[bookmark: _Toc253693428][bookmark: _Ref252893534][bookmark: _Toc253693442]INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC1/SC29/WG11
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11 MPEG2014/N14326
April 2014, Valencia, SPAIN

	Source
	MPEG-4 Systems

	Status
	Technology Under Consideration

	Title
	Sample variants, signatures and other improvements for the ISOBMFF

	Author
	Michael Dolan, Xin Wang, Cyril Concolato

1. Sample variants framework for the ISOBMFF
2. Carriage of Time Variant Encryption and Signature information in ISOBMFF
3. [bookmark: _GoBack]Timed text codecs signaling

Sample variants framework for the ISOBMFF

Illustrative Design Using New ISOBMFF Elements

Further study is needed to determine if existing boxes can be repurposed. Follows is a design using new boxes to better illustrate the requirements.

1. Overview

Within a file, there are a number of samples are encoded with variant samples. This is shown in Figure 1 below. The figure shows 3 samples in a series left to right, the middle of which has variants. The top row shows what’s encoded in the ISOBMFF and bottom row is what is output to the decrypter/decoder after the variant processing.

[bookmark: _Ref383980008]Figure 1. Variant Sample Structure

The control point for the use of the proposed framework is the content publisher:
the content publisher will encode encrypted, compressed variant data into the ISOBMFF file and ensure that each set of variant sample data for a given sample time is encrypted with a different key.
the content publisher will work with the content protection system to the release of keys such that the playback path (the actual sample and variant data utilized during playback) is controlled and the player can only decrypt and render the data that it has been authorized to render.

The decoder model for the processing of the file is shown in Figure 2. Critical to the variant decoding process is a DRM system that controls if ad how how the variant samples are processed. Note that the decrypt and decode steps are standard operations as they would be for any CENC-enabled decoder.

[bookmark: _Ref383980294]Figure 2. Variant Decoder Model

By operating in the encrypted/compressed domain, secure baseband link operation (e.g. dedicated, secure video pathways) is preserved and is intended to be fully compatible with CENC.

The proposed approach is intended to support player model identification via DRM client identification, such as a unique decoder model number.

1. References

	Citation
	Expansion

	[CENC]
	ISO/IEC IS 23001-7: 2013, Second edition 2013-xx-xx-, “Information technology - MPEG systems technologies - Part 7: Common encryption in ISO base media file format files”.

	[ISO]
	ISO/IEC 14496-12:2012, Fourth edition 2012-07-15, Corrected version 2012-09-15, "Information technology - Coding of audio-visual objects – Part 12: ISO Base Media File Format”

1

Sample Variants in ISO Base Media File Format
This proposal defines a framework for the carriage of variant data in the ISO Base Media File Format [ISO]. This data might be utilized in certain decoding scenarios, typically for the purpose of providing forensic information in the rendered sample data that identifies the content protection system client. This variant framework is intended to be fully compatible with [ISO] and [CENC], and agnostic to the particular forensic mark system utilized.

The variant framework uses three core constructs to define and carry variant data in the ISO Base Media File Format [ISO]: variant metadata, variant byte ranges and variant media data.

[bookmark: _Ref252897312][bookmark: _Toc253693443]Variant Metadata
Variant metadata defines variant media data associated with a sample. There MAY be one or more variant metadata defined for a given sample.

Track variant metadata is declared by the Variant Metadata Location Box (‘vloc’). It is stored in the Media Data Box (‘mdat’) as a Variant Metadata Box (‘vmet’). Variant metadata is utilized by the decoder if the decoder has access to the variant metadata.

Variant metadata SHALL define which variant media data is used for rendering the sample and the associated Media KID and initialization vector for decrypting this variant media data.

[bookmark: _Ref252916573][bookmark: _Toc253693444]Access to Variant Metadata
If the decoder is given access to the Media Key defined by [CENC] for the sample, the decoder will not use the variant metadata to render the sample. If the decoder does not have access to the Media Key defined by [CENC] for the sample, the decoder SHALL be given access to a particular variant metadata for the given sample.

Access to a particular variant metadata for a given sample is controlled by the KID/Key associated with the variant metadata and is therefore a function of the set of KID/Key value pairs made available to the decoder by the Content Protection System. Only one variant metadata per sample SHOULD be made available to the decoder. Only one variant metadata is used by the decoder to render a sample - if the decoder has access to more than one KID/ Key associated with variant metadata for a given sample, the decoder utilizes the first variant metadata that it has access to in order of definition in the Variant Metadata Location Box (‘vloc’). If the decoder is given access to variant metadata, the decoder SHALL be given access to the Media Key associated with the Media KID defined in the variant metadata.

[bookmark: _Ref252911585][bookmark: _Toc253693445][bookmark: _Ref257325647]Encryption of Variant Metadata
Variant metadata SHALL be encrypted with a “variant metadata key” according to standard CENC signaling for the file (as signaled by the scheme_type field of the scheme type box ‘schm’, e.g. for ‘cenc’ this is AES-CTR). The variant metadata key typically requires a lower level of security than a Media Key, and is typically used in a secure software environment. As a decoder is provided only with the variant metadata keys for the variant metadata that is to be used by that particular decoder, variant metadata not used by that decoder is not exposed by a compromise of that decoder.

[bookmark: _Ref252898051][bookmark: _Toc253693446]Variant Byte Ranges
Each variant metadata SHALL define a sequence of one or more variant byte ranges. Each variant byte range defines the location of a sequence of bytes that might constitute variant media data bytes, whether these bytes are encrypted, and the associated byte range KID and initialization vector if the referenced bytes are double encrypted with a “variant byte range key” (see below).

The sequence of variant byte ranges defined in a variant metadata SHALL be grouped into one or more variant byte range groups. Each variant byte range group SHALL define one or more variant byte ranges. An individual variant byte range within a variant byte range group MAY reference bytes of variant media data for the sample that is made available to certain decoders (“real variant media data bytes”) or MAY reference bytes that are not variant media data or variant media data that is not made available to any decoder (“dummy variant media data bytes”). “Dummy variant media data bytes” can be used to hide the amount of actual “real variant media data bytes” defined for a track.

Variant media data is stored in the Media Data Box (‘mdat’) but it need not be stored contiguously. Data for different variant samples can be stored non-contiguously in the Media Data Box (“mdat”) as referenced by different variant metadata. Variant media data for a particular variant sample can also be stored non-contiguously using a sequence of two or more variant byte ranges.
[bookmark: _Ref252916514][bookmark: _Toc253693447][bookmark: _Ref257327316]Access to Variant Byte Ranges
If a variant byte range within a variant byte range group signals that the media data referenced by the variant byte range is unencrypted (and the decoder has access to the variant metadata), then the decoder has access to the variant byte range and the associated unencrypted variant media data bytes.

If the variant byte range defined within a variant byte range group signals that the media data referenced by the variant byte range is encrypted, then access to the variant byte range and the associated variant media data bytes is controlled by the KID/Key associated with each variant byte range – either the Media Key defined by the variant metadata if no variant byte range key is defined for the particular variant byte range or the variant byte range key if one is defined. Access to the variant byte range and the associated media data referenced by a variant byte range is therefore a function of the set of KID/Key value pairs made available to the decoder by the Content Protection System . Only one variant byte range within a variant byte range group SHOULD be made available to the decoder. Only one variant byte range within a variant byte range group is used by the decoder to render a sample - if the decoder has access to more than one KID/Key associated with variant byte ranges within the same variant byte range group for a given sample, the decoder utilizes the first variant byte range that it has access to in order of definition in the Variant Metadata Box (‘vmet’).

Variant byte ranges can be used to efficiently encode only the (typically small) differences in actual variant media data for a given sample encrypted by a given Media Key without repeating non-difference media data or exposing differences to the decoder. This is achieved through the use of double encryption, where the difference data is first encrypted by the Media Key and then encrypted by the variant byte range key - the decoder requires access to the variant byte range key to decrypt such difference data prior to decrypting it with the Media Key. Therefore access to the difference data can be controlled while also enabling reuse of common data and preserving compatibility with CENC which requires that only one decryption key be applied to a given sample (see 3.3.2 for more information). If variant byte ranges did not provide this capability then it would be necessary to repeat all media data for a full sample, including difference and non-difference data, so as to protect difference data with a different key – this is inefficient.

[bookmark: _Ref252911199][bookmark: _Toc253693448]Encryption of Variant Byte ranges
Variant byte ranges are not individually encrypted (they are encrypted as part of the Variant Metadata Box – see Section 3.1.2).

[bookmark: _Toc253693449]Variant Media Data
The media data utilized for decrypting and decoding the actual rendered sample is defined by variant metadata if the decoder has access to variant metadata for the sample per Section 2.1.1 and Section 2.2.1, otherwise the media data utilized is as defined by [ISO]. If the decoder has access to variant metadata for the sample, the actual variant media data used for rendering the sample is constructed by assembling, in the order of appearance in the variant metadata, the byte data referenced by the variant byte ranges made available to the decoder per Section 2.2.1 and this construction SHALL result in a valid encrypted sample per [CENC].

[bookmark: _Toc253693450]Access to Variant Media Data
Access to encrypted variant media data for a given sample is controlled by the Media Key defined in the variant metadata and is therefore a function of the set of KID/Key value pairs made available to the decoder by the Content Protection System.
[bookmark: _Ref252958432][bookmark: _Toc253693451]Encryption of Variant Media Data
Variant media samples SHALL always be encrypted per [CENC] and unencrypted byte ranges of a variant sample SHALL comply with sub-sample encryption media data provisions defined in [CENC]. Consequently, variant media data byte ranges of a variant sample MAY be unencrypted, or MAY be encrypted with a Media Key. A Media Key typically requires a high level of security as it protects the actual audiovisual media data. The Media Key is associated with one or more samples. Media data is encrypted according to the [CENC] signaling and there is never more than one Media Key associated with the media data that is collectively used to render a particular sample.

When variant media data is encrypted with a Media Key, one or more byte ranges of the encrypted variant media data MAY be further encrypted (double encrypted) according to the [CENC] signaling with a “variant byte range key” per Section 3.2.1. The variant byte range key typically requires a lower level of security than a Media Key, and is typically used in a secure software environment. As a decoder is provided only with the variant byte range keys for double encrypted variant media data that are to be used by that particular decoder, double encrypted variant media data not used by that decoder are not exposed by a compromise of that decoder.

The box structure described here is shown in Figure 3. This does not illustrate the double encryption or sample groups but rather the simpler signaling without it.

[bookmark: _Ref383980732]Figure 3. Basic Box Structure

ISO Storage
[bookmark: _Ref242345676][bookmark: _Ref251870499][bookmark: _Ref252904211][bookmark: _Toc253693440]Variant Metadata Location Box (‘vloc’)
Box Type	‘vloc’
Container	Track Fragment Box (‘traf’)
Mandatory	No
Quantity	One

The Variant Metadata Location Box (‘vloc’) defines sample specific information on the location of potential variant metadata in the Media Data Box (‘mdat’). The Variant Metadata Location Box (‘vloc’) SHALL only define variant metadata location information for encrypted samples that have potential variant data. Samples that do not have potential variant data or that are not encrypted SHALL NOT have a corresponding entry in the Variant Metadata Location Box (‘vloc’).
Each sample specific definition SHALL have one or more variant metadata location entries. At most one individual variant metadata location entry is used during playback of the associated sample. See Section 2.1.1 for more information on the selection of an individual variant metadata location entry for playback of a sample.

An individual variant metadata location entry MAY reference variant metadata for the sample that is used during particular playback scenarios (“real variant metadata”) or MAY reference data that is not variant metadata or variant metadata that is not used in any playback scenario (“dummy variant metadata”). “Dummy variant metadata” can be used to hide the amount of actual “real variant metadata” defined for a track.

The content of the Variant Metadata Location Box (‘vloc’) SHALL NOT be encrypted, but the referenced variant metadata is encrypted per Section 2.1.2.
Syntax
aligned(8) class VariantMetadataLocationBox
 extends FullBox(‘vloc’, version, flags=0)
{
 unsigned int(32) samples_with_variant_metadata_count;
 for(i=1; i<=variant_sample_count; i++) {
 unsigned int(8) variant_metadata_count;
 for(i=1 ; i<= variant_metadata_count; i++) {
 unsigned int(8)[16] vmKID;
 unsigned int(8*IV_Size) vmIV;
 if(version == 0) {
 unsigned int(32) variant_metadata_offset;
 else {
 unsigned int(64) variant_metadata_offset;
 }
 }
 }
}
Semantics
· samples_with_variant_metadata_count – SHALL be set to the number of track samples in the Media Data Box (‘mdat’) that have potential variant data (and each such sample has variant metadata location information provided).
Note: if a particular sample does not have potential variant data, then it does not have variant metadata location information provided and is therefore not included in this count.
· variant_metadata_count – SHALL be set to the number of variant metadata entries for a particular sample with potential variant data.
· vmKID – the “variant metadata KID”. This KID SHALL reference the variant metadata key used for decrypting the encrypted variant metadata for the entry.
· vmIV – the “variant metadata Initialization Vector”. This field SHALL reference the initialization vector used for decrypting the encrypted variant metadata for the entry.
· variant_metadata_offset – the byte offset in the associated Media Data Box (‘mdat’) relative to the first byte of the box header of the encrypted variant metadata for the entry. This byte offset SHALL be treated identically to sample auxiliary information offsets in Movie Fragments, as defined in [ISO] Section 8.8.14.

[bookmark: _Toc253693441]Storing Sample Auxiliary Information in a Variant Map Location Box
If encrypted track fragments have potential variant data, the Track Fragment Box (‘traf’) SHALL contain a Sample Auxiliary Information Offsets Box (‘saio’) with an aux_info_type value of ‘vloc’ to reference sample-specific variant data in the Variant Metadata Location Box (‘vloc’). This Sample Auxiliary Information Offsets Box (‘saio’) is constrained as follows:
· The offset field SHALL point to the first byte of the first variant_metadata_count field in the Variant Metadata Location Box (‘vloc’). This byte offset SHALL be calculated as per [ISO] Section 8.8.14.
· The entry_count field SHALL be 1 as the data in the Variant Metadata Location Box (‘vloc’) is contiguous for all of the samples in the Movie Fragment.

The size of this sample auxiliary data SHALL be specified in a Sample Auxiliary Information Sizes Box (‘saiz’) with an aux_info_type value of "vloc". This Sample Auxiliary Information Sizes Box (‘saiz’) is constrained as follows:
· The sample_info_size field SHALL be set to 0 if the associated sample has no potential variant data.

[bookmark: _Toc253693452][bookmark: _Ref256059679]Variant Metadata Box (‘vmet’)
Box Type	‘vmet’
Container	Media Data Box (‘mdat’)
Mandatory	No
Quantity	Zero or more

Variant metadata is stored in the Variant Metadata Box (‘vmet’), which can be stored at any location within the Media Data Box (‘mdat’). The entire Variant Metadata Box (‘vmet’) SHALL be encrypted per Section 2.1.2. For each variant metadata, the Variant Metadata Location Box (‘vloc’) defines the variant metadata key and its associated initialization vector per Section 2.4.1.
Syntax
aligned(8) class VariantMetadataBox
 extends FullBox(‘vmet’, version, flags=0)
{
 unsigned int(8)[16] 	 KID;
 unsigned int(8*IV_Size)	 IV;
 unsigned int(32)		 variant_byte_ranges_count;	
 for(i=1; i<= variant_byte_ranges_count; i++)
 {
 unsigned int(8) variant_byte_range_flags;
 if(variant_byte_range_flags & 0x02)
 {
 unsigned int(8)[16] vbrKID;
 unsigned int(8*IV_Size) vbrIV;	
 }
 if (version == 0) {
 unsigned int(32) variant_byte_range_offset;
 } else {
 unsigned int(64) variant_byte_range_offset;
 }
 unsigned int(32) variant_byte_range_size;
 }
}
[bookmark: _Ref252921184]Semantics
· KID – the Media KID. This KID SHALL reference the Media Key is used for decrypting the encrypted variant media data after re-assembly of the applicable variant byte ranges (skipping any unencrypted variant byte ranges).
· IV – the Initialization Vector that SHALL be used for decrypting the encrypted variant media data after re-assembly of the applicable variant byte ranges (skipping any unencrypted byte ranges).
· variant_byte_ranges_count – SHALL be set to the number of variant byte ranges defined for this variant metadata. See Section 2.2 for more information.
· variant_byte_range_flags – SHALL be set as follows:
· variant_byte_range_flags & 0x01): Signals whether the variant media data referenced by the variant byte range is not encrypted or encrypted.
· Not encrypted: !(variant_byte_range_flags & 0x01)
· Encrypted: (variant_byte_range_flags & 0x01)
· variant_byte_range_flags & 0x02): Signals whether the variant media data referenced by the variant byte range is single encrypted only with the Media Key defined by the KID field, or is double encrypted with a byte range key. The meaning is undefined when variant_byte_range_flags signals that the variant media data referenced by the variant byte range is unencrypted.
· Single encrypted: !(variant_byte_range_flags & 0x02)
· Double encrypted: (variant_byte_range_flags & 0x02)
· (variant_byte_range_flags & 0x04): Signals whether this variant byte range is the start of a variant byte range group or whether it is not the start of a variant byte range group and thus provides a marker for variant byte range groups within the Variant Metadata Box (‘vmet’). As per Section 3.2, the variant byte ranges defined in variant metadata are grouped into one or more variant byte range groups, and one variant byte range from each variant byte range group is used by the decoder. This therefore requires that even if there is only one variant byte range defined in the Variant Metadata Box (‘vmet’) or there is only one variant byte range within a variant byte range group (i.e. there are no alternative variant byte ranges for a particular byte range of the variant media data), that the start of variant byte range group be signaled with this singular variant byte range. As per Section 3.2.1, if more than one variant byte range appears in a single variant byte range group, each is double encrypted in order to limit the decoder access to one byte range within the byte range group.
Note: this flag can be used by a decoder to determine that a data error has occurred - if no variant byte range is in a variant byte range group is recognized, an error has occurred.
· Not the start of a variant byte range group: !(variant_byte_range_flags & 0x04)
· Start of a variant byte range group: (variant_byte_range_flags & 0x04)
· vbrKID – the “variant byte range KID”. This KID SHALL reference the variant byte range key used for decrypting the double encrypted variant media data.
· vbrIV – the “variant byte range Initialization Vector”. This field SHALL reference the initialization vector used for decrypting the double encrypted variant media data.
· variant_byte_range_offset – the byte offset of the “byte range” within the associated Media Data Box (‘mdat’). This byte offset SHALL be calculated relative to the first byte of the Media Data Box (‘mdat’).
· variant_byte_range_size – the size of the variant byte range in bytes. The combination of variant_byte range_offset and variant_byte range_size indicates a byte range within the associated Media Data Box (‘mdat’).

[bookmark: _Toc253693453][bookmark: _Ref257327235]Decoder Model
The rendering of a sample SHALL satisfy the observable behavior defined by the following decoder model:
1. If the sample has no potential variant data the decoder will render the sample in accordance with [CENC].
· Note: a sample has no potential variant data if either there is no Variant Metadata Location Box (‘vloc’) present, or if the sample’s entry in the Sample Auxiliary Information Sizes Box (‘saiz’) with an aux_info_type value of "vloc" has a sample_info_size field value of 0.
2. If the encrypted sample has potential variant data, the below process is followed:
a. If the decoder has access to the KID defined by [CENC] for the sample, the decoder proceeds to render the sample in accordance with [CENC] as per Section 2.1.1.
b. If the decoder does not recognize the KID defined by [CENC] for the sample, it will use the first variant metadata for this sample that it has access to according to the metadata KID (‘mKID’) in the Variant Metadata Location Box (‘vloc’), as defined Section 2.1.1.
3. Using the metadata key and metadata initialization vector defined in the Variant Metadata Location Box (‘vloc’) for the variant metadata selected by the decoder, the decoder decrypts the variant metadata structure defined in Section 2.4.3.
4. The decoder sequentially processes each variant byte range in the sequence of variant byte ranges defined in the decrypted variant metadata and assembles the variant media data for the sample as follows:
a) If the variant byte range is signaled to be unencrypted per the definition of variant_byte range_flags in Section 2.4.3.2, the byte range is put directly in the sample assembly and identified as unencrypted.
· Note: per Section 2.3.2, unencrypted media data within a variant sample is required to comply with the subsample encryption provisions for media data defined by [CENC].
b) If the variant byte range is signaled to be encrypted per the definition of variant_byte range_flags in Section 2.4.3.2:
i. If the variant byte range media data is signaled as single encrypted with the Media Key per the definition of variant_byte range_flags in Section 2.4.3.2, it is put directly in the sample assembly and identified as encrypted.
ii. If the variant byte range media is signaled as double encrypted per the definition of variant_byte range_flags in Section 2.4.3.2:
1. if the variant byte range KID (‘vbrKID’) defined by the variant byte range is available to the decoder, the variant byte range media data referenced by the variant byte range is decrypted using the variant byte range key referenced by the variant byte range KID and the resulting single encrypted media data is put in the sample assembly and identified as encrypted.
2. if the variant byte range KID (‘vbrKID’) defined by the variant byte range is not available to the decoder, the variant byte range is skipped.
5. The assembled variant media data is decrypted using the Media Key defined by the variant metadata (as referenced by the KID field in the variant metadata defined in Section 2.4.3.2), skipping any media data identified as unencrypted.

[bookmark: _Toc253693454]Example (informative)
Consider a variant metadata consisting of three byte range groups:
· The first byte range group has one variant byte range S1, which is unencrypted.
· The second byte range group has one variant byte range S2, which is encrypted.
· The third byte range group has two variant byte ranges, S3 and S4, each of which are encrypted.
At encryption time:
· The variant media associated with variant byte range S1 is not encrypted, resulting in unencrypted vairant media data M1.
· The variant media associated with variant byte ranges {S2, S3,S4} are each encrypted with Media Key K1 (KID KID1), resulting in encrypted variant media data {M2*, M3*, M4*}.
· The encrypted media data M3 is further encrypted with byte range key K3 (KID KID3) and encrypted media data M4 is encrypted with byte range key M4 (KID KID4), resulting in doubly encrypted media data M3** and M4**.
The resulting variant metadata will have four byte ranges and is structured as [| S1 | S2 | S3 S4], where the symbol “|” indicates the start of a byte range group. The underlying media data is stored as {M1, M2*, M3**, M4**}.
If the decoder has access to KID1 and KID3 only, per the Decoder Model it will do the following:
1. Process S1, establish it as unencrypted and consequently add M1 to the sample assembly and identify it as unencrypted (per step 4.a in Section 3.5).
2. Process S2, match KID1 and consequently add M2* to the sample assembly and identify it as encrypted (per step 4.b.i above).
3. Process S3, match KID3 and consequently decrypt M3** using K3, then add the resulting M3* to the sample assembly and identify it as encrypted (per 4.b.ii.1 in Section 3.5).
4. Process S4, not recognize KID4 and consequently skip M4** (per step 4.b.ii.2 in Section 3.5).
5. Decrypt the sampe assembly [M1 M2* M3*] by skipping M1 and using the Media Key K1 to decrypt M2* and M3*, resulting in unencryped variant media data[M1 M2 M3] (per step 5 in Section 3.5).

Carriage of Time Variant Encryption and Signature information in ISOBMFF
1 Introduction

The DASH TuC from the San Jose 107th MPEG meeting contains a section on “In-band carriage of digests and signatures”, listed as Appendix of this document, that has been there for a few meetings. Now that we had established a subdivision of MPEG-B, 23001-10, “Carriage of Timed Metadata of Media in ISO Base Media File Format”, and are undergoing to develop mechanisms to signal timed metadata in MPD, it is probably the time to consider to advance the content of the section.

2 Proposal

This document proposes to treat time variant encryption and signature information (such as segment variant encryption and signing, key and initial vector information used in key rotation, etc.) as timed metadata of (encrypted and signed) media.

There are some advantages with this treatment as an alternative to in-band carriage in media tracks and segments. First, one can carry this kind of information in metadata tracks of ISO Base Media File Format and signal it in DASH, in the same manners as for other timed metadata such as media quality and power consumption information. Second, this allows capturing of this kind of information in a separate file of its own, and delivering it separately from the encrypted and signed content, in order to enable different technical schemes (such as time-variant encryption and signing across segment groups) as well as different business models such as “event ticketing”, “late-binding” and “super-distribution”.

To explore the feasibility of implementing this treatment, a CE should be established with a properly defined scope out of this meeting until the 109th meeting, to solicit contributions.

3 Appendix. TuC Section on In-band carriage of digests and signatures
3.1 Introduction
Segment Authentication assumes per-segment HTTP GET requests. This may increase the non-media overhead, affecting live cases. The effect is less pronounced for HTTP transactions, but more significant when HTTPS is used. This overhead can be reduced by carrying a digest or signature inside the segment.

A major use case for inband signatures is CENC-encrypted ISO-BMFF. A partially encrypted segment can be easily modified as there is nothing that protects the unencrypted parts of the segment. If the `lseg` or/and event message box are used, the amount of viable exploits significantly increases, as file-level boxes are not encrypted. The fact that event messages and `lseg` brands will most probably be inserted by a CDN, rather than prior to ingestion, different CDN's may have slightly different versions of the same segment (e.g. they have different MPD URI's). This is still easily solvable by using the current authentication mechanism, but now each modifying entity has its own separate signature. This can be resolved by carrying digests and signatures within a file-level ISO-BMFF box.

The additional benefit of this method are the possibility of using this box within the index segment in order to provide (sub)segment level signatures with a lower overhead.
3.2 ISO-BMFF Implementation
3.2.1 General
In the implementation below the Content Authentication box provides digests or signatures for byte ranges. Optional Key ID, which can be resolved to a key using the ContentSignature element or any other unspecified means, allows different entities to sign different parts of a segment.

If a box is inserted into a segment, modified, or removed from it, only the digest/signature covering that range needs to be recalculated. This allows for authorized segment modification, e.g. if an `lseg` brand is added to the `styp` box, the byte range that includes the `styp` box will have its signature recalculated and the inserting entity will re-sign it with its own key. This means that if `lseg` is inserted within the CDN, the CDN does not need the ability to decrypt the segment in order to modify it – it will sign the relevant byte range using its own key, for which the key ID is provided within the box.
3.2.2 Syntax
Box Type:	`auth’
Container:	File
Mandatory:	No
Quantity:	Zero or more
aligned(8) class ContentAuthenticationBox
 extends FullBox(‘auth’, flags, version) {
 unsigned int(8)	algorithm_id;
 unsigned int(8)	signature_size;
 unsigned int(32) num_signatures;
 for (i = 0; i < num_signatures; i++) {
 if (version == 0) {
 signed int(32) offset;
 unsigned int(32) size;
 } else {
 signed int(64) offset;
 unsigned int(64) size;
 }
 if (flags & 1) {
 unsigned int(8) key_id[16];
 }
 unsigned int(8)	 signature[signature_size];
 }
}
3.2.3 Semantics
algorithm_id: algorithm used for generating digital signature. See table below for algorithm assignment.
	algorithm_id
	value
	Notes

	0x00
	sha256
	shall not be used with unencrypted content

	0x01
	hmac-sha1
	key is supplied out of band

signature_length: signature length in bytes
offset: offset, in bytes, from the end of this box till the first byte for which the digest/signature was calculated. Note: negative offset implies that the first byte for which the digest/signature was calculated is before the end of the signature. Note that if the signature in the loop is included within the signed range, the signature values are assumed to be zeros.
size: number of bytes following the offset
key_id: identifier of the key used for the signature below.
signature: signature, from the beginning of the segment till the first byte of this signature, calculated prior to encryption.

Timed Text Codecs Signaling

Contribution m33219 submitted during the 108th MPEG meeting reported the problem of the missing definition of the MIME « codecs » sub-parameter for metadata and timed text tracks, more specifically for XMLMetaDataSampleEntry, TextMetaDataSampleEntry, XMLSubtitleSampleEntry and TextSubtitleSampleEntry. During the meeting several options have been envisaged and discussed as described in this section. The MPEG group welcomes contribution to further investigate this problem, and to support the proposed solutions or propose alternative ones.
Reminder: The sample entries are defined as follows:
class XMLMetaDataSampleEntry() extends MetaDataSampleEntry (’metx‘) {
 string content_encoding; // optional
 string namespace;
 string schema_location; // optional
 BitRateBox (); // optional
}
class TextMetaDataSampleEntry() extends MetaDataSampleEntry (‘mett’) {
 string content_encoding; // optional
 string mime_format;
 BitRateBox (); // optional
}
class XMLSubtitleSampleEntry() extends SubtitleSampleEntry (’stpp‘) {
 string namespace;
 string schema_location; // optional
 string auxiliary_mime_types; // optional, required if auxiliary resources are present
 BitRateBox (); // optional
}
class TextSubtitleSampleEntry() extends SubtitleSampleEntry (‘sbtt’) {
 string content_encoding; // optional
 string mime_format;
 BitRateBox (); // optional
}
m33219 proposed to define the “Codecs” parameter as follows:
	Sample Entry
	Codecs parameter

	XMLMetaDataSampleEntry
	metx.<namespace>

	TextMetaDataSampleEntry
	mett.<mime_format>

	XMLSubtitleSampleEntry
	stpp.<namespace>

	TextSubtitleSampleEntry
	sbtt.<mime_format>

MPEG envisages standardizing this solution for TextMetaDataSampleEntry and TextSubtitleSampleEntry as the <mime_format> parameter is readily available from the sample entry and does not seem problematic in terms of length or unwanted characters, neither in an HTTP content-type header, nor in a DASH codecs attribute.
This solution has several problems for the XMLMetaDataSampleEntry and XMLSubtitleSampleEntry, in particular because the <namespace> field:
· is actually a list of namespaces white-space separated,
· can result in a very long string,
· may not be sufficient to identify if the track can be decoded (missing the encoding and schema location). This is in particular relevant for the TTML case.
MPEG envisages:
· Correcting these sample entry to add/replace the fields with a MIME type field, possibly containing a MIME “codecs” sub-parameter (if any), as defined by the carried format specification.
· Creating a registration authority to list in short form the names of format to be used in the parameter (e.g. codecs=“stpp.ttml[.<ttml_specific_parameter>]”)

5

Microsoft_PowerPoint_Slide1.sldx
Variant Sample Set

Variant Sample Structure

Sample2/KID2

…

…

VM2i/vm2KIDi

VM2j/vm2KIDj

VM2k/vm2KIDk

…

ISOBMFFInput Samples

Sample1/KID1

Sample3/KID3

Sample2V/KIDV

…

…

Sample1/KID1

Sample3/KID3

Output Samples

image2.emf
CENC Standard DecoderISOBMFFKIDnvmKIDn

Variant Decoder Model

DecodeDecryptVariant ProcessingDRMKeynSampleVariantsBaseSamplevmKeyn

Microsoft_PowerPoint_Slide2.sldx
CENC Standard Decoder

ISOBMFF

KIDn

vmKIDn

Variant Decoder Model

Decode

Decrypt

Variant Processing

DRM

Keyn

Sample

Variants

Base

Sample

vmKeyn

image3.emf
mooftraf

saiz

aux_info_type=‘vloc’saio

aux_info_type=‘vloc’

offsetvloc

variant_metadata_sample2variant_metadata2

vmKIDvmIV

variant_metadata_offset

variant_metadata3

Basic Box Structure

•mdat

–sample1

–sample2–sample2-vmet1

•KID

•IV•variant_byte_range1•variant_byte_range2

–sample2-vmet2

•KID•IV

•variant_byte_range1

–variant_byte_range_offset–variant_byte_range_size

•variant_byte_range2

–sample3

Microsoft_PowerPoint_Slide3.sldx
moof traf

saiz

aux_info_type=‘vloc’

saio

aux_info_type=‘vloc’

offset

vloc

variant_metadata_sample2

variant_metadata2

vmKID

vmIV

variant_metadata_offset

variant_metadata3

Basic Box Structure

mdat

sample1

sample2

sample2-vmet1

KID

IV

variant_byte_range1

variant_byte_range2

sample2-vmet2

KID

IV

variant_byte_range1

variant_byte_range_offset

variant_byte_range_size

variant_byte_range2

sample3

image1.emf
Variant Sample Set

Variant Sample Structure

Sample2/KID2……VM2i/vm2KIDiVM2j/vm2KIDjVM2k/vm2KIDk…ISOBMFFInputSamplesSample1/KID1Sample3/KID3Sample2V/KIDV……Sample1/KID1Sample3/KID3Output Samples

