 to F.6.
CodedGainCorrectionExp[i][n]	The index n addresses the bits of the run length code to determine the exponent used for the inverse gain correction of the i-th channels.
GainCorrectionException[i]	indicates the gain correction exception state for each of the i-th channels.
[bookmark: _Ref289954206]
VVectorData( VecSigChannelIds(i) )
This structure contains the coded V-Vector data used for the vector-based signal synthesis. The subfunctions used for the decoding are described in section 11.4.1.9.
VVec(k)[i]				This is the V-Vector for the k-th HOAframe() for the i-th channel. 
VVecLength				This variable indicates the number of vector elements to read out.
VVecCoeffId				This vector contains the indices of the transmitted V-Vector coefficients.
VecVal					An integer value between 0 and 255.  
aVal					A temporary variable used during decoding of the VVectorData.
huffVal					A Huffman code word, to be Huffman-decoded.
sgnVal					This is the coded sign value used during decoding.
intAddVal				This is additional integer value used during decoding.

HOAPredictionInfo( DirSigChannelIds, NumOfDirSigs )
The data of this payload provides information for the Predominant Sound Synthesis in the HOA Spatial Decoding tool. It includes parameters for the prediction of the predominant sound component from the active directional signals 
PredIdsBits	This helper variable holds the number of bits for reading PredDirSigIds[]. The number of bits is adapted to the currently active number of directional signals NumOfDirSigs, which is determined in HOAFrame(). 
PSPredictionActive	This element determines whether or not the spatial prediction tool contributes to the decoded HOA representation. 
KindOfCodedPredIds	This element indicated the method for reading ActivePred[].
NumActivePredIds	This element indicates the number of active prediction indices from the NumOfHoaCoeffs uniformly distributed position indices from F.1 to F.6. The table is selected according to HOAOrder.
NumActivePred	This element determines the number of active prediction indices.
PredIds[idx]	This array indicates the active prediction indices from F.1 to F.6. The table is selected according to HOAOrder.
ActivePred[idx]	This element indicates whether or not (‘1’ or ‘0’) the prediction is computed for each of the NumOfHoaCoeffs uniformly distributed positions from F.1 to F.6. The table is selected according to HOAOrder.
PredDirSigIds[n]	This array indicates the index of the transport channel of the active directional signals for each active prediction. 
NumOfGains	The variable indicates the number of prediction gains provided by the bit stream. Only prediction gains that are greater than zero are provided. The maximal number of prediction gains is equal to NumActivePred times MaxNoOfDirSigsForPrediction.
PredGains[n]	This array holds the NumOfGains prediction gains.

[bookmark: _Ref382913267][bookmark: _Toc382915987][bookmark: _Toc385337916]HOA Tool Description
[bookmark: _Ref369793961][bookmark: _Toc252655922][bookmark: _Toc382391593][bookmark: _Toc382915988][bookmark: _Toc385337917]HOA Frame Converter
The HOA Frame Converter, shown in Figure 23, converts the parameters from the HOAFrame() payload and from the HOAAUHeader() payload to the parameters required for the HOA decoding tools. 
Global Parameter
The HOA Frame Converter defines the following variables:
NumHOATransportChannels	Number of transport signals used as input for the Spatial Decoding Tool
	Index for the transport signals
HoaOrder	Ambisonics order of the coded HOA signal
	Number of HOA coefficients
 MinAmbHoaOrder	Minimum order of the transmitted ambient HOA representation
	Minimum number of ambient HOA coefficients
	Direction index
= MaxNoOfDirSigsForPrediction	Maximum number of directional signals used for the prediction of dominant sound sources
= NumOfAdditionalCoders	Number of channels with flexible channel types 
NoOfBitsPerScaleFactor	Number of bits per scale factor
	Number of direction indices
	Quantization index of a direction
	Frame length in sample for the spatial decoding
	Sample index 
	Frame index
	Determines the maximum speaker distance of the listening setup.
E = CodedVVecLength	Coded V-Vector length

Helper functions
bool isMemberOf(val, array, arraySize)
{
	idx = 0;
	for( idx = 0; idx < arraySize; idx++ )
	{
		if(array[idx] == val)
			return true;
	}
	return false;
}

Prediction Parameters 
The set of predictions parameters consists of three arrays . The array  consists of  entries,  and  are  matrices.
for (q=1; q ≤ ; q++){
	
	for (d=1; d ≤ ; d++){
		[d][q] = 0;
		[d][q] = 0;
	}
}
if(PSPredictionActive){
	if(!KindOfCodedPredIds){
		i=0;
		for (q=0; q < ; q++){
			if(ActivePred[q]{
				[q+1] = 1;
				i++;	
			}
		}
	}
	else{
		for (i=0; i < NumActivePred; i++){
			[PredIds[i]] = 1;
		}
	}
}

i=0;
j=0;
for (q=1; q ≤ ; q++){
	for (d=1; d ≤ ; d++){
		if([i]>0){
			[d][q] = PredDirSigIds[i];
			i++;
			if(PredDirSigIds[i] != 0){
				[d][q] = PredGains[j];
				j++;
			}
		}
	}
}

Assigment vector 
for (i=0; i < NumOfAdditionalCoders; i++){
	if(ChannelType[i]==2){
		[i+1] = AmbCoeffIdx[i];
	}
	else{
		[i+1]=0;
	}
}
nIdx = 1;
for (i= NumOfAdditionalCoders; i < NumHOATransportChannels; i++){
	[i+1]=nIdx;
	nIdx++;
}

[bookmark: _Ref384900082]Tuple set 
=;
for (i=0; i < NumOfAdditionalCoders; i++){
	if(ChannelType[i]==0){
		=;
	}
}

The sets ,  and   
;
;
;
for (i=0; i < NumOfAdditionalCoders; i++){
	switch(AmbCoeffTransitionState[i]){
		case 0:
		{
=;
break;
		}
		case 1:
		{
=;
break;
		}
		case 2:
		{
=;
		}

	}
}

Gain Correction Exponents 
RunIdx = 0;
for (; ; ){
	if(IndependencyFlag){ 
		 = pow( 2, GainCorrPrevAmpExp[i] );
}
	TmpCodedExp = 0;
	FoundOne = false;
	
	while (!FoundOne){
		FoundOne = CodedGainCorrectionExp[][RunIdx];
		TmpCodedExp++;
		RunIdx++;
	}

	switch(TmpCodedExp){
		case 1:
		{
			 = 0;
			break;
		}
		case 2:
		{
			  = -1;
			break;
		}
		default:
		{
			 = TmpCodedExp-2;
		}
	}
}

Gain Correction Exception Flag 
for(=0;  < ; ++){
	 = GainCorrectionException[];
}

[bookmark: _Ref384738546]Decoding of V-Vector
[bookmark: _Ref384889795]VVecLength and VVecCoeffId
The codedVVecLength word indicates:
0:	Complete vector length (NumOfHoaCoeffs elements)
1: 	Vector elements 1 to MinNumOfCoeffsForAmbHOA and all elements defined in ContAddHoaCoeff are not transmitted
2:	Vector elements 1 to MinNumOfCoeffsForAmbHOA are not transmitted

For the assignment algoritm below a helper function is defined as follows.

switch CodedVVecLength{
	case 0: 
		VVecLength = NumOfHoaCoeffs;
		for (m=0; m<VVecLength; ++m){
			VVecCoeffId[m] = m; 
		}
		break;
	case 1:
		VVecLength = NumOfHoaCoeffs – MinNumOfCoeffsForAmbHOA - NumOfContAddHoaChans;
		CoeffIdx = MinNumOfCoeffsForAmbHOA+1;
		for (m=0; m<VVecLength; ++m){
			bIsInArray = isMemberOf(CoeffIdx, ContAddHoaCoeff, NumOfContAddHoaChans);
			while(bIsInArray){
				CoeffIdx++;
				bIsInArray = isMemberOf(CoeffIdx, ContAddHoaCoeff, NumOfContAddHoaChans);
			}
			VVecCoeffId[m] = CoeffIdx-1;
		}
		break;	 
	case 2: 
		VVecLength = NumOfHoaCoeffs – MinNumOfCoeffsForAmbHOA;
		for (m=0; m< VVecLength; ++m){
			VVecCoeffId[m] = m + MinNumOfCoeffsForAmbHOA; 
		}	
}

huffSelect huffIdx
huffIdx = 5;
if (CbFlag(k)[i] == 1) {
huffIdx = min(3, max(1, ceil(sqrt(VVecCoeffId[m]+1) - 1)));
}
else if (PFlag(k)[i] == 1) {
huffIdx = 4;
}

huffDecode cid
thisTable = huffmanTable[NbitsQ[i]].codebook[huffIdx];
huffWordFound = 0;
word = 0;
while(huffWordFound == 0){
	word = concatenate( word, hufVal);
	for( l = 0 ; l < thisTable.length ; l++ ){
		if( word == thisTable [l] ){
			huffWordFound = 1;
			cid = word->symbol;
		}
}
}

Conversion of aVal to VVec element
if (NbitsQ(k)[i] == 5){	 
(N+1)*aVal[i][m];
}	
elseif (NbitsQ(k)[i] >= 6){	
	= (N+1)*(2^(16 – NbitsQ(k)[i])*aVal[i][m])/2^15;  
	if (PFlag(k)[i] == 1) {
		 += ;
	}
}

[bookmark: _Ref384900089]Tuple set 
=;
for (i=0; i < NumOfAdditionalCoders; i++){
	if(ChannelType[i]==1){
		=;
	}
}

[bookmark: GrindEQpgref52cad6871][bookmark: _Toc252655924][bookmark: _Toc382391594][bookmark: _Toc382915989][bookmark: _Toc370221600][bookmark: _Toc385337918]Spatial HOA decoding
The architecture of the spatial HOA decoder is depicted in Figure 24.
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[bookmark: _Ref376866889]Figure 24 — Architecture of spatial HOA decoder
[bookmark: GrindEQpgref52cad6872]For each , the -th frame of the -th perceptually decoded signal, i.e. , is input to an Inverse Gain Control processing block together with the associated gain correction exponent  and gain correction exception flag . The -th Inverse Gain Control processing provides a gain corrected signal frame .
All of the  gain corrected signal frames , , are passed together with the assignment vector  and the tuple sets  and  to the Channel Reassignment processing block, where they are redistributed to create the frame  of all predominant sound signals (i.e., all directional and vector-based signals) and the frame  of an intermediate representation of the ambient HOA component. 
The meaning of the input parameters to the Channel Reassignment is as follows. The assignment vector  indicates for each transport channel the index of a possibly contained coefficient sequence of the ambient HOA component. The tuple set 

consists of tuples of which the first element  denotes the index of an active direction and of which the second element  denotes the respective quantized direction defined in F.7. In other words, the first element of the tuple indicates the index  of the gain corrected signal frame  that is supposed to represent the directional signal related to the quantized direction  given by the second element of the tuple. For the reason, that directions are always computed with respect to two successive frames due to overlap add processing, there occurs the special case that for the last frame of the activity period for a directional signal there is actually no direction, which is signaled by setting the respective quantized direction to zero.
The tuple set  
	
consists of tuples of which the first element indicates the index of the gain corrected signal frame  that represents the signal to be reconstructed by a vector , which is given by the second element of the tuple. The vector  represents information about the spatial distributions (directions, widths, shapes) of the active signal . The vector  represents information about the spatial distributions (directions, widths, shapes) of the active signal . It is assumed to have an Euclidean norm of 
In the Predominant Sound Synthesis processing block the HOA representation of the predominant sound component  is computed from the frame  of all predominant sound signals. It uses the tuple sets  and , the set  of prediction parameters and the sets , ,  of coefficient indices of the ambient HOA component, which have to be enabled, disabled and to remain active in the  frame.
In the Ambience Synthesis processing block, the ambient HOA component frame  is created from the frame  of the intermediate representation of the ambient HOA component. Finally, in the HOA Composition processing block the ambient HOA component frame  and the frame  of the predominant sound HOA component are superimposed to provide the decoded HOA frame .
In the following, the individual processing blocks are described in more detail.
Inverse Gain Control
The goal of the Inverse Gain Control (IGC) processing block is to invert the gain modifications performed to the signals before perceptual encoding at the HOA encoding stage in order to recreate their initial value range.
For that purpose, a fixed template transition window function 
		
is employed,whose elements are defined by 
		
Assuming the input frame  and output frame  to be expressed through their samples by 
		
	
the computation of the samples of the output frame is given by
	
The factor  is initialized by 
		
and is recursively updated in the -th frame by 
		
For random access the exponent the the basis of two of the factor  is provided explicitely in HOAGainCorrectionData() if the global IndependencyFlag has been signaled as true. 
[bookmark: GrindEQpgref52cad6873]Channel Reassignment
The Channel Reassignment processing block has the purpose to create the frame  of all predominant sound signals and the frame  of an intermediate representation of the ambient HOA component from the gain corrected signal frames , , and the assignment vector , which indicates for each transport channel the index of a possibly contained coefficient sequence of the ambient HOA component. Additionally, the sets  and  are used, which are supposed to contain the first elements of all tuples of  and , respectively. It is important to note that these two sets are assumed to be disjoint.	
For the actual assignment the following steps are performed. 
1. The frame  of all predominant sound signals is assumed to be composed of the individual predominant sound signal frames according to	 
where each frame is supposed to consist of its samples according to

where . 

The sample values of the directional signal frames are computed as follows:



2. The frame  of an intermediate representation of the ambient HOA omponent is assumed to be composed according to 

	
with 
	
The sample values of the intermediate representation of the ambient HOA component are obtained as follows: 

[bookmark: GrindEQpgref52cad6874][bookmark: _Ref384731941]Predominant Sound Synthesis
The purpose of the Predominant Sound Synthesis is to create the frame  of the HOA representation of the predominant sound component from the frame  of all predominant sound signals using the tuple set  and the set  of prediction parameters, the tuple set  and the sets , , and . As illustrated in Figure 25, the processing can be subdivided into four processing steps, which are described in the following. 
[image: ]
[bookmark: _Ref376866874]Figure 25 — Predominant sound synthesis

[bookmark: GrindEQpgref52cad6875][bookmark: GrindEQpgref52cad6876][bookmark: _Ref378943092]Compute HOA representation of active directional signals
In order to avoid artifacts due to changes of the directions between successive frames, the computation of the HOA representation from the directional signals is based on the concept of overlap add. Hence, the HOA representation  of active directional signals is computed as the sum of a faded out component and a faded in component: 

To compute the two individual components, in a first step the instantaneous signal frames for directional signal indices  and directional signal frame index  are defined by 

The sample values of the faded out and faded in directional HOA components are then determined by 


where  denotes the set of those first elements of  where the corresponding second element is non-zero. The fading of the instantaneous HOA representations for the overlap add operation is accomplished with two different fading windows 


whose elements are defined by 


where is defined in Table 100.

[bookmark: _Ref378860998][bookmark: _Ref378956252][bookmark: _Ref378860989]Table 100 — decoding of codedSpatialInterpolationTime
	CodedSpatialInterpolationTime
	0
	1
	2
	3
	4
	5
	6
	7

	
	0
	64
	128
	256
	384
	512
	768
	1024



Compute HOA representation of predicted directional signals
[bookmark: GrindEQpgref52cad6877]The parameter set  related to the prediction consists of the following components:
· The vector , whose elements ,  indicate if for the -th direction , defined in F.1 to F.6 according to  and the -th and -th frame  a prediction is performed or not, and if so, then they also indicate the kind of prediction. In particular, the meaning of the elements is as follows:
 
· The matrix , whose elements , ,  denote the indices from which directional signals the prediction for the direction  and the -th and -th frame has to be performed. If no prediction is to be performed for a direction , the corresponding column of the matrix  consists of zeros. Further, if less than  directional signals are used for the prediction for a direction , the non-required elements in the -th column of  are also zero.
· The matrix , which contains the corresponding quantized prediction factors , , . 
Note that the prediction parameters  are related to the frames  and . Additionally, the following dependent quantity 

is introduced, which indicates whether a prediction is to be performed related to frames  and . Further, the quantized prediction factors , , , are dequantized to provide the actual prediction factors 
		
The idea behind the computation of the predicted HOA component is to represent it by directional signals (i.e. general plane wave functions) impinging from some predefined directions , , and then transform this representation to an HOA representation. The computation of the predicted directional signals is based on the concept of overlap add in order to avoid artifacts due to changes of the prediction parameters between successive frames.Hence, the -th frame of the predicted directional signals, denoted by , is computed as the sum of a faded out component and a faded in component: 
		
The sample values  and , , , of the faded out and faded in predicted directional signals are then computed by 
	
		
In a next step, the predicted directional signals are transformed to the HOA domain by 
	
where  denotes the mode matrix, defined in Annex G.4, of order  with respect to the mentioned predefined directions . Assuming the preliminary HOA representation  of the predicted directional signals to be expressed by means of its samples by 
	
the samples of the final output HOA representation 
	
of the predicted directional signals are computed 


Compute HOA representation of active vector-based signals
The computation of the HOA representation of the vector-based signals is conceptualized by the interpolation of vectors which contain information about the distribution of the predominant sound components in space (e.g., directions, shapes, and widths). The interpolation is carried out over time. This spatio-temporal interpolation ensures a continuous and smooth evolution of  the soundfield across frame boundaries, that lends itself to perceptually transparent quality. In this manner, the HOA signal is re-composed from the original decomposition comprised of the interpolated vectors and the corresponding predominant signals. 
First, an interpolation matrix   is computed for each index  of a vector-based signal that is active in the -th or -th frame. Its columns  represent for each sample  of a frame an interpolated vector defined by

In the equation above,  and  denote the vectors between those the interpolation takes place, defined by


where  denotes the zero vector. Further, the interpolation function  is defined by 


where

and where,  is indicated by the variable CodedSpatialInterpolationTime as given by Table 100.
The HOA representation  for each vector based signal , is a matrix of dimension, whose columns are given by:

The complete HOA representation of the vector-based signals can be computed by summing the HOA contribution from each individual vector based signal as follows:

In the case, that  has a value of 1, the following operations have to be processed:
1. If there are coefficient sequences of the ambient HOA component that are explicitly additionally transmitted and faded in during the -th frame (of which the indices are contained in the set , the respective coefficient sequences of the HOA representation  have to be faded out using the fade out part of the window .
1. If there are coefficient sequences of the ambient HOA component that are explicitly additionally transmitted and faded out during the -th frame (of which the indices are contained in the set , the respective coefficient sequences of the HOA representation  have to be faded in using the fade in part of the window 
Hence, the final HOA representation of the vector-based signals is obtained by


[bookmark: GrindEQpgref52cad6878]Compose complete predominant sound component
[bookmark: GrindEQpgref52cad6879]The complete predominant sound HOA component, , is obtained as the sum of the HOA component  of the directional signals, the HOA component  of the predicted directional signals and the HOA component of the vector based signals  by 
	
Ambience Synthesis
The ambient HOA component frame  is assumed to be composed according to 
		
with 
	
The first  coefficients of the ambient HOA component are obtained by 
		
Where  denotes the mode matrix of order , as it is defined in Annex G.4, with respect to some fixed predefined directions . The sample values of the remaining coefficients of the ambient HOA component are set according to 
			
[bookmark: GrindEQpgref52cad68710]HOA composition
The decoded ambient HOA frame  is computed by 
		
[bookmark: _Toc252655925][bookmark: _Toc382391595][bookmark: _Toc382915990][bookmark: _Toc385337919]HOA Renderer
This section describes the conversion of the decoded Higher Order Ambisonics (HOA) representation to loudspeaker signals. In subsection 11.4.3.1 the renderer architecture is presented; the design process of the rendering matrix for flexible rendering is given in subsection 11.4.3.2. Subsection 11.4.3.3 gives information about a gain and delay compensation for non- spherical placed loudspeaker setups and subsection 11.4.3.4 explains NFC processing.
[bookmark: _Ref370216819]Architecture overview
The conversion process is shown in Figure 26. The decoded HOA representation , here described as a matrix of  rows  and  columns.  denotes the HOA order (HoaOrder) and   expresses the block size in number of samples.   is converted to the representation of loudspeaker signals   of size , where  is the number of loudspeaker channels, by multiplication with the rendering matrix :     . A comprehensive description of the expected HOA format () can be found in Annex G. 
[image: ]
[bookmark: _Ref370213657]Figure 26 — The HOA conversion process.  In light gray: Preprocessing block NFC processing (should be switched active if UseNfc is true and the speaker listener distance  is samller NfcReference Distance), pre-processing block DRC-1 for HOA and as an alternative to rendering to loud-speakers, a computational efficient binaural rendering directly using the HOA coefficients (H2B, see section 12.4.1). Computational more efficient but mathematically equivalent ways to implement the processing chain may be found in Annex H.

The rendering process assumes that the loudspeakers are positioned with equal distances to the sweet spot (spherical setup) or that a gain and delay compensation is performed as post processing of the speaker signals before play out to create a virtual spherical setup. Subsection 11.4.3.3 gives an informative description. A Peak Limiter should be implemented as post-processing. 
The rendering state diagram is shown in Figure 27. On creation the renderer receives the positions of the loudspeaker setup . , a matrix of size , where L gives the number of loudspeakers and  is the position vector of speaker .  is the distance from the sweet spot (listening position) to speaker  and  are the related spherical angles. For information on the spherical coordinate system see Annex G.2.
For all HOA supported orders  the renderer can create rendering matrices and store these in a data base or calculate these matrices on the fly when needed (see 11.4.3.2 for details on matrix construction). 

[image: ]
[bookmark: _Ref370213717]Figure 27 — Renderer state diagram. There are two states of initialization. First the rendering matrices are created depending on the loudspeaker positions.  A matrix suited for content to process is then selected using content meta data information.

When new content is streamed to the renderer, it receives content information extracted from HOAConfig (). The renderer will try to select a rendering matrix  using the HOAOrder and create/select NFC filters for pre-processing if necessary, i.e. if UsesNfc is active in the bit stream and NfcReferenceDistance > , with  the maximum speaker distance of the listening setup. If success full, the renderer will reach state Initialized. Rendering block processing of HOA data then creates speaker output signals (blockProcess()).
[bookmark: _Ref370216836]Matrix design for flexible rendering
This section describes the design of energy preserving rendering matrices, where the number of HOA coefficients  can be larger than the number of loudspeakers . Energy preservation describes the characteristics that the HOA signal’s loudness is preserved independent of the speaker setup and that constant amplitude spatial sweeps can be perceived equal loud after rendering. The section is divided into two parts: First the design for 3D speaker setups are described, then the design method for 2D speaker setups is presented. The 2D design method makes use of the 3D method because it uses virtual loud speakers placed at the pole positions of a (virtual) spherical speaker setup.
Matrix design for 3D loudspeaker setups
The building blocks are shown in Figure 28. For each supported HOA order  a matrix  is created. Main input to the design are the loudspeaker positions which are here indicated by  as directions.  loudspeaker directions are given by  with spherical angle . A spherical setup is assumed and the speaker distances are neglected. indicates the inclination and  the speaker azimuth, both in rad. The related coordinate system in Cartesian coordinated is centered at the sweet spot, the X axis points towards the ideal Center speaker position, the Y-axis to the left and the Z-axis to the top. An ideally placed Center speaker thus would have a [position. 
[image: ]
[bookmark: _Ref370214557]Figure 28 — Building blocks of the matrix design procedure

Additional input to the design process are ideal spherical design positions   with , characterized that they sample the unit sphere very regularly. A spherical grid of a  positions is defined, which enable the construction of matrices up to HOA order . The position tables are defined in F.8.
Building block – Get Mode Matrix
A mode matrix related to  and N is calculated or read from memory.   with , where vector  holds the real valued spherical harmonic coefficients . For the calculation of   see the definition in Annex G.2. 
Building block – Build Mix Matrix
A Mix Matrix  of size  is created which holds gain vectors  to mix a direction  with speakers positioned at  The method of  robust panning is presented here which showed to be ideal for the following processing steps and which can be seen as an alternative to Vector Base Amplitude Panning (VBAP). The principle is depicted in Figure 29. For each and every plane wave from direction ,  panning gains in vector  (), intended to attenuate plane waves emitted from (speakers) are created in a way that the error recorded at virtual microphones becomes minimal.  Let  denote  microphone signals receiving the sound radiated from  sources placed at  and   the sound from  sources placed at . The virtual microphone signals are given by the plane wave transfer functions and an excitation signal  by  and . The error  becomes independent of . 
[image: ]
[bookmark: _Ref370215163]Figure 29 — The principle of robust panning: Virtual microphones capture sound from direction  as a plane wave. Panning gains are calculated such that the sound recorded from loudspeaker directions  becomes as close as possible compared to first measurement.

Minimizing the error term    leads to the LMS-error solution for . To make the gain vector more robust a regularization parameter is introduced that increases the costs if gains become large for sources positioned far away from direction :
Minimize: 
The LMS solution of this equation is given by:

With  as  diagonal matrix with diagonal elements of vector :  ;   is transposed, and  is transposed complex.  , where  needs to become larger the bigger the spherical angle of direction  to speaker direction  gets:  .
The transfer functions ,  are functions of frequency. To make the gains independent of frequency, the virtual microphone radius is selected as a function of frequency. 
Detailed description:
	1.
	A test frequency  is defined.  Calculate
 , 
with    is the speed of sound (340m/s).  is selected dependent of the HOA order of the content to be rendered, seeTable 91.

	2.
	The spherical angles of virtual microphone positions , with   with , are defined  with  positions in Annex F.9. The microphone position radius is calculated by 
with  the number of loudspeakers.

	3.
	· Calculate  with matrix elements  
 
where is the spherical angle between  and  : 
 . This is the plane wave transfer function and equal to  where  are the speaker positions in Cartesian coordinates (with radius 1) and   the microphone positions in Cartesian coordinates (with radius ).

	4.
	· Loop: 

	
	· a.
	· Calculate   with vector elements
 
where is the spherical angle between  and  : 
 .

	
	· b.
	· Calculate  with:
 
and .

	
	· c.
	· Calculate .

	
	· d.
	· The  gain values are complex with a very small imaginary part. We use only real valued gains:    .

	
	· e.
	· Fill in the gain vector into the Mix Matrix :
 



Table 101 — Values of regularization parameter β depending on HOA content order.
	HOA order 
	1
	2
	3
	4
	>4

	
	1000
	1000
	100
	100
	50



Building block – Build Base Matrix
The compact singular value decomposition of the matrix product of the mode matrix and the transposed mixing matrix is calculated:

Matrix    is diagonal with the singular values as diagonal elements. Let  denote the maximal singular value. 
A new diagonal matrix with  is created with 
A threshold value  of –60dB was selected: .
The Base Matrix is calculated as follows: 
Building block – Smooth Matrix
The task of this building block is to smooth the directive properties of the renderer, i.e. to attenuate the back and side lobes of the speaker panning pattern with the cost of widening the main lobe. The smoothed rendering matrix  is created  by:

where    is a gain vector of size . The process can be compared to windowing in time-frequency processing and is equal to a left convolution on  (on the unit sphere) in spatial domain. The smoothing gains of vector  are constructed from a helper vector  with +1 elements.
To construct vector  two different approaches are used:
1. If , i.e. if the number of loudspeakers is larger or equal to the number of HOA coefficients, so called  coefficients are used. Algorithm:
28. Given are the rightmost zeros of the Lengendre Polynomials of increasing order N, starting with order 1 to order 13 in vector :  = [0.0, 0.5574, 0.7746, 0.8611, 0.9062, 0.9325, 0.9491, 0.9603, 0.9682, 0.9739, 0.9782, 0.9816, 0.9842];
28. select value  form  . (In C++ notation rE=z[N])
28. set  and get the remaining values by calculating the Legendre Function P_n ( ) of order n for the value rE: 

1. if  a Kaiser-Bessel right half-window design is used to calculate the coefficients : 

 	for  

where  denotes the zero-order Modified Bessel function of first kind with parameters  and .
Vector   is now constructed from  :
which is be computed by:
 
		 
   			       
Building block – Normalize Matrix
The rendering matrix is derived by normalization by its Frobenius Norm:

where  denotes the Frobenius matrix norm, 
Matrix design for 2D loudspeaker setups
A 2D speaker setup is detected if all speaker elevation positions are within 7 degrees to the horizontal plane or expressed in speaker inclinations : 
 is true for all speakers .
Then two more (virtual) speakers are added so that the new number of speakers  becomes  and the new speaker directions are given by:
 with spherical angle and   and .
A matrix   is designed using the design method for 3D loudspeaker setups with the   speaker position directions. 
A matrix with matrix elements  is created from  by:

for  ,  and .
Finally the rendering matrix  is derived by repeating the building block – normalize matrix:

where  denotes the Frobenius matrix norm, .
[bookmark: _Ref370216861]Gain and delay compensation (informative)
The loudspeaker positions are given by , a matrix of size , where L gives the number of loudspeakers and  is the position vector of speaker .  is the distance sweet spot (listening position) to speaker  and  are the related spherical angles. If the speaker radii are not equal in size within a given tolerance, a gain and delay compensation should be designed. HOA content expects rendering to spherical positioned loudspeakers and a gain and delay compensation can simulate this up to a certain extent. 
[image: ]
Figure 30 — Delay & gain compensation: Every channel is delayed by  samples and attenuated by a gain of 

First the maximal speaker distances is determined: . The number of delay samples  for each speaker channel  are determined by: 

with sampling rate , speed of sound  and  indicates rounding to next integer. To compensate the speaker gains for different  loudspeaker gains  are determined by .
Alternatively the gain and delay values can be determined by measurements. 
[bookmark: _Ref370216873]NFC Processing
This section describes the design of Near-Field Compensating Filters. These are aimed to be applied to HOA signals just before the matrixing described later, before the building block called “HOA to Loudspeaker Conversion” in Figure 26.
NFC compensation is advantageously used for spherical microphone recordings or artificial mixing with very close sound sources. Let’s consider a HOA content of maximum order N. For a given HOA component of order index n, , NFC HOA uses , with  as the spherical Hankel functions of the second kind,  is the source-sweet spot distance, and is the compensation radius (NfcReferenceDistance). 
The transfer function  introduced above applies to any HOA signal of order n. In the renderer, it is implemented in time domain as an n-th order IIR filter under the Direct Form II, with n/2 second order sections (or "cells") for even n, or (n-1)/2 second order sections plus one first order section for odd n:


the right factor (first order cell) being present only for odd orders n. 
For a given order index n, filter coefficients  are computed as follows:
1.  with the sound speed c having a typical value of 340m/s.
2. 
Set 
3. For second order cells (for 1qn/2), derive coefficients ,  and  from conjugate complex roots   and  exhibited in Table 102:


4. For odd order filters, derive the coefficients of the additional first order cell as follows:


Filter coefficients  are computed according the same procedure, where coefficients  just have to be replaced by  and step 1 is replaced by:
1. 

[bookmark: _Ref370283273]Table 102 — Approximative values Xnq of the roots of generalized Bessel polynomials for the first few orders n.
	n 
	q
	1
	2
	3

	1
	-2
	
	

	2
	-3.0000+1.7321j
	
	

	3
	-3.6778+3.5088j
	-4.6444
	

	4
	-4.2076+5.3148j
	-5.7924+1.7345i
	

	5
	-4.6493+7.1420j
	-6.7039+3.4853j
	-7.2935

	6
	-5.0319+8.9853j
	-7.4714+5.2525j
	-8.4967+1.7350j
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[bookmark: _Toc385337921]Introduction
Two binaural rendering tools are described in subsequent sections
•	Time-Domain Binaural Renderer
•	Frequency-Domain Binaural Renderer
[bookmark: _Toc385337922]File Interface for BRIRs
[ed: The BRIR interface is subject to discussion and may change in future revisions of the specification text]
The BRIRs are read as a set of 2-channel wave-files from a dedicated folder. A text file with the name files.txt has to be located in the same folder as the BRIRs, containing the number of BRIR pairs in the set, followed by a comma and then a comma-separated list of the file names. The naming of the BRIRs shall follow the notation
<item_name>_A<azimuth_angle>_E<elevation_angle>.wav and <item_name>_LFE<lfe_number>.wav or <item_name>_LFE_<lfe_number>.wav
with
<azimuth_angle> sign plus a three-digits number
<elevation_angle> sign plus a two-digits number
<lfe_number> integer values from bigger or equal than 1.
Azimuth angles are measured counterclockwise from the median plane (e.g. A+030 corresponds to 30 degrees to the left ear and A-030 to 30 degrees to the right ear), e.g. “BRIR_A+030_E+00.wav”, “BRIR_LFE1.wav”.
The BRIRs are read by the parameterization module and the position data is extracted from the file names. The file names without position data are identified as BRIRs from LFE channels.
[bookmark: _Toc385337923]Frequency-Domain Binaural Renderer
[bookmark: _Toc385337924][bookmark: _Toc370204920]Introduction
The frequency-domain binaural processing is carried out as a decoder process converting the decoded signal into a binaural downmix signal that provides a surround sound experience when listened to over headphones.
The binaural renderer has as input the decoded data stream. The signal is processed by a QMF analysis filterbank as outlined in 4.B.18.2 of ISO/IEC 14496-3:2009 with the modifications stated in 8.6.4.2 of ISO/IEC 14496-3:2009. The renderer can also process QMF domain input data; the analysis filterbank is then omitted.
The binaural room impulse responses (BRIRs) are represented as complex QMF domain filters. The conversion from time domain binaural room impulse responses to the complex QMF filter representation is outlined in ISO/IEC 23003-1:2006, Annex B.
The frequency-domain binaural renderer consists of three processing blocks, a variable order filtering in frequency domain (VOFF), a sparse frequency reverberator, and a QMF domain Tapped-Delay Line (QTDL). Figure 31 illustrates the processing time-frequency regions for the three processing blocks.
The QMF domain BRIRs are truncated such that they only contain direct sound and early reflections (D&E). The transition point from early reflections to late reverberation  is determined frequency-dependent by a bandwise reverberation time analysis. The QMF domain audio signals and the QMF domain D&E BRIRs are then processed by a bandwise partitioned fast convolution to perform the binaural processing. Since filter order of the QMF domain D&E BRIRs is frequency dependent, this processing is referred to as variable order filtering in frequency domain (VOFF).
A QMF domain reverberator is used to generate 2-channel QMF domain late reverberation. The reverberation module uses a set of frequency-dependent reverberation times and energy values to adapt the characteristics of the reverberation. The waveforms of the reverberation are based on a stereo downmix of the audio input signal and it is adaptively scaled in amplitude depending on an analysis of the audio signal.
A QMF domain Tapped-Delay Line (QTDL) processing is used for a higher for high frequency bands. The QTDL processing module exploits a time lag and a gain per each band per each channel to mimic the most significant binaural cue in the band. The VOFF and the QMF domain reverberator are turned off in the bands where the QTDL processing is used.

[image: ]
[bookmark: _Ref383013669][bookmark: _Ref383001998]Figure 31 - Graphical representation of the processing regions for the three processing blocks of the binaural renderer

The 2-channel QMF domain convolutional output and the 2-channel sparse frequency reverberator output are then combined and mixed with the QTDL processed output and finally, two QMF synthesis filter banks compute the binaural time domain output signals as outlined in 4.6.18.4.2 of ISO/IEC 14496-3:2009. The renderer can also produce QMF domain output data; the synthesis filterbank is then omitted.
 An overview of the QMF domain binaural processing is given in Figure 32.
[bookmark: _Ref367878925]
[image: ]
[bookmark: _Ref383013861][bookmark: _Ref380054720]Figure 32 - Overview of the binaural processing
[bookmark: _Toc385337925][bookmark: _Ref380054034][bookmark: _Ref382996670][bookmark: _Toc370204921]Definitions
Audio signals that are fed into the binaural renderer are referred to as input signals in the following. Audio signals that are the result of the binaural processing are referred to as output signals. The input signals of the binaural renderer are audio output signals of the core decoder.
The following variable definitions are used:
	
	Azimuth angle
	

	
	Factor in downmix matrix
	

	
	Axis intercept of a regression line
	

	
	Elevation angle
	

	
	BRIR channel index, 
	

	
	Correlation coefficient
	

	
	Energy equalizing factor
	

	
	Scaling factors
	

	
	Smoothed scaling factors
	

	
	Real-valued correction factor for the calculation of the RT60 reverberation time

	
	Energy decay curve

	
	Frequency-dependent group delay of filter bank

	
	Delay in time domain samples

	
	Initial delay of a BRIR set in time domain samples, propagation time

	
	QTDL lag

	
	Center frequencies of the late reverberation analysis bands

	
	Sampling rate

	
	Real value of QTDL Gain

	
	Imaginary value of QTDL Gain

	
	1-channel time domain impulse response

	
	Time domain representation of the left impulse response set excluding the LFE channels

	
	Time domain representation of the right impulse response set excluding the LFE channels

	
	Complex valued QMF domain representation of the left impulse response set excluding the LFE channels

	
	Complex valued QMF domain representation of the right impulse response set excluding the LFE channels

	
	VOFF Coefficient for output channel 0 (Left) - Block-based pseudo-FFT domain representation of the left impulse response set excluding the LFE channels

	
	VOFF Coefficient for output channel 1 (Right) - Block-based pseudo-FFT domain representation of the right impulse response set excluding the LFE channels

	
	Filtered version of a 1-channel time domain impulse response

	
	Filtered normalized squared logarithmic 1-channel BRIR in analysis band 

	
	Filtered smoothed logarithmic 1-channel BRIR in analysis band 

	
	Normalized filtered 1-channel BRIR

	
	Number of analysis frequency bands

	
	Number of BRIR pairs in a BRIR data set (number of measured positions)

	
	Maximum band used for convolution

	
	Number of LFE BRIR pairs in a BRIR data set

	
	Number of late reverberation analysis bands that are fed into the reverberator

	
	Maximum QMF band used for binaural processing

	
	Number of QMF bands used in the analysis of the transition from early to late reflections

	
	QMF domain frequency band index

	
	Number of QMF domain frequency bands, 

	
	Frequency band index of the late reverberation analysis

	
	Number of windows for the smoothing of a BRIR

	
	Length of audio frame in time domain samples, 

	
	Analysis length of the late reverberation analysis

	
	Length of the measured BRIRs in time domain samples

	
	Length of an audio frame in QMF domain time slots, 

	
	Vector to signal which channel of the input signal corresponds to which BRIR pair in the BRIR data set

	
	Downmix matrix 

	
	Frequency-dependent minimum value in dB

	
	Gradient of a regression line

	
	QMF domain time slots index

	
	Number of blocks

	
	Number of BRIRs used in the parameterization and processing

	
	Number of active downmix channels

	
	Maximum amplitude of a smoothed logarithmic BRIR

	
	Mean amplitude around maximum of a smoothed logarithmic BRIR

	
	Number of sub-frames

	
	Number of input audio channels

	
	Number of output audio channels, 

	[k]
	[bookmark: OLE_LINK10][bookmark: OLE_LINK11]VOFF filter order corresponding to the k-th QMF domain frequency band

	[k]
	FFT length

	
	Noise level in dB

	
	Energy of the late reverberation

	 
	Position (Azimuth and elevation angle) of a BRIR or audio channel

	
	Reverberation times

	
	Time domain sample index

	
	Time domain indices with specified amplitude in the EDC

	
	Crossing sample of two lines

	
	Index of the maximum of a smoothed logarithmic BRIR

	
	Maximum frequency-independent sample index used for the late reverberation analysis

	
	Frequency-dependent ending time domain sample index of the late reverberation analysis 

	
	Index where a smoothed logarithmic BRIR is smaller than 
 for the first time

	
	Frequency-dependent starting time domain sample index of the late reverberation analysis

	
	Frequency-dependent transition from early reflections to late reverberation in time domain samples (beginning from the direct sound)

	
	-channel time domain input audio signal

	
	-channel QMF domain input audio signal

	
	Combined QMF domain signal of convolution output, reverb generator output and QTDL processing output.

	
	2-channel time domain output signal

	
	VOFF processed signal in QMF domain frequency band 

	
	Intermediate reverberation signal generated by the reverberator module in QMF domain frequency band 

	
	QTDL processed signal in QMF domain frequency band 



[bookmark: _Toc385337926]Parameterization of Binaural Room Impulse Responses
Introduction
The frequency-domain binaural renderer needs specific metadata information describing the properties of the BRIR set. These values are calculated by a parameterization procedure and are stored in a dedicated file in a defined order. The file is a binary file written with 32 bit per sample, float values, little-endian ordering.
The parameterization takes into account as input parameters.
1. N channels, time domain BRIRs
1. Corresponding elevation and azimuth angles
It returns four groups of parameters
1. General metadata: Elevation and azimuth of the BRIRs,  the propagation time , the number of processing band , the number of LFEs , the LFE channel indices, the sampling rate of the BRIRs
1. VOFF Parameters: The left/right VOFF coefficients [, the VOFF filter length , the FFT size per band and the number of blocks per bands 
1. Reverberator Parameters: the number of analysis bands used in the analysis of late reverberation, the center frequencies of the late reverberation analysis bands ,  the reverberation time and energy  of the late reverberation
1. QTDL Parameters: the left/right QTDL gain [, the left/right QTDL time lag , the maximum band used for convolution 
An overview of the BRIR parameterization is given in Figure 33.
In the block Propagation Time Calculation, the propagation time of the BRIRs is calculated to truncate them at the direct sound. In the block “Filter Converter”, the truncated time domain BRIRs are transformed to QMF domain BRIRs according to Annex B of ISO/IEC 23003-1:2006. The prototype filter coefficients for the filter conversion are used according to Table B.1 of ISO/IEC 23003-1:2006.
In the block VOFF Parameter Generation, a frequency-dependent RT20 reverberation time analysis is performed to determine the frequency-dependent transition from early reflections to late reverberation. Next, the truncated complex-valued QMF domain BRIRs up to the frequency-dependent transition are transformed into a VOFF coefficients [. The VOFF coefficients [ will be used to perform a fast convolution in the complex-valued QMF domain.
In the block Sparse Frequency Reverberator Parameter Generation (SFR Parameter Generation), the time domain BRIRs are analyzed by a one-third octave filter bank to determine the characteristics of the late reverberation. The reverberation time RT60 of the late reverberation and energy of the reverberation are used to control the sparse frequency reverberator.
In the block QTDL Parameter Generation, the peak locations and square root of real and imaginary energy of QMF domain BRIRs are analyzed to obtain QTDL parameters used in QTDL processing. 
[image: ]
[bookmark: _Ref383013886][bookmark: _Ref382979756]Figure 33 – Details of BRIR Parameterization

The analysis steps are described in detail in the following sections.

Propagation time  calculation
The BRIRs contains a redundant portion between the 0th sample and the location of the impact of the direct sound. The time between the start of the BRIR and the direct sound is referred to as the propagation time. Since this portion only imposes additional delay for the binaural rendered output as well as additional complexity for processing, the BRIRs are trimmed to start at the direct sound. Therefore, the propagation time   is determined by calculating the frame energy. 
The following intermediate parameters are determined depending on the overall length of the input BRIRs:
If the length of the BRIRs in time domain samples exceeds 80ms 
flag_HRIR = 0,
Lfrm  = 32,
Nhop = 8, and
Niter =  / Nhop
else
flag_HRIR = 1,
Lfrm  = 8, 
Nhop = 1, and
Niter =  / Nhop

Then, the frame energy is obtained by

resulting in the propagation time
 .

The sets of truncated left and right BRIRs (excluding the LFE channels) are then defined as 
 and, 
with
  and.

Filter Conversion from time-domain BRIRs to QMF-domain BRIRs 
The conversion of the time domain filters to the complex-valued QMF domain is carried out according to Annex B of ISO/IEC 23003-1:2006. The prototype filter coefficients for the filter conversion are used according to Table B.1 of ISO/IEC 23003-1:2006.
With the time domain representation of the impulse response sets excluding the LFE channels [, a complex-valued QMF domain representation is obtained according to Annex B of ISO/IEC 23003-1:2006 as 
and,
with
.

[bookmark: OLE_LINK8][bookmark: OLE_LINK9]Definition of the number of processing bands and convolution bands
The maximum processing band is set to 48, resulting in a processing of 48 QMF domain processing bands (indices 0 to 47). The number of 48 reflects a maximum processing frequency of 18 kHz at a sampling rate of 48 kHz. The number of 48 is here used independently of the sampling frequency resulting in a maximum processing frequency of.
The number of convolution bands is set to 32 QMF domain bands. In the bands =32 to =63, the QTDL processing is carried out.
Parameter Generation for the Variable Order Filtering in Frequency domain (VOFF)
A frequency-dependent RT20 reverberation time analysis is carried out to determine filter order  for the VOFF processing up to band. The filter order for the VOFF is derived as described in the following subclauses:
Derivation of RT20
The energy decay relief of a BRIR is obtained in the complex-valued QMF domain to derive the RT20 reverberation time as a measure for the transition time from the early reflections to the late reverberation.
The energy decay relief of a BRIR (channel  of the BRIR set) in band k is defined as
.
Then the averaged reverberation time RT20 is obtained by
.

Filter Order Decision
The VOFF filter order is determined by a logarithmic curve fitted reverberation time RT20. The curve fitting is not conducted for band 0.  In the case of HRIR (flag_HRIR=1), curve fitting is not applied.
To perform the curve fitting, two coefficients  should be obtained.






The filter order  for each band  is derived as:
if  = 0 

else if   
if flag_HRIR = 0
	
else
	
The transition from direct sound and early reflections to the late reverberation tail in time domain samples is calculated from:
	.
VOFF Coefficient Generation
[bookmark: OLE_LINK12]The complex valued QMF domain BRIRs are truncated frequency-dependently at the corresponding value of the VOFF filter order. The truncated complex valued QMF domain BRIRs are split into blocks to perform a block-wise fast convolution. These block-wise complex valued QMF domain BRIRs are therefore transformed to VOFF coefficients.
[bookmark: OLE_LINK13][bookmark: OLE_LINK14]First, a frequency-dependent FFT size with a maximum of  is calculated according to 
.
As the next step, the number of blocks per QMF band is determined
.

The truncated complex valued QMF domain representations are obtained as

If flag_HRIR == 1, the Sparse Frequency Reverberator is switched off. To prevent energy mismatch due to residue of BRIRs, energy compensation is carried out.

The block-wise complex valued QMF domain representations are obtained by partitioning the truncated complex valued QMF domain representation.

In each QMF band  each block of the block-wise complex valued QMF domain representations are then transformed to a pseudo-FFT domain by a complex-valued FFT transform of length  forming the block-based pseudo-FFT domain representation  (left ear) and  (right ear) for the blocks . The  are the VOFF coefficients.

Parameter Generation for the Sparse Frequency Reverberator 
If flag_HRIR == 0, an analysis of the late reverberation parts of the BRIRs is carried out. Therefore, all of the BRIRs excluding the LFE BRIRs are filtered by a one-third octave filter bank.

One-Third Octave Filterbank Analysis 
The one-third octave filter bank is realized by an infinite-impulse-response (IIR) filter with the coefficients given in Table 104 – Forward filter coefficients of the used 1/3 octave filter bank and Table 105 – Backward filter coefficients of the used 1/3 octave filter bank. The filter coefficients are given in double precision. The filter is designed for a sampling frequency of 48 kHz and a maximum processing frequency of 18 kHz, resulting in 24 one-third octave bands. 
If the BRIRs are sampled at a different sampling frequency, the same filter coefficients are used, resulting again in a maximum processing frequency of.
The bands of the filtered BRIRs are delay aligned according to the group delay of the filters. The used delay numbers in time domain samples are given in Table 103 – Delay for the delay alignment of the filtered BRIRs.
[bookmark: _Ref380053716]Table 103 – Delay for the delay alignment of the filtered BRIRs
	Band 
	Delay   

	0
	702

	1
	1448

	2
	1202

	3
	870

	4
	731

	5
	478

	6
	368

	7
	284

	8
	224

	9
	177

	10
	142

	11
	110

	12
	88

	13
	69

	14
	55

	15
	44

	16
	35

	17
	27

	18
	22

	19
	17

	20
	14

	21
	11

	22
	8

	23
	6



To delay align the frequency bands, they are zero-padded with the maximum delay number at the beginning. Afterwards, each band is shifted to the beginning by its delay number and after that the first  samples are again cut away.
[bookmark: _Ref380053848]Table 104 – Forward filter coefficients of the used 1/3 octave filter bank
Band
[Hz]
Filter coefficients, forward path (B coefficients)
0

0.000000002978966
0
-0.000000008936898
0
0.000000008936898
0
-0.000000002978966
1

0.000000005899584
0
-0.000000017698751
0
0.000000017698751
0
-0.000000005899584
2

0.000000011789497
0
-0.000000035368490
0
0.000000035368490
0
-0.000000011789497
3

0.000000023548606
0
-0.000000070645819
0
0.000000070645819
0
-0.000000023548606
4

0.000000047026089
0
-0.000000141078268
0
0.000000141078268
0
-0.000000047026089
5

0.000000093874874
0
-0.000000281624623
0
0.000000281624623
0
-0.000000093874874
6

0.000000187307829
0
-0.000000561923486
0
0.000000561923486
0
-0.000000187307829
7

0.000000373504653
0
-0.000001120513960
0
0.000001120513960
0
-0.000000373504653
8

0.000000744228866
0
-0.000002232686597
0
0.000002232686597
0
-0.000000744228866
9

0.000001481490914
0
-0.000004444472741
0
0.000004444472741
0
-0.000001481490914
10

0.000002945568317
0
-0.000008836704950
0
0.000008836704950
0
-0.000002945568317
11

0.000005847694618
0
-0.000017543083853
0
0.000017543083853
0
-0.000005847694618
12

0.000011587291750
0
-0.000034761875251
0
0.000034761875251
0
-0.000011587291750
13

0.000022906469387
0
-0.000068719408160
0
0.000068719408160
0
-0.000022906469387
14

0.000045150610814
0
-0.000135451832443
0
0.000135451832443
0
-0.000045150610814
15

0.000088673275133
0
-0.000266019825400
0
0.000266019825400
0
-0.000088673275133
16

0.000173370214378
0
-0.000520110643135
0
0.000520110643135
0
-0.000173370214378
17

0.000337103447126
0
-0.001011310341379
0
0.001011310341379
0
-0.000337103447126
18

0.000651075235971
0
-0.001953225707913
0
0.001953225707913
0
-0.000651075235971
19

0.001247284713280
0
-0.003741854139840
0
0.003741854139840
0
-0.001247284713280
20

0.002366322106562
0
-0.007098966319686
0
0.007098966319686
0
-0.002366322106562
21

0.004438169688363
0
-0.013314509065088
0
0.013314509065088
0
-0.004438169688363
22

0.008214651510826
0
-0.024643954532479
0
0.024643954532479
0
-0.008214651510826
23

0.014980703571592
0
-0.044942110714776
0
0.044942110714776
0
-0.014980703571592


[bookmark: _Ref380053885]Table 105 – Backward filter coefficients of the used 1/3 octave filter bank
Band
[Hz]
Filter coefficients, backward path (A coefficients)
0

1
-5.993751016763135
14.969279072784566
-19.939603992021354
14.940647795274490
- 5.970844821630246
0.994272962360464
1

1
-5.991961445134535
14.960639671319811
-19.922939882503549
14.924596293523440
- 5.963124398568642
0.992789761382594
2

1
-5.989609767964868
14.949371631318428
-19.901379920011749
14.904008213044975
- 5.953314349635694
0.990924193325314
3

1
-5.986493089373522
14.934568071720706
-19.873322981098088
14.877492822310906
- 5.940823535229365
0.988578711974606
4

1
-5.982322583166484
14.914956502895425
-19.836561944151942
14.843176218160425
- 5.924879679481255
0.985631486962872
5

1
-5.976681836082384
14.888729126620820
-19.788018121780837
14.798506980371531
- 5.904466854668645
0.981930710405792
6

1
-5.968963204438088
14.853287019657653
-19.723347050471695
14.739973841057109
- 5.878238363575107
0.977287777184542
7

1
-5.958270126407491
14.804853333473961
-19.636351633672902
14.662693694537232
- 5.844394434554799
0.971469244020969
8

1
-5.943266716356360
14.737888463499093
-19.518109356078305
14.559810012283357
- 5.800509649746865
0.964187554640025
9

1
-5.921945879281351
14.644209432330609
-19.355682487394688
14.421618545659840
- 5.743289060834721
0.955090675488847
10

1
-5.891272053317806
14.511677079902135
-19.130239207390304
14.234312652347755
- 5.668224665450618
0.943751061239065
11

1
-5.846632613931893
14.322276215973289
-18.814390396441560
13.978227786574614
- 5.569116536160665
0.929654821150504
12

1
-5.781001286253467
14.049405018511159
-18.368601439334121
13.625500348622651
- 5.437419214533596
0.912192664215007
13

1
-5.683678077357811
13.654293601443985
-17.736819219552288
13.137230968058500
- 5.261383586695196
0.890655254306507
14

1
-5.538431150435243
13.081896267444138
-16.842288758666236
12.460762205420412
- 5.025009003406554
0.864237092185886
15

1
-5.320855496910868
12.257825487897835
-15.586541172177160
11.528970962883021
- 4.706945111668716
0.832054991343535
16

1
-4.994862939199035
11.090899392402983
-13.858558427508518
10.266297975027744
- 4.279774723365612
0.793189508854480
17

1
-4.508633849835456
9.492307997838553
-11.567081708283867
8.611562042517182
- 3.710717285192899
0.746759879904296
18

1
-3.791566479016410
7.433709378886649
-8.711008375712691
6.575213188380568
- 2.965921277956436
0.692044028301664
19

1
-2.756730866820556
5.078384616947228
-5.476030603444230
4.351407566193580
- 2.022277271752888
0.628653072944205
20

1
-1.319726797918420
3.001645881863894
-2.235723204296885
2.473284706980526
- 0.892513256112752
0.556761178207907
21

1
0.543821839225891
2.367900783391379
0.842176405781307
1.858884029029895
0.331706060878868
0.477372283671088
22

1
2.667654841026451
4.479530540428327
4.526976093111068
3.286179336952533
1.426496187396251
0.392570938427190
23

1
4.472803785543190
8.630679353924112
9.234059565895342
5.792824924160126
2.020263319760948
0.305653299838751


In addition to the 1/3 octave filter bank, an IIR low pass filtering is conducted. The filter coefficients are given in Table 106 – Filter coefficients of the additional low pass filter. The resulting 25 frequency bands are now addressed by the indexwith the lowest band and the 24 bands from the 1/3 octave filter bank analysis  to. The filtered version of a 1-channel time domain impulse response  in band is called.
[bookmark: _Ref380053642]Table 106 – Filter coefficients of the additional low pass filter
	Forward Path, B coefficents
	Backward Path, A coefficients

	4.07451850037432e-14
	1

	2.44471110022459e-13
	-5.95448186943460

	6.11177775056149e-13
	14.7734441411088

	8.14903700074865e-13
	-19.5489429752463

	6.11177775056149e-13
	14.5509829161372

	2.44471110022459e-13
	-5.77650412293260

	4.07451850037432e-14
	0.955501910370147



The transition values from the frequency-dependent RT20 reverberation time analysis are mapped from QMF bands to the 25 analysis frequency bands. For each of the analysis bands the transition from the one specific QMF band is used where the difference of the center frequency of the analysis band and the QMF band is minimal. 
Then, the frequency-dependent value transition from early reflections to late reverberation in time domain samples plus the initial delay of the BRIR set) is used as a starting point for the following analysis.
The last maximally used sample for the analysis is calculated by. 
A frequency-dependent terminal point sample is calculated:

For each of the BRIRs which is not an LFE BRIR and has non-zero values and each of the 25 analysis bands the following steps are carried out between  and
Noise Floor Estimation
A noise floor estimation is carried out for band  or higher to determine the amount of noise in the filtered BRIRs.  Therefore, the filtered BRIR is normalized, squared and the logarithm is calculated:

A smoothed logarithmic BRIR is then determined by calculating the mean value in overlapping windows (50% overlap) of 0.0025 seconds duration. The number of windows is.
It is then determined where the smoothed logarithmic BRIR rises above a defined frequency-dependent minimum value in dB. The minimum value is defined as

resulting in a minimum value of -90dB in band 4.
The last 20% of the part of smoothed logarithmic BRIR that rises above the minimum value is used to determine the noise level by a mean-value calculation.
If the smoothed logarithmic BRIR never rises above the minimum value, the noise level is determined to be the mean value of the whole smoothed logarithmic BRIR.
The time domain sample where the BRIR is assumed to have reached this noise level is then defined by calculating the crossing point of two lines, with the one line being parallel to the noise level plus 2 dB and the other line being a decaying regression line starting near the direct sound with a defined gradient.
The gradient of the regression line is defined as

with 


 being the index of the maximum absolute value of the smoothed logarithmic BRIR,  the amplitude at and being the index where the smoothed logarithmic BRIR is smaller than for the first time. The axis intercept of the regression line is defined as
.
The time domain sample where the regression line crosses the parallel line for the first time specifies the beginning of the noise floor. This value is used to define the end of analysis in the corresponding frequency bands for the following parameterization steps.

The analysis length  is defined as 
Determination of the RT60 reverberation time
Between and  the RT60 time is determined. Therefore the EDC (Energy Decay Curve, Schroeder integral) of the filtered BRIR is calculated by performing the following steps:
1. The filtered BRIR is normalized

1. A factor of 1.0E-20 is added where  is equal to zero
1. The EDC is defined as

Index  is associated to be the index of the sample where the EDC is bigger than zero for the last time. If such an index does not exist, then   is set to zero.
Now, the index is determined where the EDC gets smaller than  for the first time. This index is called index. Next, the index is determined where the EDC gets smaller then  for the first time. Accordingly, this index is called index. The number of samples between  and  defines the reverberation time RT30. To gain the reverberation time RT60, the RT30 value is multiplied by a factor of.
An additional correction of the calculated RT60 reverberation time is introduced. If  is bigger than  then  is set to 

and the correction factor is defined as

If  is bigger than, then  is set to zero.
The frequency-dependent reverberation time RT60 is calculated by

Determination of the Energy
The energy (absolute value squared) of each sample between  and  is summed up to give the total energy of the late reverberation:

The values of RT60 and energy are now averaged for each of analysis bands to reflect the characteristics of the whole BRIR set.
[bookmark: _Ref382996762]QTDL Parameter Generation
The QMF domain TDL processing is an efficient binaural rendering tool for the high frequency bands. In a QTDL-enabled QMF band, one tap delayed pulse mimics the most significant binaural cues of the interaural time difference (ITD) and the interaural level difference (ILD) in the band.
[image: ]
[bookmark: _Ref383440433]Figure 34 – Geometric descriptions of QTDL parameters

As described in Figure 34 – Geometric descriptions of QTDL parameters the parameter generation for QTDL is carried out to obtain a QTDL lag parameter and two QTDL gain parameters per output channel (left/right), per band from  to , and per input channel. 
The QTDL lag  is obtained as the location of the maximum peak of the magnitude of the complex-valued QMF domain representation.

The QTDL gain is the square root of the energy of the real/imaginary values of QMF domain representation.


Multiplexing of BRIR Parameters
These calculated BRIR metadata information is stored in a dedicated file. The file is a binary file written with 32 bits per sample, float values, and little-endian ordering. The file consists of the different metadata information in a defined order to describe the properties of the chosen BRIR set. The metadata information and the order in the file are described in Table 107 – BRIR metadata values packaged in the parameterization processing.
[bookmark: _Ref380053598]Table 107 – BRIR metadata values packaged in the parameterization processing
	Type
	Variable
	description
	Number
	Datatype

	Reverb
	
	Number of analysis bands used in analysis of late reverberation analysis,   
	1
	Integer

	General
	
	Number of processing bands, 
	1
	Integer

	Reverb
	
	Center frequencies  of the late reverberation analysis frequency bands
	
	Float

	Reverb
	
	Reverberation times RT60 in seconds of the late reverberation in the late reverberation analysis bands
	
	Float

	Reverb
	
	Energy values that represent the energy (amplitude to the power of two) of the late reverberation part of one BRIR in the late reverberation analysis bands
	
	Float

	General
	
	Initial Delay  of the BRIR set in samples
	1
	Integer

	Reverb
	
	Frequency-dependent transition from direct sound and early reflections to late reverberation
	
	Integer

	General
	
	Number of BRIR pairs in a BRIR data set (number of measured positions)
	1
	Integer

	General
	α
	Azimuth angles of measured positions
	
	Integer

	General
	β
	Elevation angles of measured positions
	
	Float 

	General
	
	Number of LFE channels in BRIR set
	1
	Integer

	General
	
	Channel Numbers (0 .. -1) of LFE channels (optional, if 
	
	Integer

	VOFF
	
	Filter order of complex-valued QMF domain BRIR for VOFF
	
	Integer

	VOFF
	
	FFT length per band for VOFF
	
	Integer

	VOFF
	
	Number of blocks per band for VOFF
	
	Integer

	VOFF
	
	Real values of VOFF Coefficient for output channel 0 (Left) 
	(*)
	Integer

	VOFF
	
	Imaginary values of VOFF Coefficient for output channel 0 (Left)
	(*)
	Integer

	VOFF
	
	Real values of VOFF Coefficient for output channel 1 (Right) 
	(*) 
	Integer

	VOFF
	
	Imaginary values of VOFF Coefficient for output channel 1 (Right) 
	(*)
	Integer

	QTDL
	
	Number of bands used for convolution
	1
	Integer

	QTDL
	
	Real values of left QTDL gain
	
	Float

	QTDL
	
	Imaginary values of left QTDL gain
	
	Float

	QTDL
	
	Real values of right QTDL gain
	
	Float

	QTDL
	
	Imaginary values of right QTDL gain
	
	Float

	QTDL
	
	Left QTDL lag
	
	Integer

	QTDL
	
	Right QTDL lag
	
	Integer

	General
	
	Sampling rate of the BRIRs
	1
	Integer


 
(*) : 
(**) : 
Real and imaginary values of VOFF coefficients shall be saved in order of band , block , channels , and bins .
If flag_HRIR == 1, is saved as zero and no values for, RT60 and energy given in the file. Azimuth and elevation are stored as 400 in case the BRIR is an LFE BRIR, because no position information is given in the file name. The value of 400 is used to mark the position of the LFE as unknown by using a value that is out of bounds for azimuth (valid values between -180° and 180°) and elevation (valid values between -90° and 90°) and does also take into account a possible wrong naming with values between 0° and 360° or -360° and 0°.
The parameters for the QTDL processing are saved for the bands  to . Real and imaginary values of left/right gains for the QTDL processing are saved in order of band , block , channels . Left/right time lag values also are saved in order of band , block , channels .
Beside the calculated BRIR metadata information in the dedicated file, a text file with the geometric information of the BRIRs is written. This file is named “geoInfo.txt” and contains a list of geometric information for each of the BRIR pairs, either given in the form of azimuth, elevation and a flag that states if a BRIR pair is an LFE BRIR, or as a channel configuration index that implicitly defines the mentioned three values.
[bookmark: _Toc385337927]Frequency-Domain Binaural Processing
The frequency-domain binaural renderer operates on contiguous, non-overlapping frames of length  samples of the input audio signals and outputs one frame of samples. A standard frame length of  = 4096 is defined.
Initialization and Preprocessing
The initialization of the binaural renderer is carried out before the processing of the audio samples delivered by the core decoder takes place. The initialization consists of several processing steps.
Reading of BRIR Metadata and pseudo-FFT BRIRs
The binaural renderer reads BRIR metadata from a dedicated file that is written in the process of the parameterization (see section 12.3.3.7). It is a binary file written with 32 bit per sample, float values, little-endian ordering.
Audio signal processing
The audio processing of the binaural renderer obtains  input channels from the core decoder and generates a binaural output signal consisting of = 2 channels.
The processing takes as input 
1. the decoded audio data from the core decoder,
1. the BRIR information from the parameterization, as is:
40. the general BRIR side information
40. the VOFF coefficients set and side information,
40. the frequency-dependent parameter set that is used by the QMF domain reverberator to generate the late reverberation,
40. and the QTDL gains and QTDL time lag set and side information
1. and a parameter signaling the channel configuration of the audio data to process.

The channel configuration parameter is defined by the geometric position data (i.e. azimuth and elevation angles) associated with the input channels. The geometric data can either be signaled implicitly by CICPspeakerLayoutIdx or CICPspeakerIdx (see ISO/MPEG 23001-8) or explicitly.

QMF analysis of the audio signal 
As the first processing step, the binaural renderer transforms  = 4096 time domain samples of the -channel time domain input signal    to an -channel QMF domain signal representation of dimension QMF time slots (slot index) and = 64 frequency bands (band index). In case of the standard framelength of 4096 samples, is equal to 64.
A QMF analysis according to as outlined in 4.B.18.2 of ISO/IEC 14496-3:2009 with the modifications stated in 8.6.4.2 of ISO/IEC 14496-3:2009 is performed on a frame of the time domain signal to gain a frame of the QMF domain signal with and.
Note that when the core decoder already uses QMF domain signals, thus, the QMF domain decoded audio data can be obtained; the QMF analysis step is omitted.
Partitioned fast convolution for VOFF processing
A band-wise partitioned fast convolution is carried out to process the QMF domain audio signal and the VOFF coefficients. Therefore an FFT analysis is carried out for each QMF frequency band   with with for each channel of the input audio signal.
The audio frames are split into sub-frames when the number of timeslots  per frame is bigger than. The number of sub-frames is determined according to
.
A vector  is used to signal which channel of the input signal corresponds to which BRIR pair in the BRIR data set. The audio channels and BRIRs are matched according to their position data. The BRIR position data is taken from the read metadata file, the position data of the audio channels is derived from the input parameter signaling the channel configuration.
If there are audio channels with no associated BRIR after the matching of the BRIR positions and the audio channel positions, a fallback BRIR is determined for these channels.
As a first step it is determined if a BRIR is available with same elevation and with a maximum azimuth deviation to the wanted position of +/- 20°. If such a BRIR is not available, the geometrically next BRIR is chosen. Which BRIR is the “geometrically next”, is determined to be the BRIR from the set of available BRIRs that has a minimum geometric distance to the wanted position. The geometric distance between two positions  (each defined by azimuth and elevation) therefore is defined as
.
For the set of known BRIR positions [] and a wanted position, the geometrically next BRIR is the one where  gets minimal for.
After a BRIR is determined for each audio channel, the partitioned fast convolution is conducted band-wise for all QMF frequency bands  with  and. This processing step is computed independently of the sampling rate of the audio signal. If the audio sampling rate and the sampling rate of the BRIRs used for the generation of the VOFF coefficients does not correspond, they are nevertheless used for the VOFF processing. If this behavior is not wanted, the BRIRs have to be resampled to the wanted audio sampling rate and the parameterization has to be recalculated. Figure 35 outlines the partitioned fast convolution process. 
[image: ]
[bookmark: _Ref383031467][bookmark: _Ref383031460]Figure 35 - Outlines of the partitioned fast convolution process

The sub-frames (referred to as “Audio frames” in Figure 35 - Outlines of the partitioned fast convolution process of channel  of the overall audio frame of length  are zero-padded.

The zero-padded frames are transformed to the pseudo-FFT domain via complex-valued FFT.

To perform the block-wise fast convolution, the transformed audio frame  is complex multiplied by the VOFF coefficients of channel   and the complex multiplied outputs of all channels are summed up. From the second blocks, the complex multiplication results are shifted and stored to the buffers
  and .

For  


Then, the fast convoluted pseudo-FFT domain audio frame [ is defined as


The fast convoluted pseudo-FFT domain audio frame [is then inverse transformed to the QMF domain and forms the fast convoluted QMF domain audio frame .


Finally, the fast convoluted QMF domain audio frame  is overlapped and saved.
For  do:



For  do:


For  do:


The convolution results from each audio input channel with each BRIR pair are summed up in each QMF frequency band  with resulting in an intermediate 2-channel -band pseudo-FFT domain signal.
 in QMF domain frequency band .
Next, a bandwise FFT synthesis is carried out to transform the convolution result back to the QMF domain resulting in an intermediate 2-channel -band QMF domain signal with time slots.
 with  and .
For each QMF domain input signal frame with 64 timeslots a convolution result signal frame with 64 timeslots is returned. The remaining timeslots are stored () and an overlap-add processing is carried out in the following frame(s).
Generation of late reverberation
As a second intermediate signal a QMF domain reverberation signal called is generated up to band  by a reverberator module.
The reverberator takes as input
· a QMF domain stereo downmix of one frame of the input signal,
· the frequency-dependent RT60 reverberation time and the late reverberation energy values from the BRIR metadata information
and returns a 2-channel QMF domain late reverberation tail.
The RT60 reverberation time and late reverberation energy values are kept as read from the metadata file independent on the audio sampling rate; they are just remapped to different center frequencies if the audio sampling rate differs from the BRIR sampling rate that was used in the parameterization. Therefore, the center-frequencies of the late reverberation analysis bands from the BRIR metadata information are recalculated in a first step, if the audio sampling rate differs from the BRIR sampling rate that was used in the parameterization. 
 with .
Next, the number of needed analysis bands is determined. This is the number of analysis bands where
 with .
Then, a QMF domain stereo downmix of one frame of the input signal  is carried out to form the input of the reverberator by a weighted summation of the input signal channels. The weighting gains are contained in the downmix matrix. They are real-valued and non-negative and the downmix matrix is of dimension. It contains a non-zero value where a channel of the input signal is mapped to one of the two output channels.
The channels that represent loudspeaker positions on the left hemisphere are mapped to the left output channel and the channels that represent loudspeakers located on the right hemisphere are mapped to the right output channel. The signals of these channels are weighted by a coefficient of 1. The channels that represent loudspeakers in the median plane are mapped to both output channels of the binaural signal. The input signals of these channels are weighted by a coefficient
.
In addition, an energy equalization step is performed in the downmix. It adapts the bandwise energy of one downmix channel to be equal to the sum of the bandwise energy of the input signal channels that are contained in this downmix channel. This energy equalization is conducted by a bandwise multiplication with a real-valued coefficient 
.
The factor is limited to an interval of [0.5, 2].The numerical constant  is introduced to avoid a division by zero. The downmix is also bandlimited to the band; the values in all higher frequency bands are set to zero.
The downmix and the  values of RT60 and energy are fed to the reverberator. In the reverberator a mono downmix of the stereo input is calculated. This is done by incoherently applying a 90° phase shift on one of the stereo input channels. This mono signal is then fed to a feedback delay loop in each frequency band, which creates a decaying sequence of impulses. It is followed by parallel FIR decorrelators that distribute the wanted signal energy in a decaying manner into the intervals between the impulses and create incoherence between the output channels. A decaying filter tap density is applied to create the energy decay defined by the RT60 time. The filter tap phase operations are restricted to four options to implement a sparse and multiplier-free decorrelator. After the calculation of the reverberation an inter-channel coherence (ICC) correction step is included in the reverberator module for every QMF frequency band. In the ICC correction step frequency-dependent direct gains and crossmix gains are used to adapt the ICC. The processing in the reverberator is shown in detail in Figure 36 - Processing in the reverberator.

[image: ]
[bookmark: _Ref383013919][bookmark: _Ref382996835]Figure 36 - Processing in the reverberator
The amount of energy and the reverberation times for the different frequency bands are contained in the input parameter set. The RT60 reverberation time and energy values are given at a number of frequency points which are internally mapped to the 64 QMF frequency bands.
The reverberation is adaptively scaled according to a correlation measure of the input signal frame. The scaling factor is defined as a value in the interval of  linearly depending on a correlation coefficient between 0 and 1.  The coefficient is set to the value 0.5.
is the number of channel that are active (carry signal energy) in the current audio frame and are downmixed to one output channel (e.g.the intersection of all values of one line of and the currently active audio channels).
The scaling factors are 
   .
The number of active downmix channels may change over time.
The scaling factors are smoothed over audio signal frames by a 1st order low pass filter resulting in smoothed scaling factors. The scaling factors are initialized in the first audio input data frame.
QTDL processing
In the QMF bands between and the maximum processing band  (representing a maximum signal frequency of 18 kHz at a sampling frequency of 48 kHz), a QMF domain tapped delay line (QTDL) replaces both the VOFF processing and the Sparse Frequency Domain Reverberator.
The QTDL processing is done by performing one complex multiplication and delay. 


For each QMF domain input signal with 64 timeslots, 64 QTDL processed output signals  are returned corresponding to 64 timeslots. The remaining timeslots (corresponding to the last  samples) are stored and an overlap-add processing is carried out in the following frame(s).
Mixing and Combination of Binaural Processed Outputs
Next, the VOFF processed output , the reverberator output and the QTDL processed output  for one QMF domain audio input frame are combined by a mixing process that bandwise adds up the two signals.
The late reverberation output is delayed by an amount of  time slots in the mixing process. The delay  takes into account the frequency-dependent transition time from early reflections to late reflections in the BRIRs and an initial delay of the reverberator of 20 QMF time slots, as well as an analysis delay of 0.5 QMF time slots for the QMF analysis of the BRIRs to ensure the insertion of the late reverberation at a reasonable time slot. 
The combined signal at one time slot [image: ] is calculated by  in the bands up to  and is directly connected by  in the bands between  and   For clarification, the bands beyond  are not processed in the binaural rendering and thus no signal is combined to the output signal in this band. 
If flag_HRIR == 0

else


QMF synthesis of binaural QMF domain signal
One 2-channel frame of 32 time slots of the QMF domain output signal  is transformed to a 2-channel time domain signal frame with length by the QMF synthesis according to 4.6.18.4.2 of ISO/IEC 14496-3:2009 yielding the final time domain output signal.

[bookmark: _Toc385337928]Time-Domain Binaural Renderer
[bookmark: _Ref384890442][bookmark: _Toc385337929]Introduction
The Time-Domain Binaural Renderer is used for generating the 3D Audio headphone signal. The Binaural Renderer either converts a loudspeaker signals  to the stereo output signal  using binaural parameters derived from individual Binaural Room Impulse Responses (BRIR) for each loudspeaker position , or converts directly a HOA signal  to the stereo output signal  using binaural parameters. 
Two approaches are possible to binauralize HOA content:
· VLB (Virtual Loudspeaker Binaural): Apply a HOA rendering matrix D to provide loudspeaker signals  , then apply a binauralization filtering to the virtual loudspeakers to obtain the binaural signals 

HOA to Loud- speaker Conversion

C
D
VLB (Virtual
Loudspeaker
Binaural)


Figure 37 - VLB approach

· H2B (HOA to Binaural): Apply  a binaural filtering directly to the HOA components  to obtain the binaural signals 

C
H2B 
(HOA to Binaural)


Figure 38 - H2B approach

Both approaches must be supported in the decoder. The approach used in the decoder for a given audio bitstream and given filters is selected depending on:
· The availability of the filter format in the decoder (VLB, H2B, or both)
· The number of virtual loudspeakers 
· The number of HOA components 
In case of availability of both formats, the selection is based on the following: If the number of HOA components is lower than the number of virtual loudspeakers, then H2B is used, otherwise VLB is used.
Whatever the approach selected by the decoder (VLB or H2B), the binauralization is based on the filtering (with summation for each ear) of the input signals. In the VLB case, the inputs are the virtual loudspeakers signals, and in the H2B case, the inputs are the HOA components. 
Globally, for each ear, this filtering consists in:
· applying a specific Direct filter block, ideally corresponding to the direct (and first reflections) part, to each input signal, 
· applying a common Diffuse filter Bmean (possibly decomposed into M blocks), ideally corresponding to the diffuse part, to a weighted sum (allowing to take into account the difference of energy between BRIRs) of the input signals. 
· limiting the bandwidth of each block (to save computation) according to the cutting frequency provided (by the filter design, but also possibly by the decoder, e.g. limitation of bandwidth of the content)
The filters coefficients, Diffuse weights, and cutting frequencies are provided thanks to an adapted filter parametrization.
[bookmark: _Toc385337930]Definitions
In this chapter, the following variable conventions are used.
General Variables
						time index
 						ear index (0=left, 1=right)
						frequency index
	number of input channels (virtual loudspeakers or HOA components). It is equal to the number of BRIRs (each BRIR containing a pair of impulse responses).
					channel index
						input signal for channel 
 						output signal for the left () or right () ear
						impulse response of the left () or right () BRIR  
					taps	 to  of impulse response of the left () or right () BRIR  
Filter parametrization variables
					initial delay of a BRIR set in time domain samples (propagation time)
						size in samples of the direct part of BRIRs
				FIR coefficients for the direct block of the left () or right () BRIR 
						number of diffuse blocks
	 			block index
				FIR coefficients for the left () or right () diffuse filter of BRIR 
			FIR coefficients for the left () or right () average diffuse filter
	FIR coefficients for diffuse block  of the left () or right () average diffuse filter
					cut off frequency for direct part of the left () or right () BRIR 
	cut off frequency for the  diffuse block of the left () or right () average diffuse filter
					gain to apply to the input channel  before filtering with average diffuse filters
					delay line operator for a delay of  frequency blocks (i.e.,   time samples) 
 					frequency-limited convolution operator (i.e., term-by-term multiplication in the frequency domain applied to a limited number of frequency bins, from  to )
Function Definitions
The energy of a time-domain single-channel signal  is defined by :

The cumulative energy is defined by :

The normalized cumulative energy is defined by :

The frequency-domain cumulative energy is defined by :

where  is the discrete Fourier transform of the -point signal  :

and  is  the index of the Nyquist frequency, i.e.,  when  is even.
[bookmark: _Toc385337931]Parameterization of Binaural Room Impulse Responses
For each ear  and channel , the BRIR impulse response  is parameterized as :
· an initial propagation delay  (common for all BRIRs)
· a direct filter block 	( samples in the time domain)
·  diffuse filter blocks , for  (common for all BRIRs)
· a diffuse gain  (common for left and right impulse responses)

The parametrization is composed of four stages that are described in details in the next sections :
· Propagation time calculation
· Direct/diffuse automatic segmentation
· Diffuse filters computation
· Cut-off frequencies computation

As a special case, if BRIRs are shorter  than 1024 samples in the time domain, then the three first stages of parameterization are ignored and :
·  is set to 0
·  is set to 1024
·  (plus additional zeros at the end to complete to  samples)
·  is set to 0 (i.e., no diffuse filter)

Propagation time calculation
Starting from a set of original BRIRs, the offset bsDelay (in sample) is first computed to remove propagation time and samples with near-zero energy at the beginning of all BRIRs. For each ear  and each channel , the integer time index  at which BRIR cumulative energy reaches  is computed :
 
where  is the energy of the BRIR impulse response with maximum energy (among all filters) :

The minimum of all time indexes is then selected as bsDelay :
 
All samples before bsDelay are set to zero in the BRIRs.

Direct/diffuse automatic segmentation
Each BRIR is then automatically decomposed into a first block (direct and first reflections part) and  diffuse blocks of the same size. This segmentation is illustrated on Figure 31.
 [image: designFilter2]
Figure 31 Automatic direct/diffuse segmentation for one BRIR

The direct part length is computed as follows. For each ear  and each channel , the integer time index  at which BRIR normalized cumulative energy reaches  is computed :
 
The maximum time index is selected and it is increased to the next power of two to get the direct part length

Finally the direct part length is imposed to be at least 1024 samples long :
 
For each ear  and channel , the direct filer  is then given by :
	
The total number of diffuse blocks  is computed as follows. For each ear  and each channel , the integer time index  at which BRIR normalized cumulative energy reaches thres3=1-10-19/10 is computed :
 
Then  is given by :

where ceil is the round up function. If  is zero, then there is no diffuse filter and the last steps of parametrization can be skiped. This is the case when thres3 is reached before the end of the direct block (i.e., time index ).
Otherwise the -block long diffuse filter is computed for ear  and channel  by :
			
A smoothing window  is applied to fade out the last  points of . Specifically we compute  by :
 for  
BRIR samples beyond  (i.e., time indexes superior to ) are ignored. If the end of  goes beyond the end of the BRIRs, then is completed with zeros at the end (zero-padding) to reach  samples. This is done before applying the smoothing window. 
Diffuse Filters Computation
To reduce computational cost, a single average diffuse filter   is computed for ear  by taking the mean of all normalized contributions per channel :

where  is the -block long diffuse filter for ear k and channel l, and  its energy.   is then cut into  contiguous blocks  of  samples each for.  
A compensation gain  is computed per channel  by :

where  is a global attenuation gain of 6dB ( G = 10-6/20 ) and  is a weight computed for ear  and channel  by:


Cut-off frequencies computation
In typical BRIRs, high-frequency energy decreases faster than low-frequency energy. Cut-off frequencies are extracted for direct and diffuse block filters, to avoid multiplying frequency bins with low energy during processing. 
Figure 32 shows an example of the decomposition of one BRIR (left and right) into 1 block of direct part, and 2 blocks of diffuse part, on a time frequency representation. Each block is = 2048 samples long. The samples after 3 are not used. The frequencies above  and  in the direct block are not used. The frequencies above  and  in the first diffuse block are not used. The frequencies above  and   in the second diffuse block are not used. During processing, unprocessed bins above cut-off frequencies are equivalent to a multiplication by 0 (but not from a complexity point of view) which can lead to some artifacts due to circular convolution inside a block. These artifacts can generally be kept low enough to avoid audible artifacts after the whole process.
[image: ]
Figure 32 Time frequency representation of a pair of BRIR

This phenomenon is exploited in the binaural decoder. For ear  and channel , the frequency index  at which the frequency-domain cumulative energy of the direct block reaches thres4=0.99 is computed :
 
Then the normalized cutoff frequency  is defined by :

In a final “quantization” stage,  is set to its closest value in vector [1/6 1/3 1/2 2/3 5/6 1].
For each ear  and each diffuse bloc , the frequency index  at which the frequency-domain cumulative energy of the diffuse block  reaches thres4 is computed :
 
Then the normalized cutoff frequency  is defined by :

In a final “quantization” stage,  is set to its closest value in vector [1/6 1/3 1/2 2/3 5/6 1].

[bookmark: _Toc385337932]Time-Domain Binaural Processing
The left/right output is given by the following formula:

The processing is achieved in the DFT (discrete Fourier transform) domain based on a block-wise approach. The following constraints are associated to the algorithm:
· The number of samples  of the direct part shall be equal to a power of .
· The size of each of the  diffuse block is equal to . 
· The frame size of the binauralization process is equal to .
· The size of the delay line  is equal to  (delay of  frequency block).
· The size of the DFT is  


The following figure shows the implementation with  input signals and  diffuse blocks:
[image: ]
Figure 39 - Block diagram description of the binauralization algorithm

Initialization
The  filters of the Direct block  and the  filters of the Diffuse blocks  are provided as time domain blocks of size . Each time domain filter is converted to the frequency domain in an initialization step.  buffers of  complex data for Direct part, and  buffers of  complex data for Diffuse blocks are provided.
Processing
The  input signals (channel or HOA) are put in buffers of size . Using an overlap-add/overlap-save technique, buffers of size  are created and then converted into the DFT domain. 
For the Direct block and for each ear, these frequency buffers are multiplied term-by-term with the associated  Direct filters from  up to the frequency  and accumulated in a frequency output buffer previously initialized to zero.
These  frequency buffers are also multiplied-accumulated by the Diffuse weights  for each ear to provide a weighted downmix buffer dedicated to feed successively all the Diffuse blocks.
For each of the  Diffuse blocks and for each ear, the appropriately delayed weighted downmix buffer is multiplied term-by-term with the associated Diffuse filters from 0 up to the frequency  and accumulated in the frequency output buffer.

[bookmark: _Toc385337933]MPEG-H 3D audio stream (MHAS)
[bookmark: _Toc385337934]Overview
This clause defines a self-contained stream format to transport ISO/IEC 23008-3 (MPEG-H 3D Audio) data. The transport mechanism uses a packetized approach. Both, configuration data as well as coded audio payload data is embedded into separate packets. Synchronization and length information is added to enable a self-synchronizing syntax.
This stream format is intended to be used for the transmission over channels where no frame synchronization is available and it may be used for the transmission over channels with fixed frame synchronization.
[bookmark: _Toc385337935]Syntax
Table 108 — Syntax of mpeghAudioStream()
	Syntax
	No. of bits
	Mnemonic

	mpeghAudioStream()
	
	

	{
	
	

		while (bitsAvailable() != 0) {
	
	

			mpeghAudioStreamPacket();
	
	

		}
	
	

	}
	
	



Table 109 — Syntax of mpeghAudioStreamPacket()
	Syntax
	No. of bits
	Mnemonic

	mpeghAudioStreamPacket()
	
	

	{
	
	

		MHASPacketType     = escapedValue(3,8,8);
	3,11,19
	uimsbf

		MHASPacketLabel    = escapedValue(2,8,32);
	2,10,42
	uimsbf

		MHASPacketLength  = escapedValue(11,24,24);
	11,35,59
	uimsbf

		MHASPacketPayload(MHASPacketType);
	
	

	}
	
	

	NOTE: With the given bit allocation, MHASPacketPayload() is always byte-aligned



Table 110 — Syntax of MHASPacketPayload()
	Syntax
	No. of bits
	Mnemonic

	MHASPacketPayload(MHASPacketType)
	
	

	{
	
	

		switch (MHASPacketType) {
	
	

			case PACTYP_SYNC:
	
	

				0xA5;                                        /* syncword*/
	8
	uimsbf

				break;
	
	

			case PACTYP_MPEGH3DACFG:
	
	

				mpegh3daConfig();
	
	

				break;
	
	

			case PACTYP_MPEGH3DAFRAME:
	
	

				mpegh3daFrame();
	
	

				break;
	
	

			case PACTYP_SYNCGAP:
	
	

				syncSpacingLength = escapedValue(16,24,24);
	16,40,64
	uimsbf

				break;
	
	

			case PACTYP_MARKER:
	
	

				for (i=0; i< MHASPacketLength; i++) {
	
	

					marker_byte(i);
	8
	

				}
	
	

				break;
	
	

		}
	
	

		ByteAlign();
	
	

	}
	
	



[bookmark: _Toc385337936]Semantics
[bookmark: _Toc385337937]mpeghAudioStreamPacket()
MHASPacketType	This element specifies the payload type in the actual packet. The meaning of MHASPacketType is defined in Table.
[bookmark: _Ref385006789]Table111 — Value of MHASPacketType
	MHASPacketType
	Value

	PACTYP_SYNC
	0

	PACTYP_MPEGH3DACFG
	1

	PACTYP_MPEGH3DAFRAME
	2

	/* reserved for ISO use */
	3-6

	PACTYP_SYNCGAP
	7

	PACTYPE_MARKER
	8

	/* reserved for ISO use */
	9-127

	/* reserved for use outside of ISO scope */
	128-261

	/* reserved for ISO use */
	262-389

	/* reserved for use outside of ISO scope */
	390-517

	NOTE: Application-specific MHASPacketType values are mandated to be in the space reserved for use outside of ISO scope. These are skipped by a decoder as a minimum of structure is required by the decoder to skip these extensions.



MHASPacketLabel	This element provides an indication on which packets belong together. For example, with using different labels, different MPEG-H 3D audio configuration structures may be assigned to particular sequences of MPEG-H 3D audio access units.
If this field is set to ‘0’, the packet is of general interest and is related to the complete stream.
MHASPacketLength	This element indicates the length of the MHASPacketPayload() in Bytes.
MHASPacketPayload()	The payload for the actual MHASPacket.
[bookmark: _Toc385337938]MHASPacketPayload()
mpegh3daConfig()	An MPEG-H 3D audio configuration structure as defined in 5.2.2.1.
[bookmark: _GoBack]mpegh3daFrame()	An MPEG-H 3D audio payload as defined in 5.2.3.1.
ByteAlign()	Up to 7 fill bits to achieve byte alignment with respect to the beginning of the syntactic element in which ByteAlign() occurs.
syncSpacingLength	the length in Bytes between the last two MHASPacketType PACTYP_SYNC.

[bookmark: _Toc385337939]Further information on MHASPacketType
[bookmark: _Toc385337940]PACTYP_SYNC
The syncword payload for ISO/IEC 23008-3 MPEG-H Audio streams is ‘1010 0101’.
For this packet type, MHASPacketLabel has no meaning and shall be set to 0.
NOTE: The complete syncword is not only determined by the syncword payload, but by the complete mpeghAudioStreamPacket() with the MHASPacketType of PACTYP_SYNC, including all its fields. Therefore, a packet of type PACTYP_SYNC is 0x0001A5.
[bookmark: _Toc385337941]PACTYP_MPEGH3DACFG
MHAS Packets of the MHASPacketType PACTYP_MPEG3DACFG embed an MPEG-H 3D audio configuration structure, mpegh3daConfig(), in the MHASPacketPayload().
MHASPacketLabel indicates the ID used for this configuration. This configuration shall be used for packets of type PACTYP_MPEGH3DAFRAME that have the same ID, so that a unique linking between configuration data and payloads is possible.
If MHASPacketType of type PACTYP_MPEGH3DACFG is not present, the mpegh3daConfig() should be conveyed through out-band means, such as session announcement/description/control protocols.
[bookmark: _Toc385337942]PACTYP_MPEGH3DAFRAME
MHAS Packets of the MHASPacketType PACTYP_MPEG3DAFRAME embed a frame of  MPEG-H 3D audio, mpegh3daFrame(), in the MHASPacketPayload().
MHASPacketLabel indicates the ID used for this payload. Packets of type PACTYP_MPEGH3DACFG that have the same ID carry the corresponding configuration, so that a unique linking between configuration data and payloads is possible.
[bookmark: _Toc385337943]PACTYP_SYNCGAP
The MHASPacketType PACTYP_SYNCGAP may be used to improve synchronization to a stream. It directly follows a MHASPacketType PACTYP_SYNC. 
For this packet type, MHASPacketLabel has no meaning and shall be set to 0.
[bookmark: _Toc385337944]PACTYPE_MARKER
General
The MHASPacketType PACTYP_MARKER indicates a marker event in the stream. The event type is signaled in the packet payload.
 Configuration Change Marker
When the first marker_byte of the packet payload is “0x01”, a configuration change occurred and evaluating the configuration structure mpegh3daConfig() in the following MHASPacketType PACTYP_MPEG3DACFG is mandatory. 
For packets of PACTYP_MPEG3DACFG without a preceding configuration change marker packet, evaluation of the configuration structure is not required.
[bookmark: _Toc385337945]Application Examples
[bookmark: _Toc385337946]Light-weighted broadcast
Certain applications require a minimum overhead in terms of bitrate, while synchronization time is less critical. (e.g. Internet Radio)
Figure 112 — Example 1


[bookmark: _Toc385337947]MPEG-2 Transport Stream 
When embedding MPEG-H 3D Audio streams into MPEG-2 Transport streams, fast synchronization to a stream at random access points is most important, while bitrate overhead is usually less critical. Therefore, the configuration structure is sent on a regular basis, typically twice a second. 
To improve synchronization to the stream packets of type PACTYP_SYNC may be embedded more frequently and in addition the PACTYP_SYNCGAP type may be used as well.
The figures below indicate some possible sequences of packet types when the MPEG-H Audio Stream is intended to be embedded into the MPEG-2 Transport Stream.
Figure 113 —  Example 2



Figure 114 — Example 3



Figure 115 — Example 4




[bookmark: _Toc385337948]Metadata Audio Elements (MAE)
[bookmark: _Toc384372926][bookmark: _Toc385337949]Introduction
The set of metadata consists of 
0. Descriptive metadata: Information about the existence of object inside the bitstream and high-level properties of objects
0. Restrictive metadata: Information of how interaction is possible or enabled by the content creator
0. Positional metadata and ability to render to specific speaker and to signal channel content as objects
0. Structural metadata: Grouping and combination of objects
The Metada is organised as Groups or SwitchGroups of elements. All static metadata is organized in the AudioSceneInfo in the mpegh3daConfigExtension(). The Main Audio Scene describes the full scene in terms of the static metadata of all elements.
Groups of Elements
Related elements are associated with a group. These elements belong together and can only be manipulated together. Elements of a group can no longer be interactively changed on their own (e.g. if a group is switched off, all its child elements are switched off), but behave as a union. Examples are channel-based recordings, e.g. an AB recording where the two recorded signals belong together and should only be manipulated as a pair. This grouping allows for signaling of stems and submixes by gathering the dedicated elements in groups.
Switch Group of Elements
It should be possible to define special groups, where just one or a select number of its elements can be switched on at a time. This group is called Switch Group here. This concept ensures that the audience could enable exactly one out of many elements of the same kind if reasonable. An example is the possibility to produce and transmit a multitude of language tracks.
[image: ]
Figure 40 Example structure of Metadata Elements
[bookmark: _Toc385337950]Syntax
Table 116 — Syntax of mae_AudioSceneInfo()
	Syntax
	No. of bits
	Mnemonic

	mae_AudioSceneInfo()
	
	

	{
	
	

		mae_isMainStream;
	1
	bslbf

		if (mae_isMainStream) {
	
	

			mae_numGroups;
	7
	uimsbf

			mae_GroupDefinition( mae_numGroups );
	
	

			mae_numSwitchGroups;
	5
	uimsbf

			mae_SwitchGroupDefinition( mae_numSwitchGroups );
	
	

			mae_Data();
	
	

			mae_metaDataElementIDoffset = 0;
	
	

		}
	
	

		else {
	
	

			mae_bsMetaDataElementIDoffset;  
	7
	uimsbf

			mae_metaDataElementIDoffset = mae_bsMetaDataElementIDoffset + 1;

		}
	
	

	}
	
	



Table 117 — Syntax of mae_Data()
	Syntax
	No. of bits
	Mnemonic

	mae_Data()
	
	

	{
	
	

		mae_numDataSets;
	4
	uimsbf

		for (dscr = 0; dscr < mae_numDataSets+1; dscr ++) {
	
	

			mae_DataType[dscr];
	4
	uimsbf

			mae_DataLength[dscr];
	16 
	uimsbf

			switch (mae_DataType[dscr] ) {
	
	

	
	
	

			case ID_MAE_GROUP_DESCRIPTION:
	
	

				mae_Description( ID_MAE_GROUP_DESCRIPTION );
	
	

				break;
	
	

			case ID_ MAE_SWITCHGROUP_DESCRIPTION:
	
	

				mae_Description( ID_MAE_SWITCHGROUP_DESCRIPTION );

				break;
	
	

			case ID_ MAE_GROUP_CONTENT:
	
	

				mae_ContentData(); 
	
	

				break;
	
	

			case ID_MAE_GROUP_COMPOSITE:
	
	

				mae_CompositeObjectPair()
	
	

				break;
	
	

			default:
	
	

				while (mae_DataLength[dscr] ) {
	
	

					tmp;
	8
	uimsbf

				}
	
	

				break;
	
	

			}
	
	

		}
	
	

	}
	
	



Table 118 — Syntax of GroupDefinition()
	Syntax
	No. of bits
	Mnemonic

	mae_GroupDefinition( numGroups )
	
	

	{
	
	

		for ( grp = 0; grp < numGroups; grp++ ) {
	
	

			mae_groupID[grp];
	7
	uimsbf

			mae_allowOnOff[grp];
	1
	bslbf

			mae_defaultOnOff[grp];
	1
	bslbf

			
	
	

			mae_allowPositionInteractivity[grp];
	1
	bslbf

			if (mae_allowPositionInteractivity[grp] ) {
	
	

				mae_interactivityMinAzOffset[grp];
	7
	uimsbf

				mae_interactivityMaxAzOffset[grp];
	7
	uimsbf

				mae_interactivityMinElOffset[grp];
	5
	uimsbf

				mae_interactivityMaxElOffset[grp];
	5
	uimsbf

				mae_interactivityMinDistFactor[grp];
	4
	uimsbf

				mae_interactivityMaxDistFactor[grp];
	4
	uimsbf

			}
	
	

			mae_allowGainInteractivity[grp];
	1
	bslbf

			if (mae_allowGainInteractivity[grp] ) {
	
	

				mae_defaultGain[grp];
	8
	uimsbf

				mae_interactivityMinGain[grp];
	6
	uimsbf

				mae_interactivityMaxGain[grp];
	5
	uimsbf

			}
	
	

	
	
	

			mae_groupPriority[grp];
	3
	uimsbf

			mae_closestSpeakerPlayout[grp];
	1
	bslbf

	
	
	

			mae_bsGroupNumMembers[grp];
	7
	uimsbf

			mae_hasConjunctMembers;
	1
	bslbf

	
	
	

			if ( mae_hasConjunctMembers ) {
	
	

				mae_startID[grp];
	7
	uimsbf

			}
	
	

			else {
	
	

				for ( obj = 0; obj < mae_bsGroupNumMembers + 1; obj++ ) {

					mae_metaDataElementID[grp][obj];	
	7
	uimsbf

				}
	
	

			}
	
	

		}
	
	

	}
	
	



Table 119 — Syntax of mae_SwitchGroupDefinition()
	Syntax
	No. of bits
	Mnemonic

	mae_SwitchGroupDefinitionData( numSwitchGroups )
	
	

	{
	
	

		for ( swgrp = 0; swgrp < numSwitchGroups; swgrp ++ ) {
	
	

			mae_switchGroupID[grp];
	5
	uimsbf

			mae_bsSwitchGroupNumMembers[swgrp];
	5
	uimsbf

			for ( grp = 0; grp < mae_bsSwitchGroupNumMembers + 1; grp++ ) {

				mae_switchGroupMemberID[swgrp][grp];
	7
	uimsbf

			}
	
	

			mae_switchGroupDefaultGroupID[swgrp];
	7
	uimsbf

		}
	
	

	}
	
	



Table 120 — Syntax of mae_Description()
	Syntax
	No. of bits
	Mnemonic

	mae_Description( type )
	
	

	{
	
	

	    	mae_bsNumDescriptionBlocks;
	7
	uimsbf

		for ( n = 0; n < mae_bsNumDescriptionBlocks + 1; n++ ) {
	
	

			if ( type == ID_MAE_GROUP_DESCRIPTION ) {
	
	

				mae_DescriptionGroupID[n];
	7
	uimsbf

			}
	
	

			else if ( type == ID_MAE_SWITCHGROUP_DESCRIPTION ) {

				mae_DescriptionSwitchGroupID[n];
	5
	uimsbf

			}
	
	

			mae_bsGroupDescriptionDataLength[n];
	8
	uimsbf

			for ( c = 0; c < bsGroupDescriptionLength[n] + 1; c++ ) {
	
	

				mae_GroupDescriptionData[n][c];
	8
	uimsbf

			}
	
	

		}
	
	

	}
	
	



Table 121 — Syntax of mae_ContentData()
	Syntax
	No. of bits
	Mnemonic

	mae_ContentData()
	
	

	{
	
	

	    	mae_bsNumContentDataBlocks;
	7
	uimsbf

		for ( n = 0; n < mae_bsNumContentDataBlocks + 1; n++ ) {
	
	

			mae_ContentDataGroupID[n];
	7
	uimsbf

			mae_contentKind[n];
	4
	uimsbf

			mae_hasContentLanguage[n];
	1
	bslbf

			if (mae_hasContentLanguage[n] ) {
	
	

				mae_contentLanguage[n];
	24
	uimsbf

			}
	
	

		}
	
	

	}
	
	



Table 122 — Syntax of mae_CompositObjectPair()
	Syntax
	No. of bits
	Mnemonic

	mae_CompositObjectPair()
	
	

	{
	
	

		bsNumCompositPairs
	7
	uimsbf

		for (sa=0;sa<bsNumCompositPairs;sa++){
	
	

			mae_CompositeElementID [sa][0];
		mae_CompositeElementID [sa][1]; 
	7
7
	uimsbf
uimsbf

		}
	
	

	}
	
	



[bookmark: _Toc384372928][bookmark: _Toc385337951]Semantics

mae_isMainStream	This flag signals if the actual MPEG-H stream is the main stream.
mae_numGroups	This field signals the number of groups in the overall audio scene (complete number of groups in the main stream plus all possible additional streams). This field can take values between 1 and 127, a minimum number of one group and a maximum number of 127 groups are assumed.
mae_numSwitchGroups	This field signals the number of switch groups in the overall scene (complete number of switch groups in the main stream plus all possible additional stream). This field can take values between 0 and 31, resulting in a maximum number of 31 switch groups.
mae_bsMetaDataElementIDoffset	This field defines the offset for the first metadata element for the actual MPEG-H data stream. It is zero if the stream is the main stream.
mae_bsNumDataSets	This field defines the number of data sets that are following in the bitstream.
mae_DataType	For each group description this field defines the type of group description that follows in the bitstream.
Table 123 — Value of mae_DataType
	mae_DataType
	value
	meaning

	ID_MAE_GROUP_DESCRIPTION
	0
	Group description follows in the bitstream

	ID_MAE_SWITCHGROUP_DESCRIPTION
	1
	Switch group description follows in the bitstream

	ID_ MAE_GROUP_CONTENT
	2
	Group content information follows in the bitstream

	reserved
	3 - 15
	n/a



mae_DataLength	This field defines the length in bytes of the data element that follows in the bit stream.
mae_groupID	This field uniquely defines an ID for a group of metadata elements. 
mae_allowOnOff	This flag defines if the audience is allowed to switch a metadata element group on and off (enable/disable playback).
mae_defaultOnOff	This field defines the default status of a metadata element group, i.e. if this group is switched on (=1) or off (=0) by default.
mae_allowPositionInteractivtiy	This flag defines if the audience is allowed to change the position of the elements of a metadata element group.
mae_interactivityMinAzOffset	This field defines the minimum azimuth offset for changing the position of the members of a metadata element group, e.g. changing the original azimuth by a minimum offset of -30°. This field can take values between MinAzOffset = -180° and MinAzOffset = 0°: 
MinAzOffset = mae_interactivityMinAzOffset 
mae_interactivityMaxAzOffset	This field defines the maximum azimuth offset for changing the position of the members of a metadata element group, e.g. changing the original azimuth by a maximum offset of +30°. This field can take values between MaxElOffset = 0° and MaxElOffset =180°: 
MaxAzOffset = mae_interactivityMaxAzOffset 
mae_interactivityMinElOffset 	This field defines the minimum elevation offset for changing the position of the members of a metadata element group, e.g. changing the original elevation by a minimum offset of -30°. This field can take values between MinElOffset = -90° and MinElOffset = 0°: 
MinElOffset = mae_interactivityMinElOffset 
mae_interactivityMaxElOffset 	This field defines the maximum elevation offset for changing the position of the members of a metadata element group, e.g. changing the original elevation by a maximum offset of +30°. This field can take values between MaxElOffset = 0° and MaxElOffset = 90°: 
MaxElOffset = mae_interactivityMaxElOffset 
mae_interactivityMinDistFactor	This field defines the minimum distance change factor for interactively changing the position of the members of a metadata element group. The field describes a multiplication factor by which the original distance is changed, e.g. multiplied by a minimum factor of 0.5. This field can take values between  to  resulting in MinDistFactor between 0.00025 and 8 :
	MinDistFactor = 	
mae_interactivitiyMaxDistFactor 	This field defines the maximum distance change factor for interactively changing the position of the members of a metadata element group. The field describes a multiplication factor by which the original distance is changed, e.g. multiplied by a maximum factor of 4. This field can take values between  to  resulting in MinDistFactor between 0.00025 and 8 :
	MaxDistFactor = 	
mae_allowGainInteractivity	This flag defines if the audience is allowed to change the gain of a metadata element group.
mae_defaultGain	This field defines the default gain of the members of a metadata element group. 

DefaultGain in dB = 0.5 * (mae_defaultGain – 255) + 32 

The field can represent values between -95.5dB and +32dB.

mae_defaultGain should be equal to 191 (corresponding to 0dB) if OAM data is present for the members of the metadata element group.
mae_interactivityMinGain	This field defines a minimum gain of the members of a metadata element group. The field can take values between 
MinGain = --63 dB 
and
MinGain = 0dB 
in 1 dB steps, with

MinGain in dB = mae_interactivityMinGain – 63

If mae_interactivityMinGain is set to 0, MinGain shall be set to minus infinity dB.
mae_interactivityMaxGain 	This field defines a maximum gain of the members of a metadata element group. The field can take values between 
MaxGain = 0dB 
and 
MaxGain =31dB 
in 1dB steps, with
MaxGain in dB = mae_interactivityMaxGain  
The value of MinGain and MaxGain define the interval in dB of allowed interactivity gain changes relative to the OAM gain and to the DefaultGain. For example, with an MinGain of -2dB and a MaxGain of 6dB, the gain of the elements in the group shall be interactively altered only in the interval between -2dB and +6dB relative to their OAM gain in dB plus their DefaultGain in dB.
mae_groupPriority	Reserved. 
mae_closestSpeakerPlayout	This flag defines that the members of the metadata element group should in not be rendered but directly be played back by the loudspeakers which are nearest to the geometric position of the members.
mae_bsGroupNumMembers	This field signals the number of members of a group of metadata elements. The field can take values between 0 and 127 resulting in a maximum number of 128 members.
mae_hasConjunctMembers	This flag defines if all members of the metadata element group are coded consecutively in the bitstream.
mae_startID	If the members of the element group are coded consecutively this field defines the offset for the first metadata element of this group.
mae_metaDataElementID	This field uniquely defines and ID for a metadata element (i.e. static objects, dynamic object, channels, SAOC channels, SOAC objects, HOA). This field can take values between 0 and 127, resulting in a maximum of 128 metadata elements.
mae_switchGroupID 	This field uniquely defines an ID for a switch group of metadata elements groups. 
mae_bsSwitchGroupNumMembers	This field signals the number of members of a switch group. It can take values between 0 and 127, resulting in a maximum number of 128 members.
mae_switchGroupMemberID	This field specifes the group IDs of the members of the switch group. 
mae_switchGroupDefaultGroupID	This field signals which member of a switch group is the default member of the switch group (i.e. if a switch group is selected for playback by the audience, the default member is played back until the audience switches to another member). For every member of the switch group the mae_allowOnOff field should be ignored.
mae_ bsNumDescriptionBlocks	This field specifies the number of Description blocks. 
mae_ DescriptionGroupID	This field specifies for the groupID of the group for which the Description block is valid. 
mae_ DescriptionSwitchGroupID	This field specifies for the switchGroupID of the switchgroup for which the Description block is valid. 
mae_bsGroupDescriptionDataLength	
This field defines the length of the following group description in the bit stream.
mae_GroupDescriptionData	This field contains a description of a metadata element group or a switch group, i.e. a string describing the content by a high-level description. The format shall follow UTF-8 according to ISO/IEC 10646.
mae_bsNumContentDataBlocks	This field specifies the number of ContentData blocks. 
mae_ContentDataGroupID	This field specifies for the groupID of the group for which the ContentData block is valid. 
mae_contentKind	This field defines the kind of content of a metadata element group, 
Table 124 — Value of mae_contentKind
	mae_contentKind
	description

	0
	undefined

	1
	complete main

	2
	dialogue

	3
	music

	4
	effect

	5
	mixed

	6
	LFE

	7
	voiceover

	8
	spokensubtitle

	9
	audiodescription/visually impaired

	10
	commentary

	11
	hearing impaired

	12
	emergency

	13-15
	reserved



mae_hasContentLanguage	This field defines if the actual metadata element group has a language assigned to its content.
mae_contentLanguage	This 24-bit field identifies the language of a metadata element group. It contains a 3-character code as specified by ISO 639-2. Both ISO 639-2/B and ISO 639-2/T may be used. Each character is coded into 8 bits according to ISO/IEC 8859-1 and inserted in order into the 24-bit field. EXAMPLE: French has 3-character code "fre", which is coded as: "0110 0110 0111 0010 0110 0101".
bsNumCompositPairs	This is the number of CompositObjectPairs
mae_CompositeElementID	This field uniquely defines an ID for a metadata element. This field can take values between 0 and 127, resulting in a maximum of 128 metadata elements. The metadata element in position 0, is an independent object and in position 1 is a dependent object. These two objects form together the CompositePair. This dependent object will be given the metadata of the independent object. The dependent object and the independent object represent a composite object pair combining the dependent object and the independent object in time or frequency domain. Each element may be either a discrete object or a SAOC object. 

[bookmark: _Toc384372929][bookmark: _Toc385337952]Definition of mae_metaDataElementIDs
[edit: Should this go up to the description of the element?]
The definition of metadata groups (GroupDefinition) references signals via the identifiers mae_metaDataElementID. These identifiers are calculated using the following pseudo code:
mae_metaDataElementID = mae_metaDataElementIDoffset; 
for ( grp = 0; grp < bsNumSignalGroups + 1; grp++)  {
    if ( SignalGroupType[grp] == SignalGroupTypeChannels ) {
        for ( id = 0; id < bsNumberOfSignals[grp] + 1; id++ )  {
            mae_metaDataElementID++;		
        }
   }
   else if ( SignalGroupType[grp] == SignalGroupTypeObject ) {
        for ( id = 0; id < bsNumberOfSignals[grp] + 1; id++ )  {
            mae_metaDataElementID++;		
        }
   }
   else if ( SignalGroupType[grp] == SignalGroupTypeSAOC ) {
        for ( id = 0; id < bsNumSaocChannels + bsNumSaocLFEs + bsNumSaocObjects; id++ )  {
            mae_metaDataElementID++; 
        }	
    }
    else if ( SignalGroupType[grp]  == SignalGroupTypeHOA ) {
        mae_metaDataElementID++;	
    }
}

[bookmark: _Toc383592711][bookmark: _Ref370125039][bookmark: _Toc385337953]
(normative)

Tables for arithmetic decoding of IGF information
[bookmark: _Toc385337954]cf_se01[27]
static unsigned short cf_se01[27] = {
 16370, 16360, 16350, 16336, 16326, 16283, 16215, 16065, 15799, 15417, 14875, 13795, 12038, 9704, 6736, 3918, 2054, 1066, 563, 311, 180, 98, 64, 20, 15, 5, 0
};
[bookmark: _Toc385337955]cf_se10[27]
static unsigned short cf_se10[27] = {
 16218, 16145, 16013, 15754, 15426, 14663, 13563, 11627, 8894, 6220, 4333, 3223, 2680, 2347, 2058, 1887, 1638, 1472, 1306, 1154, 1012, 895, 758, 655, 562, 489, 0
};
[bookmark: _Toc385337956]cf_se02[ 7][27]
static unsigned short cf_se02[ 7][27] = {
  { 16332, 16306, 16278, 16242, 16180, 16086, 15936, 15689, 15289, 14657, 13632, 12095, 9926, 6975, 4213, 2285, 1163, 637, 349, 196, 125, 82, 52, 28, 11, 2, 0},
  { 16370, 16367, 16364, 16358, 16350, 16330, 16284, 16170, 16030, 15647, 14840, 13094, 10364, 6833, 3742, 1639, 643, 282, 159, 85, 42, 22, 16, 15, 4, 1, 0},
  { 16373, 16371, 16367, 16363, 16354, 16336, 16290, 16204, 16047, 15735, 14940, 13159, 10171, 6377, 3044, 1212, 474, 208, 115, 60, 27, 14, 7, 6, 5, 1, 0},
  { 16382, 16377, 16367, 16357, 16334, 16281, 16213, 16035, 15613, 14694, 12898, 9720, 5747, 2506, 1030, 469, 251, 124, 58, 48, 35, 17, 12, 7, 6, 5, 0},
  { 16383, 16375, 16374, 16366, 16336, 16250, 16107, 15852, 15398, 14251, 12117, 8796, 5016, 2288, 998, 431, 236, 132, 89, 37, 16, 12, 4, 3, 2, 1, 0},
  { 16375, 16357, 16312, 16294, 16276, 16222, 16133, 15999, 15515, 14655, 13123, 10667, 7324, 4098, 2073, 1141, 630, 370, 209, 93, 48, 39, 12, 11, 10, 9, 0},
  { 16343, 16312, 16281, 16179, 16067, 15730, 15464, 15025, 14392, 13258, 11889, 10224, 7824, 5761, 3902, 2349, 1419, 837, 520, 285, 183, 122, 71, 61, 40, 20, 0}
};
[bookmark: _Toc385337957]short cf_se20[ 7][27]
static unsigned short cf_se20[ 7][27] = {
  { 16351, 16344, 16317, 16283, 16186, 16061, 15855, 15477, 14832, 13832, 12286, 10056, 7412, 4889, 2996, 1739, 1071, 716, 496, 383, 296, 212, 149, 109, 82, 59, 0},
  { 16368, 16352, 16325, 16291, 16224, 16081, 15788, 15228, 14074, 12059, 9253, 5952, 3161, 1655, 1006, 668, 479, 357, 254, 199, 154, 115, 88, 67, 51, 45, 0},
  { 16372, 16357, 16339, 16314, 16263, 16169, 15984, 15556, 14590, 12635, 9475, 5625, 2812, 1488, 913, 641, 467, 347, 250, 191, 155, 117, 89, 72, 59, 46, 0},
  { 16371, 16362, 16352, 16326, 16290, 16229, 16067, 15675, 14715, 12655, 9007, 5114, 2636, 1436, 914, 650, 477, 357, 287, 227, 182, 132, 105, 79, 58, 48, 0},
  { 16364, 16348, 16318, 16269, 16192, 16033, 15637, 14489, 12105, 8407, 4951, 2736, 1669, 1156, 827, 615, 465, 348, 269, 199, 162, 125, 99, 73, 51, 37, 0},
  { 16326, 16297, 16257, 16136, 15923, 15450, 14248, 11907, 8443, 5432, 3396, 2226, 1561, 1201, 909, 699, 520, 423, 323, 255, 221, 163, 121, 87, 71, 50, 0},
  { 16317, 16280, 16203, 16047, 15838, 15450, 14749, 13539, 11868, 9790, 7789, 5956, 4521, 3400, 2513, 1926, 1483, 1100, 816, 590, 431, 306, 214, 149, 105, 60, 0}
};

[bookmark: _Toc385337958]short cf_se11[ 7][ 7][27]
static unsigned short cf_se11[ 7][ 7][27] = {
  {
    { 16375, 16372, 16367, 16356, 16326, 16249, 16009, 15318, 13710, 10910, 7311, 3989, 1850, 840, 380, 187, 103, 66, 46, 36, 26, 20, 15, 12, 8, 6, 0},
    { 16383, 16382, 16381, 16380, 16379, 16378, 16377, 16374, 16363, 16323, 16171, 15649, 14281, 11398, 7299, 3581, 1336, 428, 135, 49, 17, 7, 4, 3, 2, 1, 0},
    { 16383, 16382, 16381, 16380, 16379, 16378, 16375, 16367, 16347, 16267, 15969, 15044, 12765, 9094, 5087, 2234, 787, 251, 89, 29, 13, 5, 4, 3, 2, 1, 0},
    { 16383, 16382, 16379, 16376, 16359, 16313, 16124, 15490, 13752, 10641, 6693, 3409, 1499, 567, 208, 76, 34, 17, 10, 7, 6, 5, 4, 3, 2, 1, 0},
    { 16383, 16382, 16381, 16380, 16375, 16367, 16336, 16220, 15772, 14485, 12105, 8736, 5367, 2833, 1387, 581, 239, 98, 46, 24, 12, 9, 7, 6, 5, 2, 0},
    { 16383, 16382, 16380, 16379, 16377, 16375, 16347, 16269, 16004, 15265, 13542, 10823, 7903, 5214, 3145, 1692, 847, 365, 139, 47, 14, 9, 8, 5, 4, 3, 0},
    { 16381, 16378, 16375, 16372, 16336, 16274, 16039, 15643, 14737, 13185, 11186, 8836, 6501, 4198, 2444, 1270, 615, 281, 153, 93, 63, 48, 42, 33, 24, 21, 0}
  },
  {
    { 16383, 16382, 16381, 16380, 16379, 16377, 16376, 16373, 16369, 16357, 16316, 16205, 15866, 14910, 12674, 8962, 4857, 1970, 632, 204, 75, 34, 15, 9, 5, 3, 0},
    { 16383, 16382, 16381, 16380, 16379, 16378, 16377, 16376, 16375, 16374, 16370, 16356, 16298, 16139, 15598, 14050, 10910, 6488, 2627, 701, 138, 38, 12, 6, 2, 1, 0},
    { 16383, 16382, 16381, 16380, 16379, 16378, 16377, 16375, 16358, 16292, 15999, 15070, 12735, 8772, 4549, 1595, 376, 95, 26, 10, 6, 5, 4, 3, 2, 1, 0},
    { 16383, 16382, 16381, 16380, 16379, 16378, 16377, 16376, 16375, 16373, 16361, 16309, 16153, 15563, 13983, 10829, 6716, 3004, 1002, 267, 74, 19, 5, 4, 2, 1, 0},
    { 16383, 16382, 16381, 16380, 16379, 16378, 16377, 16353, 16250, 15897, 14810, 12582, 9100, 5369, 2494, 884, 281, 87, 31, 12, 6, 5, 4, 3, 2, 1, 0},
    { 16383, 16382, 16379, 16378, 16377, 16371, 16348, 16282, 16042, 15416, 13942, 11431, 8296, 5101, 2586, 1035, 328, 68, 15, 9, 6, 5, 4, 3, 2, 1, 0},
    { 16383, 16380, 16379, 16373, 16340, 16267, 16130, 15773, 14969, 13751, 11722, 9172, 6092, 3329, 1507, 563, 186, 86, 26, 23, 10, 7, 6, 5, 4, 1, 0}
  },
  {
    { 16382, 16381, 16380, 16379, 16377, 16370, 16359, 16312, 16141, 15591, 14168, 11084, 6852, 3124, 1105, 354, 124, 48, 25, 14, 7, 6, 5, 4, 3, 1, 0},
    { 16383, 16382, 16381, 16380, 16379, 16378, 16377, 16374, 16357, 16301, 16076, 15343, 13341, 9379, 4693, 1476, 324, 67, 18, 9, 7, 5, 4, 3, 2, 1, 0},
    { 16383, 16382, 16381, 16380, 16379, 16378, 16377, 16369, 16349, 16265, 15937, 14834, 12076, 7587, 3123, 769, 152, 44, 13, 7, 6, 5, 4, 3, 2, 1, 0},
    { 16383, 16382, 16381, 16380, 16379, 16378, 16376, 16367, 16324, 16160, 15574, 13854, 10306, 5601, 1880, 436, 113, 34, 18, 9, 6, 5, 4, 3, 2, 1, 0},
    { 16383, 16382, 16381, 16380, 16379, 16378, 16372, 16348, 16267, 15929, 14858, 12426, 8315, 4098, 1412, 384, 112, 40, 16, 11, 6, 5, 4, 3, 2, 1, 0},
    { 16383, 16382, 16381, 16380, 16379, 16376, 16367, 16310, 16123, 15532, 13965, 11248, 7655, 3910, 1573, 491, 141, 43, 18, 9, 8, 5, 4, 3, 2, 1, 0},
    { 16383, 16381, 16379, 16378, 16377, 16373, 16371, 16367, 16347, 16280, 16132, 15778, 14963, 13688, 11380, 8072, 4680, 2140, 774, 193, 63, 33, 15, 7, 5, 4, 0}
  },
  {
    { 16382, 16381, 16380, 16379, 16378, 16377, 16373, 16360, 16339, 16250, 15927, 14873, 12393, 8549, 4645, 2000, 748, 271, 109, 48, 19, 9, 5, 4, 3, 1, 0},
    { 16383, 16382, 16381, 16380, 16379, 16378, 16377, 16371, 16351, 16244, 15876, 14627, 11604, 6836, 2711, 772, 210, 54, 21, 8, 6, 5, 4, 3, 2, 1, 0},
    { 16383, 16382, 16381, 16380, 16379, 16378, 16376, 16372, 16341, 16209, 15686, 13965, 10150, 5099, 1594, 333, 74, 27, 12, 8, 6, 5, 4, 3, 2, 1, 0},
    { 16383, 16382, 16381, 16380, 16379, 16378, 16376, 16369, 16321, 16091, 15261, 12834, 8160, 3248, 821, 187, 59, 22, 11, 7, 6, 5, 4, 3, 2, 1, 0},
    { 16383, 16382, 16381, 16380, 16379, 16378, 16372, 16350, 16249, 15838, 14425, 11097, 6138, 2238, 628, 180, 53, 21, 13, 7, 6, 5, 4, 3, 2, 1, 0},
    { 16383, 16382, 16381, 16380, 16379, 16377, 16365, 16308, 16026, 15269, 13352, 9583, 5246, 2223, 754, 202, 57, 26, 9, 8, 7, 6, 4, 3, 2, 1, 0},
    { 16379, 16378, 16377, 16376, 16375, 16370, 16365, 16338, 16270, 16120, 15723, 14760, 12783, 9474, 5727, 2713, 977, 296, 93, 39, 14, 12, 10, 7, 4, 3, 0}
  },
  {
    { 16383, 16382, 16379, 16378, 16377, 16370, 16364, 16342, 16267, 16032, 15272, 13475, 10375, 6652, 3685, 1813, 805, 358, 152, 61, 33, 20, 9, 7, 5, 3, 0},
    { 16383, 16382, 16381, 16380, 16379, 16378, 16376, 16361, 16311, 16096, 15280, 13085, 9315, 5003, 1992, 647, 170, 60, 25, 17, 7, 5, 4, 3, 2, 1, 0},
    { 16383, 16382, 16381, 16380, 16379, 16378, 16377, 16376, 16375, 16372, 16355, 16288, 15990, 14926, 12076, 7449, 3161, 981, 302, 78, 24, 7, 4, 3, 2, 1, 0},
    { 16383, 16382, 16381, 16380, 16379, 16377, 16373, 16351, 16264, 15836, 14299, 10534, 5358, 1777, 499, 145, 44, 17, 11, 8, 6, 5, 4, 3, 2, 1, 0},
    { 16383, 16382, 16381, 16380, 16379, 16377, 16366, 16324, 16155, 15416, 13055, 8332, 3423, 1080, 304, 97, 39, 16, 9, 7, 6, 5, 4, 3, 2, 1, 0},
    { 16383, 16382, 16381, 16380, 16377, 16373, 16359, 16258, 15905, 14720, 11631, 6834, 2911, 1022, 345, 116, 49, 24, 14, 7, 6, 5, 4, 3, 2, 1, 0},
    { 16383, 16380, 16379, 16378, 16377, 16376, 16375, 16370, 16365, 16338, 16236, 15960, 15302, 13685, 10788, 6853, 3314, 1213, 417, 149, 59, 25, 8, 3, 2, 1, 0}
  },
  {
    { 16378, 16377, 16376, 16374, 16373, 16368, 16349, 16303, 16149, 15653, 14445, 12326, 9581, 6707, 4156, 2251, 1062, 460, 202, 93, 53, 25, 12, 8, 3, 1, 0},
    { 16383, 16382, 16381, 16380, 16379, 16378, 16374, 16365, 16317, 16146, 15685, 14441, 11949, 8459, 4949, 2280, 874, 300, 86, 29, 20, 10, 7, 3, 2, 1, 0},
    { 16383, 16382, 16381, 16380, 16379, 16377, 16358, 16306, 16114, 15474, 13793, 10641, 6491, 3116, 1219, 382, 135, 62, 26, 17, 11, 6, 5, 3, 2, 1, 0},
    { 16383, 16382, 16381, 16380, 16379, 16376, 16361, 16305, 16051, 15112, 12593, 8234, 4130, 1583, 552, 182, 59, 25, 10, 9, 6, 5, 4, 3, 2, 1, 0},
    { 16383, 16382, 16381, 16380, 16379, 16376, 16346, 16245, 15837, 14409, 10881, 5964, 2333, 798, 279, 100, 41, 14, 9, 7, 6, 5, 4, 3, 2, 1, 0},
    { 16383, 16382, 16380, 16379, 16377, 16361, 16331, 16156, 15454, 13155, 8820, 4256, 1671, 610, 218, 84, 42, 14, 10, 9, 8, 6, 5, 4, 3, 2, 0},
    { 16382, 16380, 16378, 16377, 16367, 16352, 16241, 16077, 15536, 14352, 11787, 7926, 4119, 1726, 638, 233, 91, 28, 16, 9, 8, 6, 5, 4, 3, 1, 0}
  },
  {
    { 16369, 16361, 16352, 16340, 16315, 16284, 16223, 16091, 15848, 15385, 14573, 13396, 11681, 9316, 6613, 4037, 2144, 1033, 491, 213, 100, 55, 34, 18, 12, 6, 0},
    { 16382, 16381, 16379, 16376, 16371, 16359, 16345, 16306, 16198, 16002, 15534, 14580, 12881, 10271, 6793, 3572, 1467, 504, 152, 60, 23, 14, 5, 4, 2, 1, 0},
    { 16383, 16382, 16380, 16379, 16378, 16376, 16367, 16360, 16344, 16292, 16183, 15902, 15224, 13793, 11340, 7866, 4409, 1916, 689, 225, 80, 34, 16, 6, 3, 1, 0},
    { 16381, 16380, 16379, 16377, 16376, 16372, 16366, 16353, 16325, 16266, 16097, 15632, 14551, 12346, 9014, 5262, 2439, 920, 324, 126, 50, 20, 9, 6, 4, 1, 0},
    { 16383, 16380, 16379, 16377, 16375, 16373, 16369, 16360, 16338, 16283, 16183, 15892, 15109, 13313, 10173, 6308, 3103, 1264, 457, 169, 75, 30, 15, 5, 2, 1, 0},
    { 16379, 16377, 16372, 16370, 16365, 16347, 16296, 16186, 15988, 15448, 14083, 11465, 7678, 4215, 1961, 900, 431, 193, 87, 37, 21, 13, 8, 5, 2, 1, 0},
    { 16373, 16368, 16360, 16342, 16320, 16294, 16230, 16123, 15884, 15548, 14801, 13380, 11064, 7909, 4654, 2378, 1114, 490, 235, 135, 74, 40, 21, 11, 6, 1, 0}
  }
};
[bookmark: _Toc385337959]cf_off_se01
static short cf_off_se01 =  +2;
[bookmark: _Toc385337960]cf_off_se10
static short cf_off_se10 =  -4;
[bookmark: _Toc385337961]cf_off_se02[ 7]
static short cf_off_se02[ 7] = {
  +1,  +1,  +1,  +0,  +0,  +1,  +2
};
[bookmark: _Toc385337962]short cf_off_se20[ 7]
static short cf_off_se20[ 7] = {
  +0,  -2,  -2,  -2,  -3,  -4,  -3
};
[bookmark: _Toc385337963]cf_off_se11[ 7][ 7]
static short cf_off_se11[ 7][ 7] = {
  {  -5,  +0,  +0,  -3,  -1,  +0,  -1},
  {  +1,  +3,  +0,  +3,  +0,  +0,  -1},
  {  -2,  +0,  +0,  +0,  +0,  +0,  +3},
  {  +0,  +0,  +0,  +0,  +0,  +0,  +2},
  {  +0,  +0,  +3,  +0,  +0,  +0,  +4},
  {  +0,  +1,  +0,  +0,  +0,  +0,  +1},
  {  +0,  +1,  +3,  +3,  +4,  +2,  +4}
};

[bookmark: _Ref368475445][bookmark: _Toc385337964]
(normative)

SAOC 3D Decorrelator pre-mixing matrices
[bookmark: _Toc383638171][bookmark: _Toc385337965]Premixing matrix for output configurations with small number of output channels


In case, iIf the number of SAOC 3D output channels is smaller than or equal to 11, the pre- (and post-) mixing matrices  (and ) are set to identity:

.

[bookmark: _Toc385337966]Premixing matrix for 22.2 output configuration 

In case the of target rendering loudspeaker channel layout corresponds to ChannelConfiguration index 13 of ISO/IEC 23001‑8 the pre-mixing matrix  is defined as:

[bookmark: _Ref385316798]Table B.1 – Premixing coefficients for 
	
	Ch. ID
	CH_M_000
	CH_L_000
	CH_U_000
	CH_T_000
	CH_M_L135
	CH_U_L135
	CH_M_R135
	CH_U_R135
	CH_M_180
	CH_U_180
	CH_M_L030
	CH_L_L045
	CH_M_R030
	CH_L_R045
	CH_M_L090
	CH_U_L090
	CH_M_R090
	CH_U_R090
	CH_M_L060
	CH_U_L045
	CH_M_R060
	CH_U_R045

	X
	

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22

	0
	1
	1
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	1
	2
	0
	0
	1
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	2
	3
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	3
	4
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	4
	5
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	5
	6
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	6
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	0
	0
	0

	7
	8
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	0

	8
	9
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0

	9
	10
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0

	0
	11
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1


Here the value X represents the corresponding decorrelator index.

[bookmark: _Toc385337967]Algorithm for generating pre-mixing matrices




If the target output configuration is not specified in the tables above, the pre-mixing matrix  is generated using the following algorithm. The algorithm performs  ( is the number of loudspeakers in the output configuration, and  is the number of decorrelators to be used) loudspeaker grouping operations. In each grouping step, the two groups that are closest are merged. If the decision of the groups to be merged is not unique, perceptually motivated rules are used to solve the ties. 

[bookmark: _Toc385337968]Input to the algorithm and representations
The coordinate system uses the same notation and conventions as used in 8.3. The conversion from Cartesian to spherical coordinates follows the identities:
· 
,
· 
.
Algorithm inputs: 
· 
Spatial locations of  loudspeakers: 

, 


where  represents the elevation and the azimuth of the loudspeaker  in degrees.

Integer defining the number of decorrelators.
[bookmark: _Toc385337969]Algorithm steps
The algorithm follows the steps:
1. Initialization: 
a. 
Modify the coordinates of the loudspeakers on the median plane in behind the listener by 
b. 

The height coordinates are scaled by  with .
c. 

Each loudspeaker  is declared to form a group .
d. 
If , jump to Step  5Fehler! Verweisquelle konnte nicht gefunden werden..
e. 






The angular  and azimuth  distances between all unique pairs of groups , with , , , are calculated with
i. 
, and
ii. 

iii. 
Prohibit grouping across the median plane by modifying the distance values by:  

where  is a sufficiently large constant.
2. 

[bookmark: _Ref385269958]Merge the groups  and  selected by:
a. 

Select the pair  with the smallest angular distance . 
i. 


Locate the pairs , such that  and assign these to 
ii. 
If  contains only one pair, continue from Step Fehler! Verweisquelle konnte nicht gefunden werden. 3.
b. 


From the pairs in , select the pair  with the smallest azimuth distance . 
i. 



From the pairs in , locate the pairs , such that  and assign these to .
ii. 
If  contains only one pair, continue from Step 3.
c. 




From the pairs in , select the pair  which results to a new group  with the centroid closest to the through-the-ears – axis  with 













where  is the azimuth of the group centroid  defined as , with , , and , where  is the number of loudspeakers  assigned to the group , and , , and  are the Cartesian coordinates of the loudspeaker .
i. 



From the pairs in , locate the pairs , such that  and assign these to .
ii. 
If  contains only one pair, continue from Step Fehler! Verweisquelle konnte nicht gefunden werden. 3.
d. 



From the pairs in , select the pairs  which result to new groups with the centroids in the rear hemisphere (, or ).
i. 
Assign these pairs to .
ii. 
If  contains only one pair, continue from Step Fehler! Verweisquelle konnte nicht gefunden werden. 3.
e. 






From the pairs in , select the pair  which results to a new group with the centroid furthest away from the horizontal plane , where . The elevation angle  is determined from the Cartesian coordinates  of the centroid .
i. 



From the pairs in , locate the pairs , such that  and assign these to .
ii. 
If  contains only one pair, continue from Step Fehler! Verweisquelle konnte nicht gefunden werden. 3.
f. 


From the pairs in , select the pair  which results to a new group with the smallest number of members (loudspeakers) .
i. 



From the pairs in , locate the pairs , such that , and assign these to .
ii. 
If  contains only one pair, continue from Step Fehler! Verweisquelle konnte nicht gefunden werden. 3.
g. 


From the pairs in , select the pair  with the centroid   with (alternating between)
i. 
the largest azimuth angle ,
ii. 
the smallest azimuth angle .





Here , ,   and  are constants assigned to be equal to.

3. [bookmark: _Ref385269796]Update group information.
a. 

The two merged groups  are removed from the list of groups, and the new group  is added to the end of the list.
b. 

Update the group distance information  and .
i. 

The merged groups  and  are removed from the distance information.
ii. 
The new group  is added to the distance information as the last group.
iii. 






The distances between the existing groups and the new group are calculated. The distance between any two groups is the maximum distance between the pairs of loudspeakers in which one loudspeaker  is from the first group  and the second loudspeaker  is from the second group :  , where  contains the angular or azimuth distances between the loudspeakers .
4. 
Compare the current number of groups with the requested number of groups .
a. If the current number is larger, continue from Step Fehler! Verweisquelle konnte nicht gefunden werden. 2.
b. Otherwise, continue from Step Fehler! Verweisquelle konnte nicht gefunden werden. 5.
5. 


[bookmark: _Ref385269729]Describe the grouping as a binary matrix  of size  with 




The indexing  of the groups is obtained by numbering the final groups from  to  without gaps in the order they reside in the list of groups, and the loudspeaker indexing  implements the same order as they were provided for the algorithm. Table B.2 provides the assignment of the decorrelator indices to the groups:

[bookmark: _Ref385244929]Table B.2– Decorrelator assignment
	Group index i
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11

	Decorrelator index
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	0




[bookmark: _Toc385337970]
(informative)

Encoder Tools
[bookmark: _Toc385337971]General Overview
[bookmark: _Toc385337972]Encoder block diagram
[ed: needs update]
[image: ]
Figure 41 — Block diagram of the 3D-Audio encoder

[bookmark: _Toc385337973]Overview of the encoder and decoder building blocks
The Prerenderer/Mixer can be used to convert a Channel+Object input scene into a Channel scene before encoding. The functionality is identical to the Object Renderer/Mixer described below. Prerendering of objects ensures deterministic signal entropy at the encoder input which is basically independent of the number of simultaneously active object signals. With prerendering of objects, no object metadata transmission is required. 
Discrete Object Signals are rendered to the Channel Layout that the encoder is configured to use. The weights of the objects for each channel are obtained from the associated object metadata (OAM). 
The SAOC encoder takes as input the object/channel signals as monophonic waveforms and outputs the parametric information (which is packed into the 3D-Audio bitstream) and the SAOC transport channels (which are encoded using single channel elements and transmitted). 
[bookmark: _Toc385337974]Core Encoder Tools
[bookmark: _Toc385337975]Quad Channel Element
Vertical channel pairs are combined using the MPEG Surround based stereo tool. The resulting left and right downmix channels are combined using Joint Stereo Coding with the possibility of Complex Stereo Prediction.  The same is done for residual channels if present. Stereo SBR is calculated for horizontal channel pairs on the original input channels. The encoding structure is illustrated in the following diagram.

[image: ]
Figure 42 — Quad Channel Encoder Structure
A QCE, consisting of two adjacent CPEs, is encoded by swapping the second channel of the first element and the first channel of the second element before and after applying Stereo SBR and between applying MPS 2‑1‑2 and Joint Stereo encoding. If no residual signal is transmitted, a zero signal is inserted into the second CPE. 
The Quad Channel Encoder is illustrated in the following schematics.
[image: ]
Figure 43 — Quad Channel Encoder Schematics
[bookmark: _Toc385337976]Transform Splitting
Introduction
Transform splitting (TS) can be utilized on certain transient signal passages as an alternative to regular long transforms (which lead to time-smearing, especially pre-echo, at low bitrates) or eight-short transforms (which lead to spectral holes and bubble artifacts at low bitrates). TS can be used in a FD stop-start window, the encoding process is given in the following subclause.
[bookmark: _Toc32378126]Encoding Process
The encoding process follows the one of a STOP_START_SEQUENCE where instead of applying one MDCT transform, two MDCT transforms of half length are calculated.
Therefore the time-domain values x’i,n which consist of the values of previous window_sequence concatenated with the values of the current block are windowed in the regular fashion. The resulting values zi,n  are then further processed given by:




The MDCT spectral coefficients X(0,1),k, are the defined as:


 for .
where:
n = sample index
k = spectral coefficient index


The final spectral coefficients are obtained by interleaving the two half length spectra:


[bookmark: _Toc385337977]Calculation of Residual Signal for MPEG Surround with Hybrid Residual Coding








Calculation of the residual signal is performed using the weights, which are calculated based on the downmix signal's decoder upmix weights, , the residual's decoder upmix weights,  and the encoder downmix weights ,.  


In Pseudo-Code:
w3 = (((1-H11*w1)/H12_res)-(H21*w1/H22_res))/2.0f;
w4 = (((1-H21*w2)/H22_res)-(H11*w2/H12_res))/2.0f;  
[bookmark: _Toc385337978]Enhanced Noise Filling
If enhanced noise filling including the tool Intelligent Gap Filling (IGF) is used by the encoder, the user defines an IGF start frequency and an IGF stop frequency.  For encoding IGF energy information the following method may be applied:




Let be the MDCT transformed, real valued spectral representation of a signal with window-length 2N. The encoder optionally applies TNS on . Let k be the index of a scale factor band  in the IGF area and  the width of this scale factor band, then calculate:

,
where k=igfStartSfb,1+igfStartSfb,2+igfStartSfb,…,igfEndSfb.
For quantizing use

.


All values are encoded in a lossless manner by an arithmetic coder. The arithmetic coder encodes all values  lossless. It uses the arith_encode() function described in ISO/IEC 23003-3:2012, but with own probability model and tables. During encoding, the arithmetic encoder uses context memory, which should have for each element and for each channel its own instance. Apart from the fact that the calculation of the prediction residual (which is used during encoding) must be inverted on the decoder side, the encoding and decoding with the IGF arithmetic coder is completely symmetric.
[bookmark: _Toc385337979]Object Metadata Encoding
A.1.1 Object Metadata Input Format
The object metadata file (<item_name>.OAM) is used to describe metadata for a combined scene consisting of channels and objects. It contains the number of objects participating in a scene, plus the number and names of all channel signal files also belonging to this same scene. 
The file begins with a header providing overall information on the scene description. A series of channel and object description data fields is following after the header. The number format is defined to be Little-Endian.
For channel audio signals, only the filename of each .WAV file is given.
To allow time-variant object properties, each object description field contains a timestamp (audio sample index) and an audio file index. A series of object descriptions thus can describe sampled movements of objects.
The timestamp (sample index) of all but the first object description field has always to be greater than the timestamp of the preceding object description of the same object index in the file. For one timestamp value, the object descriptions of all objects of the scene shall be inserted in ascending order of their object indices.
The object descriptions of all objects of a scene are repeated with a period of 1024 samples, even if no change of object properties has occurred. Repeating the position simplifies the implementation and also gives clear indication about from which point in time interpolation of positions have to start (see interpretation).
The file header must be followed at least by <number_of_channel_signals> channel description fields, each referring to the filename of a WAV files, and at least by <number_of_object_signals> object description fields, each referring to the first sample of the WAV files. 

	Syntax
	No. of bytes
	Data format

	description_file () {
   scene_description_header()
   repeat {
      object_metadata()
   } until(end_of_file)
}
	

	




	Syntax
	No. of bytes
	Data format

	scene_description_header() {
   format_id_string;
   format_version;
   number_of_channel_signals;
   number_of_object_signals;
   description_string;
   for (i=0; i<number_of_channel_signals; i++)  {
      channel_file_name;
   }
   for (i=0; i<number_of_object_signals; i++)  {
      object_description;
   }
}
	
4
2
2
2
32

64


64
	
char
unsigned int
unsigned int
unsigned int
char

char


char



format_id_string	unique character identifier “OAM”
format_version	version number of the file format: 1.
number_of_channel_signals	number of channels compiling the scene. Note: This number might be zero if the item is only object based.
number_of_object_signals	number of simultaneous objects compiling the scene. Note: This number might be zero if the item is only channel based.
description_string	description string containing a human readable content description. If shorter than 32 bytes, it is followed by padding null characters. If the string is 32 bytes long, the string is terminated without a null character.
channel_file_name	description string containing the file name of the according audio channel file. If shorter than 64 bytes, it is followed by padding null characters. If the string is 64 bytes long, the string is terminated without a null character.
object_description	description string containing human readable text describing the object. If shorter than 64 bytes, it is followed by padding null characters. If the string is 64 bytes long, the string is terminated without a null character. 

	Syntax
	No. of bytes
	Data format

	object_metadata() {
   sample_index;
   object_index;
   position_azimuth;
   position_elevation;
   position_radius;
   gain_factor;
}
	
8
2
4
4
4
4
	
unsigned int
unsigned int
32-bit float
32-bit float
32-bit float
32-bit float



sample_index	sample based timestamp, representing the time position within the audio signal in samples, to which this object description is assigned.
object_index	object number, referring to the assigned audio signal (and wave file) of the object.
position_azimuth	position of the object: azimuth (°), has to be in the range -180…180.
position_elevation	position of the object: elevation (°), has to be in the range -90…90.
position_radius	position of the object: radius (m), has to be non-negative.
gain_factor	(linear) factor to modify gain of the object, e.g. 1.0.

Thus, every object has given positions (azimuth, elevation, and radius) at defined timestamps. 
[bookmark: _Toc385337980]Pre-Processing of the Object Metadata
An encoder who generates an object metadata bitstream according to 7.3.2 or 7.4.3 needs to pre-process each object metadata sample as follows to match the post-processing of the encoder:
for (o = 0; o < num_objects; o++)
	azimuth_scaled[o][n] = azimuth[o][n] / 1.5f;

for (o = 0; o < num_objects; o++)
	elevation_scaled[o][n] = elevation[o][n] / 3.0f;

for (n = 0; o < num_objects; o++)
	radius_scaled[o][n] = 3.0f * log2(2.0 * radius[o][n]);
	
for (o = 0; o < num_objects; o++)
	gain_scaled[o][n] = 2.0f * db(gain[o][n]) + 32.0f;


where log2(x) denotes the base 2 logarithm and db(x) = 20 * log10(x) denotes the sound level in dB.
[bookmark: _Toc385337981]Efficient Object Metadata Encoding
Subclause 7.3.2 specifies the syntax for an efficient object metadata encoding scheme. An encoder, which generates such a bitstream, jointly encodes a sequence of regularly sampled metadata values. This requires a look-ahead buffer of a given size and as soon as this buffer is filled, the whole data block is encoded and transmitted. This encoded object data consists of 2 parts, the mandatory intracoded_object_metadata() and optionally a differential_metadata() part.
[bookmark: _Toc385337982]Object Metadata Encoding with Low Delay
Subclause 7.4.3 specifies the syntax for an object metadata encoding scheme with low latency. An encoder which generates such a bit stream, needs to regularly transmit intracoded object metadata for random access. These object metadata frames specify the current sample value of all metadata components (azimuth, elevation, radius, and gain) for each object. These metadata values can be optionally transmitted as dynamic object metadata. As no look-ahead buffer is involved on the encoder side, this encoding scheme allows for low delay encoding.
[bookmark: _Toc385337983]SAOC 3D Encoder
[bookmark: _Toc198441772][bookmark: _Toc255558707][bookmark: _Toc256000536][bookmark: _Toc86638118][bookmark: _Toc86647449][bookmark: _Ref87259698][bookmark: _Toc87868943][bookmark: _Toc101151435][bookmark: _Toc385337984]Overview
The aim of the SAOC 3D encoder is to represent the input audio signals as a multi-channel downmix signal signal along with a corresponding parametric representation. The following paragraphs give a short overview of the resulting processing.
[bookmark: _Toc198441773][bookmark: _Toc255558708][bookmark: _Toc256000537][bookmark: _Toc385337985]Calculation of the SAOC 3D parameters
[bookmark: _Toc198441774]The SAOC 3D parameters are calculated according to the following formulas. In order to guarantee optimum performance of SAOC 3D it is recommended to use the input audio object signals with compatible power. The product of two input audio signals (normalized according the corresponding time/frequency tiles) is determined as:

	.
The absolute object energy (NRG) of the object with the highest energy is calculated as:

	.
The ratio of the powers of corresponding input object signal (OLD) is given by

	.
A similarity measure of the input objects (IOC) is given by the cross correlation:

	.


Note, that IOCs are transmitted for all pairs of audio signals  and , for which the bitsream variable bsRelatedTo[i][j] is set to one. Therefore, the stereo (or multichannel) audio signals can be identified by the corresponding bsRelatedTo matrix entries.



Parameters describing the downmix processing of the input audio signals are derived from the gain factors applied to each audio signal and downmix channel , where index  denotes the downmix channel number and  denotes the input signal number. 
The downmix gains (DMG) are then calculated according to:

	.

Please note that each input audio signal must have a substantial contribution to the downmix, i.e. .
[bookmark: _Toc255558709][bookmark: _Toc256000538][bookmark: _Toc385337986]Time/frequency transform
In the SAOC 3D encoder, the same hybrid filterbank as in the decoder (see 9.5.1) is employed.
[bookmark: _Toc198441775][bookmark: _Toc255558710][bookmark: _Toc256000539][bookmark: _Toc385337987]Framing
The encoder employs variable time segmentation in order to improve transient behavior. The same concepts as described in ISO/IEC 23003-1:2007 are applied.
[bookmark: _Toc198441776][bookmark: _Toc255558711][bookmark: _Toc256000540][bookmark: _Toc385337988]Parameter quantization and coding
The SAOC 3D parameters are quantized, delta and Huffman coded corresponding to the description given in ISO/IEC 23003-2:2010.

[bookmark: _Toc382916052][bookmark: _Toc385337989]HOA Encoder
[bookmark: _Toc382391603][bookmark: _Toc382916053][bookmark: _Toc252655935][bookmark: _Toc272942422][bookmark: _Toc273028645][bookmark: _Toc385337990]Encoder Block Diagram
[image: ]
[bookmark: _Ref382391397]Figure C.1 Block diagram of the MPEG-4 HOA encoder
The block diagram of Figure C.1 depicts the structure of the MPEG-H HOA encoder. The HOA input signal matrix  is analyzed and encoded into the spatial coding parameters and the  directional and ambient signals . The signals  are encoded by the MPEG-H 3D audio USAC core encoders. The HOA Frame Creater converts the resulting the HOA spatial coding parameters to the HOA payloads HOAConfig() and HOAFrame(). 
[bookmark: _Toc382391604][bookmark: _Toc382916054][bookmark: _Toc385337991]Spatial HOA Encoding
A possible architecture of the spatial HOA encoder is depicted in Figure C.2. 
[image: ]
[bookmark: _Ref378942879]Figure C.2 Architecture of spatial HOA encoder
[bookmark: GrindEQpgref52eb82382]First, the -th frame  of the HOA representation is input to a Direction and Vector Estimation processing block, which is assumed to provide the tuple sets  and .
Using both tuple sets  and , the initial HOA frame  is decomposed in the HOA Decomposition into the frame  of all predominant sound (i.e. directional and vector-based) signals and the frame  of the ambient HOA component. Note the delay of one frame, respectively, which is due to overlap add processing in order to avoid blocking artifacts. Furthermore, the HOA Decomposition is assumed to output some prediction parameters  related to the predominant sound HOA component computed from the directional signals. Additionally, a target assignment vector   containing information about the assignment of predominant sound signals, which were determined in the HOA Decomposition processing block, to the  available channels is assumed to be provided. The affected channels can be assumed to be occupied, meaning they are not available to transport any coefficient sequences of the ambient HOA component in the respective time frame.
In the Ambient Component Modification processing block, the frame  of the ambient HOA component is modified according to the information provided by the tagret assignment vector . In particular, it is determined which coefficient sequences of the ambient HOA component are to be transmitted in the given  channels, depending, amongst other aspects, on the information (contained in the target assignment vector ) about which channels are available and not already occupied by predominant sound signals. Additionally, a fade in and out of coefficient sequences is performed if the indices of the chosen coefficient sequences vary between successive frames.
Furthermore, it is assumed that the first  coefficient sequences of the ambient HOA component  are always chosen to be perceptually coded to be and to be transmitted. In order to de-correlate these HOA coefficient sequences, it is proposed to transform them to directional signals (i.e. general plane wave functions) impinging from some predefined directions , .
Along with from the modified ambient HOA component  a temporally predicted modified ambient HOA component  is computed to be later used in the Gain Control processing block in order to allow a reasonable look ahead.
The information about the modification of the ambient HOA component is directly related to the assignment of all possible types of signals to the available channels. The final information about the assignment is assumed to be contained in the final assignment vector . In order to compute this vector, information contained in the target assignment vector  is exploited.
The Channel Assignment assigns with the information provided by the assignment vector  the appropriate signals contained in  and that contained in  to the  available channels, yielding the signals , . Further, appropriate signals contained in  and that in  are also assigned to the  available channels, yielding the predicted signals , .
Each of the signals , , is finally processed by a Gain Control, where the signal gain is smoothly modified to achieve a value range that is suitable for the perceptual encoders. The predicted signal frames , , allow a kind of look ahead in order to avoid severe gain changes between successive blocks. The gain modifications are assumed to be reverted in the spatial decoder with the gain control side information, consisting of the exponents  and the exception flags , .
A.1.1.1 Direction and Vector Estimation
[bookmark: GrindEQpgref52eb82383]The estimation of directions and vectors is based on overlapping frames of length  in order to allow smoothing by overlap add. For that reason, both tuple sets  and  refer to estimated quantities of the -th and -th frame.
In particular, the tuple set
	
consists of tuples of which the first element  denotes the index of an active direction (i.e. the index of the channel to be used for the transmission of the respective directional signal) and of which the second element  denotes the respective quantized direction. The estimation of the directions is assumed to be performed on a predefined set of  directions , . The coding of an active direction  is accomplished by taking its index . 
Note, that there occurs the special case that for the last frame of the activity period for a directional signal there is actually no direction. This case is signalized by setting the respective quantized direction to zero.
The tuple set 
	
consists of tuples of which the first element  denotes the index of a vector (i.e. the index of the channel to be used for the transmission of the respective vector-based signal) and of which the second element denotes the respective vector , which is assumed to have an Euclidean norm of 
An important constraint arising from the fact that a transport channel can only contain either a directional signal or a vector-based signal, but not both of them, is that the two sets  and  should have no indices (i.e. first elements of the tuples) in common. Further, the first element of each tuple in both sets  and  should be contained in the set , where  denotes the number of channels to which signals of different types may be assigned to.
A.1.1.2 HOA Decomposition
A possible architecture of an HOA processing block is depicted in Figure C.3. In the following, the individual processing blocks will be explained in detail.
[image: ] 
[bookmark: _Ref378943009]Figure C.3 Architecture of HOA decomposition
A.1.1.2.1 [bookmark: GrindEQpgref52eb82384]Computation of predominant sound signals
The first step of the HOA decomposition is to compute the frame  of all predominant sound signals using the two tuple sets  and  together with the frame  of the original HOA representation. This computation is based on overlap add processing in order to create smooth signals for the successive perceptual coding. Hence, assuming the frame of all predominant sound signals to be composed of the individual signals according to 

with  denoting the number of channels to which different types of signals may be assigned, each individual signal is computed as the sum of a faded out component and a faded in component: 

To compute each component, it is first of all assumed that  and  denote the sets of all first tuple elements of  and , respectively. Further, the instantaneous directional signal frames and the instantaneous vector-based signal frames are defined by


respectively. In the definition above 

denotes the mode vector resulting from taking the ()-th column of . It should be here mentioned explicitly that the computation of the instantaneous predominant sound signals may also be performed in a different way.
Having computed the instantaneous directional and vector-based signals, the samples of the faded out and faded in components  and  are obtained as follows: 
	
	.

A.1.1.2.2 [bookmark: GrindEQpgref52eb82385]Predominant Sound Synthesis
The Predominant Sound Synthesis is the same processing block as employed for the Spatial Decoding. Here, however, we assume for simplicity that the prediction parameters  (as defined in subclause11.4.2.3) have already been determined. A possible choice is to set all of the elements of the of the prediction parameters  to zero. Further, it is here assumed that the sets ,  and  are empty.
In contrast to the case if the Predominant Sound Synthesis processing is employed for the spatial decoding, the HOA representation of the predominant sound component  is not required in this case. Instead, the intermediately computed HOA representations of the directional and vector-based signals,  and  are required. 
The ambient HOA component is obtained from the difference between the original HOA representation and that of the directional and vector-based signals by 
		
The temporally predicted ambient HOA component for the -th frame may be obtained from the difference between the original HOA representation and that of the directional and vector-based signals by 
		
A.1.1.2.3 [bookmark: GrindEQpgref52eb82387]Computation of target assignment vector
[bookmark: GrindEQpgref52eb82388]The target assignment vector  is assumed to consist of  elements, which corresponds to the number of channels that are assumed to contain signals of different types. The -th element  of  is assumed to contain information about the assignment of predominant sound signals to the -th channel and the -th frame. In particular,  is assumed to be composed of the following triple 
		
 which may consist of the following elements:  
1. , which denotes the target signal type to be used for the ()-th frame of the -th channel. It is assumed to be an element of the following set . 
2. , which denotes the target bit rate to be used for the ()-th frame of the -th channel. The bit rate is assumed to be given in bits/s. 
3. , which is assumed to contain further target assignment info depending on the signal type as follows: 

	
 Here,  denotes the quantized direction to be assigned to the ()-th frame of the -th channel in case of a directional signal. Further,  denotes the quantized vector to be assigned to the ()-th frame of the -th channel in case of a vector-based signal. 

The elements are set as follows: 
	


	
		
Here,  denotes the operation to obtain the quantized vector representation from the original vector. Each vector element is quantized seperately, where the quantization of an element  is given by
	.

A.1.1.3 Ambient Component Modification
[bookmark: GrindEQpgref52eb82389][bookmark: _Ref378945350]The Ambient Component Modification processing block has the purpose to appropriately modify the coefficient sequences of the ambient HOA component. In particular, it makes the decision which of the coefficient sequences of the ambient HOA component  are to be chosen to be perceptually coded. Further, a fade in and out of coefficient sequences is performed if the indices of the chosen coefficient sequences vary between successive frames. It is assumed that the first  coefficient sequences of the ambient HOA component  are always chosen to be perceptually coded. In order to de-correlate these HOA coefficient sequences, it is proposed to transform them to directional signals (i.e. general plane wave functions) impinging from some predefined directions , . The resulting modified frame of the ambient HOA component is denoted by . The information about the choice of the ambient HOA coefficient sequences to be transmitted, about their assignment and about the assignment of the predominant sound signals to the given  channels is assumed to be contained in the assignment vector .
Additionally, a temporally predicted modified ambient HOA component  is computed. Compared to the computation of the ambient HOA component , no selection of coefficients and no fading is applied, since the required information for these operations is not available at the moment of computation. The temporally predicted modified ambient HOA component is later used in the Gain Control processing block in order to allow a reasonable look ahead.
According to the previous description, the processing can be separated into two successive parts, i.e. the computation of the assignment vector and the computation of the respective modified ambient HOA component. Both parts will be described in detail in the following.
A.1.1.3.1 Computation of the assignment vector
Similar to the components of the target assignment vector  created in the HOA Decomposition, the components  of the assignment vector  is assumed to be composed of the following triple 
		
 which consist of the following elements:  
1.  , which denotes the final signal type used for the ()-th frame of the -th channel. It is assumed to be an element of the following set . 
2.  , which denotes the final bit rate to be used for the ()-th frame of the -th channel. The bit rate is assumed to be given in bits/s. 
3. , which is assumed to contain further assignment info depending on the signal type as follows: 
		
Here,  denotes the quantized direction which will be assigned to the ()-th frame of the -th channel in case of a directional signal. Further,  denotes the quantized vector which will be assigned to the ()-th frame of the -th channel in case of a vector based signal. In the case that an ambient HOA coefficient sequences is to be assigned to the ()-th frame of the -th channel, the quantity  is assumed to denote the respective HOA coefficient index. 

The assignment vector  is assumed to be computed recursively for , where the values of the initial assignment vector  are set as follows for : 
		
		
		
The actual computation of the assignment vector  is summarized in Algorithm E.1. Along with its computation auxiliary quantities consisting of the sets ,  and  are computed, which contain the indices of ambient HOA coefficient sequences that are supposed to be active, disabled and enabled in the ()-th frame, respectively. The set  is assumed to be initialized to an empty set.
Further, during the computation of the assignment vector, the set  of indices of all non-active ambient HOA coefficient sequences which might potentially be activated in the ()-th frame is assumed to be determined. This set is assumed to have  elements denoted by .
 
[image: ]
[bookmark: _Ref378943379]Algorithm E.1 Computation of the assignment vector
 
A.1.1.3.2 [bookmark: GrindEQpgref52eb823810]Computation of the modified ambient HOA component

As already mentioned, it is assumed that the first  coefficient sequences of the ambient HOA component  are always chosen to be perceptually coded. In order to de-correlate these HOA coefficient sequences, it is proposed to transform them to directional signals (i.e. general plane wave functions) impinging from some predefined directions , . 
By further assuming the frame  of the modified ambient HOA component and the temporally predicted frame  of the modified ambient HOA component to be composed by means of its samples as 
		
 and 
		
the individual samples are computed by 

and 
		

A.1.1.4 [bookmark: GrindEQpgref52eb823811]Channel Assignment
The Channel Assignment assigns with the information provided by the assignment vector  the appropriate signals contained in  and that contained in  to the  available channels, yielding the signals , . Further, appropriate signals contained in  and that in  are also assigned to the  available channels, yielding the predicted signals , .
Assuming the frame  to be composed of the individual coefficient sequences as 
		
the signals , , are determined as follows: 
	
The predicted signals , , are similarly obtained by 
	.	
A.1.1.5 [bookmark: GrindEQpgref52eb823812]Gain control
[bookmark: _Toc252655936][bookmark: _Toc382391605][bookmark: _Toc382916055]Each of the signals , , is processed by a Gain Control, where the signal gain is smoothly modified to achieve a value range that is suitable for the perceptual encoders, i.e. . The predicted signal frames , , allow a kind of look ahead in order to avoid severe gain changes between successive blocks.
For the purpose of a smooth gain modification, a fixed template transition window function 
	
 is employed,whose elements are defined by 
		
In particular, the samples of the gain controlled signals 
	
 are computed according to 
	
The factor  employed in (59) is initialized by 
	
and is recursively updated in the ()-th frame by 
		(61)
From (61) it can be seen that the gain modifications between successive blocks of the -th channel are assumed to be captured by the exponents  to the base , which have to be set such that the gain controlled signals  satisfy 
		(62)
The exception values  indicate if a constant gain is applied to all samples of the current frame  or the gain is smoothly changed for each sample, following the shape of the exponentiated template transition window function . It may be reasonable to set  in the case that a very large exponent would be needed for the attenuation with the transition window function.
[bookmark: _Toc385337992]HOA Frame Converter
The HOA Frame Converter, shown in Figure C.1, converts the HOA coding parameters provided by the HOA Spatial Encoding and the MPEG-H 3D audio core USAC encoder to the HOAFrame() of the HOA bit stream. The following sections show how to convert these parameters to the actual bit stream indexes. 
Conversion to ActiveDirSigs[i]
NoOfActDirs = 0;

for(DirIdx=0; DirIdx < MaxNumOfDirs; DirIdx++){
	if (DirIdx+1 == [NoOfActDirs]){
		ActiveDirSigs[DirIdx] = 1;
		NoOfActDirs++;
	}
	else{
		ActiveDirSigs[DirIdx] = 0;
	}
}

Conversion to ActiveDirsIds[idx]
NoOfActDirs = 0;

for (; ; ){
	if (){
		ActiveDirIds[NoOfActDirs] = ;
		NoOfActDirs++;
	}
}

Conversion to PredIds[n]
TotalPredictionIndicesMatIdx = 0;

for (GridDirIdx=0; uiGridDirIdx < ; GridDirIdx++){
	if (ActivePred[GridDirIdx]){
		for (PredIdx=0; PredIdx < ; PredIdx++){
			PredIds[TotalPredictionIndicesMatIdx] = [PredIdx][GridDirIdx];
			TotalPredictionIndicesMatIdx ++;
		}
	}
}

Conversion to PredGains[n]
TotalPredictionFactorsMatIdx = 0;

for (GridDirIdx=0; uiGridDirIdx < ; GridDirIdx++){
	if (ActivePred[GridDirIdx]){
		for (PredIdx=0; PredIdx < ; PredIdx++){
			if ([PredIdx][GridDirIdx] != 0){
				PredGains[TotalFPredictionFactorsMatIdx] = [PredIdx][GridDirIdx];
				TotalPredictionFactorsMatIdx++;
			}
		}
	}
}	

Coding of ambient HOA coefficients side information
NoOfCoeffs=0;
for (; ; ){
	if ({
		if ( )
		{
			AmbCoeffIdxChanged[] = false;
		}
		else
		{
			AmbCoeffIdxChanged[]  = true;
			CodedAmbCoeffIdx[NoOfCoeffs++]  = ;
		}
	}
}

Coding of channel type
for (; ; ){
	ChannelType[i] = ;
}

Conversion to CodedGainCorrectionExp[n]
for (; ; ){
	CodeLength = 0;
	switch(){
		case 0:
		{
			CodeLength = 1;
			break;
		}
		case -1:
		{
			CodeLength = 2;
			break;
		}
		default:
		{
			CodeLength =  + 2;
		}
	}
	
	if(IndependendyFlag){
		GainCorrPrevAmpExp[i] = ceil( log2(  ) );
	}
	for(l=0; l < (CodeLength – 1); l++){
		CodedGainCorrectionExp[l] = 0;
	}
	CodedGainCorrectionExp[l] = 1;
}

Conversion to GainCorrectionException[i]
for(=0;  < ; ++){
	GainCorrectionException[]= ;
}

Coding of VVector
As previously described an assignment vector containing the side information for each transport channel is provided. The quantized vector data for the transport channels containing vector based predominant sound signals is assigned to the bit stream as follows: 
for (i=0; i < J; i++){
	if 
	{  
l=0;
		for (q = 0; q < VVecLength; q++){
VecVal[i][q] = ;
l++;
		}
	}
}
Note that each vector has VVecLength elements. Only the elements indicated in VVecCoeffId are transmitted according to the CodedVVecLength word. The reference encoder utilizes a uniform 8-bit scalar quantizer (NbitsQ=5) and a CodedVVecLength word of value 2.


[bookmark: _Ref259096875][bookmark: _Toc385337993]
(informative)

Peak limiter for unguided clipping prevention
IMPORTANT — Even though this annex is informative it is strongly recommended to implement a peak limiter in every decoder implementation for 3D audio in order to prevent annoying audible distortion due to digital clipping.
This standard describes several coding and post-processing steps, which can lead to clipping:
1. Quantization
1. Parametric coding tools
1. Loudness normalization and dynamic range control
1. Format conversion and downmixing
1. Object rendering 
1. Interactive object scenes including user-controlled gain manipulation
1. SAOC 3D decoding/rendering
1. HOA decoding/rendering
1. Binaural processing
A time domain peak limiter is designed to prevent clipping of the time domain output signal. In case the signal amplitude exceeds a defined maximum value, it attenuates the signal and thus improves the audio quality by eliminating audible distortion.
The limiting should be applied at the very end of the processing chain, just before the time domain output signal is converted from floating point to fixed point PCM format. This also means that any DRC and loudness normalization processing should be performed before the peak limiter. 
In the context of MPEG-H 3D Audio the limiter gets different signals as input depending on the actual playback configuration. In case of binaural rendering, the two output channels for the headphones are processed by the limiter. If the output channels of the mixer are directly played back, the limiter processes the corresponding loudspeaker channels. Note that channel content might be format converted and object content might be rendered to different loudspeaker configurations before the mixer (the same holds for SAOC 3D content and HOA content).
As part of the MPEG-H decoder processing chain, the peak limiter should be implemented according to the technical description in ISO/IEC 23003-4.
WARNING —The limiter is not designed for levelling signals with a long-term level far above the threshold.
[bookmark: _Toc385337994]
(normative)

Compact Template Downmix Matrices
This annex lists the predefined compact templates for several input and output configuration pairs, with the speaker list configurations as defined in Table 85Fehler! Verweisquelle konnte nicht gefunden werden..
The compactTemplate matrix is of size compactInputCount lines and compactOutputCount columns. Below, a one-dimensional representation is used where the lines of the matrix are concatenated in order to form a vector. The size of the vector is the product of the number of lines (compactInputCount) and the number of columns (compactOutputCount).
compactTemplate_CICP13_to_CICP6[15 * 4] = {
   1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1,
   1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1,
   0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0 }

compactTemplate_CICP14_to_CICP6[5 * 4] = {
   1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0 }

compactTemplate_CICP12_to_CICP6[5 * 4] = {
   1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1 }

compactTemplate_CICP7 to_CICP6[5 * 4] = {
   1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1 }


compactTemplate_CICP13_to_CICP14[15 * 5] = {
   1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
   0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0,
   0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0,
   0, 0, 0 }


compactTemplate_CICP13_to_CICP12[15 * 5] = {
   1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0,
   0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0,
   1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0,
   0, 0, 0 }


compactTemplate_CICP13_to_CICP7[15 * 5] = {
   0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
   0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0,
   1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0,
   0, 0, 0 }


compactTemplate_CICP13_to_CICP2[15 * 1] = {
   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }

[bookmark: _Toc385337995]
(normative)

HOA Tables

[bookmark: _Ref382913493][bookmark: _Toc382916012][bookmark: _Toc385337996]Four Uniformly Distributed Positions in Spherical Coordinates
	Index
	 in rad
	 in rad

	1
	0
	0

	2
	1.910633
	0

	3
	1.910633
	2.094395

	4
	1.910633
	-2.0944



[bookmark: _Toc382916013][bookmark: _Toc385337997]Nine Uniformly Distributed Positions in Spherical Coordinates
	Index
	 in rad
	 in rad

	1
	0
	0

	2
	2.361073
	0

	3
	1.207589
	-1.95668

	4
	1.207589
	1.956682

	5
	2.415178
	-1.95668

	6
	1.561039
	-3.14159

	7
	2.415178
	1.956681

	8
	1.325668
	0.687124

	9
	1.325667
	-0.68712



[bookmark: _Toc382916014][bookmark: _Toc385337998]16 Uniformly Distributed Positions in Spherical Coordinates
	Index
	 in rad
	 in rad

	1
	0
	0

	2
	0.854098
	0

	3
	2.031969
	1.119907

	4
	2.605106
	-0.25283

	5
	1.078622
	1.155586

	6
	1.736608
	2.040481

	7
	2.031968
	-1.38118

	8
	1.736609
	0.270692

	9
	1.56888
	-2.20417

	10
	0.917087
	2.297267

	11
	0.917087
	-2.80293

	12
	1.763476
	3.010956

	13
	2.649852
	2.154919

	14
	1.568881
	-0.63529

	15
	0.953962
	-1.41973

	16
	2.458122
	-2.46809



[bookmark: _Toc382916015][bookmark: _Toc385337999]25 Uniformly Distributed Positions in Spherical Coordinates
	Index
	 in rad
	 in rad

	1
	0
	0

	2
	0.823218
	0

	3
	1.73912
	-2.00759

	4
	0.724297
	1.927637

	5
	1.336281
	-1.41208

	6
	0.871631
	-2.10001

	7
	1.263705
	2.512927

	8
	1.440147
	1.667633

	9
	2.248313
	1.442383

	10
	1.433953
	-0.60062

	11
	2.888065
	0.329968

	12
	2.003914
	-1.18621

	13
	1.80266
	2.983332

	14
	1.396554
	-2.69222

	15
	2.170781
	0.507602

	16
	1.952805
	2.208977

	17
	1.58019
	0.952319

	18
	2.584609
	-1.71565

	19
	0.874597
	0.934402

	20
	2.172935
	-0.38654

	21
	2.612717
	2.675958

	22
	2.193907
	-2.62842

	23
	1.51674
	0.165012

	24
	0.715307
	-1.02504

	25
	0.762553
	-3.13121



[bookmark: _Toc382916016][bookmark: _Toc385338000]36 Uniformly Distributed Positions in Spherical Coordinates
	Index
	 in rad
	 in rad

	1
	0
	0

	2
	2.024896
	0

	3
	1.247057
	-1.19666

	4
	2.746177
	0.184066

	5
	0.623575
	0.124282

	6
	1.764494
	-2.84022

	7
	1.070515
	-1.84701

	8
	2.234325
	0.698758

	9
	2.184128
	2.280239

	10
	2.158839
	-2.28482

	11
	0.624151
	-2.37569

	12
	1.237485
	2.883411

	13
	0.603422
	-1.18504

	14
	1.133942
	-2.76846

	15
	1.060655
	0.763488

	16
	1.634607
	-0.46491

	17
	1.52253
	-2.27504

	18
	1.719188
	1.762138

	19
	0.625061
	2.804486

	20
	1.696573
	-1.69175

	21
	1.812314
	-1.0321

	22
	1.63462
	0.509415

	23
	2.811188
	-1.95737

	24
	1.028624
	-0.567

	25
	1.527149
	2.319619

	26
	1.861841
	2.853233

	27
	2.411897
	-3.07101

	28
	2.784687
	2.113132

	29
	2.277422
	-1.50877

	30
	2.345421
	-0.65404

	31
	2.278241
	1.464227

	32
	0.579954
	1.373127

	33
	1.69346
	1.112751

	34
	0.972182
	2.113949

	35
	1.264106
	0.057137

	36
	1.188862
	1.457925



[bookmark: _Ref382913500][bookmark: _Toc382916017][bookmark: _Toc385338001]49 Uniformly Distributed Positions in Spherical Coordinates
	Index
	 in rad
	 in rad

	1
	0
	0

	2
	0.850652
	0

	3
	1.879161
	3.024454

	4
	1.502365
	2.080642

	5
	2.066473
	-2.21373

	6
	1.589575
	-2.03598

	7
	1.144753
	1.678014

	8
	1.830538
	0.964363

	9
	1.391476
	-3.03552

	10
	1.820414
	-2.70206

	11
	0.496613
	0.581055

	12
	2.351968
	-2.80103

	13
	1.112947
	0.550136

	14
	1.046845
	-1.98436

	15
	1.577042
	-0.51212

	16
	2.359303
	-1.1411

	17
	1.342615
	-2.48765

	18
	1.988906
	-1.62282

	19
	2.083484
	-0.57506

	20
	0.998656
	2.286204

	21
	2.438372
	-0.08741

	22
	2.195595
	0.547028

	23
	2.017483
	1.878965

	24
	2.360463
	2.746717

	25
	0.523033
	-0.76025

	26
	1.323604
	-1.01978

	27
	0.850653
	1.162107

	28
	1.652615
	1.507148

	29
	1.344756
	1.062706

	30
	0.861708
	-2.68135

	31
	1.819892
	-1.08377

	32
	0.996837
	2.91352

	33
	0.501675
	2.939099

	34
	1.435415
	-1.53966

	35
	1.6283
	0.473238

	36
	2.546165
	-1.95522

	37
	2.236832
	1.294994

	38
	2.717718
	0.887936

	39
	1.927866
	2.427548

	40
	1.370154
	-0.01608

	41
	2.53588
	1.97199

	42
	0.88913
	-1.35341

	43
	1.458362
	2.651183

	44
	1.042321
	-0.57647

	45
	0.567169
	1.857517

	46
	2.84677
	-0.77916

	47
	0.519694
	-2.01121

	48
	2.885875
	3.087768

	49
	1.89749
	-0.00446
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	Index
	 in rad
	 in rad

	0
	Invalid direction of the last frame

	1
	0
	0

	2
	1.648625
	0

	3
	1.51815
	-2.96216

	4
	1.571378
	0.671212

	5
	1.237221
	1.018946

	6
	0.897593
	-1.92145

	7
	1.567518
	2.116244

	8
	1.309935
	-3.02869

	9
	2.250228
	-2.62446

	10
	1.675124
	1.798562

	11
	2.105204
	-2.99223

	12
	2.729947
	-1.86764

	13
	2.68145
	-2.14937

	14
	0.581639
	1.353982

	15
	0.441046
	-0.43087

	16
	1.795203
	-0.67314

	17
	1.142487
	-1.79862

	18
	0.434926
	2.82874

	19
	1.787413
	1.737062

	20
	2.837147
	-2.98967

	21
	1.718636
	3.034998

	22
	1.524985
	0.347348

	23
	1.618312
	-1.14935

	24
	1.015458
	3.05368

	25
	1.410034
	0.364289

	26
	0.63386
	-2.82495

	27
	2.3807
	-0.04809

	28
	1.850847
	-1.64304

	29
	0.831862
	-1.66093

	30
	0.215816
	0.647003

	31
	0.323405
	-2.1392

	32
	1.129028
	1.484131

	33
	1.570313
	1.608203

	34
	2.045559
	-0.62332

	35
	1.451641
	1.921551

	36
	1.945764
	0.190834

	37
	1.73565
	0.099258

	38
	0.436971
	-1.99858

	39
	0.670992
	1.512933

	40
	1.324883
	-0.40034

	41
	1.58031
	2.594724

	42
	1.188528
	2.911703

	43
	0.9478
	-0.38474

	44
	2.160853
	-0.10694

	45
	2.001857
	-3.09111

	46
	1.967778
	0.428967

	47
	2.037793
	3.050091

	48
	1.835999
	2.993912

	49
	1.182972
	-2.64165

	50
	0.872258
	2.502549

	51
	1.409198
	-1.56769

	52
	2.228638
	-3.08293

	53
	1.961864
	2.170421

	54
	1.569879
	1.480563

	55
	1.156157
	0.928946

	56
	0.553321
	1.586825

	57
	2.736746
	-2.74048

	58
	1.420082
	2.37143

	59
	2.518823
	-2.9235

	60
	1.552504
	1.088965

	61
	1.481645
	0.126665

	62
	1.577656
	2.720318

	63
	0.379951
	-0.70778

	64
	0.996813
	-1.05418

	65
	0.661003
	-2.27195

	66
	1.548501
	-0.71772

	67
	1.909692
	-2.70419

	68
	1.295493
	-0.75275

	69
	1.004689
	1.971741

	70
	1.854814
	-0.26834

	71
	2.067658
	-0.19824

	72
	1.725335
	2.423184

	73
	1.517999
	2.982654

	74
	2.533863
	0.925501

	75
	0.220892
	1.727021

	76
	0.878211
	0.534883

	77
	1.212656
	-2.29022

	78
	1.222854
	-2.77413

	79
	0.13885
	-3.04163

	80
	2.494965
	-2.33317

	81
	2.611129
	0.740177

	82
	1.014936
	-2.84226

	83
	1.966651
	-0.88556

	84
	1.954772
	2.95192

	85
	1.480695
	2.505321

	86
	1.187389
	2.668544

	87
	2.878225
	1.740344

	88
	1.840673
	-0.90084

	89
	0.482541
	0.059576

	90
	2.265975
	2.572881

	91
	2.241081
	2.729216

	92
	2.690038
	2.060117

	93
	0.675048
	-1.86952

	94
	2.445658
	1.649253

	95
	0.810335
	2.176253

	96
	1.081852
	1.24646

	97
	0.332153
	1.909563

	98
	1.668
	-1.03418

	99
	2.003419
	1.18763

	100
	2.407503
	-0.42968

	101
	0.968667
	-0.11519

	102
	1.945363
	2.31683

	103
	0.932698
	-1.27416

	104
	1.599876
	3.073713

	105
	1.612046
	-2.55108

	106
	2.050616
	2.403566

	107
	1.830822
	-1.76855

	108
	1.680093
	1.415554

	109
	1.007833
	1.137923

	110
	2.926729
	2.26373

	111
	2.737941
	0.707526

	112
	0.568385
	-0.4058

	113
	1.638646
	2.210018

	114
	0.266392
	-1.34935

	115
	0.327662
	0.477288

	116
	0.927636
	2.227249

	117
	1.14146
	3.038443

	118
	2.06762
	-2.85318

	119
	2.222768
	1.133575

	120
	2.403726
	0.247727

	121
	0.885579
	3.100704

	122
	1.680358
	1.542949

	123
	0.54978
	1.825814

	124
	2.407241
	-2.99473

	125
	2.201696
	-2.48101

	126
	1.393328
	-2.59853

	127
	1.76511
	-0.34817

	128
	2.799968
	-0.90523

	129
	1.429946
	-2.15061

	130
	0.713687
	2.967188

	131
	0.999577
	2.525136

	132
	1.185833
	-3.0043

	133
	1.628546
	-1.60675

	134
	0.390499
	-0.16309

	135
	2.74961
	-1.53884

	136
	1.109979
	0.239356

	137
	1.751276
	0.968193

	138
	1.739555
	-2.5667

	139
	1.094298
	-0.13922

	140
	0.95092
	1.272733

	141
	0.55495
	-1.92423

	142
	1.46096
	-1.31153

	143
	2.123214
	-2.60609

	144
	2.607292
	2.50401

	145
	1.567953
	0.229223

	146
	2.11965
	0.035054

	147
	1.901447
	2.726267

	148
	1.807643
	2.637441

	149
	1.102328
	-2.08037

	150
	1.063134
	-2.98001

	151
	0.45913
	1.414797

	152
	1.458539
	-1.89453

	153
	2.464122
	1.455199

	154
	1.384519
	-1.69496

	155
	1.378354
	2.567635

	156
	2.075471
	2.109204

	157
	1.350527
	-0.17794

	158
	2.27572
	2.244342

	159
	1.3825
	2.256202

	160
	1.899836
	1.405074

	161
	2.106937
	1.825051

	162
	2.905894
	1.186114

	163
	2.829263
	-0.07337

	164
	1.564043
	1.986713

	165
	1.562449
	1.222059

	166
	1.048635
	-1.17942

	167
	1.539539
	-1.05423

	168
	1.757709
	-0.79651

	169
	1.987148
	1.049579

	170
	2.664232
	0.239561

	171
	0.944831
	2.935054

	172
	0.530097
	2.98606

	173
	2.113757
	-2.07424

	174
	2.007159
	-0.75465

	175
	0.509377
	1.154158

	176
	0.56295
	-3.01749

	177
	1.225235
	1.812035

	178
	2.294677
	-2.95066

	179
	1.141935
	-2.51259

	180
	0.437203
	1.705571

	181
	1.530939
	2.394564

	182
	2.01436
	-2.34799

	183
	1.220024
	-2.01221

	184
	2.46802
	0.09183

	185
	1.562795
	-0.10258

	186
	2.734148
	-0.31911

	187
	0.642009
	-0.21043

	188
	2.164874
	2.196331

	189
	1.340224
	1.994648

	190
	0.254681
	1.180643

	191
	2.147643
	-1.92916

	192
	1.380669
	-0.85841

	193
	0.339154
	3.031337

	194
	1.884403
	-3.05684

	195
	2.221473
	0.704406

	196
	2.355814
	-2.01109

	197
	0.341671
	-2.53387

	198
	0.704668
	0.965639

	199
	2.383303
	1.827128

	200
	1.352517
	0.152264

	201
	1.229109
	1.681484

	202
	0.790487
	0.818661

	203
	2.160701
	-2.74525

	204
	1.893443
	1.808819

	205
	2.665292
	2.950484

	206
	0.36694
	-1.07689

	207
	1.165971
	-1.65698

	208
	2.136698
	-2.34401

	209
	1.835692
	2.370381

	210
	0.826775
	-3.00681

	211
	2.37851
	-2.64413

	212
	0.509276
	-1.47092

	213
	0.459696
	2.51573

	214
	1.14144
	-2.87179

	215
	1.095212
	0.528246

	216
	1.918874
	-1.0104

	217
	1.944373
	-2.82873

	218
	0.908988
	1.424125

	219
	2.123062
	1.381424

	220
	0.723208
	-0.04988

	221
	1.772193
	0.324437

	222
	2.386078
	2.496085

	223
	0.839266
	-0.68259

	224
	1.705387
	-0.57731

	225
	1.991852
	-1.12187

	226
	1.199522
	-1.52465

	227
	1.939319
	-0.15705

	228
	0.672373
	0.771732

	229
	1.650452
	-1.48423

	230
	1.019495
	-0.90967

	231
	1.137124
	0.09819

	232
	1.029515
	1.387047

	233
	1.465347
	-2.37954

	234
	1.125773
	2.544626

	235
	1.681492
	-3.1176

	236
	1.456443
	1.672715

	237
	0.660323
	1.715875

	238
	0.952985
	1.006384

	239
	0.884069
	-2.08282

	240
	1.704448
	-2.2551

	241
	1.863336
	-1.13271

	242
	1.61485
	-2.33109

	243
	2.119403
	1.235667

	244
	2.351532
	1.35266

	245
	1.149726
	1.350574

	246
	2.564869
	1.604189

	247
	1.326894
	-2.34947

	248
	2.258298
	-2.34006

	249
	1.791394
	1.477411

	250
	1.498113
	-1.17992

	251
	0.602375
	-0.00373

	252
	1.237425
	1.551279

	253
	0.440594
	0.625168

	254
	1.84235
	0.433408

	255
	0.555877
	0.711094

	256
	1.305134
	-0.05933

	257
	1.476318
	3.105652

	258
	1.606411
	-1.72826

	259
	1.266777
	-2.90281

	260
	2.268454
	-1.88782

	261
	2.481008
	-1.96902

	262
	2.585516
	2.744716

	263
	1.113473
	-1.42908

	264
	1.174153
	-1.1451

	265
	1.066774
	2.917822

	266
	1.113674
	0.662505

	267
	0.888281
	0.699802

	268
	0.668481
	1.917836

	269
	2.432596
	-2.15665

	270
	1.231548
	0.731986

	271
	1.693614
	-2.78165

	272
	1.223221
	0.597467

	273
	2.201548
	-1.46529

	274
	1.902098
	-0.03395

	275
	0.898756
	-0.9578

	276
	1.366392
	-2.4668

	277
	1.530575
	-2.24759

	278
	1.260603
	-0.51562

	279
	2.215965
	0.420109

	280
	1.861005
	2.091044

	281
	2.095051
	1.97774

	282
	2.366861
	-1.09488

	283
	1.816403
	-0.14001

	284
	2.317407
	1.016714

	285
	1.461546
	1.290579

	286
	2.193325
	0.980219

	287
	0.77106
	0.453766

	288
	1.5345
	-2.09584

	289
	0.998519
	1.822523

	290
	1.307062
	-2.68391

	291
	1.821806
	-2.46818

	292
	0.803771
	-0.8512

	293
	1.613663
	2.478219

	294
	1.235919
	1.266918

	295
	1.867854
	-1.5141

	296
	1.731207
	-2.90096

	297
	0.770614
	-2.16964

	298
	1.465396
	2.171116

	299
	1.01759
	-0.25568

	300
	1.392705
	0.033061

	301
	0.335498
	1.512517

	302
	1.461289
	1.54693

	303
	0.870924
	2.79258

	304
	1.807489
	-1.89186

	305
	2.49874
	2.3943

	306
	0.821241
	-0.38577

	307
	0.926356
	-0.80105

	308
	0.556133
	0.471599

	309
	1.992667
	2.819827

	310
	1.679276
	1.671037

	311
	1.953182
	-1.73371

	312
	1.780723
	-2.0138

	313
	1.869401
	2.858128

	314
	1.781218
	1.868012

	315
	1.452526
	1.797269

	316
	2.01251
	1.606667

	317
	2.324749
	1.687037

	318
	1.150755
	-1.27893

	319
	0.756081
	1.140513

	320
	1.973497
	0.669322

	321
	2.010585
	1.463973

	322
	2.849122
	-1.76553

	323
	0.904376
	2.065719

	324
	1.482927
	-1.77235

	325
	2.628205
	-2.84498

	326
	1.420649
	-0.74027

	327
	1.71447
	0.441246

	328
	1.340574
	1.740391

	329
	0.622271
	2.843968

	330
	0.835334
	-2.68133

	331
	3.051987
	-2.23729

	332
	2.046102
	-0.9964

	333
	0.797258
	-1.21134

	334
	2.724646
	-2.43902

	335
	2.611122
	-1.15281

	336
	1.50628
	-1.64946

	337
	1.97295
	2.029822

	338
	2.529466
	-1.54993

	339
	1.672249
	-0.69966

	340
	2.458606
	2.801179

	341
	1.529345
	-1.52587

	342
	2.784085
	1.044762

	343
	2.490242
	-1.11922

	344
	1.591193
	-0.59619

	345
	0.999132
	-2.3122

	346
	0.659373
	-2.06862

	347
	1.119098
	-1.93892

	348
	0.464014
	-1.71556

	349
	2.02629
	-1.96219

	350
	0.596837
	2.477729

	351
	1.861654
	0.086767

	352
	1.112254
	1.889409

	353
	1.139221
	2.168826

	354
	2.159352
	2.490129

	355
	1.258674
	2.210975

	356
	1.667272
	2.810482

	357
	1.021017
	2.122021

	358
	1.896177
	1.27303

	359
	2.151002
	0.829545

	360
	0.77441
	1.818261

	361
	1.342751
	-0.98295

	362
	0.262384
	-2.928

	363
	0.129902
	1.239366

	364
	1.752458
	2.901332

	365
	1.464396
	2.759957

	366
	2.294039
	-0.51076

	367
	1.454635
	2.045914

	368
	0.227361
	-1.82115

	369
	2.311796
	-2.18266

	370
	2.174068
	-1.77966

	371
	2.506843
	-2.71048

	372
	0.992468
	-2.15921

	373
	1.227143
	0.190669

	374
	1.365428
	1.069193

	375
	1.236975
	2.787516

	376
	1.154208
	1.143476

	377
	1.930709
	-1.8622

	378
	2.234611
	-2.04754

	379
	0.774121
	1.639648

	380
	0.898219
	0.197557

	381
	1.44303
	0.242325

	382
	1.790204
	1.606486

	383
	1.936363
	2.455337

	384
	2.035462
	-2.72018

	385
	0.803546
	2.636475

	386
	2.810275
	2.124549

	387
	2.391563
	-1.83475

	388
	0.84096
	-1.36705

	389
	2.34494
	1.521149

	390
	1.714193
	-0.91551

	391
	1.90252
	1.539578

	392
	2.103342
	-1.39124

	393
	2.27819
	2.411276

	394
	1.392659
	-2.93254

	395
	0.545511
	-2.16194

	396
	1.869133
	-2.58432

	397
	0.630404
	-1.49995

	398
	2.558334
	-2.14126

	399
	1.67063
	2.061112

	400
	1.296188
	-1.11461

	401
	0.788049
	1.99693

	402
	1.827677
	-0.54633

	403
	2.716502
	-0.00221

	404
	0.930328
	2.650971

	405
	0.878368
	-1.51076

	406
	2.489276
	2.603954

	407
	2.890999
	0.290101

	408
	2.657951
	0.489905

	409
	0.96531
	-0.65453

	410
	1.855747
	-2.92875

	411
	1.651622
	0.758137

	412
	1.265687
	-1.24592

	413
	2.010305
	1.325162

	414
	1.346386
	1.613691

	415
	0.472724
	-0.90468

	416
	2.341165
	-3.13766

	417
	0.960818
	2.381061

	418
	1.398992
	-0.29456

	419
	1.568531
	-2.4351

	420
	1.688619
	-0.11468

	421
	2.160387
	0.558132

	422
	1.114966
	-2.37259

	423
	1.881658
	-0.77985

	424
	1.995754
	1.889234

	425
	1.117533
	1.617382

	426
	1.101304
	-3.11503

	427
	2.352006
	-0.79399

	428
	2.040188
	2.543197

	429
	2.477809
	2.18333

	430
	2.524762
	-1.33162

	431
	1.288795
	2.33856

	432
	1.530619
	-0.32417

	433
	1.996187
	-2.59313

	434
	1.381383
	-1.21295

	435
	1.139198
	-0.89321

	436
	2.635579
	-1.67431

	437
	1.349779
	-2.80923

	438
	2.954408
	-2.83336

	439
	1.452891
	-0.4078

	440
	0.382279
	-2.86135

	441
	2.190325
	-0.25707

	442
	2.287611
	-0.1614

	443
	0.766624
	-0.22703

	444
	1.35654
	0.796767

	445
	2.51213
	1.820018

	446
	2.758135
	1.78361

	447
	0.789472
	1.463058

	448
	1.870388
	1.011095

	449
	2.023221
	0.302364

	450
	2.587183
	0.041182

	451
	2.274545
	0.858747

	452
	1.271142
	-0.28099

	453
	2.082906
	2.919036

	454
	0.359667
	0.139722

	455
	0.760912
	-0.54819

	456
	2.515445
	-1.7665

	457
	0.898162
	-2.40708

	458
	2.29848
	-0.95139

	459
	1.780645
	1.219744

	460
	2.33852
	0.415346

	461
	1.550073
	0.81606

	462
	1.622057
	-2.1722

	463
	2.509012
	-0.54779

	464
	2.54485
	0.540669

	465
	1.750403
	-1.55851

	466
	2.036536
	0.550905

	467
	2.119604
	-3.12788

	468
	1.636192
	2.943403

	469
	2.706942
	2.670477

	470
	1.229093
	-1.38497

	471
	0.517239
	-0.19113

	472
	0.887576
	-0.52725

	473
	0.975329
	-3.0929

	474
	1.747946
	-1.13831

	475
	1.918438
	3.0902

	476
	2.347749
	0.725686

	477
	1.45421
	1.153591

	478
	1.013689
	-0.51642

	479
	1.604599
	-0.21948

	480
	1.46601
	1.00347

	481
	1.00817
	0.750809

	482
	2.170681
	3.030815

	483
	0.541294
	2.690871

	484
	1.018865
	-2.46184

	485
	0.249878
	2.273772

	486
	0.936888
	-2.96048

	487
	2.401366
	-2.81676

	488
	1.860204
	-0.41883

	489
	1.343815
	0.944867

	490
	1.690278
	-2.44876

	491
	1.19985
	-0.39296

	492
	1.676614
	-1.36115

	493
	2.402845
	-0.2369

	494
	2.074667
	-2.47441

	495
	1.088158
	1.034275

	496
	2.472237
	-2.51843

	497
	2.073053
	0.944332

	498
	0.594256
	-0.80525

	499
	1.347438
	1.349469

	500
	1.697258
	-1.2457

	501
	2.479703
	-0.75308

	502
	0.570621
	2.057593

	503
	2.387091
	2.309908

	504
	1.877449
	-1.37919

	505
	1.984809
	-1.47159

	506
	1.176336
	-0.03381

	507
	0.982489
	-1.44605

	508
	1.345131
	-1.34745

	509
	2.294204
	-1.72473

	510
	2.417431
	-1.46071

	511
	1.046811
	2.268872

	512
	1.586258
	0.446749

	513
	0.928173
	0.036527

	514
	2.073419
	0.171125

	515
	0.709444
	-1.33749

	516
	1.750505
	2.15109

	517
	2.220768
	2.070832

	518
	1.747803
	-2.135

	519
	0.761648
	-2.84202

	520
	1.43706
	-2.01942

	521
	0.89017
	1.902072

	522
	1.583018
	-1.84922

	523
	2.054971
	2.261075

	524
	1.905755
	0.779413

	525
	2.845301
	-0.49506

	526
	0.79774
	-1.82155

	527
	0.800556
	-2.51926

	528
	1.057093
	2.660693

	529
	1.654386
	-2.6654

	530
	0.245118
	0.062155

	531
	1.008694
	1.531093

	532
	0.668768
	0.355014

	533
	1.316919
	-1.48002

	534
	1.642633
	-2.99245

	535
	1.90396
	-1.98914

	536
	2.379387
	-2.33848

	537
	1.336709
	-0.63373

	538
	2.714833
	2.357917

	539
	1.349985
	2.124282

	540
	1.480695
	-0.20244

	541
	2.443129
	1.994495

	542
	1.323511
	-2.08106

	543
	1.234961
	2.076721

	544
	1.806894
	-1.27745

	545
	0.754391
	-1.50994

	546
	1.564541
	-2.75282

	547
	0.384113
	1.17336

	548
	3.102243
	0.912148

	549
	1.265711
	3.029417

	550
	1.674134
	1.28601

	551
	2.149332
	0.288049

	552
	0.749212
	2.791832

	553
	0.388386
	-1.42608

	554
	3.029933
	2.696258

	555
	2.284647
	3.00926

	556
	2.30806
	-1.55714

	557
	0.503707
	-2.81772

	558
	2.288924
	-1.231

	559
	2.482148
	0.732969

	560
	2.331468
	2.845048

	561
	0.778659
	-2.34698

	562
	1.765106
	-3.02418

	563
	1.43478
	-3.05542

	564
	0.230604
	2.804808

	565
	1.769355
	1.093483

	566
	2.188899
	-2.89502

	567
	2.091434
	-0.8578

	568
	0.879847
	1.139575

	569
	1.049932
	-1.71256

	570
	1.522514
	-2.63529

	571
	1.311231
	-2.21064

	572
	2.20646
	2.880494

	573
	1.558141
	-1.97041

	574
	1.688892
	2.677968

	575
	0.992719
	2.79036

	576
	1.818753
	0.205937

	577
	1.101926
	-2.22723

	578
	1.225344
	-1.00705

	579
	1.949288
	-0.53286

	580
	0.460681
	0.907232

	581
	2.193301
	-1.62602

	582
	0.476412
	-1.19995

	583
	1.636655
	2.3373

	584
	1.206711
	0.329746

	585
	1.707563
	-1.80618

	586
	1.206387
	-2.14769

	587
	0.776972
	-1.99276

	588
	1.096785
	-2.737

	589
	0.436766
	-2.29585

	590
	2.07502
	-1.68559

	591
	1.392412
	3.011491

	592
	0.682369
	-1.13627

	593
	1.225183
	-3.13129

	594
	1.563786
	1.859844

	595
	1.458913
	1.417376

	596
	2.718574
	-3.05981

	597
	1.979705
	-2.95816

	598
	1.554308
	-1.40124

	599
	1.776602
	-0.01863

	600
	2.677886
	-0.92133

	601
	2.029355
	0.802307

	602
	1.729752
	-1.68373

	603
	1.953522
	0.910813

	604
	1.524548
	2.271598

	605
	2.031709
	-0.06394

	606
	2.077636
	-0.4876

	607
	1.051182
	-0.77219

	608
	2.603391
	-0.70524

	609
	2.097943
	0.685032

	610
	0.371327
	2.265788

	611
	1.213522
	-0.63696

	612
	1.650775
	1.026634

	613
	0.767996
	3.130703

	614
	1.338008
	2.45633

	615
	0.911259
	0.85671

	616
	1.887171
	1.142114

	617
	2.664046
	0.968218

	618
	2.798353
	1.418122

	619
	1.074161
	-0.38727

	620
	1.272782
	-2.55267

	621
	2.404679
	0.886884

	622
	1.477396
	-2.84119

	623
	0.493541
	2.268731

	624
	2.136287
	-0.71983

	625
	0.337112
	0.850139

	626
	1.166585
	2.305876

	627
	1.744347
	2.283504

	628
	1.020634
	-1.85822

	629
	1.898576
	1.672798

	630
	2.995984
	1.636152

	631
	1.238419
	-1.87666

	632
	1.437769
	0.612644

	633
	1.258816
	-0.87666

	634
	0.69643
	-2.99924

	635
	0.900837
	-1.13072

	636
	1.672418
	1.927997

	637
	1.844156
	0.664917

	638
	0.572188
	0.228561

	639
	1.353464
	1.48527

	640
	1.890888
	-2.35266

	641
	1.506348
	-0.83659

	642
	1.773076
	0.775684

	643
	2.410408
	2.98213

	644
	2.90917
	2.868761

	645
	2.180686
	-1.27939

	646
	0.510344
	-0.64266

	647
	1.976097
	-0.40766

	648
	0.826192
	1.29368

	649
	1.91067
	0.549881

	650
	2.776209
	0.3546

	651
	2.235242
	1.289519

	652
	2.115016
	2.777567

	653
	2.070602
	-2.21475

	654
	1.447468
	0.476481

	655
	0.964096
	-2.70809

	656
	2.731012
	-1.20445

	657
	1.334867
	0.670866

	658
	2.429586
	-0.93612

	659
	2.63616
	1.806525

	660
	0.706565
	-1.6814

	661
	2.92805
	-2.17449

	662
	0.885044
	1.740732

	663
	2.389775
	-0.61931

	664
	1.677833
	0.875902

	665
	0.790738
	-1.03437

	666
	0.584283
	-1.70003

	667
	1.382807
	-0.51729

	668
	2.80396
	-2.16009

	669
	0.304607
	-0.40059

	670
	0.722709
	2.311881

	671
	0.714568
	-0.73016

	672
	1.559086
	-3.08474

	673
	0.962259
	-1.61558

	674
	2.414352
	-1.65088

	675
	0.994271
	0.295543

	676
	1.338226
	1.867127

	677
	0.736288
	2.48462

	678
	1.073514
	-1.56045

	679
	1.822578
	2.505677

	680
	1.990348
	0.065205

	681
	1.781765
	2.766939

	682
	1.033092
	0.896671

	683
	1.127493
	0.798323

	684
	1.727658
	-0.46212

	685
	1.92323
	2.590846

	686
	2.463964
	1.258543

	687
	1.13831
	-0.51322

	688
	1.039074
	-1.32131

	689
	0.588322
	-2.62377

	690
	1.417216
	-1.08365

	691
	0.663017
	0.566512

	692
	1.566429
	1.733991

	693
	1.112158
	1.752268

	694
	0.890368
	1.581359

	695
	2.300542
	-0.33583

	696
	1.648818
	0.332373

	697
	2.118892
	1.52873

	698
	1.43507
	-1.43991

	699
	0.582792
	0.940133

	700
	1.78724
	1.34762

	701
	1.727495
	-0.23086

	702
	1.881733
	1.945045

	703
	1.318704
	0.277601

	704
	1.897627
	0.313832

	705
	0.845239
	-0.08576

	706
	2.0892
	-0.3408

	707
	0.713047
	-2.66438

	708
	0.692857
	2.115152

	709
	1.664634
	1.156801

	710
	0.688454
	-0.93154

	711
	1.463406
	-0.95667

	712
	1.253065
	2.560467

	713
	1.819658
	-2.80478

	714
	1.260995
	-1.74246

	715
	1.435653
	2.890857

	716
	1.60464
	-2.87152

	717
	1.707593
	2.555998

	718
	1.119645
	2.028703

	719
	2.14202
	2.6348

	720
	2.265749
	-0.67603

	721
	2.190948
	-2.20021

	722
	2.053333
	-1.8255

	723
	1.971232
	-1.60347

	724
	2.578679
	1.371333

	725
	0.773638
	0.639909

	726
	2.232374
	1.77863

	727
	1.785826
	0.548415

	728
	1.336953
	-1.9491

	729
	3.038562
	-0.78873

	730
	2.193649
	-0.41978

	731
	2.845167
	-2.55478

	732
	1.828607
	-2.23861

	733
	0.880755
	-2.82962

	734
	1.949983
	-2.22717

	735
	0.689045
	0.145942

	736
	2.516923
	-0.32934

	737
	2.609519
	-2.60003

	738
	2.020231
	2.681984

	739
	0.127281
	2.277744

	740
	0.679218
	-2.47276

	741
	2.121325
	-1.11859

	742
	1.683063
	-1.92724

	743
	2.499557
	-0.11534

	744
	1.569858
	1.353735

	745
	2.682928
	1.536316

	746
	2.235571
	-1.09784

	747
	0.610097
	2.275041

	748
	0.462906
	-2.5753

	749
	2.443011
	1.067526

	750
	0.454231
	0.339629

	751
	1.016647
	0.143399

	752
	2.461848
	0.404918

	753
	1.764284
	-2.3566

	754
	2.988346
	0.65313

	755
	1.144258
	-0.26842

	756
	2.856875
	0.725942

	757
	0.633973
	3.103215

	758
	1.992845
	-2.09622

	759
	2.202685
	1.920323

	760
	2.223548
	1.603998

	761
	0.116931
	-2.07276

	762
	1.871114
	-2.11472

	763
	2.300243
	-1.38656

	764
	0.703711
	1.317688

	765
	2.064206
	-1.23679

	766
	0.984963
	0.451056

	767
	0.574487
	-1.0389

	768
	2.234434
	1.445933

	769
	1.358705
	-1.82049

	770
	1.173197
	-0.76244

	771
	2.342805
	1.183469

	772
	2.168829
	-0.97015

	773
	1.306737
	0.41717

	774
	1.289746
	-1.61309

	775
	2.607424
	-1.92324

	776
	2.201525
	0.145244

	777
	2.366264
	2.674947

	778
	1.65598
	-2.0482

	779
	0.265305
	-0.86745

	780
	1.350557
	3.131749

	781
	1.992065
	-1.34164

	782
	0.185258
	-0.45807

	783
	2.55493
	-0.92967

	784
	2.956429
	-0.19053

	785
	1.226258
	1.943601

	786
	0.782128
	0.265945

	787
	1.830475
	0.880835

	788
	0.891636
	-0.24208

	789
	0.827558
	0.986461

	790
	1.050492
	-0.00263

	791
	2.599693
	-3.10426

	792
	1.090734
	-0.64018

	793
	2.547561
	0.273103

	794
	2.607408
	-2.37281

	795
	1.793376
	-1.01865

	796
	0.924974
	-2.5622

	797
	2.284215
	0.567493

	798
	1.552605
	2.852065

	799
	2.624245
	-0.45581

	800
	0.340513
	2.618363

	801
	2.40849
	-1.27478

	802
	2.787701
	2.925913

	803
	1.334157
	0.537385

	804
	1.631284
	-0.81774

	805
	2.283062
	-2.77898

	806
	0.344686
	-1.74739

	807
	1.095126
	0.3841

	808
	2.249031
	-0.00478

	809
	0.44986
	2.0018

	810
	1.948494
	-2.47085

	811
	1.11565
	2.787223

	812
	2.315066
	1.956586

	813
	1.606835
	-0.45474

	814
	0.63299
	1.144043

	815
	2.821878
	2.535641

	816
	1.255164
	0.861751

	817
	1.782187
	-2.68449

	818
	1.539317
	0.556592

	819
	2.567717
	2.022229

	820
	1.466578
	2.642847

	821
	1.646155
	-0.34161

	822
	0.8393
	2.349399

	823
	2.221443
	-0.82712

	824
	2.7254
	-0.63406

	825
	0.669845
	2.643093

	826
	2.330625
	0.112419

	827
	1.249077
	1.41871

	828
	2.569069
	1.13848

	829
	2.620974
	-0.196

	830
	1.269525
	1.14096

	831
	1.462695
	-0.62507

	832
	0.881035
	0.365126

	833
	1.969457
	-0.28369

	834
	0.925107
	-1.76643

	835
	0.990924
	0.60516

	836
	1.323296
	2.675783

	837
	2.103987
	1.090257

	838
	1.262933
	0.062462

	839
	1.20149
	0.469999

	840
	2.848568
	-1.30095

	841
	2.004154
	1.745393

	842
	1.658245
	0.556352

	843
	0.590337
	-1.28162

	844
	0.634946
	-0.58417

	845
	1.770602
	-1.42761

	846
	1.800634
	3.128711

	847
	2.960306
	-1.52444

	848
	2.090759
	-1.54172

	849
	1.051648
	-2.60456

	850
	2.410598
	0.575853

	851
	2.54119
	2.958768

	852
	0.224297
	-2.43296

	853
	2.331693
	-2.4903

	854
	0.557692
	-2.39916

	855
	1.207172
	2.438011

	856
	1.221757
	-0.15931

	857
	1.521682
	0.012241

	858
	2.598787
	2.253584

	859
	1.356805
	1.224114

	860
	0.829988
	2.953818

	861
	1.46143
	0.733704

	862
	0.448311
	-3.11137

	863
	0.142704
	-1.15175

	864
	1.568963
	0.93851

	865
	2.121642
	1.683363

	866
	1.716836
	0.657986

	867
	0.694799
	-0.39167

	868
	1.417863
	-2.27191

	869
	1.608375
	0.1142

	870
	1.435128
	-2.72083

	871
	0.999243
	-2.00614

	872
	2.351548
	2.120987

	873
	0.116779
	0.181628

	874
	1.916873
	-0.65602

	875
	1.310188
	2.909896

	876
	1.48052
	-2.51555

	877
	1.85256
	2.228326

	878
	2.478888
	3.139382

	879
	1.922981
	-1.23807

	880
	0.807703
	0.08444

	881
	1.588222
	-0.93589

	882
	1.110241
	-1.0309

	883
	2.92004
	-0.87525

	884
	1.354995
	2.791024

	885
	2.173878
	-0.57587

	886
	2.275571
	0.270673

	887
	1.447607
	0.878215

	888
	1.507868
	-0.5104

	889
	0.884403
	-2.24604

	890
	1.233859
	-2.4283

	891
	2.092642
	0.423603

	892
	2.165987
	2.344276

	893
	1.082785
	2.411268

	894
	1.577186
	-1.27631

	895
	1.774916
	2.004092

	896
	1.693733
	0.215761

	897
	0.99962
	1.675914

	898
	2.63932
	-1.41064

	899
	2.687317
	1.247289

	900
	1.435467
	-0.0844
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	Index
	 in rad
	 in rad

	1
	1,570796
	0

	2
	2,540586
	3,141593

	3
	0,753156
	1,881071

	4
	2,337304
	2,593153

	5
	1,986374
	2,48754

	6
	2,599108
	1,755773

	7
	1,791008
	-0,6984

	8
	0,845842
	2,392534

	9
	2,15876
	1,174137

	10
	1,053916
	2,275885

	11
	0,657397
	-1,1337

	12
	1,687056
	-1,98286

	13
	1,987421
	-0,75853

	14
	1,875376
	-1,90914

	15
	2,681299
	2,881968

	16
	0,984765
	-3,09154

	17
	0,830987
	-0,56701

	18
	1,028238
	1,200757

	19
	1,616876
	-1,19846

	20
	2,726582
	1,354023

	21
	2,18126
	-2,46727

	22
	2,399782
	0,845096

	23
	1,253995
	0,896236

	24
	1,153461
	-0,76225

	25
	1,873442
	1,443549

	26
	2,324723
	-2,63204

	27
	2,338454
	3,125224

	28
	1,8049
	-0,89556

	29
	2,0309
	-2,94098

	30
	2,239202
	0,669903

	31
	2,395458
	2,307872

	32
	0,424288
	0,180267

	33
	1,379181
	-1,88362

	34
	2,343128
	-2,31015

	35
	1,15442
	0,51781

	36
	1,752626
	2,754497

	37
	2,515234
	-2,5068

	38
	2,737789
	-1,87919

	39
	1,330119
	1,72048

	40
	2,697091
	-1,40544

	41
	2,978019
	2,551982

	42
	2,23678
	0,381458

	43
	1,069124
	-0,98954

	44
	2,365977
	1,141151

	45
	1,650928
	1,988879

	46
	2,452779
	2,836885

	47
	1,24039
	2,848099

	48
	2,554751
	2,532536

	49
	1,832787
	0,883034

	50
	0,841219
	1,357304

	51
	0,152247
	-2,83592

	52
	1,436656
	-1,08457

	53
	1,5882
	-2,58741

	54
	1,745293
	-1,74596

	55
	1,647027
	2,97133

	56
	1,026785
	2,513095

	57
	0,656707
	2,531023

	58
	1,092585
	0,738423

	59
	1,773143
	-1,53397

	60
	0,481758
	2,301998

	61
	1,864767
	0,210064

	62
	1,606288
	-2,95766

	63
	1,485123
	-2,4068

	64
	1,066381
	-1,97222

	65
	2,880783
	-0,52049

	66
	2,137684
	3,12665

	67
	0,76664
	-3,13402

	68
	1,006572
	-1,71701

	69
	2,036013
	-0,34798

	70
	0,901011
	2,940996

	71
	0,872312
	-2,8859

	72
	2,204037
	1,643809

	73
	1,383707
	-2,60137

	74
	0,679817
	0,886414

	75
	1,299549
	0,684811

	76
	0,715096
	1,586673

	77
	0,885953
	2,129444

	78
	1,980002
	-2,08712

	79
	2,413831
	0,507139

	80
	1,47663
	1,8635

	81
	2,602214
	2,159931

	82
	1,848369
	2,94257

	83
	2,538768
	-1,08864

	84
	2,606473
	0,321932

	85
	1,938743
	-1,68743

	86
	1,171776
	1,58225

	87
	1,183986
	-3,02302

	88
	1,056948
	0,32247

	89
	0,726531
	-0,82381

	90
	0,451831
	-1,27319

	91
	0,965542
	-0,35608

	92
	1,968415
	-1,4576

	93
	0,949663
	-2,16268

	94
	2,125493
	-0,57687

	95
	1,944549
	2,714656

	96
	2,340901
	-0,10918

	97
	1,385594
	2,697843

	98
	0,903401
	-0,11991

	99
	2,071052
	0,54754

	100
	1,382153
	-1,67812

	101
	1,106714
	3,010458

	102
	1,256757
	-0,54454

	103
	1,891797
	-2,3321

	104
	2,941149
	-2,31342

	105
	1,263661
	2,172645

	106
	2,089312
	-2,27241

	107
	1,655611
	1,774379

	108
	1,437424
	2,284765

	109
	1,17978
	-2,61538

	110
	1,812984
	-1,11336

	111
	0,613493
	-0,52422

	112
	2,345378
	-1,23799

	113
	2,161643
	-1,36504

	114
	2,938236
	1,351681

	115
	2,173967
	-0,83679

	116
	0,469181
	2,738193

	117
	0,514665
	1,500147

	118
	0,975424
	0,111555

	119
	0,264261
	2,537599

	120
	2,654416
	-2,8192

	121
	1,408085
	2,488626

	122
	1,530398
	0,403452

	123
	1,991433
	-1,22731

	124
	1,599368
	-0,73714

	125
	1,050268
	0,966086

	126
	1,99607
	1,016126

	127
	0,748129
	-0,29194

	128
	2,504702
	-1,44572

	129
	1,912277
	-2,74579

	130
	0,085952
	-0,97118

	131
	1,789353
	2,542685

	132
	1,272692
	-0,93652

	133
	1,419238
	1,036116

	134
	2,173909
	-1,09809

	135
	2,030629
	2,04102

	136
	0,546571
	3,121853

	137
	0,513708
	-2,14321

	138
	1,576369
	-1,60474

	139
	2,238422
	-2,91512

	140
	2,095752
	1,395123

	141
	2,128771
	-1,62032

	142
	1,34699
	0,466253

	143
	0,752649
	0,055963

	144
	1,456025
	2,075312

	145
	0,818941
	-1,61666

	146
	1,787983
	-2,15582

	147
	2,186068
	2,408

	148
	1,490763
	-2,78383

	149
	1,178592
	0,084196

	150
	1,696293
	-2,38779

	151
	2,57326
	-2,16432

	152
	2,523326
	-1,77771

	153
	2,247691
	2,875899

	154
	1,690617
	1,537011

	155
	0,511311
	-0,84749

	156
	2,722464
	-0,90106

	157
	2,743368
	-2,41164

	158
	1,003967
	-1,46755

	159
	0,825441
	-1,32701

	160
	1,459158
	0,829409

	161
	0,924496
	1,643935

	162
	0,681508
	2,189654

	163
	1,994055
	-0,99034

	164
	1,129089
	1,793236

	165
	1,91921
	-0,15902

	166
	1,42492
	2,938636

	167
	0,847863
	1,070911

	168
	1,730771
	-3,12977

	169
	0,661019
	1,232887

	170
	2,775032
	2,459863

	171
	0,298982
	0,67934

	172
	1,580826
	1,170029

	173
	2,301796
	1,407997

	174
	1,7888
	0,013819

	175
	1,390961
	-1,47788

	176
	1,393564
	1,254195

	177
	1,694797
	0,561269

	178
	1,379071
	-0,36899

	179
	1,484571
	-0,55323

	180
	0,976607
	-2,6313

	181
	0,731727
	-2,13684

	182
	1,026173
	1,440579

	183
	2,324373
	-0,63645

	184
	0,230515
	-0,04256

	185
	1,22378
	1,114186

	186
	1,229817
	-1,14916

	187
	1,361976
	-0,71819

	188
	1,167884
	-0,34767

	189
	0,633955
	-1,47943

	190
	1,272376
	-2,41305

	191
	1,919944
	-0,53227

	192
	1,444538
	0,218916

	193
	0,647067
	-2,86207

	194
	1,511014
	1,627943

	195
	2,794805
	1,895057

	196
	2,839082
	-3,05734

	197
	2,28704
	-1,80585

	198
	2,135683
	-0,13755

	199
	0,486
	1,03313

	200
	2,665401
	-0,4202

	201
	0,553326
	1,88797

	202
	1,822203
	-2,94336

	203
	2,009728
	1,598679

	204
	1,393362
	-2,98262

	205
	2,545531
	-0,06951

	206
	1,099367
	2,045297

	207
	1,283245
	-2,80597

	208
	0,345517
	1,921455

	209
	1,636161
	-0,98807

	210
	1,721978
	0,359968

	211
	1,207643
	2,608317

	212
	1,815744
	2,331834

	213
	1,262957
	-2,04552

	214
	1,498023
	0,620829

	215
	0,940651
	-0,79597

	216
	0,734507
	0,582659

	217
	1,471911
	-0,88269

	218
	1,636408
	2,193534

	219
	0,851626
	-2,38219

	220
	1,559421
	2,791786

	221
	2,770578
	0,789602

	222
	1,899256
	0,448708

	223
	2,40689
	0,189573

	224
	0,946938
	0,550775

	225
	1,589561
	-0,35647

	226
	1,690864
	-0,52639

	227
	1,058173
	-2,4116

	228
	1,729931
	1,303788

	229
	1,369756
	0,031737

	230
	0,68781
	2,856259

	231
	2,524375
	-0,71858

	232
	1,700739
	-2,76659

	233
	0,94978
	1,884725

	234
	2,202511
	0,933913

	235
	1,153878
	-2,21863

	236
	1,513578
	3,134146

	237
	1,839609
	1,907467

	238
	1,494181
	-2,04817

	239
	1,662947
	0,763588

	240
	2,082727
	-1,86729

	241
	0,884444
	0,800713

	242
	1,594825
	-1,40136

	243
	1,588627
	2,592485

	244
	2,452712
	-0,38599

	245
	2,358395
	-0,93592

	246
	2,39574
	-2,03427

	247
	1,290009
	-0,16118

	248
	1,616407
	2,395151

	249
	1,359946
	1,487488

	250
	2,751026
	0,040667

	251
	2,920272
	0,360027

	252
	0,863606
	-1,05083

	253
	2,323526
	-1,54461

	254
	2,442194
	-2,85478

	255
	0,629957
	-2,43579

	256
	2,029279
	1,8197

	257
	1,190343
	-1,57767

	258
	1,942992
	1,233743

	259
	2,039018
	0,787114

	260
	2,117259
	-2,71461

	261
	2,138562
	2,661812

	262
	2,398201
	1,697863

	263
	2,053973
	0,288687

	264
	1,833566
	2,120746

	265
	1,02534
	-1,22518

	266
	0,12359
	1,536045

	267
	2,897548
	-1,37622

	268
	2,508698
	1,4138

	269
	1,643283
	0,179413

	270
	0,319873
	1,329402

	271
	1,229489
	2,387867

	272
	0,660755
	-1,83187

	273
	1,791646
	-2,56678

	274
	1,299208
	3,092769

	275
	2,047718
	2,911784

	276
	3,100967
	-0,72195

	277
	2,006519
	0,048203

	278
	2,218598
	2,157181

	279
	1,048729
	-0,5709

	280
	0,574576
	-0,11209

	281
	1,623745
	0,965259

	282
	0,623249
	0,295603

	283
	0,415405
	-0,38272

	284
	1,0989
	-0,12335

	285
	1,048632
	2,764515

	286
	2,418187
	2,003689

	287
	1,256026
	0,280121

	288
	1,410748
	-1,2811

	289
	0,840674
	0,322993

	290
	1,832329
	1,68945

	291
	0,345204
	-3,07767

	292
	1,870125
	0,668736

	293
	1,594522
	-2,21705

	294
	1,19483
	-1,8004

	295
	0,515958
	0,618657

	296
	0,863261
	-1,90625

	297
	0,777824
	-2,63954

	298
	0,322759
	-2,31954

	299
	1,787033
	1,093564

	300
	2,198267
	-2,07434

	301
	1,935165
	3,137176

	302
	1,543319
	1,396156

	303
	0,460163
	-1,73742

	304
	2,246401
	-0,36529

	305
	0,85267
	2,671535

	306
	2,583571
	0,694424

	307
	1,376707
	-2,22704

	308
	2,22554
	1,90227

	309
	1,794846
	-1,32439

	310
	1,564053
	-1,81823

	311
	1,701089
	-0,17443

	312
	1,285143
	1,945173

	313
	0,26238
	-1,64588

	314
	0,470241
	-2,67375

	315
	2,572875
	1,072132

	316
	1,203326
	-1,36153

	317
	2,014237
	2,262779

	318
	1,986227
	-2,5231

	319
	2,208189
	0,110959

	320
	1,486222
	-0,18011

	321
	0,299216
	-0,87425

	322
	1,813259
	-0,34936

	323
	1,209756
	1,339541

	324
	1,076876
	-2,83889
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	Index
	
	

	1
	1,570796
	0

	2
	2,393473
	0

	3
	1,522136
	2,803359

	4
	0,349565
	-1,94896

	5
	0,927804
	-1,35385

	6
	2,320706
	-2,74732

	7
	1,357925
	-1,26101

	8
	1,241931
	0,266723

	9
	2,294898
	-1,55165

	10
	2,232673
	-3,02776

	11
	1,906726
	-2,61137

	12
	1,856837
	3,013545

	13
	1,944553
	-0,92864

	14
	2,116223
	3,017568

	15
	0,58886
	-1,8613

	16
	1,120912
	-2,83234

	17
	1,317554
	-1,03197

	18
	1,85964
	-1,55266

	19
	1,543378
	-1,07218

	20
	1,414883
	1,489539

	21
	1,398677
	-0,59615

	22
	0,355514
	-0,52834

	23
	1,887142
	1,498187

	24
	0,945425
	-0,7215

	25
	1,691192
	2,354194

	26
	2,255288
	-1,25073

	27
	1,793627
	1,298621

	28
	1,821849
	-1,32933

	29
	2,604814
	-0,17818

	30
	0,696427
	-1,21908

	31
	1,842778
	2,576851

	32
	1,772955
	-1,10763

	33
	0,3771
	0,228439

	34
	1,458003
	-2,60425

	35
	1,332534
	0,037245

	36
	2,243663
	0,653764

	37
	1,629165
	-1,5172

	38
	0,962537
	-0,14111

	39
	0,993445
	-3,04499

	40
	2,778929
	0,192231

	41
	1,88667
	-1,78233

	42
	2,635501
	3,013891

	43
	1,125377
	-2,3657

	44
	2,654458
	1,925563

	45
	0,980969
	-2,09938

	46
	1,638519
	0,865101

	47
	2,264311
	-1,87584

	48
	2,404355
	-0,35937

	49
	1,911667
	2,344119

	50
	1,076653
	1,680717

	51
	0,73797
	-0,84874

	52
	2,085922
	1,389

	53
	1,871623
	0,89127

	54
	1,624644
	3,018256

	55
	0,992699
	0,338497

	56
	0,333636
	0,85379

	57
	0,729191
	-2,54307

	58
	0,990873
	1,929247

	59
	1,774548
	1,707882

	60
	2,165231
	1,143566

	61
	1,568473
	-2,39426

	62
	1,647178
	1,504474

	63
	0,869419
	2,212078

	64
	1,197839
	-0,1599

	65
	0,610152
	-0,55657

	66
	1,616611
	2,57871

	67
	2,652257
	-2,15443

	68
	0,272368
	-1,22826

	69
	0,504704
	-0,96913

	70
	2,320596
	2,484806

	71
	1,797508
	-2,39174

	72
	1,729672
	-3,05225

	73
	2,877382
	-2,23699

	74
	2,26382
	1,596262

	75
	1,82554
	-2,83876

	76
	2,188916
	-0,45585

	77
	1,266764
	-3,0278

	78
	0,106946
	-2,25932

	79
	1,392675
	2,588366

	80
	1,538708
	-1,95162

	81
	1,396671
	3,033502

	82
	1,798798
	-0,01576

	83
	1,182777
	1,458666

	84
	1,157454
	3,052619

	85
	0,987032
	-1,62233

	86
	2,495313
	-2,94545

	87
	2,300531
	-2,40772

	88
	1,71055
	1,082068

	89
	1,409113
	0,86112

	90
	1,588546
	-1,29528

	91
	2,084207
	-0,72125

	92
	0,843842
	-2,82936

	93
	1,623546
	-0,64022

	94
	1,537093
	1,712369

	95
	2,706313
	2,488581

	96
	2,661795
	-1,08274

	97
	1,661099
	-2,18404

	98
	2,544606
	1,103956

	99
	1,975901
	-0,48018

	100
	0,497711
	-1,45722

	101
	1,33668
	0,644811

	102
	0,742062
	-0,17734

	103
	1,683236
	-0,21801

	104
	0,840839
	1,660363

	105
	1,364759
	-2,81664

	106
	2,092816
	-1,67852

	107
	2,490621
	-1,37413

	108
	1,560075
	0,642916

	109
	2,133522
	2,328133

	110
	0,779465
	0,472467

	111
	0,247081
	2,779166

	112
	1,067162
	2,831014

	113
	2,380442
	3,019886

	114
	1,44444
	1,925603

	115
	1,500411
	-3,04028

	116
	0,70983
	-3,08512

	117
	1,447034
	-1,71595

	118
	1,243106
	2,371268

	119
	1,683338
	-2,61501

	120
	2,424317
	-1,01424

	121
	2,179636
	-2,15998

	122
	2,037793
	1,673302

	123
	1,434167
	-2,15919

	124
	2,864829
	3,01668

	125
	2,185216
	-0,97396

	126
	1,868284
	0,434067

	127
	2,03514
	2,096848

	128
	1,905032
	-2,16708

	129
	2,56038
	0,28355

	130
	0,554721
	0,621236

	131
	1,947678
	1,133086

	132
	0,575081
	1,740429

	133
	0,903596
	-2,3585

	134
	1,478289
	1,076754

	135
	2,424566
	-2,13007

	136
	0,360036
	2,04033

	137
	0,993382
	-2,61547

	138
	2,542831
	-0,66374

	139
	1,090724
	0,082772

	140
	1,091107
	-0,92361

	141
	0,833452
	-0,47359

	142
	1,56993
	2,140851

	143
	1,088232
	-1,87171

	144
	0,684584
	1,404315

	145
	1,320057
	1,261449

	146
	1,217046
	1,923915

	147
	1,401621
	-1,48555

	148
	1,468845
	2,36212

	149
	1,346035
	-2,37615

	150
	2,339481
	0,945394

	151
	1,674591
	1,922908

	152
	1,047286
	-0,38372

	153
	0,521563
	-2,32231

	154
	1,665408
	-1,74409

	155
	0,586646
	2,176989

	156
	2,514323
	1,537333

	157
	1,721181
	0,208506

	158
	1,765362
	-1,97824

	159
	2,889133
	-1,30324

	160
	2,317481
	-0,70956

	161
	1,314477
	-1,91758

	162
	2,714288
	-2,73564

	163
	1,228855
	-2,60145

	164
	0,564436
	-2,78435

	165
	1,494758
	-0,8401

	166
	1,781699
	0,661166

	167
	2,295871
	2,13429

	168
	1,713614
	-0,88079

	169
	2,885147
	2,03328

	170
	1,287512
	-0,38537

	171
	2,34424
	1,308152

	172
	1,968755
	-3,06175

	173
	1,165801
	-1,43016

	174
	2,063322
	-1,417

	175
	1,981725
	2,805832

	176
	1,158441
	0,504139

	177
	0,415614
	1,415685

	178
	2,733645
	1,398131

	179
	1,147397
	-0,6025

	180
	2,098148
	0,887682

	181
	1,55741
	1,290594

	182
	3,085288
	-3,0923

	183
	0,477571
	2,576312

	184
	1,16444
	2,605225

	185
	0,961843
	0,651495

	186
	0,946688
	1,41421

	187
	2,035705
	-1,96122

	188
	0,577571
	1,053536

	189
	0,725183
	2,465943

	190
	2,515637
	-2,52086

	191
	1,299069
	2,820881

	192
	2,419005
	1,864017

	193
	2,482555
	0,670661

	194
	1,528211
	-0,40243

	195
	2,490448
	2,694423

	196
	2,021146
	-0,03142

	197
	1,753836
	-0,44294

	198
	0,328189
	-2,68075

	199
	1,20905
	-2,1319

	200
	0,888586
	2,672667

	201
	2,703794
	0,760721

	202
	0,844501
	0,125584

	203
	2,006136
	0,65058

	204
	2,107115
	0,409253

	205
	1,004001
	2,426362

	206
	0,763348
	1,948305

	207
	0,731214
	-2,15244

	208
	1,595202
	-2,82985

	209
	0,839882
	-1,85594

	210
	1,16032
	0,791245

	211
	2,19261
	0,140513

	212
	1,927939
	-0,25016

	213
	2,34259
	0,367638

	214
	1,237315
	1,027863

	215
	2,507326
	2,262837

	216
	2,762758
	-0,56137

	217
	0,763917
	0,821765

	218
	2,973267
	-0,24682

	219
	2,194507
	-0,18598

	220
	0,159576
	1,576966

	221
	1,915307
	1,892602

	222
	1,801078
	2,125049

	223
	0,742067
	-1,56126

	224
	2,01371
	-1,16887

	225
	1,34053
	2,144167

	226
	1,276706
	-0,79502

	227
	1,106197
	2,164711

	228
	2,485023
	-1,7739

	229
	1,848799
	-0,68792

	230
	0,883602
	2,99489

	231
	0,468236
	3,079139

	232
	1,124606
	-1,18571

	233
	1,225048
	-1,66803

	234
	0,824758
	1,148627

	235
	2,238598
	2,777458

	236
	0,153249
	-0,04564

	237
	1,411124
	0,428897

	238
	1,436586
	-0,18812

	239
	0,901827
	-1,06434

	240
	2,033011
	-2,36686

	241
	0,986595
	0,952245

	242
	1,306663
	1,699442

	243
	1,081021
	1,20636

	244
	0,671755
	2,830533

	245
	1,643208
	0,426869

	246
	2,074043
	2,578425

	247
	1,951007
	0,207296

	248
	1,746655
	2,796536

	249
	2,131472
	-2,59591

	250
	2,176867
	1,879702

	251
	2,925082
	0,996608

	252
	2,06195
	-2,83997

	253
	0,523
	-0,16767

	254
	0,623772
	0,211759

	255
	1,489525
	0,216479

	256
	2,697294
	-1,63972
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	Index
	subidx1
	subidx2
	subidx3
	subidx4
	subidx5

	
	Len
	CW
	Len
	CW
	Len
	CW
	Len
	CW
	Len
	CW

	0
	4
	2
	3
	0
	1
	1
	1
	0
	2
	1

	1
	3
	0
	2
	3
	2
	1
	2
	3
	2
	2

	2
	2
	2
	2
	1
	3
	0
	3
	4
	2
	3

	3
	2
	1
	2
	2
	4
	2
	4
	10
	3
	0

	4
	2
	3
	4
	2
	5
	6
	5
	22
	4
	2

	5
	4
	3
	4
	3
	5
	7
	5
	23
	4
	3
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	Index
	subidx1
	subidx2
	subidx3
	subidx4
	subidx5

	
	Len
	CW
	Len
	CW
	Len
	CW
	Len
	CW
	Len
	CW

	0
	4
	14
	4
	14
	2
	1
	1
	0
	3
	1

	1
	3
	6
	3
	1
	2
	2
	2
	3
	3
	3

	2
	3
	1
	3
	0
	2
	3
	3
	5
	2
	3

	3
	2
	2
	2
	1
	3
	0
	4
	8
	2
	2

	4
	2
	1
	2
	2
	4
	2
	5
	18
	3
	0

	5
	3
	0
	3
	6
	5
	6
	6
	38
	4
	4

	6
	4
	15
	4
	15
	5
	7
	6
	39
	4
	5



[bookmark: _Toc382916024][bookmark: _Toc385338007]Huffman tables for HuffTabIndex=8
	Index
	subidx1
	subidx2
	subidx3
	subidx4
	subidx5

	
	Len
	CW
	Len
	CW
	Len
	CW
	Len
	CW
	Len
	CW

	0
	5
	17
	5
	6
	3
	1
	1
	1
	4
	4

	1
	4
	9
	4
	2
	3
	0
	3
	0
	3
	5

	2
	3
	5
	3
	4
	2
	2
	3
	2
	3
	3

	3
	3
	1
	3
	0
	2
	3
	3
	3
	3
	1

	4
	2
	3
	2
	1
	3
	2
	4
	2
	2
	3

	5
	2
	1
	2
	3
	4
	6
	5
	6
	3
	0

	6
	3
	0
	3
	5
	5
	14
	6
	14
	3
	4

	7
	5
	16
	5
	7
	5
	15
	6
	15
	4
	5



[bookmark: _Toc382916025][bookmark: _Toc385338008]Huffman tables for HuffTabIndex=9
	Index
	subidx1
	subidx2
	subidx3
	subidx4
	subidx5

	
	Len
	CW
	Len
	CW
	Len
	CW
	Len
	CW
	Len
	CW

	0
	6
	33
	6
	14
	3
	5
	2
	0
	4
	12

	1
	6
	32
	5
	6
	3
	3
	3
	2
	3
	7

	2
	4
	9
	4
	2
	3
	1
	3
	3
	3
	5

	3
	3
	5
	3
	4
	3
	0
	3
	4
	3
	3

	4
	3
	1
	3
	0
	2
	3
	3
	5
	3
	2

	5
	2
	3
	2
	1
	3
	2
	3
	6
	3
	0

	6
	2
	1
	2
	3
	4
	8
	4
	14
	3
	1

	7
	3
	0
	3
	5
	5
	18
	5
	30
	3
	4

	8
	5
	17
	6
	15
	5
	19
	5
	31
	4
	13



[bookmark: _Toc382916026][bookmark: _Toc385338009]Huffman tables for HuffTabIndex=10
	Index
	subidx1
	subidx2
	subidx3
	subidx4
	subidx5

	
	Len
	CW
	Len
	CW
	Len
	CW
	Len
	CW
	Len
	CW

	0
	7
	19
	7
	16
	4
	10
	2
	1
	4
	15

	1
	7
	18
	6
	9
	4
	1
	3
	5
	4
	9

	2
	6
	8
	5
	5
	3
	4
	3
	1
	4
	8

	3
	4
	3
	4
	3
	3
	3
	3
	4
	3
	6

	4
	3
	5
	3
	4
	3
	1
	3
	6
	3
	3

	5
	3
	4
	3
	0
	2
	3
	3
	7
	3
	2

	6
	2
	3
	2
	1
	3
	2
	4
	0
	3
	0

	7
	2
	1
	2
	3
	4
	0
	5
	2
	3
	1

	8
	3
	0
	3
	5
	5
	22
	6
	6
	3
	5

	9
	5
	5
	7
	17
	5
	23
	6
	7
	4
	14



[bookmark: _Toc382916027][bookmark: _Toc385338010]Huffman tables for HuffTabIndex=11
	Index
	subidx1
	subidx2
	subidx3
	subidx4
	subidx5

	
	Len
	CW
	Len
	CW
	Len
	CW
	Len
	CW
	Len
	CW

	0
	7
	31
	8
	33
	6
	34
	2
	2
	5
	29

	1
	7
	30
	7
	17
	4
	9
	4
	2
	5
	28

	2
	6
	14
	6
	9
	4
	3
	3
	7
	4
	11

	3
	5
	6
	5
	5
	3
	5
	3
	2
	4
	10

	4
	4
	10
	4
	3
	3
	3
	3
	3
	3
	6

	5
	4
	2
	3
	4
	3
	0
	3
	6
	3
	3

	6
	3
	4
	3
	0
	2
	3
	4
	0
	3
	2

	7
	2
	3
	2
	1
	3
	2
	4
	1
	3
	0

	8
	2
	1
	2
	3
	4
	2
	5
	6
	3
	1

	9
	3
	0
	3
	5
	5
	16
	6
	14
	3
	4

	10
	4
	11
	8
	32
	6
	35
	6
	15
	4
	15



[bookmark: _Toc382916028][bookmark: _Toc385338011]Huffman tables for HuffTabIndex=12
	Index
	subidx1
	subidx2
	subidx3
	subidx4
	subidx5

	
	Len
	CW
	Len
	CW
	Len
	CW
	Len
	CW
	Len
	CW

	0
	8
	63
	9
	67
	7
	10
	3
	0
	6
	39

	1
	8
	62
	9
	66
	6
	4
	4
	5
	6
	38

	2
	7
	30
	7
	17
	4
	9
	4
	3
	5
	18

	3
	6
	14
	6
	9
	4
	8
	3
	7
	4
	14

	4
	5
	6
	5
	5
	3
	5
	3
	4
	4
	8

	5
	4
	10
	4
	3
	3
	3
	3
	3
	3
	6

	6
	4
	2
	3
	4
	3
	1
	3
	5
	3
	3

	7
	3
	4
	3
	0
	2
	3
	3
	6
	3
	2

	8
	2
	3
	2
	1
	3
	2
	4
	2
	3
	0

	9
	2
	1
	2
	3
	4
	0
	5
	8
	3
	1

	10
	3
	0
	3
	5
	5
	3
	6
	18
	3
	5

	11
	4
	11
	8
	32
	7
	11
	6
	19
	4
	15



[bookmark: _Toc382916029][bookmark: _Toc385338012]Huffman tables for HuffTabIndex=13
	Index
	subidx1
	subidx2
	subidx3
	subidx4
	subidx5

	
	Len
	CW
	Len
	CW
	Len
	CW
	Len
	CW
	Len
	CW

	0
	9
	127
	10
	135
	7
	78
	3
	1
	7
	75

	1
	9
	126
	10
	134
	6
	38
	5
	10
	7
	74

	2
	8
	62
	9
	66
	5
	18
	4
	14
	6
	36

	3
	7
	30
	7
	17
	5
	2
	4
	4
	5
	19

	4
	6
	14
	6
	9
	4
	8
	4
	0
	4
	14

	5
	5
	6
	5
	5
	3
	5
	3
	4
	4
	8

	6
	4
	10
	4
	3
	3
	3
	3
	3
	3
	6

	7
	4
	2
	3
	4
	3
	1
	3
	5
	3
	3

	8
	3
	4
	3
	0
	2
	3
	3
	6
	3
	2

	9
	2
	3
	2
	1
	3
	2
	4
	1
	3
	0

	10
	2
	1
	2
	3
	4
	0
	4
	15
	3
	1

	11
	3
	0
	3
	5
	5
	3
	6
	22
	3
	5

	12
	4
	11
	8
	32
	7
	79
	6
	23
	4
	15



[bookmark: _Toc382916030][bookmark: _Toc385338013]Huffman tables for HuffTabIndex=14
	Index
	subidx1
	subidx2
	subidx3
	subidx4
	subidx5

	
	Len
	CW
	Len
	CW
	Len
	CW
	Len
	CW
	Len
	CW

	0
	10
	223
	11
	263
	8
	151
	3
	2
	8
	119

	1
	10
	222
	11
	262
	7
	74
	5
	28
	8
	118

	2
	9
	110
	10
	130
	6
	36
	5
	5
	7
	58

	3
	8
	54
	9
	64
	5
	19
	4
	15
	6
	28

	4
	7
	26
	7
	17
	5
	2
	4
	3
	5
	15

	5
	6
	12
	6
	9
	4
	8
	4
	0
	4
	14

	6
	5
	7
	5
	5
	3
	5
	3
	4
	4
	6

	7
	4
	10
	4
	3
	3
	3
	3
	3
	3
	6

	8
	4
	2
	3
	4
	3
	1
	3
	5
	3
	4

	9
	3
	4
	3
	0
	2
	3
	3
	6
	3
	2

	10
	2
	3
	2
	1
	3
	2
	4
	1
	3
	0

	11
	2
	1
	2
	3
	4
	0
	5
	4
	3
	1

	12
	3
	0
	3
	5
	5
	3
	6
	58
	3
	5

	13
	4
	11
	8
	33
	8
	150
	6
	59
	4
	15



[bookmark: _Toc382916031][bookmark: _Toc385338014]Huffman tables for HuffTabIndex=15
	Index
	subidx1
	subidx2
	subidx3
	subidx4
	subidx5

	
	Len
	CW
	Len
	CW
	Len
	CW
	Len
	CW
	Len
	CW

	0
	11
	447
	11
	303
	9
	289
	3
	6
	9
	239

	1
	11
	446
	11
	302
	8
	145
	4
	5
	9
	238

	2
	10
	222
	10
	150
	7
	73
	6
	12
	8
	118

	3
	9
	110
	9
	74
	6
	37
	5
	7
	7
	58

	4
	8
	54
	8
	36
	5
	19
	5
	0
	6
	28

	5
	7
	26
	7
	17
	5
	2
	4
	4
	5
	15

	6
	6
	12
	7
	16
	4
	8
	4
	1
	4
	14

	7
	5
	7
	5
	5
	3
	5
	3
	4
	4
	6

	8
	4
	10
	4
	3
	3
	3
	3
	3
	3
	6

	9
	4
	2
	3
	4
	3
	1
	3
	5
	3
	4

	10
	3
	4
	3
	0
	2
	3
	3
	7
	3
	2

	11
	2
	3
	2
	1
	3
	2
	4
	2
	3
	0

	12
	2
	1
	2
	3
	4
	0
	5
	1
	3
	1

	13
	3
	0
	3
	5
	5
	3
	7
	26
	3
	5

	14
	4
	11
	7
	19
	9
	288
	7
	27
	4
	15



[bookmark: _Ref385013601][bookmark: _Toc385338015]HOA Tables for Dynamic Range Control
Spherical grids for DRC DSHT  
Table F.1 - Spherical grid for DRC DSHT for order 
Inclination in rad,  Azimuth  in rad,       
0.33983655        3.14159265      3.14159271
1.57079667        0.00000000      3.14159267
2.06167886        1.95839324      3.14159262
2.06167892       -1.95839316      3.14159262

Table F.2 - Spherical grid for DRC DSHT for order 
Inclination in rad,  Azimuth  in rad,       
1.57079633        0.00000000      1.41002219
2.35131567        3.14159265      1.36874571
1.21127801       -1.18149779      1.36874584
1.21127606        1.18149755      1.36874598
1.31812905       -2.45289512      1.41002213
0.00975782       -0.00009218      1.41002214
1.31812792        2.45289621      1.41002230
2.41880319        1.19514740      1.41002223
2.41880555       -1.19514441      1.41002209

Table F.3 - Spherical grid for DRC DSHT for order 
Inclination in rad,  Azimuth  in rad,       
0.49220083        0.00000000      0.75567412
1.12054210       -0.87303924      0.75567398
2.52370429       -0.05517088      0.75567401
2.49233024       -2.15479457      0.87457076
1.57082248        0.00000000      0.87457075
2.02713647        1.01643753      0.75567388
1.61486095       -2.60674413      0.75567396
2.02713675       -1.01643766      0.75567398
1.08936018        2.89490077      0.75567412
1.18114721        0.89523032      0.75567399
0.65554353        1.89029902      0.75567382
1.60934762        1.91089719      0.87457082
2.68498672        2.02012831      0.75567392
1.46575084       -1.76455426      0.75567402
0.58248614       -2.22170415      0.87457060
2.00306837        2.81329239      0.75567389


Table F.4 - Spherical grid for DRC DSHT for order  
Inclination in rad,  Azimuth  in rad,       
1.57079633        0.00000000      0.52689274
2.39401407        0.00000000      0.48518011
1.14059283       -1.75618245      0.52688432
1.33721851        0.69215601      0.47027816
1.72512898       -1.33340585      0.48037442
1.17406779       -0.79850952      0.51130478
0.69042674        1.07623171      0.50662254
1.47478735        1.43953896      0.52158458
1.67073876        2.25235428      0.52835300
2.52745842       -1.33179653      0.52388165
1.81037110        3.05783641      0.49800736
1.91827560       -2.03351312      0.48516540
0.27992161        2.55302196      0.50663531
0.47981675       -1.18580204      0.50824199
2.37644317        2.52383590      0.45807408
0.98508365        2.03459671      0.47260252
2.18924206        1.58232601      0.49801422
1.49441825       -2.58932194      0.51745117
2.04428895        0.76615262      0.51744164
2.43923726       -2.63989327      0.52146074
1.10308418        2.88498471      0.52158484
0.78489181       -2.54224201      0.47027748
2.96802845        1.25258904      0.52145388
1.91816652       -0.63874484      0.48036020
0.80829458       -0.00991977      0.50824345


Table F.5 - Spherical grid for DRC DSHT for order 
Inclination in rad,  Azimuth  in rad,       
1.57079633        0.00000000      0.34493574
2.68749293        3.14159265      0.35131373
1.92461621       -1.22481468      0.35358151
1.95917092        3.06534485      0.36442231
2.18883411        0.08893301      0.36437350
0.35664531       -2.15475973      0.33953855
1.32915731       -1.05408340      0.35358417
2.21829206        2.45308518      0.33534647
1.00903070        2.31872053      0.34739607
0.99455136       -2.29370294      0.36437101
1.13601102       -0.46303195      0.33534542
0.41863640        0.63541391      0.35131934
1.78596913       -0.56826765      0.34739591
0.56658255       -0.66284593      0.36441956
2.25292410        0.89044754      0.36437098
2.67263757       -1.71236120      0.36442208
0.86753981       -1.50749854      0.34068122
1.38158330        1.72190554      0.35358401
0.98578154        0.23428465      0.35131950
1.45079827       -1.69748851      0.34739437
2.09223697       -1.85025366      0.33534659
2.62854417        1.70110685      0.34494256
1.44817433       -2.83400771      0.33953463
2.37827410       -0.72817212      0.34068529
0.82285875        1.51124182      0.33534531
0.40679748        2.38217051      0.34493552
0.84332549       -3.07860398      0.36437337
1.38947809        2.83246237      0.34068522
1.61795773       -2.27837285      0.34494274
2.17389505       -2.58540735      0.35131361
1.65172710        2.28105193      0.35358166
1.67862104        0.57097606      0.33953819
2.02514031        1.70739195      0.34739443
1.12965858        0.89802542      0.36442004
2.82979093        0.17840931      0.33953488
1.67550339        1.18664952      0.34068114


Table F.6 - Spherical grid for DRC DSHT for order 
Inclination in rad,  Azimuth  in rad,       
1.57079633        0.00000000      0.23821170
2.42144792        0.00000000      0.23821175
0.32919895        2.78993083      0.26169552
1.06225899        1.49243160      0.25534085
1.01526896       -2.16495206      0.25092628
1.10570423       -1.59180661      0.25099550
1.47319543        1.14258135      0.26160776
2.15414541        1.88359269      0.24442720
0.20805372       -0.52863458      0.25487678
0.50141101       -2.11057110      0.25619096
1.98041218        0.28912378      0.26288225
0.83752075       -2.81667891      0.25837996
2.44130228        0.81495962      0.26772416
1.21539727       -1.00788022      0.25534092
2.62944184       -1.58354086      0.26437874
1.86884674       -2.40686906      0.25619091
0.68705554       -1.20612227      0.25576026
1.52325470       -1.98940871      0.26169551
2.39097364       -2.37336381      0.25576025
0.98667678        0.86446728      0.26014219
2.27078506       -3.06771779      0.25099551
2.33605400        2.51674567      0.26455002
1.29371004        2.03656562      0.25576032
0.86334494        2.77720222      0.25092620
1.94118355       -0.37820559      0.26772409
2.10323413       -1.28283816      0.24442725
1.87416330        0.80785741      0.23821179
1.63423157        1.65277986      0.26437876
2.06477636        1.31341296      0.25595469
0.82305807       -0.47771423      0.26437883
2.04154780       -1.85106655      0.25487677
0.61285067        0.33640173      0.24442716
1.08029340        0.10986230      0.25595472
1.60164764       -1.43535015      0.26455000
2.66513701        1.69643796      0.26014228
1.35887781       -2.58083733      0.25838000
1.78658555        2.25563014      0.25487674
1.83333508        2.80487382      0.26169549
0.78406009        2.08860099      0.25099560
2.94031615       -0.07888534      0.26160780
1.34658213        2.57400947      0.25619094
1.73906669       -0.87744928      0.26014223
0.50210739        1.33550547      0.26455007
2.38040297       -0.75104092      0.25595462
1.41826790        0.54845193      0.26772418
1.77904107       -2.93136138      0.25092628
1.35746628       -0.47759398      0.26160765
1.31545731        3.12752832      0.25838016
2.81487011       -3.12843671      0.25534100


Table F.7 - Spherical grid for DRC DSHT for order 
Inclination in rad,  Azimuth  in rad,       
1.57079633        0.00000000      0.19495795
2.45610519        0.00000000      0.19495809
0.39336242        1.03016214      0.19791987
0.89422674       -2.33320867      0.19872783
0.43545329       -1.90611766      0.20164788
2.82600944        2.32040743      0.18728551
1.59930590        0.43907779      0.18583001
0.64745165        2.11280421      0.20273761
1.90012440        2.19672239      0.19118821
0.77544211        1.42837415      0.18728574
0.69899330       -0.36084163      0.18728569
2.04670638       -3.01527456      0.19927210
2.12677074        1.22510187      0.18728884
0.23447523        2.63866702      0.19927208
2.40003196       -2.63346362      0.19791989
1.45925921       -0.93421891      0.18728903
2.73580260       -0.95164110      0.19927196
1.48655587       -1.60786838      0.20474450
1.68102326       -2.09640999      0.19679660
2.36367468        2.19127430      0.19694872
2.32176930       -0.62030401      0.18583004
2.04546892        1.72866718      0.20474448
0.77250696        2.81267760      0.19495808
1.69576568        2.96849129      0.18583019
0.58175363       -2.82533899      0.18583001
2.87203994        0.51065147      0.20273763
1.39561603        0.84819515      0.20164795
1.88874012       -0.76208433      0.19872768
1.51281601       -2.91380498      0.19495791
1.08945861        2.38896622      0.19812700
1.83804298       -2.57622643      0.20273767
1.47075901        2.08646502      0.18728889
1.36153209       -2.47361065      0.19812703
1.15458107        0.35914488      0.19927210
2.23247953       -1.21160054      0.20164792
2.46336120        2.94460384      0.19682398
1.22791750        2.91409534      0.20129566
1.05015851       -2.89422460      0.20129569
2.12820204       -2.18619520      0.18728575
2.53612755        1.47084632      0.19679675
2.46546154       -1.76957871      0.19682388
1.55027992        2.54237851      0.19872776
2.84242076       -2.37565709      0.19791995
1.23439281        1.32812183      0.19694863
0.69294302        0.32555256      0.19791995
2.05614763        2.67444874      0.20164784
1.09765326        1.83278284      0.19679663
1.12592284       -0.14469268      0.20273758
1.96529200       -0.24906723      0.20129567
1.96552627       -1.69235565      0.19694871
1.76960407       -1.25179553      0.19118810
1.91136466        0.76951720      0.19872771
1.07406395       -0.69991724      0.19679662
0.69689253       -1.09648035      0.19694872
1.68400415        1.21349142      0.19118831
2.39207241        0.70375526      0.19812696
0.94043078        0.86239912      0.19682389
0.88424480       -1.70121947      0.19118805
1.24865844       -1.99210255      0.18728907
0.24866075       -0.52239150      0.19682390
1.16191600       -1.27749516      0.20474460
2.03676720        0.25756109      0.20129581
1.59547480        1.65945485      0.20474451
1.50944693       -0.45747372      0.19812716


Table F.8 - Spherical grid for DRC DSHT for order 
Inclination in rad,  Azimuth  in rad,       
1.57079633        0.00000000      0.16035506
2.37045281        3.14159265      0.15319651
1.16118114       -2.76809755      0.14493850
1.96701676       -2.93113550      0.15659032
0.44283230        2.79053078      0.16051177
2.27466442       -1.58633222      0.15823741
1.90257136       -1.34326395      0.15410190
1.22671270       -0.30245108      0.15555055
1.18223758        3.09331226      0.16269226
0.77757990       -3.00089450      0.15370974
1.71069627        1.52817508      0.15330871
2.10766509       -2.12432828      0.15659023
1.91267082        1.11619994      0.15721852
1.50641800       -1.38243964      0.15314283
1.90689598        0.26039435      0.15542290
1.87573690       -1.75821192      0.15263979
0.66839369        0.92054291      0.15198113
2.99900287        1.37574537      0.15918574
1.25503817        1.48780173      0.15554994
2.12588745        1.55120363      0.15777865
1.46867749       -1.78074999      0.15251277
1.42058775        0.80011364      0.14438414
1.39768944       -2.42566469      0.15882669
1.68448339        2.64994016      0.15410149
2.68318874        2.44896055      0.15624640
1.18069550       -2.06498432      0.15624611
0.95913015       -0.72316181      0.15330920
1.46298411        1.86944950      0.15860486
2.29917993        2.02407291      0.15772368
2.19757565        0.59478929      0.14875234
1.38002876       -0.71570078      0.15860447
1.66966479       -2.13711058      0.15319630
1.10433150       -1.56966543      0.15772351
1.51539913        1.17237827      0.15450396
1.67195210       -0.98489422      0.15912839
0.42176814       -1.52602006      0.15232202
1.06037388        1.88421174      0.14355622
0.80107740        1.50114356      0.16035524
2.52167695       -2.05535482      0.15604687
2.28748597       -2.58806117      0.15620875
2.58630438        1.56214454      0.15317153
2.72391006       -0.27193316      0.15370972
1.62712008       -0.39597375      0.14355623
2.34174815        0.09134393      0.16051150
1.06986925        0.59872741      0.16355869
1.92177200       -0.65082006      0.16077195
0.34213508        0.27645779      0.16434890
1.94986982        2.34291415      0.15314342
2.30898057        1.08877369      0.15232257
1.98986693        2.91045974      0.15264014
1.59231399        3.06757473      0.15823739
1.29864641        2.69395181      0.14576771
2.29317210        2.58349572      0.15251182
0.05793299       -2.59778561      0.14875351
1.99058472       -0.17696672      0.15658029
2.73125795       -2.83579628      0.15882635
2.15451150       -1.01207152      0.14576802
1.07129033        1.08091974      0.15708292
1.52711913        2.26168806      0.15912867
1.16236502        0.13916825      0.15708284
1.81256106        0.70838029      0.16434891
1.85530369       -2.50737902      0.15620805
0.74434685        0.30249140      0.14438364
1.49824071        0.40090739      0.15198070
1.56474110       -2.81849429      0.15604718
2.32808998       -0.50109067      0.15441122
1.87070391        1.92956677      0.15353048
2.88720571       -1.59178147      0.14493905
0.79687026       -1.22448828      0.15777882
0.49073383       -2.49121159      0.15636169
0.86597756        2.72407864      0.15441117
0.90380271       -2.41570722      0.15918617
0.69379152        2.15722882      0.15658036
0.77950388       -1.87939660      0.15317146
0.38197320        1.59711308      0.15542262
2.54311968       -1.11209930      0.16269195
1.21275328       -1.10763361      0.15353067
1.12072521        2.31432004      0.16077173
0.51475687       -0.64396568      0.15721788
2.62938152        0.64839067      0.15636234
0.82751400       -0.22838738      0.15450447


Table F.9 - Spherical grid for DRC DSHT for order 
Inclination in rad,  Azimuth  in rad,       
  1.57079633        0.00000000      0.12828036
  2.16373203        3.14159265      0.12214120
  2.55778055        1.07800687      0.12411909
  0.36041732        1.91355038      0.12214053
  1.86313281        0.70422900      0.12980341
  0.68734931        0.62766121      0.12595879
  2.53087449       -3.07674104      0.12686568
  1.93858183       -0.00399326      0.12591541
  1.99735356       -1.78523667      0.12686523
  2.54599177       -1.14448038      0.12980331
  1.41727037        2.10029510      0.12827997
  1.42975298       -2.03832959      0.12040441
  0.49591158       -2.80876714      0.12828003
  1.94504826        2.64716384      0.12980323
  1.46050203        0.65963288      0.12411898
  0.81994922        1.60055042      0.12980342
  2.90039010       -2.83032233      0.12595875
  1.17750420       -2.52395452      0.12980367
  2.23201026       -1.41758015      0.12980324
  1.83260522        3.00221101      0.12040296
  0.27280823        0.57309173      0.12827984
  1.82697936       -1.42107305      0.12411958
  0.64885136       -0.63755903      0.12214100
  2.92668990       -0.74715817      0.12411960
  0.83608830        3.07605331      0.12595899
  2.13647090       -0.37015260      0.12591690
  1.17248048       -2.96343400      0.12411921
  2.27278176       -0.78829766      0.12214053
  2.33382027        0.02692246      0.12827987
  1.44091653       -1.38509544      0.13113000
  1.49774230       -2.75550338      0.12686541
  1.64796000        2.38538463      0.12686567
  0.86423080       -2.72191030      0.12040420
  1.88340220       -0.70858136      0.12827970
  1.84991189       -2.51360023      0.12591545
  1.55433945        2.75646776      0.12411975
  1.05621052        2.19619507      0.12040388
  1.62064026       -1.72752451      0.12595883
  1.13565641       -0.61914701      0.12980332
  1.13683348        1.80774348      0.12214042
  0.73983145       -2.25726397      0.12214044
  0.29726235       -0.84075556      0.12591620
  0.52655839        2.71448092      0.12686515
  0.42942711       -1.90719617      0.12591540
  0.91398906        1.08067861      0.12411953
  2.68849385        2.50148936      0.12411959
  2.36098369       -1.86914671      0.12214058
  1.83657803       -2.89541550      0.12828043
  1.27526530        1.01421481      0.12595902
  2.35129951        2.23269302      0.12040288
  1.30431251        0.32225872      0.12595868
  0.90231487        2.60267985      0.12411967
  2.30337398        2.71898541      0.12980326
  1.39373392       -0.35543690      0.12214089
  1.49751408       -3.13733860      0.12595843
  2.01751030       -1.08299197      0.12040386
  1.17568045        1.40534497      0.12686527
  2.19236789       -2.70093341      0.12591627
  2.56023704       -0.43012045      0.12686513
  1.51097956       -2.38499767      0.12214025
  1.28573634        2.50420996      0.12595853
  0.84660824       -1.75673313      0.12686549
  0.70805638        2.10420981      0.12980326
  1.48574685        1.70727610      0.12591670
  1.99776782        2.26037793      0.12214140
  1.68420229        0.34882309      0.12686573
  1.84850208        1.58929972      0.12591555
  2.05336705        0.37361712      0.12214035
  0.13006441       -2.96000913      0.12591661
  1.76189826        1.97111953      0.12591598
  2.71326544       -1.80095205      0.12040383
  1.75573602       -0.35227870      0.12591593
  1.19314055        2.90104754      0.13112995
  1.63811123        0.98412082      0.12040459
  1.07280135        0.65657785      0.13113003
  0.91115869       -0.28257823      0.12980346
  1.29046828       -1.01963661      0.12411946
  2.37826460        0.55252527      0.12040438
  2.13871758        1.83860212      0.12828036
  2.24254365        1.40568224      0.12686556
  1.65398515       -1.06244312      0.12595861
  0.64259427       -1.30247588      0.12828045
  2.51222922       -2.44030027      0.12827971
  1.79529243       -2.10829994      0.12828002
  1.51732931       -0.70668218      0.12686586
  0.92550987       -0.95463482      0.12040314
  1.08652419       -2.13466658      0.12980337
  1.20141169       -0.04579864      0.12040323
  2.14184722       -2.24301998      0.12591668
  2.54887172        1.74602244      0.12595856
  1.05541584       -1.36282902      0.12595851
  0.91981071        0.23029246      0.12411927
  2.71843378        0.31100130      0.12595908
  1.53660179        1.34230146      0.12827978
  2.16591389        0.92821735      0.12980362
  0.56817609        0.00264963      0.12686571
  2.92170819        1.46142465      0.13112985
  1.91166616        1.21479777      0.12214024
  0.55577503        1.21928553      0.12040379
  1.22767373       -1.71900109      0.12411923

[bookmark: _Ref384890311][bookmark: _Toc385338016]
(informative)

HOA Format Description
[bookmark: _Toc385338017]General
[image: ]
[bookmark: _Ref382906006]Figure D.4 – Spherical coordinate system
Higher Order Ambisonics (HOA) is based on the description of a sound field within a compact area of interest, which is assumed to be free of sound sources. In that case the spatiotemporal behavior of the sound pressure  at time  and position  within the area of interest is physically fully determined by the homogeneous wave equation. In the following we assume a spherical coordinate system as shown in Figure D.4. In the used coordinate system the  axis points to the frontal position, the  axis points to the left, and the  axis points to the top. A position in space  is represented by a radius  (i.e. the distance to the coordinate origin), an inclination angle  measured from the polar axis  and an azimuth angle  measured counter-clockwise in the  plane from the  axis. Further,  denotes the transposition.
Then, it can be shown[footnoteRef:1] that the Fourier transform of the sound pressure with respect to time denoted by , i.e.,  [1:  Earl G. Williams.   Fourier Acoustics, volume 93 of Applied Mathematical Sciences. Academic Press, 1999.] 

	
with  denoting the angular frequency and  indicating the imaginary unit, may be expanded into the series of Spherical Harmonics according to 
	
Here  denotes the speed of sound and  denotes the angular wavenumber, which is related to the angular frequency  by . Further,  denote the spherical Bessel functions of the first kind and  denote the real valued Spherical Harmonics of order  and degree , which are defined in section G.2. The expansion coefficients  only depend on the angular wavenumber . Note that it has been implicitly assumed that sound pressure is spatially band-limited. Thus the series is truncated with respect to the order index  at an upper limit , which is called the order of the HOA representation.
If the sound field is represented by a superposition of an infinite number of harmonic plane waves of different angular frequencies  and arriving from all possible directions specified by the angle tuple , it can be shown[footnoteRef:2] that the respective plane wave complex amplitude function  can be expressed by the following Spherical Harmonics expansion [2:  Boaz Rafaely.  Plane-wave Decomposition of the Sound Field on a Sphere by Spherical Convolution.  J. Acoust. Soc. Am., 4(116):2149--2157, 2004.] 

	
where the expansion coefficients  are related to the expansion coefficients  by 
	
Assuming the individual coefficients  to be functions of the angular frequency , the application of the inverse Fourier transform (denoted by ) provides time domain functions 
	
for each order  and degree , which can be collected in a single vector  by 

The position index of a time domain function  within the vector  is given by . The overall number of elements in the vector  is given by .
The final Ambisonics format provides the sampled version of  using a sampling frequency  as 
	
where  denotes the sampling period. The elements of  are here referred to as Ambisonics coefficients. Note that the time domain signals  and hence the Ambisonics coefficients are real valued.
[bookmark: GrindEQpgref515c465b9][bookmark: _Toc352861105][bookmark: _Ref370218846][bookmark: _Ref370284904][bookmark: _Toc382916033][bookmark: _Toc385338018] Definition of real valued Spherical Harmonics
The real valued spherical harmonics  are given by 
	
with 
	
The associated Legendre functions  are defined as 
	
with the Legendre polynomial  and without the Condon-Shortley phase term .
[bookmark: _Toc382916034][bookmark: _Toc385338019]Definition of the HOA signal matrix
For the HOA compression a frame-wise processing with non-overlapping input frames  of HOA coefficient sequences of length  is assumed, where  denotes the frame index. The frames are defined as the HOA signal matrix
	
where  indicates the sampling period. 
[bookmark: _Ref376941336][bookmark: _Toc382916035][bookmark: _Toc385338020]Definition of the mode matrix
The mode matrix  for the test direction , , is defined by 
	
with 


[bookmark: _Ref384901246][bookmark: _Toc385338021]
(informative)

Low Complexity HOA Rendering
[bookmark: _Toc385338022]Tool Description
The general idea of the low complexity HOA rendering tool is to perform rendering on the decoded predominant sound and ambient sound directly (before HOA composition), when there is no prediction component in the predominant sound synthesis and no near field compensation to reduce the complexity of HOA composition and rendering process. This function is designed such that it does not result in any changes of the rendering output.
The rendering in this function consists of two rendering process: predominant sound (PS) rendering and ambient sound rendering.

[image: ]
Figure 5 — Block diagram of low complexity HOA renderer.

[bookmark: _Toc385338023]Predominant Sound Rendering
The rendering matrix for PS rendering is derived from the original rendering matrix from HOA to speaker output and the synthesis matrix.

where
		 denotes the original rendering matrix from HOA to speaker output
		 denotes the predominant sound synthesis matrix
		denotes the PS rendering matrix
In the above equation,
		 (refer to section 11.4.1.5) for direction based predominant sound synthesis
		 (refer to section 11.4.1.9.5) for vector based predominant sound synthesis
The rendering output of the predominant sound is computed as:

where
		  denotes the generated play back signal from the decoded predominant sound
		  denotes the decoded predominant sound
		  denotes the PS rendering matrix
[bookmark: _Toc385338024]Ambient Sound Rendering
The rendering matrix for ambience rendering is taking the rendering vectors for the active (non-zero) ambient sound signal from the original rendering matrix . The rendering output of the predominant sound is computed as:

where
		  denotes the generated play back signal from the ambient sound
		  denotes the active (non-zero) synthesized ambient sound
		  denotes the ambience rendering matrix

[bookmark: _Toc385338025]Output Signal Composition
The final play back signal for speakers is computed as:

where
		  denotes the final play back signal for speakers
		  denotes the generated play back signal from the ambient sound
		  denotes the generated play back signal from the decoded predominant sound
[bookmark: _Toc385338026]
(tentative)

Modified Format Converter for Immersive Audio Rendering
[edit: This Annex is subject to verification and further investigation and is likely to be subject to modification, verification, and decision at the June AhG Meeting]

[bookmark: _Toc385338027]Loudspeaker Rendering/Format Conversion
[bookmark: _Toc383694975][bookmark: _Toc385338028]Description
The loudspeaker renderer is a downmixer that converts multichannel signals from transmitted channel configurations with [image: ] channels to desired reproduction formats with [image: ] channels. It is thus also called ‘format converter’. The system consists of three major building blocks:
· An initialization algorithm that takes into account static parameters like the input and output format,
· switching scheme according to the transmitted flag rendering3DType,
· a signal adaptive downmixing process that operates in a subband domain.


Figure 1 – Main building blocks of the format converter

In the initialization phase the format converter automatically generates optimized downmixing parameters (like the downmixing matrix) for the given combination of input and output formats: It applies an algorithm that selects for each input loudspeaker the most appropriate mapping rule from a list of rules that has been designed to incorporate psychoacoustic considerations. Each rule describes the mapping from one input channel to one or several output loudspeaker channels.
Input channels are 
· either mapped to a single output channel, 
· or panned to two output channels, 
· or (in case of the ‘Voice of God’ channel) distributed over a larger number of output cannels.
· or panned multiple numbers of output channels with different panning coefficients over frequency.
(in case of the ‘immersive audio rendering’)
The optimal mapping for each input channel is selected depending on the list of output loudspeakers that are available in the desired output format. Each mapping defines downmix gains for the input channel under consideration as well as potentially also an equalizer that is applied to the input channel under consideration.
Output setups with non-standard loudspeaker positions can be signaled to the system by providing the azimuth and elevation deviations from a regular loudspeaker setup. Further, distance variations of the desired target loudspeaker positions are taken into account.
When the output format is a superset of standard 5.1 channel format, immersive audio rendering may be applied according to the priority of downmix rules depending on the mixer output layout and the reproction layout. The immersive audio rendering effectively provides virtually rendered height channels without height speakers and reads rendering3DType flag from the bitstream to choose proper rendering for the sound scene.
The actual downmixing of the audio signals is performed on a hybrid QMF subband representation of the signals. The algorithm makes use of two mechanisms to avoid signal deteriorations like comb-filtering, coloration, or modulation artifacts:
· Phase-alignment of the multichannel input signals: Correlated input signals that differ in phase are aligned prior to downmixing them. The alignment process makes use of an attraction measure to only align the relevant channels for the relevant time-frequency tiles and to avoid modifications of other parts of the input signal. The alignment is further regularized to avoid artifacts due to rapid changes of the alignment phase modification terms. The phase-alignment improves the output signal quality by avoiding narrow spectral notches due to out-of-phase signal cancellations that could not be compensated for by energy normalization because of a limited frequency resolution. It further reduces the need of boosting signals in the energy preserving normalization, thus minimizes modulation artifacts. When the immersive audio rendering is used, the phase alignment stage of the high frequency components of the input signals are not applied in order to provide accurate synchronization of the multichannel rendered signal.
· Normalization of the downmix process to preserve the input energies (except for the desired energy scaling that may be inherent in the downmix matrix).
[bookmark: _Toc383694976][bookmark: _Toc385338029]Syntax
For the immersive audio rendering, the RenderingTypeConfig defines the proper rendering type for the format converter.
Table AT1— Syntax of RedneringTypeConfig()
	Syntax
	No. of bits
	Mnemonic

	RenderingTypeConfig()
	
	

	{
	
	

		rendering3DType;
	1
	uimsbf

	}
	
	



The flag rendering3DType is created at the encoder based on the audio scene. When the audio scene is wideband and highly decorrelated at a frame, the flag rendering3DType becomes false and immersive audio rendering only spatial coloration filters (render2D()). When the scene is not for a frame, the flag becomes true and the immersive audio rendering uses spatial coloration filter and spatial localization panning (render3D()). 

[bookmark: _Toc385338030]Definitions
[bookmark: _Toc383694977][bookmark: _Toc385338031]General remarks
Audio signals that are fed into the format converter are referred to as input signals in the following. Audio signals that are the result of the format conversion process are referred to as output signals. Note that the audio input signals of the format converter are audio output signals of the core decoder. 
Vectors and matrices are denoted by bold-faced symbols. Vector elements or matrix elements are denoted as italic variables supplemented by indices indicating the row/column of the vector/matrix element in the vector/matrix, e.g. [image: ] denotes a vector and its elements. Similarly, [image: ]denotes the element in the[image: ]th row and [image: ]th column of a matrix[image: ]. 
[bookmark: _Toc383694978][bookmark: _Toc385338032]Variable definitions
[image: ]	Number of channels in the input channel configuration.
[image: ]	Number of channels in the output channel configuration.
[image: ]	Downmix matrix containing real-valued non-negative downmix coefficients (downmix gains). [image: ]is of dimension ([image: ]x [image: ]).
[image: ]	Matrix consisting of gain values per processing band determining frequency responses of equalizing filters.
[image: ]	Vector signalling which equalizer filters to apply to the input channels (if any).
MDMX2	Secondary downmix matrix containing real-valued non-negative downmix coefficients (downmix gains) for the immersive audio rendering used in render2D () function. [image: ]is of dimension ([image: ]x [image: ]). 
[image: ]	Frame length measured in time domain audio samples.
ν	Time domain sample index.
[image: ]	QMF time slot index (= subband sample index).
[image: ]	Frame length measured in QMF slots.
[image: ]	Frame index (frame number).
[image: ]	Number of hybrid QMF frequency bands, [image: ]= 71.
[image: ]	QMF band index (1..64) or hybrid QMF band index (1.. [image: ]).
[image: ]	Channel indices.
[image: ]	Numerical constant, [image: ].
rendering3DType	Flag from the bitstream identifying the rendering type for immersive audio. True for the general audio scene and false for the highly decorrelated wideband scene (e.g. applause).
[bookmark: _Toc385338033]Immersive audio rendering
Immersive audio rendering provides virtual 3D elevated sound images for horizontal-only layouts as 5.1 channel. The rendering algorithm consists of spatial coloration filtering and spatial localization panning as shown in Figure.AT1.

 Figure.AT1 – Immersive Audio Rendering

Spatial coloration filter is designed to compensate the tone color based on the HRTF modeling. It reflects the difference propagation path of input channel over output channel. For example, the filter for the input signals from the top channels in 5.1 channel reproduction has general tendency of boosting the energy of 1~10kHz components and reducing the energy over 10kHz components. Eight different sets of filter coefficients are defined in Table.AT3 for the input channel from top layer and six sets of filter coefficients are defined in Table.AT5 for the input channel from horizontal layer.
While a spatial coloration filter is used for a height input channel, two spatial coloration filters are used for the pair-wise rendered horizontal input channel. For example, when CH_M_090 is rendered by CH_M_L030 and CH_M_L110, the filter COLOR090_030 is used for the output channel CH_M_L030 and COLOR090_110 is used for the output channel CH_M_L090. These filters are designed to preserve tone color of the pair-wise panned channels at left or right side.
Spatial localization panning is designed to make the overhead sound image using overhead sound image with multichannel panning. Each input channel loads different panning coefficients as defined in Table.AT2 and Table.AT4.



Figure.AT2 – Operational flow of immersive audio rendering

While the spatial localization panning provides overhead sound image, it also makes the sound scene correlated. In order to prevent the side effect of virtual rendering for such a uncorrelated sound scene, a side information renderinge3DType is extracted per frame at the encoder and transmitted to the decoder. When rendering3DType is true, the virtual rendering uses both spatial coloration filter and spatial localization panning in a rendering function render3D(). When it is false, the virtual rendering uses only spatial coloration filter in other rendering function render2D(). The spatial localization panning function in the render3D() uses different downmix matrix created by different panning coefficients depending on the frequency. 
The decision on “Enable virtual rendering” is made by the priority of the downmix rules according to the input channel and the reproduction layout as defined in Table 96.

[bookmark: _Toc383694979][bookmark: _Toc385338034]Processing
[bookmark: _Toc383694980][bookmark: _Toc385338035]Initialization of the format converter
General description of the initialization
The initialization of the format converter is carried out before processing of the audio samples delivered by the core decoder takes place. 
· The initialization takes into account as input parameters
· The sampling rate of the audio data to process.
· The channel configuration of the audio data to process with the format converter (number and geometric positions of input channels).
· The channel configuration of the desired output format (number and geometric positions of output channels).
· Optional: Parameters signaling the deviation of the output loudspeaker positions from a standard loudspeaker setup (random setup functionality).
It returns 
· A frequency dependent downmix matrix [image: ] that is applied in the audio signal processing of the format converter. [image: ] is also taken into account in the core decoding process, see  5.5.3.1.2.
· When immersive audio rendering is possible, secondary frequency dependent downmix matrix MDMX2 that is applied for the durations of wideband decorrelated audio scene in the audio signal processing of the format converter. MDMX2 is also taken into account in the core decoding process, see  5.5.3.1.2.
· Trim gain and delay values ([image: ] and[image: ]) to compensate for varying loudspeaker distances.
The input parameters to the initialization algorithm are listed in Fehler! Verweisquelle konnte nicht gefunden werden. .
Table 1 – Format converter initialization input parameters
	
	Input format: number of channels and nominal channel setup geometry

	
	Output format: number of channels and nominal channel setup geometry

	fs
	Sampling frequency in Hertz.

	[image: ]
	For each output channel A, an azimuth angle is specified, determining the deviation from the standard format loudspeaker azimuth.

	[image: ]
	For each output channel A, an elevation angle is specified, determining the deviation from the standard format loudspeaker elevation.

	[image: ]
	For each output channel A, the distance of the loudspeaker to the central listening position is specified in meters.

	Nmaxdelay
	Maximum delay that can be used for trim [samples]



Table 49 lists the output parameters that are derived during the initialization of the format converter.
Table 2 – Format converter initialization output parameters
	[image: ]
	Downmix matrix [linear gains]

	MDMX2
	Secondary downmix matrix for the immersive audio rendering

	[image: ]
	Trim gain [linear] for each output channel A

	[image: ]
	Trim delay [samples] for each output channel A



Assignment of format converter channel labels to input/output format channels
The format converter initialization is based on a system of rules that are defined in terms of format converter channel labels, seeError! Reference source not found.. To allow the application of the initialization rules, the channel labels have to be assigned to the channels of the input and output formats. Each format converter channel label is associated with a segment of the surface of the unit sphere, as defined in Error! Reference source not found.. The segments are designed non-overlapping.
The assignment of channel labels to channels is done by geometrically matching the segments to the position data associated with the channels of the input and output formats. The azimuth and elevation angles in degrees of the position data associated with the channels shall be rounded towards the nearest integer number before performing the channel label assignment. Note that the nominal channel positions shall be applied in the following matching to channel label sectors, i.e. the azimuth and elevation angles without taking into account potential angle deviations  signalled in[image: ] and/or [image: ] .
For each channel that is not an LFE (low-frequency effects) channel:
If the nominal position of the current channel, defined by its azimuth angle and elevation angle, is within or on the border of one of the segments defined in Error! Reference source not found., then:
Assign the corresponding channel label (e.g.  CH_M_L030) associated with the matching segment.
Add the angle differences between the nominal position of the current channel and the nominal position associated with the matching segment (i.e. the angles in the second and third column of Error! Reference source not found.) to the angle deviations stored in [image: ] and [image: ].
Else (i.e. no matching sector found), then:
Assign the CH_EMPTY label.

If an input or output format contains exactly one LFE channel, then the label CH_LFE1 shall be assigned to this channel. 
If an input or output format contains exactly two LFE channels, then the labels CH_LFE1 and CH_LFE2 shall be assigned to the two LFE channels in the order that minimizes the maximum azimuth distance from the channels to the assigned CH_LFE1 and CH_LFE2 nominal azimuth positions.
If an input or output format contains more than 2 LFE channels, then those 2 LFE channels out of the considered setup shall be selected that minimize the maximum azimuth distance to the CH_LFE1 and CH_LFE2 nominal azimuth positions. The labels CH_LFE1 and CH_LFE2 shall be assigned as in the case of two LFE channels. The remaining LFE channels shall not be considered further in the calculation of downmix coefficients, i.e. the corresponding lines/columns of the downmix matrix shall remain filled with zeros.
Handling for unknown input channels
If the label CH_EMPTY is assigned to an input channel, this channel shall be considered unknown to the rules-based initialization and the downmix coefficients for mapping this input channel to the output channels shall be derived as described in subclause 10.3.1.6.6.
Handling for unknown output formats
If the output format contains at least one channel with the label CH_EMPTY assigned to it, or if at least one channel label is assigned to more than one channel of the output format, the output format shall be considered unknown and the derivation of the downmixing coefficients shall be carried out as described in subclause 10.3.1.6.6. The rules-based derivation of downmix coefficients shall not be applied for unknown output formats.
Handling of deviations from standard loudspeaker positions
If the below conditions are not met, the rules-based initialization is considered to have failed, the ouput format shall be considered to be unknown, and the downmixing gains shall be obtained as defined in subclause 10.3.1.6.6
The absolute values of [image: ]and [image: ]shall not exceed 35 and 55 degrees, respectively. The minimum angle between any loudspeaker pair (without LFE channels) shall not be smaller than 15 degrees.
The values of [image: ]shall be such that the ordering by azimuth angles of the horizontal loudspeakers does not change. Likewise, the ordering of the height and low loudspeakers shall not change.
The values of [image: ]shall be such that the ordering by elevation angles of loudspeakers which are (approximately) above/below each other does not change. To verify this, the following procedure is applied:
For each row of Error! Reference source not found., which contains two or three channels of the output format, do:
· Order the channels by elevation without randomization
· Order the channels by elevation with considering randomization
· If the two orderings differ, return an initialization error
If the below conditions are not met, converter initialization is considered to have failed, and an error shall be returned.
The loudspeaker distances [image: ]shall be between 0.4 and 200 meters. The ratio between the largest and smallest loudspeaker distance shall not exceed 4. The largest computed trim delay shall not exceed Nmaxdelay.
Derivation of trim parameters
Trim parameters are derived to compensate for the effects of non-uniform loudspeaker distances. They comprise
[image: ]:	trim delay in samples for each output channel A,
[image: ]:	trim gain (linear gain value) for each output channel A,
and are computed as a function of the loudspeaker distances in[image: ]:
[image: ] ,
[image: ] .
If the largest  exceeds Nmaxdelay, then initialization failed and an error shall be returned.

Rules-Based Initialization algorithm
The rules-based initialization algorithm is defined in the following. It shall not be applied if the output format is considered unknown as defined above. Note that the following description makes use of the intermediate parameters defined in Table 50 only for clarity reasons. An implementation may omit the introduction of these intermediate parameters. 
Table 3 – Format converter initialization intermediate parameters
	[image: ]
	Vector of converter source channels [input channel indices]

	[image: ]
	Vector converter destination channels [output channel indices]

	[image: ]
	Vector of converter gains [linear]

	[image: ]
	Vector of converter EQ indices

	[image: ]
	Matrix containing equalizer gain values for all EQ indices and frequency bands



The intermediate parameters describe the dowmixing parameters in a mapping-oriented way, i.e. as sets of parameters[image: ],[image: ],[image: ],[image: ]  per mapping i.

The format converter initialization output parameters are derived as described in the following steps:
Random setups Pre-Processing:
Random output loudspeaker setups, i.e. output setups that contain loudspeakers at positions deviating from the positions defined for the desired output format are signalled by specifying the loudspeaker position deviation angles as input parameters [image: ]and [image: ]. The angle deviations are taken into account as a pre-processing step: 
Modify in Table 51 the channels’ azimuth and elevation angles by adding [image: ]and [image: ]to the corresponding channels’ azimuth and elevation angles.

Derivation of input channel/output channel mapping parameters:
The parameters vectors[image: ], [image: ], [image: ], [image: ]define the mapping of input channels to output channels. For each mapping i from an input channel to an output channel with non-zero downmix gain they define the downmix gain as well as an equalizer index that indicates which equalizer curve has to be applied to the input channel under consideration in mapping i.
The elements of the parameter vectors[image: ], [image: ], [image: ], [image: ]are derived by the following algorithm:
Initialize the mapping counter i:   [image: ];
For each input channel, ignoring channels with label CH_EMPTY assigned to them:
If the input channel also exists in the output format (e.g. input channel under consideration is CH_M_R030 and channel CH_M_R030 exists in the output format), then:
[image: ] = index of source channel in input (Example: channel CH_M_R030 in FORMAT_5_2_1 is at second place according to Table 52, i.e. has index 2 in this format)
[image: ] = index of same channel in output
[image: ] = 1.0
[image: ] = 0
[image: ]
Else (i.e. if the input channel does not exist in the output format)
search the first entry of this channel in the Source column of Table 53, for which the channels in the corresponding row of the Destination column exist. The VIRTUAL in destination column shall be considered valid if the output format contains 5.1 channel loudspeakers. If the layout has deviation angle in azimuth and elevation from 5.1 channel loudspeakers, the deviation is compensated as XXThe ALL_U destination shall be considered valid (i.e. the relevant output channels exist) if the output format contains at least one “CH_U_” channel. The ALL_M destination shall be considered valid (i.e. the relevant output channels exist) if the output format contains at least one “CH_M_” channel. If for no entry in Table 86 corresponding to the input channel the channels in the Destination column exist, the rules-based initialization shall terminate and the downmix gains shall be derived according to subclause 10.3.1.6.6.
If Destination column contains VIRTUAL, then:
For each output channel x of 5.1 loudspeakers, do:
[image: ] = index of source channel in input 
Di = index of channel x in 5.1 loudspeakers
[image: ] = (value of Gain column) * Gv,1~6 (Si)
if Gi > 0
[image: ] = value of EQ column
[image: ]
The gain Gv,1~6 (Si) are pre-defined spatial localization panning coefficients (Table.AT2)
Else if Destination column contains ALL_U, then:
For each output channel x with “CH_U_” in its name, do:
[image: ] = index of source channel in input 
[image: ] = index of channel x in output
[image: ] = (value of Gain column) / sqrt(number of “CH_U_” output channels)
[image: ] = value of EQ column
[image: ]
Else if Destination column contains ALL_M, then:
For each output channel x with “CH_M_” in its name, do:
[image: ] = index of source channel in input
[image: ] = index of channel x in output
[image: ] = (value of Gain column) / sqrt(number of “CH_M_” output channels)
[image: ] = value of EQ column
[image: ]
Else If there is one channel in the Destination column, then:
[image: ] = index of source channel in input
[image: ] = index of destination channel in output
[image: ] = value of Gain column
[image: ] = value of EQ column
[image: ]
Else (two channels in Destination column)
[image: ] = index of source channel in input
[image: ] = index of first destination channel in output
[image: ] = (value of Gain column) * [image: ]
[image: ] = value of EQ column
[image: ]

[image: ] = [image: ]
[image: ] = index of second destination channel in output
[image: ] = (value of Gain column) * [image: ]
[image: ] = [image: ]
[image: ]
The gains [image: ] and [image: ] are computed by applying tangent law amplitude panning in the following way:
· Unwrap source destination channel azimuth angles to be positive.
· The azimuth angles of the destination channels are [image: ] and [image: ] (see Table 51).
· The azimuth angle of the source channel ( = panning target) is [image: ].
· [image: ]   
· [image: ]
· [image: ]
· [image: ]

Derivation of equalizer gains [image: ]:	
[image: ]consists of gain values per frequency band k and equalizer index e. The 5 predefined equalizers are combinations of different peak filters and the other 8 defined equalizers are designed for the immersive audio rendering based on head related transfer function as in Table.AT3. Each equalizer of the first five filters is a serial cascade of one or more peak filters and a gain:
[image: ]
where band(k) is the normalized center frequency of frequency band k, specified in Table 54, fs is the sampling frequency, and function peak() is for negative G
[image: ]

and otherwise
[image: ]
The parameters for the equalizers are specified in Table 5.
Post-Processing for Random Setups
Once the output parameters are computed, they are modified related to the specific random azimuth and elevations angles. This step has only to be carried out, if not all [image: ] are zero. Definition of the post-processing algorithm:

For each element i in Si with destination VIRTUAL, do
	if Si ∈ { CH_U_L030, CH_U_L045, CH_U_R030, CH_U_R045 }
		if the output channel position can be practically considered as the input channel
(e.g. the Si  is CH_U_L030 or CH_U_L045 and the Di is”heightened” CH_M_L030)
· Change the gain and EQ : Gi = 1, Ei = 0, GEQ = {1,1,…..,1}T

			for all the elements with other output channels with Si
· Remove the mixing rules : : Gi = 0, Ei = 0, GEQ = {1,1,…..,1}T

else if  the output channel position is practically a height channel
· Change the EQ : Ei = 0, GEQ = {1,1,…..,1}T

else 
if Si ∈ { CH_U_000, CH_T_000 } 
		if the output channel position is practically a height channel
· Change the EQ : Ei = 0, GEQ = {1,1,…..,1}T

if the only one of { CH_M_L030, CH_M_R030} is practically a height channel
· Change the gain of the elevated channel of { CH_M_L030, CH_M_R030 } 
: 

if Si == CH_U_000, for the elements with Di ∈ { CH_M_L110, CH_M_R110, CH_M_000 }
· Remove the mixing rules : : Gi = 0, Ei = 0, GEQ = {1,1,…..,1}T

if Si ∈ { CH_U_180, CH_T_000 } 
		if the output channel position is practically a height channel
· Change the EQ : Ei = 0, GEQ = {1,1,…..,1}T

if the only one of { CH_M_L110, CH_M_R110} is practically a height channel
· Change the gain of the elevated channel of { CH_M_L110, CH_M_R110 } 
: 

if Si ∈ { CH_U_L090, CH_U_L110, CH_U_L135, CH_U_R090, CH_U_R110, CH_U_R135 } 
		if the output channel position is practically a height channel
· Change the EQ : Ei = 0, GEQ = {1,1,…..,1}T

if the azimuth deviations |rele,CH_M_L030 + rele,CH_M_R030| > 10
· Change the gain of the elements with elevated channel of { CH_M_L030, CH_M_R030 } 
: 

if the azimuth deviations |rele,CH_M_L110 + rele,CH_M_R110| > 10
· Change the gain of the elements with elevated channel of { CH_M_L110, CH_M_R110 } 
: 


for all the elements with Si , perform power normalization
Explanation of the post-processing steps defined above: 
1 When the deviation moves an output channel close enough to the “other input channel position,” the downmix rule for the corresponding input channel is one-to-one mapping.
2 When the elevation azimuth makes an output channel a “height channel”, remove the spatial coloration filter because it is already in top layer.
3 When {CH_M_L030, CH_M_R030} or {CH_M_L110, CH_M_R110} have different elevation, the gain of the elements of the unbalanced speakers needs to be compensated. As the elevated sound source provides the listener lower interaural level difference, the virtually localized on the unbalanced speakers moves to the less elevated channel. For that reason, central input channels of { CH_U_000, CH_T_000, CH_U_180} are post processed to keep the channel in center. 
4 Misalignment of the azimuth is also compensated.
5 After the four steps, power normalization is applied.

For each element i in Si with destination non-VIRTUAL, do
if output channel with index [image: ] is a horizontal channel by definition (i.e. output channel label contains the label ‘_M_’), and
if this output channel is now a height channel (elevation in range 0..60 degrees), and
if input channel with index [image: ] is a height channel (i.e. label contains ‘_U_’), then
· h = min(elevation of randomized output channel, 35) / 35
· [image: ]
· Apply compensation gain to DMX gain: [image: ]
·  Define new equalizer with a new index e, where [image: ]
· [image: ]
else if input channel with index [image: ] is a horizontal channel (label contains ‘_M_’)
· h = min(elevation of randomized output channel, 35) / 35
· Define new equalizer with a new index e, where [image: ]
· [image: ]
 
Explanation of the post-processing steps defined above: 
h is a normalized elevation parameter indicating the elevation of a nominally horizontal output channel (‘_M_’) due to a random setup elevation offset [image: ]. For zero elevation offset h=0 follows and effectively no post-processing is applied.
The rules table (Table 53) in general applies a gain of 0.85 when mapping an upper input channel (‘_U_’ in channel label) to one or several horizontal output channels (‘_M_’ in channel label(s)). In case the output channel gets elevated due to a random setup elevation offset [image: ], the gain of 0.85 is partially (0<h<1) or fully (h=1) compensated for. Similarly the equalizer definitions fade towards a flat EQ-curve ([image: ]) for h approaching h =1.
In case a horizontal input channel gets mapped to an output channel that gets elevated due to a random setup elevation offset [image: ], the equalizer [image: ] is partially (0<h<1) or fully (h=1) applied.

Derivation of rules-based initialization downmix matrix:
[image: ]is derived by rearranging the temporary parameters from the mapping-oriented representation (enumerated by mapping counter i) to a channel-oriented representation as defined in the following:
Initialize [image: ]as an [image: ]x [image: ] zero matrix for all processing bands k.
For each i do:
If ([image: ])
[image: ]
Else
		[image: ]
where [image: ] denotes the matrix element in the [image: ]th row and [image: ]th column of [image: ]. Note that after the rules-based initialization this matrix of downmix coefficients will contain columns of zeros, if unknown channels are present in the input format. Those columns are filled with downmix gains as described in subclause 10.3.1.6.6.
Derivation of rules-based initialization secondary downmix matrix:
For the immersive audio rendering, secondary downmix matrix MDMX2 is is derived following the similar way except
(1) The gain Gi is decided following the downmix rule with highest priority except “VIRTUAL” destination
(2) The EQ GEQ is decided following the downmix rule with “VIRTUAL” destination
VBAP-based downmix coefficients derivation
Handling of unknown output formats:
In case the output format is considered unknown, the downmix coefficients for all input channels shall be derived as follows:


Each channel of the input setup is regarded as a static audio object at the position defined by the azimuth and elevation angles associated with the input channel. For each input channel the mixing gains to all output loudspeakers are calculated as VBAP panning gains according to subclause 8.4.3, where the same output format shall be signaled to the VBAP algorithm as to the format converter. The panning gain vectors  shall be post-processed according to subclause 10.3.1.6.7.
The downmix matrix [image: ]is finally derived by filling each matrix column with the post-processed panning gain vector elements of the corresponding input channel, independently of the processing band index k.
Handling of unknown input channels:
In case the input format contains unknown input channels, the downmix coefficients for these channels shall be derived as follows:


Each unknown channel of the input setup is regarded as a static audio object at the position defined by the azimuth and elevation angles associated with the input channel. For each unknown input channel the mixing gains to all output loudspeakers are calculated as VBAP panning gains according to subclause 8.4.3, where the same output format shall be signaled to the VBAP algorithm as to the format converter. The panning gain vectors  shall be post-processed according to subclause 10.3.1.6.7.
The downmix matrix [image: ]is finally derived by filling each matrix column corresponding to an unknown input channel with the post-processed panning gain vector elements of the corresponding unknown input channel, independently of the processing band index k.
VBAP gains post-processing
The mixing gains obtained from the VBAP rendering algorithm shall be post-processed to avoid excessive use of phantom sources. Therefore, small matrix gains are set to zero, followed by a renormalization of the panning gains to ensure energy-preservation:

For each panning gain vector  do:
If the vector contains at least one panning gain that exceeds the threshold value 0.3, then
Set all vector elements smaller or equal to 0.3 to the value 0.0
Normalize the gain vector such that the sum of squares of the vector elements remains the same as before the post-processing
Format converter initialization tables
Table 4 – Channels definitions: Channel labels, corresponding azimuth and elevation angles, and associated sectors. The sectors are defined as points on the unit sphere, whose azimuth/elevation angles are within or on the borders of the intervals given by the azimuth/elevation start and end values in the table, connecting azimuth start and end values in counter-clockwise direction and connecting elevation start and end values in direction of increasing elevation angles.
	Channel
	Azimuth [deg]
	Elevation [deg]
	Azimuth start angle of sector [deg]
	Azimuth end angle of sector [deg]
	Elevation start angle of sector [deg]
	Elevation end angle of sector [deg]

	CH_M_000
	0
	0
	-7
	+7
	-9
	+20

	CH_M_L022
	+22
	0
	+8
	+22
	-9
	+20

	CH_M_R022
	-22
	0
	-22
	-8
	-9
	+20

	CH_M_L030
	+30
	0
	+23
	+37
	-9
	+20

	CH_M_R030
	-30
	0
	-37
	-23
	-9
	+20

	CH_M_L045
	+45
	0
	+38
	+52
	-9
	+20

	CH_M_R045
	-45
	0
	-52
	-38
	-9
	+20

	CH_M_L060
	+60
	0
	+53
	+75
	-9
	+20

	CH_M_R060
	-60
	0
	-75
	-53
	-9
	+20

	CH_M_L090
	+90
	0
	+76
	+100
	-45
	+20

	CH_M_R090
	-90
	0
	-100
	-76
	-45
	+20

	CH_M_L110
	+110
	0
	+101
	+124
	-45
	+20

	CH_M_R110
	-110
	0
	-124
	-101
	-45
	+20

	CH_M_L135
	+135
	0
	125
	157
	-45
	+20

	CH_M_R135
	-135
	0
	-157
	-125
	-45
	+20

	CH_M_180
	180
	0
	158
	-158
	-45
	+20

	CH_U_000
	0
	+35
	-10
	+10
	+21
	+60

	CH_U_L045
	+45
	+35
	+38
	+66
	+21
	+60

	CH_U_R045
	-45
	+35
	-66
	-38
	+21
	+60

	CH_U_L030
	+30
	+35
	+11
	+37
	+21
	+60

	CH_U_R030
	-30
	+35
	-37
	-11
	+21
	+60

	CH_U_L090
	+90
	+35
	+67
	+100
	+21
	+60

	CH_U_R090
	-90
	+35
	-100
	-67
	+21
	+60

	CH_U_L110
	+110
	+35
	+101
	+124
	+21
	+60

	CH_U_R110
	-110
	+35
	-124
	-101
	+21
	+60

	CH_U_L135
	+135
	+35
	+125
	+157
	+21
	+60

	CH_U_R135
	-135
	+35
	-157
	-125
	+21
	+60

	CH_U_180
	180
	+35
	+158
	-158
	+21
	+60

	CH_T_000
	0
	+90
	-180
	+180
	+61
	+90

	CH_L_000
	0
	-15
	-10
	+10
	-45
	-10

	CH_L_L045
	+45
	-15
	+11
	+75
	-45
	-10

	CH_L_R045
	-45
	-15
	-75
	-11
	-45
	-10

	CH_LFE1
	+45
	n/a
	n/a
	n/a
	n/a
	n/a

	CH_LFE2
	-45
	n/a
	n/a
	n/a
	n/a
	n/a

	CH_EMPTY
	n/a
	n/a
	n/a
	n/a
	n/a
	n/a




Table 5 – Formats with corresponding number of channels and channel ordering
[ed: candidate for deletion, not needed by FC]
	Input/Output Format
	Number of Channels
	Channels (with ordering)

	FORMAT_2_0
	2
	CH_M_L030, CH_M_R030

	FORMAT_5_1
	6
	CH_M_L030, CH_M_R030, CH_M_000, CH_LFE1, CH_M_L110, CH_M_R110

	FORMAT_5_2_1
	8
	CH_M_L030, CH_M_R030, CH_M_000, CH_LFE1, CH_M_L110, CH_M_R110, CH_U_L030, CH_U_R030

	FORMAT_7_1
	8
	CH_M_L030, CH_M_R030, CH_M_000, CH_LFE1, CH_M_L110, CH_M_R110, CH_M_L135, CH_M_R135

	FORMAT_7_1_ALT
	8
	CH_M_L030, CH_M_R030, CH_M_000, CH_LFE1, CH_M_L110, CH_M_R110, CH_M_L060, CH_M_R060

	FORMAT_8_1
	9
	CH_M_L030, CH_M_R030, CH_U_000, CH_LFE1, CH_M_L110, CH_M_R110, CH_U_L030, CH_U_R030, CH_L_000

	FORMAT_10_1
	11
	CH_M_L030, CH_M_R030, CH_M_000, CH_LFE1, CH_M_L110, CH_M_R110, CH_U_L030, CH_U_R030, CH_U_L110, CH_U_R110, CH_T_000

	FORMAT_22_2
	24
	CH_M_L060, CH_M_R060, CH_M_000, CH_LFE1, CH_M_L135, CH_M_R135, CH_M_L030, CH_M_R030, CH_M_180, CH_LFE2, CH_M_L090, CH_M_R090, CH_U_L045, CH_U_R045, CH_U_000, CH_T_000, CH_U_L135, CH_U_R135, CH_U_L090, CH_U_R090, CH_U_180,     CH_L_000, CH_L_L045, CH_L_R045

	FORMAT_9_1
	10
	CH_M_L030, CH_M_R030, CH_M_000, CH_LFE1, CH_M_L110, CH_M_R110, CH_U_L030, CH_U_R030, CH_U_L110, CH_U_R110

	FORMAT_9_0
	9
	CH_M_L030, CH_M_R030, CH_M_000, CH_M_L110, CH_M_R110, CH_U_L030, CH_U_R030, CH_U_L110, CH_U_R110

	FORMAT_11_1
	12
	CH_M_L030, CH_M_R030, CH_M_000, CH_LFE1, CH_M_L110, CH_M_R110, CH_U_L030, CH_U_R030, CH_U_L110, CH_U_R110, CH_T_000, CH_U_000

	FORMAT_12_1
	13
	CH_M_L030, CH_M_R030, CH_M_000, CH_LFE2, CH_M_L135, CH_M_R135, CH_U_L030, CH_U_R030, CH_U_L135, CH_U_R135, CH_T_000, CH_M_L090, CH_M_R090

	FORMAT_4_4_0
	8
	CH_M_L030, CH_M_R030, CH_M_L110, CH_M_R110, CH_U_L030, CH_U_R030, CH_U_L110, CH_U_R110

	FORMAT_4_4_T_0
	9
	CH_M_L030, CH_M_R030, CH_M_L110, CH_M_R110, CH_U_L030, CH_U_R030, CH_U_L110, CH_U_R110, CH_T_000

	FORMAT_14_0
	14
	CH_M_L030, CH_M_R030, CH_M_000, CH_M_L135, CH_M_R135, CH_U_000, CH_U_L045, CH_U_R045,  CH_U_L090, CH_U_R090, CH_U_L135, CH_U_R135, CH_U_180, CH_T_000,

	FORMAT_3_0_FC
	3
	CH_M_L030, CH_M_R030, CH_M_000

	FORMAT_3_0_RC
	3
	CH_M_L030, CH_M_R030, CH_M_180

	FORMAT_4_0
	4
	CH_M_L030, CH_M_R030, CH_M_L110, CH_M_R110

	FORMAT_5_0
	5
	CH_M_L030, CH_M_R030, CH_M_000, CH_M_L110, CH_M_R110

	FORMAT_6_1
	7
	CH_M_L030, CH_M_R030, CH_M_000, CH_LFE1, CH_M_L110, CH_M_R110, CH_M_180



Table 6 – Converter rules matrix
	Source
	Destination
	Gain

	
	(spatial localization panning coefficients
 for virtual rendering)
	

	CH_M_000
	CH_M_L030
	CH_M_R030
	100

	CH_M_L060
	CH_M_L030
	CH_M_L110
	80

	CH_M_L060
	CH_M_L030
	　
	100

	CH_M_R060
	CH_M_R030
	CH_M_R110
	80

	CH_M_R060
	CH_M_R030
	　
	100

	CH_M_L090
	CH_M_L030
	CH_M_L110
	80

	CH_M_L090
	CH_M_L030
	　
	100

	CH_M_R090
	CH_M_R030
	CH_M_R110
	80

	CH_M_R090
	CH_M_R030
	　
	100

	CH_M_L110
	CH_M_L135
	　
	100

	CH_M_L110
	CH_M_L030
	　
	100

	CH_M_R110
	CH_M_R135
	　
	100

	CH_M_R110
	CH_M_R030
	　
	100

	CH_M_L135
	CH_M_L110
	　
	100

	CH_M_L135
	CH_M_L030
	　
	100

	CH_M_R135
	CH_M_R110
	　
	100

	CH_M_R135
	CH_M_R030
	　
	100

	CH_M_180
	CH_M_L135
	CH_M_R135
	100

	CH_M_180
	CH_M_L110
	CH_M_R110
	100

	CH_M_180
	CH_M_L030
	CH_M_R030
	60

	CH_U_000
	CH_U_L030
	CH_U_R030
	100

	CH_U_000
	CH_U_L045
	CH_U_R045
	100

	CH_U_L045
	CH_U_L030
	　
	100

	CH_U_R045
	CH_U_R030
	　
	100

	CH_U_L030
	CH_U_L045
	　
	100

	CH_U_R030
	CH_U_R045
	　
	100

	CH_U_L090
	CH_U_L030
	CH_U_L110
	80

	CH_U_L090
	CH_U_L030
	CH_U_L135
	80

	CH_U_L090
	CH_U_L045
	　
	100

	CH_U_L090
	CH_U_L030
	　
	100

	CH_U_R090
	CH_U_R030
	CH_U_R110
	80

	CH_U_R090
	CH_U_R030
	CH_U_R135
	80

	CH_U_R090
	CH_U_R045
	　
	100

	CH_U_R090
	CH_U_R030
	　
	100

	CH_U_L110
	CH_U_L135
	　
	100

	CH_U_L110
	CH_U_L030
	　
	100

	CH_U_R110
	CH_U_R135
	　
	100

	CH_U_R110
	CH_U_R030
	　
	100

	CH_U_L135
	CH_U_L110
	　
	100

	CH_U_L135
	CH_U_L030
	　
	100

	CH_U_R135
	CH_U_R110
	　
	100

	CH_U_R135
	CH_U_R030
	　
	100

	CH_U_180
	CH_U_L135
	CH_U_R135
	100

	CH_U_180
	CH_U_L110
	CH_U_R110
	100

	CH_T_000
	　
	　
	80

	CH_U_000
	VIRTUAL
	TFC
	100

	CH_U_L045
	VIRTUAL
	TFL
	100

	CH_U_R045
	VIRTUAL
	TFR
	100

	CH_U_L030
	VIRTUAL
	TFL
	100

	CH_U_R030
	VIRTUAL
	TFR
	100

	CH_U_L090
	VIRTUAL
	TSL
	100

	CH_U_R090
	VIRTUAL
	TSR
	100

	CH_U_L135
	VIRTUAL
	TBL
	100

	CH_U_R135
	VIRTUAL
	TBR
	100

	CH_U_L110
	VIRTUAL
	TBL
	100

	CH_U_R110
	VIRTUAL
	TBR
	100

	CH_U_180
	VIRTUAL
	TBC
	100

	CH_T_000
	VIRTUAL
	VOG
	100

	CH_L_000
	CH_M_000
	　
	100

	CH_L_L045
	CH_M_L030
	　
	100

	CH_L_R045
	CH_M_R030
	　
	100

	CH_U_000
	CH_M_L030
	CH_M_R030
	80

	CH_U_000
	CH_M_L030
	CH_M_R030
	85

	CH_U_L045
	CH_M_L030
	　
	80

	CH_U_L045
	CH_M_L030
	　
	85

	CH_U_R045
	CH_M_R030
	　
	85

	CH_U_L030
	CH_M_L030
	　
	80

	CH_U_L030
	CH_M_L030
	　
	85

	CH_U_R030
	CH_M_R030
	　
	85

	CH_U_R030
	CH_M_R060
	　
	85

	CH_U_L090
	CH_M_L030
	CH_M_L110
	85

	CH_U_L090
	CH_M_L030
	　
	85

	CH_U_R090
	CH_M_R030
	CH_M_R110
	85

	CH_U_R090
	CH_M_R030
	　
	85

	CH_U_L110
	CH_M_L110
	　
	80

	CH_U_L110
	CH_M_L110
	　
	85

	CH_U_L110
	CH_M_L030
	　
	85

	CH_U_R110
	CH_M_R110
	　
	85

	CH_U_R110
	CH_M_R030
	　
	85

	CH_U_L135
	CH_M_L110
	　
	80

	CH_U_L135
	CH_M_L110
	　
	85

	CH_U_L135
	CH_M_L030
	　
	85

	CH_U_R135
	CH_M_R110
	　
	85

	CH_U_R135
	CH_M_R030
	　
	85

	CH_U_180
	CH_M_180
	　
	85

	CH_U_180
	CH_M_L110
	CH_M_R110
	85

	CH_U_180
	CH_M_L030
	CH_M_R030
	85

	CH_T_000
	　
	　
	80

	CH_L_000
	CH_M_000
	　
	100

	CH_L_000
	CH_M_L030
	CH_M_R030
	100

	CH_L_000
	CH_M_L030
	CH_M_R060
	100

	CH_L_000
	CH_M_L060
	CH_M_R030
	100

	CH_L_L045
	CH_M_L030
	　
	100

	CH_L_R045
	CH_M_R030
	　
	100

	CH_LFE1
	CH_LFE2
	　
	100

	CH_LFE1
	CH_M_L030
	CH_M_R030
	100

	CH_LFE2
	CH_LFE1
	　
	100

	CH_LFE2
	CH_M_L030
	CH_M_R030
	100



Table 7 – Normalized center frequencies of the 71 filter-bank bands
	Normalized Frequency [0, 1]

	0.00458330

	0.00083333

	0.00208330

	0.00587500

	0.00979170

	0.01429200

	0.01979200

	0.02700000

	0.03541700

	0.04262500

	0.05675000

	0.07237500

	0.08800000

	0.10362000

	0.11925000

	0.13487000

	0.15050000

	0.16612000

	0.18175000

	0.19737000

	0.21300000

	0.22862000

	0.24425000

	0.25988000

	0.27550000

	0.29113000

	0.30675000

	0.32238000

	0.33800000

	0.35363000

	0.36925000

	0.38488000

	0.40050000

	0.41613000

	0.43175000

	0.44738000

	0.46300000

	0.47863000

	0.49425000

	0.50987000

	0.52550000

	0.54112000

	0.55675000

	0.57237000

	0.58800000

	0.60362000

	0.61925000

	0.63487000

	0.65050000

	0.66612000

	0.68175000

	0.69737000

	0.71300000

	0.72862000

	0.74425000

	0.75987000

	0.77550000

	0.79112000

	0.80675000

	0.82237000

	0.83800000

	0.85362000

	0.86925000

	0.88487000

	0.90050000

	0.91612000

	0.93175000

	0.94737000

	0.96300000

	0.97454000

	0.99904000



Table 8 – Equalizer parameters
	Equalizer
	Pf [Hz]
	PQ
	Pg[dB]
	g [dB]

	[image: ]
	12000
	0.3
	-2
	1.0

	[image: ]
	12000
	0.3
	-3.5
	1.0

	[image: ]
	200,1300, 600
	0.3, 0.5, 1.0
	-6.5, 1.8, 2.0
	0.7

	[image: ]
	5000, 1100
	1.0, 0.8
	4.5, 1.8
	-3.1

	[image: ]
	35
	0.25
	-1.3
	1.0



Table 9 – Vertically corresponding channels: Each row lists channels which are considered to be above/below each other. 
	CH_L_000
	 CH_M_000
	  CH_U_000

	CH_L_L045
	CH_M_L030
	 CH_U_L030

	CH_L_L045
	CH_M_L030
	 CH_U_L045

	CH_L_L045
	CH_M_L045
	 CH_U_L030

	CH_L_L045
	CH_M_L045
	 CH_U_L045

	CH_L_L045
	CH_M_L060
	 CH_U_L030

	CH_L_L045
	CH_M_L060
	 CH_U_L045

	CH_L_R045
	CH_M_R030
	 CH_U_R030

	CH_L_R045
	CH_M_R030
	 CH_U_R045

	CH_L_R045
	CH_M_R045
	 CH_U_R030

	CH_L_R045
	CH_M_R045
	 CH_U_R045

	CH_L_R045
	CH_M_R060
	 CH_U_R030

	CH_L_R045
	CH_M_R060
	 CH_U_R045

	CH_M_180
	 CH_U_180
	

	CH_M_L090
	CH_U_L090
	

	CH_M_L110
	CH_U_L110
	

	CH_M_L135
	CH_U_L135
	

	CH_M_L090
	CH_U_L110
	

	CH_M_L090
	CH_U_L135
	

	CH_M_L110
	CH_U_L090
	

	CH_M_L110
	CH_U_L135
	

	CH_M_L135
	CH_U_L090
	

	CH_M_L135
	CH_U_L135
	

	CH_M_R090
	CH_U_R090
	

	CH_M_R110
	CH_U_R110
	

	CH_M_R135
	CH_U_R135
	

	CH_M_R090
	CH_U_R110
	

	CH_M_R090
	CH_U_R135
	

	CH_M_R110
	CH_U_R090
	

	CH_M_R110
	CH_U_R135
	

	CH_M_R135
	CH_U_R090
	

	CH_M_R135
	CH_U_R135
	



[bookmark: _Toc383694981][bookmark: _Toc385338036]Audio signal processing
The audio processing block of the format converter obtains time domain audio samples for [image: ]channels from the core decoder and generates a downmixed time domain audio output signal consisting of [image: ]channels.
The processing takes as input
· the audio data decoded by the core decoder,
· the static downmix matrix [image: ]returned by the initialization of the format converter,
· the trim parameters [image: ], [image: ]
It returns an [image: ]-channel time domain output signal for the OutConf channel configuration signaled during the initialization of the format converter.
The format converter operates on contiguous, non-overlapping frames of length [image: ]time domain samples of the input audio signals and outputs one frame of[image: ]samples per processed input frame of length[image: ].

T/F-transform (hybrid QMF analysis)
As the first processing step the converter transforms [image: ]samples of the [image: ]channel time domain input signal [image: ] to a hybrid QMF [image: ]channel signal representation consisting of [image: ]QMF time slots (slot index [image: ]) and [image: ] frequency bands (band index [image: ]). A QMF analysis according to ISO/IEC 14496-3:2009, subclause 4.6.18.4, is performed first
[image: ]

followed by a hybrid analysis
[image: ]
The hybrid filtering shall be carried out as described in 8.6.4.3 of ISO/IEC 14496-3:2009 for the 10,20 bands configuration of parametric stereo, resulting in a 71-band hybrid QMF domain representation. 

Covariance analysis

Note that for clarity the frequency band parameter (superscript ) is omitted in the following equations if it is not required for the presentation.





Let be a monotonically increasing frame index denoting the current frame of input data, e.g.  for frame , starting at for the first frame of input data after initialization of the format converter. An analysis frame of length  is formulated from the input hybrid QMF spectra as

     .




Note that is a row vector with elements in case of input channels. The covariance matrix is analysed from four quarter segments of , so that

,






where denotes the transpose and denotes the complex conjugate of a variable and  is anxmatrix for each .




Note that and are the same as  and , correspondingly, and are not necessary to be re-calculated. The covariance matrices of the four quarter segments are added with center weighting assuming a staircase shape:

.


The final estimation for the covariance matrix  is obtained by modifying the entries of with a small channel dependent offset









where the two indices in a notation  denote the matrix element in the th row and th column of . From the covariance matrix  inter-channel correlation coefficients between the channels and  are derived as

.

Phase-alignment matrix formulation
General


The  values are mapped to an attraction measure matrix with elements

      ,

and an intermediate phase-aligning mixing matrix  is formulated. With 

   and


the matrix elements are derived as

.


The intermediate phase-aligning mixing matrix  is modified to avoid abrupt phase shifts, resulting in. This is a recursive process, running for each frame F, processing the frequency bands k in ascending order. 
The regularization against phase shifts takes place in two stages: In the first stage, the regularization performs amplitude-weighted phase comparison against the previous frame, previous band, while also linking the phase-attracted channels. In the second stage, the regularization limits the update rate of the phase coefficients in comparison to the previous frame only.



Both regularization stages make use of a phase update limiting parameter, , which is formulated as function of an onset measure  so that a low energy portion of a signal does not affect the phase processing after an onset:

,

.

Regularization Stage 1:



Stage 1 recursively takes into account comparison values  from the last frame index (F-1) as well as for the last processing band (k-1). is derived from at the end of the regularization process. The first step of regularization stage 1 combines the comparison data across frequency and time as follows:
if (F=0)


else (i.e. for F>0)


where the complex conjugate processing for the third band (k=3) accounts for the complex conjugate properties of the filterbank.






The frequency index k is omitted in the following since the inter-band dependency is now contained in the matrix. The phase change of the current unregularized phase-aligning matrix  relative to is measured by amplitude weighting with  and comparison against , forming  with elements

 .

To also take into account the interdependent channels in the regularization, the relevant entries are intermixed with the attraction matrix ,

.

The phase values of the elements of matrix are

.


To avoid constant phase offsets, is adjusted towards zero by :



Regularization Stage 2:
In stage 2 of the regularization another phase comparison parameter, only across time, is formulated:






The final regularization parameter is such that is as close as possible to , but not further than  in respect to . Let unwrap() be a function that maps any angular parameter to the corresponding angle in the interval . The final phase parameter is formulated as


and the modified, i.e. phase-regularized, mixing matrix elements are obtained as

.

Finally, is derived by amplitude weighting the regularized downmixing coefficients,

.

Note that is used in the time and frequency recursive formulation of regularization stage 1.
Energy Scaling:

An energy scaling is applied to the mixing matrix to obtain the final phase-aligning mixing matrix. With 

, 

where denotes the conjugate transpose operator, and

,

,


where the limits are defined as and , the final phase-aligning mixing matrix elements follow as

.

Calculation of output data

The output signals for the current frame  are formulated by linearly interpolating the mixing matrices from the previous frame to the current frame,

.
Note that the input audio for the above mixing procedure is the first half of the analysis window.

F/T-transform (hybrid QMF synthesis)
Note that the processing steps described above have to be carried out for each hybrid QMF band [image: ](recursively, for ascending [image: ]). In the following formulations the band index [image: ] is reintroduced, i.e. [image: ]. The hybrid QMF frequency domain output signal [image: ]is transformed to an [image: ]-channel time domain signal frame of length [image: ] time domain samples per output channel[image: ], yielding the time domain output signal[image: ]:
The hybrid synthesis 
[image: ]
is carried out as defined in Figure 8.21 of ISO/IEC 14496-3:2009, i.e. by summing the sub-subbands of the three lowest QMF subbands to obtain the three lowest QMF subbands of the 64band QMF representation. The subsequent QMF synthesis 
[image: ]
shall be carried out as defined in ISO/IEC 14496-3:2009, subclause 4.6.18.4.

Trim functionality for radius variations
If the output loudspeaker positions differ in radius (i.e. if [image: ] is not the same for all output channels[image: ]) the compensation parameters derived in the initialization shall be applied to the output signals:
The loudspeaker signal of output channel [image: ]shall be delayed by [image: ] time domain samples and the signal shall also be multiplied by the linear gain[image: ].

Table.AT2 – Pre-defined spatial localization panning coefficients
	Si
	Gv,1~6 (Si)

	
	CH_M_L030
	CH_M_R030
	CH_M_000
	CH_LFE1
	CH_L_110
	CH_R_110

	CH_U_000
	0.5611 
	0.5611 
	0 
	0 
	0.4304 
	0.4304 

	CH_U_L045
	0.6770 
	0.3278 
	0 
	0 
	0.5439 
	0.3720 

	CH_U_R045
	0.3278 
	0.6770 
	0 
	0 
	0.3720 
	0.5439 

	CH_U_L030
	0.6770 
	0.3278 
	0 
	0 
	0.5439 
	0.3720 

	CH_U_R030
	0.3278 
	0.6770 
	0 
	0 
	0.3720 
	0.5439 

	CH_U_L090
	0.5492 
	0.0000 
	0 
	0 
	0.7992 
	0.2445 

	CH_U_R090
	0.0000 
	0.5492 
	0 
	0 
	0.2445 
	0.7992 

	CH_U_L110
	0.3306 
	0 
	0 
	0 
	0.8796 
	0.3422 

	CH_U_R110
	0 
	0.3306 
	0 
	0 
	0.3422 
	0.8796 

	CH_U_L135
	0.3306 
	0 
	0 
	0 
	0.8796 
	0.3422 

	CH_U_R135
	0 
	0.3306 
	0 
	0 
	0.3422 
	0.8796 

	CH_U_180
	0.2285 
	0.2285 
	0 
	0 
	0.6692 
	0.6692 

	CH_T_000
	0.4533 
	0.4533 
	0.3352 
	0.0000 
	0.4882 
	0.4882 



Table.AT3 – HRTF based equalizers for immersive audio rendering (height channels)
	Hybrid QMF
(77 bands)
	EQ Filter Name [Index]

	
	EQVF[7]
	EQVB[8]
	EQVFC[9]
	EQVBC[10]
	EQVOG[11]
	EQVS[12]
	EQBTM[13]
	EQVBA[14]

	0 
	0.8413 
	0.6165 
	1.2589 
	0.5743 
	0.4064 
	0.7585 
	0.7852 
	0.7585 

	1 
	0.8909 
	0.8802 
	0.8414 
	1.0443 
	0.5116 
	0.8215 
	1.4962 
	1.0829 

	2 
	0.8901 
	1.0565 
	0.8414 
	1.5069 
	0.5116 
	1.1191 
	1.3964 
	1.2998 

	3 
	0.8891 
	1.0540 
	0.8414 
	1.5033 
	0.5116 
	1.1164 
	1.3964 
	1.2967 

	4 
	0.9406 
	0.7792 
	0.8913 
	1.2470 
	0.6441 
	0.8254 
	1.0715 
	0.9586 

	5 
	0.9392 
	0.7768 
	0.8913 
	1.2431 
	0.6441 
	0.8228 
	1.0715 
	0.9557 

	6 
	0.8910 
	0.8805 
	0.8414 
	1.0446 
	0.5116 
	0.8218 
	1.4962 
	1.0833 

	7 
	0.8414 
	0.6166 
	1.2589 
	0.5744 
	0.4064 
	0.7586 
	0.7852 
	0.7586 

	8 
	0.9316 
	0.7638 
	0.8913 
	1.2223 
	0.6441 
	0.8090 
	1.0715 
	0.9397 

	9 
	0.8890 
	1.0536 
	0.8414 
	1.5028 
	0.5116 
	1.1161 
	1.3964 
	1.2962 

	10 
	0.9394 
	0.7771 
	0.8913 
	1.2436 
	0.6441 
	0.8231 
	1.0715 
	0.9560 

	11 
	0.9353 
	0.7701 
	0.8913 
	1.2324 
	0.6441 
	0.8157 
	1.0715 
	0.9474 

	12 
	0.9297 
	0.7606 
	0.8913 
	1.2173 
	0.6441 
	0.8057 
	1.0715 
	0.9358 

	13 
	0.9236 
	0.9448 
	0.8913 
	0.8406 
	0.5741 
	1.2033 
	0.7852 
	1.1624 

	14 
	0.9186 
	0.9346 
	0.8913 
	0.8314 
	0.5741 
	1.1902 
	0.7852 
	1.1498 

	15 
	0.9338 
	0.7675 
	0.8913 
	1.2282 
	0.6441 
	0.8130 
	1.0715 
	0.9442 

	16 
	0.9106 
	0.9184 
	0.8913 
	0.8170 
	0.5741 
	1.1696 
	0.7852 
	1.1299 

	17 
	1.0035 
	0.8278 
	1.0000 
	0.6640 
	0.6441 
	1.0788 
	0.8318 
	0.6426 

	18 
	0.9848 
	0.7993 
	1.0000 
	0.6411 
	0.6441 
	1.0416 
	0.8318 
	0.6205 

	19 
	0.9668 
	0.7730 
	1.0000 
	0.6200 
	0.6441 
	1.0074 
	0.8318 
	0.6001 

	20 
	1.0660 
	0.8126 
	1.1220 
	0.8018 
	0.4560 
	0.7583 
	0.8318 
	0.8910 

	21 
	1.0491 
	0.7905 
	1.1220 
	0.7800 
	0.4560 
	0.7377 
	0.8318 
	0.8668 

	22 
	1.0340 
	0.7715 
	1.1220 
	0.7613 
	0.4560 
	0.7200 
	0.8318 
	0.8459 

	23 
	1.0208 
	0.7553 
	1.1220 
	0.7453 
	0.4560 
	0.7049 
	0.8318 
	0.8282 

	24 
	0.8017 
	0.8320 
	0.8913 
	0.9318 
	0.5116 
	0.9335 
	0.7413 
	0.8131 

	25 
	0.7938 
	0.8189 
	0.8913 
	0.9171 
	0.5116 
	0.9188 
	0.7413 
	0.8002 

	26 
	0.9908 
	0.7538 
	1.1220 
	0.7524 
	0.6441 
	0.9062 
	1.0000 
	0.7366 

	27 
	0.9833 
	0.7449 
	1.1220 
	0.7436 
	0.6441 
	0.8956 
	1.0000 
	0.7280 

	28 
	0.9770 
	0.7374 
	1.1220 
	0.7361 
	0.6441 
	0.8865 
	1.0000 
	0.7206 

	29 
	0.9715 
	0.7310 
	1.1220 
	0.7297 
	0.6441 
	0.8788 
	1.0000 
	0.7143 

	30 
	0.9667 
	0.7339 
	1.1220 
	0.8126 
	0.5741 
	0.8723 
	1.3646 
	0.9029 

	31 
	0.9627 
	0.7292 
	1.1220 
	0.8074 
	0.5741 
	0.8667 
	1.3646 
	0.8971 

	32 
	0.9592 
	0.7252 
	1.1220 
	0.8030 
	0.5741 
	0.8619 
	1.3646 
	0.8922 

	33 
	1.0730 
	0.7646 
	1.2589 
	0.7992 
	0.7227 
	0.9626 
	1.5849 
	1.1440 

	34 
	1.0701 
	0.7615 
	1.2589 
	0.7960 
	0.7227 
	0.9587 
	1.5849 
	1.1395 

	35 
	0.7559 
	0.7590 
	0.8913 
	0.9538 
	0.5116 
	0.8516 
	2.0893 
	1.2168 

	36 
	0.7545 
	0.7568 
	0.8913 
	0.9511 
	0.5116 
	0.8492 
	2.0893 
	1.2134 

	37 
	0.7533 
	0.6652 
	0.8913 
	0.6640 
	0.4560 
	0.7551 
	1.3032 
	0.8184 

	38 
	0.7524 
	0.6640 
	0.8913 
	0.6628 
	0.4560 
	0.7536 
	1.3032 
	0.8168 

	39 
	0.7516 
	0.6629 
	0.8913 
	0.6617 
	0.4560 
	0.7524 
	1.3032 
	0.8156 

	40 
	0.4738 
	0.2890 
	0.5623 
	0.2265 
	0.3622 
	0.3243 
	0.7852 
	0.3556 

	41 
	0.4735 
	0.2888 
	0.5623 
	0.2263 
	0.3622 
	0.3240 
	0.7852 
	0.3553 

	42 
	0.4733 
	0.2886 
	0.5623 
	0.2262 
	0.3622 
	0.3238 
	0.7852 
	0.3550 

	43 
	0.4732 
	0.2885 
	0.5623 
	0.2261 
	0.3622 
	0.3237 
	0.7852 
	0.3549 

	44 
	0.4732 
	0.2884 
	0.5623 
	0.2261 
	0.3622 
	0.3236 
	0.7852 
	0.3548 

	45 
	0.4732 
	0.2884 
	0.5623 
	0.2261 
	0.3622 
	0.3236 
	0.7852 
	0.3548 

	46 
	0.4732 
	0.2885 
	0.5623 
	0.2261 
	0.2037 
	0.3237 
	0.7852 
	0.3549 

	47 
	0.4733 
	0.2886 
	0.5623 
	0.2262 
	0.2037 
	0.3238 
	0.7852 
	0.3550 

	48 
	0.4735 
	0.2887 
	0.5623 
	0.2263 
	0.2037 
	0.3240 
	0.7852 
	0.3552 

	49 
	0.4737 
	0.2889 
	0.5623 
	0.2265 
	0.2037 
	0.3242 
	0.7852 
	0.3555 

	50 
	0.4740 
	0.2892 
	0.5623 
	0.2267 
	0.2037 
	0.3244 
	0.7852 
	0.3557 

	51 
	0.4743 
	0.2894 
	0.5623 
	0.2269 
	0.2037 
	0.3247 
	0.7852 
	0.3561 

	52 
	0.4746 
	0.2897 
	0.5623 
	0.2271 
	0.2037 
	0.3251 
	0.7852 
	0.3564 

	53 
	0.4750 
	0.2901 
	0.5623 
	0.2273 
	0.2037 
	0.3254 
	0.7852 
	0.3568 

	54 
	0.4753 
	0.2904 
	0.5623 
	0.2276 
	0.2037 
	0.3258 
	0.7852 
	0.3573 

	55 
	0.4758 
	0.2908 
	0.5623 
	0.2279 
	0.2037 
	0.3263 
	0.7852 
	0.3577 

	56 
	0.4762 
	0.2912 
	0.5623 
	0.2282 
	0.2037 
	0.3267 
	0.7852 
	0.3582 

	57 
	0.4767 
	0.2916 
	0.5623 
	0.2286 
	0.2037 
	0.3272 
	0.7852 
	0.3588 

	58 
	0.4771 
	0.2921 
	0.5623 
	0.2289 
	0.2037 
	0.3277 
	0.7852 
	0.3593 

	59 
	0.4776 
	0.2925 
	0.5623 
	0.2293 
	0.2037 
	0.3282 
	0.7852 
	0.3599 

	60 
	0.4782 
	0.2930 
	0.5623 
	0.2297 
	0.2037 
	0.3288 
	0.7852 
	0.3605 

	61 
	0.4787 
	0.2935 
	0.5623 
	0.2301 
	0.2037 
	0.3294 
	0.7852 
	0.3611 

	62 
	0.4793 
	0.2941 
	0.5623 
	0.2305 
	0.2037 
	0.3299 
	0.7852 
	0.3618 

	63 
	0.4799 
	0.2946 
	0.5623 
	0.2309 
	0.2037 
	0.3305 
	0.7852 
	0.3624 

	64 
	0.4804 
	0.2951 
	0.5623 
	0.2313 
	0.2037 
	0.3312 
	0.7852 
	0.3631 

	65 
	0.4810 
	0.2957 
	0.5623 
	0.2318 
	0.2037 
	0.3318 
	0.7852 
	0.3638 

	66 
	0.4817 
	0.2963 
	0.5623 
	0.2322 
	0.2037 
	0.3324 
	0.7852 
	0.3645 

	67 
	0.4823 
	0.2969 
	0.5623 
	0.2327 
	0.2037 
	0.3331 
	0.7852 
	0.3652 

	68 
	0.4829 
	0.2975 
	0.5623 
	0.2332 
	0.2037 
	0.3338 
	0.7852 
	0.3660 

	69 
	0.4836 
	0.2981 
	0.5623 
	0.2336 
	0.2037 
	0.3345 
	0.7852 
	0.3667 

	70 
	0.4842 
	0.2987 
	0.5623 
	0.2341 
	0.2037 
	0.3352 
	0.7852 
	0.3675 

	71 
	0.4849 
	0.2993 
	0.5623 
	0.2346 
	0.2037 
	0.3359 
	0.7852 
	0.3683 

	72 
	0.4856 
	0.3000 
	0.5623 
	0.2351 
	0.2037 
	0.3366 
	0.7852 
	0.3691 

	73 
	0.4862 
	0.3006 
	0.5623 
	0.2356 
	0.2037 
	0.3373 
	0.7852 
	0.3698 

	74 
	0.4869 
	0.3013 
	0.5623 
	0.2362 
	0.2037 
	0.3380 
	0.7852 
	0.3707 

	75 
	0.4874 
	0.3018 
	0.5623 
	0.2365 
	0.2037 
	0.3386 
	0.7852 
	0.3713 

	76 
	0.4885 
	0.3028 
	0.5623 
	0.2374 
	0.2037 
	0.3398 
	0.7852 
	0.3725 




Table.AT4 – Pre-defined spatial localization panning coefficients below 2.8 kHz
	Si
	Gv,1~6 (Si)

	
	CH_M_L030
	CH_M_R030
	CH_M_000
	CH_LFE1
	CH_L_110
	CH_R_110

	CH_U_000
	0.7071
	0.7071
	0
	0
	0
	0

	CH_U_L045
	1
	0
	0
	0
	0
	0

	CH_U_R045
	0
	1
	0
	0
	0
	0

	CH_U_L030
	1
	0
	0
	0
	0
	0

	CH_U_R030
	0
	1
	0
	0
	0
	0

	CH_U_L090
	0.3673
	0
	0
	0
	0.9301
	0

	CH_U_R090
	0
	0.3673
	0
	0
	0
	0.9301

	CH_U_L110
	1
	0
	0
	0
	0
	0

	CH_U_R110
	0
	1
	0
	0
	0
	0

	CH_U_180
	0.2285 
	0.2285 
	0 
	0 
	0.6692 
	0.6692 

	CH_T_000
	0.4533 
	0.4533 
	0.3352 
	0.0000 
	0.4882 
	0.4882 




Table.AT5 – HRTF based equalizers for immersive audio rendering (horizontal channels)
	QMF64
	COLOR180_110
	COLOR090_030
	COLOR060_110
	COLOR135_110
	COLOR090_110
	COLOR060_030

	0
	1.2207 
	0.8258 
	1.0479 
	1.0403 
	0.9384 
	0.9221 

	1
	0.7937 
	1.1754 
	1.0164 
	0.9289 
	1.0755 
	1.1109 

	2
	0.7937 
	1.1585 
	1.0149 
	0.9017 
	0.9841 
	1.1948 

	3
	0.7937 
	1.2600 
	0.9272 
	1.0003 
	1.0242 
	1.2600 

	4
	0.7937 
	1.2086 
	0.8126 
	0.9069 
	0.8754 
	1.1220 

	5
	0.7937 
	0.9774 
	1.0513 
	1.0172 
	0.9789 
	1.0497 

	6
	0.8593 
	0.8445 
	1.2600 
	0.9754 
	1.2535 
	0.9002 

	7
	0.9039 
	0.9462 
	1.2600 
	0.9197 
	1.2600 
	1.0997 

	8
	0.8876 
	1.0501 
	1.2600 
	0.8626 
	1.2600 
	1.1821 

	9
	0.8078 
	1.0856 
	1.2600 
	0.7961 
	1.2600 
	1.2600 

	10
	0.8042 
	0.9972 
	1.2600 
	0.7937 
	1.2600 
	1.1002 

	11
	0.8514 
	0.8915 
	1.2600 
	0.7937 
	1.2600 
	0.9830 

	12
	0.8306 
	0.9439 
	1.2600 
	0.7937 
	1.2600 
	1.0520 

	13
	0.8108 
	0.9971 
	1.2600 
	0.7937 
	1.2600 
	1.1633 

	14
	0.7937 
	1.1472 
	1.2600 
	0.7937 
	1.2600 
	1.2600 

	15
	0.7937 
	1.2600 
	1.2600 
	0.7937 
	1.2600 
	1.2600 

	16
	0.7937 
	1.2600 
	1.2600 
	0.7937 
	1.2600 
	1.2600 

	17
	0.7937 
	1.2600 
	1.2600 
	0.7937 
	1.2600 
	1.2600 

	18
	0.7937 
	1.2600 
	1.1468 
	0.7937 
	1.2600 
	1.2600 

	19
	0.7937 
	1.2600 
	1.0132 
	0.7937 
	1.2333 
	1.2600 

	20
	0.7937 
	1.2600 
	0.9071 
	0.7937 
	1.1853 
	1.2600 

	21
	0.7937 
	1.2600 
	0.8177 
	0.7937 
	1.0953 
	1.2600 

	22
	0.7937 
	1.2600 
	0.7937 
	0.7937 
	1.0237 
	1.2600 

	23
	0.7937 
	1.2600 
	0.7937 
	0.7937 
	0.9888 
	1.2600 

	24
	0.7937 
	1.2600 
	0.7937 
	0.7937 
	0.9274 
	1.2600 

	25
	0.7937 
	1.2600 
	0.7937 
	0.8223 
	0.9256 
	1.2600 

	26
	0.7937 
	1.2600 
	0.8270 
	0.8458 
	0.9720 
	1.2600 

	27
	0.7937 
	1.2600 
	1.0166 
	0.7937 
	1.0309 
	1.2600 

	28
	0.7937 
	1.2600 
	1.2003 
	0.7937 
	1.1947 
	1.2600 

	29
	0.7937 
	1.2600 
	1.2017 
	0.7937 
	1.2600 
	1.2600 

	30
	0.7937 
	1.2600 
	1.0472 
	0.7937 
	1.2600 
	1.2600 

	31
	0.7937 
	1.2600 
	0.9236 
	0.7937 
	1.2187 
	1.2600 

	32
	0.7937 
	1.2600 
	0.8079 
	0.8031 
	1.2226 
	1.2600 

	33
	0.7937 
	1.2600 
	0.7937 
	0.8251 
	1.1720 
	1.1482 

	34
	0.7937 
	1.2600 
	0.7937 
	0.8258 
	1.0976 
	0.9555 

	35
	0.7937 
	1.2600 
	0.7937 
	0.8216 
	1.0299 
	0.8162 

	36
	0.7937 
	1.2600 
	0.7937 
	0.8151 
	0.9875 
	0.7937 

	37
	0.7937 
	1.1031 
	0.7937 
	0.8410 
	0.9952 
	0.7937 

	38
	0.7937 
	0.9564 
	0.7937 
	0.8922 
	1.0116 
	0.7937 

	39
	0.7937 
	0.7976 
	0.7937 
	0.8866 
	0.9798 
	0.7937 

	40
	0.7937 
	0.7937 
	0.8976 
	0.8583 
	0.9902 
	0.7937 

	41
	0.7937 
	0.7937 
	1.0444 
	0.8659 
	1.0341 
	0.7937 

	42
	0.7937 
	0.7937 
	1.1831 
	0.8410 
	1.0768 
	0.7937 

	43
	0.7937 
	0.7937 
	1.2600 
	0.8673 
	1.1670 
	0.7937 

	44
	0.7937 
	0.7937 
	1.2600 
	0.8946 
	1.2600 
	0.7937 

	45
	0.7937 
	0.7937 
	1.2600 
	0.8097 
	1.2600 
	0.7937 

	46
	0.7937 
	0.7937 
	1.2600 
	0.7937 
	1.2600 
	0.8047 

	47
	0.7937 
	0.7937 
	1.2600 
	0.7937 
	1.2600 
	0.8765 

	48
	0.7937 
	0.8752 
	1.2600 
	0.7937 
	1.2600 
	0.9392 

	49
	0.7937 
	0.9810 
	1.2600 
	0.7937 
	1.2600 
	0.9961 

	50
	0.7937 
	1.0164 
	1.2600 
	0.7937 
	1.2600 
	0.9719 

	51
	0.7937 
	1.0275 
	1.2600 
	0.7937 
	1.2600 
	0.9350 

	52
	0.7937 
	1.0639 
	1.2600 
	0.7937 
	1.2600 
	0.9547 

	53
	0.7937 
	1.1518 
	1.2600 
	0.7937 
	1.2600 
	1.0320 

	54
	0.7937 
	1.2247 
	1.2600 
	0.7937 
	1.2600 
	1.1007 

	55
	0.7937 
	1.2600 
	1.2405 
	0.7937 
	1.2600 
	1.1357 

	56
	0.7937 
	1.2600 
	1.2264 
	0.7937 
	1.2600 
	1.1986 

	57
	0.7937 
	1.2600 
	1.2288 
	0.7937 
	1.2600 
	1.2600 

	58
	0.7937 
	1.2600 
	1.2231 
	0.7937 
	1.2600 
	1.2600 

	59
	0.7937 
	1.2600 
	1.1695 
	0.7937 
	1.2600 
	1.2600 

	60
	0.7937 
	1.2600 
	1.1293 
	0.7937 
	1.2600 
	1.2600 

	61
	0.7937 
	1.2600 
	1.0702 
	0.7937 
	1.1745 
	1.2600 

	62
	0.7937 
	1.2600 
	0.9669 
	0.7937 
	1.0517 
	1.2600 

	63
	0.7937 
	1.2600 
	0.9483 
	0.7937 
	0.9778 
	1.2600 

	64
	0.7937 
	1.2600 
	0.9940 
	0.7937 
	0.9715 
	1.2600 
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Algorithm 1 Computation of the assigment vector
{Compute set of indices of potential ambient HOA coefficient sequences to be activated}

Tamep (k- 2) =Tamsarc\(Zamsact (k= 3) \ Ip (k- 3)) = {iamBp1 (k= 2), ..., iaMB.P Naws p(k—2) (F — 2)

{Perform assignment for cach channel with variable type}
fori=1to J do

{Initialize index scts}

Te(k—2)=0

To(k—2)=0

Zampacr (k—2) = {1,...,Omv}

ji=1

if TYPE; (k — 3) € {DIR, VEC, EMPTY} then
if TYPEq; (k — 2) = EMPTY A TYPEq, (k — 1) = EMPTY A j < Nawmp (k—2) then

{Assign ambient HOA coeffient sequence to empty channel}
BITRATE, (k — 2) — BITRATE v
TYPE, (k —2) — AMB
COEFFIDX, (k—2) = iamp.p (k—2)
i=j+1
T (k —2) = Tg (k — 2) U {COEFFIDX, (k — 2)}
{Ambient HOA coeffient sequence has to be faded in}
Zampact (k—2) = Tavpact (k —2) U {COEFFIDX; (k - 2)}
else
vai(k—2) = vami(k—2)
end if
end if
if TYPE; (k — 3) € {AMB} then
if TYPEr; (k — 2) = EMPTY then

{Assign ambient HOA coeffient sequence to empty channel}
BITRATE,; (k — 2) = BITRATE v
TYPE, (k - 2) — AMB
COEFFIDX, (k — 2) — COEFFIDX, (k — 3)
Zampacr (k—2) = Zamp,act (k — 2) U {COEFFIDX; (k — 2)}
if TYPEr (k — 1) # EMPTY then
{Ambicnt HOA coeffient sequence has to be faded out}
T (k —2) = I (k — 2) U {COEFFIDX, (k — 2)}
end if
else
vai(k=2) = vami(k—2)
end if
end if
end for
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