INTERNATIONAL ORGANIZATION FOR STANDARDIZATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND AUDIO
ISO/IEC JTC1/SC29/WG11

MPEG2014/m32272
15 January 2014
, San Jose, USA
Title:
WD of 14496-12 Amd.X Improved audio support
Editor:
David Singer, Frank Baumgarte
1 Introduction

This is a revision of the proposed amendment that covers audio support. For ease of comprehension this is organized by topic.

<<Needs re-organizing in amendment style. Also there is significant overlap here with the audio DRC specification, but it’s not clear how much information should be centralized in one place (e.g. CICP), how much duplicated, or how much we can require people reading the file format document to have to also use the audio document. Ideally the tables that assign meanings to enumerated and bit fields are in one place, for example.>>

2 Audio

2.1 Introduction

(This section does not form part of the final amendment).
The audio support in the Part 12 file format (and hence MP4, 3GPP, etc.) has a few areas where improvement would be beneficial:
a) we need to improve support for marking the codec-independent characteristics of the audio stream; loudness measures are notably needed, not least to make supporting the Commercial Advertisement Loudness Mitigation (CALM) act in the USA easier. There is also increasing demand for dynamic range control, and some tagging in that area would also be advantageous;
b) we need to support declaring channel layout or speaker assignments; it’s important to know what ‘geometry’ a signal is intended for before attempting to decode it, especially when alternatives are offered.

We separate ‘dynamic’ data – data which is sometimes or always derived from scanning the stream – from ‘static’ and setup data. The latter is appropriately placed in the sample entry, as it assists either decoding or presentation of the material, and is, or can be, known in advance. However, placing dynamic data in the sample entry is problematic – the sample entry must be created, and often stored, before the stream contents are known.

2.2 Static Data

2.2.1 Introduction

This places new containers in the “sample description extension” part of the MPEG-4 Systems framework with static data that describes the nature of the associated audio (similarly to the way that, for example, video color spaces can be tagged in the video sample entry).
2.2.2 Dynamic Range Control support (DRC)

A DRC is used in the encoder to generate gain values using one of the pre-defined DRC characteristics as defined in <<Coding-Independent Code-Points 23001-8>>; the coefficients are placed either in-stream or in an associated meta-data track.

For some content, such as some multi-channel content, it may be advantageous to use different DRC characteristics in different channels. For instance, if speech is exclusively present in the center channel, this feature can be very useful. It is supported by the assignment of DRC characteristics to audio channels.

It is possible to declare the loudness characteristics of the signal after DRC.

DRC support includes supporting in-stream DRC coefficients, and a separate track carrying them; the latter is particularly useful for legacy coding systems (including uncompressed audio) that have no provision for in-stream coefficients.
2.2.3 Downmix support

The downmix can be controlled by the production facility if necessary. For instance, some content may require more attenuation of the surround channels before downmixing to maintain intelligibility.

The downmix support is designed so that any downmix (e.g. from 7.1 to quad as well as to stereo) can be described; however, we expect initial support to be primarily for stereo downmixes.

It is possible to declare the loudness characteristics of the signal after downmix, and after DRC and downmix.

2.3 Dynamic Data

2.3.1 Introduction
We place ‘dynamic data’ in a user-data item, to enable its presence in movie fragments and thus storage after the stream (or a portion of it) has been seen.

In particular, in live scenarios, user-data in the initial movie atom may be a ‘promise not to exceed’ or ‘best guess’, and then user-data updates give better (but still generally valid) values. Thus, for example, a loudness range in this user data that is associated with a particular set of DRC instructions constitutes a ‘promise’ rather than a measurement, under these circumstances.

To do that, we introduce some measurements, and then define the additions to the sample entry that can carry those measurements.

The loudness measurements are drawn from the ITU BS 1770 documents, and from the EBU. There is an amendment to Coding-Independent Code Points to add formal names for these.

Several metadata values are available that describe aspects of the dynamic range. The size of the dynamic range can be useful in adjusting the DRC characteristic, e.g. the DRC is less aggressive if the dynamic range is small or the DRC can even be turned off.

True Peak and maximum loudness values can be useful for estimating the headroom, for instance when loudness normalization results in a positive gain [dB] or when headroom is needed to avoid clipping of the downmix. The DRC characteristic can then be adjusted to approach a headroom target.
2.3.2 Program Loudness and Anchor Loudness

Program loudness is as defined in ITU BS 1770 – applied to the whole signal. Anchor loudness is the loudness of the ‘anchor’ material; the anchor material is often (but not always) dialog, and Dialnorm is an example of an anchor loudness measure.

[[Ed: this is proposed but not yet agreed]] We also support the carriage of a mixing level, the audio sound pressure level that the content was mixed to. (If audio is listened to at a level other than the mixing level, this can affect the perceived tonal balance.)
2.3.3 Loudness Peak measurements

We include some measures derived from EBU-Tech 3341 and 3342 ([2] and [3]):
· Maximum of the Loudness Range [derived from [2])
· Maximum Momentary Loudness as defined in [3]
· Maximum Short-Term Loudness as defined in [3]
2.3.4 True Peak

The peak level of the associated content is represented here in a coding-independent way. It is as described in BS-1770-3.

2.3.5 Album Loudness

Under some circumstances it can be desirable to indicate the loudness characteristics of an album, in each song that the album contains. A separate box can be specified for that purpose. (It is assumed that the two ends agree on what the ‘album’ is – probably based on other meta-data – and that songs are unique to a specific album).
2.4 Box Design

2.4.1 Sample Entry

2.4.1.1 Channel Layout

If a V1 sample entry is used, the ChannelCount field in the AudioSampleEntry must be correct. The channel layout can be all or part of a standard layout (from an enumerated list), or a custom layout (which also allows a track to contribute part of an overall layout).

aligned(8) class ChannelLayout extends FullBox(‘chnl’) {

unsigned int(8)
stream_structure;

if (stream_structure & channelStructured) {
// 1

unsigned int(8) definedLayout;
// from Coding-independent code points

if (definedLayout==0) {

for (i = 1 ; i <= channelCount ; i++)

{

// channelCount comes from the sample entry

unsigned int(8) speaker_position; // also from CICP

}

} else {

unsigned int(64)
omittedChannelsMap;

// a ‘1’ bit indicates ‘not in this track’

}

}

if (stream_structure & objectStructured) {
// 2

unsigned int(8) object_count;

}
}
The definedLayout is a ChannelConfiguration from ISO/IEC 23001-8; similarly a speaker_position is an OutputChannelPosition from that specification.
1-bits in the channel map mean that a channel is absent. This assumes that 64 bits is enough for enumerated layouts (64 channels). A zero value of the map therefore always means that the given standard layout is fully present.

A stream may contain channels, objects, neither, or both. A stream that is neither channel nor object structured can implicitly be rendered in a variety of ways. [[ed. e.g. MPEG-H]]

[[ed: do we need to downmix from objects?]]

2.4.1.2 Downmix Instructions

We allow expression of how to downmix to any configuration, but we only expect to see this box for mono or stereo for the time being. If targetChannelCount is odd, the box is padded with 4 bits set to 0xF. The targetChannelCount must be consistent with the targetLayout (if given).
Each downmix is uniquely identified by an ID; there are two reserved values for the ID, 0 and 0x3F, which must not be used.

aligned(8) class DownMixInstructions extends FullBox(‘dmix’) {

unsigned int(8) targetLayout;

// from CICP

unsigned int(8) targetChannelCount;
// must be <= channelCount

unsigned int(2) reserved = 0;

unsigned int(6) downmix_ID;

bit(1) in_stream;

bit(7) reserved = 0;

if (in_stream) {

unsigned int(8) downmix_location;
// stream-format specific, may be zero

}

else {
// downmix coefficients are out of stream and supplied here

int i, j;

for (i = 1 ; i <= targetChannelCount; i++){

for (j=1; j <= channelCount; j++) {

unsigned int(4) downmix_coefficient;

}

}

}
}
The downmix coefficient is encoded as defined in the following tables:
	Value
	Hex Encoding (4 bits)

	0.00 dB
	0x0

	-0.50 dB
	0x1

	-1.00 dB
	0x2

	-1.50 dB
	0x3

	-2.00 dB
	0x4

	-2.50 dB
	0x5

	-3.00 dB
	0x6

	-3.50 dB
	0x7

	-4.00 dB
	0x8

	-4.50 dB
	0x9

	-5.00 dB
	0xA

	-5.50 dB
	0xB

	-6.00 dB
	0xC

	-7.50 dB
	0xD

	-9.00 dB
	0xE

	-∞ dB
	0xF

Table 1: Downmix Coefficient Encoding for non-LFE channels
	Value
	Hex Encoding (4 bits)

	10.00 dB
	0x0

	6.00 dB
	0x1

	4.5 dB
	0x2

	3.00 dB
	0x3

	1.50 dB
	0x4

	0.00 dB
	0x5

	-1.50 dB
	0x6

	-3.00 dB
	0x7

	-4.50 dB
	0x8

	-6.00 dB
	0x9

	-10.00 dB
	0xA

	-15.00 dB
	0xB

	-20.00 dB
	0xC

	-30.00 dB
	0xD

	-40.00 dB
	0xE

	-∞ dB
	0xF

Table 2: Downmix Coefficient Encoding for LFE channel

[[ed: need some examples of downmix_location; or we maybe just need to declare at this level ‘the stream has internal instructions for making this config and not bother with saying where]]
2.4.1.3 DRC Information

DRC information is typically present in the stream as sets of values at the stream level, not directly associated with a channel. In this design we therefore specify how to achieve a particular DRC effect (strength) by applying the coefficients given, to the given channels. Each box documents a consistent way to apply DRC to the stream, using in-channel or side-band DRC information, or pass-through (no processing). (How it is carried in-stream, and how multiple in-stream values are distinguished, are not defined at this level, but examples are given).

We expect various DRC characteristics to be defined, or identified from other standards bodies.

The DRC_characteristics may take a value from ISO/IEC 23001-8 (CICP):

0 : No DRC information applied to this channel (for this effect, this channel is un-modified)

1 – N : defined DRC characteristic 1 - N respectively

>N: reserved; should be treated as DRC information with unknown characteristics

The channel count must match the enclosing sample entry, or the applicable downmix box, as appropriate. Each channel is mapped to a coefficient (or set of coefficients for the frequency bands) of a given characteristic and location. The location is a ‘coarse’ identification of where that set is; sets in a given location are enumerated.
For each codec that can be carried in MP4 files and that also carry DRC information there is a specific definition of how the location is coded, using the fields DRC_location and the sequence_index.
A reserved range (negative values) of DRC_locations indicates that the DRC values are in an associated meta-data track. That track is the nth linked via a track reference of type ‘adrc’ (audio DRC) from the audio track, where n=abs(DRC_location), and the sample-entry type in the meta-data track indicates how the coefficients are stored. The sequence_index must be sufficient to locate them. For locations with only one sequence, this field is set to 1 when the stream is processed, and (as usual) to 0 for unprocessed streams.
For example, for AAC streams, these fields are used as follows:
	DRC_location
	
	sequence_index

	1
	uniDrc()
	

	2
	MPEG4_ancillary_data()
(defined in ISO/MPEG 14496-3 DAM 4)
	1 (unused)

and the similar example for AC-3 streams:

	DRC_location
	
	sequence_index

	
	
	

	2
	dynrng, dynrng2
	1 (unused)

	3
	compr, compr2
	1 (unused)

The DRC_set_ID is a positive integer that is unique for each of the DRCInstructions in a given sample entry; it is used to identify this set of instructions in post-DRC loudness measurements.
Two boxes are used to declare DRC information; DRCCoefficients describes and locates the coefficient streams, and DRCInstructions applies them to channels in the audio. A DRC may be applicable before or after a downmix; the downmix_ID, if used, identifies which. In the case that the DRC is applied after downmix, it can indicate that a specific DRC must be applied before downmix by using the depends_on_DRC_set field. That DRC set must be applicable to the original, un-downmixed, audio.

The reserved value 0 for downmix_ID here indicates that the DRC applies to the program base material before any downmix.

The reserved value 0x3F for downmix_ID indicates that the DRC can be applied to any downmix or the base program material. In this case, the stream_count must be 1, and the single coefficient stream is applied to all channels.

In the DRCInstructions, the sequence_index is the 1-based index in the DRCCoefficients box, of the 'sequence_count' loop for this DRC_location. If sequence_index is 0, this channel is not processed.
The crossover frequencies
[image: image1.emf]

fc

f

c

 and normalized crossover frequencies
[image: image2.emf]

fc,Norm

f

c,Norm

 are defined as follows. They are normalized by the audio sample rate [image: image4.emf]. The advantage of having normalized numbers as opposed to nominal frequencies is that a decoder could have tables of static filter coefficients for each of the crossover frequencies. Hence it would not need to compute them on initialization. The normalized crossover frequencies (crossover_freq_index) are transmitted in a 4 bit field as shown in Table 1. (The numbers are given as fractions because at least the larger numbers then correspond to crossover frequencies of common filter banks, such as index 4 and higher for QMF in dual-rate HE-AAC and MPEG-D). The values of cross_over_freq_index must increase with increasing band index.
	crossover_freq_index
	
[image: image5.emf]

fc,Norm

f

c,Norm

	0
	2/1024

	1
	3/1024

	2
	2/512

	3
	3/512

	4
	2/256

	5
	3/256

	6
	2/128

	7
	3/128

	8
	2/64

	9
	3/64

	10
	2/32

	11
	3/32

	12
	2/16

	13
	3/16

	14
	2/8

	15
	3/8

Table 1 Coding of normalized crossover frequencies

The crossover frequencies
[image: image6.emf]

fc

f

c

 in Hz are computed by:

[image: image7.emf]

fc = fs ⋅ fc,Norm

f

c

=f

s

×f

c,Norm

.

In case of multi-rate decoder configurations such as HE-AAC, [image: image9.emf] is the sample rate of the final output signal.

The intended program effect of an entire DRC application is declared by DRC_set_effect. That field takes one of the following values (we may need some way to allow unregistered effect names, e.g. by URN). Each value is a bit-position, starting from the least significant bit; multiple bits may be set. If no bits are set, the effect is undeclared.

	DRC Set Effect bit position
	Meaning

	1 (LSB)
	Late night

	2
	Noisy environment

	3
	Limited playback range

	4
	Low Level

	5
	Dialog enhancement

	6
	Other compression

	7
	Expansion

	8
	Artistic effect

	9
	Clipping prevention

	10
	Fade-in/fade-out

	11, 12
	Effect strength

[[Ed: This is a proposed field and not yet fully specified.]] The limiter_peak_target declares the setting given to a DRC that has the ability to control the maximum audio magnitude to not exceed this value. It is represented in decibels relative to 100% full scale and encoded as a signed value with 3 fractional bits; formally

[image: image10.emf]

LPT =m (−1)
S 2−3

L

PT

=m(-1)

S

2

-3

where s is the sign bit and m is the 7 magnitude bits. The value of 0xFF is reserved and means “unknown value”.
The gain_coding_profile is an index that indicates which method of DRC gain coding has been used:

	gain_coding_profile
	Meaning

	0
	Regular gain coding

	1
	Fading gain coding

	2
	Clipping prevention gain coding

Each channel is assigned explicitly to a gain sequence, and hence implicitly to a channel group. As the array that assigns channels to gain sequences is scanned in order, each time a sequence index is seen that has not occurred before, that channel is assigned to the next channel group; if the sequence index has been seen before, then the channel group that was previously used for it is used again. For example, if the array of sequence indexes contains {4, 4, 9, 0, 9, 4, 3} then the corresponding groups would be {1, 1, 2, <unassigned>, 2, 1, 3}.

aligned(8) class DRCCoefficients extends FullBox(‘drcc’) {

// N copies of this box, one of these per DRC_location

signed int(8) DRC_location;

unsigned int(8) sequence_count;

for (sequence_index=1 ; sequence_index<=sequence_count; sequence_index++){

// each entry here in 1:1 correspondence with the

// gain coefficient sets (for the bands) in the given location

unsigned int(8)
gain_coding_profile;

// [[ed: from DRC doc, need defn]]

unsigned int(8) band_count;
// must be >= 1

for (j = 1; j <= band_count; j++)

{

unsigned int(8) DRC_characteristics;

}

for (j = 2; j <= band_count; j++)

{

unsigned int(8) crossover_freq_index;

}
 }
}
aligned(8) class DRCInstructions extends FullBox(‘drci’) {

// N copies, one for each overall combination DRC that can be applied

unsigned int(2) reserved = 0;

unsigned int(6) DRC_set_ID;
// must be non-zero and unique

bit(2)
reserved = 0;

unsigned int(6) downmix_ID;
// if 0 – to base

// if non-0, applies after downmix

// if 0x3f, applies before or after downmix

unsigned int(8) limiter_peak_target; // [[ed: see DRC working draft]]
unsigned int(16) DRC_set_effect;

unsigned int(2) reserved = 0;

unsigned int(6) depends_on_DRC_set;

// if non-zero, must match a DRC that must be applied before this one

// it must be examined to see if that is before/after downmix

}

signed int(8) DRC_location;

for (i=1; i<=channelGroupCount; i++) {

// unsigned int(8) sequence_index;
// this is implicit, see above

bit(1) gainScalingPresent;

bit(1) reserved = 0;

if (gainScalingPresent==1) {

unsigned int(3) attenuationScaling;

unsigned int(3) amplificationScaling;

} else {

unsigned int(6) reserved = 0;

}

bit(1) gainOffsetPresent;

unsigned int(2) reserved = 0;

if (gainOffsetPresent==1) {

unsigned int(5) gainOffset;

} else {

unsigned int(5) reserved = 0;

}

}

unsigned int(8) stream_count;

// if downmix_ID==0x3F, must be 1, and applies to all streams

// else must match channel count + object count of the signal

signed int(8) DRC_location;

for (i = 1 ; i <= stream_count; i++){

unsigned int(8) sequence_index;

// if 0, then this channel/object is not processed

// else 1-based index into the DRC sequence array for this location

}
}
2.4.2 User-data

2.4.2.1 Loudness Information

We need a set of loudness measures; most are logically related (and measured similarly), and one (true peak) is slightly different. In the final amendment, these should refer to tables in either the audio DRC document, or they should both refer to CICP.
Loudness:

1. Program Loudness [1]
2. Anchor Loudness

3.
4. Maximum of the Loudness Range (derived from [2])
5. Maximum Momentary Loudness (0.4s window) [3]
6. Maximum Short-term Loudness (3s window) [3]
7. Loudness Range derived from Maximum Short-term Loudness [2]
8. Mixing level

9. Production room type

10. True Peak Level Difference from Sample Peak Level [1]
Peak value:

11. Sample Peak Value [1]
2.4.2.2 Loudness Boxes
aligned(8) class LoudnessBaseBox extends FullBox(loudnessType) {

unsigned int(2) reserved = 0;

unsigned int(6) downmix_ID;

// from CICP, matching downmix

unsigned int(2) reserved = 0;

unsigned int(6) DRC_set_ID;

// to match a DRC box

unsigned int(4)
reserved = 0;

signed int(12) sample_peak_level;

unsigned int(8) measurement_count;

int i;

for (i = 1 ; i <= measurement_count; i++){

unsigned int(8) method_definition;

unsigned int(8) method_value;

unsigned int(4) measurement_system;

unsigned int(4) reliability;

}
}
aligned(8) class TrackLoudnessInfo extends LoudnessBaseBox(‘tlou’) { }

aligned(8) class AlbumLoudnessInfo extends LoudnessBaseBox (‘alou’) { }

These two boxes provide loudness information for the song, and for the entire album which contains the song, respectively.

If downmix_ID is zero, then this box declares the loudness characteristics of the layout without downmix. If DRC_set_ID is zero, it declares the characteristics without applying a DRC.

If downmix_ID and/or DRC_set_ID are non-zero, this box declares the loudness characteristics after either a downmix to the given layout, or the compression defined by the given DRC_set_ID, respectively, or both. These values, if non-zero, must match values in the sample entry. This assumes that there is only one sample entry present in the track.
Loudness values 0 through 255 indicate +6.0 dB LKFS to -57.75 dB LKFS, i.e. in -0.25 dB increments.

The loudness_range is calculated according to the following pseudo-code:
UInt8 CompressLoudnessRange(Float32 loudnessRange)
 {

if (loudnessRange < 0.0f)

return 0;

else if(loudnessRange <= 32.0f)

return (UInt8)(4.0f*loudnessRange + 0.5f);

else if(loudnessRange <= 70.0f)

return (UInt8)(2.0f*(loudnessRange - 32.0f) + 0.5f) + 128;

else if(loudnessRange < 121.0f)

return (UInt8)(loudnessRange - 70.0f) + 0.5f) + 204;

else

return 255;
 }

The program loudness is measured using [1] over the associated content; the ‘anchor loudness’ is the loudness of the anchor content, where what that content is, is determined by the content author; one suitable value (especially for content for which the main content is speech) is ‘dialog normal level’ or DialNorm.

The method_definition takes one of the following values; all others are reserved:
	Index
	Meaning
	Value Type

	0
	program loudness (ProgramLoudness as defined in ISO/IEC 23001-8)
	Loudness Value

	1
	anchor loudness (AnchorLoudness as defined in ISO/IEC 23001-8)
	Loudness Value

	
	
	

	2
	maximum of the range, i.e. the 95th percentile of the loudness distribution according to [2];
	Loudness Value

	3
	maximum momentary loudness, measured using a 0.4s window (see [3])
	Loudness Value

	4
	maximum short-term loudness, measured using a 3s window (see [3])
	Loudness Value

	5
	loudness range derived from [1]
	Loudness Range

	6
	production mixing level measured according to [7]
	Sound pressure level

	7
	production room type according to [7]
	Index

	8
	true peak level delta from the sample peak level
	Peak Delta

[[ed: there is a style question here; usually MPEG assigns enumerated sets like this starting from 1, leaving 0 to mean undefined/unused; we don’t really need that here, but maybe we should follow the normal style?]]

The sample peak level field is the sample peak of the associated signal before encoding, in decibels relative to 100% full scale .

The true peak level is as defined in ITU BS 1770-3 [1], in decibels relative to 100% full scale. The sample peak level is represented as a signed value with 7 integer and 5 fractional bits; formally as in Table 3.

Table 3: Coding of sample_peak_level.
	Encoding
	Size
	samplePeakLevel in [dB FS]
	Approximate range

	[image: image12.emf]

µ

m

	12 uimsbf
	[image: image13.emf]

LSP =
"undefined"; if µ==0
LSP = 20−µ2−5; else

⎧
⎨
⎪

⎩⎪

L

SP

=

"undefined"; if m==0

L

SP

=20-m2

-5

;else

ì

í

ï

î

ï

	-107 … 20, 0.0312 step size

where s is the sign bit and m is the 15 magnitude bits.. The delta is encoded in 8 bits as an unsigned value with 3 integer and 5 fractional bits. The associated audio document has the detailed specifications.
[[Ed: proposed but not yet fully specified or agreed]] The sound pressure level follows ATSC and is coded as a 5-bit code padded on the left with zero bits to 8 bits. This 5-bit code indicates the absolute acoustic sound pressure level of an individual channel during the final audio mixing session. The 5-bit code represents a value in the range 0 to 31. The peak mixing level is 80 plus the value of mixlevel dB SPL, or 80 to 111 dB SPL. The peak mixing level is the acoustic level of a sine wave in a single channel whose peaks reach 100 percent in the PCM representation. The absolute SPL value is typically measured by means of pink noise with an RMS value of -20 or -30 dB with respect to the peak RMS sine wave level.

The measurement_system field takes one of the following values (all other values are reserved):

	Value
	Meaning

	0
	Unknown/other

	1
	EBU R-128

	2
	ITU-R BS.1770-3

	3
	ITU-R BS.1770-3 with pre-processing. The pre-processor is a 4th order Linkwitz-Riley filter with a cutoff frequency at 500 Hz.

	4
	User

	5
	Expert/panel

The value ‘User’ above indicates that an individual user has marked this content with what they perceive the loudness to be. Having this field allows a piece of content to be moved between the user’s playback devices and the user’s determination to persist.

Similarly, in some circumstances it may be advantageous to use a subjective loudness measure, as determined by an expert, panel, or similar method. The qualifier ‘full bandwidth’ indicates that the playback system used is capable of reproducing the full range of audible frequencies. ‘Portable device’ indicates that the playback system used has a limited low-frequency response.
 The reliability field takes one of the following values (all other values are reserved):
0: Reliability is unknown
1: Value is reported/imported but unverified
2: Value is a ‘not to exceed’ ceiling

3: Value is measured and accurate
2.4.3 Putting it all together

Now we can build the new AudioSampleEntry:

// Audio Sequences

class AudioSampleEntry(codingname) extends SampleEntry (codingname){

unsigned int(16) entry_version;
// must be 1,

// and must be in an stsd with version ==1

const unsigned int(16)[3] reserved = 0;

template unsigned int(16) channelcount;
// must be correct

template unsigned int(16) samplesize = 16;

unsigned int(16) pre_defined = 0;

const unsigned int(16) reserved = 0 ;

template unsigned int(32) samplerate = 1<<16;

// optional boxes follow

SamplingRateBox();

ChannelLayout();

// we permit any number of DownMix or DRC boxes:

DownMixInstructions() [];

DRCCoefficients() [];

DRCInstructions() [];

// [[ed: we need a way to say here that there are DRC Instructions,

// but they are in-stream and not at file level. Maybe a box?

Box ();

// further boxes as needed
}

And finally the box that goes inside the User-Data (‘udta’) box, in the track.

aligned(8) class LoudnessBox extends Box(‘ludt’)

loudness

TrackLoudnessInfo[];
// a set of one or more loudness boxes

albumLoudness
AlbumLoudnessInfo[];
// if applicable
}
3 Signalling of SAP Types in Sample Groups
Stream Access Points (SAP) are used in a DASH environment to allow for seamless switching between different Representations in an Adaptation Set. It is typically the first Access Unit of a Segment for which a certain SAP type is necessary to allow for an easy transition between Representations. It is a common DASH workflow to have the encoder running separately from the segmenter, i.e. the entity that creates DASH Segments. For the segmentation process it is necessary to identify the SAP type for each Access Unit in order to create proper Segments starting with a SAP. There is currently no mechanism available in the ISOBMFF to carry this information.

The following uses ‘Sample Groups’ to carry the SAP type for any Access Unit in a track of the ISOBMFF. Sample Groups already cover fragmented files, which is important in the context of DASH. There are separate Sample Group Entries for audio and visual media types, hence it is necessary to have individual SAP entries as well.
 Note that sample groups allow expressing that a particular sample is not mapped to any member of this group, so SAP_type is constrained to contain only the values defined in the Annex.
Syntax
class AudioSAPEntry() extends AudioSampleGroupEntry ('sap ')
{

unsigned int(5) reserved = 0;

unsigned int(3) SAP_type;
}
class VisualSAPEntry() extends VisualSampleGroupEntry ('sap ')
{

unsigned int(5) reserved = 0;

unsigned int(3) SAP_type;
}
Semantics:

SAP_type is the SAP type of the Access Unit according to Annex I
.
3.1
1.
2.
3.
4 References

[1] ITU-R, “Recommendation ITU-R BS.1770-3. Algorithm to measure audio programme loudness and true-peak audio level,” 08/2012.

[2] EBU, “Loudness Range: A measure to supplement loudness normalisation in accordance with EBU R 128,” EBU-Tech 3342, Geneva, August 2011
[3] EBU, “Loudness Metering: EBU mode metering to supplement loudness normalization in accordance with EBU R128”, EBU – Tech 3341.
[4] ETSI, “Digital Video Broadcasting (DVB); Specification for the use of Video and Audio Coding in Broadcasting Applications based on the MPEG-2 Transport Stream,” ETSI TS 101 154 V1.11.1, 2012-11.
[5] ATSC “ATSC Recommended Practice: Techniques for Establishing and Maintaining Audio Loudness for Digital Television,” Document A/85:2011, 25 July 2011
[6] Dolby, “Dolby Metadata Guide”, Issue 3.
[7] ATSC, ATSC Standard: Digital Audio Compression (AC-3, E-AC-3), Doc. A/52:2012.
�This is not right; we don’t want duplicate declarations of all the structures, we need to be able to say "the stream contains possibilities"

�We need to investigate sub-classing SampleGroupEntry (and the switch statement)

�X-ref needed

Enhanced Audio in ISO BMFF
15
m32272

_1317886916.unknown

_1317886918.unknown

_1317886921.unknown

_1320159721.unknown

_1317886920.unknown

_1317886917.unknown

_1317886915.unknown

