INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC1/SC29/WG11
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11 MPEG2014/N14388
April 2014, Valencia, ES

	Source:
	Video

	Title:
	Text of ISO/IEC CD 14496-31 Video Coding for Browsers

	Status:
	Approved

[bookmark: _Toc384326576]Introduction

This document presents the text for ISO/IEC CD 14496-31 (Video Coding for Browsers).

[bookmark: DDHeadingPage1][bookmark: DDOrganization][bookmark: LibEnteteISO][bookmark: LIBTypeTitreISO][bookmark: DDTITLE4][bookmark: DDTITLE3][bookmark: DDTITLE2][bookmark: DDTITLE1][bookmark: DDDocLanguage][bookmark: DDWorkDocDate][bookmark: DDDocStage][bookmark: DDOrganization3][bookmark: DDOrganization1][bookmark: DDBASEYEAR][bookmark: DDAmno][bookmark: DDDocSubType][bookmark: DDDocType][bookmark: DDpubYear][bookmark: DDWorkDocNo][bookmark: DDRefNoPart][bookmark: DDRefGen][bookmark: DDRefNum][bookmark: DDSCSecr][bookmark: DDSecr][bookmark: DDSCTitle][bookmark: DDTCTitle][bookmark: DDWGNum][bookmark: DDSCNum][bookmark: DDTCNum][bookmark: LIBLANG][bookmark: libH2NAME][bookmark: libH1NAME][bookmark: LibDesc][bookmark: LibDescD][bookmark: LibDescE][bookmark: LibDescF][bookmark: NATSubVer][bookmark: CENSubVer][bookmark: ISOSubVer][bookmark: LIBVerMSDN][bookmark: LIBStageCode][bookmark: LibRpl][bookmark: LibICS][bookmark: LIBFIL][bookmark: LIBEnFileName][bookmark: LIBFrFileName][bookmark: LIBDeFileName][bookmark: LIBNatFileName][bookmark: LIBFileOld][bookmark: LIBTypeTitre][bookmark: LIBTypeTitreCEN][bookmark: LIBTypeTitreNAT][bookmark: LibFileEnTete][bookmark: LibEntete][bookmark: LibEnteteCEN][bookmark: LibEnteteNAT][bookmark: LIBASynchro][bookmark: LIBASynchroVF][bookmark: LIBASynchroVE][bookmark: LIBASynchroVD][bookmark: DDEditionNo]COMMITTEE DRAFT© ISO/IEC 2014 – All rights reservedISO/IEC CD 14496-31 63Part 31: Video Coding for BrowsersInformation Technology — Coding of audio visual objectsÉlément introductif — Élément central — Partie 31: Titre de la partieInformation Technology — Coding of audio visual objects — Part 31: Video Coding for BrowsersE2014-02-16(30) CommitteeISO/IECISO/IEC J International Standard2014 ISO/IEC 14496ISO/IEC 1449631ISO/IEC CD 14496-31 ANSICoding of audio, picture, multimedia and hypermedia informationInformation Technology11291 2Heading 2Heading 1 02 STD Version 2.1c230 4C:\Users\pc\AppData\Local\Temp\ISO-IEC_14496-31_(E)_v1.doc ISO/IEC JTC 1/SC 29 N
Date: 2014-02-16
ISO/IEC CD 14496-31
ISO/IEC JTC 1/SC 29/WG 11
[bookmark: CVP_Secretariat_Loca]Secretariat: ANSI
Information Technology — Coding of audio visual objects — Part 31: Video Coding for Browsers
Élément introductif — Élément central — Partie 31: Titre de la partie

Warning
This document is not an ISO International Standard. It is distributed for review and comment. It is subject to change without notice and may not be referred to as an International Standard.
Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.
© ISO/IEC 2014 – All rights reserved

Document type: International Standard
Document subtype:
Document stage: (30) Committee
Document language: E

D:\IVC_CFP_2\documents\ISO_IEC_14496_31_CD_April_2014.docx STD Version 2.1c2

Copyright notice
This ISO document is a working draft or committee draft and is copyright-protected by ISO. While the reproduction of working drafts or committee drafts in any form for use by participants in the ISO standards development process is permitted without prior permission from ISO, neither this document nor any extract from it may be reproduced, stored or transmitted in any form for any other purpose without prior written permission from ISO.
Requests for permission to reproduce this document for the purpose of selling it should be addressed as shown below or to ISO's member body in the country of the requester:
[Indicate the full address, telephone number, fax number, telex number, and electronic mail address, as appropriate, of the Copyright Manger of the ISO member body responsible for the secretariat of the TC or SC within the framework of which the working document has been prepared.]
Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.
Violators may be prosecuted.

Contents	Page
Introduction	1
Foreword	4
Introduction	6
1	Scope	7
3	Definitions	7
4	Abbreviations	10
5	Conventions	11
5.1	Arithmetic operators	11
5.2	Logical operators	11
5.3	Relational operators	11
5.4	Bitwise operators	12
5.5	Assignment	12
5.6	Mathematical functions	12
5.7	Method of describing bitstream syntax	13
5.8	Functions	16
5.9	Descriptors	16
5.9.1	Bool(p) or B(p)	16
5.9.2	Lit(n) or L(n)	16
5.9.3	Flag or F	16
5.9.4	SignedLit(n)	16
5.9.5	P(8)	16
5.9.6	F? X	16
5.9.7	F? X:Y	16
5.9.8	P(7)	16
5.9.9	B(p)? X or B(p)? X:Y	16
5.9.10	T	17
6	Bitstream syntax summary	17
6.1	Uncompressed Data Chunk	17
6.2	Frame Header	18
6.3	Macroblock Data	25
7	Bitstream semantics and decoding process	28
7.1	Boolean Decoder	28
7.2	Structure of coded video	30
7.2.1	Frame Header	30
7.3	Decoding Process	37
7.3.1	Segment-Based Feature Adjustments	37
7.3.2	Key Frame Macroblock Prediction	38
7.3.3	Intraframe Prediction	46
7.3.4	DCT Coefficient Decoding	54
7.3.5	DCT and WHT Inversion and Macroblock Reconstruction	73
7.3.6	Summation of Predictor output and Residue	79
7.3.7	Loop Filter	79
7.3.8	Interframe Macroblock Prediction	87
7.3.9	Mode and Motion Vector Contexts	89
7.3.10	Interframe Prediction	103
Annex A (informative) Reference Encoder Description	109
A.1	Summary	109
A.2	Prediction	110
A.2.1	Intra-frame prediction	110
A.2.2	Interframe prediction	112
A.3	Transforms	114
A.3.1	The Discrete Cosine Transform	114
A.3.2	The Walsh Hadamard Transform	114
A.4	Quantization	114
A.4.1	Coding the Transformed Coefficients	115
A.5	Loop Filter	116
A.5.1	Simple filter	116
A.5.2	Normal filter	116
A.6	Entropy Coder	116
A.6.1	Bit Representation of the Entropy Encoder	116
A.7	Segments and slices	117

[bookmark: _Toc384326577]Foreword
ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of the joint technical committee is to prepare International Standards. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.
ISO/IEC 1449631 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information Technology, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.
ISO/IEC 14496 consists of the following parts, under the general title Information Technology — Coding of audio visual objects:
Part 1: Systems
Part 2: Visual
Part 3: Audio
Part 4: Conformance testing
Part 5: Reference software
Part 6: Delivery Multimedia Integration Framework (DMIF)
Part 7: Optimized reference software for coding of audio-visual objects
Part 8: Carriage of ISO/IEC 14496 contents over IP networks
Part 9: Reference hardware description
Part 10: Advanced Video Coding
Part 11: Scene description and application engine
Part 12: ISO base media file format
Part 13: Intellectual Property Management and Protection (IPMP) extensions
Part 14: MP4 file format
Part 15: Advanced Video Coding (AVC) file formatPart 16: Animation Framework eXtension (AFX)
Part 17: Streaming text format
Part 18: Font compression and streaming
Part 19: Synthesized texture stream
Part 20: Lightweight Application Scene Representation (LASeR) and Simple Aggregation Format (SAF)
Part 21: MPEG-J Graphics Framework eXtensions (GFX)
Part 22: Open Font Format
Part 23: Symbolic Music Representation
Part 24: Audio and systems interaction
Part 25: 3D Graphics Compression Model
Part 26: Audio conformance
Part 27: 3D Graphics conformance
Part 28: Composite font representation
Part 29: Web video coding

Part 30: Timed text and other visual overlays in ISO base media file format
 Part 31: Video Coding for Browsers
[bookmark: _Toc384326578]Introduction
This International Standard specifies Video Coding for Browsers, a video compression technology that is intended for use within World Wide Web browser.

ISO/IEC CD 14496-31
ISO/IEC CD 14496-31
ISO/IEC CD 14496-31

	iii
	© ISO/IEC 2014 – All rights reserved

	vi
	© ISO/IEC 2014 – All rights reserved

	© ISO/IEC 2014 – All rights reserved
	7

Information Technology — Coding of audio visual objects — Part 31: Video Coding for Browsers
1 [bookmark: _Toc384326579]Scope
This document describes the normative part of the Video Coding for Browsers (VCB) codec.
2 [bookmark: _Toc384105633]Normative references
[bookmark: _GoBack]Not applicable.
3 [bookmark: _Toc384326580]Definitions
3.1 AC coefficient: Any transform coefficient whose frequency indexes are non-zero in at least one dimension.

[bookmark: _Toc378874637]3.2 Altref (Alternative reference) frame: Another prediction frame that can be used as an alternative to the most recent prediction frame and the golden frame.

[bookmark: _Toc378874638]3.3 Backward prediction: The process of predicting the current picture by using future pictures in the display order as reference pictures.

[bookmark: _Toc378874639]3.4 Bidirectional prediction: The process of predicting the current picture by the past reference pictures and future reference pictures in the display order.

[bookmark: _Toc378874640]3.5 Bitstream: The binary bit stream generated by encoding a sequence of frames.

[bookmark: _Toc95460170][bookmark: _Toc95465206][bookmark: _Toc95541218][bookmark: _Toc153815475][bookmark: _Toc95460171][bookmark: _Toc95465207][bookmark: _Toc95541219][bookmark: _Toc153815476][bookmark: _Toc267082421][bookmark: _Toc267085291][bookmark: _Toc271565425][bookmark: _Toc271570725][bookmark: _Toc271572054][bookmark: _Toc271577353][bookmark: _Toc271637024][bookmark: _Toc310503520][bookmark: _Toc310543562][bookmark: _Toc337682322][bookmark: _Toc91921949][bookmark: _Toc378874641]3.6 Bitstream buffer: The buffer which stores portions of a bitstream.

[bookmark: _Toc95460172][bookmark: _Toc95465208][bookmark: _Toc95541220][bookmark: _Toc153815477][bookmark: _Toc267082422][bookmark: _Toc267085292][bookmark: _Toc271565426][bookmark: _Toc271570726][bookmark: _Toc271572055][bookmark: _Toc271577354][bookmark: _Toc271637025][bookmark: _Toc310503521][bookmark: _Toc310543563][bookmark: _Toc337682323][bookmark: _Toc91921950][bookmark: _Toc378874642]3.7 Bitstream order: The frame order in the decoding process.

[bookmark: _Toc95465209][bookmark: _Toc95541221][bookmark: _Toc153815478][bookmark: _Toc95460173][bookmark: _Toc267082423][bookmark: _Toc267085293][bookmark: _Toc271565427][bookmark: _Toc271570727][bookmark: _Toc271572056][bookmark: _Toc271577355][bookmark: _Toc271637026][bookmark: _Toc310503522][bookmark: _Toc310543564][bookmark: _Toc337682324][bookmark: _Toc91921951][bookmark: _Toc378874643]3.8 Bit string: Ordered string with limited number of bits. The left most bit is the most significant bit (MSB), the right most bit is the least significant bit (LSB).

[bookmark: _Toc378874644]3.9 Block: An MN sample value matrix or transform coefficient matrix (M columns and N rows).

[bookmark: _Toc378874645]3.10 Block scan: Specified serial ordering of quantized coefficients.

[bookmark: _Toc378874646]3.11 Byte: 8-bit bit string.

[bookmark: _Toc378874647]3.12 Byte alignment: Starting from the first bit in the bitstream, one bit is byte aligned if the position of the bit is an integer multiple of eight.

[bookmark: _Toc378874648]3.13 Chroma: Sample value matrix or single sample value of one of the two colour difference signals.
Notes: symbols of chroma are Cr and Cb.

[bookmark: _Toc378874649]3.14 Coded picture: The representation of one picture after the encoding process.

[bookmark: _Toc378874650]3.15 Compensation: Obtaining the addition of the decoded residual and the corresponding prediction values.

[bookmark: _Toc378874651]3.16 Component: One of the three picture sample value matrices (one luma matrix and two chroma matrices) or its single sample value.

[bookmark: _Toc378874652]3.17 DC coefficient: A transform coefficient whose frequency indexes are zero in both dimensions.

[bookmark: _Toc378874653]3.18 Decoded picture: The reconstructed picture out of the bitstream by the decoder.

[bookmark: _Toc378874654]3.19 Decoded picture buffer: The buffer used for saving the decoded pictures for prediction as well as output reordering and output timing.

[bookmark: _Toc378874655]3.20 Decoder: One embodiment of the decoding process.

[bookmark: _Toc378874656]3.21 Decoding order: The order of decoding frames, which depends on the relationship of inter prediction.

[bookmark: _Toc378874657]3.22 Decoding process: The process that derives decoded pictures from syntax elements.

[bookmark: _Toc378874658]3.23 Dequantization: The process in which transform coefficients are obtained after scaling the quantized coefficients.

[bookmark: _Toc378874659]3.24 Display order: The order of displaying decoded pictures.

[bookmark: _Toc378874660]3.25 Encoder: The realization of the encoding process.

[bookmark: _Toc378874661]3.26 Encoding process: The process that generates the bitstream that conforms to the description provided in this document.

NOTE:	 This part doesn’t specify the encoding process.
[bookmark: _Toc378874662]3.27 Flag: A binary variable.

[bookmark: _Toc378874663]3.28 Frame: The representation of video signals in the space domain, Composed of one luma sample matrix (Y) and two chroma sample matrices (Cb and Cr).

[bookmark: _Toc378874664]3.29 Golden frame: A reference frame that can be used as an alternative to the most recent prediction frame.

[bookmark: _Toc378874665]3.30 Inter coding: Coding one macroblock or picture using inter prediction.

[bookmark: _Toc378874666]3.31 Inter prediction: The process of deriving the prediction value for the current picture (or field) using previously decoded pictures (or fields).

[bookmark: _Toc378874667]3.32 Intra coding: Coding one macroblock or picture using intra prediction.

[bookmark: _Toc378874668]3.33 Intra decoded picture: The decoded picture using only intra prediction. If the I frame uses field coding, the first field can only use intra prediction.

[bookmark: _Toc378874669]3.34 Intra prediction: The process of deriving the prediction value for the current sample using previously decoded sample values in the same decoded picture (or field).

[bookmark: _Toc378874670]3.35 Inverse transform: The process in which transform coefficient matrix is transformed into spatial sample value matrix.

[bookmark: _Toc378874671]3.36 Key frame: An I-frame.

[bookmark: _Toc378874672]3.37 Layer: A part of a structured bitstream.

[bookmark: _Toc378874673]3.38 Level: A defined set of constraints on the values for the syntax elements and syntax element parameters under certain level.

[bookmark: _Toc378874674]3.39 Luma: Sample value matrix or single sample value representing the luma signal.

[bookmark: _Toc378874675]3.40 Macroblock: Includes a 1616 luma sample value block and its corresponding chroma sample value blocks.

[bookmark: _Toc378874676]3.41 Macroblock address: Starting from the upper left macroblock and numbering according to the order of raster scan, with an initial number 0.

[bookmark: _Toc378874677]3.42 Motion vector: A two-dimensional vector used for inter prediction which refers the current picture to the reference picture, the value of which provides the coordinate offsets between the current picture and the reference picture.

[bookmark: _Toc378874678]3.43 Output order: The order of outputting decoded pictures, which is the same as the display order.

[bookmark: _Toc378874679]3.44 Parse: The procedure of getting the syntax element from the bitstream.

[bookmark: _Toc378874680]3.45 Partitioning: The process of dividing a set into subsets such that each element in the set belong to only one of the subsets.

[bookmark: _Toc378874681]3.46 Prediction: The implementation of the prediction process.

3.47 Prediction frame: A picture compressed by referencing another picture.

[bookmark: _Toc378874682]3.48 Prediction process: The process of estimating the decoded sample value or data element using a predictor.

[bookmark: _Toc378874683]3.49 Prediction value: The value, which is the combination of the previously decoded sample values or data elements, used in the decoding process of the next sample value/data element.

[bookmark: _Toc378874684]3.50 Profile: A subset of syntax, semantics and algorithms defined in a part. It is intended that this part will have a single profile.

[bookmark: _Toc378874685]3.51 Quantized coefficient: Transform coefficients before de-quantization.

[bookmark: _Toc378874686]3.52 Quantization parameter: The parameter that de-quantizes the quantized coefficients in the decoding process.

[bookmark: _Toc378874687]3.53 Random access point: The point which can be accessed randomly in the bit-stream.

[bookmark: _Toc378874688]3.54 Random access: The ability to decode the bit-stream and restore the decoded picture from a point which is not the starting point.

[bookmark: _Toc378874689]3.55 Raster scan: Maps a two dimensional rectangular raster into a one dimensional raster, in which the entry of the one dimensional raster starts from the first row of the two dimensional raster, and the scanning then goes through the second row and the third row, and so on. Each raster row is scanned in the left to right order.

[bookmark: _Toc378874690]3.56 Reference picture: Picture for inter prediction of subsequent pictures in the decoding process.

[bookmark: _Toc378874691]3.57 Reserved: A special syntax element value which will be used to extend this part in the future.

[bookmark: _Toc378874692]3.58 Residual: The differences between the reconstructed samples and the corresponding prediction values.

[bookmark: _Toc378874693]3.59 Run: A number of data elements of the same value in the decoding process. On one hand, it means the number of zero coefficients before a non-zero coefficient in the block scan; on the other hand, it means the number of skipped macroblocks.

[bookmark: _Toc378874694]3.60 Sample: The basic elements that compose the picture.

[bookmark: _Toc378874695]3.61 Sample value: The amplitude value of a sample.

[bookmark: _Toc378874696]3.62 Sequence: The highest level syntax structure of coding bitstream, including one or several consecutive coded pictures.

[bookmark: _Toc378874697]3.63 Skipped macroblock: Macroblock without other encoding data except for the indicator “skipped”.

[bookmark: _Toc378874698]3.64 Source: The term describing the raw video clips or some of their attributes before the encoding process.

[bookmark: _Toc378874699]3.65 Start code: A 32-bit code-word which is unique in the whole bitstream. Start code has a lot of usages, one of which is to identify the start point of the syntax structure in the bitstream.

[bookmark: _Toc378874700]3.66 Syntax element: The analysis result of the data unit in the bitstream.

[bookmark: _Toc378874701]3.67 Transform coefficient: A scalar in the transform domain.

[bookmark: _Toc378874702]3.68 Variable length coding: A reversible entropy coding process, which distributes short codewords to the high-frequency symbols and distributes long codewords to the low-frequency symbols.

[bookmark: _Toc95465210][bookmark: _Toc95541222][bookmark: _Toc153815479][bookmark: _Toc95460174][bookmark: _Toc95465211][bookmark: _Toc95541223][bookmark: _Toc153815480][bookmark: _Toc95460175][bookmark: _Toc95460176][bookmark: _Toc95465212][bookmark: _Toc95541224][bookmark: _Toc153815481][bookmark: _Toc95465213][bookmark: _Toc95541225][bookmark: _Toc153815482][bookmark: _Toc95460177][bookmark: _Toc95465214][bookmark: _Toc95541226][bookmark: _Toc153815483][bookmark: _Toc95460178][bookmark: _Toc95460179][bookmark: _Toc95465215][bookmark: _Toc95541227][bookmark: _Toc153815484][bookmark: _Toc95460180][bookmark: _Toc95465216][bookmark: _Toc95541228][bookmark: _Toc153815485][bookmark: _Toc95460181][bookmark: _Toc95465217][bookmark: _Toc95541229][bookmark: _Toc153815486][bookmark: _Toc95465218][bookmark: _Toc95541230][bookmark: _Toc153815487][bookmark: _Toc95460182][bookmark: _Toc95465219][bookmark: _Toc95541231][bookmark: _Toc153815488][bookmark: _Toc95460183]NOTE:	These values should not exist in the bitstream which conforms to the syntax defined in this part.
[bookmark: _Toc95460184][bookmark: _Toc95465220][bookmark: _Toc95541232][bookmark: _Toc153815489][bookmark: _Toc95460185][bookmark: _Toc95465221][bookmark: _Toc95541233][bookmark: _Toc153815490][bookmark: _Toc95465222][bookmark: _Toc95541234][bookmark: _Toc153815491][bookmark: _Toc95460186][bookmark: _Toc95465223][bookmark: _Toc95541235][bookmark: _Toc153815492][bookmark: _Toc95460187][bookmark: _Toc95460188][bookmark: _Toc95465224][bookmark: _Toc95541236][bookmark: _Toc153815493][bookmark: _Toc95460189][bookmark: _Toc95465225][bookmark: _Toc95541237][bookmark: _Toc153815494][bookmark: _Toc95465226][bookmark: _Toc95541238][bookmark: _Toc153815495][bookmark: _Toc95460190][bookmark: _Toc95465227][bookmark: _Toc95541239][bookmark: _Toc153815496][bookmark: _Toc95460191][bookmark: _Toc95465228][bookmark: _Toc95541240][bookmark: _Toc153815497][bookmark: _Toc95460192][bookmark: _Toc95460193][bookmark: _Toc95465229][bookmark: _Toc95541241][bookmark: _Toc153815498]NOTE	The symbol representing luma is Y.

4 [bookmark: _Toc384326581]Abbreviations
BBV: Bitstream Buffer Verifier
CBR: Constant Bit Rate
LSB: Least Significant Bit
MB: Macroblock
MSB: Most Significant Bit
VBR: Variable Bit Rate
VLC: Variable Length Coding

5 [bookmark: _Toc384326582]Conventions
The mathematical operators and their precedence rules used to describe this Specification are similar to those used in the C programming language. However, operators of integer divisions with truncation and of rounding are specifically defined. If not specifically explained, numbering and counting begin from zero.

5.1 [bookmark: _Toc384326583]Arithmetic operators
+			Addition
–			Subtraction (as a binary operator) or negation (as a unary prefix operator)
×			Multiplication
ab			Exponential operation. a is raised to power of b. also it can represent superscript.
/			Integer division with truncation of the result toward zero. For example, 7/4 and –7/–4 are truncated to 1 and –7/4 and 7/–4 are truncated to –1.
 			Division in mathematical equations where no truncation or rounding is intended
 		The summation of the f (i) with i taking integral values from a up to, b (including b)
a % b		Remainder from division of a by b. both a and b are positive integers.

5.2 [bookmark: _Toc384326584]Logical operators
a && b	Logical AND operation between a and b
a || b	Logical OR operation between a and b
!		Logical NOT operation.

5.3 [bookmark: _Toc48619787][bookmark: _Toc53928848][bookmark: _Toc54099169][bookmark: _Toc59938062][bookmark: _Toc153815560][bookmark: _Toc33777092][bookmark: _Toc267085375][bookmark: _Toc271565522][bookmark: _Toc271570822][bookmark: _Toc271572151][bookmark: _Toc271577450][bookmark: _Toc310503603][bookmark: _Toc310543645][bookmark: _Toc337682405][bookmark: _Toc378874707][bookmark: _Toc384326585]Relational operators
>			Greater than
>=			Greater than or equal to
<			Less than
<=			Less than or equal to
==			Equal to
!=			Not equal to

5.4 [bookmark: _Toc48619788][bookmark: _Toc53928849][bookmark: _Toc54099170][bookmark: _Toc59938063][bookmark: _Toc153815561][bookmark: _Toc33777093][bookmark: _Toc267085376][bookmark: _Toc271565529][bookmark: _Toc271570829][bookmark: _Toc271572158][bookmark: _Toc271577457][bookmark: _Toc310503604][bookmark: _Toc310543646][bookmark: _Toc337682406][bookmark: _Toc378874708][bookmark: _Toc384326586]Bitwise operators
&			AND operation
|			OR operation
~			Negation operation
a >> b		Shift a in 2’s complement binary integer representation format to the right by b bit positions. This operator is only defined with b, a positive integer
a << b		Shift a in 2’s complement binary integer representation format to the left by b bit positions. This operator is only defined with b, a positive integer

5.5 [bookmark: _Toc33777094][bookmark: _Toc48619789][bookmark: _Toc53928850][bookmark: _Toc54099171][bookmark: _Toc59938064][bookmark: _Toc153815562][bookmark: _Toc267085377][bookmark: _Toc271565535][bookmark: _Toc271570835][bookmark: _Toc271572164][bookmark: _Toc271577463][bookmark: _Toc310503605][bookmark: _Toc310543647][bookmark: _Toc337682407][bookmark: _Toc378874709][bookmark: _Toc384326587]Assignment
=		Assignment operator
++		 Increment, x++ is equivalent to x = x + 1. When this operator is used for an array index, the variable value is obtained before the auto increment operation
--		 Decrement, i.e. x– – is equivalent to x = x - 1. When this operator is used for an array index the variable value is obtained before the auto decrement operation
+=		 Addition assignment operator, for example x += 3 corresponds to
x = x + 3, x += (-3) is equivalent to x = x + (-3)
-=		 Subtraction assignment operator，for example x -= 3 corresponds to
x = x - 3, x -= (-3) is equivalent to x = x - (-3)

5.6 [bookmark: _Toc267085378][bookmark: _Toc271565543][bookmark: _Toc271570843][bookmark: _Toc271572172][bookmark: _Toc271577471][bookmark: _Toc310503606][bookmark: _Toc310543648][bookmark: _Toc337682408][bookmark: _Toc378874710][bookmark: _Toc384326588]Mathematical functions
The following mathematical functions are defined as follows:
BitDepthY and BitDepthC are both are equal to 8 in this standard

Abs(x) 		(5-1)
Ceil(x) 	the smallest integer greater than or equal to x.	(5-2)
Clip1Y(x) = Clip3(0, (1 << BitDepthY) − 1, x)		(5-3)
Clip1C(x) = Clip3(0, (1 << BitDepthC) − 1, x)		(5-4)

Clip3(x, y, z) = 		(5-5)
Floor(x)	the greatest integer less than or equal to x.		(5-6)

InverseRasterScan(a, b, c, d, e) = 	(5-7)
Log2(x) returns the base-2 logarithm of x.		(5-8)
Log10(x) returns the base-10 logarithm of x.		(5-9)
Median(x, y, z) = x + y + z − Min(x, Min(y, z)) − Max(x, Max(y, z))	(5-10)

Min(x, y) = 		(5-11)

Max(x, y) = 		(5-12)
Round(x) = Sign(x) * Floor(Abs(x) + 0.5)		(5-13)

Sign(x) 		(5-14)

Sqrt(x) = 			(5-15)

5.7 [bookmark: _Toc48619791][bookmark: _Toc53928852][bookmark: _Toc54099173][bookmark: _Toc59938066][bookmark: _Toc153815564][bookmark: _Toc267085380][bookmark: _Toc271565557][bookmark: _Toc271570857][bookmark: _Toc271572186][bookmark: _Toc271577485][bookmark: _Toc310503608][bookmark: _Toc310543650][bookmark: _Toc378874711][bookmark: _Toc384326589][bookmark: _Toc267085381]Method of describing bitstream syntax
The description style of the syntax is similar to C programming language. Syntax elements in the bitstream are represented in bold type. Each syntax element is described by its name (all lower case letters with underscore characters) and one or two descriptors for its method of coded representation. The decoding process behaves according to the value of the syntax element and to the values of previously decoded syntax elements. When a value of a syntax element is used in the syntax tables or the text, it appears in regular (i.e. not bold) type.

In some cases the syntax tables may use the values of other variables derived from syntax elements values. Such variables appear in the syntax tables, or text, named by a mixture of lower case and upper case letter and without any underscore characters. Variables starting with an upper case letter are derived for the decoding of the current syntax structure and all depending on syntax structures. Variables starting with an upper case letter may be used in the decoding process for later syntax structures mentioning the originating syntax structure of the variable. Variables starting with a lower case letter are only used within the subclause from which they are derived.

The association of values and names is specified in the text. In some cases, “mnemonic” names for syntax element values or variable values are used interchangeably with their numerical values. The names are constructed from one or more groups of letters separated by an underscore character. Each group starts with an upper case letter and may contain more upper case letters.

Hexadecimal notation, indicated by prefixing the hexadecimal number by “0x”, may be used when the number of bits is an integer multiple of 4. For example, “0x1a” represents a bit-string “0001 1010”.

A value equal to 0 represents a FALSE condition in a test statement. The value TRUE is represented by any other value other than zero.

An example of pseudo bistream description syntax is shown below. When a syntax element appears, this means that a data element is read from the bitstream.
	
	type

	/* A statement can be a syntax element with associated descriptor or can be an expression used to specify its existence, type, and value, as in the following examples */
	

	syntax_element
	ue(v)

	conditioning statement
	

	
	

	/* A group of statements enclosed in brackets is a compound statement and is treated functionally as a single statement. */
	

	{
	

		Statement
	

		Statement
	

		…
	

	}
	

	
	

	/* A “while” structure specifies that the statement is to be evaluated repeatedly while the condition remains true. */
	

	while (condition)
	

		Statement
	

	
	

	/* A “do … while” structure executes the statement once, and then tests the condition. It repeatedly evaluates the statement while the condition remains true. */
	

	Do
	

		Statement
	

	while (condition)
	

	
	

	/* An “if … else” structure tests the condition first. If it is true, the primary statement is evaluated. Otherwise, the alternative statement is evaluated. If the alternative statement is unnecessary to be evaluated, the “else” and corresponding alternative statement can be omitted. */
	

	if (condition)
	

		primary statement
	

	Else
	

		alternative statement
	

	
	

	/* A “for” structure evaluates the initial statement at the beginning then tests the condition. If it is true, the primary and subsequent statements are evaluated until the condition becomes false. */
	

	for (initial statement; condition; subsequent statement)
	

		primary statement
	

Parse and decoding process are described using text and C-like pseudo language.
NOTE	In this specification, syntax elements are presented in bold font when used to describe the semantics.

5.8 [bookmark: _Toc267085382][bookmark: _Toc271565558][bookmark: _Toc271570858][bookmark: _Toc271572187][bookmark: _Toc271577486][bookmark: _Toc310503609][bookmark: _Toc310543651][bookmark: _Ref345705505][bookmark: _Toc378874712][bookmark: _Toc384326590][bookmark: _Toc267085383]Functions
Functions used for syntax description are explained in this section. It is assumed that the decoder has a bitstream position indicator. This bitstream position indicator locates the position of the bit that is going to be read right next. A function consists of its name and a sequence of parameters inside of parentheses. A function may not have any parameters.

5.9 [bookmark: _Toc267085384][bookmark: _Toc271565647][bookmark: _Toc271570947][bookmark: _Toc271572276][bookmark: _Toc271577575][bookmark: _Toc310503610][bookmark: _Toc310543652][bookmark: _Toc378874713][bookmark: _Toc384326591]Descriptors
[bookmark: _Toc271564320][bookmark: _Toc271565651][bookmark: _Toc271566981][bookmark: _Toc271568305][bookmark: _Toc271569628][bookmark: _Toc271570951][bookmark: _Toc271572280][bookmark: _Toc271573609][bookmark: _Toc271574933][bookmark: _Toc271576256][bookmark: _Toc271577579][bookmark: _Toc271578901][bookmark: _Toc271564328][bookmark: _Toc271565659][bookmark: _Toc271566989][bookmark: _Toc271568313][bookmark: _Toc271569636][bookmark: _Toc271570959][bookmark: _Toc271572288][bookmark: _Toc271573617][bookmark: _Toc271574941][bookmark: _Toc271576264][bookmark: _Toc271577587][bookmark: _Toc271578909][bookmark: _Toc271564330][bookmark: _Toc271565661][bookmark: _Toc271566991][bookmark: _Toc271568315][bookmark: _Toc271569638][bookmark: _Toc271570961][bookmark: _Toc271572290][bookmark: _Toc271573619][bookmark: _Toc271574943][bookmark: _Toc271576266][bookmark: _Toc271577589][bookmark: _Toc271578911][bookmark: _Toc271564332][bookmark: _Toc271565663][bookmark: _Toc271566993][bookmark: _Toc271568317][bookmark: _Toc271569640][bookmark: _Toc271570963][bookmark: _Toc271572292][bookmark: _Toc271573621][bookmark: _Toc271574945][bookmark: _Toc271576268][bookmark: _Toc271577591][bookmark: _Toc271578913][bookmark: _Toc271564334][bookmark: _Toc271565665][bookmark: _Toc271566995][bookmark: _Toc271568319][bookmark: _Toc271569642][bookmark: _Toc271570965][bookmark: _Toc271572294][bookmark: _Toc271573623][bookmark: _Toc271574947][bookmark: _Toc271576270][bookmark: _Toc271577593][bookmark: _Toc271578915][bookmark: _Toc271564336][bookmark: _Toc271565667][bookmark: _Toc271566997][bookmark: _Toc271568321][bookmark: _Toc271569644][bookmark: _Toc271570967][bookmark: _Toc271572296][bookmark: _Toc271573625][bookmark: _Toc271574949][bookmark: _Toc271576272][bookmark: _Toc271577595][bookmark: _Toc271578917]The descriptors below specify the parsing process of syntax elements.

5.9.1 [bookmark: _Toc378874714][bookmark: _Toc384326592]Bool(p) or B(p)
Bool with probability p/256 of being 0. Return value of read_bool(d, p) (see clause 7.1 for an explanation of this process) .

5.9.2 [bookmark: _Toc378874715][bookmark: _Toc384326593]Lit(n) or L(n)
Unsigned n-bit number encoded as n flags (a "literal"). Abbreviated L(n). The bits are read from high to low order. Return value of read_literal(d, n).

5.9.3 [bookmark: _Toc378874716][bookmark: _Toc384326594]Flag or F
A one-bit flag (same thing as a B(128) or an L(1)). Abbreviated F. Return value of read_bool(d, 128).

5.9.4 [bookmark: _Toc378874717][bookmark: _Toc384326595]SignedLit(n)
Signed n-bit number encoded similarly to an L(n). Return value of read_signed_literal(d, n).

5.9.5 [bookmark: _Toc378874718][bookmark: _Toc384326596]P(8)
An 8-bit probability. No different from an L(8), but this notation is sometimes used to emphasize that a probability is being coded.

5.9.6 [bookmark: _Ref374667876][bookmark: _Toc378874719][bookmark: _Toc384326597]F? X
A flag that, if true, is followed by a piece of data X.

5.9.7 [bookmark: _Ref374667887][bookmark: _Toc378874720][bookmark: _Toc384326598]F? X:Y
A flag that, if true, is followed by X and, if false, is followed by Y. Also used to express a value where Y is an implicit default (not encoded in the data stream), as in F? P(8):255, which expresses an optional probability: If the flag is true, the probability is specified as an 8-bit literal, while if the flag is false, the probability defaults to 255.

5.9.8 [bookmark: _Toc378874721][bookmark: _Toc384326599]P(7)
A 7-bit specification of an 8-bit probability. Coded as an L(7) number x; the resulting 8-bit probability is x ? x << 1 : 1.

5.9.9 [bookmark: _Toc378874722][bookmark: _Toc384326600]B(p)? X or B(p)? X:Y
Variants of 5.9.6 and 5.9.7 that uses a boolean indicator whose probability is not necessarily 128.

5.9.10 [bookmark: _Toc378874723][bookmark: _Toc384326601]T
Tree-encoded value from a small alphabet. Such values represent the leaves of a small binary tree. The (non-leaf) nodes of the tree have associated probabilities p and are represented by B(p). A zero represents choosing the left branch below the current node and a one represents choosing the right branch. Each element of this type defined in this document has an associated table of values defined in this document. Reference is made to those tables when required.

Thus, every value (leaf) whose tree depth is x is decoded using x B(p) values.

There are many ways that a given alphabet can be so represented. The choice of tree has little impact on datarate but does affect decoder performance. The trees used by VCB are chosen to (on average) minimize the number of calls to read_bool (the function used to extract B(p) from the bitstream). This is equivalent to shaping the tree so that values that are more probable have smaller tree depth than do values that are less probable.

6 [bookmark: _Toc378874724][bookmark: _Toc384326602]Bitstream syntax summary
This section presents the bitstream syntax in a tabular form. The meaning of each of the syntax elements is presented in Section 7.

6.1 [bookmark: _Toc378874725][bookmark: _Toc384326603]Uncompressed Data Chunk
[bookmark: _Ref374829264]Each frame is represented using a bitstream that has uncompressed data (called the “uncompressed data chunk“) followed by compressed data.

Table 6.11 The uncompressed data chunk syntax
	Tag
	 Type

	 frame_tag
	 L(24)

	 if (key_frame) {
	

	 start_code
	 L(24)

	 horizontal_size_code
	 L(16)

	 vertical_size_code
	 L(16)

	 }
	

The 3-byte frame_tag is composed of:
[bookmark: _Ref374829400]Table 6.12 The 3 byte frame_tag syntax
	Tag
	 Type

	key_frame
	L(1)

	Version
	L(3)

	show_frame
	L(1)

	first_part_size
	L(19)

Where:
key_frame indicates whether the current frame is a key frame or not.
version specifies the bitstream version.
show_frame indicates whether the current frame is meant to be displayed or not.
first_part_size specifies the size of the first partition (control partition), excluding the uncompressed data chunk.

For a key frame, the first 3 bytes of the uncompressed data chunk is the start_code which shall have the value 0x9d012a. The latter part of the uncompressed chunk (after the start_code) specifies the picture (i.e. frame) width, height as well as the horizontal_scale and vertical_scale.

6.2 [bookmark: _Toc378874726][bookmark: _Toc384326604]Frame Header

[bookmark: _Ref377613632][bookmark: _Ref374832993]Table 6.21 The frame header syntax
	Tag
	 Type

	 if (key_frame) {
	

	 color_space
	 L(1)

	 clamping_type
	 L(1)

	 }
	

	 segmentation_enabled
	 L(1)

	 if (segmentation_enabled)
	

	 update_segmentation()
	

	 filter_type
	 L(1)

	 loop_filter_level
	 L(6)

	 sharpness_level
	 L(3)

	 mb_lf_adjustments()
	

	 log2_nbr_of_dct_partitions
	 L(2)

	 quant_indices()
	

	 if (key_frame)
	

	 refresh_entropy_probs
	 L(1)

	 else {
	

	 refresh_golden_frame
	 L(1)

	 refresh_alternate_frame
	 L(1)

	 if (!refresh_golden_frame)
	

	 copy_buffer_to_golden
	 L(2)

	 if (!refresh_alternate_frame)
	

	 copy_buffer_to_alternate
	 L(2)

	 sign_bias_golden
	 L(1)

	 sign_bias_alternate
	 L(1)

	 refresh_entropy_probs
	 L(1)

	 refresh_last
	 L(1)

	 }
	

	 token_prob_update()
	

	 mb_no_skip_coeff
	 L(1)

	 if (mb_no_skip_coeff)
	

	 prob_skip_false
	 L(8)

	 if (!key_frame) {
	

	 prob_intra
	 L(8)

	 prob_last
	 L(8)

	 prob_gf
	 L(8)

	 intra_16x16_prob_update_flag
	 L(1)

	 If (intra_16x16_prob_update_flag) {
	

	 for (i = 0; i < 4; i++)
	

	 intra_16x16_prob
	 L(8)

	 }
	

	 intra_chroma prob_update_flag
	 L(1)

	 if (intra_chroma_prob_update_flag) {
	

	 for (i = 0; i < 3; i++)
	

	 intra_chroma_prob
	 L(8)

	 }
	

	 mv_prob_update()
	

	 }
	

color_space specifies the YUV color space of the sequence.
clamping_type specifies if the decoder is required to clamp the reconstructed pixel values.
segmentation_enabled enables the segmentation feature for the current frame (see Section 7.2.1.3).
filter_type specifies the loop filter type. Two types are defined in this specification: the “normal” filter type (corresponding to a value of 0) and the “simple” loop filter type (corresponding to a value of 1).
loop_filter_level specifies one of the control parameters of the deblocking filter.
sharpness_level specifies one of the control parameters of the deblocking filter.
log2_nbr_of_dct_partitions determines the number of separate partitions containing the DCT coefficients of the macroblocks.
refresh_entropy_probs determines whether updated token probabilities are used only for this frame or until a further update.
refresh_golden_frame specifies if the current decoded frame refreshes the golden frame.
refresh_alternate_frame specifies if the current decoded frame refreshes the alternate reference frame.
copy_buffer_to_golden specifies if the golden reference is replaced by another reference.
copy_buffer_to_alternate specifies if the alternate reference is replaced by another reference.
sign_bias_golden controls the sign of motion vectors when the golden frame is referenced.
sign_bias_alternate controls the sign of motion vectors when the alternate frame is referenced.
refresh_last determines if the current decoded frame refreshes the last frame reference buffer.
mb_no_skip_coeff enables or disables the skipping of macroblocks containing no non-zero coefficients.
prob_skip_false specifies the probability that the macroblock is not skipped (flag indicating skipped macroblock is false).
prob_intra specifies the probability of an intra macroblock.
prob_last specifies the probability that the last reference frame is used for inter-prediction.
prob_gf specifies the probability that the golden reference frame is used for inter-prediction.
intra_16x16_prob_update_flag specifies if the branch probabilities used in the decoding of the luma intra-prediction mode are updated.
intra_16x16_prob specifies the branch probabilities of the luma intra-prediction mode decoding tree
intra_chroma_prob_update_flag specifies if the branch probabilities used in the decoding of the chroma intra-prediction mode are updated.
intra_chroma_prob specifies the branch probabilities of the chroma intra-prediction mode decoding tree.
[bookmark: _Ref374833167]Table 6.22 Segmentation update information syntax
	 update_segmentation()
	 Type

	 update_mb_segmentation_map
	 L(1)

	 update_segment_feature_data
	 L(1)

	 if (update_segment_feature_data) {
	

	 segment_feature_mode
	 L(1)

	 for (i = 0; i < 4; i++) {
	

	 quantizer_update
	 L(1)

	 if (quantizer_update) {
	

	 quantizer_update_value
	 L(7)

	 quantizer_update_sign
	 L(1)

	 }
	

	 }
	

	 for (i = 0; i < 4; i++) {
	

	 loop_filter_update
	 L(1)

	 if (loop_filter_update) {
	

	 lf_update_value
	 L(6)

	 lf_update_sign
	 L(1)

	 }
	

	 }
	

	 }
	

	 if (update_mb_segmentation_map) {
	

	 for (i = 0; i < 3; i++) {
	

	 segment_prob_update
	 L(1)

	 if (segment_prob_update)
	

	 segment_prob
	 L(8)

	 }
	

	 }
	

update_mb_segmentation_map determines if the MB segmentation map is updated in the current frame.
update_segment_feature_data specifies if the segment feature data is updated in the current frame.
segment_feature_mode specifies the feature data update mode, 0 for delta and 1 for the absolute value.
 quantizer_update specifies if the quantizer value is updated for the ith segment.
 quantizer_update_value specifies the update value for the segment quantizer.
 quantizer_update_sign specifies the update sign for the segment quantizer.
 loop_filter_update specifies if the loop filter level value is updated for the ith segment.
 lf_update_value specifies the update value for the loop filter level.
 lf_update_sign specifies the update sign for the loop filter level
 segment_prob_update specifies whether the branch probabilities used to decode the segment_id in the MB header are decoded from the stream or are set to the default value of 255.
 segment_prob specifies the branch probabilities of the segment_id decoding tree.
[bookmark: _Ref374840948]Table 6.23 Loop filter adjustment information syntax
	 mb_lf_adjustments()
	 Type

	 loop_filter_adj_enable
	 L(1)

	 if (loop_filter_adj_enable) {
	

	 mode_ref_lf_delta_update
	 L(1)

	 if (mode_ref_lf_delta_update) {
	

	 for (i = 0; i < 4; i++) {
	

	 ref_frame_delta_update_flag
	 L(1)

	 if (ref_frame_delta_update_flag) {
	

	 delta_magnitude
	 L(6)

	 delta_sign
	 L(1)

	 }
	

	 }
	

	 for (i = 0; i < 4; i++) {
	

	 mb_mode_delta_update_flag
	 L(1)

	 if (mb_mode_delta_update_flag) {
	

	 delta_magnitude
	 L(6)

	 delta_sign
	 L(1)

	 }
	

	 }
	

	 }
	

	 }
	

loop_filter_adj_enable specifies if the MB-level loop filter adjustment (based on the used reference frame and coding mode) is on for the current frame.
mode_ref_lf_delta_update specifies if the delta values used in an adjustment are updated in the current frame.
ref_frame_delta_update_flag specifies if the adjustment delta value corresponding to a certain used reference frame is updated
delta_magnitude is the absolute value of the delta value
delta_sign is the sign of the delta value
mb_mode_delta_update_flag specifies if the adjustment delta value corresponding to a certain MB prediction mode is updated.
[bookmark: _Ref374845278]Table 6.24 Quantizer indices syntax
	 quant_indices()
	 Type

	 y_ac_qi
	 L(7)

	 y_dc_delta_present
	 L(1)

	 if (y_dc_delta_present) {
	

	 y_dc_delta_magnitude
	 L(4)

	 y_dc_delta_sign
	 L(1)

	 }
	

	 y2_dc_delta_present
	 L(1)

	 if (y2_dc_delta_present) {
	

	 y2_dc_delta_magnitude
	 L(4)

	 y2_dc_delta_sign
	 L(1)

	 }
	

	 y2_ac_delta_present
	 L(1)

	 if (y2_ac_delta_present) {
	

	 y2_ac_delta_magnitude
	 L(4)

	 y2_ac_delta_sign
	 L(1)

	 }
	

	 uv_dc_delta_present
	 L(1)

	 if (uv_dc_delta_present) {
	

	 uv_dc_delta_magnitude
	 L(4)

	 uv_dc_delta_sign
	 L(1)

	 }
	

	 uv_ac_delta_present
	 L(1)

	 if (uv_ac_delta_present) {
	

	 uv_ac_delta_magnitude
	 L(4)

	 uv_ac_delta_sign
	 L(1)

	 }
	

y_ac_qi is the dequantization table index used for the luma AC coefficients (and other coefficient groups if no delta value is present)
y_dc_delta_present specifies if the stream contains a delta value that is added to the baseline index to obtain the luma DC coefficient dequantization index.
y_dc_delta_magnitude is the magnitude of the delta value.
y_dc_delta_sign is the sign of the delta value.
y2_dc_delta_present specifies if the stream contains a delta value that is added to the baseline index to obtain the Y2 block DC coefficient dequantization index.
y2_ac_delta_present specifies if the stream contains a delta value that is added to the baseline index to obtain the Y2 block AC coefficient dequantization index.
uv_dc_delta_present specifies if the stream contains a delta valuethat is added to the baseline index to obtain the chroma DC coefficient dequantization index.
uv_ac_delta_present specifies if the stream contains a delta value that is added to the baseline index to obtain the chroma AC coefficient dequantization index.

[bookmark: _Ref374855192]Table 6.25 Token probability update syntax
	 token_prob_update()
	 Type

	 for (i = 0; i < 4; i++) {
	

	 for (j = 0; j < 8; j++) {
	

	 for (k = 0; k < 3; k++) {
	

	 for (l = 0; l < 11; l++) {
	

	 coeff_prob_update_flag
	 L(1)

	 if (coeff_prob_update_flag)
	

	 coeff_prob
	 L(8)

	 }
	

	 }
	

	 }
	

	 }
	

coeff_prob_update_flag specifies if the corresponding branch probability is updated in the current frame.
coeff_prob is the new branch probability.
[bookmark: _Ref374857431]Table 6.26 Motion vector probability update syntax
	 mv_prob_update()
	 Type

	 for (i = 0; i < 2; i++) {
	

	 for (j = 0; j < 19; j++) {
	

	 mv_prob_update_flag
	 L(1)

	 if (mv_prob_update_flag)
	

	 prob
	 L(7)

	 }
	

	 }
	

mv_prob_update_flag specifies if the corresponding MV decoding probability is updated in the current frame.
prob is the updated probability.
6.3 [bookmark: _Toc378874727][bookmark: _Toc384326605]Macroblock Data
Table 6.31 MB data high level syntax
	 Macroblock Data
	 Type

	 macroblock_header()
	

	 residual_data()
	

[bookmark: _Ref374934892]Table 6.32 MB header syntax
	 macroblock_header()
	 Type

	 if (update_mb_segmentation_map)
	

	 segment_id
	 T (ref. Table 7.31)

	 if (mb_no_skip_coeff)
	

	 mb_skip_coeff
	 B(p)

	 if (!key_frame)
	

	 is_inter_mb
	 B(p)

	 if (is_inter_mb) {
	

	 mb_ref_frame_sel1
	 B(p)

	 if (mb_ref_frame_sel1)
	

	 mb_ref_frame_sel2
	 B(p)

	 mv_mode
	 T (ref. Table 7.333)

	 if (mv_mode == SPLITMV) {
	

	 mv_split_mode
	 T (ref. Table 7.338)

	 for (i = 0; i < numMvs; i++) {
	

	 sub_mv_mode
	 T (ref. Table 7.340)

	 if (sub_mv_mode == NEWMV4x4) {
	

	 read_mvcomponent() (See Table 7.341 for a definition of this function)
	

	 read_mvcomponent()
	

	 }
	

	 }
	

	 } else if (mv_mode == NEWMV) {
	

	 read_mvcomponent()
	

	 read_mvcomponent()
	

	 }
	

	 } else { /* intra mb */
	

	 intra_y_mode
	 T (ref. Table 7.32)

	 if (intra_y_mode == B_PRED) {
	

	 for (i = 0; i < 16; i++)
	

	 intra_b_mode
	 T (ref. Table 7.330)

	 }
	

	 intra_uv_mode
	 T (see Table 7.35)

	 }
	

segment_id specifies to which segment the macroblock belongs.
mb_skip_coeff specifies whether the macroblock contains any coded coefficients or not.
is_inter_mb specifies whether the macroblock is intra- or inter-coded.
mb_ref_frame_sel1 selects the reference frame to be used; last frame (0), golden/alternate (1).
mb_ref_frame_sel2 selects whether the golden (0) or alternate reference frame (1) is used.
mv_mode specifies the macroblock motion vector mode.
mv_split_mode gives the macroblock partitioning specification and specifies the number of motion vectors used (numMvs).
sub_mv_mode specifies the sub-macroblock motion vector mode for macroblocks coded using the SPLITMV motion vector mode.
intra_y_mode specifies the luminance intra-prediction mode.
intra_b_mode specifies the sub-macroblock luminance prediction mode for macroblocks coded using B_PRED mode .
intra_uv_mode specifies the chrominance intra-prediction mode.

[bookmark: _Ref375507017]Table 6.33 Residual data syntax
	 residual_data()
	 Type

	 if (!mb_skip_coeff) {
	

	 if ((is_inter_mb && mv_mode != SPLITMV)
	

	 (!is_inter_mb && intra_y_mode != B_PRED))
	

	 residual_block() /* Y2 */
	

	 for (i = 0; i < 24; i++)
	

	 residual_block() /* 16 Y, 4 U, 4 V */
	

	 }
	

[bookmark: _Ref375507553]Table 6.34 Block residual data syntax
	 residual_block()
	 Type

	 for (i = firstCoeff; i < 16; i++) {
	

	 token
	 T (ref. Table 7.311)

	 if (token == EOB) break;
	

	 if (token_has_extra_bits)
	

	 extra_bits
	 L(n) (ref. Table 7.312)

	 if (coefficient != 0)
	

	 sign
	 L(1)

	 }
	

firstCoeff is 1 for luma blocks of macroblocks containing Y2 subblock; otherwise 0
token defines the value of the coefficient, the value range of the coefficient, or the end of block
extra_bits determines the value of the coefficient within the value range defined by the token.
sign indicates the sign of the coefficient.

7 [bookmark: _Toc195693985][bookmark: _Toc337682410][bookmark: _Ref370688059][bookmark: _Toc378874728][bookmark: _Toc384326606]Bitstream semantics and decoding process
This section explains the structure of the coded bitstream, the relationships between layers and the processing order. This Specification deals with coding of progressive sequences. A frame consists of three sample matrices of integers: a luminance sample matrix (Y), and two chrominance sample matrices (Cb and Cr).

7.1 [bookmark: _Ref370848248][bookmark: _Toc370835832][bookmark: _Toc370987631][bookmark: _Toc378874729][bookmark: _Toc384326607]Boolean Decoder
Aside from the “uncompressed data chunk”, the entire VCB bitstream is entropy coded. The entropy decoder is referred to as the “Boolean decoder” and the function label read_bool() is used in this specification to indicate the entropy decoding operation.

The Boolean decoder assumes 8-bit probabilities, represented by the letter p, where 0 <= p <= 255. Note that the actual probability represented by p is p/256.
NOTE: the reference software uses 8-bit probabilities and the following description is based on the use of 8 bits to represent the probabilities.

The basic form of the Boolean decoder operates using bit-at-a-time input and output. After writing n bits, adding 1 to the existing output is the same as adding pow(2, -n) to x, where x is a number in the range 0 <= x < 1 which has a value represented in binary form by the stream of bits being decoded. The bits (or bytes) in x are written from high to low order, and if b[j] (B[j]) is the j^(th) bit (byte) in the partition, the value x is the sum (starting with j = 1) of pow(2, -j) * b[j] or pow(256, -j) * B[j].

Together with the bit position, the decoder must maintain two unsigned 8-bit numbers, which, in this specification are named "bottom" and "range". Writing w for the n bits already written and S = pow(2, - n - 8) for the scale of the current bit position one byte out, the following constraint on all future values v of w is then obtained (including the final value v = x):

	w + (S * bottom) <= v < w + (S * (bottom + range))

Appending bottom to the already-written bits w gives the left endpoint of the interval of possible values, appending bottom + range gives the right endpoint, and range itself (scaled to the current output position) is the length of the interval.

The range shall not vary by more than a factor of two (this way it stays within the bounds 128 <= range <= 255).

Appending the unread portion of the stream of bits to the 8-bit value gives the difference between the actual value encoded and the known left endpoint.

The decoder shall be initialized by setting range = 255 and reading the first 16 input bits into value (the current value of x). The decoder maintains range and calculates split, where split is the change in the range of values that x can take in the case where the decoded Boolean is 1. In the case where the decoded Boolean is 0, split is the new value of range. That is, to decode a Boolean, the decoder compares value to split; if value < split, the Boolean is zero, and range is replaced with split. If value >= split, the Boolean is one, range is replaced with range - split, and value is replaced with value - split.

range is doubled one bit at a time until it is at least 128. The value of x is doubled in parallel, shifting a new input bit into the least significant bit position each time.

Writing Value for value together with the unread input bits and Range for range extended indefinitely on the right by zeros, the condition Value < Range shall be maintained at all times by the decoder. In particular, the bits shifted out of value as it is doubled are always zero.

NOTE: different parts of the bitstream are decoded using different entropy decoders which operate in the same way (as described above) but use different entropy tables and entropy decoder states. These tables are listed in this specification wherever required.

NOTE: Based on the above, the process for encoding a Boolean value val whose probability of being zero is prob / 256 -- and whose probability of being one is (256 - prob) / 256 -- with 1 <= prob <= 255 is as follows:

Using an unsigned 16-bit multiply followed by an unsigned right shift, an unsigned 8-bit split value is calculated:

	split = 1 + (((range - 1) * probability)]] >> 8)

split is approximately (prob / 256) * range and lies within the bounds 1 <= split <= range - 1. These bounds ensure the correctness of the decoding procedure.

If the incoming Boolean val to be encoded is false, the left interval endpoint bottom is unchanged and range is reduced, replacing it by split. If the incoming val is true, the left endpoint is moved up to bottom + split, propagating any carry to the already-written value w (this is where it is necessary to add 1 to w), and reduce range to range - split.

Regardless of the value encoded, range has been reduced and now has the bounds 1 <= range <= 254. If range < 128, the encoder doubles it and shifts the high-order bit out of bottom to the output (i.e. to the formed bit stream at the output of the encoder) as it also doubles bottom, repeating this process one bit at a time until 128 <= range <= 255. Once this is completed, the encoder is ready to accept another Boolean, maintaining the constraints described above.

After encoding the last Boolean, the partition is completed by appending bottom to the output stream of bits.

7.2 [bookmark: _Toc378874730][bookmark: _Toc384326608][bookmark: _Toc271564345][bookmark: _Toc271565676][bookmark: _Toc271567006][bookmark: _Toc271568330][bookmark: _Toc271569653][bookmark: _Toc271570976][bookmark: _Toc271572305][bookmark: _Toc271573634][bookmark: _Toc271574958][bookmark: _Toc271576281][bookmark: _Toc271577604][bookmark: _Toc271578926][bookmark: _Toc267085388][bookmark: _Toc271565677][bookmark: _Toc271570977][bookmark: _Toc271572306][bookmark: _Toc271577605][bookmark: _Toc310503614][bookmark: _Toc310543656][bookmark: _Toc337682412]Structure of coded video
7.2.1 [bookmark: _Toc378874731][bookmark: _Toc384326609]Frame Header
The bitstream associated with each frame starts with an uncompressed data chunk which contains information pertaining to the frame as a whole.

See Each frame is represented using a bitstream that has uncompressed data (called the “uncompressed data chunk“) followed by compressed data.

Table 6.11 for the syntax of this bitstream element. NOTE: Most of the header decoding occurs in the reference decoder implementation file dixie.c.

7.2.1.1 Uncompressed Data Chunk
The uncompressed data chunk comprises a common (for key frames and interframes) 3-byte frame tag that contains four fields, as follows (See Table 6.12 for the syntax of this element):

A 1-bit frame type (0 for key frames, 1 for interframes).
A 3-bit version number (0 - 3 are defined as four different profiles with different decoding complexity; other values may be defined for future variants of this data format).
A 1-bit show_frame flag (0 when current frame is not for display, 1 when current frame is for display).
A 19-bit field containing the size of the first data partition in bytes.
The version number setting enables or disables certain features in the bitstream, as follows:

Table 7.21 Reconstruction filter and loop filter types according to version number
	Version
	Reconstruction Filter
	Loop Filter

	0
	Bicubic
	Normal

	1
	Bilinear
	Simple

	2
	Bilinear
	None

	3
	None
	None

	4
	Reserved for future use
	

Version number 1 means that the "simple" loop filter shall be used, and version numbers 2 and 3 mean that no loop filter shall be used. In decoding, the only loop filter settings that matter are those in the frame header.

For key frames, the frame tag is followed by a further 7 bytes of uncompressed data, as follows:

Table 7.22 uncompressed data bytes after the frame_tag
	Start code byte 0
	0x9d

	 Start code byte 1
	0x01

	 Start code byte 2
	0x2a

	 16 bits :
	(2 bits Horizontal Scale << 14) | Width (14 bits)

	 16 bits :
	(2 bits Vertical Scale << 14) | Height (14 bits)

Note that while each frame is encoded as a raster scan of 16x16 macroblocks, the frame dimensions are not necessarily evenly divisible by 16. In this case, write ew = 16 - (width & 15) and eh = 16 - (height & 15) for the excess width and excess height, respectively. The last ew columns and eh rows are not actually part of the image and should be discarded before final output. However, these "excess pixels" should be maintained in the internal reconstruction buffer used to predict ensuing frames.

The scaling specifications for each dimension are encoded as follows:

Table 7.23 Width and height scaling specifications
	 Value
	Scaling

	 0
	No up-scaling (the most common case).

	 1
	Upscale by 5/4.

	 2
	Upscale by 5/3.

	 3
	Upscale by 2.

Up-scaling does not affect the reconstruction buffer, which should be maintained at the encoded resolution.

7.2.1.2 Color Space and Pixel Type (Key Frames Only)
Note that Information in this subsection does not appear in interframes. The color space and clamping specification bits refered to in this section are part of the syntax summarized in Table 6.21 (the frame header syntax).

Table 7.24 The color space and clamping bits
	Field
	Value

	L(1)
	1-bit color space type specification

	L(1)
	1-bit pixel value clamping specification

The color space type bit is encoded as follows:

0 - YUV color space similar to the YCrCb color space defined in ITU-R Recommendation BT.601.

1 - Reserved for future use.

The pixel value clamping type bit is interpreted as follows:

0 - Decoders shall clamp the reconstructed pixel values to between 0 and 255 (inclusive).

1 - Reconstructed pixel values are guaranteed to be between 0 and 255; no clamping is necessary.

7.2.1.3 [bookmark: _Ref374672163][bookmark: _Ref375528250]Segment-Based Adjustments
Table 6.22 lists the syntax elements that contain probability and value information for implementing segment adaptive adjustments. The data in this part of the bitstream is used in the decoding of the ensuing per-segment information and applies to the entire frame.

When segment adaptive adjustments are enabled, each macroblock shall be assigned a segment ID. Macroblocks with the same segment ID belong to the same segment and have the same adaptive adjustments over default baseline values for the frame. The adjustments can be quantizer level or loop filter strength.

The syntax shown in Table 6.22 contains:

A segmentation_enabled flag that enables the feature for this frame if set to 1, and disables it if set to 0. The following fields occur if the feature is enabled.

update_mb_segmentation_map (L(1)): indicates if the segment map is updated for the current frame.
update_segment_feature_data (L(1)) indicates if the segment feature data items are updated for the current frame.
If update_segment_feature_data is 1, the following fields occur:
segment_feature_mode (L(1)): the mode of segment feature data, can be absolute-value mode (0) or delta value mode (1).

Segment feature data items are decoded segment by segment for each segment feature. For every data item, a one-bit flag indicates whether the item is 0, or a non-zero value to be decoded. The flags used to signal whether or not segment feature data should be updated are:

quantizer_update (L(1));
loop_filter_update (L(1)); and
segment_prob_update (L(1))

If the value of any of the above flags is non-zero, then the segment feature value is decoded as a magnitude L(n), followed by a one-bit sign (L(1) -- 0 for positive and 1 for negative). The length n is as shown in Table 6.22.

If the segment_prob_update (L(1)) flag is set to 1, the probabilities of the decoding tree for the segment map are decoded from the bitstream. Each probability is decoded with a one-bit flag indicating whether the probability is the default value of 255 (flag is set to 0), or an 8-bit value, L(8), from the bitstream.

7.2.1.4 Loop Filter Type and Levels
This specification supports two types of loop filters having different computational complexity. The following bits are defined in the header to support the selection of the baseline type, strength, and sharpness behavior of the loop filter used for the current frame (see Table 6.21).

Table 7.25 Loop filter specific syntax in the header
	Index
	Description

	filter_type (L(1))
	filter_type

	loop_filter_level (L(6))
	loop_filter_level

	sharpness_level (L(3))
	sharpness_level

The per frame filter level may be adjusted per macroblock based on a macroblock's prediction mode and reference frame. The per-macroblock adjustment is done through delta values against the default loop filter level for the current frame.

Table 6.23 lists the syntax used to signal the loop filter adjustment on a per MB basis. The data in this part of the bitstream is used in the decoding of the ensuing per-macroblock information and applies to the entire frame.

From Table 6.23, loop_filter_adj_enable (L(1)) is a one-bit flag indicating if the macroblock loop filter adjustment is on for the current frame, 0 means that such a feature is not supported in the current frame, and 1 means this feature is enabled for the current frame.

Whether the adjustment is based on a reference frame or encoding mode, the adjustment of the loop filter level is done via a delta value against a baseline loop filter value. The delta values are updated for the current frame if the mode_ref_lf_delta_update (L(1)) bit takes the value 1. There are two groups of delta values:

One group of delta values is for reference frame-based adjustments, and the other group is for mode-based adjustments. The number of delta values in the two groups is 4 (see Table 6.23) (NOTE: the labels MAX_REF_LF_DELTAS and MAX_MODE_LF_DELTAS are used in the reference software associated with this specification to represent the size of these groups). For every value within the two groups, there is a one-bit L(1) to indicate if the particular value is updated (the flags are ref_frame_delta_update_flag and mb_mode_delta_update_flag in Table 6.23). When one delta value in either group is updated (i.e. the relevant flag takes the value 1), it is transmitted as a six-bit- magnitude (delta_magnitude (L(6) from Table 6.23) followed by a one-bit sign flag (delta_sign (L(1)) from Table 6.23), which is defined to be positive when 0 and negative when 1).

7.2.1.5 Token Partition and Partition Data Offsets
Besides the first partition with header and per-macroblock prediction information, the DCT coefficients may also be packed into multiple partitions so that a conformant decoder can perform parallel decoding. A two-bit syntax element (log2_nbr_of_dct_partitions (L(2)) from Table 6.21) is used to indicate the number of coefficient data partitions within a compressed frame. The two bits are defined in the following table:

Table 7.26 Interpretation of the log2_nbr_of_dct_partitions syntax element
	Bit 1
	Bit 0
	Number of Partitions

	0
	0
	1

	0
	1
	2

	1
	0
	4

	1
	1
	8

Offsets are embedded in the bitstream to provide the decoder direct access to token partitions. If the number of data partitions is greater than 1, the size of each partition (except the last) is written in 3 bytes (24 bits) (the size of the first partition is given as first_part_size (L(19)) in Table 6.21). The size of the last partition is the remainder of the data not used by any of the previous partitions.

The partitioned data shall be consecutive in the bitstream, so the size can also be used to calculate the offset of each partition. The following pseudocode illustrates how the size/offset is defined by the three bytes in the bitstream.

	Offset/size = (uint32)(byte0) + ((uint32)(byte1)<<8) + ((uint32)(byte2)<<16);

7.2.1.6 [bookmark: _Ref345866170]Dequantization Indices
All residue signals are specified via a quantized 4x4 DCT applied to the Y, U, V, or Y2 sub-blocks of a macroblock. Before inverting the transform, each decoded coefficient is multiplied by one of six dequantization factors, the choice of which depends on the plane (Y, chroma = U or V, Y2) and coefficient position (DC = coefficient 0, AC = coefficients 1-15). The six values are specified using 7-bit indices into six corresponding fixed tables. Table 6.24 lists the relevant syntax elements.

The first 7-bit index (y_ac_qi) gives the dequantization table index for Y-plane AC coefficients. The element (y_ac_qi) is used as a baseline for the other 5 quantization indices (listed as y_dc_delta_magnitude, y2_dc_delta_magnitude, y2_ac_delta_magnitude, uv_dc_delta_magnitude, uv_ac_delta_magnitude in Table 6.24) each of which is represented by a delta from this baseline index. Pseudocode for reading the indices follows:

Table 7.27 Calculating the dequantization indices using a base index
	yac_qi = L(7); /* Y ac index always specified */

	ydc_delta = F? delta(): 0; /* Y dc delta specified if flag is true */

	y2dc_delta = F? delta(): 0; /* Y2 dc delta specified if flag is true */

	 y2ac_delta = F? delta(): 0; /* Y2 ac delta specified if flag is true */

	 uvdc_delta = F? delta(): 0; /* chroma dc delta specified if flag is true */

	 uvac_delta = F? delta(): 0; /* chroma ac delta specified if flag is true */

Where delta() is the process to read 5 bits from the bitstream to determine a signed delta value and F is used to represent the flags (y_dc_delta_present, y2_dc_delta_present, y2_ac_delta_present, uv_dc_delta_present and uv_ac_delta_present in). Each of the mentioned delat values has a magnitude and sign. The magnitudes are labelled (y_dc_delta_magnitude y2_dc_delta_magnitude, y2_ac_delta_magnitude, uv_dc_delta_magnitude and uv_ac_delta_magnitude in) and the signs are labelled (y_dc_delta_sign, y2_dc_delta_sign, uv_dc_delta_sign and uv_ac_delta_sign in Table 6.24) The magnitude and sign of each delta is represented as follows:

Table 7.28 quantization indices delta magniude and sign from the header syntax
	Index
	Description

	L(4)
	Magnitude of delta

	L(1)
	Sign of delta, 0 for positive and 1 for negative

7.2.1.7 Refresh Golden Frame and Altref Frame
For key frames, both the golden frame and the altref frame shall be replaced by the current reconstructed frame. For non-key frames, two bits (from Table 6.21) are used to indicate whether these two frame buffers are refreshed, using the reconstructed current frame:

Table 7.29 Refresh golden and alternate reference frame flags in the frame header
	Index
	Description

	refresh_golden_frame (L(1))
	Whether golden frame is refreshed (0 for no, 1 for yes)

	refresh_alternate_frame (L(1))
	Whether altref frame is refreshed (0 for no, 1 for yes)

When the flag for the golden frame is 0, 2 more bits in the header part of the bitstream (Table 6.21) are used to indicate whether the buffer (and which buffer) is copied to the golden frame, or if no buffer is copied:

	Index
	Description

	copy_buffer_to_golden (L(2))
	Buffer copy flag for golden frame buffer

Where:

0 shall be interpreted as no buffer is to be copied to the golden frame
1 shall be interpreted as last_frame is to be copied to the golden frame
2 shall be interpreted as alt_ref_frame is to be copied to the golden frame

Similarly, when the flag for altref is 0, 2 bits in the header part of the bitstream are used to indicate which buffer is copied to alt_ref_frame:

	Index
	Description

	copy_buffer_to_alternate (L(2))
	Buffer copy flag for altref frame buffer

Where:

0 shall be interpreted as no buffer is to be copied to the altref frame
1 shall be interpreted as last_frame is to be copied to the altref frame
2 shall be interpreted as golden_frame is to be copied to the altref frame.

Two bits are transmitted for ref_frame_sign_bias for golden_frame and alt_ref_frame, respectively in the header (Table 6.21) to control the sign of the motion vectors when a golden frame or an altref frame is used as the reference frame for a macroblock.

	Index
	Description

	sign_bias_golden (L(1))
	Sign bias flag for golden frame

	sign_bias_alternate (L(1))
	Sign bias flag for altref frame

7.2.1.8 Refresh Last Frame Buffer
One bit, (refresh_last (L(1)) from Table 6.21), is used to indicate if the last frame reference buffer is refreshed using the constructed current frame. For a key frame, this bit shall be overridden, and the last frame buffer is always refreshed.

7.2.1.9 DCT Coefficient Probability Update
This field (see Table 6.25) contains updates to the probability tables used to decode DCT coefficients. For each of the probabilities in the tables, there is an L(1) flag (coeff_prob_update_flag) indicating if the probability is updated for the current frame, and if coeff_prob_update_flag is set to 1, the new probability value shall be represented by an additional 8-bit syntax element (coeff_prob). These tables are maintained across interframes but shall be replaced with their defaults at the beginning of every key frame.

7.2.1.10 [bookmark: _Ref345702779]Remaining Frame Header Data (Non-Key Frame)
	Index
	Description

	mb_no_skip_coeff (L(1))
	This flag indicates at the frame level if skipping of macroblocks with no non-zero coefficients is enabled. If it is set to 0, then prob_skip_false is not read and mb_skip_coeff is forced to 0 for all macroblocks.

	prob_skip_false (L(8))
	probability used for decoding a macroblock-level flag, which indicates if a macroblock has any non-zero coefficients. Only read if mb_no_skip_coeff is 1.

	prob_intra (L(8))
	probability that a macroblock is "intra" predicted (that is, predicted from the already-encoded portions of the current frame), as opposed to "inter" predicted (that is, predicted from the contents of a prior frame).

	prob_last (L(8))
	probability that an inter-predicted macroblock is predicted from the immediately previous frame, as opposed to the most recent golden frame or altref frame.

	prob_gf (L(8))
	probability that an inter-predicted macroblock is predicted from the most recent golden frame, as opposed to the altref frame.

	intra_16x16_prob_update_flag (F)
	If true, followed by four L(8)s (each labelled intra_16x16_prob in Table 6.21) updating the probabilities for the different types of intra-prediction for the Y plane. These probabilities correspond to the four interior nodes of the decoding tree for intra-Y modes in an interframe, that is, the even positions in the ymode_tree array given above.

	intra_chroma prob_update_flag (F)
	If true, followed by three L(8)s (each labelled intra_chroma_prob in Table 6.21) updating the probabilities for the different types of intra-prediction for the chroma planes. These probabilities correspond to the even positions in the uv_mode_tree array given above.

	mv_prob_update()
	Motion vector probability update (see Table 6.26).

7.2.1.11 Remaining Frame Header Data (Key Frame)
	Index
	Description

	mb_no_skip_coeff (L(1))
	This flag indicates at the frame level if skipping of macroblocks with no non-zero coefficients is enabled. If it is set to 0, then prob_skip_false is not read and mb_skip_coeff is forced to 0 for all macroblocks.

	prob_skip_false (L(8))
	Probability used for decoding a macroblock-level flag, which indicates if a macroblock has any non-zero coefficients. Only read if mb_no_skip_coeff is 1.

NOTE: Decoding of this portion of the frame header is handled in the reference decoder file modemv.c.

The previous subsections describe the frame header. After the frame header is processed, all probabilities needed to decode the prediction and residue data are known and will not change until the next frame.

7.3 [bookmark: _Ref345866142][bookmark: _Toc378874732][bookmark: _Toc384326610]Decoding Process
7.3.1 [bookmark: _Toc378874733][bookmark: _Toc384326611]Segment-Based Feature Adjustments
Every macroblock may optionally override some of the default behavior of the decoder. Specifically, segment-based adjustments are used to support changing quantizer level and loop filter level for a macroblock. When the segment-based adjustment feature is enabled for a frame, each macroblock within the frame is coded with a segment_id. This effectively segments all the macroblocks in the current frame into a number of different segments. Macroblocks within the same segment behave exactly the same for quantizer and loop filter level adjustments.

If both the segmentation_enabled and update_mb_segmentation_map flags of the frame header take a value of 1, the prediction data for each (intra- or inter-coded) macroblock begins with a specification of segment_id for the current macroblock (see Table 6.32). It is decoded using the following tree:

[bookmark: _Ref378784220]Table 7.31 MB segment ID decoding tree (of type T)
	const tree_index mb_segment_tree [2 * (4-1)] =

	{

	 2, 4, /* root: "0", "1" subtrees */

	 -0, -1, /* "00" = 0th value, "01" = 1st value */

	 -2, -3 /* "10" = 2nd value, "11" = 3rd value */

	 }

Combined with a 3-entry probability table, (all of the entries of which shall be initialized to 255). The macroblock's segment_id is used later in the decoding process to look into the segment_feature_data table and determine how the quantizer and loop filter levels are adjusted.

NOTE	The decoding of segment_id, together with the parsing of intra-prediction modes (which is described next), is implemented in the reference decoder file modemv.c.
7.3.2 [bookmark: _Ref345742120][bookmark: _Toc378874734][bookmark: _Toc384326612]Key Frame Macroblock Prediction
After determining the segment features described above, the macroblock prediction mode is then determined.
7.3.2.1 mb_skip_coeff
This single bool flag (see Table 6.32) is decoded using prob_skip_false if and only if mb_no_skip_coeff is set to 1 (see Table 6.21 and Table 6.32). If mb_no_skip_coeff is set to 0, then mb_skip_coeff shall be set to 0.

7.3.2.2 Luma Modes (intra_y_mode)
The decoding of mb_skip_coeff is followed by decoding the MB prediction mode used for the Luma component. The luma mode (intra_y_mode in Table 6.32) is coded using the kf_ymode_tree, shown in Table 7.32 below:

[bookmark: _Ref374937245]Table 7.32 Intra MB modes and the asscociated coding tree
	typedef enum

	 {

	 DC_PRED, /* predict DC using row above and column to the left */

	 V_PRED, /* predict rows using row above */

	 H_PRED, /* predict columns using column to the left */

	 TM_PRED, /* propagate second differences a la "True Motion" */

	 B_PRED, /* each Y subblock is independently predicted */

	 num_uv_modes = B_PRED, /* first four modes apply to chroma */

	 num_ymodes /* all modes apply to luma */

	 }

	 intra_mbmode;

	 const tree_index kf_ymode_tree [2 * (num_ymodes - 1)] =

	 {

	 -B_PRED, 2, /* root: B_PRED = "0", "1" subtree */

	 4, 6, /* "1" subtree has 2 descendant subtrees */

	 -DC_PRED, -V_PRED, /* "10" subtree: DC_PRED = "100", V_PRED = "101" */

	 -H_PRED, -TM_PRED /* "11" subtree: H_PRED = "110",TM_PRED = "111" */

	 };

For key frames, the Y mode (i.e., the intra_y_mode) shall be decoded using the following fixed probability array:

Table 7.33 intra_y_mode decoding probabilities
	const Prob kf_ymode_prob [num_ymodes - 1] = { 145, 156, 163, 128};

If the intra_y_mode is B_PRED, it is followed by a (tree-coded) mode for each of the 16 Y subblocks. The 10 possible subblock modes and their coding tree are as follows (Table 7.34):

[bookmark: _Ref374937706]Table 7.34 B_PRED subblock modes and the associated coding tree
	typedef enum

	 {

	 B_DC_PRED, /* predict DC using row above and column to the left */

	 B_TM_PRED, /* propagate second differences a la "True Motion" */

	 B_VE_PRED, /* predict rows using row above */

	 B_HE_PRED, /* predict columns using column to the left */

	 B_LD_PRED, /* southwest (left and down) 45 degree diagonal prediction */

	 B_RD_PRED, /* southeast (right and down) "" */

	 B_VR_PRED, /* SSE (vertical right) diagonal prediction */

	 B_VL_PRED, /* SSW (vertical left) "" */

	 B_HD_PRED, /* ESE (horizontal down) "" */

	 B_HU_PRED, /* ENE (horizontal up) "" */

	 num_intra_bmodes

	 }

	 intra_bmode;

	 /* Coding tree for the above, with implied codings as comments */

	 const tree_index bmode_tree [2 * (num_intra_bmodes - 1)] =

	 {

	 -B_DC_PRED, 2, /* B_DC_PRED = "0" */

	 -B_TM_PRED, 4, /* B_TM_PRED = "10" */

	 -B_VE_PRED, 6, /* B_VE_PRED = "110" */

	 8, 12,

	 -B_HE_PRED, 10, /* B_HE_PRED = "11100" */

	 -B_RD_PRED, -B_VR_PRED, /* B_RD_PRED = "111010", B_VR_PRED = "111011" */

	 -B_LD_PRED, 14, /* B_LD_PRED = "111110" */

	 -B_VL_PRED, 16, /* B_VL_PRED = "1111110" */

	 -B_HD_PRED, -B_HU_PRED /* HD = "11111110", HU = "11111111" */

	 };

The first four modes are smaller versions of the similarly named 16x16 modes above (in Table 7.32), albeit with slightly different numbering. The last six "diagonal" modes are unique to luma subblocks.

7.3.2.2.1 Subblock Mode Contexts
The coding of subblock modes in key frames uses the modes already coded for the subblocks to the left of and above the subblock to select a probability array for decoding the current subblock mode. It should be noted that:
The adjacency relationships between subblocks are based on the normal default raster placement of the subblocks.
The adjacent subblocks need not lie in the current macroblock. The subblocks to the left of the left-edge subblocks 0, 4, 8, and 12 are the right-edge subblocks 3, 7, 11, and 15, respectively, of the (already coded) macroblock immediately to the left. Similarly, the subblocks above the top-edge subblocks 0, 1, 2, and 3 are the bottom-edge subblocks 12, 13, 14, and 15 of the already-coded macroblock immediately above it.
For macroblocks on the top row or left edge of the image, some of the predictors will be non-existent. Such predictors are taken to have had the value B_DC_PRED, which, takes the value 0 in the enumeration above (see Table 7.34). A simple management scheme for these contexts might maintain a row of above predictors and four left predictors, for example. Before decoding the frame, the entire row is initialized to B_DC_PRED; before decoding each row of macroblocks, the four left predictors are also set to B_DC_PRED. After decoding a macroblock, the bottom four subblock modes are copied into the row predictor (at the current position, which then advances to be above the next macroblock), and the right four subblock modes are copied into the left predictor.
Many macroblocks may be coded using a 16x16 luma prediction mode. For the purpose of predicting ensuing subblock modes (only), such macroblocks derive a subblock mode, constant throughout the macroblock, from the 16x16 luma mode as follows: DC_PRED uses B_DC_PRED, V_PRED uses B_VE_PRED, H_PRED uses B_HE_PRED, and TM_PRED uses B_TM_PRED.
While interframes do use all the intra-coding modes described here and below, the subblock modes in an interframe are coded using a single constant probability array that does not depend on any context.
7.3.2.3 [bookmark: _Ref375633531]Chroma Modes
After decoding intra_y_mode (and optional subblock modes), the chroma mode (intra_uv_mode in Table 6.32) is decoded. The chroma modes are a subset of the luma modes and are coded using the uv_mode_tree given in Table 7.35 below:
[bookmark: _Ref374938683]Table 7.35 Chroma mode coding tree
	const tree_index uv_mode_tree [2 * (num_uv_modes - 1)] =

	 {

	 -DC_PRED, 2, /* root: DC_PRED = "0", "1" subtree */

	 -V_PRED, 4, /* "1" subtree: V_PRED = "10", "11" subtree */

	 -H_PRED, -TM_PRED /* "11" subtree: H_PRED = "110", TM_PRED = "111" */

	 };

The chroma modes shall be decoded using the constant probabilities in Table 7.36 below:

[bookmark: _Ref374938994]Table 7.36 Chroma mode coding probabilities
	const Prob kf_uv_mode_prob [num_uv_modes - 1] = { 142, 114, 183};

This completes the description of macroblock prediction decoding for key frames.

7.3.2.4 [bookmark: _Ref352477409]Subblock Mode Probability Table
The fixed probability table that shall be used to decode key frame subblock modes is given below:

Table 7.37 Key frame subblock mode coding probabilities
	const Prob kf_bmode_prob [num_intra_bmodes] [num_intra_bmodes] [num_intra_bmodes-1] =

	 {

	 {

	 { 231, 120, 48, 89, 115, 113, 120, 152, 112},

	 { 152, 179, 64, 126, 170, 118, 46, 70, 95},

	 { 175, 69, 143, 80, 85, 82, 72, 155, 103},

	 { 56, 58, 10, 171, 218, 189, 17, 13, 152},

	 { 144, 71, 10, 38, 171, 213, 144, 34, 26},

	 { 114, 26, 17, 163, 44, 195, 21, 10, 173},

	 { 121, 24, 80, 195, 26, 62, 44, 64, 85},

	 { 170, 46, 55, 19, 136, 160, 33, 206, 71},

	 { 63, 20, 8, 114, 114, 208, 12, 9, 226},

	 { 81, 40, 11, 96, 182, 84, 29, 16, 36}

	 },

	{

	 { 134, 183, 89, 137, 98, 101, 106, 165, 148},

	 { 72, 187, 100, 130, 157, 111, 32, 75, 80},

	 { 66, 102, 167, 99, 74, 62, 40, 234, 128},

	 { 41, 53, 9, 178, 241, 141, 26, 8, 107},

	 { 104, 79, 12, 27, 217, 255, 87, 17, 7},

	 { 74, 43, 26, 146, 73, 166, 49, 23, 157},

	 { 65, 38, 105, 160, 51, 52, 31, 115, 128},

	 { 87, 68, 71, 44, 114, 51, 15, 186, 23},

	 { 47, 41, 14, 110, 182, 183, 21, 17, 194},

	 { 66, 45, 25, 102, 197, 189, 23, 18, 22}

	 },

	 {

	 { 88, 88, 147, 150, 42, 46, 45, 196, 205},

	 { 43, 97, 183, 117, 85, 38, 35, 179, 61},

	 { 39, 53, 200, 87, 26, 21, 43, 232, 171},

	 { 56, 34, 51, 104, 114, 102, 29, 93, 77},

	 { 107, 54, 32, 26, 51, 1, 81, 43, 31},

	 { 39, 28, 85, 171, 58, 165, 90, 98, 64},

	 { 34, 22, 116, 206, 23, 34, 43, 166, 73},

	 { 68, 25, 106, 22, 64, 171, 36, 225, 114},

	 { 34, 19, 21, 102, 132, 188, 16, 76, 124},

	 { 62, 18, 78, 95, 85, 57, 50, 48, 51}

	 },

	 {

	 { 193, 101, 35, 159, 215, 111, 89, 46, 111},

	 { 60, 148, 31, 172, 219, 228, 21, 18, 111},

	 { 112, 113, 77, 85, 179, 255, 38, 120, 114},

	 { 40, 42, 1, 196, 245, 209, 10, 25, 109},

	 { 100, 80, 8, 43, 154, 1, 51, 26, 71},

	 { 88, 43, 29, 140, 166, 213, 37, 43, 154},

	 { 61, 63, 30, 155, 67, 45, 68, 1, 209},

	 { 142, 78, 78, 16, 255, 128, 34, 197, 171},

	 { 41, 40, 5, 102, 211, 183, 4, 1, 221},

	 { 51, 50, 17, 168, 209, 192, 23, 25, 82}

	 },

	 {

	 { 125, 98, 42, 88, 104, 85, 117, 175, 82},

	 { 95, 84, 53, 89, 128, 100, 113, 101, 45},

	 { 75, 79, 123, 47, 51, 128, 81, 171, 1},

	 { 57, 17, 5, 71, 102, 57, 53, 41, 49},

	 { 115, 21, 2, 10, 102, 255, 166, 23, 6},

	 { 38, 33, 13, 121, 57, 73, 26, 1, 85},

	 { 41, 10, 67, 138, 77, 110, 90, 47, 114},

	 { 101, 29, 16, 10, 85, 128, 101, 196, 26},

	 { 57, 18, 10, 102, 102, 213, 34, 20, 43},

	 { 117, 20, 15, 36, 163, 128, 68, 1, 26}

	 },

	{

	 { 138, 31, 36, 171, 27, 166, 38, 44, 229},

	 { 67, 87, 58, 169, 82, 115, 26, 59, 179},

	 { 63, 59, 90, 180, 59, 166, 93, 73, 154},

	 { 40, 40, 21, 116, 143, 209, 34, 39, 175},

	 { 57, 46, 22, 24, 128, 1, 54, 17, 37},

	 { 47, 15, 16, 183, 34, 223, 49, 45, 183},

	 { 46, 17, 33, 183, 6, 98, 15, 32, 183},

	 { 65, 32, 73, 115, 28, 128, 23, 128, 205},

	 { 40, 3, 9, 115, 51, 192, 18, 6, 223},

	 { 87, 37, 9, 115, 59, 77, 64, 21, 47}

	 },

	 {

	 { 104, 55, 44, 218, 9, 54, 53, 130, 226},

	 { 64, 90, 70, 205, 40, 41, 23, 26, 57},

	 { 54, 57, 112, 184, 5, 41, 38, 166, 213},

	 { 30, 34, 26, 133, 152, 116, 10, 32, 134},

	 { 75, 32, 12, 51, 192, 255, 160, 43, 51},

	 { 39, 19, 53, 221, 26, 114, 32, 73, 255},

	 { 31, 9, 65, 234, 2, 15, 1, 118, 73},

	 { 88, 31, 35, 67, 102, 85, 55, 186, 85},

	 { 56, 21, 23, 111, 59, 205, 45, 37, 192},

	 { 55, 38, 70, 124, 73, 102, 1, 34, 98}

	 },

	 {

	 { 102, 61, 71, 37, 34, 53, 31, 243, 192},

	 { 69, 60, 71, 38, 73, 119, 28, 222, 37},

	 { 68, 45, 128, 34, 1, 47, 11, 245, 171},

	 { 62, 17, 19, 70, 146, 85, 55, 62, 70},

	 { 75, 15, 9, 9, 64, 255, 184, 119, 16},

	 { 37, 43, 37, 154, 100, 163, 85, 160, 1},

	 { 63, 9, 92, 136, 28, 64, 32, 201, 85},

	 { 86, 6, 28, 5, 64, 255, 25, 248, 1},

	 { 56, 8, 17, 132, 137, 255, 55, 116, 128},

	 { 58, 15, 20, 82, 135, 57, 26, 121, 40}

	 },

	 {

	 { 164, 50, 31, 137, 154, 133, 25, 35, 218},

	 { 51, 103, 44, 131, 131, 123, 31, 6, 158},

	 { 86, 40, 64, 135, 148, 224, 45, 183, 128},

	 { 22, 26, 17, 131, 240, 154, 14, 1, 209},

	 { 83, 12, 13, 54, 192, 255, 68, 47, 28},

	 { 45, 16, 21, 91, 64, 222, 7, 1, 197},

	 { 56, 21, 39, 155, 60, 138, 23, 102, 213},

	 { 85, 26, 85, 85, 128, 128, 32, 146, 171},

	 { 18, 11, 7, 63, 144, 171, 4, 4, 246},

	 { 35, 27, 10, 146, 174, 171, 12, 26, 128}

	 },

	{

	 { 190, 80, 35, 99, 180, 80, 126, 54, 45},

	 { 85, 126, 47, 87, 176, 51, 41, 20, 32},

	 { 101, 75, 128, 139, 118, 146, 116, 128, 85},

	 { 56, 41, 15, 176, 236, 85, 37, 9, 62},

	 { 146, 36, 19, 30, 171, 255, 97, 27, 20},

	 { 71, 30, 17, 119, 118, 255, 17, 18, 138},

	 { 101, 38, 60, 138, 55, 70, 43, 26, 142},

	 { 138, 45, 61, 62, 219, 1, 81, 188, 64},

	 { 32, 41, 20, 117, 151, 142, 20, 21, 163},

	 { 112, 19, 12, 61, 195, 128, 48, 4, 24}

	 }

	 };

7.3.3 [bookmark: _Ref345911207][bookmark: _Toc378874735][bookmark: _Toc384326613]Intraframe Prediction
Intraframe prediction uses already-coded macroblocks within the current frame to approximate the contents of the current macroblock. It applies to intra-coded macroblocks in an interframe and to all macroblocks in a key frame.

Relative to the current macroblock "M", the already-coded macroblocks include all macroblocks above M together with the macroblocks on the same row as, and to the left of, M, though at most four of these macroblocks are actually used: the block "A" directly above M, the blocks immediately to the left and right of A, and the block immediately to the left of M.

Each of the prediction modes (i.e., means of extrapolation from already-calculated values) uses fairly simple arithmetic on pixel values whose positions, relative to the current position, are defined by the mode.

The chroma (U and V) and luma (Y) predictions are independent of each other. The relative addressing of pixels applied to macroblocks on the upper row or left column of the frame will sometimes cause pixels outside the visible frame to be referenced. Usually such out-of-bounds pixels have an assumed value of 129 for pixels to the left of the leftmost column of the visible frame and 127 for pixels above the top row of the visible frame (including the special case of the pixel above and to the left of the top-left pixel in the visible frame).

Exceptions to this (associated to certain modes) will be noted below. The already-coded macroblocks referenced by intra-prediction have been "reconstructed", that is, have been predicted and residue- adjusted, but have not been loop- filtered. While it does process the edges between individual macroblocks and individual subblocks, loop filtering is applied to the frame as a whole, after all of the macroblocks have been reconstructed.

7.3.3.1 Chroma Prediction
The chroma prediction is a little simpler than the luma prediction, so this is treated first. Each of the chroma modes treats U and V identically; that is, the U and V prediction values are calculated in parallel, using the same relative addressing and arithmetic in each of the two planes.

The modes extrapolate prediction values using the 8-pixel row "A" lying immediately above the block being operated on (that is, the bottom chroma row of the macroblock immediately above the current macroblock) and the 8-pixel column "L" immediately to the left of the block (that is, the rightmost chroma column of the macroblock immediately to the left of the current macroblock).
Vertical prediction (chroma mode V_PRED) simply fills each 8-pixel row of the 8x8 chroma block with a copy of the "above" row (A). If the current macroblock lies on the top row of the frame, all 8 of the pixel values in A shall be assigned the value 127.

Similarly, horizontal prediction (H_PRED) fills each 8-pixel column of the 8x8 chroma block with a copy of the "left" column (L). If the current macroblock is in the left column of the frame, all 8 pixel values in L shall be assigned the value 129.

DC prediction (DC_PRED) fills the 8x8 chroma block with a single value. In the generic case of a macroblock lying below the top row and right of the leftmost column of the frame, this value shall be the average of the 16 (genuinely visible) pixels in the (union of the) above row A and left column L.

Otherwise, if the current macroblock lies on the top row of the frame, the average of the 8 pixels in L shall be used; if it lies in the left column of the frame, the average of the 8 pixels in A shall be used.

Note that the averages used in these exceptional cases are not the same as those that would be arrived at by using the out-of-bounds A and L values defined for V_PRED and H_PRED. In the case of the leftmost macroblock on the top row of the frame, the 8x8 chroma block shall be filled with the constant value 128.

For DC_PRED, apart from the exceptional case of the top-left macroblock, either 16 or 8 pixel values are being averaged to get a single prediction value that fills the 8x8 block. The rounding shall be equivalent to the following (see Table 7.38):

[bookmark: _Ref375336449][bookmark: _Ref375336469]Table 7.38 Rounding to generate the required DC value for DC_PRED mode
	int sum; /* sum of 8 or 16 pixels at (at least) 16-bit precision */

	 int shf; /* base 2 logarithm of the number of pixels (3 or 4) */

	 Pixel DCvalue = (sum + (1 << (shf-1))) >> shf;

Note: in Table 7.38, no "clamp" is necessary in the calculation of DCvalue because the summands are all valid pixels.

For the remaining "True Motion" (TM_PRED) chroma mode, in addition to the row "A" and column "L", TM_PRED uses the pixel "P" above and to the left of the chroma block. Figure 7.31 gives an example of how TM_PRED works:

	 P
	 A0
	 A1
	 A2
	 A3
	 A4
	 A5
	 A6
	 A7

	 L0
	 X00
	 X01
	 X02
	 X03
	 X04
	 X05
	 X06
	 X07

	 L1
	 X10
	 X11
	 X12
	 X13
	 X14
	 X15
	 X16
	 X17

	 L2
	 X20
	 X21
	 X22
	 X23
	 X24
	 X25
	 X26
	 X27

	 L3
	 X30
	 X31
	 X32
	 X33
	 X34
	 X35
	 X36
	 X37

	 L4
	 X40
	 X41
	 X42
	 X43
	 X44
	 X45
	 X46
	 X47

	 L5
	 X50
	 X51
	 X52
	 X53
	 X54
	 X55
	 X56
	 X57

	 L6
	 X60
	 X61
	 X62
	 X63
	 X64
	 X65
	 X66
	 X67

	 L7
	 X70
	 X71
	 X72
	 X73
	 X74
	 X75
	 X76
	 X77

[bookmark: _Ref375337344]Figure 7.31 An example of TM_PRED mode
Where P, the As, and the Ls in Figure 7.31 represent reconstructed pixel values from previously coded blocks, and X00 through X77 represent predicted values for the current block. TM_PRED uses the following equation to calculate X_ij:

X_ij = L_i + A_j - P (i, j=0, 1, 2, 3)							 Equation 7.3.31

Implementations of the TM_PRED mode shall be equivalent to the algorithm shown in Table 7.39.

[bookmark: _Ref375458299]Table 7.39 implementation of the TM_PRED mode
	void TMpred(

	 Pixel b[8][8], /* chroma (U or V) prediction block */

	 const Pixel A[8], /* row of already-constructed pixels above block */

	 const Pixel L[8], /* column of "" just to the left of block */

	 const Pixel P /* pixel just to the left of A and above L*/

) {

	 int r = 0; /* row */

	 do {

	 int c = 0; /* column */

	 do {

	 b[r][c] = clamp255(L[r]+ A[c] - P);

	 } while (++c < 8);

	 } while (++r < 8);

	 }

NOTE: An implementation of chroma intra-prediction may be found in the reference decoder file predict.c.

Unlike DC_PRED, for macroblocks on the top row or left edge, TM_PRED does use the out-of-bounds values of 127 and 129 (respectively) defined for V_PRED and H_PRED.

7.3.3.2 Luma Prediction
The prediction processes for the first four 16x16 luma modes (DC_PRED, V_PRED, H_PRED, and TM_PRED) are essentially identical to the corresponding chroma prediction processes described above, the only difference being that prediction is being done on a single 16x16 luma block instead of two 8x8 chroma blocks.

In the context of luma prediction, the row "A" and column "L" contain 16 pixels, the DC prediction is calculated using 16 or 32 pixels.

NOTE: The reference implementation of 16x16 luma prediction is also in predict.c.

In the remaining luma mode (B_PRED), each 4x4 Y subblock is independently predicted using one of ten modes (listed in Table 7.32).

Also, unlike the full-macroblock modes already described, some of the subblock modes use prediction pixels (i.e. pixel values generated using prediction) above and to the right of the current subblock. Specifically, each 4x4 subblock "B" is predicted using (at most) the 4-pixel column "L" immediately to the left of B and the 8-pixel row "A" immediately above B, consisting of the 4 pixels above B followed by the 4 adjacent pixels above and to the right of B, together with the single pixel "P" immediately to the left of A (and immediately above L).

Because entire macroblocks (as opposed to their constituent subblocks) are reconstructed in raster-scan order, for subblocks lying along the right edge (and not along the top row) of the current macroblock, the four "extra" prediction pixels in A above and to the right of B have not yet actually been constructed.

This situation arises for subblocks 7, 11, and 15 (where subblocks are numbered in raster scan order from 0 to 15). All three of these subblocks use the same extra pixels as does subblock 3 (at the upper right corner of the macroblock), namely the 4 pixels immediately above and to the right of subblock 3. Writing (R,C) for a frame buffer position offset from the upper left corner of the current macroblock by R rows and C columns, the extra pixels for all the right-edge subblocks (3, 7, 11, and 15) are at positions (-1,16), (-1,17), (-1,18), and (-1,19). For the rightmost macroblock in each macroblock row except the top row, the extra pixels shall use the same value as the pixel at position (-1,15), which is the rightmost visible pixel on the line immediately above the macroblock row. For the top macroblock row, all the extra pixels shall assume a value of 127.

The details of the prediction modes are given in C style pseudo code in Table 7.310.

[bookmark: _Ref375506015]Table 7.310 Subblock luma prediction
	/* Result pixels are often averages of two or three predictor pixels. The following subroutines are used to calculate these averages. Because the arguments are valid pixels, no clamping is necessary. An actual implementation would probably use inline functions or macros. */

	 /* Compute weighted average centered at y w/adjacent x, z */

	 Pixel avg3(Pixel x, Pixel y, Pixel z) {

	 return (x + y + y + z + 2) >> 2;}

	 /* Weighted average of 3 adjacent pixels centered at p */

	 Pixel avg3p(const Pixel *p) { return avg3(p[-1], p[0], p[1]);}

	 /* Simple average of x and y */

	 Pixel avg2(Pixel x, Pixel y) { return (x + y + 1) >> 1;}

	 /* Average of p[0] and p[1] may be considered to be a synthetic pixel lying between the two, that is, one half-step past p. */

	 Pixel avg2p(const Pixel *p) { return avg2(p[0], p[1]);}

	 void subblock_intra_predict(

	 Pixel B[4][4], /* Y subblock prediction buffer */

	 const Pixel *A, /* A[0]...A[7] = above row, A[-1] = P */

	 const Pixel *L, /* L[0]...L[3] = left column, L[-1] = P */

	 intra_bmode mode /* enum is in Section 11.2 */

) {

	 Pixel E[9]; /* 9 already-constructed edge pixels */

	 E[0] = L[3]; E[1] = L[2]; E[2] = L[1]; E[3] = L[0];

	 E[4] = A[-1]; /* == L[-1] == P */

	 E[5] = A[0]; E[6] = A[1]; E[7] = A[2]; E[8] = A[3];

	 switch(mode) {

	 /* First four modes are similar to corresponding full-block modes. */

	 case B_DC_PRED:

	 {

	 int v = 4; /* DC sum/avg, 4 is rounding adjustment */

	 int i = 0; do { v += A[i] + L[i];} while (++i < 4);

	 v >>= 3; /* averaging 8 pixels */

	 i = 0; do { /* fill prediction buffer with constant DC value */

	int j = 0; do { B[i][j] = v;} while (++j < 4);

	 } while (++i < 4);

	 break;

	 }

	 case B_TM_PRED: /* just like 16x16 TM_PRED */

	 {

	 int r = 0; do {

	 int c = 0; do {

	 B[r][c] = clamp255(L[r] + A[c] - A[-1]);

	 } while (++c < 4);

	 } while (++r < 4);

	 break;

	 }

	 case B_VE_PRED: /* like 16x16 V_PRED except using averages */

	 {

	 int c = 0; do { /* all 4 rows = smoothed top row */

	 B[0][c] = B[1][c] = B[2][c] = B[3][c] = avg3p(A + c);

	 } while (++c < 4);

	 break;

	 }

	 case B_HE_PRED: /* like 16x16 H_PRED except using averages */

	 {

	 /* Bottom row is exceptional because L[4] does not exist */

	 int v = avg3(L[2], L[3], L[3]);

	 int r = 3; while (1) { /* all 4 columns = smoothed left column */

	 B[r][0] = B[r][1] = B[r][2] = B[r][3] = v;

	 if (--r < 0)

	 break;

	 v = avg3p(L + r); /* upper 3 rows use average 3 pixels */

	 }

	 break;

	 }

	 /* The remaining six "diagonal" modes subdivide the prediction buffer into diagonal lines. All the pixels on each line are assigned the same value; this value is (a smoothed or synthetic version of) an already-constructed predictor value lying on the same line. For clarity, in the comments, the positions of these predictor pixels are expressed relative to the upper left corner of the destination array B. These modes are unique to subblock prediction and have no full-block analogs. The first two use lines at +/- 45 degrees from horizontal (or, equivalently, vertical), that is, lines whose slopes are +/- 1. */

	 case B_LD_PRED: /* southwest (left and down) step = (-1, 1) or (1,-1) */

	 /* avg3p(A + j) is the "smoothed" pixel at (-1,j) */

	 B[0][0] = avg3p(A + 1);

	 B[0][1] = B[1][0] = avg3p(A + 2);

	 B[0][2] = B[1][1] = B[2][0] = avg3p(A + 3);

	 B[0][3] = B[1][2] = B[2][1] = B[3][0] = avg3p(A + 4);

	 B[1][3] = B[2][2] = B[3][1] = avg3p(A + 5);

	 B[2][3] = B[3][2] = avg3p(A + 6);

	 B[3][3] = avg3(A[6], A[7], A[7]); /* A[8] does not exist */

	 break;

	 case B_RD_PRED: /* southeast (right and down) step = (1,1) or (-1,-1) */

	 B[3][0] = avg3p(E + 1); /* predictor is from (2, -1) */

	 B[3][1] = B[2][0] = avg3p(E + 2); /* (1, -1) */

	 B[3][2] = B[2][1] = B[1][0] = avg3p(E + 3); /* (0, -1) */

	 B[3][3] = B[2][2] = B[1][1] = B[0][0] = avg3p(E + 4); /* (-1, -1) */

	 B[2][3] = B[1][2] = B[0][1] = avg3p(E + 5); /* (-1, 0) */

	 B[1][3] = B[0][2] = avg3p(E + 6); /* (-1, 1) */

	 B[0][3] = avg3p(E + 7); /* (-1, 2) */

	 break;

	 /* The remaining 4 diagonal modes use lines whose slopes are +/- 2 and +/- 1/2. The angles of these lines are roughly +/- 27 degrees from horizontal or vertical. Unlike the 45 degree diagonals, here there is often a need to "synthesize" predictor pixels midway between two actual predictors using avg2p(p), which can be thought of as returning the pixel "at" p[1/2]. */

	 case B_VR_PRED: /* SSE (vertical right) step = (2,1) or (-2,-1) */

	 B[3][0] = avg3p(E + 2); /* predictor is from (1, -1) */

	 B[2][0] = avg3p(E + 3); /* (0, -1) */

	 B[3][1] = B[1][0] = avg3p(E + 4); /* (-1, -1) */

	 B[2][1] = B[0][0] = avg2p(E + 4); /* (-1, -1/2) */

	 B[3][2] = B[1][1] = avg3p(E + 5); /* (-1, 0) */

	 B[2][2] = B[0][1] = avg2p(E + 5); /* (-1, 1/2) */

	 B[3][3] = B[1][2] = avg3p(E + 6); /* (-1, 1) */

	 B[2][3] = B[0][2] = avg2p(E + 6); /* (-1, 3/2) */

	B[1][3] = avg3p(E + 7); /* (-1, 2) */

	 B[0][3] = avg2p(E + 7); /* (-1, 5/2) */

	 break;

	 case B_VL_PRED: /* SSW (vertical left) step = (2,-1) or (-2,1) */

	 B[0][0] = avg2p(A); /* predictor is from (-1, 1/2) */

	 B[1][0] = avg3p(A + 1); /* (-1, 1) */

	 B[2][0] = B[0][1] = avg2p(A + 1); /* (-1, 3/2) */

	 B[1][1] = B[3][0] = avg3p(A + 2); /* (-1, 2) */

	 B[2][1] = B[0][2] = avg2p(A + 2); /* (-1, 5/2) */

	 B[3][1] = B[1][2] = avg3p(A + 3); /* (-1, 3) */

	 B[2][2] = B[0][3] = avg2p(A + 3); /* (-1, 7/2) */

	 B[3][2] = B[1][3] = avg3p(A + 4); /* (-1, 4) */

	 /* Last two values do not strictly follow the pattern. */

	 B[2][3] = avg3p(A + 5); /* (-1, 5) [avg2p(A + 4) = (-1,9/2)] */

	 B[3][3] = avg3p(A + 6); /* (-1, 6) [avg3p(A + 5) = (-1,5)] */

	 break;

	 case B_HD_PRED: /* ESE (horizontal down) step =(1,2) or (-1,-2) */

	 B[3][0] = avg2p(E); /* predictor is from (5/2, -1) */

	 B[3][1] = avg3p(E + 1); /* (2, -1) */

	 B[2][0] = B[3][2] = svg2p(E + 1); /* (3/2, -1) */

	 B[2][1] = B[3][3] = avg3p(E + 2); /* (1, -1) */

	 B[2][2] = B[1][0] = avg2p(E + 2); /* (1/2, -1) */

	 B[2][3] = B[1][1] = avg3p(E + 3); /* (0, -1) */

	 B[1][2] = B[0][0] = avg2p(E + 3); /* (-1/2, -1) */

	 B[1][3] = B[0][1] = avg3p(E + 4); /* (-1, -1) */

	 B[0][2] = avg3p(E + 5); /* (-1, 0) */

	 B[0][3] = avg3p(E + 6); /* (-1, 1) */

	 break;

	 case B_HU_PRED: /* ENE (horizontal up) step = (1,-2) or (-1,2) */

	 B[0][0] = avg2p(L); /* predictor is from (1/2, -1) */

	 B[0][1] = avg3p(L + 1); /* (1, -1) */

	 B[0][2] = B[1][0] = avg2p(L + 1); /* (3/2, -1) */

	 B[0][3] = B[1][1] = avg3p(L + 2); /* (2, -1) */

	 B[1][2] = B[2][0] = avg2p(L + 2); /* (5/2, -1) */

	 B[1][3] = B[2][1] = avg3(L[2], L[3], L[3]); /* (3, -1) */

	/* Not possible to follow pattern for much of the bottom row because no (nearby) already-constructed pixels lie on the diagonals in question. */

	 B[2][2] = B[2][3] = B[3][0] = B[3][1] = B[3][2] = B[3][3] = L[3];

	 }

	 }

[bookmark: _Toc267082519][bookmark: _Toc267085389]
NOTE: The reference decoder implementation of sub-block intra-prediction may be found in predict.c.

7.3.4 [bookmark: _Ref345873607][bookmark: _Toc378874736][bookmark: _Toc384326614]DCT Coefficient Decoding
The second data partition consists of an encoding of the quantized DCT (and WHT) coefficients of the residue signal. For each macroblock, the residue is added to the (intra- or inter-generated) prediction pixel values to produce the near final reconstructed macroblock (where loop filtering is the remaining step).

4x4 DCTs and WHTs are applied to the 24 (or 25 with the Y2 subblock) 4x4 subblocks of a macroblock (where there are 16 luma subblocks, one Y2 sbblock and 8 chroma subblocks). The ordering of macroblocks within any of the "residue" partitions follows the same raster scan as used in the first, "prediction", partition.

For all intra- and inter-prediction modes apart from B_PRED (intra: whose Y subblocks are independently predicted) and SPLITMV (inter), each macroblock's residue data (see Table 6.33) begins with the Y2 component of the residue, coded using a WHT. B_PRED and SPLITMV coded macroblocks omit this WHT and specify the 0th DCT coefficient in each of the 16 Y subblocks.

After the optional Y2 block, the residue data continues with 16 DCTs for the Y subblocks, followed by 4 DCTs for the U subblocks, ending with 4 DCTs for the V subblocks. The subblocks occur in the usual raster order.

The DCT and WHT coefficients are tree-coded using a 12-element alphabet, the members of which are referred to as "tokens". Except for the end-of-block token (which shall set the remaining subblock coefficients to zero and is followed by the next block), each token (which may be augmented with data immediately following the token, see Table 6.34) specifies the value of the single coefficient at the current position and is followed by a token applying to the next position being reconstructed.

For all the luma and chroma subblocks, the ordering of the coefficients follows a so-called zig-zag order. DCTs begin at coefficient 1 if Y2 is present, and begin at coefficient 0 if Y2 is absent. The WHT for a Y2 subblock shall begin at coefficient 0.

7.3.4.1 Macroblock without Non-Zero Coefficient Values
If the flag within macroblock (MB) mb_skip_coeff in the MB residual data stream (see Table 6.33), indicates that a macroblock does not have any non-zero coefficients, the decoding process of DCT coefficients is skipped for the macroblock.

7.3.4.2 Decoding of Individual Coefficient Values
The decoding of coefficient tokens is the same for the DCT and WHT, and for the remainder of this section "DCT" should be taken to mean either DCT or WHT.

All tokens (except end-of-block) specify either a single unsigned value or a range of unsigned values followed by a probabilistic encoding of the offset of the value from the base of that range.

Non-zero values (of either type) are then followed by a flag indicating the sign of the coded value (negative if 1, positive if 0).

Table 7.311, below, lists the labelling of the tokens and the coding tree to represent these tokens.
[bookmark: _Ref375509571]Table 7.311 Subblock token labeling and coding tree
	typedef enum

	 {

	 DCT_0, /* value 0 */

	 DCT_1, /* 1 */

	 DCT_2, /* 2 */

	 DCT_3, /* 3 */

	 DCT_4, /* 4 */

	 dct_cat1, /* range 5 - 6 (size 2) */

	 dct_cat2, /* 7 - 10 (4) */

	 dct_cat3, /* 11 - 18 (8) */

	 dct_cat4, /* 19 - 34 (16) */

	 dct_cat5, /* 35 - 66 (32) */

	 dct_cat6, /* 67 - 2048 (1982) */

	 dct_eob, /* end of block */

	 num_dct_tokens /* 12 */

	 }

	 dct_token;

	const tree_index coeff_tree [2 * (num_dct_tokens - 1)] =

	 {

	 -dct_eob, 2, /* eob = "0" */

	 -DCT_0, 4, /* 0 = "10" */

	 -DCT_1, 6, 8, 12, /* 1 = "110" */

	 -DCT_2, 10, /* 2 = "11100" */

	 -DCT_3, -DCT_4, /* 3 = "111010", 4 = "111011" */

	 14, 16,

	 -dct_cat1, -dct_cat2, /* cat1 = "111100", cat2 = "111101" */

	 18, 20,

	 -dct_cat3, -dct_cat4, /* cat3 = "1111100", cat4 = "1111101" */

	 -dct_cat5, -dct_cat6 /* cat5 = "1111110", cat6 = "1111111" */

	 };

Most DCT coefficients are decoded using the tree described in Table 7.311. However, if the preceding coefficient to the coefficient being decoded is a DCT_0, decoding shall skip the first branch, since it is not possible for dct_eob to follow a DCT_0.

The tokens dct_cat1 ... dct_cat6 specify ranges of unsigned values, the value within the range being formed by adding an unsigned offset represented by the use of a variable length field, extra_bits from Table 6.34, to the base of the range, using an algorithm equivalent to that listed in Table 7.313. The bit length (n) of extra_bits shall be as specified in Table 7.312. The fixed probability tables given in Table 7.313.shall be used to calculate the required value.

[bookmark: _Ref378871711]Table 7.312 Length of extra_bits based on the coefficient being decoded
	Coefficient label
	Length of extra_bits (in bits)

	dct_cat1
	1

	dct_cat2
	2

	dct_cat3
	3

	dct_cat4
	4

	dct_cat5
	5

	dct_cat6
	11

[bookmark: _Ref375520648]Table 7.313 Transform coefficient value ranges and probability tables
	uint DCTextra(bool_decoder *d, const Prob *p)

	 {

	 uint v = 0;

	 do { v += v + read_bool(d, *p);} while (*++p);

	 return v;

	 }

	 const Prob Pcat1[] = { 159, 0};

	 const Prob Pcat2[] = { 165, 145, 0};

	 const Prob Pcat3[] = { 173, 148, 140, 0};

	 const Prob Pcat4[] = { 176, 155, 140, 135, 0};

	 const Prob Pcat5[] = { 180, 157, 141, 134, 130, 0};

	 const Prob Pcat6[] ={ 254, 254, 243, 230, 196, 177, 153, 140, 133, 130, 129, 0};

In Table 7.313, the type bool_decoder is used to represent a data structure associated with the bitstream being decoded and the function read_bool() is used to represent a function that reads from the mentioned bitstream.

If the unsigned value decoded using the coefficient tree, possibly augmented by the extra bits mentioned above, is non-zero, its sign shall be set by reading the sign flag shown in Table 6.34, when this flag is 1, the sign of the decoded value shall be set to negative:

7.3.4.3 Token Probabilities
The probability specification for the token tree (unlike that for the "extra bits" described above) is rather involved. It uses three pieces of context to index a large probability table, the contents of which may be incrementally modified in the frame header (using the syntax elements in Table 6.25). The full (non-constant) probability table can be laid out as follows.

	Prob coeff_probs [4] [8] [3] [num_dct_tokens-1];

Working from the outside in, the outermost dimension is indexed by the type of plane being decoded:
0 - Y beginning at coefficient 1 (i.e., Y after Y2)
1 - Y2
2 - U or V
3 - Y beginning at coefficient 0 (i.e., Y in the absence of Y2).

The next dimension is selected by the position of the coefficient being decoded. That position, c, steps by ones up to 15, starting from zero for block types 1, 2, or 3 and starting from one for block type 0. The second array index is then

	coeff_bands [c]

Where:

	const int coeff_bands [16] = {0, 1, 2, 3, 6, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7};

is a fixed mapping of position to "band".

The third dimension represents a measure of the "local complexity" or extent to which nearby coefficients are non-zero.

For the first coefficient (DC, unless the block type is 0), the already encoded blocks within the same plane (Y2, Y, U, or V) above and to the left of the current block are considered. The context index is then the number (0, 1, or 2) of these blocks that had at least one non-zero coefficient in their residue data. Specifically, for Y2, because macroblocks above and to the left may or may not have a Y2 block, the block above shall be determined by the most recent macroblock in the same column that has a Y2 block, and the block to the left shall be determined by the most recent macroblock in the same row that has a Y2 block.

For the remaining coefficients within the current block, the context index shall be determined by the absolute value of the most recently decoded coefficient (necessarily within the current block) and shall be set to 0 if the last coefficient was a zero, 1 if it was plus or minus one, and 2 if its absolute value exceeded one.

As with other contexts used by VCB, the "neighboring block" context described here needs a special definition for subblocks lying along the top row or left edge of the frame. These "non-existent" predictors above and to the left of the image shall be taken to be empty -- that is, taken to contain no non-zero coefficients.

7.3.4.4 Residue decoding
The residue decoding of each macrobloc requires, in each of two directions (above and to the left), an aggregate coefficient predictor consisting of a single Y2 predictor, two predictors for each of U and V, and four predictors for Y. In accordance with the scan-ordering of macroblocks, a decoder needs to maintain a single "left" aggregate predictor and a row of "above" aggregate predictors.

Before decoding any residue, these maintained predictors may simply be cleared, in compliance with the definition of "non-existent" prediction. After each block is decoded, the two predictors referenced by the block are replaced with the (empty or non-empty) state of the block, in preparation for the later decoding of the blocks below and to the right of the block just decoded.
The fourth, and final, dimension of the token probability array is indexed by half the position in the token tree structure, as are all tree probability arrays.

The pseudocode in Table 7.314 illustrates the above described decoding process. Note that criteria, functions, etc. delimited with ** are either dependent on decoder architecture or are elaborated on elsewhere in this document.

[bookmark: _Ref375524388]Table 7.314 Residue decoding pseudo code
	int block[16] = { 0 }; /* current 4x4 block coeffs */

	 int firstCoeff = 0;

	 int plane;

	 int ctx2;

	 int ctx3 = 0; /* the 3rd context referred to in above description */

	 Prob *probTable;

	 int token;

	 int sign;

	 int absValue;

	 int extraBits;

	 bool prevCoeffWasZero = false;

	 bool currentBlockHasCoeffs = false;

	 /* base coeff abs values per each category, elem #0 is DCT_VAL_CATEGORY1, * #1 is DCT_VAL_CATEGORY2, etc. */

	 int categoryBase[6] = { 5, 7, 11, 19, 35, 67 };

	 /* Determine plane to use */

	 if (**current_block_is_Y2_block**) plane = 0;

	 else if (**current_block_is_chroma**) plane = 2;

	 else if (**current_macroblock_has_Y2**) plane = 1;

	 else plane = 3; /* For luma blocks of a "Y2 macroblock" skip coeff index #0 */

	 if (plane == 1)

	 firstCoeff++;

	 /* Determine whether neighbor 4x4 blocks have coefficients. This is dependent on the plane that is being currently decoded; i.e., check only coefficients from the same plane as the current block. */

	 if (**left_neighbor_block_has_coefficients(plane)**)

	 ctx3++;

	 if (**above_neighbor_block_has_coefficients(plane)**)

	 ctx3++;

	 for(i = firstCoeff; i < 16; ++i)

	 {

	 ctx2 = coeff_bands[i];

	 probTable = coeff_probs[plane][ctx2][ctx3];

	 /* skip first code (dct_eob) if previous token was DCT_0 */

	 if (prevCoeffWasZero)

	 token = treed_read (d, **coeff_tree_without_eob**, probTable);

	 Else

	 token = treed_read (d, coeff_tree, probTable);

	if (token == dct_eob)

	 break;

	 if (token != DCT_0)

	 {

	 currentBlockHasCoeffs = true;

	 if (**token_has_extra_bits(token)**)

	 {

	 extraBits = DCTextra(token);

	 absValue =

	 categoryBase[**token_to_cat_index(token)**] +

	 extraBits;

	 }

	 Else

	 {

	 absValue = **token_to_abs_value(token)**;

	 }

	 sign = read_bool(d, 128);

	 block[i] = sign ? -absValue : absValue;

	 }

	 Else

	 {

	 absValue = 0;

	 }

	 /* Set contexts and stuff for next coeff */

	 if (absValue == 0) ctx3 = 0;

	 else if (absValue == 1) ctx3 = 1;

	 else ctx3 = 2;

	 prevCoeffWasZero = true;

	 }

	 /* Store current block status to decoder internals */

	 block_has_coefficients[currentMb][currentBlock] = currentBlockHasCoeffs;

NOTE: An implementation of the coefficient decoding process described in this section can be found in the file tokens.c of the reference implementation of VCB.

7.3.4.5 Token Probability Updates
As mentioned above, the token-decoding probabilities may change from frame to frame. After detection of a key frame, these probabilities shall be set to their default values; this shall occur before decoding the remainder of the header, as both key frames and interframes may adjust these probabilities.

The syntax and semantics of the coefficient probability update process is given in Table 6.25. For each position in the coeff_probs array there occurs a fixed-probability bool indicating whether or not the corresponding probability should be updated (this is coeff_prob_update_flag in Table 6.25). If this flag is true, there follows a P(8) replacing that probability (this is coeff_prob in Table 6.25). Note that updates are cumulative; that is, a probability updated on one frame is in effect for all ensuing frames until the next key frame, or until the probability is explicitly updated by another frame.

One method of implementing this update is listed in Table 7.315, where the labels read_bool() and read_literal() are used to represent functions that read Boolean and literal values from the bitstream using an associated data structure represented by the label “d”.

[bookmark: _Ref375525335]Table 7.315 A method for updating the coefficient probabilities
	int i = 0; do {

	 int j = 0; do {

	 int k = 0; do {

	 int t = 0; do {

	 if (read_bool(d, coeff_update_probs [i] [j] [k] [t]))

	 coeff_probs [i] [j] [k] [t] = read_literal(d, 8);

	 } while (++t < num_dct_tokens - 1);

	 } while (++k < 3);

	 } while (++j < 8);

	 } while (++i < 4);

The (constant) update probabilities are given in Table 7.316.

[bookmark: _Ref375525543]Table 7.316 Token probability update values
	 const Prob coeff_update_probs [4] [8] [3] [num_dct_tokens-1] = {

	 {

	 {

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 176, 246, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 223, 241, 252, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 249, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 244, 252, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 234, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 253, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 246, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 239, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 254, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 248, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 251, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 251, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 254, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 254, 253, 255, 254, 255, 255, 255, 255, 255, 255},

	 { 250, 255, 254, 255, 254, 255, 255, 255, 255, 255, 255},

	 { 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 }

	 },

	{

	 {

	 { 217, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 225, 252, 241, 253, 255, 255, 254, 255, 255, 255, 255},

	 { 234, 250, 241, 250, 253, 255, 253, 254, 255, 255, 255}

	 },

	 {

	 { 255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 223, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 238, 253, 254, 254, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 248, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 249, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 253, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 247, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 252, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 253, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 254, 253, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 250, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 }

	 },

	 {

	 {

	 { 186, 251, 250, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 234, 251, 244, 254, 255, 255, 255, 255, 255, 255, 255},

	 { 251, 251, 243, 253, 254, 255, 254, 255, 255, 255, 255}

	 },

	{

	 { 255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 236, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 251, 253, 253, 254, 254, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 }

	 },

	 {

	 {

	 { 248, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 250, 254, 252, 254, 255, 255, 255, 255, 255, 255, 255},

	 { 248, 254, 249, 253, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 246, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 252, 254, 251, 254, 254, 255, 255, 255, 255, 255, 255}

	 },

	{

	 { 255, 254, 252, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 248, 254, 253, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 253, 255, 254, 254, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 251, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 245, 251, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 253, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 251, 253, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 252, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 252, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 249, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 255, 253, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 250, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 }

	 }

	 };

7.3.4.6 Default Token Probability Table
The default token probabilities are listed in Table 7.317 as follows:

[bookmark: _Ref375525661]Table 7.317 Default token probability values
	const Prob default_coeff_probs [4] [8] [3] [num_dct_tokens - 1] =

	 {

	 {

	 {

	 { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128},

	 { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128},

	 { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128}

	 },

	 {

	 { 253, 136, 254, 255, 228, 219, 128, 128, 128, 128, 128},

	 { 189, 129, 242, 255, 227, 213, 255, 219, 128, 128, 128},

	 { 106, 126, 227, 252, 214, 209, 255, 255, 128, 128, 128}

	 },

	 {

	 { 1, 98, 248, 255, 236, 226, 255, 255, 128, 128, 128},

	 { 181, 133, 238, 254, 221, 234, 255, 154, 128, 128, 128},

	 { 78, 134, 202, 247, 198, 180, 255, 219, 128, 128, 128}

	 },

	 {

	 { 1, 185, 249, 255, 243, 255, 128, 128, 128, 128, 128},

	 { 184, 150, 247, 255, 236, 224, 128, 128, 128, 128, 128},

	 { 77, 110, 216, 255, 236, 230, 128, 128, 128, 128, 128}

	 },

	 {

	 { 1, 101, 251, 255, 241, 255, 128, 128, 128, 128, 128},

	 { 170, 139, 241, 252, 236, 209, 255, 255, 128, 128, 128},

	 { 37, 116, 196, 243, 228, 255, 255, 255, 128, 128, 128}

	 },

	 {

	 { 1, 204, 254, 255, 245, 255, 128, 128, 128, 128, 128},

	 { 207, 160, 250, 255, 238, 128, 128, 128, 128, 128, 128},

	 { 102, 103, 231, 255, 211, 171, 128, 128, 128, 128, 128}

	 },

	 {

	 { 1, 152, 252, 255, 240, 255, 128, 128, 128, 128, 128},

	 { 177, 135, 243, 255, 234, 225, 128, 128, 128, 128, 128},

	 { 80, 129, 211, 255, 194, 224, 128, 128, 128, 128, 128}

	 },

	{

	 { 1, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128},

	 { 246, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128},

	 { 255, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128}

	 }

	 },

	 {

	 {

	 { 198, 35, 237, 223, 193, 187, 162, 160, 145, 155, 62},

	 { 131, 45, 198, 221, 172, 176, 220, 157, 252, 221, 1},

	 { 68, 47, 146, 208, 149, 167, 221, 162, 255, 223, 128}

	 },

	 {

	 { 1, 149, 241, 255, 221, 224, 255, 255, 128, 128, 128},

	 { 184, 141, 234, 253, 222, 220, 255, 199, 128, 128, 128},

	 { 81, 99, 181, 242, 176, 190, 249, 202, 255, 255, 128}

	 },

	 {

	 { 1, 129, 232, 253, 214, 197, 242, 196, 255, 255, 128},

	 { 99, 121, 210, 250, 201, 198, 255, 202, 128, 128, 128},

	 { 23, 91, 163, 242, 170, 187, 247, 210, 255, 255, 128}

	 },

	 {

	 { 1, 200, 246, 255, 234, 255, 128, 128, 128, 128, 128},

	 { 109, 178, 241, 255, 231, 245, 255, 255, 128, 128, 128},

	 { 44, 130, 201, 253, 205, 192, 255, 255, 128, 128, 128}

	 },

	 {

	 { 1, 132, 239, 251, 219, 209, 255, 165, 128, 128, 128},

	 { 94, 136, 225, 251, 218, 190, 255, 255, 128, 128, 128},

	 { 22, 100, 174, 245, 186, 161, 255, 199, 128, 128, 128}

	 },

	 {

	 { 1, 182, 249, 255, 232, 235, 128, 128, 128, 128, 128},

	 { 124, 143, 241, 255, 227, 234, 128, 128, 128, 128, 128},

	 { 35, 77, 181, 251, 193, 211, 255, 205, 128, 128, 128}

	 },

	 {

	 { 1, 157, 247, 255, 236, 231, 255, 255, 128, 128, 128},

	 { 121, 141, 235, 255, 225, 227, 255, 255, 128, 128, 128},

	 { 45, 99, 188, 251, 195, 217, 255, 224, 128, 128, 128}

	 },

	 {

	 { 1, 1, 251, 255, 213, 255, 128, 128, 128, 128, 128},

	 { 203, 1, 248, 255, 255, 128, 128, 128, 128, 128, 128},

	 { 137, 1, 177, 255, 224, 255, 128, 128, 128, 128, 128}

	 }

	 },

	{

	 {

	 { 253, 9, 248, 251, 207, 208, 255, 192, 128, 128, 128},

	 { 175, 13, 224, 243, 193, 185, 249, 198, 255, 255, 128},

	 { 73, 17, 171, 221, 161, 179, 236, 167, 255, 234, 128}

	 },

	 {

	 { 1, 95, 247, 253, 212, 183, 255, 255, 128, 128, 128},

	 { 239, 90, 244, 250, 211, 209, 255, 255, 128, 128, 128},

	 { 155, 77, 195, 248, 188, 195, 255, 255, 128, 128, 128}

	 },

	 {

	 { 1, 24, 239, 251, 218, 219, 255, 205, 128, 128, 128},

	 { 201, 51, 219, 255, 196, 186, 128, 128, 128, 128, 128},

	 { 69, 46, 190, 239, 201, 218, 255, 228, 128, 128, 128}

	 },

	 {

	 { 1, 191, 251, 255, 255, 128, 128, 128, 128, 128, 128},

	 { 223, 165, 249, 255, 213, 255, 128, 128, 128, 128, 128},

	 { 141, 124, 248, 255, 255, 128, 128, 128, 128, 128, 128}

	 },

	 {

	 { 1, 16, 248, 255, 255, 128, 128, 128, 128, 128, 128},

	 { 190, 36, 230, 255, 236, 255, 128, 128, 128, 128, 128},

	 { 149, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128}

	 },

	 {

	 { 1, 226, 255, 128, 128, 128, 128, 128, 128, 128, 128},

	 { 247, 192, 255, 128, 128, 128, 128, 128, 128, 128, 128},

	 { 240, 128, 255, 128, 128, 128, 128, 128, 128, 128, 128}

	 },

	 {

	 { 1, 134, 252, 255, 255, 128, 128, 128, 128, 128, 128},

	 { 213, 62, 250, 255, 255, 128, 128, 128, 128, 128, 128},

	 { 55, 93, 255, 128, 128, 128, 128, 128, 128, 128, 128}

	 },

	 {

	 { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128},

	 { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128},

	 { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128}

	 }

	 },

	 {

	 {

	 { 202, 24, 213, 235, 186, 191, 220, 160, 240, 175, 255},

	 { 126, 38, 182, 232, 169, 184, 228, 174, 255, 187, 128},

	 { 61, 46, 138, 219, 151, 178, 240, 170, 255, 216, 128}

	 },

	{

	 { 1, 112, 230, 250, 199, 191, 247, 159, 255, 255, 128},

	 { 166, 109, 228, 252, 211, 215, 255, 174, 128, 128, 128},

	 { 39, 77, 162, 232, 172, 180, 245, 178, 255, 255, 128}

	 },

	 {

	 { 1, 52, 220, 246, 198, 199, 249, 220, 255, 255, 128},

	 { 124, 74, 191, 243, 183, 193, 250, 221, 255, 255, 128},

	 { 24, 71, 130, 219, 154, 170, 243, 182, 255, 255, 128}

	 },

	 {

	 { 1, 182, 225, 249, 219, 240, 255, 224, 128, 128, 128},

	 { 149, 150, 226, 252, 216, 205, 255, 171, 128, 128, 128},

	 { 28, 108, 170, 242, 183, 194, 254, 223, 255, 255, 128}

	 },

	 {

	 { 1, 81, 230, 252, 204, 203, 255, 192, 128, 128, 128},

	 { 123, 102, 209, 247, 188, 196, 255, 233, 128, 128, 128},

	 { 20, 95, 153, 243, 164, 173, 255, 203, 128, 128, 128}

	 },

	 {

	 { 1, 222, 248, 255, 216, 213, 128, 128, 128, 128, 128},

	 { 168, 175, 246, 252, 235, 205, 255, 255, 128, 128, 128},

	 { 47, 116, 215, 255, 211, 212, 255, 255, 128, 128, 128}

	 },

	 {

	 { 1, 121, 236, 253, 212, 214, 255, 255, 128, 128, 128},

	 { 141, 84, 213, 252, 201, 202, 255, 219, 128, 128, 128},

	 { 42, 80, 160, 240, 162, 185, 255, 205, 128, 128, 128}

	 },

	 {

	 { 1, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128},

	 { 244, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128},

	 { 238, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128}

	 }

	 }

	 };

7.3.5 [bookmark: _Ref345905996][bookmark: _Toc378874737][bookmark: _Toc384326615]DCT and WHT Inversion and Macroblock Reconstruction
7.3.5.1 Dequantization
After decoding the DCTs/WHTs as described in section 7.3.4, each (quantized) coefficient in each subblock is multiplied by one of six dequantization factors, the choice of factor depending on the plane (Y2, Y, or chroma) and position (where DC is used to represent coefficient zero and AC is used to represent any other coefficient). If the current macroblock has overridden the quantizer level (as described in section 7.2.1.3), then the six factors are looked up from two dequantization tables (given in Table 7.318 and Table 7.319) with appropriate scaling and clamping using the single index supplied by the override.

Otherwise, the frame-level dequantization factors (as described in Section 7.2.1.6) shall be used. In either case, the required multiplication operations shall be computed and stored using 16-bit signed integers.

NOTE: In Table 7.318 and Table 7.319 the label QINDEX_RANGE is used to represent the value 128.

[bookmark: _Ref375528541]Table 7.318 Dequantizaton factors for DC coefficients
	static const int dc_qlookup[QINDEX_RANGE] =

	 {

	 4, 5, 6, 7, 8, 9, 10, 10, 11, 12, 13, 14, 15,

	 16, 17, 17, 18, 19, 20, 20, 21, 21, 22, 22, 23, 23,

	 24, 25, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,

	 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 46,

	 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,

	 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,

	 73, 74, 75, 76, 76, 77, 78, 79, 80, 81, 82, 83, 84,

	 85, 86, 87, 88, 89, 91, 93, 95, 96, 98, 100, 101, 102,

	 104, 106, 108, 110, 112, 114, 116, 118, 122, 124, 126, 128, 130,

	 132, 134, 136, 138, 140, 143, 145, 148, 151, 154, 157,

	};

[bookmark: _Ref375532611]Table 7.319 Dequantization values for AC coefficients
	static const int ac_qlookup[QINDEX_RANGE] =

	 {

	 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

	 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,

	 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,

	 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,

	 56, 57, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78,

	 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104,

	 106, 108, 110, 112, 114, 116, 119, 122, 125, 128, 131, 134, 137,

	 140, 143, 146, 149, 152, 155, 158, 161, 164, 167, 170, 173, 177,

	 181, 185, 189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229,

	 234, 239, 245, 249, 254, 259, 264, 269, 274, 279, 284,

	 };

Lookup values from the above two tables (Table 7.318 and Table 7.319), are directly used in the DC and AC coefficients in Y1, respectively. For Y2 and chroma, values from the above tables undergo either scaling or clamping before the multiplication operations.

7.3.5.2 Inverse Transforms
If the Y2 residue block exists (i.e., the macroblock luma mode is not SPLITMV or B_PRED), it is inverted first (using the inverse WHT) and the element of the result at row i, column j is used as the 0th coefficient of the Y subblock at position (i, j), that is, the Y subblock whose index is (i * 4) + j. As discussed in Section 7.3.4, if the luma mode is B_PRED or SPLITMV, the 0th Y coefficients are part of the residue signal for the subblocks themselves.

In either case, the inverse transforms for the sixteen Y subblocks and eight chroma subblocks are computed next. All 24 of these inversions are independent of each other; their results may (at least conceptually) be stored in 24 separate 4x4 arrays.

NOTE: As is done by the reference decoder, an implementation may wish to represent the prediction and residue buffers as macroblock-sized arrays (that is, a 16x16 Y buffer and two 8x8 chroma buffers). Regarding the inverse DCT implementation given below, this requires a simple adjustment to the address calculation for the resulting residue pixels.

7.3.5.2.1 Implementation of the WHT Inversion
For macroblocks that use prediction modes other than B_PRED and SPLITMV, the DC values derived from the DCT transform on the 16 Y blocks are collected to construct a 25th block of a macroblock (16 Y, 4 U, 4 V constitute the 24 blocks). This 25th block is represented using Walsh-Hadamard transform (WHT) coefficients.

The inverse WHT used to invert the WHT coefficients shall be equivalent to the C code listed in Table 7.320:

[bookmark: _Ref375533941]Table 7.320 Inverse 4x4 Walsh Hadamard Transform
	void vcb_short_inv_walsh4x4_c(short *input, short *output)

	 {

	 int i;

	 int a1, b1, c1, d1;

	 int a2, b2, c2, d2;

	 short *ip = input;

	 short *op = output;

	 int temp1, temp2;

	 for(i=0;i<4;i++)

	 {

	 a1 = ip[0] + ip[12];

	 b1 = ip[4] + ip[8];

	 c1 = ip[4] - ip[8];

	 d1 = ip[0] - ip[12];

	 op[0] = a1 + b1;

	 op[4] = c1 + d1;

	 op[8] = a1 - b1;

	 op[12]= d1 - c1;

	 ip++;

	 op++;

	 }

	 ip = output;

	 op = output;

	 for(i=0;i<4;i++)

	 {

	 a1 = ip[0] + ip[3];

	 b1 = ip[1] + ip[2];

	 c1 = ip[1] - ip[2];

	 d1 = ip[0] - ip[3];

	 a2 = a1 + b1;

	 b2 = c1 + d1;

	 c2 = a1 - b1;

	 d2 = d1 - c1;

	op[0] = (a2+3)>>3;

	 op[1] = (b2+3)>>3;

	 op[2] = (c2+3)>>3;

	 op[3] = (d2+3)>>3;

	 ip+=4;

	 op+=4;

	 }

	 }

NOTE: The reference decoder WHT inversion may be found in the file idct_add.c.

7.3.5.2.2 Implementation of the DCT Inversion
All of the DCT inversions are computed using a classical 2-D inverse discrete cosine transform, which can be implemented as two passes of a 1-D inverse DCT.
It should also be noted that the inversion mechanism described here makes use of the following two multiplication constants (represented as 16 bit integers), since these are required for the classical 4x4 DCT:

	sqrt(2) * cos (pi/8)

	sqrt(2) * sin (pi/8)

Because the first constant is bigger than 1, to maintain the same16-bit fixed-point precision as the second one, the following relationship is used:

	x * a = x + x*(a-1)

Therefore

	x * sqrt(2) * cos (pi/8) = x + x * (sqrt(2) * cos(pi/8)-1)

The above relationships are used in the IDCT implementation listed in Table 7.321, conformant decoders shall use equivalent IDCT implementations.

[bookmark: _Ref375537261]Table 7.321 Inverse DCT
	/* IDCT implementation */

	 static const int cospi8sqrt2minus1=20091;

	 static const int sinpi8sqrt2 =35468;

	 void short_idct4x4llm_c(short *input, short *output, int pitch)

	 {

	 int i;

	 int a1, b1, c1, d1;

	 short *ip=input;

	 short *op=output;

	 int temp1, temp2;

	 int shortpitch = pitch>>1;

	 for(i=0;i<4;i++)

	 {

	 a1 = ip[0]+ip[8];

	 b1 = ip[0]-ip[8];

	 temp1 = (ip[4] * sinpi8sqrt2)>>16;

	 temp2 = ip[12]+((ip[12] * cospi8sqrt2minus1)>>16);

	 c1 = temp1 - temp2;

	 temp1 = ip[4] + ((ip[4] * cospi8sqrt2minus1)>>16);

	 temp2 = (ip[12] * sinpi8sqrt2)>>16;

	 d1 = temp1 + temp2;

	 op[shortpitch*0] = a1+d1;

	 op[shortpitch*3] = a1-d1;

	 op[shortpitch*1] = b1+c1;

	 op[shortpitch*2] = b1-c1;

	 ip++;

	 op++;

	 }

	 ip = output;

	 op = output;

	 for(i=0;i<4;i++)

	 {

	 a1 = ip[0]+ip[2];

	 b1 = ip[0]-ip[2];

	 temp1 = (ip[1] * sinpi8sqrt2)>>16;

	 temp2 = ip[3]+((ip[3] * cospi8sqrt2minus1)>>16);

	 c1 = temp1 - temp2;

	temp2 = (ip[3] * sinpi8sqrt2)>>16;

	 d1 = temp1 + temp2;

	 op[0] = (a1+d1+4)>>3;

	 op[3] = (a1-d1+4)>>3;

	 op[1] = (b1+c1+4)>>3;

	 op[2] = (b1-c1+4)>>3;

	 ip+=shortpitch;

	 op+=shortpitch;

	 }

	 }

	 temp1 = ip[1] + ((ip[1] * cospi8sqrt2minus1)>>16);

7.3.6 [bookmark: _Ref375538654][bookmark: _Toc378874738][bookmark: _Toc384326616]Summation of Predictor output and Residue
The prediction and residue signals are summed to form the reconstructed macroblock, which, except for loop filtering (described in section 7.3.7), completes the decoding process.
Each individual (Y, U, and V pixel) summation result shall be represented as an unsigned 8 bit integer after being calculated as a 32-bit sum of the prediction and residue.
The summation process is the same, regardless of the (intra or inter) mode of prediction in effect for the macroblock.

7.3.7 [bookmark: _Ref345915438][bookmark: _Toc378874739][bookmark: _Toc384326617]Loop Filter
Loop filtering is the last stage of frame reconstruction and the next-to-last stage of the decoding process. The loop filter is applied to the entire frame after the summation of predictor and residue signals, as described in Section 7.3.5.

The purpose of the loop filter is to eliminate (or at least reduce) visually objectionable artifacts associated with the semi- independence of the coding of macroblocks and their constituent subblocks.

The loop filter is "integral" to decoding, in that the results of loop filtering are used in the prediction of subsequent frames. Consequently, a conformant decoder implementation shall perform loop filtering exactly as described here.

The baseline frame-level parameters controlling the loop filter are defined in the frame header along with a mechanism for adjustment based on a macroblock's prediction mode and/or reference frame (see Table 6.21 and Table 6.23). The first is a flag (filter_type) selecting the type of filter (normal or simple); the other two are numbers (loop_filter_level and sharpness_level) that adjust the strength or sensitivity of the filter; loop_filter_level may also be overridden on a per-macroblock basis using segmentation (using the syntax elements listed in Table 6.23).

Loop filtering shall be skipped entirely if loop_filter_level at either the frame header level or macroblock override level is 0.

7.3.7.1 Filter Geometry and Overall Procedure
The Y, U, and V planes are processed independently and identically.

The loop filter acts on the edges between adjacent macroblocks and on the edges between adjacent subblocks of a macroblock. All such edges are horizontal or vertical. For each pixel position on an edge, a small number (two or three) of pixels adjacent to either side of the position are examined and possibly modified. The displacements of these pixels are at a right angle to the edge orientation; that is, for a horizontal edge, the pixels immediately above and below the edge position are treated, and for a vertical edge, the pixels immediately to the left and right of the edge are treated.

This collection of pixels associated to an edge position is referred to as a a segment (in the context of loop filtering); the length of a segment is 2, 4, 6, or 8. Excepting that the normal filter uses slightly different algorithms for, and either filter may apply different control parameters to, the edges between macroblocks and those between subblocks, the treatment of edges is quite uniform: All segments straddling an edge are treated identically; there is no distinction between the treatment of horizontal and vertical edges, whether between macroblocks or between subblocks.

As a consequence, adjacent subblock edges within a macroblock may be concatenated and processed in their entirety. There is a single 8-pixel-long vertical edge horizontally centred in each of the U and V blocks (the concatenation of upper and lower 4-pixel edges between chroma subblocks), and three 16-pixel-long vertical edges at horizontal positions 1/4, 1/2, and 3/4 the width of the luma macroblock, each representing the concatenation of four 4-pixel sub-edges between pairs of Y subblocks.

The macroblocks comprising the frame are processed in the usual raster-scan order. Each macroblock is associated with the inter-macroblock edges immediately above and to the left of it (but not the edges below and to the right of it), as well as the edges between its subblocks.

For each macroblock M, there are four filtering steps, which are:

1. If M is not on the leftmost column of macroblocks, filter across the left (vertical) inter-macroblock edge of M.
2. Filter across the vertical subblock edges within M.
3. If M is not on the topmost row of macroblocks, filter across the top (horizontal) inter-macroblock edge of M.
4. Filter across the horizontal subblock edges within M.

The labels MY, MU, and MV are used in the following discussion to represent the planar constituents of M, that is, the 16x16 luma block, 8x8 U block, and 8x8 V block comprising M.

In step 1, for each of the three blocks MY, MU, and MV, each of the (16 luma or 8 chroma) segments straddling the column separating the block from the block immediately to the left of it are filtered, using the inter-macroblock filter and controls associated to the loop_filter_level and sharpness_level.

In step 4, filtering is performed across the (three luma and one each for U and V) vertical subblock edges described above, this time using the inter-subblock filter and controls.

Steps 2 and 4 shall be skipped for macroblocks that satisfy both of the following two conditions:

a. Macroblock coding mode is neither B_PRED nor SPLITMV; and
b. There is no DCT coefficient coded for the whole macroblock.

Edges between macroblocks and those between subblocks are treated with different control parameters (and, in the case of the normal filter, with different algorithms). Except for pixel addressing, there is no distinction between the treatment of vertical and horizontal edges. Luma edges are always 16 pixels long, chroma edges are always 8 pixels long, and the segments straddling an edge are treated identically.

Because many pixels belong to segments straddling two or more edges, and so will be filtered more than once, the order in which edges are processed given above shall be respected by any implementation. Within a single edge, however, the segments straddling that edge are disjoint, and the order in which these segments are processed is immaterial.

Note that the loop filter applies after all the macroblocks have been "reconstructed" (i.e., had their predictor summed with their residue); correct decoding is predicated on the fact that already-constructed portions of the current frame referenced via intra-prediction are not yet filtered.

7.3.7.2 [bookmark: _Ref375593592]Simple Filter
The simple filter shall only apply to luma edges. Chroma edges are left unfiltered.

Most of the filtering arithmetic is requires 8-bit signed operands (having a range of -128 to +127, inclusive), supplemented by 16-bit temporaries holding results of multiplies.

Sums and other temporaries need to be "clamped" to a valid signed 8-bit range:

NOTE: Since pixel values themselves are unsigned 8-bit numbers, there is a need to convert between signed and unsigned values:

To simplify the specification of relative pixel positions, the word "before" is used to mean "immediately above" (for a vertical segment straddling a horizontal edge) or "immediately to the left of" (for a horizontal segment straddling a vertical edge), and the word "after" is used to mean "immediately below" or "immediately to the right of".

In the case of the simple filter, the same procedure is used for all segments straddling any type of edge regardless of the nature (inter-macroblock, inter-subblock, luma, or chroma) of the edge; only the limit value depends on the edge type.

The application of the simple filter shall be equivalent to the pseudo-code listed in Table 7.323, which makes reference to pseudo-code listed in Table 7.322 (which is common between the simple loop filter and the normal filter).

[bookmark: _Ref375551761]Table 7.322 Common loop filter pseudo-code
	int8 common_adjust(

	 int use_outer_taps, /* filter is 2 or 4 taps wide */

	 const Pixel *P1, /* pixel before P0 */

	 Pixel *P0, /* pixel before edge */

	 Pixel *Q0, /* pixel after edge */

	 const Pixel *Q1 /* pixel after Q0 */

) {

	 cint8 p1 = u2s(*P1); /* retrieve and convert all 4 pixels */

	 cint8 p0 = u2s(*P0);

	 cint8 q0 = u2s(*Q0);

	 cint8 q1 = u2s(*Q1);

	 /* Disregarding clamping, when "use_outer_taps" is false, "a" is 3*(q0-p0). Since the division of "a" by 8 is about to be done, in this case the edge difference ends up being multiplied by 5/8. When "use_outer_taps" is true (as for the simple filter), "a" is p1 - 3*p0 + 3*q0 - q1, which can be thought of as a refinement of 2*(q0 - p0), and the adjustment is something like (q0 - p0)/4. */

	 int8 a = c((use_outer_taps? c(p1 - q1) : 0) + 3*(q0 - p0));

	 /* b is used to balance the rounding of a/8 in the case where the "fractional" part "f" of a/8 is exactly 1/2. */

	 cint8 b = (c(a + 3)) >> 3;

	 /* Divide a by 8, rounding up when f >= 1/2. Although not strictly part of the C language, the right shift is assumed to propagate the sign bit. */

[bookmark: _Ref375551910]Table 7.323 Simple loop filter pseudo-code
	 void simple_segment(

	 uint8 edge_limit, /* do nothing if edge difference exceeds limit */

	 const Pixel *P1, /* pixel before P0 */

	 Pixel *P0, /* pixel before edge */

	 Pixel *Q0, /* pixel after edge */

	 const Pixel *Q1 /* pixel after Q0 */

) {

	 if ((abs(*P0 - *Q0)*2 + abs(*P1 - *Q1)/2) <= edge_limit))

	 common_adjust(1, P1, P0, Q0, Q1); /* use outer taps */

	 }

The derivation of the edge_limit value used in Table 7.323, which depends on the loop_filter_level and sharpness_level, as well as the type of edge being processed, will be described after the normal loop filtering algorithm below.

7.3.7.3 [bookmark: _Ref346004507]Normal Filter
The normal loop filter is a refinement of the simple loop filter.

As mentioned above, the normal algorithms for inter-macroblock and inter-subblock edges differ. Nonetheless, these algorithms have a great deal in common: Both filter algorithms use similar threshold algorithms to disable the filter and to detect high internal edge variance (which influences the filtering algorithm). Both algorithms also use, at least conditionally, the simple filter adjustment procedure described above.

The common thresholding algorithms are as follows:

Table 7.324 Common thresholding algorithm pseudo code used for inter-macroblock and inter-subblock edge filtering (Normal filter)
	 /* All functions take (among other things) a segment (of length at most 4 + 4 = 8) symmetrically straddling an edge.The pixel values (or pointers) are always given in order, from the "beforemost" to the "aftermost". So, for a horizontal edge (written "|"), an 8-pixel segment would be ordered p3 p2 p1 p0 | q0 q1 q2 q3. */

	 /* Filtering is disabled if the difference between any two adjacent "interior" pixels in the 8-pixel segment exceeds the relevant threshold (I). A more complex thresholding calculation is done for the group of four pixels that straddle the edge, in line with the calculation in simple_segment() above. */

	int filter_yes(

	 uint8 I, /* limit on interior differences */

	 uint8 E, /* limit at the edge */

	 cint8 p3, cint8 p2, cint8 p1, cint8 p0, /* pixels before edge */

	 cint8 q0, cint8 q1, cint8 q2, cint8 q3 /* pixels after edge */

) {

	 return (abs(p0 - q0)*2 + abs(p1 - q1)/2) <= E && abs(p3 - p2) <= I && abs(p2 - p1) <= I && abs(p1 - p0) <= I && abs(q3 - q2) <= I && abs(q2 - q1) <= I && abs(q1 - q0) <= I;

	 }

	/* Filtering is altered if (at least) one of the differences on either side of the edge exceeds a threshold (this is "high edge variance"). */

	 int hev(

	 uint8 threshold,

	 cint8 p1, cint8 p0, /* pixels before edge */

	 cint8 q0, cint8 q1 /* pixels after edge */

) {

	 return abs(p1 - p0) > threshold || abs(q1 - q0) > threshold;

	 }

The normal sub-block filter is a variant of the simple filter. In the case of high edge variance, the adjustment is exactly as for the simple filter. Otherwise, the simple adjustment (without outer taps) is applied, and the two pixels one step in from the edge pixels are adjusted by roughly half the amount by which the two edge pixels are adjusted; since the edge adjustment here is essentially 3/8 the edge difference, the inner adjustment is approximately 3/16 the edge difference.

Table 7.325 Normal subblock loop filter
	void subblock_filter(

	 uint8 hev_threshold, /* detect high edge variance */

	 uint8 interior_limit, /* possibly disable filter */

	 uint8 edge_limit,

	 cint8 *P3, cint8 *P2, int8 *P1, int8 *P0, /* pixels before edge */

	 int8 *Q0, int8 *Q1, cint8 *Q2, cint8 *Q3 /* pixels after edge */

) {

	 cint8 p3 = u2s(*P3), p2 = u2s(*P2), p1 = u2s(*P1),

	 p0 = u2s(*P0);

	 cint8 q0 = u2s(*Q0), q1 = u2s(*Q1), q2 = u2s(*Q2),

	 q3 = u2s(*Q3);

	 if (filter_yes(interior_limit, edge_limit, q3, q2, q1, q0,

	 p0, p1, p2, p3))

	 {

	 const int hv = hev(hev_threshold, p1, p0, q0, q1);

	 cint8 a = (common_adjust(hv, P1, P0, Q0, Q1) + 1) >> 1;

	 if (!hv) {

	 *Q1 = s2u(q1 - a);

	 *P1 = s2u(p1 + a);

	 }

	 }

	 }

For the inter-macroblock filter, if the edge variance is high, it performs the simple adjustment (using the outer taps, just like the simple filter and the corresponding case of the normal subblock filter). If the edge variance is low, the filtering begins with the same basic filter calculation and applies multiples of it to pixel pairs symmetric about the edge; the magnitude of adjustment decays as the further the pixels are from the edge and six of the pixels in the segment are affected. Table 7.326 lists the algorithm for the inter-macroblock normal loop filter. Conformant decoders shall implement an equivalent algorithm.

[bookmark: _Ref375593439]Table 7.326 Inter MBnormal loop filter algorithm
	void MBfilter(

	 uint8 hev_threshold, /* detect high edge variance */

	 uint8 interior_limit, /* possibly disable filter */

	 uint8 edge_limit,

	 cint8 *P3, int8 *P2, int8 *P1, int8 *P0, /* pixels before edge */

	 int8 *Q0, int8 *Q1, int8 *Q2, cint8 *Q3 /* pixels after edge */

) {

	 cint8 p3 = u2s(*P3), p2 = u2s(*P2), p1 = u2s(*P1), p0 = u2s(*P0);

	 cint8 q0 = u2s(*Q0), q1 = u2s(*Q1), q2 = u2s(*Q2), q3 = u2s(*Q3);

	 if (filter_yes(interior_limit, edge_limit, q3, q2, q1, q0, p0, p1, p2, p3))

	 {

	 if (!hev(hev_threshold, p1, p0, q0, q1))

	 {

	 /* Same as the initial calculation in "common_adjust", w is something like twice the edge difference */

	 const int8 w = c(c(p1 - q1) + 3*(q0 - p0));

	 /* 9/64 is approximately 9/63 = 1/7, and 1<<7 = 128 =2*64. So this a, used to adjust the pixels adjacent to the edge, is something like 3/7 the edge difference. */

	 int8 a = c((27*w + 63) >> 7);

	 *Q0 = s2u(q0 - a); *P0 = s2u(p0 + a);

	 /* Next two are adjusted by 2/7 the edge difference */

	 a = c((18*w + 63) >> 7);

	 *Q1 = s2u(q1 - a); *P1 = s2u(p1 + a);

	 /* Last two are adjusted by 1/7 the edge difference */

	 a = c((9*w + 63) >> 7);

	 *Q2 = s2u(q2 - a); *P2 = s2u(p2 + a);

	} else /* if hev, do simple filter */

	 common_adjust(1, P1, P0, Q0, Q1); /* using outer taps */

	 }

	 }

7.3.7.4 Calculation of Control Parameters
This sub-section specifies how the thresholds supplied to the procedures listed in sections 7.3.7.2 and 7.3.7.3 are derived from the two control parameters sharpness_level (an unsigned 3-bit number having maximum value 7) and loop_filter_level (an unsigned 6-bit number having maximum value 63) (listed in Table 6.21).

While the sharpness_level is constant over the frame, individual macroblocks may override the loop_filter_level with one of four possibilities supplied in the frame header (see Table 6.23).

Both the simple and normal filters disable filtering if a value derived from the four pixels that straddle the edge (2 either side) exceeds a threshold / limit value. The edge limits listed in Table 7.327 shall apply to both luma and chroma components. The limit mbedge_limit applied to MB edges, whilst sub_bedge_limit applied to subblock edges.

[bookmark: _Ref375594326]Table 7.327 Calculation of MB and subblock loop filter edge limits
	/* Luma and Chroma use the same inter-macroblock edge limit */

	uint8 mbedge_limit = ((loop_filter_level + 2) * 2) + interior_limit;

	 /* Luma and Chroma use the same inter-subblock edge limit */

	 uint8 sub_bedge_limit = (loop_filter_level * 2) + interior_limit;

The remaining thresholds are relevant only to the normal filters. The filter-disabling interior difference limit (interior_limit) is the same for all edges (luma, chroma, inter-subblock, inter-macroblock) and is given by the pseudo-code listing in Table 7.328.

[bookmark: _Ref375594651]Table 7.328 Calculation of the interior difference limit for the normal filter
	uint8 interior_limit = loop_filter_level;

	 if (sharpness_level)

	 {

	 interior_limit >>= sharpness_level > 4 ? 2 : 1;

	 if (interior_limit > 9 - sharpness_level)

	 interior_limit = 9 - sharpness_level;

	 }

	 if (!interior_limit)

	 interior_limit = 1;

Finally, the derivation of the high edge-variance threshold (hev_threshold), which is also the same for all edge types is given in Table 7.329.

[bookmark: _Ref375594743]Table 7.329 Calculation of the high edge variance threshold for the normal filter
	uint8 hev_threshold = 0;

	 if (we_are_decoding_akey_frame) /* current frame is a key frame */

	 {

	 if (loop_filter_level >= 40)

	 hev_threshold = 2;

	 else if (loop_filter_level >= 15)

	 hev_threshold = 1;

	 }

	 else /* current frame is an interframe */

	 {

	 if (loop_filter_level >= 40)

	 hev_threshold = 3;

	 else if (loop_filter_level >= 20)

	 hev_threshold = 2;

	 else if (loop_filter_level >= 15)

	 hev_threshold = 1;

	 }

7.3.8 [bookmark: _Toc378874740][bookmark: _Toc384326618]Interframe Macroblock Prediction
For an inter-frame, the flag is_inter_mb (see Table 6.32) indicates whether or not inter prediction shall be applied to the current MB.

7.3.8.1 Intra-Predicted Macroblocks
For intra-prediction, the layout of the prediction data is essentially the same as the layout for key frames, although the contexts used by the decoding process are slightly different (see section 7.3.3 for a discussion of intra frame prediction).

The "outer" Y mode for inter-frame MBs uses a different tree from that used in key frames, which is given in Table 7.330 (where the constant num_ymodes has the value 5).

[bookmark: _Ref375606226]Table 7.330 Tree codes for the luma modes of intra predicted MBs in inter-frames
	const tree_index ymode_tree [2 * (num_ymodes - 1)] =

	 {

	 -DC_PRED, 2, /* root: DC_PRED = "0", "1" subtree */

	 4, 6, /* "1" subtree has 2 descendant subtrees */

	 -V_PRED, -H_PRED, /* "10" subtree: V_PRED = "100", H_PRED = "101" */

	 -TM_PRED, -B_PRED /* "11" subtree: TM_PRED = "110", B_PRED = "111" */

	 };

The probability table used to decode the tree listed in Table 7.330 is variable. As described in Section 7.3.2, it (along with the similarly treated UV table) can be updated by field refresh_entropy_probs of the frame header (see Table 6.21). Similar to the coefficient-decoding probabilities, such updates are cumulative and affect all ensuing frames until the next key frame or explicit update.

The default probabilities for the Y and UV tables shall be as listed in Table 7.331 below:

[bookmark: _Ref375607303]Table 7.331 Default probabilities for decoding the Y and UV modes in inter-frames
	Prob ymode_prob [num_ymodes - 1] = { 112, 86, 140, 37};

	 Prob uv_mode_prob [num_uv_modes - 1] = { 162, 101, 204};

These defaults shall be restored after detection of a key frame. Just as for key frames, if the Y mode is B_PRED, there next comes an encoding of the intra_b_mode (see Table 6.32) used by each of the sixteen Y subblocks. These encodings use the same tree as does that for key frames but, in place of the contexts used in key frames, these encodings use the single fixed probabilities listed in Table 7.332.

[bookmark: _Ref375632571]Table 7.332 intra_b_mode tree encoding probabilities
	const Prob bmode_prob [num_intra_bmodes - 1] = {

	 120, 90, 79, 133, 87, 85, 80, 111, 151

	 };

Last comes the chroma mode, again coded using the same tree as used for key frames (see Table 7.35), however, the probability values are obtained from the dynamic uv_mode_prob (with default values listed in Table 7.331) described above. The calculation of the intra-prediction buffer is identical to that was described for key frames in section 7.3.2.3.

7.3.8.2 Inter-Predicted Macroblocks
The bitstream element mb_ref_frame_sel1 (see Table 6.32), selects the reference frame. If 0, the reference frame is the previous frame (the last frame); if 1, another bool, mb_ref_frame_sel2 (see Table 6.32) selects the reference frame between the golden frame (0) and the altref frame (1). The probabilities prob_last and prob_gf are set the frame header (see Table 6.21).

Together with setting the reference frame, the purpose of inter-mode decoding is to set a motion vector for each of the sixteen Y subblocks of the current macroblock. These settings then define the calculation of the inter-prediction result.

After the reference frame selector comes the mode (or motion vector reference) applied to the macroblock as a whole, this is element mv_mode in Table 6.32 coded using the enumeration and tree listed in Table 7.333. Note that setting mv_nearest = num_ymodes in Table 7.333 is a convenience that allows a single variable to unambiguously hold an inter- or intra-prediction mode.

[bookmark: _Ref375638219]Table 7.333 mv_mode tree code
	typedef enum

	 {

	 mv_nearest = num_ymodes, /* use "nearest" motion vector for entire MB */

	 mv_near, /* use "next nearest" "" */

	 mv_zero, /* use zero "" */

	 mv_new, /* use explicit offset from implicit "" */

	 mv_split, /* use multiple motion vectors */

	 num_mv_refs = mv_split + 1 - mv_nearest

	 }

	 mv_ref;

	 const tree_index mv_ref_tree [2 * (num_mv_refs - 1)] =

	 {

	 -mv_zero, 2, /* zero = "0" */

	 -mv_nearest, 4, /* nearest = "10" */

	 -mv_near, 6, /* near = "110" */

	 -mv_new, -mv_split /* new = "1110", split = "1111" */

	 };

7.3.9 [bookmark: _Toc378874741][bookmark: _Toc384326619]Mode and Motion Vector Contexts
The algorithm used to decode the motion vectors generates a sorted list of distinct motion vectors adjacent to the search site. The label best_mv is used to refer to the vector with the highest score. The label mv_nearest is used to refer to the non-zero vector with the highest score. The label mv_near is used to refer to the non-zero vector with the next highest score.

The three adjacent macroblocks: above, left, and above-left are considered in order. If the macroblock is intra-coded, no action is taken. Otherwise, the motion vector is compared to other previously found motion vectors to determine if it has been seen before, and if so contributes its weight to that vector; otherwise, a new vector is entered in the list of motion vectors maintained by the algorithm. The above and left vectors shall be given twice the weight of the above-left vector.

It is possible for macroblocks near the top or left edges of the image to reference blocks that are outside the visible image. A border of 1 macroblock filled with (0,0) motion vectors left of the left edge, and a border filled with (0, 0) motion vectors of 1 macroblocks above the top edge is used for these cases.

The calculation of reference vectors, probability table, and, finally, the inter-prediction mode itself shall be equivalent to the pseudo-code listed in Table 7.334.

[bookmark: _Ref375639592]Table 7.334 Calculation of reference vectors, probability table and inter-prediction mode
	typedef union

	 {

	 unsigned int as_int;

	 MV as_mv;

	 } int_mv; /* facilitates rapid equality tests */

	 static void mv_bias(MODE_INFO *x,int refframe, int_mv *mvp,

	 int * ref_frame_sign_bias)

	 {

	 MV xmv;

	 xmv = x->mbmi.mv.as_mv;

	 if (ref_frame_sign_bias[x->mbmi.ref_frame] !=

	 ref_frame_sign_bias[refframe])

	 {

	 xmv.row*=-1;

	 xmv.col*=-1;

	 }

	 mvp->as_mv = xmv;

	 }

	void vcb_clamp_mv(MV *mv, const MACROBLOCKD *xd)

	 {

	 if (mv->col < (xd->mb_to_left_edge - LEFT_TOP_MARGIN))

	 mv->col = xd->mb_to_left_edge - LEFT_TOP_MARGIN;

	 else if (mv->col > xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN)

	 mv->col = xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN;

	

	 if (mv->row < (xd->mb_to_top_edge - LEFT_TOP_MARGIN))

	 mv->row = xd->mb_to_top_edge - LEFT_TOP_MARGIN;

	 else if (mv->row > xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN)

	 mv->row = xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN;

	 }

In the pseudo-code listed in Table 7.335, the function vcb_find_near_mvs(), the vectors "nearest" and "near" are used by the corresponding modes. The vector best_mv is used as a base for explicitly coded motion vectors.

The first three entries in the return value cnt are (in order) weighted census values for "zero", "nearest", and "near" vectors. The final value indicates the extent to which SPLITMV was used by the neighboring macroblocks. The largest possible "weight" value in each case shall be 5.

[bookmark: _Ref375639855]Table 7.335 Pseudo-code for the calculation of the nearest and near motion vectors
	void vcb_find_near_mvs

	 (

	 MACROBLOCKD *xd,

	 const MODE_INFO *here,

	 MV *nearest,

	 MV *near,

	 MV *best_mv,

	 int cnt[4],

	 int refframe,

	 int * ref_frame_sign_bias

)

	{

	 const MODE_INFO *above = here - xd->mode_info_stride;

	 const MODE_INFO *left = here - 1;

	 const MODE_INFO *aboveleft = above - 1;

	 int_mv near_mvs[4];

	 int_mv *mv = near_mvs;

	 int *cntx = cnt;

	 enum {CNT_ZERO, CNT_NEAREST, CNT_NEAR, CNT_SPLITMV};

	 /* Zero accumulators */

	 mv[0].as_int = mv[1].as_int = mv[2].as_int = 0;

	 cnt[0] = cnt[1] = cnt[2] = cnt[3] = 0;

	 /* Process above */

	 if (above->mbmi.ref_frame != INTRA_FRAME) {

	 if (above->mbmi.mv.as_int) {

	 (++mv)->as_int = above->mbmi.mv.as_int;

	 mv_bias(above, refframe, mv, ref_frame_sign_bias);

	 ++cntx;

	 }

	 *cntx += 2;

	 }

	 /* Process left */

	 if (left->mbmi.ref_frame != INTRA_FRAME) {

	 if (left->mbmi.mv.as_int) {

	 int_mv this_mv;

	 this_mv.as_int = left->mbmi.mv.as_int;

	 mv_bias(left, refframe, &this_mv, ref_frame_sign_bias);

	 if (this_mv.as_int != mv->as_int) {

	 (++mv)->as_int = this_mv.as_int;

	 ++cntx;

	 }

	 *cntx += 2;

	 } else

	 cnt[CNT_ZERO] += 2;

	 }

	 /* Process above left */

	 if (aboveleft->mbmi.ref_frame != INTRA_FRAME) {

	 if (aboveleft->mbmi.mv.as_int) {

	 int_mv this_mv;

	 this_mv.as_int = aboveleft->mbmi.mv.as_int;

	 mv_bias(aboveleft, refframe, &this_mv,

	 ref_frame_sign_bias);

	if (this_mv.as_int != mv->as_int) {

	 (++mv)->as_int = this_mv.as_int;

	 ++cntx;

	 }

	 *cntx += 1;

	 } else

	 cnt[CNT_ZERO] += 1;

	 }

	 /* If there are three distinct MVs ... */

	 if (cnt[CNT_SPLITMV]) {

	 /* See if above-left MV can be merged with NEAREST */

	 if (mv->as_int == near_mvs[CNT_NEAREST].as_int)

	 cnt[CNT_NEAREST] += 1;

	 }

	 cnt[CNT_SPLITMV] = ((above->mbmi.mode == SPLITMV)

	 + (left->mbmi.mode == SPLITMV)) * 2

	 + (aboveleft->mbmi.mode == SPLITMV);

	 /* Swap near and nearest if necessary */

	 if (cnt[CNT_NEAR] > cnt[CNT_NEAREST]) {

	 int tmp;

	 tmp = cnt[CNT_NEAREST];

	 cnt[CNT_NEAREST] = cnt[CNT_NEAR];

	 cnt[CNT_NEAR] = tmp;

	 tmp = near_mvs[CNT_NEAREST].as_int;

	 near_mvs[CNT_NEAREST].as_int = near_mvs[CNT_NEAR].as_int;

	 near_mvs[CNT_NEAR].as_int = tmp;

	 }

	 /* Use near_mvs[0] to store the "best" MV */

	 if (cnt[CNT_NEAREST] >= cnt[CNT_ZERO])

	 near_mvs[CNT_ZERO] = near_mvs[CNT_NEAREST];

	 /* Set up return values */

	 *best_mv = near_mvs[0].as_mv;

	 *nearest = near_mvs[CNT_NEAREST].as_mv;

	 *near = near_mvs[CNT_NEAR].as_mv;

	 vcb_clamp_mv(nearest, xd);

	 vcb_clamp_mv(near, xd);

	 vcb_clamp_mv(best_mv, xd);

	 }

The mv_ref probability table (mv_ref_p) is then derived from the census as shown in Table 7.336.

[bookmark: _Ref375640083]Table 7.336 Derivation of the reference MV probability table
	const int vcb_mode_contexts[6][4] =

	 {

	 { 7, 1, 1, 143, },

	 { 14, 18, 14, 107, },

	 { 135, 64, 57, 68, },

	 { 60, 56, 128, 65, },

	 { 159, 134, 128, 34, },

	 { 234, 188, 128, 28, },

	 }

	vcb_prob *vcb_mv_ref_probs(vcb_prob mv_ref_p[VCB_MVREFS-1],

	 int cnt[4])

	 {

	 mv_ref_p[0] = vcb_mode_contexts [cnt[0]] [0];

	 mv_ref_p[1] = vcb_mode_contexts [cnt[1]] [1];

	 mv_ref_p[2] = vcb_mode_contexts [cnt[2]] [2];

	 mv_ref_p[3] = vcb_mode_contexts [cnt[3]] [3];

	 return p;

	 }

Once mv_ref_p is established, the mv_ref is decoded using tree code decoding.

For the first four inter-coding modes, the same motion vector is used for all the Y subblocks. The first three modes use an implicit motion vector.

Table 7.337 MV mode and how to apply the determined MVs
	 Mode
	 Instruction

	 mv_nearest
	Use the nearest vector returned by vcb_find_near_mvs.

	 mv_near
	Use the near vector returned by vcb_find_near_mvs.

	 mv_zero
	Use a zero vector; that is, predict the current macroblock from the corresponding macroblock in the prediction frame.

	 NEWMV
	This mode is followed by an explicitly coded motion vector (the format of which is described in the next section) that is added (component-wise) to the best_mv reference vector returned by find_near_mvs and applied to all 16 subblocks.

7.3.9.1 Split Prediction
The remaining mode (SPLITMV) causes multiple vectors to be applied to the Y subblocks. It is immediately followed by a partition specification that determines how many vectors will be specified and how they will be assigned to the subblocks (specifically, element mv_split_mode in Table 6.32). The possible partitions, with indicated subdivisions and coding tree, are listed in Table 7.338.

[bookmark: _Ref375640677]Table 7.338 SPLITMV subblock partitions and coding tree
	typedef enum

	 {

	 mv_top_bottom, /* two pieces {0...7} and {8...15} */

	 mv_left_right, /* {0,1,4,5,8,9,12,13} and {2,3,6,7,10,11,14,15} */

	 mv_quarters, /* {0,1,4,5}, {2,3,6,7}, {8,9,12,13}, {10,11,14,15} */

	 MV_16, /* every subblock gets its own vector {0} ... {15} */

	 mv_num_partitions

	 }

	 MVpartition;

	 const tree_index mvpartition_tree [2 * (mvnum_partition - 1)] =

	 {

	 -MV_16, 2, /* MV_16 = "0" */

	 -mv_quarters, 4, /* mv_quarters = "10" */

	 -mv_top_bottom, -mv_left_right /* top_bottom = "110", left_right = "111" */

	 };

The partition is decoded using a fixed, constant probability table:

Table 7.339 Decoding pobabilities for the MV partitions
	const Prob mvpartition_probs [mvnum_partition - 1] ={ 110, 111, 150};

After the partition come two (for mv_top_bottom or mv_left_right), four (for mv_quarters), or sixteen (for MV_16) subblock inter-prediction modes (see Table 7.338). These modes occur in the order indicated by the partition layouts, i.e. for mv_top_bottom the subblock modes occur in two parts in the order {0...7}, {8...15}; for mv_left_right the subblock modes also occur in two parts in the order {0,1,4,5,8,9,12,13}, {2,3,6,7,10,11,14,15}; for mv_quarters the subblock modes occur in 4 parts in the order {0,1,4,5}, {2,3,6,7}, {8,9,12,13}, {10,11,14,15}; and, finally, for MV_16 each subblock gets its own mode and so these are numbered from 0 to 15.

As is the case for the macroblock-level modes, the mode enumeration is offset so that a single variable may unambiguously hold either an intra- or inter-subblock mode.

Table 7.340 lists pseudo code for decoding the subblock motion vectors. Prior to decoding each subblock, a decoding tree context is chosen as illustrated in the pseudo code in Table 7.340. The context is based on the immediate left and above subblock neighbors, and whether they are equal, are zero, or a combination of those.

[bookmark: _Ref375709718]Table 7.340 subblock MV decoding
	 typedef enum

	 {

	 LEFT4x4 = num_intra_bmodes, /* use already-coded MV to my left */

	 ABOVE4x4, /* use already-coded MV above me */

	 ZERO4x4, /* use zero MV */

	 NEW4x4, /* explicit offset from "best" */

	 num_sub_mv_ref

	 };

	 sub_mv_ref;

	const tree_index sub_mv_ref_tree [2 * (num_sub_mv_ref - 1)] =

	 {

	 -LEFT4X4, 2, /* LEFT = "0" */

	 -ABOVE4X4, 4, /* ABOVE = "10" */

	 -ZERO4X4, -NEW4X4 /* ZERO = "110", NEW = "111" */

	 };

	 /* Choose correct decoding tree context

	 * Function parameters are left subblock neighbor MV and above

	 * subblock neighbor MV */

	 int vcb_mvCont(MV *l, MV*a)

	 {

	 int lez = (l->row == 0 && l->col == 0); /* left neighbour is zero */

	 int aez = (a->row == 0 && a->col == 0); /* above neighbor is zero */

	 int lea = (l->row == a->row && l->col == a->col); /* left neighbor equals above neighbor */

	 if (lea && lez)

	 return SUBMVREF_LEFT_ABOVE_ZED; /* =4 */

	 if (lea)

	 return SUBMVREF_LEFT_ABOVE_SAME; /* =3 */

	 if (aez)

	 return SUBMVREF_ABOVE_ZED; /* =2 */

	 if (lez)

	 return SUBMVREF_LEFT_ZED; /* =1*/

	 return SUBMVREF_NORMAL; /* =0 */

	 }

	 /* Constant probabilities and decoding procedure. */

	 const Prob sub_mv_ref_prob [5][num_sub_mv_ref - 1] = {

	 { 147,136,18 },

	 { 106,145,1 },

	 { 179,121,1 },

	 { 223,1 ,34 },

	 { 208,1 ,1 }

	 };

	 sub_ref = (sub_mv_ref) treed_read(d, sub_mv_ref_tree, sub_mv_ref_prob[context]);

The first two sub-prediction modes simply copy the already-coded motion vectors used by the blocks above and to the left of the subblock at the upper left corner of the current subset (i.e., collection of subblocks being predicted). These prediction blocks need not lie in the current macroblock and, if the current subset lies at the top or left edges of the frame, need not lie in the frame. In this latter case, their motion vectors are taken to be zero, as are subblock motion vectors within an intra-predicted macroblock. Also, to ensure the correctness of prediction within this macroblock, all subblocks lying in an already-decoded subset of the current macroblock shall have their motion vectors set.

ZERO4x4 uses a zero motion vector and predicts the current subset using the corresponding subset from the prediction frame.

NEW4x4 is exactly like NEWMV except that NEW4x4 shall be applied only to the current subset. It is followed by a two-dimensional motion vector offset (described in section 7.3.9.2) that is added to the “best” vector to form the motion vector in effect for the subset.

7.3.9.2 [bookmark: _Ref375711485]Motion Vector Decoding
As discussed above, motion vectors appear in two places in the bitstream: applied to whole macroblocks in NEWMV mode and applied to subsets of macroblocks in NEW4x4 mode. The format of the vectors is identical in both cases.

Each vector has two pieces: a vertical component (row) followed by a horizontal component (column). The row and column use separate coding probabilities but are otherwise represented identically.

7.3.9.2.1 Coding of Each Component
Each component is a signed integer V representing a vertical or horizontal luma displacement of V quarter-pixels (and a chroma displacement of V eighth-pixels). The absolute value of V, if non-zero, is followed by a Boolean sign. V may take any value between -1023 and +1023, inclusive.

The absolute value A is coded in one of two different ways according to its size. For 0 <= A <= 7, A is tree-coded, and for 8 <= A <=1023, the bits in the binary expansion of A are coded using independent Boolean probabilities. The coding of A begins with a bool specifying which range is in effect.

Decoding a motion vector component then requires a 19-position probability table, whose offsets, along with the procedure used to decode components, are as listed in Table 7.341:

[bookmark: _Ref375712036]Table 7.341 Decoding a MV component, along with the required probabilities
	typedef enum

	 {

	 mvpis_short, /* short (<= 7) vs long (>= 8) */

	 MVPsign, /* sign for non-zero */

	 MVPshort, /* 8 short values = 7-position tree */

	 MVPbits = MVPshort + 7, /* 8 long value bits w/independent probs */

	 MVPcount = MVPbits + 10 /* 19 probabilities in total */

	 }

	 MVPindices;

	 typedef Prob MV_CONTEXT [MVPcount]; /* Decoding spec for a single component */

	 /* Tree used for small absolute values (has expected correspondence). */

	 const tree_index small_mvtree [2 * (8 - 1)] =

	 {

	 2, 8, /* "0" subtree, "1" subtree */

	 4, 6, /* "00" subtree, "01" subtree */

	 -0, -1, /* 0 = "000", 1 = "001" */

	 -2, -3, /* 2 = "010", 3 = "011" */

	 10, 12, /* "10" subtree, "11" subtree */

	 -4, -5, /* 4 = "100", 5 = "101" */

	 -6, -7 /* 6 = "110", 7 = "111" */

	 };

	 /* Read MV component at current decoder position, using supplied probs. */

	 int read_mvcomponent(bool_decoder *d, const MV_CONTEXT *mvc)

	 {

	 const Prob * const p = (const Prob *) mvc;

	int A = 0;

	 if (read_bool(d, p [mvpis_short])) /* 8 <= A <= 1023 */

	 {

	 /* Read bits 0, 1, 2 */

	 int i = 0;

	 do { A += read_bool(d, p [MVPbits + i]) << i;}

	 while (++i < 3);

	 /* Read bits 9, 8, 7, 6, 5, 4 */

	 i = 9;

	 do { A += read_bool(d, p [MVPbits + i]) << i;}

	 while (--i > 3);

	 /* Note that A >= 8 because it is coded long, so if A <= 15, bit 3 is one and is not explicitly coded. */

	 if (!(A & 0xfff0) || read_bool(d, p [MVPbits + 3]))

	 A += 8;

	 }

	 else /* 0 <= A <= 7 */

	 A = treed_read(d, small_mvtree, p + MVPshort);

	 return A && read_bool(r, p [MVPsign]) ? -A : A;

	 }

7.3.9.2.2 Probability Updates
The decoder should maintain an array of two MV_CONTEXTs for decoding row and column components, respectively. These MV_CONTEXTs shall be set to their defaults every key frame. Each individual probability may be updated every interframe (by field mv_prob_update() of the frame header shown in Table 6.21) using a constant table of update probabilities. Each optional update is in the form of a bool followed by a 7-bit probability specification if true (the relevant syntax is listed in Table 6.26).

The updates remain in effect until the next key frame or until replaced via another update.
In detail, the probabilities should then be managed as shown in Table 7.342:

[bookmark: _Ref375712524]Table 7.342 Managing the MV context probabilities
	/* Never-changing table of update probabilities for each individual probability used in decoding motion vectors. */

	 const MV_CONTEXT vcb_mv_update_probs[2] =

	 {

	 {

	 237, 246, 253, 253, 254, 254, 254, 254, 254,

	 254, 254, 254, 254, 254, 250, 250, 252, 254, 254

	 },

	 {

	 231, 243, 245, 253, 254, 254, 254, 254, 254,

	 254, 254, 254, 254, 254, 251, 251, 254, 254, 254

	 }

	 };

	 /* Default MV decoding probabilities. */

	 const MV_CONTEXT default_mv_context[2] =

	 {

	 { // row

	 162, // is short

	 128, // sign

	 225, 146, 172, 147, 214, 39, 156, // short tree

	 128, 129, 132, 75, 145, 178, 206, 239, 254, 254 // long bits

	 },

	 { // same for column

	 164, // is short

	 128,

	 204, 170, 119, 235, 140, 230, 228,

	 128, 130, 130, 74, 148, 180, 203, 236, 254, 254 // long bits

	 }

	 };

	 /* Current MV decoding probabilities, set to above defaults every key frame. */

	 MV_CONTEXT mvc [2]; /* always row, then column */

	/* Procedure for decoding a complete motion vector. */

	 typedef struct { int16 row, col;} MV; /* as in previous section */

	 MV read_mv(bool_decoder *d)

	 {

	 MV v;

	 v.row = (int16) read_mvcomponent(d, mvc);

	 v.col = (int16) read_mvcomponent(d, mvc + 1);

	 return v;

	 }

	 /* Procedure for updating MV decoding probabilities, called every interframe with "d" at the appropriate position in the frame header. */

	 void update_mvcontexts(bool_decoder *d)

	 {

	 int i = 0;

	 do { /* component = row, then column */

	 const Prob *up = mv_update_probs[i]; /* update probs for component */

	 Prob *p = mvc[i]; /* start decode tbl "" */

	 Prob * const pstop = p + MVPcount; /* end decode tbl "" */

	 do {

	 if (read_bool(d, *up++)) /* update this position */

	 {

	 const Prob x = read_literal(d, 7);

	 *p = x? x<<1 : 1;

	 }

	 } while (++p < pstop); /* next position */

	 } while (++i < 2); /* next component */

	 }

This completes the description of the motion-vector decoding procedure and, with it, the procedure for decoding inter-frame macroblock prediction information.

7.3.10 [bookmark: _Toc378874742][bookmark: _Toc384326620]Interframe Prediction
Given an inter-prediction specification for the current macroblock, that is, a reference frame together with a motion vector for each of the sixteen Y subblocks, the calculation of the prediction result for the macroblock can be completed. Frame reconstruction is then completed via the previously described processes of residue summation (Section 7.3.6) and loop filtering (Section 7.3.7).

7.3.10.1 Bounds on, and Adjustment of, Motion Vectors
VCB imposes a motion vector size range limit of -4096 to 4095 full pixels, regardless of image size. Bitstream-compliant decoders shall enforce this limit.

Because the motion vectors applied to the chroma subblocks have 1/8-pixel resolution, the synthetic pixel calculation detailed below, uses this resolution for the luma subblocks as well. Accordingly, the stored luma motion vectors are all doubled, each component of each luma vector becoming an even integer in the range -2046 to +2046, inclusive.

The vector applied to each chroma subblock is calculated by averaging the vectors for the 4 luma subblocks occupying the same visible area as the chroma subblock in the usual correspondence; that is, the vector for U and V block 0 is the average of the vectors for the Y subblocks { 0, 1, 4, 5}, chroma block 1 corresponds to Y blocks { 2,3, 6, 7}, chroma block 2 to Y blocks { 8, 9, 12, 13}, and chroma block 3 to Y blocks { 10, 11, 14, 15}.

Each of the two components of the vectors for each of the chroma subblocks is calculated from the corresponding luma vector components as listed in Table 7.343:

[bookmark: _Ref375713055]Table 7.343 Calculation of the chroma MV from the luma MV
	int avg(int c1, int c2, int c3, int c4)

	 {

	 int s = c1 + c2 + c3 + c4;

	 /* The shift divides by 8 (not 4) because chroma pixels have twice the diameter of luma pixels. The handling of negative motion vector components is slightly cumbersome because, strictly speaking, right shifts of negative numbers are not well-defined in C. */

	 return s >= 0 ? (s + 4) >> 3 : -((-s + 4) >> 3);

	 }

Furthermore, if the version number in the frame tag specifies only full-pel chroma motion vectors, then the fractional parts of both components of the vector are truncated to zero, as illustrated in the following pseudocode (assuming 3 bits of fraction for both luma and chroma vectors):

	x = x & (~7);

	 y = y & (~7);

Additional clamping is performed for NEWMV macroblocks, for which the final motion vector is clamped again after combining the "best" predictor and the differential vector decoded from the stream.

However, the secondary clamping is not performed for SPLITMV macroblocks, meaning that any subblock's motion vector within the SPLITMV macroblock may point outside the clamping zone. These non-clamped vectors are also used when determining the decoding tree context for subsequent subblocks' modes in the vcb_mvCont() function in Table 7.334.

7.3.10.2 Prediction Subblocks
The prediction calculation for each subblock is as follows: Temporarily disregarding the fractional part of the motion vector (that is, rounding "up" or "left" by right-shifting each component 3 bits with sign propagation) and adding the origin (upper left position) of the (16x16 luma or 8x8 chroma) current macroblock gives an origin in the Y, U, or V plane of the predictor frame (either the golden frame or previous frame).

Considering that origin to be the upper left corner of a (luma or chroma) macroblock, the relative positions of the pixels associated to that subblock, that is, any pixels that might be involved in the sub-pixel interpolation processes for the subblock is required.

7.3.10.3 Sub-Pixel Interpolation
The sub-pixel interpolation is effected via two one-dimensional convolutions. These convolutions may be thought of as operating on a two-dimensional array of pixels whose origin is the subblock origin, that is the origin of the prediction macroblock plus the offset to the subblock.

The integer part of the motion vector is subsumed in the origin of the prediction subblock; the 16 (synthetic) pixels needed are given by 16 offsets from the origin. The integer part of each of these offsets is the offset of the corresponding pixel from the subblock origin (using the vertical stride). To these integer parts is added a constant fractional part, which is the difference between the actual motion vector and its integer truncation used to calculate the origins of the prediction macroblock and subblock. Each component of this fractional part is an integer between 0 and 7, representing a forward displacement in eighths of a pixel.

It is these fractional displacements that determine the filtering process. If these both happen to be zero (that is, there is a "whole pixel" motion vector), the prediction subblock is simply copied into the corresponding piece of the current macroblock's prediction result.

Otherwise, at least one of the fractional displacements is non-zero. The missing pixels are then synthesized via a horizontal, followed by a vertical, one-dimensional interpolation.

The two interpolations are essentially identical. Each uses a (at most) six-tap filter (the choice of which depends on the one-dimensional offset). Every calculated pixel references at most three pixels before (above or to the left of) it and at most three pixels after (below or to the right of) it. The horizontal interpolation shall calculate two extra rows above and three extra rows below the 4x4 block, to provide enough samples for the vertical interpolation to proceed.

Depending on the reconstruction filter type given in the version number field in the frame tag (see Table 6.12) , either a bicubic or a bilinear tap set is used. Subsampling shall be performed in an equivalent manner to that listed in Table 7.344.

[bookmark: _Ref375714929]Table 7.344 sub-pixel interpolation pseudo-code
	/* Filter taps taken to 7-bit precision. Because DC is always passed, taps always sum to 128. */

	 const int BilinearFilters[8][6] =

	 {

	 { 0, 0, 128, 0, 0, 0 },

	 { 0, 0, 112, 16, 0, 0 },

	 { 0, 0, 96, 32, 0, 0 },

	 { 0, 0, 80, 48, 0, 0 },

	 { 0, 0, 64, 64, 0, 0 },

	 { 0, 0, 48, 80, 0, 0 },

	 { 0, 0, 32, 96, 0, 0 },

	 { 0, 0, 16, 112, 0, 0 }

	 };

	 const int filters [8] [6] = { /* indexed by displacement */

	 { 0, 0, 128, 0, 0, 0 }, /* degenerate whole-pixel */

	 { 0, -6, 123, 12, -1, 0 }, /* 1/8 */

	 { 2, -11, 108, 36, -8, 1 }, /* 1/4 */

	 { 0, -9, 93, 50, -6, 0 }, /* 3/8 */

	 { 3, -16, 77, 77, -16, 3 }, /* 1/2 is symmetric */

	 { 0, -6, 50, 93, -9, 0 }, /* 5/8 = reverse of 3/8 */

	 { 1, -8, 36, 108, -11, 2 }, /* 3/4 = reverse of 1/4 */

	 { 0, -1, 12, 123, -6, 0 } /* 7/8 = reverse of 1/8 */

	 };

	/* One-dimensional synthesis of a single sample. Filter is determined by fractional displacement */

	 Pixel interp(

	 const int fil[6], /* filter to apply */

	 const Pixel *p, /* origin (rounded "before") in prediction area */

	 const int s /* size of one forward step "" */

) {

	 int32 a = 0;

	 int i = 0;

	 p -= s + s; /* move back two positions */

	 do {

	 a += *p * fil[i];

	 p += s;

	 } while (++i < 6);

	 return clamp255((a + 64) >> 7); /* round to nearest 8-bit value */

	 }

	 /* First do horizontal interpolation, producing intermediate buffer. */

	 void Hinterp(

	 Pixel temp[9][4], /* 9 rows of 4 (intermediate) destination values */

	 const Pixel *p, /* subblock origin in prediction frame */

	 int s, /* vertical stride to be used in prediction frame */

	 uint hfrac, /* 0 <= horizontal displacement <= 7 */

	 uint bicubic /* 1=bicubic filter, 0=bilinear */

) {

	 const int * const fil = bicubic ? filters [hfrac] :

	 BilinearFilters[hfrac];

	 int r = 0; do /* for each row */

	 {

	 int c = 0; do /* for each destination sample */

	 {

	 /* Pixel separation = one horizontal step = 1 */

	 temp[r][c] = interp(fil, p + c, 1);

	 }

	while (++c < 4);

	 }

	 while (p += s, ++r < 9); /* advance p to next row */

	 }

	 /* Finish with vertical interpolation, producing final results.

	 Input array "temp" is of course that computed above. */

	 void Vinterp(

	 Pixel final[4][4], /* 4 rows of 4 (final) destination values */

	 const Pixel temp[9][4],

	 uint vfrac, /* 0 <= vertical displacement <= 7 */

	 uint bicubic /* 1=bicubic filter, 0=bilinear */

) {

	 const int * const fil = bicubic ? filters [vfrac] :

	 BilinearFilters[vfrac];

	 int r = 0; do /* for each row */

	 {

	 int c = 0; do /* for each destination sample */

	 {

	 /* Pixel separation = one vertical step = width

	 of array = 4 */

	 final[r][c] = interp(fil, temp[r] + c, 4);

	 }

	 while (++c < 4);

	 }

	 while (++r < 4);

	 }

[bookmark: _Toc384326621]
(informative)

Reference Encoder Description
[bookmark: _Toc384326622]Summary
The VCB encoder is macroblock (MB) based, a MB being defined as a 16×16 block for the Luma channel (Y) and 8×8 for both Chroma channels (U, V). VCB works exclusively with an 8-bit YUV 4:2:0 image format.

VCB one pass encoding consists of the following major steps:

	The frame type is set. There are two encoding frame types (1) a “KEY” frame, which is the same as an INTRA frame, and (2) an “INTER” frame – which is a predicted frame. The initial frame type selection is made on the basis of whether or not a KEY frame is being forced because of the command line configuration. An INTER frame is approximated to require 4 times less bits than a KEY frame.

	The target frame is encoded one macroblock (MB) row at a time. The MB is predicted using two types of predictors - one using spatial information (pixel values surrounding the sub-block), and the other temporal information (motion vectors from other frames). The prediction is subtracted from the original MB to form the residual. Macroblocks are processed in a raster-scan order.

	Both spatial and temporal prediction are used (depending on the frame type). In either case (spatial or temporal prediction), the MB mode is selected based on either an RD calculation or a speed limitation based calculation.

	In the case of mode selection being RD based, the default is to use 16x16 MBs unless the RD cost for the use of 4x4 blocks is lower, in which case the B_PRED mode is used. These are Luma sizes, whereas the block size for the UV plane is kept at 8x8.

	The block is then processed to calculate the residual signal, transform it and quantize it. The residual signal is transformed using a 4x4 DCT or WHT transform. The DCT or WHT is selected depending on the prediction mode that is used.

	VCB defines 128 quantization levels in its scalar quantization process. For each video frame, VCB allows different quantization levels to be used for six frequency components: 1st order luma DC, 1st order luma AC, 2nd order luma DC, 2nd order luma AC, chroma DC and chroma AC. In addition, VCB’s design includes a simple and effective region adaptive quantization scheme, in which the bitstream provides the capability of classifying macroblocks within a frame into 4 different segments, with each segment having its own quantization parameter set.
	The resulting quantized transform coefficients are then de-quantized, inverse transformed and added back to the prediction signal to form the reconstructed MB as it will appear at the decoder.

	The reconstructed MB is loop filtered through an adaptive in-loop de-blocking filter. The type and strength of the filtering can be adjusted for different prediction modes and reference frame types.

	The coding modes, any motion vectors and quantized transform coefficients are entropy coded using a boolean entropy coder to form the compressed bitstream.

	The reference frame buffers are then updated. Decisions are made with regards to whether or not the current frame should be labeled as a GOLDEN frame, an ALTREF (or ARF) frame or simply as the last frame (LF) or KEY frame. The reference encoder implementation tends to produce a GOLDEN frame once every 7 (seven) frames approximately.

As mentioned previously, two frame types are defined: “KEY” frames (INTRA) frames and “INTER” frames. KEY frames, can be decoded without reference to any other frame and as such, provide random access points in a video stream. Interframes may make reference to prior encoded reference frames.

Specifically, VCB defines three potential reference frames:
	The “Last (LF)” encoded frame
	The “GOLDEN Frame (GF)”
	The “Alternate Reference Frame (ARF)”

The reference encoder updates the last frame (LF) each time a frame is encoded. The GOLDEN frame is an occasional reference frame that is encoded at a higher quality than surrounding frames. The alternative reference frame (ARF) is formed by applying a non-linear temporal filter to a contiguous set of future frames.

Blocks in an interframe may be predicted from blocks in any of the three reference frames, LF, GF or ARF. Every KEY frame is automatically a GF. Further, the encoder may update any of the reference frames with the last encoded frame if it so chooses (this is done by tracking statistics indicating how useful the current reference frames have been, in the provided implementation the updates occur in an approximately cyclical manner). ARF frames may be composed from future frames or from previous frames.
[bookmark: _Toc384326623]Prediction

[bookmark: _Toc384326624]Intra-frame prediction
There are 5 intra prediction modes defined for 16×16 luma MBs, which are simply referred to as mode DC_PRED, V_PRED, H_PRED, TM_PRED and, B_PRED. B_PRED splits the signal into 16 4x4 sub-blocks and selects a mode for each sub-block independently. The first four modes are also used for the intra prediction of 8x8 chroma blocks.

For B_PRED mode there are 10 available modes for predicting each 4x4 sub-block, (Table A.1 shows the different 4x4 Luma intra modes):

[bookmark: _Ref383293531]Table A.1 — B_PRED prediction modes
	0 – vertical
	1 - horizontal

	
	

	2 – DC	
	3 – diagonal down-left

	 (
Mean value

and
)
	

	4 – diagonal down-right
	5 – vertical-right

	
	

	6 – horizontal down
	7 – vertical left

	
	

	8 – horizontal up
	9 – TM_PRED

	
	 (
C
)

The encoder tests the application of all these modes and selects the modes causing the smallest sum of differences.

The pixel values of already encoded adjacent blocks are simply copied either in a horizontal, vertical or diagonal way in order to predict the contents of the current block. The sole exception is the true motion prediction mode TM_PRED which is defined as:

Intraframe prediction is performed in raster-scan sequence. The predictor value is subtracted from the corresponding values of the prediction block. The residual values form the prediction residual block which is then transformed to the frequency domain via DCT or WHT transform.

[bookmark: _Toc378874747][bookmark: _Toc384326625]Interframe prediction
When using interframe prediction, a good match for the current MB is sought in the available reference pictures. The motion vectors (MV) describe the displacement of a block from the reference image used to predict in the current MB. The two blocks are compared to establish good prediction. The MVs have up to quarter pixel accuracy for the luma plane and since the MVs for the chroma plane are simply the average of the corresponding four luma MVs, they show a virtual accuracy of an eighth of a pixel. The encoder may also subdivide the MB into number of sub-partitions, and assign MVs to each using the mode SPLIT_MV. The encoder selects the best mode and reference frame combination to use based on rate-distortion criteria. Macroblocks in interframes can be intra-coded.

An alternate reference frame (ARF) is usually designated non-displayable, but it is possible for the encoder to encode an ARF and signal that it should be displayed if it chooses. In the encoder ARFs are constructed by temporally filtering a number of future frames and once created may be used as a reference for frames that are encoded subsequently.

Motion Vectors
Motion estimation is carried out to quarter-pixel accuracy using a set of interpolation filters, and is based only on the luma component of the MB.
There are five ways to signal a MV:
Tabelle A.2 — The five types of motion vectors
	Name
	Description

	Nearest
	Use the nearest MV for this MB

	Near
	Use the next nearest MV for this MB

	Zero
	Use a zero MV for this MB

	New
	Use an explicit offset from implicit MV for this MB

	Split
	Use multiple MVs for this MB

A coding context is defined based on the three neighboring macroblocks, above, left, and above-left. For macroblocks on the topmost or leftmost edge, or for those coded using an intra-prediction mode, the zero motion vector is assumed for the purposes of creating the context.
For each MB the VCB encoder considers a context comprising three neighboring MBs when working out a set of candidate MV predictors:

(1) The MB to the LEFT
(2) The MB ABOVE
(3) The MB ABOVE_LEFT

Starting with an empty list each candidate MV is evaluated in turn.
If (MV == (0,0)) or (MB encoded with INTRA mode)
 	{	ignore and move on to the next MV	}
else If (MV is not in the list)
 	{	add to the list with an initial score of +N	}
else
 	{	increment the counter of the corresponding MV in the list by +N	}
Where N = 2 for the ABOVE & LEFT MB MVs and N=1 for the ABOVE_LEFT MB MV.
Each MV in the list then has a score between 0 & 5, inclusive. The highest scoring MV is classified "BEST_MV" and will be used as an initial offset to code the real MV if NEW_MV mode is selected.
The highest scoring MV is also classified as "NEAREST", and the second highest scoring MV classified as "NEAR". It is these two MVs that are used if modes NEAREST_MV and NEAR_MV are signaled.

Interpolation and Filtering
Interpolation is used to achieve quarter pixel accuracy in the motion vector estimation. VCB defines two sets of interpolation filters, a 6-tap bicubic filter set for higher quality estimation at the cost of greater computational load, and a bilinear filter set for reduced complexity estimation.

The basic interpolation for either the bicubic or bilinear interpolation filter is by convolution. The process uses a clamped convolution which limits the output to 8 bits. This convolution proceeds through two passes, the horizontal initial pass is followed by a vertical pass applied to the resulting data.

For the initial horizontal pass, five additional rows of pixel data (two above and three below the block) are processed to create the nine rows that will be required by the vertical pass.

The additional rows are required so that there is data where the six-tap filter extends beyond the extent of the block itself. The second pass creates the final 4x4 output block by applying the same filter in the vertical direction.
[bookmark: _Toc384326626]Transforms
VCB uses two transforms to encode the residual signal, the 4x4 Discrete Cosine Transform (DCT) and the 4x4 Walsh-Hadamard Transform (WHT). The Transform block uses the prediction mode to decide whether or not to use the WHT or the DCT.

The DCT is used for the 16 Y, 4 U and 4 V sub-blocks (SMBs) of a MB. The WHT is used to transform a 4x4 block constructed from the 16 DC coefficients by the application of the DCT to the 16 sub-blocks. This is a stand-in for the 0th DCT coefficients of the Y sub-blocks. The additional sub-block is the 25th sub-block in a MB; the other 24 comprise the 16 luma and 8 chroma sub-blocks.

[bookmark: _Toc384326627]The Discrete Cosine Transform
The transformation used in VCB is very close to the definition of the ideal discrete cosine transform (DCT), given by:

 = 	 where 	 and b =

The main difference is a multiplication with the factor √2 rather than a division by it. In order to guarantee plain integer arithmetic, the coefficients are stored as constants in an up-scaled version.

Each MB consists of either 16 or 17 SMBs containing luminance data or 4 SMBs for each luma channel, summing up to a total of 24 or 25 SMBs. The eventual 17th luma SMB is available in most prediction modes that process the whole 16×16 at once (all besides SPLIT_MV and B_PRED). It contains the second order luma information of the DC coefficients of all luma SMBs, which means, these coefficients are transformed via the WHT to further decrease correlation within a MB. In this case, all transformed SMBs start with the 1st coefficient instead of the 0th.

[bookmark: _Toc384326628]The Walsh Hadamard Transform
The 4x4 WHT used by VCB is given by:

[bookmark: _Toc384326629]Quantization
To quantize the residue, each coefficient is divided by one of six quantization factors, the selection of which depends upon the plane being encoded. In VCB, a plane is a set of two-dimensional data with metadata describing the type of that data. There are four types of planes in VCB: Y2, the virtual plane from the WHT, Y, the luminance plane, U and V, the two chroma planes. The quantization step also depend on the coefficient position, either DC – coefficient 0, or AC – coefficients 1 through 15. These values are specified in one of two ways, via an index in a look-up table, or as an offset to an index.

The baseline quantization factor, Yac, is specified as a 7-bit lookup into the AC quantizer lookup table. Yac is added to each of the other quantization factors, which are specified as 4-bit positive or negative offsets from the index of Yac.

Each other factor is specified as a four bit offset from the Yac index, and includes a sign bit. This means that if Yac = 16, then a value of Y1 = 3 would be 19, and a value of Y2 = 10 would be 6. This allows an index range of +/- 15 from the index of Yac. In the VCB bitstream, the five factors other than Yac are optional, and only included if a flag is true. If they are omitted, they are set to zero, which indicates that the same quantization factor as Yac should be used for them.

There are two tables defined for each plane (Y, U+V, Y2), one containing the de-quantization coefficients for the DC values (the 0th coefficient of the DCT) and one for all other coefficients representing higher frequencies. The choice of the correct value depends on the default quantization parameter (QP) for the whole image. The encoded MBs are stored in raster-scan order and start at the beginning of partition 2. In case the image was encoded using multiple segments, the corresponding segment ID precedes the DCT / WHT coefficients of each MB. According to the segment ID, the default QP-value that was set for the whole frame may be overridden.

[bookmark: _Toc384326630]Coding the Transformed Coefficients
The coefficients of the 16 sub-blocks of each macroblock are arithmetic coded, using the defined token set. The probability table for encoding this is four-dimensional, and is dependent on the type of plane being encoded, the sub-block being encoded, the local complexity, and the token tree structure.

There are four possible values for the first dimension of the probability table, depending on what type of plane is being encoded, either Y after a Y2 plane, a Y2 plane, a chroma plane (U or V), or a Y plane without a Y2 plane, index, respectively from 0 to 3.

The next dimension depends upon the position of the current subblock within the current macroblock, and is indexed from 0 to 7, known as bands. The mapping of subblocks to the index is shown in Figure A.1. The upper half of the macroblock and the last subblock are treated specially, while the lower half shares index 6.

	0
	1
	2
	3

	6
	4
	5
	6

	6
	6
	6
	6

	6
	6
	6
	7

[bookmark: _Ref383318033]Figure A.1 — Subblock Mapping to the Token Probability Table
The local complexity dimension attempts to match the local area to the corresponding probability. If there are many zeros in the local area, it is more likely that index 0 is used. If there are some, but not a lot, 1 is used. If there is a large amount, index 2 is used.

For the first coefficient of the macroblock, the surrounding macroblocks are examined. The index is the number of surrounding macroblocks that contain at least one non-zero coefficient in their residue. This way, the first coefficient’s probability accuracy depends on how similar it is to the immediately surrounding macroblocks. The remaining coefficients local complexity index is described by the following equation:

Where the local complexity index is determined by the previous coefficient encoded.

As the meaning between the first and remaining coefficients is slightly different for the local complexity dimension. The first coefficient has its own probabilities for the cases of surrounding macroblocks, and it doesn’t interfere with the other meaning of local complexity, which is the value of the previous coefficient.
[bookmark: _Toc384326631]Loop Filter
There can be discontinuities at the boundaries between adjacent macroblocks that require filtering to reduce their perceptual impact on the viewer. This process occurs in the reconstruction loop of the encoder and is known as loop filtering.

The loop filter settings can be adapted on segment-level and there are two filtering modes of differing complexity.

The loop filter types may be specified at the frame level and/or MB level. The frame header can select one of three loop-filter types, “none”, “simple”, and “normal”. The filter signalled at MB, level overrides the one specified at frame level.

A gradient-based search for horizontal and vertical edges on MB and SMB borders is performed. There is no significant difference in handling both block types. The filtering occurs orthogonal to the edge’s direction and involves 1 to 4 pixels on each side of the border, dependent on the choice of filter type and the sharpness setting. In case the gradients exceed a certain threshold limit, the border is assumed to be “natural” and no filtering is performed to preserve high-frequency details in the image.

MBs encoded with the prediction modes B_PRED or SPLIT_MV are not filtered.

[bookmark: _Toc384326632]Simple filter
The simple filter processes the luma channel only. For detecting edges, 2 pixels on each side of the MB’s borders are evaluated. If the absolute difference is below a given threshold value, a simple low pass operation is applied to the 4 pixels, which roughly reduces the gradient by about 25%.

[bookmark: _Toc384326633]Normal filter
The normal filter applies to all channels, and utilizes up to 4 pixels on each side of the border to identify edges. The algorithms used here are much more complex than the ones for the simple filter. More pixels are evaluated, the gradients for each pair of pixels are also taken into account and the low-pass function features different weights depending on the pixels relative position to the edge.
[bookmark: _Toc384326634]Entropy Coder
VCB uses arithmetic coding as its final step in the encoding process to compress the residual after quantization, transformation, and prediction.

Every symbol of the alphabet is connected to a probability for it to appear. There are different alphabets and probability tables for the different data sets to encode. The tables can be adapted for the whole frame when it is stated in the header.

The largest alphabet is used for the compression of quantized DCT coefficients, which contains 12 unique values and 11 internal nodes to distinguish all possible values. Together with a return value that influences further decisions; such data-tuples can easily fit into an 8-bit value and therefore are stored as arrays of such 8-bit values.

[bookmark: _Toc384326635]Bit Representation of the Entropy Encoder
The probabilities that the boolean entropy encoder used in VCB are unsigned 8-bit integers. To get the actual probability, the 8-bit integer is divided by 256. The state of the encoder is maintained with five values: the current bit position n; the bit string already written; the bottom value; an 8-bit integer; and the range, another 8-bit integer. The range is clamped to within a specified boundary, so that the probabilities remain accurate.

The value v is the next value of w, and the final value of v is the end condition, where v = x. v must satisfy the inequality in:

The scale of the bit position 8-bits ahead is generated as:

Another value, split, is calculated as follows:

and is constrained by:

[bookmark: _Toc384326636]Segments and slices
VCB does not use the slice concept directly. Each macroblock in a VCB frame can encode a segment identification number, 1 through 4, to indicate which quantization step size it uses. Figure A.2 shows how VCB could organize its macroblocks into segments

	0
	0
	0
	2
	1
	1

	0
	0
	0
	2
	1
	1

	0
	0
	0
	2
	1
	1

	0
	0
	0
	2
	1
	1

	0
	2
	3
	3
	3
	3

	3
	3
	3
	3
	1
	3

[bookmark: _Ref383318989]Figure A.2 — Subblock Mapping to the Token Probability Table
The segments need not be contiguous or have any predefined order. However, there is a strict maximum of four segments in a VCB frame.

image1.wmf
î

í

ì

<

-

>=

0

x

;

x

0

x

;

x

oleObject1.bin

image2.wmf
ï

î

ï

í

ì

>

<

otherwise

;

;

;

z

y

z

y

x

z

x

oleObject2.bin

image3.wmf
î

í

ì

=

=

=

=

1

;

*

)

)

/

(

/

(

0

;

*

)

)

/

(

%

(

e

c

b

d

a

e

b

b

d

a

oleObject3.bin

image4.wmf
î

í

ì

>

<=

y

x

;

y

y

x

;

x

oleObject4.bin

image5.wmf
î

í

ì

<

>=

y

x

;

y

y

x

;

x

oleObject5.bin

image6.wmf
î

í

ì

<

-

>=

0

x

;

1

0

x

;

1

oleObject6.bin

image7.wmf
x

oleObject7.bin

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.wmf
3

0

,

,

K

=

"

-

+

=

j

i

C

A

L

x

j

i

j

i

oleObject8.bin

image40.png

image41.png

image42.png

image43.png

image44.png

image45.png

image46.png

image47.png

image48.png

image49.png

image50.png

image51.png

image52.png

