	

	
INTERNATIONAL STANDARD
	ISO/IEC
23001-4
Third edition
2012-11-15

	Information technology — MPEG systems technologies — Part 4: Codec configuration representation
Technologies de l'information — Technologies des systèmes MPEG
Partie 4: Représentation de configuration codec

ISO/IEC FDIS 23001-4:2012(E)
	© ISO
	ISO/FDIS 00000:1998(E)

	
	
	

	
	
	

	
	
	[image: Logo0014c]
	Reference number
ISO/IEC FDIS 23001-4:2012(E)
© ISO/IEC 2012

	[image: Logo0052b]
	COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2012
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.
ISO copyright office
Case postale 56 CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland

	ii
	
	© ISO/IEC 2012 – All rights reserved

	
	
	LVII

Copyright notice
This ISO document is a Draft International Standard and is copyright-protected by ISO. Except as permitted under the applicable laws of the user's country, neither this ISO draft nor any extract from it may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, photocopying, recording or otherwise, without prior written permission being secured.
Requests for permission to reproduce should be addressed to either ISO at the address below or ISO's member body in the country of the requester.
ISO copyright office
Case postale 56 CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Reproduction may be subject to royalty payments or a licensing agreement.
Violators may be prosecuted.

Contents	Page
Foreword	v
Introduction	vi
1	Scope	1
2	Normative references	1
3	Terms and definitions	1
4	Functional unit network description	4
5	Bitstream syntax description	6
6	Model instantiation	6
Annex A (normative) Functional unit network description	8
Annex B (informative) Examples of FU network description	14
Annex C (normative) Specification of RVC-BSDL	16
Annex D (normative) Specification of RVC-CAL language	29
Annex E (informative) FU Classification according to their dataflow model of computation of RVC-CAL	56
Annex F (informative) I/O FUs	63
Annex G (normative) Storage of RMC in MP4 file format	69
Annex H (normative) Carriage of RMC over RTP	70
Annex I (informative) Instantiation of bitstream syntax parser from bitstream syntax descriptions	71
Annex J (informative) Relation between codec configuration representation and multimedia middleware (M3W)	76
Bibliography	77

[bookmark: _Toc340154000]Foreword
ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of the joint technical committee is to prepare International Standards. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.
ISO/IEC 230014 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.
This second edition cancels and replaces the first edition (ISO/IEC 23001-4:2009) which has been technically revised.
ISO/IEC 23001 consists of the following parts, under the general title Information technology — MPEG systems technologies:
Part 1: Binary MPEG format for XML
Part 2: Fragment request units
Part 3: XML IPMP messages
Part 4: Codec configuration representation
Part 5: Bitstream Syntax Description Language (BSDL)
Part 7: Common encryption in ISO base media file format files
[bookmark: _Toc340154001]Introduction
This part of ISO/IEC 23001 defines the methods capable of describing codec configurations in the so-called reconfigurable video coding (RVC) framework. The objective of RVC is to offer a framework that is capable of configuring and specifying video codecs as a collection of “higher level” modules by using video coding tools. The video coding tools are defined in video tool library. Part 4 of ISO/IEC 23002 defines the MPEG video tool library. The RVC framework principle could also support non-MPEG tool libraries, provided that their developers have taken care to obey the appropriate rules of operation.
For the purpose of framework deployment, an appropriate description is needed to describe configurations of decoders composed of or instantiated from a subset of video tools from either one or more libraries. As illustrated in Figure 1, the configuration information consists of:
bitstream syntax description, and
network of functional units (FUs) description (also referred to as the decoder configuration)
that together constitute the entire decoder description (DD).
Bitstreams of existing MPEG standards are specified by specific syntax structures and decoders are composed of various coding tools. Therefore, RVC includes support for bitstream syntax descriptions as well as video coding tools. As depicted in Figure 1, a typical RVC decoder requires two types of information, namely the decoder description and the encoded media (e.g. video bitstreams) data.

[bookmark: _Ref230596582]Figure 1 — Conceptual diagram of RVC
Figure 2 illustrates a more detailed description of the RVC decoder.
A more detailed description of the RVC decoder is shown in Figure 2. As shown in Figure 2, the decoder description is required for the configuration of a RVC decoder. The Bitstream Syntax Description (BSD) and FU Network Description (FND) (which compose the Decoder Description) are used to configure or compose an abstract decoder model (ADM) which is instantiated through the selection of FUs from tool libraries optionally with proper parameter assignment. Such an ADM constitutes the behavioral reference model used in setting up a decoding solution under the RVC framework. The process of yielding a decoding solution may vary depending on the technologies used for the desired implementations. Examples of the instantiation of an abstract decoder model and generation of proprietary decoding solutions are given in Annex I.
[image: Figure 2]
[bookmark: _Ref230596636]Figure 2 — Graphical representation of the instantiation process or decoder composition mechanism for the RVC normative ADM and for the non-normative proprietary compliant decoder implementation
Within the RVC framework, the decoder description describes a particular decoder configuration and consists of the FND and the BSD. The FND describes the connectivity of the network of FUs used to form a decoder whereas the parsing process for the bitstream syntax is implicitly described by the BSD. These two descriptions are specified using two standard XML-based languages or dialects:
Functional Unit Network Language (FNL) is a language that describes the FND, known also as “network of FUs”. The FNL specified normatively within the scope of the RVC framework is provided in this part of ISO/IEC 23001;
Bitstream Syntax Description Language (BSDL), standardized in ISO/IEC 23001-5 (MPEG-B Part 5), describes the bitstream syntax and the parsing rules. A pertinent subset of this BSDL named RVC-BSDL is defined within the scope of the current RVC framework. This RVC-BSDL also includes possibilities for further extensions, which are necessary to provide complete description of video bitstreams. RVC-BSDL specified normatively within the scope of the RVC framework is provided in this part of ISO/IEC 23001.
The decoder configuration specified using FNL, together with the specification of the bitstream syntax using RVC-BSDL fully specifies the ADM and provides an “executable” model of the RVC decoder description.
The instantiated ADM includes the information about the selected FUs and how they should be connected. As already mentioned, the FND with the network connection information is expressed by using FNL. Furthermore, the RVC framework specifies and uses a dataflow-oriented language called RVC-CAL for describing FUs' behavior. The normative specification of RVC-CAL is provided in this part of ISO/IEC 23001. The ADM is the behavioral model that should be referred to in order to implement any RVC conformant decoder. Any RVC compliant decoding solution/implementation can be achieved by using proprietary non-normative tools and mechanisms that yield decoders that behave equivalent to the RVC ADM.
The decoder description, the MPEG video tool library, and the associated instantiation of an ADM are normative. More precisely, the ADM is intended to be normative in terms of a behavioral model. In other words what is normative is the input/output behavior of the complete ADM as well as the input/output behavior of all the FUs that are included in the ADM.

ISO/IEC FDIS 23001-4:2012(E)
ISO/IEC FDIS 23001-4:2012(E)
ISO/IEC FDIS 23001-4:2012(E)

	lvii
	© ISO/IEC 2012 – All rights reserved

	vi
	
	© ISO/IEC 2012 – All rights reserved

	© ISO/IEC 2012 – All rights reserved
	
	vii

[bookmark: DDHeadingPage1][bookmark: DDOrganization][bookmark: LibEnteteISO][bookmark: LIBTypeTitreISO][bookmark: DDTITLE4][bookmark: DDTITLE3][bookmark: DDTITLE2][bookmark: DDTITLE1][bookmark: DDDocLanguage][bookmark: DDWorkDocDate][bookmark: DDDocStage][bookmark: DDOrganization3][bookmark: DDOrganization1][bookmark: DDBASEYEAR][bookmark: DDAmno][bookmark: DDDocSubType][bookmark: DDDocType][bookmark: DDWorkDocNo][bookmark: DDpubYear][bookmark: DDRefNoPart][bookmark: DDRefGen][bookmark: DDRefNum][bookmark: DDSCSecr][bookmark: DDSecr][bookmark: DDSCTitle][bookmark: DDTCTitle][bookmark: DDWGNum][bookmark: DDSCNum][bookmark: DDTCNum][bookmark: LIBLANG][bookmark: libH2NAME][bookmark: libH1NAME][bookmark: LibDesc][bookmark: LibDescD][bookmark: LibDescE][bookmark: LibDescF][bookmark: NATSubVer][bookmark: CENSubVer][bookmark: ISOSubVer][bookmark: LIBVerMSDN][bookmark: LIBStageCode][bookmark: LibRpl][bookmark: LibICS][bookmark: LIBFIL][bookmark: LIBEnFileName][bookmark: LIBFrFileName][bookmark: LIBDeFileName][bookmark: LIBNatFileName][bookmark: LIBFileOld][bookmark: LIBTypeTitre][bookmark: LIBTypeTitreCEN][bookmark: LIBTypeTitreNAT][bookmark: LibFileEnTete][bookmark: LibEntete][bookmark: LibEnteteCEN][bookmark: LibEnteteNAT][bookmark: LIBASynchro][bookmark: LIBASynchroVF][bookmark: LIBASynchroVE][bookmark: LIBASynchroVD][bookmark: LIBPATENT][bookmark: DDEditionNo]Information technology — MPEG systems technologies — Part 4: Codec configuration representationFINAL DRAFT INTERNATIONAL STANDARD© ISO/IEC 2012 – All rights reservedISO/IEC FDIS 23001-4:2012(E) 59Part 4: Codec configuration representationInformation technology — MPEG systems technologiesTechnologies de l'information — Technologies des systèmes MPEGInformation technology — MPEG systems technologies — Part 4: Codec configuration representationE2012-11-15(50) ApprovalISO/IECISO/IEC J International Standard 2012ISO/IEC 23001ISO/IEC 230014ISO/IEC FDIS 23001-4 Coding of audio, picture, multimedia and hypermedia informationInformation technology11291 2見出し 2,h2,sub-clause 2見出し 1 02 STD Version 2.1c250 4C:\Users\shinji_w\AppData\Roaming\Microsoft\Templates\STD\FDIS23001-4_3rdE.doc
[bookmark: _Toc340154002]Scope
This part of ISO/IEC 23001 defines the methods and general principles capable of describing codec configurations in the so-called reconfigurable video coding (RVC) framework. It primarily addresses reconfigurable video aspects and will only focus on the description of representation for video codec configurations within the RVC framework.
Within the scope of the RVC framework, two languages, namely FNL and RVC-BSDL, are specified normatively. FNL is a language that describes the FND, also known as “network of FUs”. RVC-BSDL is a pertinent subset of BSDL defined in ISO/IEC 23001-5. This RVC-BSDL also includes possibilities for further extensions, which are necessary to provide complete description of video bitstreams.
[bookmark: _Toc212248653][bookmark: _Toc230596057][bookmark: _Toc238864718][bookmark: _Toc340154003]Normative references
The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document, including any amendments, applies.
ISO/IEC 14496-2:2004, Information technology — Coding of audio-visual objects — Part 2: Visual
ISO/IEC 23001-5:2008, Information technology — MPEG systems technologies — Part 5: Bitstream Syntax Description Language (BSDL)
ISO/IEC 23002-4, Information technology — MPEG video technologies — Part 4: Video tool library
DEFLATE Compressed Data Format Specification version 1.3. P. Deutsch, The Internet Society, May 1996
IETF RFC 1889, RTP A Transport Protocol for Real-Time Applications, H. Schulzrinne, et. al., January 1996
IETF RFC 2327, SDP: Session Description Protocol, M. Handley, April 1998
ISO/IEC 14496-12: Information technology– Coding of audio-visual objects – Part 12: ISO Base Media File Format

[bookmark: _Toc212248654][bookmark: _Toc230596058][bookmark: _Toc238864719][bookmark: _Toc340154004]Terms and definitions
For the purposes of this document, the following terms and definitions apply.
[bookmark: _Toc230596059][bookmark: _Toc230596204][bookmark: _Toc230596468][bookmark: _Toc234228565][bookmark: _Toc234229402][bookmark: _Toc234301721][bookmark: _Toc212248655]
[bookmark: _Toc230596074][bookmark: _Toc230596219][bookmark: _Toc230596483][bookmark: _Toc234228586][bookmark: _Toc234229422][bookmark: _Toc234301741][bookmark: _Toc230596060][bookmark: _Toc230596205][bookmark: _Toc230596469][bookmark: _Toc234228566][bookmark: _Toc234229403][bookmark: _Toc234301722][bookmark: _Toc234228567][bookmark: _Toc234229404][bookmark: _Toc234301723]ADM
abstract decoder model
conceptual model of the instantiation of the functional units (3.8) from the video tool library (3.1618) and their connection according to the FU network description (3.9)
[bookmark: _Toc230596068][bookmark: _Toc230596213][bookmark: _Toc230596477][bookmark: _Toc234228579][bookmark: _Toc234229415][bookmark: _Toc234301734]
[bookmark: _Toc234228597][bookmark: _Toc234229433][bookmark: _Toc234301752][bookmark: _Toc234228596][bookmark: _Toc234229432][bookmark: _Toc234301751][bookmark: _Toc230596084][bookmark: _Toc230596229][bookmark: _Toc230596493][bookmark: _Toc230596080][bookmark: _Toc230596225][bookmark: _Toc230596489][bookmark: _Toc234228592][bookmark: _Toc234229428][bookmark: _Toc234301747]BSD
bitstream syntax description
description containing the bitstream syntax, its implicit parsing rules, and possibly tables [e.g. VLD tables if not already existing in the reconfigurable video media coding (3.1314) video tool library (3.18)] to define the parser functional unit (3.8)
[bookmark: _Toc230596085][bookmark: _Toc230596230][bookmark: _Toc230596494]NOTE	The BSD is expressed using reconfigurable video coding-bitstream syntax description language (3.1416).
[bookmark: _Toc230596088][bookmark: _Toc230596233][bookmark: _Toc230596497][bookmark: _Toc234228602][bookmark: _Toc234229438][bookmark: _Toc234301757]
BSDL
bitstream syntax description language
description of the bitstream syntax and the parsing rules
NOTE	Bitstream syntax description language (BSDL) is standardized by ISO/IEC 23001-5.

connection
link from an output port to an input port of a functional unit (3.8) that enables token exchange between FUs

decoder configuration
conceptual configuration of a decoding solution
NOTE 1	Using the MPEG video tool library (3.1213), decoder configuration can be designed as one of the following cases.
A decoding solution of an existing MPEG standard at a specific profile and level.
A new decoding solution built from tools of an existing MPEG standard.
A new decoding solution built from tools of an existing MPEG standard and some new MPEG tools included in the MPEG video tool library.
A new decoding solution that is composed of new MPEG tools included in the MPEG video tool library.
NOTE 2	In summary, an RVC decoder description essentially consists of a list of functional units (3.8) and of the specification of the FU connections [FU network description (3.9) expressed in FU network language (3.10)] plus the implicit specification of the parser in terms of bitstream syntax description (3.2) [BSD expressed in reconfigurable video coding-bitstream syntax description language (3.1416)]. In order to be a complete behavioral model [i.e. abstract decoder model (3.1)] an RVC decoder description (3.6) needs to make reference to the behavior of each FU that is provided in terms of I/O behavior by the MPEG video tool library (3.1213) specified in ISO/IEC 23002-4.
[bookmark: _Toc227059003][bookmark: _Toc227384222][bookmark: _Toc227385200][bookmark: _Toc227385326][bookmark: _Toc227386072][bookmark: _Toc227388377][bookmark: _Toc227388648][bookmark: _Toc227389040][bookmark: _Toc227389284][bookmark: _Toc227489538][bookmark: _Toc227589452][bookmark: _Toc227607341][bookmark: _Toc227740262][bookmark: _Toc227740678][bookmark: _Toc227867742][bookmark: _Toc228335826][bookmark: _Toc228336420][bookmark: _Toc234228569][bookmark: _Toc234229406][bookmark: _Toc234301725][bookmark: _Toc227384223][bookmark: _Toc227385201][bookmark: _Toc227385327][bookmark: _Toc227386073][bookmark: _Toc227388378][bookmark: _Toc227388649][bookmark: _Toc227389041][bookmark: _Toc227389285][bookmark: _Toc227489539][bookmark: _Toc227589453][bookmark: _Toc227607342][bookmark: _Toc227740263][bookmark: _Toc227740679][bookmark: _Toc227867743][bookmark: _Toc228335827][bookmark: _Toc228336421][bookmark: _Toc234228570][bookmark: _Toc234229407][bookmark: _Toc234301726][bookmark: _Toc212248656][bookmark: _Toc230596062][bookmark: _Toc230596207][bookmark: _Toc230596471]
[bookmark: _Toc234228584][bookmark: _Toc234229420][bookmark: _Toc234301739][bookmark: _Toc230596072][bookmark: _Toc230596217][bookmark: _Toc230596481][bookmark: _Toc234228583][bookmark: _Toc234229419][bookmark: _Toc234301738]DD
decoder description
description of a particular decoder configuration, which consists of two parts: FU network description (3.9) and bitstream syntax description (3.2)

[bookmark: _Toc230596076][bookmark: _Toc230596221][bookmark: _Toc230596485][bookmark: _Toc234228588][bookmark: _Toc234229424][bookmark: _Toc234301743]decoding solution
implementation of the abstract decoder model (3.1)

FU
functional unit
modular tool which consists of a processing unit characterized by the input/output behavior
[bookmark: _Toc212248667][bookmark: _Toc230596082][bookmark: _Toc230596227][bookmark: _Toc230596491][bookmark: _Toc234228594][bookmark: _Toc234229430][bookmark: _Toc234301749][bookmark: _Toc227059007][bookmark: _Toc227384228][bookmark: _Toc227385206][bookmark: _Toc227385332][bookmark: _Toc227386078][bookmark: _Toc227388383][bookmark: _Toc227388654][bookmark: _Toc227389046][bookmark: _Toc227389290][bookmark: _Toc227489544][bookmark: _Toc227589458][bookmark: _Toc227607347][bookmark: _Toc227740268][bookmark: _Toc227740684][bookmark: _Toc227867748][bookmark: _Toc228335832][bookmark: _Toc228336426][bookmark: _Toc234228575][bookmark: _Toc234229412][bookmark: _Toc234301731][bookmark: _Toc230596066][bookmark: _Toc230596211][bookmark: _Toc230596475]
FND
FU network description
FU (3.8) connections used in forming a decoder which are modeled using FU network language (3.10)
[bookmark: _Toc212248669][bookmark: _Toc230596086][bookmark: _Toc230596231][bookmark: _Toc230596495][bookmark: _Toc234228599][bookmark: _Toc234229435][bookmark: _Toc234301754]
[bookmark: _Toc234228600][bookmark: _Toc234229436][bookmark: _Toc234301755]FNL
FU network language
language that describes the FU network description (3.9), known also as a “network of FUs”

GPFU
generic parser functional unit
bitstream parser functional unit (3.8) which internal behavior is not fixed and is able to be generated, instantiated, or reconfigured according to a given bitstream syntax description (3.2) to parse a specific bitstream format.

[bookmark: _Toc230596070][bookmark: _Toc230596215][bookmark: _Toc230596479][bookmark: _Toc234228581][bookmark: _Toc234229417][bookmark: _Toc234301736]model instantiation
building of the abstract decoder model (3.1) from the decoder description (3.6) [consisting of the bitstream syntax description (3.2) and the FU network description (3.9)] and from functional units (3.8) from the video tool library (3.1618)
NOTE	During the model instantiation, the parser FU is reconfigured from GPFU according to the BSD or loaded from VTL.

MPEG video tool library
[bookmark: _Toc227389047][bookmark: _Toc227389291][bookmark: _Toc227489545][bookmark: _Toc227589459][bookmark: _Toc227607348][bookmark: _Toc227740269][bookmark: _Toc227740685][bookmark: _Toc227867749][bookmark: _Toc228335833][bookmark: _Toc228336427][bookmark: _Toc234228576][bookmark: _Toc234229413][bookmark: _Toc234301732]MPEG VTL
[bookmark: _Toc234228577][bookmark: _Toc230596067][bookmark: _Toc230596212][bookmark: _Toc230596476]video tool library (3.1618) that contains functional units (3.8) defined by MPEG, that is, drawn from existing MPEG International Standards

RMC
reconfigurable media coding
framework defined by MPEG to promote coding standards at tool-level while maintaining interoperability between solutions from different implementers

RVC
reconfigurable video coding
a type of reconfigurable media coding (3.14) framework, which is dedicated to support video coding standards at tool-levelframework defined by MPEG to promote coding standards at tool-level while maintaining interoperability between solutions from different implementers
NOTE	RVC was the initial name of the RMC framework until the scope of the framework was extended to support general media coding standards (including 3D graphics coding) by ISO/IEC 23002-4:2010/Amd.3.
[bookmark: _Toc230596061][bookmark: _Toc230596206][bookmark: _Toc230596470][bookmark: _Toc234228568][bookmark: _Toc234229405][bookmark: _Toc234301724][bookmark: _Toc230596063][bookmark: _Toc230596208][bookmark: _Toc230596472][bookmark: _Toc234228571][bookmark: _Toc234229408][bookmark: _Toc234301727][bookmark: _Toc212248671][bookmark: _Toc230596090][bookmark: _Toc230596235][bookmark: _Toc230596499][bookmark: _Toc234228604][bookmark: _Toc234229440][bookmark: _Toc234301759][bookmark: _Toc212248665][bookmark: _Toc230596078][bookmark: _Toc230596223][bookmark: _Toc230596487][bookmark: _Toc234228590][bookmark: _Toc234229426][bookmark: _Toc234301745][bookmark: _Toc227059005][bookmark: _Toc227384225][bookmark: _Toc227385203][bookmark: _Toc227385329][bookmark: _Toc227386075][bookmark: _Toc227388380][bookmark: _Toc227388651][bookmark: _Toc227389043][bookmark: _Toc227389287][bookmark: _Toc227489541][bookmark: _Toc227589455][bookmark: _Toc227607344][bookmark: _Toc227740265][bookmark: _Toc227740681][bookmark: _Toc227867745][bookmark: _Toc228335829][bookmark: _Toc228336423][bookmark: _Toc234228572][bookmark: _Toc234229409][bookmark: _Toc234301728][bookmark: _Toc227384226][bookmark: _Toc227385204][bookmark: _Toc227385330][bookmark: _Toc227386076][bookmark: _Toc227388381][bookmark: _Toc227388652][bookmark: _Toc227389044][bookmark: _Toc227389288][bookmark: _Toc227489542][bookmark: _Toc227589456][bookmark: _Toc227607345][bookmark: _Toc227740266][bookmark: _Toc227740682][bookmark: _Toc227867746][bookmark: _Toc228335830][bookmark: _Toc228336424][bookmark: _Toc234228573][bookmark: _Toc234229410][bookmark: _Toc234301729][bookmark: _Toc212248657][bookmark: _Toc230596064][bookmark: _Toc230596209][bookmark: _Toc230596473]
RVC-BSDL
reconfigurable video coding-bitstream syntax description language
pertinent subset of bitstream syntax description language (3.3), which is defined within the scope of the current reconfigurable video media coding (3.1314) and reconfigurable video coding (3.15) framework

token
data entity exchanged between input and output among functional units (3.8)

VTL
video tool library
collection of functional units (3.8)
[bookmark: _Toc230596065][bookmark: _Toc230596210][bookmark: _Toc230596474][bookmark: _Toc234228574][bookmark: _Toc234229411][bookmark: _Toc234301730][bookmark: _Toc230596079][bookmark: _Toc230596224][bookmark: _Toc230596488][bookmark: _Toc234228591][bookmark: _Toc234229427][bookmark: _Toc234301746][bookmark: _Toc230596083][bookmark: _Toc230596228][bookmark: _Toc230596492][bookmark: _Toc234228595][bookmark: _Toc234229431][bookmark: _Toc234301750][bookmark: _Toc230596087][bookmark: _Toc230596232][bookmark: _Toc230596496][bookmark: _Toc234228601][bookmark: _Toc234229437][bookmark: _Toc234301756][bookmark: _Toc230596092][bookmark: _Toc238864720][bookmark: _Toc340154005][bookmark: _Toc212248674][bookmark: _Ref212088662][bookmark: _Toc212248681]Functional unit network description
[bookmark: _Toc230596093]Introduction
The FUs in MPEG RVC are specified by:
The textual description in ISO/IEC 23002-4.
The RVC-CAL reference software. The RVC-CAL language is formally specified in Annex D.
[bookmark: _GoBack]The Functional Unit Network Language (FNL) is formally specified in this Clause and is used to describe networks of FUs. FNL is derived from Extensible Markup Language (XML) which was in turn derived from SGML (ISO 8879). The ADM consists of a number of FUs with input and output ports, and the connections between those ports. In addition, the ADM may have input and output ports, which may be connected to the ports of FUs or to each other.
A decoder can be described as a network of a number of FUs or even only one FU (e.g. Figure 3).
[image:]
[bookmark: _Ref222489554]Figure 3 — FU network of one FU
A network of FUs is described in FND. An FND includes the list of the selected FUs to form the decoder and the three types of connections that are connections between FUs (type A), connections between decoder inputs and FU inputs (type B), and connections between FU outputs and decoder outputs (type C), which are illustrated in Figure 4.
The list of the selected FUs (Figure 4) is described in FND according to the following table. When selecting FUs from VTL, the IDs and names of FUs defined in ISO/IEC 23002-4 shall be used in the FND. The parameter assignments in the listed FUs are supported in the FND, but optional.
<Instance id = "FU A">
 <Class name = "Algo_Example1" />
</Instance>
<Instance id = "FU B">
 <Class name = "Algo_Example2" />
</Instance>
The connections (type A, type B, and type C shown in Figure 4) are described in FND as shown in the following table.
	Type A
	<Connection src = "FU A" src-port = "B" dst = "FU B" dst-port = "D" />
<Connection src = "FU A" src-port = "C" dst = "FU B" dst-port = "E" />

	Type B
	<input src = "FU A" src-port = "A" />

	Type C
	<output src = "FU B" src-port = "F" />

[image:]
[bookmark: _Ref230599363][bookmark: _Ref222489717]Figure 4 — Three types of connections in an FU network
Another example of FU networks with four FUs is illustrated in Figure 5. The textual description of Figure 5 in FND is described as follows.
<XDF name="Decoder">
<Instance id = "Syntax parser">
 <Class name = "syntax parser">
</Instance>
<Instance id = "FU A">
 <Class name = "Algo_ExamFU_A">
</Instance>
<Instance id = "FU B">
 <Class name = "Algo_ExamFU_B">
</Instance>
<Instance id = "FU C">
 <Class name = "Algo_ExamFU_C">
</Instance>
<Input src = "Syntax Parser" src-port = "A" />
<Output src = "FU C" src-port = "R" />
<Connection src = "Syntax Parser" src-port = "B" dst = "FU A" dst-port = "E" />
<Connection src = "Syntax Parser" src-port = "C" dst = "FU A" dst-port = "F" />
<Connection src = "Syntax Parser" src-port = "D" dst = "FU B" dst-port = "K" />
<Connection src = "FU A" src-port = "H" dst = "FU C" dst-port = "O” />
<Connection src = "FU B" src-port = "L" dst = "FU C" dst-port = "P" />
<Connection src = "FU B" src-port = "M" dst = "FU C" dst-port = "Q" />
</XDF>
[image:]
[bookmark: _Ref230599388][bookmark: _Ref222489388]Figure 5 — Another example of FU networks
The specification of an FU network
The XML structures with names of elements, such as Decl, Network, Package, Expr, etc. are described in the specification of FNL in Annex A. In addition, attributes that direct an individual element’s features are also introduced there. Attribute names will be prefixed with “@”. For instance common attribute names are @id, @name, or @kind. In cases where an element name may be qualified by the value of an attribute, square brackets are used. For instance, in order to express the notion of an Expr element whose @kind attribute is the string “literal”, Expr[@kind="literal"] is written.
By using the RVC-CAL model, FNL also allows FU networks and individual FUs to be parameterized. In particular, it is possible to pass bounded values for specific parameters into FU and FU networks. These values are represented by Expr and Decl syntax. Expr and Decl are the syntactical constructs describing a computation, which may, itself, be dependent upon the values of parameters which are either global or local variables.
[bookmark: _Toc230596095][bookmark: _Toc238864721][bookmark: _Toc340154006]Bitstream syntax description
The MPEG video tool library contains FUs that specify MPEG decoding tools. A new decoder configuration implies new bitstream syntax. The description of the bitstream syntax in RVC is provided using BSDL as specified in ISO/IEC 23001-5 and BSDL schema. However, to facilitate the developments of synthesis tools that are able to generate parsers directly from a BSD (i.e. a BSDL schema), the RVC framework standardizes a version of BSDL called RVC-BSDL specified by including new RVC specific extensions and usage restrictions of standard BSDL in ISO/IEC 23001-5. Such extensions and restrictions versus the MPEG standard BSDL are defined in Annex C of this document. RVC-BSDL contains all information necessary to parse any bitstream compliant with such syntax. The procedure to instantiate the parser capable of parsing and decoding any bitstream compliant with the syntax specified by the RVC-BSDL schema is not normative. Examples of such non-normative procedures are provided in Annex I.
[bookmark: _Toc230596096][bookmark: _Toc238864722][bookmark: _Toc340154007]Model instantiation
This Clause describes the model instantiation process which consists of the selection of Functional Units (FUs) from the video tool library and instantiation of the FUs with the proper parameter assignments. The instantiation process requires the following information:
· The video tool library
· The FU network description
· The bitstream syntax description
The instantiation process consists of attaching the source code corresponding to the FUs identified in the FND in order to build a complete model that can be simulated. The video tool library is a library of source code of all FUs standardized in ISO/IEC 23002-4. The FND contains only the references (names of the FUs) to the pieces of code in the VTL. The process outputs the ADM. Figure 6 illustrates the model instantiation process.

[bookmark: _Ref228269367]Figure 6 — Description of the model instantiation process
The FU Network Description (FND) provides the structure of the decoder by giving the names of the FUs composing the decoder and their respective connections among them. The name of the instance of the FU in the ADM is contained in the tag <instance id="…">. The tag <class name="…"> indicates the name of the FU (in the video tool library) from which the FU of the ADM must be instantiated. The tag <parameter> provides the values of the parameters, which must be used for the instantiation of the FU in the ADM.
The Bitstream Syntax Description (BSD) provides the structure of the bitstream. The parser is generated automatically from the BSD. Informative examples are provided in Annex I for building the parser. The syntax parser FU of the ADM might use other FUs to parse the bitstream. Thus, a clear link between identifiers inside the BSD and the FND must be established. The tag <rvc port="…"> indicates the name of the instance of the FU into the ADM to which this element of syntax is sent.

[bookmark: _Ref212088609][bookmark: _Toc212248673][bookmark: _Ref221613142][bookmark: _Toc230596097][bookmark: _Toc238864723][bookmark: _Toc340154008]
(normative)

Functional unit network description
[bookmark: _Toc212248676][bookmark: _Toc230596098]Elements of a functional unit network
XDF — An FU network is identified by the root element called XDF that marks the beginning and end of the XML description of the network.
optional attribute: @name, the name of the network. @version, the version number of the current network. Assumed to be “1.0” if absent.
optional children: Package, Decl, Port, Instance, Connection.
<XDF name="mpeg4SP">
 ...
</XDF>
Package — This element contains a structured representation of a qualified identifier (QID) (i.e. a list of identifiers that are used to specify a locus in a hierarchical namespace). That QID provides the context for the @name attributed of the enclosing Network element: that name is intended to be valid within the specified namespace, or package.
required child: QID, the qualified identifier.
<Package>
 <QID>
 <ID id="mpeg4"/>
 </QID>
</Package>
Decl[@kind="Param"] — Represents the declaration of a parameter of the network.
required attribute: @name, the name of the parameter.
optional child: Type, the declared type of the parameter.
<Decl kind="Param" name="FOURMV"/>
Decl[@kind="Var"] — This element represents a variable declaration. Variables are used within expressions to compute parameter values for actors instantiated within the network and within expressions used to compute the values of other variables.
required attribute: @name, containing the name of the declared variable.
required child: Expr, representing the expression defining the value of this variable, possibly referring the values of other variables and parameters.
optional child: Type, the declared type of the variable.
<Decl kind="Variable" name="MOTION">
 <Expr kind="Literal" literal-kind="Integer" value="8"/>
</Decl>
Port — Represents the declaration of a port of the network. Ports are directed, i.e. they serve as either input or output of tokens.
required attributes: @name, the name of the port. @kind, either “Input” or “Output”.
optional children: Type, the declared type of the port.
<Port kind="Input" name="signed"/>
<Port kind="Output" name="out"/>
Instance — This element represents instantiations of FUs (i.e. actors). Essentially, an instantiation consists of two parts: (1) a specification of the class of the FU, and (2) a list of parameter values, specifying expressions for computing the actual parameter for each formal parameter of the FU class.
required attribute: @id, the unique identifier of this FU instance in the network. No two Instance elements may have the same value for this attribute.
required child: Class, identifying the FU class to be instantiated.
optional children: Parameter, each of these is assigning a formal parameter of the FU class to an expression defining the actual parameter value for this instance. Attribute, additional named attributes for this instance.
<Instance id="MPEG4_algo_PR">
 <Class name="MPEG4_algo_Add"/>
 <Parameter name="LAYOUT">
 <Expr kind="Literal" literal-kind="Integer" value="1"/>
 </Parameter>
</Instance>

<Instance id="Algo_IDCT2D_MPEGCPart1Compliant">
 <Class name="Algo_IDCT2D_MPEGCPart1Compliant"/>
</Instance>
Connection — Represents a directed connection between two ports within the network. The source of that connection can be either an input port of the network or an output port of an FU instance. Conversely, the destination of that connection is either an output port of the network or the input port of an FU instance.
required attributes: @src, the id of the source FU of this connection. If “”, the connection originates at a network input port. @src-port, the name of the source port. @dst, the id of the destination FU of this connection. If “”, the connection ends at a network output port. @dst-port, the destination port of the connection.
optional children: Attribute, additionally named attributes of this connection.
<Connection dst="MPEG4_algo_Add_V" dst-port="TEX" src="Algo_IDCT2D_MPEGCPart1Compliant_V" src-port="out"/>
[bookmark: _Toc212248677][bookmark: _Toc230596099]Expressions
All Expr elements represent expressions. Expressions are used to compute values that are in turn passed as parameters when instantiating FUs. Expressions can refer to variables by name. Those variables may be declared local variables of a network, declared network parameters, or global variables. There are a number of different kinds of expressions, all represented as Expr elements. They are distinguished by the @kind attribute.
Expr[@kind="Literal"] — These expressions represent literals, which are essentially atomic expressions that denote constants, and which do not refer to any variables. There are a number of different kinds of literals, distinguished by the @literal-kind attribute.
Expr[@kind="Literal"][@literal-kind="Boolean"] — These literals are Boolean values.
required attribute: @value, either “1” for true or “0” for false.
<Expr kind="Literal" literal-kind="Boolean" value="1"/>
Expr[@kind="Literal"][@literal-kind="Integer"] — These literals represent arbitrary-sized integral numbers.
required attribute: @value, the decimal representation of the number.
<Expr kind="Literal" literal-kind="Integer" value="64"/>
Expr[@kind="Literal"][@literal-kind="Real"] — These are numbers with fractional parts.
required attribute: value, the decimal representation of the number, optionally in scientific notation with an exponent separated from the mantissa by the character ‘E’ or ‘e’.
<Expr kind="Literal" literal-kind="Real" value="32e-2"/>
Expr[@kind="Literal"][@literal-kind="String"] — String literals.
required attribute: @value, the string value.
<Expr kind="Literal" literal-kind="String" value="ForemanQCIF"/>
Expr[@kind="Literal"][@literal-kind="Character"] — Character literals.
required attribute: @value, the character value.
<Expr kind="Literal" literal-kind="Character" value="s"/>
Expr[@kind="List"] — This expression is a list.
<Expr kind="List"/>
Expr[@kind="Var"] — This expression is a variable reference.
required attributes: @name, the name of the variable referred to.
<Expr kind="Var" name="INTER"/>
Expr[@kind="Application"] — This kind of expression represents the application of a function to a number of arguments.
required children: Expr, the expression representing the function. Args, an element containing the arguments.
<Expr kind="Application">
 <Expr kind="Var" name="log"/>
 <Args>
 <Expr kind="Literal" literal-kind="Integer" value="2"/>
 </Args>
</Expr>
Expr[@kind="UnaryOp"] — This expression represents the application of a unary operator to a single operand.
required children: Op, the operator. Expr, an expression representing the operand.
<Expr kind="UnaryOp">
 <Op name="!"/>
 <Expr kind="Literal" literal-kind="Boolean" value="1"/>
</Expr>
Expr[@kind="BinOpSeq"] — These expressions represent the use of binary operators on a number of operands. The associativity remains unspecified, and will have to be decided based on the operators involved. The children are operands and operators. There has to be at least one operator, and exactly one more operands than operators. The operators are placed between the operands in document order — the first operator between the first and second operand, the second operator between the second and third operand and so forth. The relative position of operators and operands is of no importance.
required children: Op, the operators. Expr, the operands.
<Expr kind="BinOpSeq">
 <Expr kind="Literal" literal-kind="Integer" value="3"/>
 <Op name="+"/>
 <Expr kind="Literal" literal-kind="Integer" value="2"/>
</Expr>
[bookmark: _Toc212248678][bookmark: _Toc230596100]Auxiliary elements
Args — This element contains the arguments of a function application.
required children: Expr, the argument expressions.
Op — This element represents a unary or binary operator, depending on context.
required attribute: @name, the operator name.
<Expr kind="Application">
 <Expr kind="Var" name="myfunction"/>
 <Args>
 <Expr kind="BinOpSeq">
 <Expr kind="Literal" literal-kind="Integer" value="3"/>
 <Op name="+"/>
 <Expr kind="Literal" literal-kind="Integer" value="2"/>
 </Expr>
 </Args>
</Expr>
[bookmark: _Toc212248679][bookmark: _Toc230596101]Types
Types, represented by Type elements, occur in the declarations of variables and ports. They are used to specify the data types of objects bound to those variables or communicated via those ports. They are identified by a name, and may also comprise parameters, which are bound to either other types, or expressions (which are resulting in values).
Type — The description of a data type.
required attribute: @name, the name of the type.
optional children: Entry, entries binding a concrete object (either a value or another type) to a named parameter.
<Type name="mytype">
 ...
</Type>
Entry[@kind="Expr"] — A value parameter of a type.
required attribute: @name, the name of the parameter.
required child: Expr, the expression used to compute the attribute value.
<Type name="mytype">
 <Entry kind="Expr" name="size">
 <Expr kind="Literal" literal-kind="Integer" value="10"/>
 </Entry>
</Type>
Entry[@kind="Type"] — A type parameter of a type.
required attribute: @name, the name of the parameter.
required child: Type, the type bound to the parameter.
<Type name="list">
 <Entry kind="Type" name="type">
 <Type name="bool"/>
 </Entry>
 <Entry kind="Expr" name="size">
 <Expr kind="Literal" literal-kind="Integer" value="32"/>
 </Entry>
</Type>
[bookmark: _Toc212248680][bookmark: _Toc230596102]Miscellaneous elements
Attribute — The instances and connections of a network can be tagged with attributes. An attribute is a named element that contains additional information about the instance or connection. We distinguish four kinds of attributes: flags, string attributes, value attributes, and custom attributes. A flag is an attribute that does not contain ANY information except its name. A string attribute is one that contains a string, a value attribute contains an expression (represented by an Expr element), and a custom attribute contains any kind of information.
optional attribute: @value, the string value of a string attribute.
optional children: Expr, the value expression of a value attribute. An Attribute may instead also contain any other element.
<Connection dst="sink" dst-port="bits" src="source" src-port="bits">
 <Attribute kind="Value" name="bufferSize">
 <Expr kind="Literal" literal-kind="Integer" value="1"/>
 </Attribute>
</Connection>
QID — An element representing a qualified identifier, which is a list of simple identifiers. That list may be of any length, including zero.
optional children: ID, a simple identifier.
<QID>
 <ID id="mpeg4"/>
 <ID id="SP"/>
 <ID id="myversion"/>
</QID
FUID — A simple identifier.
required attribute: @id, the identifier.
<FUID id="0001012"/>
Class — This element identifies an FU class by name. If the FU class name is to be interpreted within a specific namespace, that QID of that namespace may be contained within the Class element.
required attribute: @name, the name of the class.
optional child: QID, the QID identifying the package/namespace for the class name.
<Class name="MPEG4_algo_VLDTableB8"/>
Parameter — This element specifies a value expression for a given, named parameter.
required attribute: @name, the parameter name.
required child: Expr, the expression whose evaluation will yield the value for the specified parameter.
<Parameter name="ROW">
 <Expr kind="Literal" literal-kind="Integer" value="1"/>
</Parameter>
NOTE	This element is special in two respects: (1) It may occur anywhere in the network description. (2) Its format is entirely unspecified. The Note element can be used to add annotations and additional information to any element in the Network specification. It is common practice to use the @kind attribute to identify the type of the note.
Examples of description of networks of FUs using the FNL specified above are given in Annex B.
[bookmark: _Ref211978607]
[bookmark: _Toc212248727][bookmark: _Ref211937713][bookmark: _Toc230596103][bookmark: _Toc238864724][bookmark: _Toc340154009]
(informative)

Examples of FU network description
[bookmark: _Toc230596104]Introduction
This Annex provides some examples of how a RVC decoder configuration can be specified in terms of a network of RVC FUs, including a 1D IDCT, 2D IDCT (Figure B.1), and the flatten MPEG-4 SP decoder FUs. A flatten decoder configuration is described in terms of networks of FUs from the RVC toolbox ISO/IEC 23002-4 composed of MPEG-4 SP FUs.
[bookmark: _Toc230596105]Example of specification of a network of FUs implementing a 1D-IDCT algorithm
Figure B.1 illustrates the network composed by 5 FUs taken from the MPEG RVC toolbox, the connections between FU and between the network and the outside world.
[image: idct2d]
[bookmark: _Ref212252740][bookmark: _Ref228272765][bookmark: _Ref212252735]Figure B.1 — Example of networks of FU expressed using RVC FNL
The textual specification of the network in Figure B.1 is specified below. The network implements a 1-D IDCT.
<?xml version="1.0" encoding="UTF-8"?><XDF name="idct2d">
 <Package>
 <QID>
 <ID id="mpeg4"/>
 </QID>
 </Package>
 <Port kind="Input" name="in"/>
 <Port kind="Input" name="signed"/>
 <Port kind="Output" name="out"/>
 <Decl kind="Variable" name="INP_SZ">
 <Expr kind="Literal" literal-kind="Integer" value="12"/>
 </Decl>
 <Decl kind="Variable" name="PIX_SZ">
 <Expr kind="Literal" literal-kind="Integer" value="9"/>
 </Decl>
 <Decl kind="Variable" name="OUT_SZ">
 <Expr kind="Literal" literal-kind="Integer" value="10"/>
 </Decl>
 <Decl kind="Variable" name="MEM_SZ">
 <Expr kind="Literal" literal-kind="Integer" value="16"/>
 </Decl>
 <Instance id="GEN_124_algo_Idct1d_r">
 <Class name="GEN_124_algo_Idct1d"/>
 <Parameter name="ROW">
 <Expr kind="Literal" literal-kind="Integer" value="1"/>
 </Parameter>
 </Instance>
 <Instance id="GEN_algo_Transpose_0">
 <Class name="GEN_algo_Transpose"/>
 </Instance>
 <Instance id="GEN_124_algo_Idct1d_c">
 <Class name="GEN_124_algo_Idct1d"/>
 <Parameter name="ROW">
 <Expr kind="Literal" literal-kind="Integer" value="0"/>
 </Parameter>
 </Instance>
 <Instance id="GEN_algo_Transpose_1">
 <Class name="GEN_algo_Transpose"/>
 </Instance>
 <Instance id="GEN_algo_Clip">
 <Class name="GEN_algo_Clip"/>
 <Parameter name="isz">
 <Expr kind="Var" name="OUT_SZ"/>
 </Parameter>
 <Parameter name="osz">
 <Expr kind="Var" name="PIX_SZ"/>
 </Parameter>
 </Instance>
 <Connection dst="GEN_124_algo_Idct1d_r" dst-port="X" src="" src-port="in"/>
 <Connection dst="GEN_algo_Clip" dst-port="SIGNED" src="" src-port="signed"/>
 <Connection dst="" dst-port="out" src="GEN_algo_Clip" src-port="O"/>
 <Connection dst="GEN_algo_Transpose_0" dst-port="X" src="GEN_124_algo_Idct1d_r" src-port="Y"/>
 <Connection dst="GEN_124_algo_Idct1d_c" dst-port="X" src="GEN_algo_Transpose_0" src-port="Y"/>
 <Connection dst="GEN_algo_Transpose_1" dst-port="X" src="GEN_124_algo_Idct1d_c" src-port="Y"/>
 <Connection dst="GEN_algo_Clip" dst-port="I" src="GEN_algo_Transpose_1" src-port="Y"/>
</XDF>
[bookmark: _Toc230596106]FNL of the testbed
[image:]
<?xml version="1.0" encoding="UTF-8"?><XDF name="testbed">
 <Instance id="FUN_MPEG4SP_DECODER">
 <Class name="decoder"/>
 </Instance>
 <Instance id="fread">
 <Class name="fread"/>
 <Parameter name="fname">
 <Expr kind="Literal" literal-kind="String" value="data/foreman_qcif_30.bit"/>
 </Parameter>
 </Instance>
 <Instance id="DispYUV">
 <Class name="DispYUV"/>
 <Parameter name="title">
 <Expr kind="Literal" literal-kind="String" value="Foreman QCIF"/>
 </Parameter>
 <Parameter name="height">
 <Expr kind="Literal" literal-kind="Integer" value="144"/>
 </Parameter>
 <Parameter name="file">
 <Expr kind="Literal" literal-kind="String" value="data/foreman_qcif_30.yuv"/>
 </Parameter>
 <Parameter name="width">
 <Expr kind="Literal" literal-kind="Integer" value="176"/>
 </Parameter>
 <Parameter name="doCompare">
 <Expr kind="Literal" literal-kind="Integer" value="1"/>
 </Parameter>
 </Instance>
 <Connection dst="FUN_MPEG4SP_DECODER" dst-port="bits" src="fread" src-port="O"/>
 <Connection dst="DispYUV" dst-port="B" src="FUN_MPEG4SP_DECODER" src-port="VID"/>
</XDF>
[bookmark: _Ref212087706][bookmark: _Toc212248728][bookmark: _Toc230596107][bookmark: _Toc238864725][bookmark: _Toc340154010]
(normative)

Specification of RVC-BSDL
[bookmark: _Toc230596108]Introduction
This Annex describes the subset and the extensions of ISO/IEC 23001-5 BSDL that constitutes the specification of RVC-BSDL. The objective of specifying a new standard from BSDL (ISO/IEC 23001-5:2008) into a smaller subset (RVC-BSDL), is to be able to support a simple and efficient methodology for describing video bitstreams syntaxes in the scope of RVC, as well as to facilitate the development of supporting tools (i.e. direct synthesis of parsers from RVC-BSDL descriptions).
The following Clauses describe the specificity of the subset and the extensions of BSDL standard as specified in ISO/IEC 23001-5:2008, which are needed to obtain the RVC-BSDL used in this Part of ISO/IEC 23001 (i.e. the RVC framework).
[bookmark: _Toc230596109]Use of prefixes in RVC-BSDL schema
Prefixes and the corresponding namespaces are specified in RVC BSDL schema. Table C.1 shows the namespaces corresponding to each XML prefix. Because only a subset of XML or BSDL constructs is supported in RVC-BSDL, normative namespaces to define the construct subset are newly defined for RVC-BSDL. The namespaces of original standards are still compatible for RVC-BSDL description but are informative only for the backward compatibility.
[bookmark: OLE_LINK5][bookmark: _Hlk367470991]Table C.1 — Mapping of prefixes to corresponding namespaces in RVC-BSDL schemas
	Prefix
	Corresponding Namespace
(Normative)
	Corresponding NamespaceCompatible Namespace
(Informative)

	Xsdxsd
	urn:mpeg:mpegB:201x:RVC-BSDL-XSD-NS
	http://www.w3.org/2001/XMLSchema

	bs0
	urn:mpeg:mpeg21:2003:01-DIA-BSDL0-NS

	bs1
	urn:mpeg:mpegB:201x:RVC-BSDL-BS1-NS
	urn:mpeg:mpeg21:2003:01-DIA-BSDL1-NS

	bs2
	urn:mpeg:mpegB:201x:RVC-BSDL-BS2-NS
	urn:mpeg:mpeg21:2003:01-DIA-BSDL2-NS

	Rvcrvc
	urn:mpeg:mpegB:201x:RVC-BSDL-RVC-NS
	urn:mpeg:mpegB:2013:RVC-BSDL-RVC-NS urn:mpeg:2006:01-RVC-NS

[bookmark: _Toc230596110]
Constructs of RVC-BSDL
Introduction
This Subclause describes which XML or BSDL constructs are supported in RVC-BSDL in the RVC framework. It includes data types, attributes and elements. The aim of the subset definition is to provide a restricted way of representing well-defined bitstreams. Thus, the processes including the validations of the bitstreams and the generation of efficient implementations capable of parsing the bitstreams — described using RVC-BSDL — become simpler. The specification of the BSDL constructs listed below can be found in ISO/IEC 230015:2008. The constructs that are not described in this Subclause should not be considered to be supported in the RVC-BSDL syntax.
[bookmark: _Toc230596111]Supported data types
[bookmark: _Toc230596112]Built-in data types
This Subclause describes the data types which are supported by RVC-BSDL. The supported data types already defined in common XML schema is shown in Table C.2. The BSDL built-in data types supported by RVC-BSDL are reported in Table C.3.
[bookmark: _Ref228274647]Table C.2 — List of XML Schema data types supported or not supported by RVC-BSDL
	[bookmark: _Ref216510673]Data Type
	Supported by RVC-BSDL?

	xsd:hexBinary
	Yes

	xsd:long
	Yes

	xsd:int
	Yes

	xsd:short
	Yes

	xsd:byte
	Yes

	xsd:unsignedLong
	Yes

	xsd:unsignedInt
	Yes

	xsd:unsignedShort
	Yes

	xsd:unsignedByte
	Yes

	xsd:string
	No

	xsd:normalizedString
	No

	xsd:float
	No

	xsd:double
	No

	xsd:base64Binary
	No

[bookmark: _Ref228274660]Table C.3 — List of BSDL built-in data types supported or not supported by RVC-BSDL
	Data Type
	Supported by RVC-BSDL?

	bs1:byteRange
	Yes

	bs1:align32
	Yes

	bs1:align16
	Yes

	bs1:align8
	Yes

	bs1:b1 - bs1:b32
	Yes

	bs1:bitstreamSegment
	No

	bs1:stringUTF16NT
	No

	bs1:stringUTF8
	No

	bs1:stringUTF16BENT
	No

	bs1:stringUTF16LENT
	No

	bs1:stringUTF8NT
	No

	bs1:stringUTF16
	No

	bs1:stringUTF16BE
	No

	bs1:stringUTF16LE
	No

	bs1:longLE
	No

	bs1:intLE
	No

	bs1:shortLE
	No

	bs1:unsignedLongLE
	No

	bs1:unsignedIntLE
	No

	bs1:unsignedShortLE
	No

	bs1:unsignedExpGolomb
	No

	bs1:signedExpGolomb
	No

[bookmark: _Toc230596113]
Additional data types
[bookmark: _Ref370080547]Data type rvc:ext
It may happen that processing tasks associated to the parsing of a segment of the bitstream are not described in the RVC-BSDL schema. This is the case for bitstream segments for which VLD, CAVLD or CABAC decoding algorithms need to be applied. Specific functional units available in the RVC toolbox can be used to decode such portions of the bitstream before continuing the parsing. The data type rvc:ext indicates a portion of bitstream that needs to be decoded by an externally defined algorithmexternal Functional Unit. The rvc:ext can be used to define the communication between the following cases of externally defined algorithm: 1) Specific FUs available in the RMC toolbox and 2) Predefined functions that can be integrated within the bitstream parser FU during the parser intstantiation process. The rvc:ext type can be only applied to an xsd:element element.
For external Functional Unit
A communication scheme (described in REF _Ref216510361 \r \h * MERGEFORMAT I.1.2I.3) is set up to make the link with this external Functional Unit. The rvc:port rvc:extName and rvc:extParams attribute helps in making this link by specifying the name of the ports used to connect the parser and the Functional Unit. An example of Variable Length Decoding is provided below:
<xsd:element name="DCTCoefficient" type="rvc:ext" rvc:extName="FU" rvc:portrvc:extParams= "MPEG4_part2_B16"/>
Connections with an external FU are necessary to decode the DCT coefficients, which are Variable Length Codes. These coefficients shall be decoded using ISO/IEC 14496-2:2004, Table B.16 (the VLC table). Thus a connection is established between the parser and the corresponding Functional Unit to decode this element of syntax. In the case of the connection with the external functional unit, the rvc:extName attribute should be set to “FU”. Example of such a communication protocol is shown in details in I.3.1 (External algorithms as Functional Units). REF _Ref216510361 \r \h I.1.2 (Implementing Variable-Length Decoding). The rvc:ext type can be only applied to an xsd:element element.
For parser plugin function
In the case of the bitstream syntax element can be decoded by a predefined function in the to-be-instantiated bitstream parser FU, rvc:ext can be used to designate the function and to provide necessary parameters to the function. An example of Variable Length Decoding is provided below:
<xsd:element name="DCTCoefficient" type="rvc:ext" rvc:extName="VLD" rvc:extParams="MV_START_INDEX"/>
The detailed interaction mecanism is described in I.3.2 (External algorithms as plugin functions).
[bookmark: _Toc230596114]Supported elements
This Subclause describes which BSDL facets are supported in RVC-BSDL within the RVC framework. No BSDL-1 elements are supported in RVC-BSDL. The allowed BSDL-2 elements are described in Table C.4. The allowed BSDL-1 elements are described in REF _Ref228274739 \h * MERGEFORMAT Table C.5. The allowed XML built-in elements are reported in Table C.6Table C.6.
[bookmark: _Ref228274722]Table C.4 — The BSDL-2 elements supported or not supported by RVC-BSDL
	Element name
	Supported by RVC-BSDL?

	bs2:length
	Yes (see REF _Ref214679517 \r \h * MERGEFORMAT C.4.3.11)

	bs2:bitLength
	Yes (see C.4.3.10)

	bs2:startCode
	Yes (see C.4.3.12)

	bs2:endCode
	No

	bs2:escape
	No

	bs2:cdata
	No

	bs2:log2()
	No

	bs2:ifUnion
	Yes (see C.4.3.14)

	bs2:parameter
	No

	bs2:xpathScript
	No

	bs2:variable
	Yes (see C.4.3.5)

[bookmark: _Ref228274739]Table C. SEQ Table_C. * ARABIC 5 — The BSDL-1 elements supported or not supported by RVC-BSDL
	Element name
	Supported by RVC-BSDL?

	bs1:script
	Yes

[bookmark: _Ref228274746][bookmark: _Ref216510468]Table C.6 — The XML standard elements supported or not supported by RVC-BSDL
	Element name
	Supported by RVC-BSDL?

	xsd:schema
	Yes (see C.4.x.x)

	xsd:sequence
	Yes (see C.4.3.3)

	xsd:choice
	Yes (see C.4.3.4)

	xsd:all
	No

	xsd:group
	Yes (see C.4.3.2)

	xsd:element
	Yes (see C.4.3.1)

	xsd:simpleType
	Yes (see C.4.3.6)

	xsd:complexType
	No

	xsd:maxExclusive
	No

	xsd:fixed
	No

	xsd:annotation
	Yes (see C.4.3.7)

	xsd:appinfo
	Yes (see C.4.3.8)

	xsd:MinOccurs
	No

	xsd:MaxOccurs
	No

	xsd:default
	No

	xsd:union
	Yes (see C.4.3.13)

	xsd:length
	Yes (see C.4.3.11)

[bookmark: _Toc230596115]Supported attributes
[bookmark: _Toc230596116]Built-in attributes
This Subclause describes which attributes are supported by RVC-BSDL within the RVC framework. The allowed BSDL-1 attributes are described in REF _Ref228274783 \h * MERGEFORMAT Table C.7. No BSDL-1 attributes are supported in RVC-BSDL. The allowed BSDL-2 attributes are described in Table C.8. The allowed built-in XML attributes are described in Table C.9.
[bookmark: _Ref228274783]Table C. SEQ Table_C. * ARABIC 7 — The BSDL-1 attributes supported or not supported by RVC-BSDL
	Attribute name
	Supported by RVC-BSDL?

	bs1:bitstreamURI
	No

	bs1:ignore
	No

	bs1:addressUnit
	No

	bs1:codec
	No

	bs1:requiredExtensions
	No

	bs1:insertEmPrevByte
	No

	bs1:bsdlVersion
	No

[bookmark: _Ref228274797][bookmark: _Ref216510484]Table C.8 — The BSDL-2 attributes supported or not supported by RVC-BSDL
	Attribute name
	Supported by RVC-BSDL?

	bs2:nOccurs
	Yes

	bs2:if
	Yes

	bs2:ifNext
	Yes

	bs2:rootElement
	Yes

	bs2:ifNextMask
	No

	bs2:ifNextSkip
	No

	bs2:removeEmPrevByte
	No

	bs2:layerLength
	No

	bs2:assignPre
	No

	bs2:assignPost
	No

	bs2:bsdlVersion
	No

	bs2:requiredExtensions
	NoYes

	bs2:startContext
	No

	bs2:stopContext
	No

	bs2:redefineMarker
	No

	bs2:position
	Yes

	bs2:partContext
	Yes

[bookmark: _Ref228274806]Table C.9 — The XML attributes supported or not supported by RVC-BSDL
	Attribute name
	Supported by the RVC framework?

	minOccurs
	No

	maxOccurs
	No

	fixed
	Yes

[bookmark: _Toc230596117]Additional attributes
rvc:port
The parsers built from RVC decoder configurations generate data tokens on different output ports. Consequently, a mechanism specifying the correspondence between the tokens, corresponding to the different elements of syntax and the output ports on which they have to be sent as output tokens, is necessary to fully specify a decoder configuration. A special attribute has been added in order to define the port on which the data is sent. Such attribute is:
rvc:port.
The rvc:port attribute is used to indicate that the corresponding element of syntax must be available outside the parser for further processing operated by the network of FUs. This attribute is applied to xsd:element only. An example is given below:
<xsd:element name="video_object_layer_width" type="bs1:b13" rvc:port="width"/>
Thus, the element “video_object_layer_width” is available as a token on the port “width” of the parser. Obviously, the connections of the parser to the network of FUs are reported in the description of the RVC decoder configuration connected to the port “width.” It is available in the specification of the FU Network Description (FND), which is given as an input of the whole framework (see Figure 2). In the above example, the corresponding FND must contain the description of a link connecting the output port “width” of the parser and an input port of an FU.
rvc:extName, rvc:extParams
The rvc:extName and rvc:extParams attributes are used to describe the bitstream syntax elements that should be parsed by externally defined algorithms. These elements are compulsory when the datatype of an element is set to “rvc:ext”.
The rvc:extName attribute indicates the name or identifier of the external algorithm. When the syntax element should be parsed by an external FU, this attribute should be set as “FU”. Otherwise, the value of this attribute should be considered as the name of the external function to be called. The external function should be a part of the bitstream parser FU, e.g., a plugin function described in Annex I.3.2.
The rvc:extParams attribute can be used to define the parameters for the external algorithm. Multiple parameters should be separated with semicolon (;) or comma (,). For the example use cases, see Annex I.
An example of these attributes can be found in C.3.2.2.1 (rvc:ext).
rvc:rootGroup
Differently from BSDL, RVC-BSDL do not allow xsd:element as a top-level construct of the bitstream syntax. Therefore, bs2:rootElement attribute, which is a BSDL-2 attribute to designate the top-level bitstream hierarchy, is not applicable in RVC-BSDL. As a replacement, RVC-BSDL defines rvc:rootGroup to designate the top level of a bitstream syntax. An example is given below:
<xsd:schema rvc:rootGroup="bitstream">
[bookmark: _Toc230596118]Syntax of RVC-BSDL
Introduction
This Subclause fully specifies the syntax of RVC-BSDL used in the context of the RVC framework. The allowed combinations of the elements, data types and attributes are reported in this Subclause. It defines the subset RVC-BSDL.
[bookmark: _Toc230596119]Conventions
[bookmark: _Toc230596120]To define the syntax of the elements
The attributes or children elements, which are shown in italic, are optional.
The (a | b | c) construction means that one can choose only one element among a, b or c.
The {a,b,c} construction means that one can build a list of several elements among a, b or c.
[bookmark: _Toc230596121]To define the syntax of the expressions

We use a form of BNF to describe the syntax rules. Literal elements are put in quotes (in the case of symbols and delimiters), or set in boldface (in the case of keywords). An optional occurrence of a sequence of symbols A is written as , while any numbers of consecutive occurrences (including none) are written as . The alternative occurrence of either A or B is expressed as .

We often use plural forms of non-terminal symbols without introducing them explicitly. These are supposed to stand for a comma-separated sequence of at least an instance of the non-terminal. E.g. if A is the non-terminal, we might use As in some production, and we implicitly assume the following definition:
In the examples reported here, the usual interpretation of expression literals and mathematical operators is assumed, even though strictly speaking these are not part of the language and depend on the environment. A specific implementation of RVC-CAL may not have these operators, or interpret them on the other hand in a different manner.
[bookmark: _Toc230596122]Syntax for elements and attributes
This Subclause describes the syntax of the element and its associated attributes.
xsd:schema
This element is the top level element of RVC-BSDL description.
<xsd:schema
	rvc:rootGroup = "string"
>
Children: {xsd:group, xsd:simpleType, xsd:annotation}
</xsd:schema>
Remarks:
The attribute rvc:rootGroup specifies the xsd:group that contains the top-level bitstream hierarchy. If rvc:rootGroup is not defined, the xsd:group that first appears on the RVC-BSDL description is considered as the top-level hierarchy.
For the compatibility and authoring purpose, attributes specified in XML standard (e.g., XML namespace designation) can be used within xsd:schema. An example is as follows:
<xsd:schema xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
	xmlns:xsd="urn:mpeg:mpegB:2013:RVC-BSDL-XSD-NS"
	xmlns:bs1="urn:mpeg:mpegB:2013:RVC-BSDL-BSDL1-NS"
	xmlns:bs2="urn:mpeg:mpegB:2013:RVC-BSDL-BSDL2-NS"
	xmlns:rvc="urn:mpeg:mpegB:2013:RVC-BSDL-NS"
	xmlns:m4v="urn:mpeg:mpeg4:profile:visual:simple"
	xsi:schemaLocation="
		urn:mpeg:mpegB:2013:RVC-BSDL-XSD-NS		./n_xsd/MPEGB-RVC-BSDL-XSD.xsd
		urn:mpeg:mpegB:2013:RVC-BSDL-BSDL1-NS	./n_xsd/MPEGB-RVC-BSDL-BS1.xsd
		urn:mpeg:mpegB:2013:RVC-BSDL-BSDL2-NS	./n_xsd/MPEGB-RVC-BSDL-BS2.xsd
		urn:mpeg:mpegB:2013:RVC-BSDL-NS			./n_xsd/MPEGB-RVC-BSDL-RVC.xsd
	rvc:rootGroup="bitstream">

[bookmark: _Ref214679698][bookmark: _Toc230596123]xsd:element
This element is used to define an element of syntax.
<xsd:element
	name = "string"
	type = "(bs1:b1 - bs1:b32 | rvc:ext | bs1:align8 | bs1:align16 | bs1:align32 | user-defined type)"
	bs0:variablebs2:partContext = "(true | false)"
	bs2:if = "Expression"
	bs2:ifNext = "Expression"
	bs2:nOccurs = "(Expression | unbounded)"
fixed = "hexadecimalValue"
	rvc:port = "portName"
	rvc:extName = "pluginName"
	rvc:extParams = "Expression"
>
Children: xsd:annotation
</xsd:element>
Remarks:
The attribute rvc:port specifies the name of the output port to which the FU is connected. For more information about the communication between the parser and the FU, see I.1.2.
The rvc:port attribute is compulsory when dealing with an element of the type rvc:ext.
The user-defined type must be defined using a xsd:simpleType element.
If the bs2:partContext attribute is set to true, the value of the syntax element parsed by the xsd:element should be stored in the internal variable as assigned as bs2:variable. The name of variable is identical with the name of the element assigned by name attribute.
When the value of bs2:nOccurs attribute is set to a nonzero value or unbounded, bs2:if attribute can be used along with it. This combination signifies that this syntax element should repeatedly be parsed while the expression in bs2:if is true. The condition described in bs2:if should be tested before of each repetition, similar to a while statement.
[bookmark: _Ref214679682][bookmark: _Toc230596124]xsd:group
The xsd:group element is used to define a set of elements of syntax. This element allows having a hierarchical bitstream description. There are two ways of using the xsd:group element: the definition of the group and its call.
Definition of the group:
<xsd:group
	name = "string"
>
Children: {xsd:sequence, xsd:choice}
</xsd:group>
Call of the group:
<xsd:group
	ref = "string"
	bs2:if = "Expression"
	bs2:ifNext = "Expression"
	bs2:nOccurs = "(Expression | unbounded)"
>
Children: none
</xsd:group>
In a BSDL schema, there are several ways of accessing different levels of hierarchy in the bitstream. However in RVC-BSDL, only the xsd:group element shall be used to express different levels of hierarchy into the bitstream. The example below shows how to use the xsd:group element. In the bitstream, when the parser meets this element:
<xsd:group ref="GroupOfVideoObjectPlane"/>
The parser refers to the definition of the group, which is:
<xsd:group name="GroupOfVideoObjectPlane">
 <xsd:sequence>
 <xsd:element name="group_of_vop_start_code" type="bs1:b32"/>
 <xsd:element name="time_code" type="bs1:b18"/>
 <xsd:element name="closed_gov" type="bs1:b1"/>
 <xsd:element name="broken_link" type="bs1:b1"/>
 <xsd:element name="next_start_code" type="bs1:align8"/>
 <xsd:group ref="user_data" bs2:ifNext="1B2"/>
 </xsd:sequence>
</xsd:group>
The above example shows a way to express a hierarchy in the bitstream. The xsd:group element can be used hierarchically.
[bookmark: _Ref214679652][bookmark: _Toc230596125]xsd:sequence
According to the parent element in which this element is called, there are several possibilities:
If the top parent element is a xsd:group element (in the case of the definition of the xsd:group element):
<xsd:sequence>
	Children: {xsd:sequence, xsd:choice, xsd:group, xsd:element}
</xsd:sequence>
If the top parent element is an xsd:sequence element, the xsd:sequence element is used to gather a list of consecutive elements of syntax which have conditions in common.
<xsd:sequence
	bs2:if = "Expression"
	bs2:ifNext = "Expression"
	bs2:nOccurs = "Expression"
>
Children: {xsd:sequence, xsd:choice, xsd:group, xsd:element}
</xsd:sequence>
Remark: one can use a single or several attributes on the same xsd:sequence element but defining no attribute is meaningless.
Example: the elements requested_upstream_message_type and newpred_segment_type exists only if the variable newpred_enable equals to “1”.
<xsd:sequence bs2:if="$myns:newpred_enable = 1">
 <xsd:element name="requested_upstream_message_type" type="bs1:b2"/>
 <xsd:element name="newpred_segment_type" type="bs1:b1"/>
</xsd:sequence>
[bookmark: _Ref214679669][bookmark: _Toc230596126]xsd:choice
This element is used to make a choice between two or several elements of syntax.
<xsd:choice
	bs2:if = "Expression"
	bs2:ifNext = "Expression"
	bs2:nOccurs = "(Expression | unbounded)"
>
Children: {xsd:sequence, xsd:choice, xsd:group, xsd:element}
Children: {xsd:group, xsd:element}
</xsd:choice>
Remark: the xsd:group and xsd:element child elements of xsd:choice must should have a bs2:if or bs2:ifNext attribute in order to be able to decide which element must be chosen. The condition on each element must be defined such as only one choice must be possible. The evaluation of conditions must be done in a sequential order on the description. No condition statement means that the condition is always true; therefore, xsd:group or xsd:element without condition can be used like else statement in if-else structure. , like in the example below:As example is as below:
Example:
<xsd:choice>
 <xsd:element name="next_sc" type="bs1:align8" bs2:if="$myns:vop_coded = 0"/>
 <xsd:group ref="VOPData" bs2:if="$myns:vop_coded != 0"/>
</xsd:choice>
[bookmark: _Ref214679614][bookmark: _Toc230596127]bs2:variable
It is common to keep in a temporary memory some elements of the bitstream syntax, according to which other elements of syntax are decoded. It is also possible to define “local” variables to keep track of some information while parsing the bitstream, This can be done using the bs2:variable element and bs2:partContext attribute. and the bs0:variable attribute.
<bs2:variable
	name = "string"
	value = "Expression"
	rvc:port = "portName"
>
Children: none
</bs2:variable>
Remark: In RVC-BSDL, the use of three attributes under the bs2:variable element is optional. The combination of the optional attributes may fire various bitstream parser actions as follows:
· name + value: The value defined in value attribute is assigned to the variable which name is defined in name attribute. If the variable is not yet defined, try to define it.
· name + port: The value of the variable which name is defined in name attribute is exported through the output port of the parser FU designated in rvc:port attribute.
· value + port: The value defined in value attribute is exported through the output port of the parser FU designated in rvc:port attribute.
· name + value + port: The value defined in value attribute is assigned to the variable which name is defined in name attribute, and then is exported through the output port of the parser FU designated in rvc:port attribute.
Examples: The bs2:variable element defines a new variable, independent from the element of syntax being decoded. The bs2:variable element applies only on an xsd:element element. When a variable is set using this attribute, one must follow the following syntax for reading the variable: $myvariable.
<xsd:element name="mcbpc" type ="rvc:ext" rvc:port="Algo_VLDtableB7_MPEG4part2">
 <xsd:annotation> <xsd:appinfo>
 <bs2x:variable name = "mb_type" value = "bitand(./text(),7)"/>
 </xsd:appinfo> </xsd:annotation>
</xsd:element>
...
<xsd:group ref="motion_vector" bs2:nOccurs="4" bs2:if="$mb_type=2"/>
[bookmark: _Ref214679717][bookmark: _Toc230596128]xsd:simpleType
This element is used to define a new type of xsd:element element. The cases in which a new type must be defined are when:
The type of the current element is conditioned by a variable assigned during the parsing process. In this case, the xsd:union children element is used.
The length in bits of the current element is defined by a variable assigned during the parsing process. In this case, the children elements xsd:restriction and (xsd:length or xsd:bitlength) are used.
To test the value … with an xsd:startcode element, see C.4.3.12.
<xsd:simpleType
name= "string"
>
Children: (xsd:union | xsd:restriction)
</xsd:simpleType>
Remark: to see different examples of definition of a new type, refer to C.4.3.10, C.4.3.11, C.4.3.12 and C.4.3.14.
[bookmark: _Ref214679752][bookmark: _Toc230596129]xsd:annotation
BSDL-2 introduces a set of new facets to specify constraints on BSDL and XML Schema data types. Since XML Schema does not allow a user to add his own facets, they are declared as BSDL-2 components added to the xsd:restriction component via the annotation mechanism, i.e. the xsd:annotation/xsd:appinfo combination. Thus, the BSDL-2 elements (Table C.4) must be placed as the child of an xsd:annotation/xsd:appinfo combination.
<xsd:annotation>
Children: xsd:appinfo
</xsd:annotation>
[bookmark: _Ref214679762][bookmark: _Toc230596130]xsd:appinfo
According to the parent element in which this element is called, there are several possibilities:
If the top parent element is an xsd:simpleType element that defined with xsd:union, one can choose to define this new type by using one of the following elements can be used to define a new user-defined type: bs2:bitLength, bs2:ifUnion, bs2:startcode, or bs2:length.
<xsd:appinfo>
	Children: (bs2:bitLength | bs2:ifUnion | bs2:startcode | bs2:length)
</xsd:appinfo>
If the top parent element is an xsd:simpleType element that defined with xsd:restriction, one of the following elements can be used to define a new user-defined type: bs2:bitLength or bs2:startcode.
<xsd:appinfo>
	Children: (bs2:bitLength | bs2:startcode)
</xsd:appinfo>
If the top parent element is an xsd:element element of any type except rvc:ext, the unique element which can be used is the bs2:variable element, used to save variables. The variable handing should be processed after the element is parsed according to the given datatype.
<xsd:appinfo>
	Children: bs2:variable
</xsd:appinfo>
If the top parent element is an xsd:schema element, rvc:parameter element can be used along with bs2:variable element. This element can be used to define parameters that used during the bitstream parsing process.
<xsd:appinfo>
	Children: {bs2:variable, rvc:parameter}
</xsd:appinfo>

If the top parent element is an xsd:element element of type rvc:ext, the bs1:script element must appear to define which algorithm is used to decode the segment of bitstream. It can be possible also to save a variable using the bs2: variable element.
<xsd:appinfo>
	Children: {bs1:script, bs2:variable}
</xsd:appinfo>
[bookmark: _Toc230596131]xsd:restriction
This element is used to specify data accuracy. The actual child element of this element are bs2:bitLength or bs2:startcode.
<xsd:restriction
	base = "(xsd:unsignedshort | bs1:b1 – bs1:b32 | bs1:byteRange)"
>
Children: xsd:annotation
</xsd:restriction>
Remark: the base type should corresponds with the data type restriction method declared within the xsd:restriction element. the base type must be bs1:b32 when the child element is bs2:bitLength, while the bs1:byteRange data type is only allowedshould be used when the child element is it is used with the bs2:startcode element.
[bookmark: _Ref214679549][bookmark: _Toc230596132]bs2:bitLength
This element specifies the size in bits of the current element, which has been defined as a new type using the xsd:simpleType construct. The size in bits of the current element can be stored in a variable, which has been assigned during the parsing process.
<bs2:bitLength
	value = "Expression"
>
Children: none
</bs2:bitLength>
Example: the VOPTimeIncrementType type instantiates elements of size defined in the variable vopTimeIncrementBits.
<xsd:simpleType name="VOPTimeIncrementType">
 <xsd:restriction base="xsd:unsignedShort">
 <xsd:annotation><xsd:appinfo>
 <bs2:bitLength value="$vopTimeIncrementBits"/>
 </xsd:appinfo></xsd:annotation>
 </xsd:restriction>
</xsd:simpleType>
[bookmark: _Ref214679517][bookmark: _Toc230596133]bs2:length
This element specifies the size in byte of the current element which has been defined as a new type using the xsd:simpleType construct.
<bs2:length
	value = "Integer"
>
Children: none
</bs2:length>
Example: the StartCodeType type instantiates elements of size equals to 4 bytes.
<xsd:simpleType name="StartCodeType">
 <xsd:restriction base="xsd:hexBinary">
 <xsd:length value="4"/>
 </xsd:restriction>
 </xsd:simpleType>
[bookmark: _Ref214679496][bookmark: _Toc230596134]bs2:startCode
This element is used to mark the beginning of the bitstream.
<bs2:startCode
	Value = "HexadecimalValue">
Children: none
</bs2:startCode>
Remark: the bs1:byteRange data type is only allowed when it is used with the bs2:startCode element.
Example: the type rbspType instantiates ….
<xsd:simpleType name="rbspType">
 <xsd:restriction base="bs1:byteRange">
 <xsd:annotation> <xsd:appinfo>
 <bs2:startCode value="00000001"/>
 </xsd:appinfo> </xsd:annotation>
 </xsd:restriction>
</xsd:simpleType>
[bookmark: _Ref214679783][bookmark: _Toc230596135]xsd:union
This element allows users to choose the type of an element among a list of member types according to some conditions defined in the bs2:ifUnion element.
<xsd:union
	memberTypes = {bs1:b1 - bs1:b32 | bs1:align8 | user-defined type}
>
Children: xsd:annotation
</xsd:union>
Remark: see C.4.3.14 for an example of application.
[bookmark: _Ref214679590][bookmark: _Toc230596136]bs2:ifUnion
This element specifies the conditions under which the corresponding type is chosen. The number of bs2:ifUnion elements that must appear is equal to the number of member types defined in the above xsd:union element.
<bs2:ifUnion
value= "Expression"
>
Children: none
</bs2:ifUnion>
Example: the type SpriteType instantiates elements of type bs1:b1 or bs1:b2. The type bs1:b1 is chosen if the condition “$volVersion = 1” is true. The type bs1:b2 is chosen if the condition “$volVersion = 1” is false.
<xsd:simpleType name="SpriteType">
 <xsd:union memberTypes="bs1:b1 bs1:b2">
 <xsd:annotation><xsd:appinfo>
 <bs2:ifUnion value="$volVersion = 1"/>
 <bs2:ifUnion value="$volVersion != 1"/>
 </xsd:appinfo></xsd:annotation>
 </xsd:union>
</xsd:simpleType>
rvc:parameter
This element is used to deliver parameters to the bitstream parser to be instantiated. For example, a VLD engine can be initiated using a user-defined VLD table: in this case, the table can be delivered by rvc:parameter element. This element only can appear below of the xsd:schema.
<rvc:parameter
	name = "string"
>
Content: normalizedString
</bs2:parameter>
Examples: The following examples shows the parameterization of VLD table using rvc:parameter element. It is assumed that the VLD engine will be included in the parser FU as a plugin function during the parser instantiation process and will read the VLD table from the parameter named “VLD_table” in order to initiate the engine.
<xsd:schema ...>
 <xsd:annotation> <xsd:appinfo>
 <rvc:parameter name="VLD_table">
 10, 12, 18, 58, 26, 76, 34, 16,
 ...
 </rvc:parameter>
 </xsd:appinfo> </xsd:annotation>
...
</xsd:schema>
[bookmark: _Toc230596137]Syntax of the expressions
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]This Subclause describes the syntax of the expressions used in the attributes.

Expression → PrimaryExpression {Operator PrimaryExpression}

PrimaryExpression →	'max('Expression','Expression')'
| 'min('Expression','Expression')'
| 'numbits('Expression')'
| 'bitand('Expression','Expression')'
| 'bitor('Expression','Expression')'
| 'bitnot('Expression')'
| 'rshift('Expression','Expression')'
| 'lshift('Expression','Expression')'
| 'last()'
| ExpressionLiteral
| ifExpression

ExpressionLiteral → IntegerLiteral | HexadecimalValue | VariableExpression | true | false
VariableExpression → '$'VariableName{'['Expression']'}
ifExpression → 'if 'Expression' then 'Expression' else 'Expression' end'
Operator → ('=' | '<' | '<=' | 'gt' | 'gte' | '!= ' | 'and' | 'or' | 'not' | '*' | '/' | '+' | '-' | '^' | 'mod')

The VariableName is the name of an element appears on the current BSD or the name of a variable defined by bs2:variable element. Accordingly, it should be a qualified name for an XML element. RVC-BSDL do not use XPath model to designate a specific element or variable: all elements and variables are considered global in the parser FU and therefore are accessible from any expression syntax without path designation. See the following example:
<xsd:sequence bs2:if="video_object_layer_shape != 2 and vop_coding_type = 1">
	<xsd:element name="vop_rounding_type" type="bs1:b1"/>
</xsd:sequence>
A variable can be considered as an array type if it is followed by square bracket.
<bs2:variable name="$CBP[4]" value="bitand(rshift($cbpc,4),1)"/>
Additionally, greater-than (“>”) and greater-than-or-equal (“>=”) operators are not available in RVC-BSDL because the usage of greater-than symbol (“>”) within attribute value is not allowed in the XML grammar. These operators are replaced with literals (“gt” and “gte”) or can be bypassed by exchanging the order of operands. (e.g., from “10>4” to “4<10”).
last()
The last() function is a predefined function that returns the value of the latest bitstream syntax element that is parsed, regardless of whether the syntax element is marked with bs2:partContext or not. The following example shows a use case of last() function.
<xsd:element name="vop_time_increment_resolution" type="bs1:b16">
	<xsd:annotation>s
		<xsd:appinfo>
			<bs2:variable name="vopTimeIncrementBits" value="numbits(last())"/>
		</xsd:appinfo>
	</xsd:annotation>
</xsd:element>
In this example, the bs2:variable can use the value read by the xsd:element “vop_time_increment_resoltion” even though the element is not specified as a named variable by bs2:partContext="true".
numbits()
The numbits() function returns the minimum number of bits to represent the given value in unsigned binary integer. For instance, numbits(14) returns 4 (1410=11102)

[bookmark: _Toc230596138]Syntax of the data types
This Subclause describes the syntax of the data types.
IntegerLiteral → IntegerDigit {IntegerDigit}
IntegerDigit → ('0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9')
HexadecimalValue → HexadecimalDigit {HexadecimalDigit }
HexadecimalDigit → ('0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' | 'A' | 'B' | 'C' | 'D' | 'E' | 'F')
Portname → NormativeFUName

The NormativeFUName is the name of the Functional Unit. The naming convention rule is described in ISO/IEC 23002-4.
[bookmark: _Ref216511489][bookmark: _Toc230596139]Connections between the syntax parser and the FU network
The Syntax Parser and the network of FU must be connected together. Thus, a communication scheme between the syntax parser and Functional Unit is necessary.
General output ports
For each distinguishable names designated for rvc:port attribute in the RVC-BSDL description, output ports must be created for the syntax parser FU. The following code creates an output port named “ACPRED”.
<xsd:element name="AC_pred_flag" type="bs1:b1" bs2:partContext="true" rvc:port="ACPRED"/>
Output ports with feedback ports
 The following code shows an example of BSD, illustrating the connection of the Syntax parser to an FU with feedback ports generated by the element with rvc:ext datatype and “FU” for rvc:extName attribute value..
<xsd:element name="horizontal_mv_data" type="rvc:ext" rvc:extName="FU" rvc:extParams="algo_mv"/>
<xsd:element name="horizontal_mv_data" bs0:variable=“true“ type="rvc:ext" rvc:port="Algo_mv_reconstruction--mvin"/>
The element name “DCTCoefficienthorizontal_mv_data” is decoded by an FU: its is indicated by the data type rvc:ext. The FU which will decode this syntax element of syntax is specified in thewill be connected through the input and output ports which names are specified by the rvc:extParams attribute. rvc:port attribute. The port of the destination FU to which this element of syntax will be sent is specified also in the rvc:port attribute. The name in the rvc:port attribute must correspond to the normative name of the FU to which it is connected in order to know how to make the connections between the syntax parser and the FU network.
Whenever a connection to a Functional Unit is establish, the induced ports of the parser are:
Bitstream output port: an output port which name is value of the rvc:extParams attribute (e.g. algo_mv). This port is always created. It is used to send the bitstream to be parsed to the FU.
Status feedback port: an input port which name is value of the rvc:port attribute followed by the suffix “_f” (e.g. algo_mv_f). This port is always created. It is used to acknowledge the status of the FU each time the parser sends data.
Value feedback port: an input port which name is value of the rvc:port attribute followed by the suffix “_data” (e.g. algo_mv_data). This port is created only when the attribute bs0: variable is set to “true” in the current element. It is used to return the decoded value to the parser, which can use this value to continue its parsing process.
General output port: an output port which name is value of the rvc:port attribute (e.g. algo_mv). This port is always created. It is used to send the data to the FU.
In order to know if the parser can go to the next element of syntax or not, a communication protocol between the syntax parser and the FU has been defined:
0. The parser sends data on the port algo_mv
0. The FU receives the data and warns the parser (though the algo_mv_f port)
1. if it needs an othermore data (value of the data to return to the parser = false), goto 1
1. or if it has finished (value of the data to return to the parser = true), goto 3
0. The value received via the input port algo_mv_data is set as the value of the syntax element in the parser
0. The parser can continue parsing the other elements of syntax.
Note that the value returned through the value feedback port can be sent through a designated output port if the element has rvc:port attribute. The ports used for the connection with the bitstream parsing FUs are separated from the general output ports.
The example of VLD decoding process using such communication scheme is shown in Annex I.
[bookmark: _Ref212088411][bookmark: _Toc212248682][bookmark: _Ref221613832][bookmark: _Toc230596140][bookmark: _Toc238864726][bookmark: _Ref296688178][bookmark: _Toc340154011]
(normative)

Specification of RVC-CAL language
[bookmark: _Toc212248683][bookmark: _Toc230596141][bookmark: _Ref296685743]Generalities
The CAL language is a dataflow-oriented language that has been developed as a subproject of the Ptolemy project at the University of California at Berkeley. The final CAL language specification has been released in December 2003. The specification provided in this annex is the sub-set of CAL language called RVC-CAL used in the MPEG RVC framework. The sub-set has been defined so as to keep all data types and operators that are necessary in the RVC framework scope, excluding data types and operators that cannot be easily converted to software or hardware implementations.
RVC-CAL is a textual language that is used to define the functionality of dataflow components originally called “actors” that in the MPEG RVC framework are the FUs composing the RVC video tool library. FUs can then be configured into decoders using an XML based specification language (the RVC FU language called FNL). Therefore, to build the RVC framework two normative elements are necessary:
The RVC-CAL used to specify the behavior of the FUs that constitute the RVC video tool library
The FNL used to specify RVC decoder configurations using FUs from the RVC video tool library
The XML based specification of “network of Actors” or better in RVC “Configuration of FUs” can be edited and simulated by tools available in the RVC reference software.
It is worth remarking that what in RVC-CAL is called an “actor” exactly corresponds to what in MPEG RVC is called an FU. In fact, an actor is a modular component that encapsulates its own state, no other actor has access to it, and nothing other actors can do to modify the state of an actor. The only interaction between actors is through FIFO channels connecting “output ports” to “input ports,” which are used to send and receive “tokens.” This strong encapsulation leads to loosely coupled systems with very manageable and controllable actor interfaces. The modularity of an actor assembly fosters concurrent development, it facilitates maintainability and understandability and makes systems constructed this way more robust and easier to modify. All these features correspond to what is required by the MPEG RVC framework.
A “token” is a unit of data (of potentially arbitrary size and complexity) that is sent and received atomically. Each actor input is associated with a queue of tokens waiting in front of it. When a token is sent it is conceptually placed in the queue of each input connected to the output the token originates from. Eventually, the receiving FUs will read it, and thereby consume it, i.e. remove it from the input queue.
Every FU executes in a (possibly unbounded, i.e. non-terminating) sequence of steps, also called “transitions.” During each such step, an FU may do any of the following three things:
Read and consume input tokens.
Modify its internal state.
Produce output tokens.
At any point in time, an FU is either disabled, i.e. it is not able to make a step, or it can perform a number of different steps.
The specification of an FU in RVC-CAL is structured into “actions.” Each action defines a kind of transition the FU can perform under some conditions. These conditions may include:
the availability of input tokens,
the value of input tokens,
the (internal) state of the FU,
the priority of that action (see below).
An FU may contain any number of actions. Its execution follows a simple cycle:
0. Determine, for each action, whether it is enabled, by testing all the conditions specified in that action.
0. If one or more actions are enabled, pick one of them to be fired next.
0. Execute that action, i.e. make the transition defined by it.
0. Go to Step 1.
Steps 1 and 2 are called “action selection.” For many complex FUs, such as the parser of an MPEG-4 SP decoder, defining the logic of how an action is chosen is the core of the implementation of the processing in FU form. RVC-CAL provides a number of language constructs for structuring the description of how actions are to be selected for firing. These include:
action guards: conditions on the values of input tokens and/or the values of FU state variables that need to be true for an action to be enabled;
finite state machine: the action selection process can be governed by a finite state machine, with the execution of an action causing a transition from one state to the next;
action priorities: actions may be related to each other by a partial priority order, such that an action will only execute if no higher-priority action can execute.
In this way, the process of action selection is specified in a declarative manner in each RVC FU. As a result, the FU specification becomes more compact and easier to understand.
Once selected, an action is executed. The code describing an action itself is for the most part ordinary imperative code, as can be found in languages such as Pascal, Ada, or C — there are loops, branches, assignments etc. Only the token input/output of an action is specified separately and in a declarative manner.
In other words, the RVC-CAL language provides naturally the appropriate constructs that have been identified by RVC requirement work as essential elements for building the MPEG RVC framework with the capacity of “encapsulating” coding tools functionalities in a very natural manner without needing any particular restriction or specific coding style on the usage of the language construct.
[bookmark: _Toc212248684][bookmark: _Toc230596142]Introduction
This Annex describes RVC-CAL, a profile of the CAL actor language to be used by the MPEG Reconfigurable Video Coding Framework.
Actors. The concept of actor as an entity that is composed with other actors to form a concurrent system has a rich and varied history — some important mile-stones [6], [9], [3], [4], [5]. A formal description of the notion of actor underlying this specification can be found in D.1, which is based on the work in [10] and [7]. Intuitively, an actor is a description of a computation on sequences of tokens (atomic pieces of data) that produces other sequences of tokens as a result. It has input port(s) for receiving its input tokens, and it produces its output tokens on its output port(s)[footnoteRef:1]. [1: 	The notion of actor and firing is based on the one presented in [10], extended by a notion of state in [7].]

The computation performed by an actor proceeds as a sequence of atomic steps called rings. Each ring happens in some actor state, consumes a (possibly empty) prefix of each input token sequence, yields a new actor state, and produces a finite token sequence on each output port.
Several actors are usually composed into a network, a graph-like structure (often referred to as a model) in which output ports of actors are connected to input ports of the same or other actors, indicating that tokens produced at those output ports are to be sent to the corresponding input ports. Such actor networks are of course essential to the construction of complex systems, but we will not discuss this subject here, except for the following observations:
A connection between an output port and an input port can mean different things. It usually indicates that tokens produced by the former are sent to the latter, but there are a variety of ways in which this can happen: token sent to an input port may be queued in FIFO fashion, or new tokens may ‘overwrite’ older ones, or any other conceivable policy. It is important to stress that actors themselves are oblivious to these policies: from an actor point of view, its input ports serve as abstractions of (prefixes of) input sequences of tokens, while its output ports are the destinations of output sequences.
Furthermore, the connection structure between the ports of actors does not explicitly specify the order in which actors are read. This order (which may be partial, i.e. actors may fire simultaneously), whether it is constructed at runtime or whether it can be computed from the actor network, and if and how it relates to the exchange of tokens among the actors — all these issues are part of the interpretation of the actor network.
The interpretation of a network of actors determines its semantics and it determines the result of the execution, as well as how this result is computed, by regulating the flow of data as well as the flow of control among the actors in the network. There are many possible ways of interpreting a network of actors, and any specific interpretation is called a model of computation, cf. [11], [12]. Actor composition inside the actor model, that CAL is based on, has been studied in [8].
As far as the design of a language for writing actors is concerned, the above definition of an actor and its use in the context of a network of actors suggests that the language should allow making some key aspects of an actor definition explicit. These are, among others:
The port signature of an actor (its input ports and output port(s), as well as the kind of tokens the actor expects to receive from or be able to send to).
The code executed during a ring, including possibly alternatives whose choice depends on the presence of tokens (and possibly their values) and/or the current state of the actor.
The production and consumption of tokens during a ring, which again may be different for the alternative kinds of rings.
The modification of state depending on the previous state and any input tokens during a ring.
[bookmark: _Toc212248685][bookmark: _Toc230596143]Units. Unlike an actor, a unit does not compute anything. A unit is used to declare ‘constants’, ‘functions’, and procedures that can be referenced or imported into an actor. It cannot contain mutable variables, which would violate the design constraint that actors do not share state. Units help in factorizing the code in order not to duplicate function declarations or FU constants.
Introductory remarks
[bookmark: _Toc230596144]Introduction
Throughout this part, we will present fragments of RVC-CAL syntax along with (informal) descriptions of what these are supposed to mean. In order to avoid ambiguity, we will now introduce a few conventions as well as the fundamental syntactic elements (lexical tokens) of the RVC-CAL language.
[bookmark: _Toc212248686][bookmark: _Ref212810369][bookmark: _Toc230596145]Lexical tokens
RVC-CAL has the following kinds of lexical tokens:
Keywords. Keywords are special strings that are part of the language syntax and are consequently not available as identifiers. See D.12.3 for a list of keywords in RVC-CAL.
Identifiers. Identifiers are any sequence of alphabetic characters of either one of the digits, the underscore character and the dollar sign that is not a keyword. Sequences of characters that are not legal identifiers may be turned into identifiers by delimiting them with backslash characters.
Identifiers containing the $-sign are reserved identifiers. They are intended to be used by tools that generate RVC-CAL program code and need to produce unique names which do not conflict with names chosen by users of the language Consequently, users are discouraged from introducing identifiers that contain the $-sign.
Operators. See D.12.2 for a complete list of RVC-CAL operators.
Delimiters. These are used to indicate the beginning or end of syntactical elements in RVC-CAL. The following characters are used as delimiters: (,), {,}, [,], : .
Comments. Comments are Java-style, i.e. single-line comments starting with “//” and multi-line comments delimited by “/*” and “*/”.
Numeric literals. RVC-CAL provides two kinds of numeric literals: those representing an integral number and those representing a decimal fraction. Their syntax is as follows[footnoteRef:2]: [2: 	In contrast to all other grammar rules in this report, the following rules do not allow whitespaces between tokens.]

[bookmark: _Toc212248687][bookmark: _Toc230596146]Typographic conventions
In syntax rules, keywords are shown in boldface, while all other literal symbols are enclosed in single quotes.
In examples, RVC-CAL code is represented monospaced. Semantic entities, such as types, are set italic.
[bookmark: _Toc212248688][bookmark: _Ref216510531][bookmark: _Toc230596147]Conventions

We use a form of Backus-Naur form (BNF) to describe the syntax rules. Literal elements are put in quotes (in the case of symbols and delimiters), or set in boldface (in the case of keywords). An optional occurrence of a sequence of symbols A is written as , while any numbers of consecutive occurrences (including none) are written as . The alternative occurrence of either A or B is expressed as .

We often use plural forms of non-terminal symbols without introducing them explicitly. These are supposed to stand for a comma-separated sequence of at least on instance of the non-terminal. E.g. if A is the non-terminal, we might use As in some production, and we implicitly assume the following definition: .
In the examples reported here, the usual interpretation of expression literals and mathematical operators is assumed, even though strictly speaking these are not part of the language and depend on the environment. A specific implementation of RVC-CAL may not have these operators, or interpret them or the literals in a different manner.
[bookmark: _Toc212248689][bookmark: _Toc230596148]Notational idioms
Like most programming languages, RVC-CAL involves a fair number of syntactical constructs that need to be learned and understood by its users in order to use the language productively. The effort involved in gaining familiarity with the language can be a considerable impediment to its adoption, so it makes sense to employ general guidelines for designing the syntax of constructs, which allow users to make guesses about the syntax if they are unsure about the details of a specific language construction. These guidelines, which define the style of a language, are called notational idioms.
The following is a list of notational idioms guiding the design of RVC-CAL’s language syntax.
Keyword constructs. Many constructs in RVC-CAL are delimited by keywords rather than by more symbolic delimiters — such constructs are called keyword constructs. Other constructs are delimited by symbols, or are at least partially lacking delimiters (such as assignments, which begin with a variable name, see D.9.2).
Statement head/body separator. Many statements have a similar structure as the one for expressions. For statements, the keywords do or begin are used as a separator:
while n > 0 do k := f(k); n := n - 1; end
procedure p (int x) begin
	x := x + 1;
end
[bookmark: _Ref212204751][bookmark: _Toc212248690][bookmark: _Toc230596149]Structure of actor/unit descriptions
Actor description
Each actor description defines a named kind of actor.
Actors are the largest lexical units of specification and translation. The basic structure of an actor is this:

The header of an actor expressed in RVC-CAL contains actor parameters, and its port signature. This is followed by the body of the actor, containing a sequence of state variable declarations (D.7.2), actions (D.10), initialization actions (D.10.6), priority blocks (D.11.4), and at most one action schedule (D.11.3).
By contrast, actor parameters are values, i.e. concrete objects of a certain type (although, of course, this type may be determined by a type parameter). They are bound to identifiers, which are visible throughout the actor definition. Conceptually, these are non-assignable and immutable, i.e. they may not be assigned to by an actor.
Unit description
A unit can declare functions, procedures, and constants (D.7). A unit can import units. However a unit cannot import units that lead to a cyclic dependency.

[bookmark: _Toc212248692][bookmark: _Toc230596151]Qualified names and Imports
Qualified names
A qualified name is represented with the following rule:

A qualified name with a possible wildcard is allowed only in imports and is defined by:

Declaration of an entity
An entity (actor or unit) may begin with a package directive that declares the package the unit or actor resides in (a la Java). In the absence of the package declaration, the unit or actor is considered part of the “default” package, but as in Java this practice is discouraged. The qualified name of an entity is its package followed by a dot and then its identifier. In case the package is not specified, the qualified name is simply the identifier of the entity.
Imports
Qualified names can be imported by imports.

Reference to unit elements
An actor or unit may reference a variable or function declared in a unit by its qualified name. The qualified name of a variable or function is the name of the variable or function prefixed by the name of the unit it is declared in and a dot, e.g. MyUnit..myVar.
An actor or a unit may also import any or all of the variables or functions declared in a unit by using an import statement. Explicit import of one or more variables or functions is done by referencing them by their qualified name, as in:
import MyUnit.myVar;
Importing all variables or functions declared by a unit is done by using a wildcard:
import MyUnit.*;
Inside an entity, you can use either the qualified name or the simple name of the variable. If you use the simple name of a variable, this variable can be shadowed by another declaration of a variable.
Data types
Introduction
RVC-CAL is fully typed, i.e. it allows and forces programmers to give each newly introduced identifier a type (see D.7.2 for more details on declaring variables).
[bookmark: _Ref212205057][bookmark: _Toc212248693][bookmark: _Toc230596152]Variables and types

Each variable or parameter in RVC-CAL may be declared with a variable type. If it is, then this type remains the same for the variable or parameter in the entire scope of the corresponding declaration. Variable types may be related to each other by a subtype relation, , which is a partial order on the set of all variable types. When for two variable types , we have , then we say that is a subtype of , and is a supertype of . Furthermore, may be used anywhere can be used, i.e. variables of subtypes are substitutable for those of supertypes.

It is important that each object has precisely one object type. As a consequence, object types induce an exhaustive partition on the objects, i.e. for any object type we can uniquely determine the “objects of type ”.
IMPLEMENTATION NOTE.
Stating that each object has an object type does not imply that this type can be determined at run time, i.e. that there is something like run-time type information associated with each object. In many cases, particularly when efficiency is critical, the type of an object is a compile-time construct whose main use is for establishing the notion of assignability, i.e. for checking whether the result of an expression may legally be stored in a variable. In these scenarios, type information is removed from the runtime representation of data objects.

For each implementation context we assume that there is a set of variable types and of object types. They are related to each other by an assignability relation, , which has the following interpretation: for any variable type and object type , iff an object of type is a legal value for a variable of type .

The assignability relation may or may not be related to subtyping, but at a minimum it must be compatible with subtyping in the following sense. For any two variable types and , and any object type :

In other words, if an object type is assignable to a variable type, it is also assignable to any of its supertypes.
[bookmark: _Toc212248694][bookmark: _Toc230596153]Type formats
Types are specified as follows:

A type that is just an identifier is the name of some non-parametric type or of a parametric type whose parameters take on default values. Examples may be String, int.
In the next form the ID refers to a type constructor that has named type attributes which may be bound to either types or values. Type attributes that are bound to types are assigned using the “:” syntax, values are bound using the “=” syntax.
[bookmark: _Toc212248695][bookmark: _Toc230596154]Predefined types
Required types are the types of objects created as the result of special language constructions, usually expressions. The following are built-in types in RVC-CAL:
bool — the truth values true and false.
List(type:T, size=N) — finite lists of length of N elements with type T.
int(size=N) — signed integers with bit width N.
uint(size=N) — unsigned integers with bit width N.
String — strings of characters.
float — floating point numbers.
Least Upper Bound (lub)
This Subclause lists the typing rules for RVC-CAL expressions.
	Expression
	Type of result

	boolean
	bool

	floating-point number
	float

	integer with value v
	type of int(v)

	“xyz”
	String

	variable var declared with type T
	T

	unary expression: op e
	type of unary(op, e)

	binary expression: e1 op e2
	type of binary(e1, op, e2)

	if cond then e1 else e2 end
with cond of type bool
	lub(e1, e2)

	list[i][j]
	type of index(list, i, j)

	[e1, e2, …, en : for int i1 in L1 .. H1, for int i2 in L2 .. H2, …, for int in in LN .. HN]
	List(type: lub(e1, e2, …, en),
size=n * (H1 – L1 + 1) *
(H2 – L2 + 1) * … * (HN – LN + 1))

	
	

Least Upper Bound (lub)
The Least Upper Bound (lub) of n types is the smallest type that is compatible with the biggest of the given n types. Lub(t1, t2, …, tn) is defined as lub(…lub(lub(t1, t2), t3), …, tn).
	bool, bool
	bool

	float, float
	float

	String, String
	String

	int(size=S1), int(size=S2)
	int(size=max(S1, S2))

	uint(size=S1), uint(size=S2)
	uint(size=max(S1, S2))

	int(size=SI), uint(size=SU) with SI > SU
	int(size=SI)

	int(size=SI), uint(size=SU) with SU >= SI
	int(size=SU + 1)

	List(type : T1, size=S1), List(type :T2, size=S2)
	List(type:lub(T1, T2), size=max(S1, S2))

	any other combinations
	invalid

The lub is commutative: lub(t1, t2) is the same as lub(t2, t1).
Greatest Lower Bound (glb)
The Greatest Lower Bound (glb) of n types is the greatest type that is compatible with the smallest of the given n types.
	bool, bool
	bool

	float, float
	float

	String, String
	String

	int(size=S1), int(size=S2)
	int(size=min(S1, S2))

	uint(size=S1), uint(size=S2)
	uint(size=min(S1, S2))

	int(size=SI), uint(size=SU) with SI > SU
	int(size=SU + 1)

	int(size=SI), uint(size=SU) with SU >= SI
	int(size=SI)

	any other combinations
	Invalid

NOTE – glb has not been defined for List because it is not needed as typing rule.

Type of an integer
The size of an integer whose value is v is defined by the following formula:

sizeof(v) =

where is ceil(x), which returns the smallest integer that is not less than x.

The type of an integer whose value is v, and size is s = sizeof(v), is defined as:
If v < 0, int(size=s + 1)
If v = 0, uint(size=1)
If v > 0, uint(size=s)

Type of unary expressions
	Expression
	Type of result

	bitnot e (or ~e) with e of type T (int or uint)
	T

	not e with e of type bool
	bool

	- e with e of type T (int or float)
	T

	- e with e of type uint(size=s)
	int(size=s + 1)

	#e with e of type List(type:T, size=S)
	S

	float_of_int(e) with e of type T (int or uint)
	float

	int_of_float(e, sz) with e of type float and sz of type int or uint
	int(size=sz)

	uint_of_float(e,sz) with e of type float and sz of type int or uint
	uint(size=sz)

Where float_of_int, int_of_float and uint_of_float are built-ins functions for float to int/uint conversion and vice versa. The conversion to int/uint from float is the truncation conversion towards zero as used in C99 (i.e. int_of_float(5.3, 32) returns 5, and int_of_float(-5.3, 32) returns -5).

Type of binary expressions
	Expression
	Type of result

	e1 + e2 with e1 of type String or e2 of type String
	String

	e1 + e2 with e1 of type List(type:T1, size=S1)
e2 of type List(type:T2, size=S2)
	List(type:lub(T1, T2), size=S1+S2)

	e1 + e2 with e1 of type T1 (int or uint)
e2 of type T2 (int or uint)
	 lub(T1, T2) + 1

	e1 - e2 with e1 of type T1 (int or uint)
e2 of type T2 (int or uint)
	 lub(T1, T2) + 1

	e1 * e2 with e1 of type int(size=S1) or uint(size=S1)
e2 of type int(size=S2) or uint(size=S2)
	 lub(T1, T2) with size=S1 + S2

	e1 << e2 with e1 of type int(size=S1) or uint(size=S1)
e2 of type int(size=S2) or uint(size=S2)
	 S1 + (1 << S2) – 1

	e1 & e2, with e1 of type T1 (int or uint) and e2 of type T2 (int or uint)
	glb(T1, T2)

	e1 | e2, with e1 of type T1 (int or uint) and e2 of type T2 (int or uint)
	lub(T1, T2)

	e1 ^ e2 (xor), with e1 of type T1 (int or uint) and e2 of type T2 (int or uint)
	lub(T1, T2)

	e1 / e2, e1 >> e2, with e1 of type T1 (int or uint) and e2 of type T2 (int or uint)
	T1

	e1 mod e2, with e1 of type T1 (int or uint) and e2 of type T2 (int or uint)
	T2

	e1 = e2, e1 != e2 with e1 of type T1 and e2 of type T2, if lub(T1, T2) exists
	bool

	e1 > e2, e1 >= e2, e1 < e2, e1 <= e2, with e1 of type T1 (int or uint or float) and e2 of type T2 (int or uint or float), and if lub(T1, T2) exists
	bool

	e1 && e2, e1 || e2, with e1 of type bool and e2 of type bool
	bool

	e1 + e2 with e1 of type float and e2 of type float
	float

	e1 - e2 with e1 of type float and e2 of type float
	float

	e1 * e2 with e1 of type float and e2 of type float
	float

	e1 / e2 with e1 of type float and e2 of type float
	float

The type of binary expressions whose operator is +, -, *, /, and where one operand has type float, and the other has type int, uint, or float, is float. In other words, operands with type int or uint are automatically promoted to float.
Type of an indexing expression
The type of an indexing expression list[i1][i2]…[in] with a list of type List(type:List(type:...type:List(type:T, size=SN), size=SN_1), …, size=S1) is T if the type of i1 is not larger than the type of S1 (as obtained with sizeof(S1)), i2 is not larger than sizeof(S2), etc.
If only a subset of indexes is given, say i, then the type of the expression is the type of the ith inner type.
[bookmark: _Toc212248696][bookmark: _Ref212810789][bookmark: _Toc230596155][bookmark: _Ref214027839]Variables, functions and procedures
Introduction
Variables are placeholders for values during the execution of an actor. At any given time, they may stand for a specific value, and they are said to be bound to the value that they stand for. The association between a variable and its value is called a binding.
This Subclause first explains how variables are declared inside RVC-CAL source code. It then proceeds to discuss the scoping rules of the language, which govern the visibility of variables and also constrain the kinds of declarations that are legal in RVC-CAL.
[bookmark: _Ref212204463][bookmark: _Toc212248697][bookmark: _Toc230596156]Variable declarations
Each variable (with the exception of predefined variables) needs to be explicitly introduced before it can be used — it needs to be declared. A declaration determines the kind of binding associated with the variable it declares, and potentially also it’s (variable) type. Following are the following kinds of variable declarations:
explicit variable declarations (D.7.2),
actor parameters (D.4),
input patterns (D.10.2).
The properties of a variable introduced by an explicit variable declaration depend on the form of that declaration.
[bookmark: _Toc230596157]Explicit variable declarations
Syntactically, an explicit variable declaration[footnoteRef:3] looks as follows: [3: 	These declarations are called “explicit” to distinguish them from more “implicit” variable declarations that occur, e.g. in generators or input patterns.]

An actor may contain state variable declarations:

A unit may contain constant variable declarations:

For List declaration, a more compact representation is available with an array style.
T myVar[N1][N2]...[Nn] – is equivalent to List(type: List(type: ... List(type: T, size=Nn), ..., size=N2), size=N1) myVar where the type is T.
An explicit variable declaration can take one of the following two forms, where T is a type, v an identifier that is the variable name, and E an expression of type T:
T v := E — declares an assignable variable of type T with the value of E as its initial value.
T v = E — declares a non-assignable variable of type T with the value of E as its value.
Variables declared in the first way are called stateful variables because they may be changed by the execution of a statement. Variables declared in the last way are referred to as stateless variables, or constants.
Explicit variable declarations may occur in the following places:
actor state variables (with ending punctuation “;”)
[bookmark: OLE_LINK3][bookmark: OLE_LINK4]the var block of a surrounding lexical context (with ending punctuation “,” or no ending punctuation, see LocalVarDecl in D.7.3)
[bookmark: _Toc212248698][bookmark: _Toc230596158][bookmark: _Ref296694810]Function and procedure declaration
The general format for declaring functions and procedures is as follows:

LocalVarDecls should follow a special rule: 1) if a LocalVarDecl is the last one or the only one, there shall be no any ending punctuation; 2) if a LocalVarDecl is not the last one, there shall be a comma “,” as the ending punctuation (or separator between it and the next LocalVarDecl). For instance, a function declaration would look like this:
function timestwo (int x)--> int : 2 * x end
[bookmark: _Toc212248699][bookmark: _Toc230596159]Name scoping
The scope of a name, whether that of a variable or that of a function or procedure, is the lexical construct that introduces it — all expressions and assignments using the name inside this construct will refer to that variable binding or the associated function or procedure, unless they occur inside some other construct that introduces the same name again, in which case the inner name shadows the outer one.
In particular, this includes the initialization expressions that are used to compute the initial values of the variables in variable declarations. Consider e.g. the following group of variable declarations inside the same construct, i.e. with the same scope:
n = 1 + k,
k = 6,
m = k * n
This set of declarations (of, in this case, non-assignable variables, although this does not have a bearing on the rules for initialization expression dependency) would lead to k being set to 6, n to 7, and m to 42. Initialization expressions may not depend on each other in a circular manner — e.g. the following list of variable declarations would not be well formed:
n = 1 + k,
k = m – 36,
m = k * n
More precisely, a variable may not be in its own dependency set. Intuitively, this set contains all variables that need to be known in order to compute the initialization expression. These are usually the free variables of the expression itself, plus any free variables used to compute them and so on — e.g. in the last example, k depended on m, because m is free in m - 36, and since m in turn depends on k and n, and n on k, the dependency set of k is {m,k,n} which does contain k itself and is therefore an error.
[bookmark: _Toc212248700][bookmark: _Toc230596160]Expressions
Introduction
Expressions evaluate to a value and are side-effect-free, i.e. they do not change the state of the actor or assign or modify any other variable. Thus, the meaning of an expression can be described by the value it is evaluating to.
The following is an overview of the kinds of expressions and expression syntaxes provided in RVC-CAL.

The following Subclause discusses the individual kinds of expressions in more detail.
[bookmark: _Toc230596161]Literals
Expression literals are constants of various types in the language. They look as follows:

The type of true and false is bool.
[bookmark: _Toc212248701][bookmark: _Toc230596162]Variable references
The expression used to refer to the value bound to a variable at any given point during the execution is simply the name of the variable itself, i.e. an identifier.
[bookmark: _Toc212248702][bookmark: _Toc230596163]Function application
An expression of the form

is the application of a function to n parameters, possibly none. F is the name of a function which must be visible at the point of this expression, and Ei are expressions of types matching the types of the parameters declared in the declaration of F.
[bookmark: _Toc212248703][bookmark: _Toc230596164]Indexing
An indexing expression selects an object from a list. The general format is

The expressions within the brackets are called “indices”. There must be at least one such index. If there are more than one, the list expression must be a list of appropriate dimensionality, i.e. it must contain other lists as elements and so forth.
[bookmark: _Toc212248704][bookmark: _Toc230596165]Operators
There are two kinds of operators in RVC-CAL: unary prefix operators and binary infix operators. A binary operator is characterized by its associativity and its precedence. In RVC-CAL, all binary operators associate to the left, while their precedence is defined by the platform, and have fixed predefined values for built-in operators (which are used to work on instances of built-in types). Unary operators always take precedence over binary operators.
a+b+c is always (a+b)+c.
#a + b is always (#a) + b.
a + b * c is a + (b * c) if * has a higher precedence than +, which is usually the case.
Operators are just syntactical elements — they represent ordinary unary or binary functions, so the only special rules for operators are syntactical.
[bookmark: _Toc212248705][bookmark: _Toc230596166]Conditional expressions
The simple conditional expression has the following form:

The first sub expression must be of type bool and the value of the entire expression is the value of the second sub term if the first evaluated to true, and the value of the third sub term otherwise.
The type of the conditional expression is the most specific supertype (least upper bound) of both, the second and the third sub expression. It is undefined (i.e. an error) if this does not exist.
[bookmark: _Toc212248707][bookmark: _Toc230596167]List comprehensions
List comprehensions are expressions, which construct lists. There are two variants of list comprehensions, those with and those without generators. We will first focus on comprehensions without generators, also called enumerations, and then turn to the more general comprehensions with generators. The reason for this order of presentation is that the meaning of comprehensions with generators will be defined by reducing them to enumerations.
[bookmark: _Toc230596168]Enumerations: list comprehensions without generators
The most basic form of list comprehension just enumerates the elements. Its syntax is as follows:

Example. If n is the number 10, then the simple set expression
 [n, n*n, n-5, n/2]
evaluates to the list [10, 100, 5, 5].
[bookmark: _Ref212810640][bookmark: _Toc230596169]List comprehensions with generators
Simple comprehension expressions only allow the construction of a list whose size is correlated with the size of the expression. In order to facilitate the construction of large or variable-sized lists, RVC-CAL provides generators to be used inside an expression constructing them. The syntax looks as follows:

The generators, which begin with the keyword, for, introduce new variables, and successively instantiate them with the elements of the proper list after the keyword, in. The expression computing that list may refer to the generator variables defined to the left of the generator it belongs to.
The optional expressions following the collection expression in a generator are called filters — they must be of type bool, and only variable bindings for which these expressions evaluate to true are used to construct the collection.
Example:
[1, 2, 3]
is the list of the first three natural numbers. The list
[2 * a : for int a in [1, 2 ,3]]
contains the values 2, 4, and 6, while the list
[a : for int a in [1, 2, 3], a > 1]
describes (somewhat redundantly) the set containing 2 and 3. Finally, the list
[a * b : for int a in [1, 2, 3], for int b in [4, 5, 6], b > 2 * a]
contains the elements 4, 5, 6, 10, and 12.
Writing the above as
[a * b : for int a in [1, 2 ,3], b > 2 * a, for int b in [4, 5, 6]]
is illegal (unless b is a defined variable in the context of this expression, in which case it is merely very confusing!), because the filter expression b > 2 * a occurs before the generator that introduces b.
If the generator collection is a set rather than a list, the order in which elements are extracted from it will be unspecified. This may affect the result in the case of a list comprehension.
[bookmark: _Toc212248708][bookmark: _Toc230596170]Statements
Introduction
The execution of an action (as well as actor initialization) happens as the execution of a (possibly empty) sequence of statements. The only observable effect of a statement is a change of the variable assignments in its environment. Consequently, the meaning of a statement is defined by how the variables in its scope change due to its execution. RVC-CAL provides the following kinds of statements:

[bookmark: _Ref212204617][bookmark: _Toc212248709][bookmark: _Toc230596171]Assignment
Assigning a new value to a variable is the fundamental form of changing the state of an actor. The syntax is as follows:

An assignment without an index or a field reference is a simple assignment while one with a field reference is a field assignment, and one with an index is called an indexed assignment.
[bookmark: _Toc230596172]Simple assignment
In a simple assignment, the left-hand side is a variable name. A variable by that name must be visible in this scope, and it must be assignable.
The expression on the right-hand side must evaluate to an object of a value compatible with the variable (i.e. its type must be assignable to the declared type of the variable, if any — see D.6.2). The effect of the assignment is of course that the variable value is changed to the value of the expression. The original value is thereby overwritten.
[bookmark: _Toc230596173]Assignment with indices
If a variable is of a type that is indexed, and if it is mutable, assignments may also selectively assign to one of its indexed locations, rather than only to the variable itself.
In RVC-CAL, an indexed location inside an object is specified by a sequence of objects called indices, which are written after the identifier representing the variable, and which is enclosed in square brackets.
[bookmark: _Toc212248710][bookmark: _Toc230596174]Procedure call
Calling a procedure is written as follows:

The procedure symbol must be defined in the current context, and the number and types of the argument expressions must match the procedure definition. The result of this statement is the execution of the procedure, with its formal parameters bound position-wise to the corresponding arguments.
[bookmark: _Toc212248711][bookmark: _Toc230596175]Statement blocks (begin ... end)
Statement blocks are grouping a sequence of statements within their own nested scope, permitting the declaration of local variables valid in that scope only.

The form
begin var <decls> do <stmts> end
defines the variables in <decls> and executes the statements in <stmts> with the resulting variable bindings. The variable bindings are only visible to these statements.
[bookmark: _Toc212248712][bookmark: _Toc230596176]If-statement
The if-statement is the simplest control-flow construct

As is to be expected, the statements following the then are executed only if the expression evaluates to true, otherwise the statements following the else are executed, if present. The expression must be of type bool.
[bookmark: _Toc212248713][bookmark: _Toc230596177]While-statement
Iteration constructs are used to repeatedly execute a sequence of statements. A while-construct repeats execution of the statements as long as a condition specified by a bool expression is true.

It is an error for the while-statement to not terminate.
[bookmark: _Toc212248714][bookmark: _Toc230596178]Foreach-statement
The foreach-construct allows iterating over collections and successively binds variables to the elements of the expression with the execution of a sequence of statements for each such binding.

The basic structure and execution mechanics of the foreach-statement is not unlike that of the comprehensions with generators discussed in D.8.8.2. However, where in the case of comprehensions a collection was constructed piecewise through a number of steps specified by the generators, a foreach statement executes a sequence of statements for each complete binding of its generator variables.
Example. The following code fragment
s := 0;
foreach int a in [1, 2], foreach int b in [1, 2] do
	s := s + a*b;
end
results in s containing the number 9.
[bookmark: _Ref212204436][bookmark: _Toc212248715][bookmark: _Toc230596179]Actions
[bookmark: _Ref296687201]Introduction
An action in RVC-CAL represents a (often large or even infinite) number of transition of the actor transition system described in D.11. A RVC-CAL actor description can contain any number of actions, including none. The definition of an action includes the following information:
its input tokens,
its output tokens,
the state change of the actor,
additional firing conditions.
In any given state, an actor may take one of a number of transitions (or none at all), and these transitions are represented by actions in the actor description.
The syntax of an action definition is as follows:

Actions are optionally preceded by action tags which come in the form of qualified identifiers (i.e. sequences of identifiers separated by dots), see D.11.2. These tags need not be unique, i.e. the same tag may be used for more than one action. Action tags are used to refer to actions or sets of actions, in action schedules and action priority orders — see D.11 for details.
The head of an action contains a description of the kind of inputs this action applies to, as well as the output it produces. The body of the action is a sequence of statements that can change the state, or compute values for local variables that can be used inside the output expressions.
Input patterns and output expressions are associated with ports either by position or by name. These two kinds of associations cannot be mixed. So if the actor’s port signature is
Input1, Input2 ==> ...
an input pattern may look like this:
[a], [b, c]
(binding a to the first token coming in on Input1, and binding b and c to the first two tokens from Input2). It may also look like this:
Input2: [c]
but never like this:
[d] Input2:[e]
This mechanism is the same for input patterns and output expressions.
The following Subclauses elaborate on the structure of the input patterns and output expressions describing the input and output behavior of an action, as well as the way the action is selected from the set of all actions of an actor.
In discussing the meaning of actions and their parts it is important to keep in mind that the interpretation of actions is left to the model of computation, and is not a property of the actor itself. It is therefore best to think of an action as a declarative description of how input tokens, output tokens, and state transitions are related to each other. See also D.10.5.
[bookmark: _Ref212205111][bookmark: _Toc212248716][bookmark: _Toc230596180]Input patterns, and variable declarations
Input patterns, together with variable declarations and guards, perform two main functions: (1) They define the input tokens required by an action to fire, i.e. they give the basic conditions for the action to be fired which may depend on the value and number of input tokens and on the actor state, and (2) they declare a number of variables which can be used in the remainder of the action to refer to the input tokens themselves. The syntax is as follows:

The static type of the variables declared in an input pattern depends on the token type declared on the input port, but also on whether the input pattern contains a repeat-clause.
A pattern without a repeat-expression is just a number of variable names inside square brackets. The pattern binds each of the variable names to one token, reading as many tokens as there are variable names. The number of variable names is also referred to as the pattern length. The static type of the variables is the same as the token type of the corresponding port.
Example. (Input pattern without repeat-clause). Assume the sequence of tokens on the input channel is the natural numbers starting at 1, i.e.
1, 2, 3, 4, 5, ...
The input pattern [a, b, c] results in the following bindings:
a = 1, b = 2, c = 3

If a pattern contains a repeat-clause, that expression must evaluate to a non-negative integer, say N. If the pattern length is L the number of tokens read by this input pattern and bound to the L pattern variables is NL. Since in general there are more tokens to be bound than variables to bind them to (N times more, exactly), variables are bound to lists of tokens, each list being of length N. In the pattern, the list bound to the k-th variable contains the tokens numbered . The static type of these variables is List[T], where T is the token type of the port.
Example. (Input pattern with repeat-clause). Assume again the natural numbers as input sequence. If the input pattern is
[a, b, c] repeat 2
it will produce the following bindings:
a = [1, 4], b = [2, 5], c = [3, 6]
[bookmark: _Toc212248717][bookmark: _Toc230596181]Scoping of action variables
The scope of the variables inside the input patterns, as well as the explicitly declared variables in the var-clause of an action is the entire action — as a consequence, these variables can depend on each other. The general scoping rules from D.7 need to be adapted in order to properly handle this situation.

In particular, input pattern variables do not have any initialization expression that would make them depend explicitly on any other variable. However, their values clearly depend on the expressions in the repeat-clause (if present). For this reason, for any input pattern variable we define the set of free variables of its initialization expression to be the union of the free variables of the corresponding expressions in the repeat-clause.
The permissible dependencies then follow from the rules in D.7.
Example. (Action variable scope). The following action skeleton contains dependencies between input pattern variables and explicitly declared variables
[n], [k], [a] repeat m * n ==> ...
var
	m = k * k
do ... end
These declarations are well formed, because the variables can be evaluated in the order k, m, n, a.
By contrast, the following action heads create circular dependencies:
[a] repeat a[0] + 1 ==> ... do ... end
[a] repeat n ==> ... var
	n = f(b), b = sum(a)
do ... end
[bookmark: _Toc212248718][bookmark: _Toc230596182]Output expressions
Output expressions are conceptually the dual notion to input pattern — they are syntactically similar, but rather than containing a list of variable names which get bound to input tokens they contain a list of expressions that computes the output tokens, the so-called token expressions.

The repeat-clause works not unlike in the case of input patterns, but with one crucial difference. For input patterns, it controls the construction of a data structure that was assembled from input tokens and then bound the pattern variables. In the case of output expressions, the values computed by the token expressions are themselves these data structures, and they are disassembled according to the repeat-clause, if it is present.
In output expressions without repeat-clause, the token expressions represent the output tokens directly, and the number of output tokens produced is equal to the number of token expressions. If an output expression does have a repeat-clause, the token expressions must evaluate to lists of tokens, and the number of tokens produced is the product of the number of token expressions and the value of the repeat-expression. In addition, the value of the repeat-expression is the minimum number of tokens each of the lists must contain.
Example. (Output expressions). The output expression
... ==> [1, 2, 3]
produces the output tokens 1, 2, 3.
The output expression
... ==> [[1, 2, 3], [4, 5]] repeat 2
produces the output tokens 1, 2, 4, 5.
[bookmark: _Toc212248719][bookmark: _Ref212810732][bookmark: _Toc230596183]On action selection: guards and other activation conditions
At any given point during the execution of an actor, an action may potentially fire on some input data. Whether it is activated, i.e. whether in a given situation it actually can fire, depends on whether its activation conditions have all been met. The minimal conditions are as follows:
1)	According to the action schedule (see Definition (Legal action sequence) in D.11.3) this action may fire next.
2)	No higher-priority action is activated (see D.11.4).
3)	There are sufficient input tokens available to bind the input pattern variables to appropriate values.
4)	Given such a binding, all guard expressions (which must be Boolean expressions) evaluate to true.
[bookmark: _Ref212204419][bookmark: _Toc212248720][bookmark: _Toc230596184]Initialization actions
Initialization actions are executed at the beginning of an actor’s life cycle. They are very similar to regular actions, with two important differences:
1)	Since the assumption is that at the beginning of an actor execution no input is available, initialization actions have no input patterns. They may produce output, however.
2)	With the exception of initialization expressions in variable declarations, an initialization action contains the first code to be executed inside the actor. Any state invariants in the actor may not hold, and instead have to be established by the initialization action.
The syntax of initialization actions is as follows:

The activation conditions for actions apply also to initialization action — of course, since there is no input, the conditions concerning input tokens become vacuously true.
If an actor should have more than one initialization action, and if more than one is activated at the beginning of an actor execution, one of them is chosen arbitrarily.
[bookmark: _Ref212205398][bookmark: _Toc212248721][bookmark: _Toc230596185]Action-level control structures
Introduction
In RVC-CAL, an action expresses a relation between the state of an actor and input tokens, and the successor state of the actor and output tokens. In general, RVC-CAL actors may contain any number of actions, and in a given situation, any subset of those may be ready to be executed. For example, both actions of the following actor may be able to execute, if there is a token available on either input port:
Example. (Nondeterministic Merge).
actor NDMerge () A, B ==> C:
	action A: [x] ==> [x] end
	action B: [x] ==> [x] end
end
It is important to emphasize that the policy used to choose between the two actions above is not part of the actor specification. This flexibility may be desired, but sometimes the actor writer may want to have more control over the choice of the action — e.g. if the Merge actor is supposed to alternate between reading its input ports, one might use actor state to realize this behavior:
Example. (Basic FairMerge).
actor FairMerge () A, B ==> C:
 s := 1;
	
 action A: [x] ==> [x]
	guard s = 1
	do
		s := 2;
	end
	
	action B: [x] ==> [x]
	guard s = 2
	do
		s := 1;
	end
end
This way of specifying action choice has two key drawbacks. First, it is very cumbersome to write and maintain, and it does not scale very well even for modest numbers of actions and states. Furthermore, this way of specifying action choice essentially obfuscates the “real” logic behind guards, state variable and assignments, so that it becomes harder to extract the intent from the actor description, both for tools and for human readers.
These are the key motivations for using action schedules, i.e. structured descriptions of possible orders in which actions may fire. Before we can discuss action schedules in D.11.3, we need to take a closer look at how actions are referred to inside of them.
[bookmark: _Ref212205372][bookmark: _Toc212248722][bookmark: _Toc230596186]Action tags
Actions are optionally prefixed with action tags (see D.10.1), which are qualified identifiers:

The same tag may be used for more than one action. In the following, we write the set of all actions tagged by a tag as , and the tag of some action as . The empty tag is written as , and the set of all untagged actions is therefore .

Action tags are ordered by a prefix ordering: We say that , i.e. is a prefix of , if starts with all the identifiers in in the same order, followed by any number of additional identifiers, including none. For instance, and , but . We call an extension of .

When used inside action schedules and priority orderings, a tag denotes the set of actions, which are labeled with tags that are extensions of it. For any tag this set is called and is defined as follows:

[bookmark: _Ref212204546][bookmark: _Toc212248723][bookmark: _Toc230596187]Action schedules
Action schedules are structured descriptions of possible sequences in which the actions of an actor may be executed. A finite state machine specifies these sequences. In general, the set of possible sequences may be finite or infinite and any specific sequence may also be finite or infinite.
An action schedule effectively describes a (regular) language L in the alphabet of action tags. This language is used to constrain the legal sequences of action firings as follows.

Definition (Legal action sequence). Given a tag language L, assume a finite sequence of actions and a sequence with and a strict monotonic function such that the following holds for all and :

1)	

2)	

3)	

In other words, are the subsequence in with non-empty tags. If is empty, then is a legal action sequence.

If is not empty, then is a legal action sequence if and only if there exists a sequence of tags such that the following holds:

1)	for all

2)	there exists a such that.
A consequence of this definition is that untagged actions may occur at any point in the schedule — conversely, schedules do not constrain untagged actions in any way.
The following paragraph describes a tag language based on finite state machines.
A finite state machine schedule defines a number of transitions between states (and an initial state) that are each labeled with one or more action tags.

The state before the colon is the initial state, and all states are accepting. The tag language is the set of all sequences of tags that label transitions leading from the initial state to any other state of the finite state machine.
Several transitions starting from the same state may be written as separated by the ‘|’ character. The following illustrates the use of a finite state machine action schedule to express the FairMerge actor somewhat more concisely.
Example. (FairMerge, with FSM schedule).
actor FairMerge1 () A, B ==> C:
	
 InA: action A: [x] ==> [x] end
	InB: action B: [x] ==> [x] end

	schedule fsm WaitA :
		WaitA (InA) --> WaitB;
		WaitB (InB) --> WaitA;
	end
end

[bookmark: _Ref212204389][bookmark: _Toc212248724][bookmark: _Toc230596189]Priorities
Priorities are very different from action schedules in that they genuinely add to the expressiveness of RVC-CAL. It would not be possible in general to reduce them to existing constructs, in the way schedules can in principle be reduced to a state variable and guards/assignments. Among other things, priorities allow actors to effectively test for the absence of tokens. As a consequence, actors can express non-prefix monotonic processes5, which are powerful, but at the same time can be dangerous, because it means the results computed by an actor may depend on the way it was scheduled with respect to the other actors in the system.
Priorities are defined as a partial order relation over action tags, which induce a partial order relation over the actions. An action can only fire if there is no other enabled action that is higher in this partial order. The order is specified as follows:

The priority inequalities are specified over tags, i.e. they have the form . These inequalities induce a binary relation on the actions are follows:

The priority inequalities are valid if the induced relation on the actions is in non-reflexive partial order, i.e. it is asymmetric and transitive. Transitivity follows from the definition, but asymmetry and non-reflexivity do not. In fact they do not even follow if the relation on the tags is a partial order. Consider the following example:
A.B > X > A
This is obviously a proper order on the tags. However, if we have two actions labeled X and A.B, then the induced relation is clearly not asymmetric, hence the system of priority inequalities is invalid.
With priorities, we can express a Merge actor that prefers one input over the other like this:
Example. (BiasedMerge).
actor BiasedMerge () A, B ==> C :
	InA: action A: [x] ==> [x] end
	InB: action B: [x] ==> [x] end

	priority
		InA > InB;
	end
end
Perhaps more interestingly, we can express a merge actor that is fair, in the sense that it will consume equal amounts of tokens from both inputs as long as they are available, but will not halt due to lack of tokens on only one of its input ports. It is also nondeterministic, i.e. it does not specify the order in which it outputs the tokens.
Example. (FairMerge, with priorities).
actor FairMerge3 () A, B ==> C :
	Both: action[x], [y] ==> [x, y] end
 Both: action[x], [y] ==> [y, x] end
 One: action A: [x] ==> [x] end
 One: action B: [x] ==> [x] end

 priority
	 Both > One;
 end
[bookmark: _Ref212102672][bookmark: _Toc212248725][bookmark: _Toc230596190]Basic runtime infrastructure
Introduction
This Subclause describes the basic runtime infrastructure, i.e. the kinds of objects and operations on them, that implementations must provide in order to implement RVC-CAL. A list of keywords is also included in this Subclause.
[bookmark: _Toc212248726][bookmark: _Toc230596191][bookmark: _Ref296685837]Operator symbols
The following table summarizes the predefined unary operator symbols in RVC-CAL.
	Operator
	Operand type(s)
	Meaning

	not
	bool
	logical negation

	#
	List(...)
	number of elements

	-
	number
	arithmetic negation

The next table lists the predefined binary operator symbols in the RVC-CAL language. They are sorted by increasing binding strength. Their binding strength is given by a precedence figure P, higher precedence binds stronger.
	P
	Operator
	Operand 1
	Operand 2
	Meaning

	1
	and
	bool
	bool
	logical conjunction

	
	or
	bool
	bool
	logical disjunction

	2
	=
	any
	any
	equality

	
	!=
	any
	any
	inequality

	
	<
	number
	number
	less than

	
	<=
	analogous to <
	less than or equal

	
	>
	analogous to <
	greater than

	
	>=
	analogous to <
	greater than or equal

	3
	+
	number
	number
	addition

	
	
	List[T]
	List[T]
	concatenation

	
	-
	number
	number
	difference

	4
	div
	number
	number
	integral division

	
	mod
	number
	number
	modulo

	
	*
	number
	number
	multiplication

	
	/
	number
	number
	division

	5
	..
	int
	int
	integral list from Operand 1 to Operand 2 (inclusive)

	6
	&
	int
	int
	bitwise and

	
	|
	int
	int
	bitwise or

	
	^
	int
	int
	bitwise xor

	
	~
	int
	int
	bitwise not

	
	<<
	int
	int
	left bit shift

	
	>>
	int
	int
	right bit shift

[bookmark: _Ref296685809]Keywords
action actor and begin div do else end false for foreach fsm function or guard if in initialize mod not priority procedure repeat schedule then true var while
[bookmark: _Toc340154012]

(informative)

FU Classification according to their dataflow model of computation of RVC-CAL
Introduction
This Annex describes those conditions used to classify FUs, so that programmers and RVC codec implementers can make sure that an FU is classified correctly by analysis and translation tools.
Basic terms
Token rates
An FU consists of any number of actions of the form
action A:[a1, a2], B:[b]
 ==> X:[s + a1, s + a2, s], Y:[a1 + b]

guard P(b) do

	s := s + b;

end
The constructs preceding the ==> are called input patterns, and establish how many tokens the action requires in order to be enabled on each port, which is also the number of tokens it will consume when it fires. For instance, the construct A: [a1, a2] specifies that the action requires two tokens on port A in order to fire. The constructs following the ==> are called output expressions, and they specify how many tokens are being produced on each output port when the action fires (as well as their values, of course). For instance, the expression X: [s + a1, s + a2, s] implies that three tokens will be produced on output X, since that is the number of comma-separated expressions between the square brackets.
Together, input patterns and output expressions define the token rates of an action, which is the number of tokens produced and consumed whenever that action fires. In the example above, the action will consume two tokens on input port A, one on input port B, and it will produce three tokens on output port X and one on output port Y. If the FU has no any other ports besides these four, the rate of token consumption or production on those ports for this action is zero.
Priorities
Actions within an FU may be related to each other through a priority statement such as the following.
priority
 A1 > A2;
 A2 > A3;
 A2 > A4;
end
The names A1, A2, A3, and A4 must then be action tags, identifying one or more actions. The order among actions is partial: note that in the example, A3 and A4 are of lower priority then A2 (and, by implication, A1), but they are related to each other. Also, if the FU in the example above contains another action tagged, e.g., A5, that action will not be related to any of the actions tagged A1, A2, A3, and A4.
A special case of priority orders is the total order, in which for any pair of two actions one of them has a higher priority than the other. For instance, if the example above is modified as follows, the tags are totally ordered:
priority
 A1 > A2;
 A2 > A3;
 A3 > A4;
end
For all actions to be totally ordered within an FU, each tag must uniquely identify one action, i.e. no two actions may be tagged by the same name.
Cyclic scheduler
A scheduling finite state machine is considered to be a cyclic scheduler if there is a sequence of states s1, …, sn such that
· s1 is the initial state of the scheduler,
· there are exactly n transitions, viz. si to si+1 for all i from 1 to n–1, and sn to s1.
The length of the cycle is n. If there is no scheduler, the absent scheduler is considered to be (trivially) cyclic with cycle length 1. For instance, the following scheduler is cyclic, with cycle length 2:
 schedule fsm s0 :
 s0 (A) ---> s1;
 s1 (B) ---> s0;
 end
By contrast, the next scheduler is not cyclic:
 schedule fsm s0 :
 s0 (A) ---> s1;
 s0 (B) ---> s2;
 s1 (C) ---> s0;
 s2 (C) ---> s0;
 end
 FU classes and taxonomy
In the following four specialized classes of FUs can be distinguished, in order of specialization: non-deterministic FUs (following Dataflow Process Network semantic (DPN)), prefix-monotonic FUs (also known as Kahn Process Network semantic (KPN)), Cyclo-static dataflow (CSDF) FUs, and synchronous dataflow (SDF) FUs. Each class properly includes the subsequent classes, i.e. all prefix-monotonic FUs are also deterministic.
The rules provided to characterize the FU classes are conservative – if an FU conforms to the rule, it is guaranteed to belong to the corresponding class, but there may be FUs that do not conform to the rule and still be members of the class.
Non-deterministic FUs
Non-determinism caused by time dependency
Rule: Time dependency occurs when the 2 following conditions are met:
1. When two actions are related to each other by the priority order (i.e. one has a higher priority than the other) and the input pattern of the lower priority action is a strict subset of that of the higher priority action. The input pattern is defined in D.9.2.
2. Those 2 actions have guards that are not mutually exclusive.
Example:
actor BiasedMergeTimeDependent () int A, int B ==> int X:

 CopyA: action A: [v] ==> X: [v] end
 CopyB: action B: [v] ==> X: [v] end

 priority CopyA > CopyB; end
end
The following ClipTimeDependent FU is described with a time dependent behavior.
Example:
actor ClipTimeDependent () int I, bool SIGNED ==> int O :
 int count := -1;

 read_signed: action SIGNED:[s] ==>
 guard count < 0
 do
 count := 63;
 end

 limit: action I:[i] ==> O:[f_clip(X)]
 do
 count := count - 1;
 end
The ClipTimeDependent FU can have no time dependent behavior as described in the following Clip FU.
Example:
actor Clip() int I, bool SIGNED ==> int O :
 int count := -1;

 read_signed: action SIGNED:[s] ==>
 guard count < 0
 do
 count := 63;
 end

 limit: action I:[i] ==> O:[f_clip(X)]
 guard count >= 0
 do
 count := count - 1;
 end
Non-determinism caused by absence of priorities
Rule: An FU becomes non-deterministic when there exist actions that are eligible for firing at the same time and where those actions are not totally ordered.
Example:
actor Split () int A ==> int X, int Y:

 action A:[v] ==> X:[v] end
 action A:[v] ==> Y:[v] end
end
 Deterministic FUs
Kahn process FUs – Prefix-monotonicity
Rule: An FU is prefix-monotonic (also known as a Kahn process) if it is deterministic and is not time-dependent.
Example:
actor PingPongMerge () int A, int B ==> int X:

 CopyA: action A: [v] ==> X: [v] end
 CopyB: action B: [v] ==> X: [v] end
 schedule fsm s0:
 s0 (CopyA) --> s1;
 s1 (CopyB) --> s0;
 end
end
This FUs is deterministic because the scheduler guarantees that only one action is eligible in each state.
Example:
actor Foo () int A ==> int X:

 Hi: action A: [v] ==> X: [v]
 guard v > 0 end
 Lo: action A: [v, w] ==> X: [v + w] end

 priority Hi > Lo; end
end
Here, the higher priority action reads one token from the input port, while the lower priority action requires two.
Cyclo-static dataflow (CSDF) FUs
Rule: An FU is a cyclo-static dataflow (CSDF) FU if it is prefix-monotonic, has a cyclic scheduler, and for each scheduler state, all eligible actions have the same token rates.
Example:
actor PingPongMerge () int A, int B ==> int X:

 CopyA: action A: [v] ==> X: [v] end
 CopyB: action B: [v] ==> X: [v] end

 schedule fsm s0:
 s0 (CopyA) --> s1;
 s1 (CopyB) --> s0;
 end
end
In this FU, only one of the two actions is eligible in each state, so the condition of all eligible actions having the same token rates is trivially fulfilled.
Example:
actor Bar () int A, int B ==> int X:

 A1: action A: [v] ==> X: [v]
 guard v >= 0 end
 A2: action A: [v] ==> X: [-v] end
 A3: action B: [v] ==> X: [v] end

 schedule fsm s0:
 s0 (A1, A2) --> s1;
 s1 (A3) --> s0;
 end

 priority A1 > A2; end
end
Here, two actions are eligible in state s0, but they are totally ordered (determinism), and have identical token rates, which makes the FUs prefix-monotonic and at the same time a cyclo-static dataflow FUs.
Counterexample:
actor Foo () int A ==> int X:

 Hi: action A: [v] ==> X: [v]
 guard v > 0 end
 Lo: action A: [v, w] ==> X: [v + w] end

 priority Hi > Lo; end
end
In this FUs, the two actions, which are always eligible, have different token rates (they consume a different number of tokens on port A), therefore this FUs is not a cyclo-static dataflow FUs.
Synchronous dataflow (SDF) FUs
Rule: An FU is a Synchronous Dataflow (SDF) FU if it is a cyclo-static dataflow FU and all actions have the same token rates.
NOTE – In principle, it should not be necessary to require an SDF actor to be cyclo-static, but in order to maintain consistency with the traditional classification CSDF is considered as a specialized form of SDF.

Since it does not make much sense to explicitly write down cyclic schedulers with a cycle length of 1, SDF FUs usually do not contain any schedulers. Indeed, all SDF FUs can be written as an FU with a single action, and all single-action FUs are always SDF FUs if the action does now contain a guard.
Example:
actor E () int A, int B ==> int C, int D:
 action A: [a1, a2] B: [b] ==>
 C: [a1 + a2, a1 - a2], D: [a1 + b, a2 + b] end
end
This FU consumes two tokens on A, one on B, and produces two tokens on both C and D each time it fires.
Example:
actor PingPongPick () A, B ==> X:

 CopyA: action A: [v], B: [w] ==> X: [v] end
 CopyB: action A: [v], B: [w] ==> X: [w] end

 schedule fsm s0:
 s0 (CopyA) --> s1;
 s1 (CopyB) --> s0;
 end
end
This example shows that SDF FUs may have schedules with cycles longer than 1.
Counterexample:
actor PingPongMerge () A, B ==> X:

 CopyA: action A: [v] ==> X: [v] end
 CopyB: action B: [v] ==> X: [v] end

 schedule fsm s0:
 s0 (CopyA) --> s1;
 s1 (CopyB) --> s0;
 end
end
The two actions in this CSDF FU have different token rates, therefore it is not an SDF FU.

[bookmark: _Toc340154013]
(informative)

I/O FUs
Introduction
This Annex informs about “system” FUs that need to communicate with the host system (reading/write from/to files, sockets, etc. like the implementation of the std.io.Reader and std.io.Writer FUs, displaying images, etc.)
This Annex describes two new elementary FUs to support input/output streams.
Naming
Reader actor: std.io.Reader
Writer actor: std.io.Writer
Localization of input/output streams
URLs are used to localize input and output streams. The following set of URL protocols should be supported: file, http, ftp.
Basic input/output functions and procedures
open(url): Function that takes a URL as an argument and opens an input stream on the specified location. It returns either the input stream if successful or null if opening an input stream was not possible.
create(url): Function that takes a URL as an argument and opens an output stream on the specified location. It returns either the output stream if successful or null if opening an output stream was not possible.
close(stream): Procedure taking a stream (input or output) as an argument and closing it, flushing all buffers and freeing all associated resources as necessary.
read(stream): Function taking an input stream as an argument. It reads and returns the value of the next byte of that stream, or a negative value if the stream has been exhausted.
write(stream, byte): Procedure taking an output stream and a byte as arguments. It writes the byte to the output stream.
Reader FU
The Reader FU takes a stream of URLs and a stream of (Boolean) next requests as input, and reads and outputs data bytes read from the input streams it opens on the URLs. For every consumed URL it returns a Boolean value on its Opened output, indicating whether an input stream was successfully opened on the URL; a true token means the URL was successfully opened, and a false token means that there was an error and no input stream was opened.
For every successfully opened URL, the reader consumes next requests in it Next port. These are Boolean tokens, where true is interpreted as a request for the next byte from the current input stream, while false is taken to mean that the current stream is to be closed and no further input be read from it. Consequently, it keeps reading next request tokens until either (a) it encounters a next request token with value false or (b) it is being sent a new URL. Either event causes it to (1) close the input stream and to (2) emit a negative value on its Data output port. If it reacted to a false next request token, it simply returns to its Closed state, waiting for a new URL to be sent.
If it was being sent a new URL, it will consume its Next input (without writing the data items) until it reaches a false value, indicating the end of the request stream for the URL that was just closed. Then it proceeds to the Reading state, where it will write subsequent data items to the newly opened stream. If the stream was not opened successfully, it will simply return to the Closed state at this point.
Also, if during the reading of the input stream it encounters the end of the stream, it will close the stream, consume all the requests up to and including the first false request, and return to the Closed state.
The following is the pseudo code illustrating the functionalities of the Reader FU.
actor Reader () String URL, boolean Next ==> int Data, boolean Opened :

stream := null;
nxtByte := EOS;
EOS = -1;
CLOSED = -2;

Open:
action URL: [url] ==> Opened: [stream != null]
require stream = null
do
stream := open(url);
nxtByte := (if stream != null then read(stream) else EOS end);
end

Read:
action Next: [nxt] ==> Data: [byte]
require stream != null
guard nxt
var
 byte = nxtByte
do
if nxtByte >= 0 then
nxtByte := read(stream);
else
close(stream);
stream := null;
end
end

Close:
action Next: [nxt] ==> Data: [CLOSED]
require stream != null
guard not nxt
do
close(stream);
stream := null;
end

NewURL:
action URL: [url] ==> Data: [CLOSED], Opened: [stream != null]
require stream != null
do
close(stream);
stream := open(url);
nxtByte := (if stream != null then read(stream) else EOS end);
end

Done:
action ==>
guard stream = null end

Scan:
action Next: [nxt] ==>
guard nxt end

ScanC:
action Next: [nxt] ==>
guard not nxt and stream = null end

ScanR:
action Next: [nxt] ==>
guard not nxt and stream != null end

schedule fsm Closed :
Closed (Open) --> Reading;
Reading (Read) --> Reading;
Reading (Close) --> Closed;
Reading (Done, NewURL) --> Scanning;
Scanning (Scan) --> Scanning;
Scanning (ScanC) --> Closed;
Scanning (ScanR) --> Reading;
End

priority
Done > NewURL;
NewURL > Read;
NewURL > Close;
end

end
Writer FU
The Writer FU takes a stream of URLs and a stream of data items as input, and writes the data to the output streams it opens on the URLs. For every consumed URL it returns a Boolean value on its Opened output, indicating whether an output stream was successfully opened on the URL; a true token means the URL was successfully opened, and a false token means that there was an error and no output stream was opened.
For every successfully opened URL, the writer consumes input on its Data port which it writes to the corresponding output stream (emitting a true token on its Ack output port for each written data byte) until (a) it encounters a data item smaller than 0 or (b) it is being sent a new URL. Either event causes it to (1) close the output stream and to (2) emit a false token on Ack. If it reacted to a data item smaller than 0, it simply returns to its closed state, waiting for a new URL to be sent.
If it was being sent a new URL, it will consume its Data input (without writing the data items) until it reaches a value smaller than 0, indicating the end of the data stream it prematurely closed. Then it proceeds to the Writing state, where it will write subsequent data items to the newly opened stream. If the stream was not opened successfully, it will simply return to the Closed state at this point.
The following is the pseudo code illustrating the functionalities of the Writer FU. The “require” keyword in the pseudo code adds future constraints to the firing rules of all actions. A global variable “stream” is needed for the currently opened stream (URL). Its data type is omitted here. The keyword “null” denotes an empty stream.
actor Writer () String URL, int Data ==> boolean Opened, boolean Ack :

stream := null;

Open:
action URL: [url] ==> Opened: [stream != null]
require stream = null
do
stream := create(url);
end

OK:
action ==>
guard stream != null end
			
Err:
action ==>
guard stream = null end

Write:
action Data: [byte] ==> Ack: [true]
require stream != null
guard byte >= 0
do
write(stream, byte);
end

Close:
action Data: [byte] ==> Ack: [false]
require stream != null
guard byte < 0
do
close(stream);
stream := null;
end

NewURL:
action URL: [url] ==> Opened: [stream != null], Ack: [false]
require stream != null
do
close(stream)
stream := open(url);
end

Scan:
action Data: [byte] ==>
guard byte >= 0 end

ScanC:
action Data: [byte] ==>
guard byte < 0 and stream = null end

ScanR:
action Data: [byte] ==>
guard byte < 0 and stream != null end

schedule fsm Closed :
Closed (Open) --> PostOpen;
PostOpen (OK) --> Writing;
PostOpen (Err) --> Closed;
Writing (Write) --> Writing;
Writing (Close) --> Closed;
Writing (NewURL) --> Scanning;
Scanning (Scan) --> Scanning;
Scanning (ScanC) --> Closed;
Scanning (ScanR) --> Writing;
End

priority
NewURL > Write;
NewURL > Close;
end

end
[bookmark: _Toc340154014]

(normative)

Storage of RMC in MP4 file format
Media decodable through RMC may indicate their RMC decoder configuration when stored in ISOBMF. Such signaling shall done by defining an optional box “RMCConfigurationBox” as a child box of the sample entry description of the track (for example VisualSampleEntry for a video track):
class RMCConfiguration extends Box(‘rmcc’) {
	unsigned int(16) predefined_rmc_configuration;
	if (! predefined_rmc_configuration) {
		unsigned int(1) rmc_configuration_in_track_meta;
		unsigned int(15) rmc_configuration_idx;
	}
}
predefined_rmc_configuration: predefined RMC decoder configuration as identified by ISO/IEC 23002-4.
rmc_configuration_idx: the 1-base index in the item list (‘iinf’) of the RMC meta box present in the track box if rmc_configuration_in_track_meta is 1, or of the RMC meta box present in the moov box if rmc_configuration_in_track_meta is 0.
An RMC meta box is defined as a box whose handler type is “rmci”. There shall not be more than one RMC meta box per track. There shall not be more than one RMC meta box per moov.
By using an RMC meta box in the moov box, a single RMC configuration can be shared among several tracks of the file.

[bookmark: _Toc340154015]
(normative)

Carriage of RMC over RTP
Media decodable through RMC may indicate their RMC decoder configuration when carried over RTP. Such signaling shall be done by defining one of the following parameters in the SDP:
a=rmc-config-predef: ID
ID: predefined RMC decoder configuration as identified by MPEG-C ISO/IEC 23002-4

a=rmc-config: <location>

location: indicates the location of the RMC configuration data for this stream. If the rmc-config attribute is specified before any media stream (m= lines), the RMC configuration identified by this attribute can be used with any video streams where no rmc-config attribute is specified. The location should be a URL enclosed in double-quotes, which will supply the RMC configuration data. If the RMC configuration data is small, it may be embedded inside the SDP using "data:" URL. Otherwise any suitable file-access URL shall be used. MIME types associated with RMC configuration data are “application/rmc-config+xml” for uncompressed data and “application/rmc-config+xml+gz” for gz compressed data.

[bookmark: _Toc212248738][bookmark: _Ref212782994][bookmark: _Ref216511373][bookmark: _Toc230596192][bookmark: _Toc238864727][bookmark: _Ref296687950][bookmark: _Ref296689528][bookmark: _Ref296689790][bookmark: _Toc340154016]
(informative)

Instantiation of bitstream syntax parser from bitstream syntax descriptions
[bookmark: _Toc221509397][bookmark: _Toc221509399][bookmark: _Toc221509400][bookmark: _Toc221509410][bookmark: _Toc221509411][bookmark: _Toc221509430][bookmark: _Toc221509446][bookmark: _Toc221509462][bookmark: _Toc221509614][bookmark: _Toc212248740][bookmark: _Ref216510388][bookmark: _Toc230596193]
This Annex describes an informative examples of the methods to instantiate bitstream syntax parser FU from the given bitstream syntax description written in RVC-BSDL.
Instantiation of parsers for the ADM
RVC_CAL parser generation
[bookmark: OLE_LINK9]This Subclause describes an example of a systematic procedure for the generation of a RVC-CAL parser directly from the RVC-BSDL description of the bitstream. Figure I.1 illustrates the overall transformation process.

[bookmark: _Ref228273588]Figure I.1 — Illustration of the transformation process of a RVC-BSDL schema
into a RVC-CAL parser FU
Pre-processing is the first operation conducted by the top level stylesheet. The pre-processing collects the individual schemata into a single intermediate tree, taking care to correctly manage the namespace of each component Schema and also performs a number of other tasks, including assigning names to anonymous types and structures. Finite State Machine (FSM) design is the major component of the parser actor. The FSM schedules the reading of bits from the input Bitstream into the fields in the various output structures, along with all other components of the actor. The FSM is specified as a set of transitions, where each transition has an initial state, a final state, and an action. RVC-BSDL specifies that the order of options within a choice establish their priority: the first option has priority over the second, and so on. These priorities are recorded in the actor as priorities between the test actions. Guard expressions are built from the control-flow constructs in the RVC-BSDL Schema. The behavior of each action is to complete such tasks as storing data in the appropriate location in the output structure. Finally, the RVC-CAL component declares templates for each of the constructs in the language, such as an FSM schedule, a function call, or an assignment. These templates are called by other components of the stylesheet when building the actor. Collecting all of the RVC-CAL syntax into a single stylesheet also means that an alternative stylesheet could be provided in place of the RVC-CAL sheet.
[bookmark: _Ref216510361][bookmark: _Toc230596194]Generic parser FU
This Subclause describes the generic parser FU (GPFU) methodology as a bitstream parser FU instantiation method. The GPFU is a configurable bitstream parser FU pre-defined in the tool library of which the behavior is configured during run-time according to a BSD. The GPFU approach provides a run-time configurable parser FU on top of executable BSD.
Structure
Figure I.2 shows the concept of the GPFU and the basic structure of the GPFU is depicted in Figure I.3. A GPFU can be implemented using the functional components described below.
[image:]
[bookmark: _Hlk370066740][bookmark: OLE_LINK6]Figure I.2 — Concept of generic parser FU
[image:]
[bookmark: OLE_LINK8][bookmark: OLE_LINK7]Figure I.3 — Basic structure of generic parser FU
BSD parser
The XML-based RVC-BSDL BSD must be parsed in order to be put into GPFU as an input. The BSD parser reads a given BSD and parses the BSD to run the GPFU. The output of the BSD parser is used by the bitstream parser engine to configure bitstream parsing process dring the run-time. The output can be an intermediate format translated from RVC-BSDL to facilitate the parser engine configuration process.
Bitstream parser engine
The bitstream parser engine is the core of the GPFU. The bitstream parsing and the port output behaviour is conducted within this engine. The parser engine includes generic bitstream parsing functions which can be executed according to the bitstream syntax and parsing description included in the given BSD. For efficient run-time bitstream parsing behaviour, the parsr engine may receive a preprocessed BSD (e.g., translated in an intermediate format) from the BSD parser. The parser engine also may call plugin functions nested within the GPFU or external FUs that are able to process a part of bitstream using specific algorithms such as entropy decoding.
GPFU plugin functions
The plugin functions in GPFU should be able to respond to a parameterized function call evoked by the script engine. BSD parser may parameterize the plugin function prior to the bitstream parsing process. Such parameterization structure allows the GPFU plugin functions to be codec independent as much as possible. More details of the communication with the plugin function with BSD are described in I.3.2.
DEMUX
Because the GPFU may not aware how the rest of FU network is composed, the GPFU produces generalized outputs through a generalized ports which consists of data port and the token type indication port. The generalized token output should be processed by a management FU working as a DEMUX by distributing the tokens to proper FUs via proper ports. A simple data type casting (e.g., integer size specification or Boolean value generation) can be applied on data during the demultiplexing process to meet the implementation specific data types of tokens.
[bookmark: _Toc212248741]Externally defined algorithms
Implementing variable-length decoding with functional units
With Variable-Length Decoding, the parser does not know in advance how many bits must be read to decode an element of syntax. Thus, bits must be read one by one. VLD tables necessary for the decoding of the variable-length codes can be defined in two different methods: are defined as standard FU in the MPEG video tool library or as predefined parser functions.
[bookmark: _Ref370073193]External algorithms as functional units
Connection of the external FUs with the bitstream parser FU
Figure I.2 illustrates an example case of how variable length codes are parsed and how VLD FUs are connected to the parser for decoding Variable Length codes.
For the sake of clarity, Figure I.2 represents only the connection of only one VLD FU to the parser. This VLD FU serves at decoding the DCT coefficients given in ISO/IEC 14496-2:2004, Table B.16. The Syntax Parser can be generated automatically by an appropriate XSLT process available in the reference software part of RVC framework.
When the Syntax Parser meets a Variable Length code, it consumes only one bit from the bitstream port. It sends it to the VLD FU. If there is no entry in the table which corresponds to the input bit, the VLD FU sends back to the parser a token notifying that no matching has been found. Thus, the parser consumes an additional bit and sends it to the VLD FU. This latter check if the first bit and the newly received bit match an entry in the table. If no, it continues sending token to the parser, saying that there is no matching and the parser must send an additional bit. If yes, the VLD FU sends a token to the parser saying that a matching has been found and the parser can parse the next element of the bitstream. The result of the parsing is then outputted by the VLD FU to the other FUs composing the decoder.
In the BSD written in RVC-BSDL, an element should be declared with the rvc:ext datatype to indicate the element should be processed by an external algorithm, and its rvc:extName attribute should be set to “FU” to indicate the algorithm is implemented as an FU outside of the parser FU. The connections between the Syntax Parser and the Functional Unit in charge of decoding the element of syntax are:
a connection from the parser to the FU to send the bits (the destinationthe name of the port to be generated is specified using the rvc:portrvc:extParams attribute)
two connections from the FU to the parser: one to indicate to the parser whether the decoding process is finished or not, and another to send the decoded value, which may be reused by the parser. Such connections are respectively named adding the suffix “_f” and “d” to the rvc:port extParams attribute indicating the name of the output port of the parser.
The attribute rvc:port extParams attribute is used to indicate to which parser output port the bits have to be sent;, tThis attribute is compulsory whenever an FU is necessary to decoder a piece of bitstream. Picture illustrating the relation between output ports labeled by the RVC-BSDL schema describing a bitstream syntax element and the network of FUs described by FND are reported in Figure I.2. When the bs2:partContext is set to “false”, the connection “data” may not need to be opened because the syntax parser does not need the results of the decoding.

[bookmark: _Ref228273723][bookmark: _Ref216509929]Figure I.42 — Illustration of the relation between the Syntax Parser and the Functional Unit
In case of the bs0: variable is set to “false”, the connection “data” does not appear because the syntax parser does not need the results of the decoding.
[bookmark: _Toc212248742][bookmark: _Toc230596195]Generation of VLD tables decoding FUs
The RVC-CAL source code of the VLD FU for decoding the “mbcpc” variable code is shown just below. The only part of the FU, which is automatically generated, is a list of numbers, representing the VLD table in a compressed form. The rest of the code is exactly the same for all the VLD FUs. The extra code is needed to handle the optimized list of codes representing the VLD table.
actor VLD_mcbpc_intra(int VLD_DATA_SZ, int VLD_ADDR_SZ)
	String bits ==> int(size=2) finish, int(size=VLD_DATA_SIZE) data:

	int START_INDEX = 0;
	int(size=VLD_ADDR_SZ) vld_index;
	int(size=VLD_DATA_SZ) vld_codeword := 1;

// ********** automatically generated part ********
list(type:int(size=VLD_DATA_SZ), size=16)
vld_table = [10, 12, 18, 58, 26, 76, 34, 16, 42, 50, 1, 80, 144, 208, 140, 204];
// **

	procedure start_vld_engine(int index)
	begin
		vld_index := index;
		vld_codeword := 2;
	end

 function vld_success() --> bool: vld_codeword & 3 = 0 end
 function vld_continue() --> bool: vold_codeword & 3 = 2 end
 function vld_failure() --> bool: vld_codeword & 1 = 1 end
 function vld_result() --> int(size=VLD_DATA_SZ): vld_codeword >> 2 end

 start_VLD: action ==>
 do
 start_vld_engine(START_INDEX);
 end
 read_in_bits: action bits:[b] ==>
 do
 vld_codeword := vld_table[vld_index + if b="1" then 1 else 0 end];
 vld_index := vld_codeword >> 2;
 end

 continue_VLD: action ==> finish:[f]
 guard
 vld_continue()
 var
 int(size=2) f := 0
 end

 fail_VLD: action ==>
 guard
 vld_failure()
 do
 // VLD FAILURE end

 finish_VLD: action ==> finish:[f], data:[d]
 guard
 vld_success()
 var
 int(size=2) f := 2,
 int(size=VLD_DATA_SZ) d := vld_result()
 end

 schedule fsm start_VLD:
 start_VLD (start_VLD) --> read_in_bits;
 read_in_bits (read_in_bits) --> process;
 process (continue_VLD) --> read_in_bits;
 process (fail_VLD) --> start_VLD;
 process (finish_VLD) --> start_VLD;
 end

end
This Subclause describes how the Variable Length Decoding process can be modeled in RVC-CAL. Next Subclause describes how the parser handles the communications with the VLD FUs to decode these variable length code words.
[bookmark: _Toc212248743][bookmark: _Toc230596196]The modification of FSM in the parser FU
Since the decoding of such variable length code words is executed outside the main parser by means of the FUs available in the RVC video tool library implementing the decoding of the standard VLD tables, the parser needs to communicate with the external FUs to know when the decoding of the variable-length codes are completed and when the parser can switch to parse the next syntax element. Thus, an appropriate statement in the RVC-CAL FSM of the parser is needed.
The figure below reports an example of part of the RVC-CAL parser automatically generated from the bitstream schema:
DCT_Coeff.read: action ==>
guard
	readDone()
end

DCT_Coeff.output: action ==> B16: [current]
do
	current := read_result_in_progress ;
end

DCT_Coeff.finish: action B16_f: [finish] ==>
guard
	finish
do
	setRead(M4V_NEXT_ELEMENT_LENGTH);
end

DCT_Coeff.notFinished: action B16_f: [finish] ==>
guard
	not finish
do
	setRead(M4V_VLC_LENGTH);
end

[…]

// Finite State Machine
Previous_state (previous_action) --> DCT_Coeff_exists;
DCT_Coeff_exists (DCT_Coeff.read) --> DCT_Coeff_output;
DCT_Coeff_output	(DCT_Coeff.output) --> DCT_Coeff_result;
DCT_Coeff_result	(DCT_Coeff.notFinished) --> DCT_Coeff_exists;
DCT_Coeff_result	(DCT_Coeff.finish) --> Next_state;

It shows the actions and the finite state machine generated for handling the communication between itself and external VLD FUs. When the parser meets a variable length code, these actions are generated. First, the parser reads one bit from the bitstream input port (DCT_Coeff.read action). The following step consists in sending the bit to the corresponding VLD table; it is done in action DCT_Coeff.output. Then, the parser waits for a token coming from the VLD FU. This token (finish) indicates if a matching has been found in the table or not. If yes, the value of finish is true and the action DCT_Coeff.finish is fired and the number of bits to read for the next element is set. If not, the value of finish is false and the DCT_Coeff.notFinished is fired and one more bit must be read (M4V_VLC_LENGTH = 1). The finite state machine summarizes the transitions.

[bookmark: _Ref370069418][bookmark: _Ref370073186]External algorithms as plugin functions
Plugin functions are the functions that can be predefined within the bitstream parser FU (e.g., GPFU) and can be called during the bitstream parsing process. Such functions can be included in the bitstream parser during the instantiation process. For example,
1) For the RVC-CAL parser FU instantiation process, plugin functions can be included within the CAL templates and can be connected to the bitstream parsing flow during the instantiation.
2) For the generic parser FU approach, plugin functions can be a part of generic parser FU implementation.
The plugin functions perform specific bitstream parsing actions within the bitstream parser FU. For example, a VLD plugin function consumes a set of bits from the input port and produces the VLD result values. The values can be used within the bitstream parser or can be used to generate output tokens of the parser FU. This process do not involves other FUs outside of the bitstream parser FU; therefore, a high level of reconfigurability can be assured.
In the BSD written in RVC-BSDL, the plugin function can be called by using the rvc:ext datatype. The description written in RVC-BSDL can be processed using the following rules:
rvc:extName attribute indicates the name or identifier of the plugin function to be called.
rvc:extParams attribute is used to send parameters to the plugin function. Each parameter can be an RVC-BSDL expression and separated by semicolon with each other.
The bitstream parser is assumed to be able to launch the plugin function with the designated name or identifier and the given parameters. The example implementation can be found in the ISO/IEC 23002-5. If the plugin function makes an output as a result of the bitstream parsing process, the output value is handled in the same way as the values retrieved from the fixed-length bitstream syntax elements.

[bookmark: _Toc212248744][bookmark: _Toc230596197][bookmark: _Toc238864728][bookmark: _Toc340154017]
(informative)

Relation between codec configuration representation and multimedia middleware (M3W)
As described in previous subclasses, the process of building an implementation of a RVC decoder is based on two conceptual steps. The first is the instantiation of the Abstract Decoder Model (ADM) using the FUs as specified in the MPEG video tool library. The second is the instantiation of the decoder implementation from any proprietary implementation of the MPEG video tool library that is compliant with the “Standard MPEG video tool library.” The process of instantiating a proprietary implementation is not normative and is at this stage that such decoder implementation needs to be “wrapped” into a MPEG System layer implementation capable of processing MPEG bitstream at transport level. It is at this stage that the non-normative wrapping process should consider the implementation of the normative APIs provided by the MPEG MultiMedia MiddleWare (M3W) specification.
If in future RVC framework extensions the ADM will include the modeling of the decoder up to the Systems layer (by means of an appropriate MPEG systems tool library) normative APIs with M3W will already be included in the RVC ADM. Under such circumstances, any proprietary non-normative compliant implementations of the System level decoder will need to be compliant with the normative M3W APIs specification.
Figure 2 reports the graphic representation of the processes for the instantiation of the normative RVC ADM and for all non-normative, but compliant implementations.
[bookmark: _Toc230596198][bookmark: _Toc238864729][bookmark: _Toc340154018]Bibliography
The Ptolemy Project. Department EECS, University of California at Berkeley (http://ptolemy.eecs.berkeley.edu)
ABELSON, H. and SUSSMAN, G.J. Structure and Interpretation of Computer Programs. MIT Press, 2nd edition, 1999
[bookmark: _Ref211909429]AGHA, G.A. Actors: A Model of Concurrent Computation in Distributed Systems. The MIT Press Series in Artificial Intelligence. MIT Press, 1986
[bookmark: _Ref211909432]AGHA, G.A. et al. A foundation for actor computation. Journal of Functional Programming, 1993
[bookmark: _Ref211909435]DENNIS, J.B. First version data ﬂow procedure language. Technical Memo MAC TM 61, MIT Lab. Comp. Sci., May 1975
[bookmark: _Ref211909412]HEWITT, C. Viewing control structures as patterns of passing messages. Journal of Artificial Intelligence, 8(3):323–363, June 1977
[bookmark: _Ref211909553]JANNECK, J.W. Syntax and Semantics of Graphs — An approach to the specification of visual notations for discrete event systems. PhD thesis, ETH Zürich, Computer Engineering and Networks Laboratory, July 2000
[bookmark: _Ref212101446]JANNECK, J.W. Actors and their composition. Technical Report UCB/ERL 02/37, University of California at Berkeley, 2002
[bookmark: _Ref211909423]KAHN, G. The semantics of a simple language for parallel programming. In: Proceedings of the IFIP Congress. North-Holland Publishing Co., 1974
[bookmark: _Ref211909548]LEE, E.A. A denotational semantics for dataﬂow with ﬁring. Technical Report UCB/ERL M97/3, EECS, University of California at Berkeley, January 1997
[bookmark: _Ref211909666]LEE, E.A. Embedded software. In: Advances in Computers, Volume 56 (ed. Zelkowitz, M.), Academic Press, 2002
[bookmark: _Ref211909669]LEE, E.A. and SANGIOVANNI-VINCENTELLI, A. A denotational framework for comparing models of computation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 17(12):1217–1229, December 1998
PEIRCE, C.S. How to make our ideas clear. In: Values in a Universe of Chance (ed. Wiener, P.P.), Doubleday Anchor Books, Garden City, New York, 1958
ISO 8879, Information processing — Text and office systems — Standard Generalized Markup Language (SGML)
ISO/IEC 14496-10, Information technology — Coding of audio-visual objects — Part 10: Advanced Video Coding

	FINAL DRAFT INTERNATIONAL STANDARD
	ISO/IEC FDIS 23001-4:2012(E)

ISO/IEC FDIS 23001-4:2012(E)

	© ISO/IEC 2012 – All rights reserved
	
	1

	14
	
	© ISO/IEC 2012 – All rights reserved

	© ISO/IEC 2012 – All rights reserved
	
	13

	ICS 35.040
Price based on 57 pages
© ISO/IEC 2012 – All rights reserved

oleObject43.bin

image42.wmf
O

t

oleObject44.bin

image43.wmf
' '

VVVOVO

tttttt

>Ù¬Þ¬

oleObject45.bin

image44.wmf
TypeID

| ID '(' [TypeAttr { ',' TypeAttr }] '

)'

TypeAttrID ':' Type

| ID '=' Expression

®

®

oleObject46.bin

image45.emf

)

10

0

(2log

vv

vv

Microsoft_Word___1.docx

image1.wmf

ú

ú

ù

ê

ê

é

þ

ý

ü

î

í

ì

+

Þ

³

-

Þ

<

)

1

0

0

(

2

log

v

v

v

v

image46.wmf
é

ù

x

oleObject47.bin

image47.wmf
{

}

]

Expression

)

'

:

|'

'

[('

]'

'

Expression

['

'

ID

Type

VarDecl

=

=

®

oleObject48.bin

image48.wmf
'

;

'

VarDecl

cl

StateVarDe

®

oleObject49.bin

image49.wmf
{

}

'

;

'

Expression

'

'

]'

'

Expression

['

'

ID

Type

rDecl

ConstantVa

=

®

oleObject50.bin

image50.wmf
end'

'

]

Expression

:'

'

]

VarDecls

var'

'

[[

Type

'

'--

)'

'

]

FormalPars

[

('

ID'

function'

'

FunDecl

>

®

oleObject51.bin

image51.wmf
{

}

end'

'

]

Statement

begin'

'

]

VarDecls

var'

'

[[

)'

'

]

FormalPars

[

('

ID'

procedure'

'

ProcDecl

®

oleObject52.bin

image52.wmf
ExpressionExpression { ',' Expression }

Expression BinaryExpression

 | impleExpression

S

®

®

oleObject53.bin

image53.wmf
SingleExpressionOperator Expression

| ListComprehension

| ifExpression

| LetExpression

| '(' Expression ')'

| IndexerExpr

| ID '(' Expressions ')'

| ID

| ExpressionLiteral

®

oleObject54.bin

image54.wmf
ExpressionLiteralIntegerLiteral | Decima

lFractionLiteral

| StringLiteral

| |

®

truefalse

oleObject55.bin

image55.wmf
(

)

1

, ...,E

n

FE

oleObject56.bin

image56.wmf
{

}

IndexerExprID '[' Expression']' '[' Exp

ressions ']'

®

image3.emf
1.Bitstream syntax

2.Decoder configuration

Encoder Decoder

Decoder Description

Encoded Video Data

oleObject57.bin

image57.wmf
IfExpression Expression Expression Exp

ression

®

ifthenelseend

oleObject58.bin

image58.wmf
SimpleListComprehension '[' [Expression

s] ']'

®

oleObject59.bin

image59.wmf
ListComprehension '[' [Expressions [':

' Generators] ['|' Expression]] ']'

Generators Generator { ',' Generator }

Generator Type ID Expression

®

®

®

forin

oleObject60.bin

image60.wmf
StatementAssignmentStmt

| CallStmt

| BlockStmt

| IfStmt

| WhileStmt

| ForeachStmt

®

oleObject61.bin

image61.wmf
{

}

AssignmentStmtID [Index] ':=' Expressi

on ';'

Index '[' [Expression] ']' '[' Expres

sion ']'

®

®

oleObject1.bin

oleObject62.bin

image62.wmf
CallStmt ProcedureSymbol '(' [Expressio

ns] ')' ';'

ProcedureSymbolID

®

®

oleObject63.bin

image63.wmf
BlockStmt [LocalVarDecls] { State

ment }

®

beginvardoend

oleObject64.bin

image64.wmf
IfStmt Expression { Statement } [{ S

tatement }]

®

ifthenelseend

oleObject65.bin

image65.wmf
WhileStmt Expression [VarDecls] [S

tatements]

®

whilevardoend

oleObject66.bin

image66.wmf
ForeachStmt ForeachGenerator { ',' Forea

chGenerator }

 [VarDecls] [Statements]

ForeachGenerator Type ID Expression

®

®

vardoend

foreachin

image4.png

oleObject67.bin

image67.wmf
Action [ActionTag ':'] ActionHead [

Statements]

ActionTag ID { '.' ID }

ActionHead InputPatterns '==>' OutputExp

ressions

 [Expressions] [VarDecls]

®

®

®

actiondoend

guardvar

oleObject68.bin

image68.wmf
InputPattern [ID ':'] '[' IDs ']' [Re

peatClause]

RepeatClause Expression

®

®

repeat

oleObject69.bin

image69.wmf
, , 2, ..., (1)

kLkLkNLk

++-+

oleObject70.bin

image70.wmf
v

oleObject71.bin

image71.wmf
v

F

oleObject72.bin

image72.wmf
OutputExpression [ID ':'] '[' Expressi

ons ']' [RepeatClause]

RepeatClause Expression

®

®

repeat

oleObject73.bin

image73.wmf
InitializationAction [ActionTag ':']

 InitializerHead [Statements]

InitializerHead '==>' OutputExpressions

 [Expressions] [VarDecls]

®

®

initializedoend

guardvar

oleObject74.bin

image74.wmf
ActionTag QualID

QualID ID { '.' ID}

®

®

oleObject75.bin

image75.wmf
t

oleObject76.bin

image76.wmf
t

oleObject77.bin

image77.wmf
a

oleObject78.bin

image78.wmf
a

t

oleObject79.bin

image79.wmf
e

oleObject80.bin

image80.wmf
e

oleObject81.bin

image81.wmf
'

tt

Í

oleObject82.bin

image82.wmf
t

oleObject83.bin

image83.wmf
'

t

oleObject84.bin

image84.wmf
'

t

oleObject85.bin

image85.wmf
t

oleObject86.bin

image86.wmf
Í

.....

abcabcx

oleObject87.bin

image87.wmf
..

abab

Í

oleObject88.bin

image88.wmf
..

abac

Ë

oleObject89.bin

image89.wmf
'

t

oleObject90.bin

image90.wmf
t

oleObject91.bin

image91.wmf
t

oleObject92.bin

image92.wmf
ˆ

t

oleObject93.bin

image93.wmf
ˆ

{|}

defa

tatt

=Í

oleObject94.bin

image94.wmf
1..

()

iin

a

=

oleObject95.bin

image95.wmf
1..

()

jjm

b

=

oleObject96.bin

image96.wmf
mn

£

oleObject97.bin

image97.wmf
:{1..}{1..}

fmn

®

oleObject98.bin

image98.wmf
{1..}

jm

Î

oleObject99.bin

image99.wmf
{1..}

in

Î

oleObject100.bin

image100.wmf
()

jfj

ba

=

oleObject101.bin

image101.wmf
j

b

t

e

¹

image5.emf
FU A

BA

Bits

YUV

Decoder

oleObject102.bin

image102.wmf
{

}

1

,1..

i

a

tifm

e

-

éù

¹"Ï

ëû

oleObject103.bin

image103.wmf
()

j

b

oleObject104.bin

image104.wmf
()

i

a

oleObject105.bin

image105.wmf
()

j

b

oleObject106.bin

image106.wmf
()

i

a

image6.emf
FU A

FA

Bits

YUV

FU B

BCDE

Decoder

Type AType BType C

oleObject107.bin

image107.wmf
()

j

b

oleObject108.bin

image108.wmf
()

i

a

oleObject109.bin

image109.wmf
1..

()

jjm

t

=

oleObject110.bin

image110.wmf
ˆ

{1..},

jj

jmbt

ÎÎ

oleObject111.bin

image111.wmf
wL

Î

image7.emf
Syntax Parser

A

Bits

YUV

BCD

FU A

EHF

FU B

LMK

FU C

OPQR

Decoder

oleObject112.bin

image112.wmf
()

j

tw

Í

oleObject113.bin

image113.wmf
ScheduleFSM [] ID ':'

 { StateTransition ';' }

StateTransition ID '(' ActionTag ')' '--

>' ID

®

®

schedulefsm

end

oleObject114.bin

image114.wmf
PriorityOrder{ PriorityInequality ';' }

PriorityInequality ActionTag '>' ActionT

ag { '>' ActionTag}

®

®

priorityend

oleObject115.bin

image115.wmf
12

tt

>

oleObject116.bin

image116.wmf
1212121122

ˆ

ˆ

,:

aattttatat

>Û$>ÙÎÙÎ

image8.emf
name

Name + parameters

Connections

Attach

BSDL2CAL

FND

A Video Tool Library

Code FU1Code FU2Code FU N

Name parser

Code parser

Name FU2

Code FU2

Name FU N

Code FU N

BSD

Model

Instantiation

Process

Output:

ADM

Input:

FND+BSD

oleObject117.bin

image117.wmf
31332

:

aaaaa

Ú$>Ù>

oleObject118.bin

image118.wmf
<schema>

<!-- ... -->

</schema>

Actor

end

Globals

Actions

Transitions

Priorities

Pre-process

CAL Templates

CAL

Structure

BSDL

 Schema

CAL Parser

image119.png

image120.png

image121.wmf
data

bits

bits

bits

status

Parser generated

from

RVC

-

BSDL

 schema

INPUT BITSTREAM

Algo

_

VLDTableB8

Algo

_

VLDTableB8

_

f

Algo

_

VLDTableB8

_d

<

xsd

:element

name=

"

cbpy

"

 type =

"

rvc

:ext"

bs0

:variable=

"true"

rvc

:port=

"

Algo

_

VLDTableB8

"

/>

<

XDF

 name="decoder">

...

 <Instance id="

BSDLParser

">

 <Class name="

Algo

_

SyntaxParser

"/>

 </Instance>

 <Instance id="

VLD

">

 <Class name="

Algo

_

VLDTableB8

"/>

 </Instance>

 <Connection

dst

="

VLD

"

dst

-port="bits" src="

BSDLParser

" src-port="

Algo

_

VLDTableB8

">

 ...

 </Connection>

 <Connection

dst

="

BSDLParser

"

dst

-port="

Algo

_

VLDTableB8

_

f

" src="

VLD

" src-port="finish">

 ...

 </Connection>

 <Connection

dst

="

BSDLParser

"

dst

-port="

Algo

_

VLDTableB8

_d" src="

VLD

" src-port="data">

 ...

 </Connection>

</

XDF

>

Algo

_

VLDTableB8

bits

finish

data

oleObject2.bin
�

�

�

�

name

Name + parameters

Connections

Attach

image9.png

image10.png

image11.wmf
[]

A

oleObject3.bin

image12.wmf
{}

A

oleObject4.bin

image13.wmf
|

AB

oleObject5.bin

image14.wmf
AsA { ',' A }

®

oleObject6.bin

image15.wmf
Expression PrimaryExpression {Operator

PrimaryExpression}

®

oleObject7.bin

image16.wmf
PrimaryExpression 'max('Expression',' E

xpression')'

| 'min('Expression',' Expression')'

| 'numbits('Expression')'

| 'bitand('Expression','Expression')'

| 'bitor('Expression','Expression')'

| 'bitnot

®

('Expression')'

| 'rshift('Expression')'

| 'lshift('Expression')'

| '.text()'

| ExpressionLiteral

| ifExpression

oleObject8.bin

image17.wmf
®

®

®=<>>=<==

ExpressionLiteral '| IntegerLiteral | t

rue | false

ifExpression if Expression then Expressi

on else Expression end

Operator ('' |'' | '' | '' | '' | '!' |

'and' | 'or' |'not' | '* '| '/' | '

+

' | '- ' | '^' | 'div' | 'mod')

oleObject9.bin

image18.wmf
IntegerLiteral 'IntegerDigit IntegerDig

it

IntegerDigit '0' | '1' | '2' | '3' | '4'

 | '5' | '6' | '7' | '8' | '9'

HexadecimalValue HexadecimalDigit {Hexa

decimalDigit}

HexadecimalDigit '0' | '1' |

®{}

®

®

®

 '2' | '3' | '4' | '5'| '6' | '7' | '8'

| '9' | 'A' | 'B' | 'C' | 'D' | 'E' | 'F

')

oleObject10.bin

image19.wmf
Portname NormativeFUName

®

oleObject11.bin

image20.wmf
IntegerDecimalLiteral | HexadecimalLiter

al | OctalLiteral

Real DecimalDigit { DecimalDigit } '.'

{DecimalDigit} [Exponent]

| '.' DecimalDigit { DecimalDigit } [Ex

ponent]

| DecimalDigit { DecimalDi

®

®

git } Exponent

DecimalLiteralNonZeroDecimalDigit { Deci

malDigit }

HexadecimalLiteral '0' ('x' | 'X') He

xadecimalDigit { HexadecimalDigit }

OctalLiteral '0' { OctalDigit }

Exponent ('e' | 'E') [

®

®

®

®

'+' | '-'] DecimalDigit { DecimalDigit

}

NonZeroDecimalDigit '1' | '2' | '3' | '

4' | '5' | '6' | '7' | '8' | '9'

DecimalDigit '0' | NonZeroDecimalDigit

OctalDigit '0' | '1' | '2' | '3' | '4'

| '5'

®

®

®

 | '6' | '7' | '8'

HexadecimalDigit DecimalDigit

| 'a' | 'b' | 'c' | 'd' | 'e' | 'f'

| 'A' | 'B' | 'C' | 'D' | 'E' | 'F'

®

oleObject12.bin

image21.wmf
[]

A

oleObject13.bin

image22.wmf
{}

A

oleObject14.bin

image23.wmf
|

AB

oleObject15.bin

image24.wmf
AsA { ',' A }

®

oleObject16.bin

image25.wmf
{

}

{

}

{

}

ID

Type

Annotation

PortDecl

]

PortDecls

[

==>'

'

]

PortDecls

[

IOSig

]

Expression

='

'

[

ID

Type

ActorPar

end'

'

}

ock

PriorityBl

{

]

dule

ActionSche

[

tionAction

Initializa

|

Action

VarDecl

:'

'

IOSig

)'

'

ActorPars

('

'

ID

actor'

'

Import}

{

)?

'

;

'

me

ualifiedNa

package'

('

Actor

®

®

®

®

Q

oleObject17.bin

image26.wmf
end'

'

*

rDecl)

ConstantVa

|

ProcDecl

|

FunDecl

(

:'

'

ID

'

'

Import}

{

)?

'

;

'

me

ualifiedNa

package'

('

:

U

unit

Q

nit

®

oleObject18.bin

image27.wmf
*

ID)

ID('.'

:

ame

QualifiedN

oleObject19.bin

image28.wmf
?

'.*'

ame

QualifiedN

:

dCard

ameWithWil

QualifiedN

oleObject20.bin

image29.wmf
'

;

'

dCard

ameWithWil

QualifiedN

import'

'

:

Import

oleObject21.bin

image30.emf

€

oleObject22.bin

image31.wmf
t

oleObject23.bin

image32.wmf
'

t

oleObject24.bin

image33.wmf
'

tt

p

oleObject25.bin

oleObject26.bin

oleObject27.bin

oleObject28.bin

oleObject29.bin

oleObject30.bin

oleObject31.bin

oleObject32.bin

oleObject33.bin

image34.wmf
V

T

oleObject34.bin

image35.wmf
O

T

oleObject35.bin

image36.wmf
VO

TT

¬Ì´

oleObject36.bin

image37.wmf
V

t

oleObject37.bin

image38.wmf
O

t

oleObject38.bin

image39.wmf
VO

tt

¬

oleObject39.bin

oleObject40.bin

oleObject41.bin

image40.wmf
V

t

oleObject42.bin

image41.wmf
'

V

t

image1.wmf

image2.wmf

