ISO/IEC 14496-11:2005(E)
	PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

	© ISO
	ISO/FDIS 00000:1998(E)

	

	

	
INTERNATIONAL STANDARD
	ISO/IEC
14496-11
Second edition

2013-11-01

	Information technology — Coding of audio-visual objects —
Part 11:
Scene description and application engine
Technologies de l'information — Codage des objets audiovisuels —
Partie 11: Description de scène et moteur d'application

Contents
Page
vForeword

0
Introduction
vii
0.1
Scene Description
vii
0.2
Extensible MPEG-4 Textual Format
ix
0.3
MPEG-J
x
1
Scope
1
2
Normative references
1
3
Additional reference
2
4
Terms and definitions
2
5
Abbreviations and Symbols
8
6
Conventions
8
7
MPEG-4 Systems Node Semantics
9
7.1
Scene Description
9
7.2
Node Semantics
27
7.3
Informative: Differences Between MPEG-4 Scripts and ECMA Scripts
181
7.4
Informative: FlexTime behavior
182
7.5
Informative: Implementation of MaterialKey node
183
7.6
Informative: Example implementation of spatial audio processing (perceptual approach)
184
7.7
Informative: MPEG-4 Audio TTS application with Facial Animation
189
7.8
Informative: 3D Mesh Coding in BIFS scenes
190
7.9
Profiles
190
7.10
Metric information for resident fonts
216
7.11
Font metrics for SANS SERIF font (Albany)
216
7.12
Font metrics for SERIF font (Thorndale)
223
7.13
Font metrics for TYPEWRITER font (Cumberland)
229
8
BIFS
235
8.1
Introduction
235
8.2
Decoding tables, data structures and associated functions
235
8.3
Quantization
240
8.4
Compensation process
251
8.5
BIFS Configuration
252
8.6
BIFS Command Syntax
256
8.7
BIFS Scene
266
8.8
BIFS-Anim
297
8.9
Interpolator compression
303
8.10
Definition of bodySceneGraph nodes
342
8.11
Adaptive Arithmetic Decoder for BIFS-Anim
350
8.12
Informative : Adaptive Arithmetic Encoder for BIFS-Anim
352
8.13
View Dependent Object Scalability
354
9
The Extensible MPEG-4 Textual Format
357
9.1
Introduction
357
9.2
XMT-A Format
357
9.3
XMT-Ω Format
410
9.4
XMT-C Modules
456
9.5
XMT Schemas
464
9.6
Informative: XMT/X3D Compatibility
464
9.7
Informative: The usage of XMT-A BitWrapper element in authoring side
465
10
MPEG-J
479
10.1
Architecture
479
10.2
MPEG-J Session
481
10.3
Delivery of MPEG-J Data
482
10.4
MPEG-J API List
485
10.5
Informative: Starting the Java Virtual Machine
493
10.6
Informative: Examples of MPEG-J API usage
493
Annex A (normative) Curve-based animators
503
Annex B (normative) Procedural textures algorithms
506
Annex C (informative) Text Processing in BIFS
511
Annex D (informative) Patent statements
513
Bibliography
514

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

ISO/IEC 14496‑11 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.

ISO/IEC 14496 consists of the following parts, under the general title Information technology — Coding of audio-visual objects:

—
Part 1: Systems
—
Part 2: Visual
—
Part 3: Audio
—
Part 4: Conformance testing
—
Part 5: Reference software
—
Part 6: Delivery Multimedia Integration Framework (DMIF)
—
Part 7: Optimized reference software for coding of audio-visual objects [Technical Report]
—
Part 8: Carriage of ISO/IEC 14496 contents over IP networks
—
Part 9: Reference hardware description [Technical Report]
—
Part 10: Advanced Video Coding
—
Part 11: Scene description and application engine
—
Part 12: ISO base media file format
—
Part 13: Intellectual Property Management and Protection (IPMP) extensions
—
Part 14: MP4 file format
—
Part 15: Advanced Video Coding (AVC) file format
—
Part 16: Animation Framework eXtension (AFX)
—
Part 17: Streaming text format
—
Part 18: Font compression and streaming
—
Part 19: Synthesized texture stream
—
Part 20: Lightweight Application Scene Representation (LASeR) and Simple Aggregation Format (SAF)
The following parts are under preparation:

—
Part 21: MPEG-J GFX
0 Introduction

0.1 Scene Description

0.1.1 Overview

ISO/IEC 14496 addresses the coding of audio-visual objects of various types: natural video and audio objects as well as textures, text, 2- and 3-dimensional graphics, and also synthetic music and sound effects. To reconstruct a multimedia scene at the terminal, it is hence not sufficient to transmit the raw audio-visual data to a receiving terminal. Additional information is needed in order to combine this audio-visual data at the terminal and construct and present to the end-user a meaningful multimedia scene. This information, called scene description, determines the placement of audio-visual objects in space and time and is transmitted together with the coded objects as illustrated in Figure 1. Note that the scene description only describes the structure of the scene. The action of assembling these objects in the same representation space is called composition. The action of transforming these audio-visual objects from a common representation space to a specific presentation device (i.e. speakers and a viewing window) is called rendering.

[image: image1.wmf]

multiplexed

downstream control / data

multiplexed

upstream control / data

audiovisual

presentation

3D objects

2D background

voice

sprite

hypothetical viewer

projection

video

compositor

plane

audio

compositor

scene

coordinate

system

x

y

z

user events

audiovisual

objects

speaker

display

user input

Figure 1 — An example of an object-based multimedia scene

Independent coding of different objects may achieve higher compression, and also brings the ability to manipulate content at the terminal. The behaviors of objects and their response to user inputs can thus also be represented in the scene description.

The scene description framework used in this part of ISO/IEC 14496 is based largely on ISO/IEC 14772-1:1998 (Virtual Reality Modeling Language – VRML).

0.1.2 Composition and Rendering

ISO/IEC 14496-11 defines the syntax and semantics of bitstreams that describe the spatio-temporal relationships of audio-visual objects. For visual data, particular composition algorithms are not mandated since they are implementation-dependent; for audio data, subclause 7.1.1.2.13 and the semantics of the AudioBIFS nodes normatively define the composition process. The manner in which the composed scene is presented to the user is not specified for audio or visual data. The scene description representation is termed “BInary Format for Scenes” (BIFS).

0.1.3 Scene Description

In order to facilitate the development of authoring, editing and interaction tools, scene descriptions are coded independently from the audio-visual media that form part of the scene. This permits modification of the scene without having to decode or process in any way the audio-visual media. The following clauses detail the scene description capabilities that are provided by ISO/IEC 14496-11.

0.1.3.1 Grouping of audio-visual objects

A scene description follows a hierarchical structure that can be represented as a graph. Nodes of the graph form audio-visual objects, as illustrated in Figure 2. The structure is not necessarily static; nodes may be added, deleted or be modified.

[image: image2]
Figure 2 — Logical structure of example scene

0.1.3.2 Spatio-Temporal positioning of objects

Audio-visual objects have both a spatial and a temporal extent. Complex audio-visual objects are constructed by combining appropriate scene description nodes to build up the scene graph. Audio-visual objects may be located in 2D or 3D space. Each audio-visual object has a local co-ordinate system. A local co-ordinate system is one in which the audio-visual object has a pre-defined (but possibly varying) spatio-temporal location and scale (size and orientation). Audio-visual objects are positioned in a scene by specifying a co-ordinate transformation from the object’s local co-ordinate system into another co-ordinate system defined by a parent node in the scene graph.

0.1.3.3 Attributes of audio-visual objects

Scene description nodes expose a set of parameters through which aspects of their appearance and behavior can be controlled.

EXAMPLE (the volume of a sound; the color of a synthetic visual object; the source of a streaming video.

0.1.3.4 Behavior of audio-visual objects

ISO/IEC 14496-11 provides tools for enabling dynamic scene behavior and user interaction with the presented content. User interaction can be separated into two major categories: client-side and server-side. Client-side interaction is an integral part of the scene description described herein. Server-side interaction is not dealt with.

Client-side interaction involves content manipulation that is handled locally at the end-user’s terminal. It consists of the modification of attributes of scene objects according to specified user actions.

EXAMPLE (A user can click on a scene to start an animation or video sequence. The facilities for describing such interactive behavior are part of the scene description, thus ensuring the same behavior in all terminals conforming to ISO/IEC 14496-11.

0.2 Extensible MPEG-4 Textual Format

0.2.1 Overview

The Extensible MPEG-4 Textual format (XMT) is a framework (illustrated in Figure 3) for representing MPEG-4 scene description using a textual syntax. The XMT allows the content authors to exchange their content with other authors, tools or service providers, and facilitates interoperability with both the Extensible 3D (X3D) being developed by the Web3D and the Synchronized Multimedia Integration Language (SMIL) from the W3C.

[image: image3.wmf]XMT

MPEG

-

4

Representation

(e.g. mp4)

SMIL

MPEG

-

7

SVG

Parse

Compile

SMIL Player

VRML

Browser

MPEG

-

4

Player

X3D

Figure 3 — Overview of the XMT Framework

0.2.2 Interoperability of XMT

The XMT format can be interchangeable between SMIL players, VRML players, and MPEG-4 players. The format can be parsed and played directly by a W3C SMIL player, preprocessed to Web3D X3D and played back by a VRML player, or compiled to an MPEG-4 representation such as MP4, which can then be played by an MPEG-4 player. See below for a graphical description of interoperability of the XMT.
0.2.3 Two-tier Architecture: XMT-A and XMT-Ω Formats

The XMT framework consists of two levels of textual syntax and semantics: the XMT-A format and the XMT-Ω format, which we will abbreviate by A and Ω, respectively, and use them interchangeably where there is no confusion.
The XMT-A is an XML-based version of MPEG-4 content, which contains a subset of the X3D. Also contained in XMT-A is an MPEG-4 extension to the X3D to represent MPEG-4 specific features. The XMT-A provides a straightforward, one-to-one mapping between the textual and binary formats.

The XMT-Ω is a high-level abstraction of MPEG-4 features designed based on the W3C SMIL. The XMT provides a default mapping from Ω to A, for there is no deterministic mapping between the two, and it also provides content authors with an escape mechanism from Ω to A.

In addition an XMT-C (Common) section contains the definition of elements and attributes that may be used within either XMT-A or XMT-Ω.

0.3 MPEG-J

0.3.1 Overview

MPEG-J is a flexible programmatic control system that represents an audio-visual session in a manner that allows the session to adapt to the operating characteristics when presented at the terminal. Two important characteristics are supported: first, the capability to allow graceful degradation under limited or time varying resources, and second, the ability to respond to user interaction and provide enhanced multimedia functionality.

More specifically, 9.7 normatively defines:

The format and delivery of Java byte code by specifying the MPEG-J stream format and the delivery mechanism of such a stream (Java byte code and associated data);

The MPEG-J Session and the MPEG-J application lifecycle; and

The interactions and behavior of byte code through the specification of Java APIs.

0.3.2 Organization MPEG-J specification

10.1 gives an overall architecture of the MPEG-J system. MPEG-J Session start-up is walked through in 10.2. The Delivery of MPEG-J data to the terminal is specified in 10.3. 10.4 specifies the different categories of APIs that a program in the form of Java bytecode would use. 10.5 is an informative annex on starting the Java Virtual Machine. The electronic annex attached to this document lists the normative MPEG-J APIs in the HTML format. 10.6 illustrates the usage of MPEG-J APIs through a few examples.

The International Organization for Standardization (ISO) and International Electrotechnical Commission (IEC) draw attention to the fact that it is claimed that compliance with this document may involve the use of patents.

The ISO and IEC take no position concerning the evidence, validity and scope of these patent rights.

The holder of these patent rights have assured the ISO and IEC that they are willing to negotiate licences under reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect, the statement of the holder of this patent right is registered with the ISO and IEC. Information may be obtained from the companies listed in Annex D.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights other than those identified in Annex D. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

Information technology — Coding of audio-visual objects —C:\Documents and Settings\ogura\My Documents\14496-11\w5279_FDIS14496-11_final_cc_apr05_busan.doc

 SET DDHeadingPage1 "FINAL DRAFT INTERNATIONAL STANDARD" FINAL DRAFT INTERNATIONAL STANDARD

 SET DDOrganization "© ISO/IEC 2005 – All rights reserved" © ISO/IEC 2005 – All rights reserved

 SET LibEnteteISO "ISO/IEC FDIS 14496-11:2005(E)" ISO/IEC FDIS 14496-11:2005(E)

 SET LIBTypeTitreISO " 63" 63

 SET DDTITLE4 "Part 11: Scene description and application engine" Part 11: Scene description and application engine

 SET DDTITLE3 "Information technology — Coding of audio-visual objects" Information technology — Coding of audio-visual objects

 SET DDTITLE2 "Élément introductif — Élément central — Partie 11: Titre de la partie" Élément introductif — Élément central — Partie 11: Titre de la partie

 SET DDTITLE1 "Information technology — Coding of audio-visual objects — Part 11: Scene description and application engine" Information technology — Coding of audio-visual objects — Part 11: Scene description and application engine

 SET DDDocLanguage "E" E

 SET DDWorkDocDate "2005-01-17" 2005-01-17

 SET DDDocStage "(50) Approval" (50) Approval

 SET DDOrganization3 "ISO/IEC" ISO/IEC

 SET DDOrganization1 "ISO/IEC J" ISO/IEC J

 SET DDBASEYEAR ""

 SET DDAmno ""

 SET DDDocSubType ""

 SET DDDocType "International Standard" International Standard

 SET DDWorkDocNo """"

 SET DDpubYear "2005" 2005

 SET DDRefNoPart "ISO/IEC 14496" ISO/IEC 14496

 SET DDRefGen "ISO/IEC 14496‑11" ISO/IEC 14496‑11

 SET DDRefNum "ISO/IEC FDIS 14496-11" ISO/IEC FDIS 14496-11

 SET DDSCSecr ""

 SET DDSecr ""

 SET DDSCTitle "Coding of Audio, Picture, Multimedia and Hypermedia Information" Coding of Audio, Picture, Multimedia and Hypermedia Information

 SET DDTCTitle "Information Technology" Information Technology

 SET DDWGNum "11" 11

 SET DDSCNum "29" 29

 SET DDTCNum "1" 1

 SET LIBLANG " 2" 2

 SET libH2NAME "Heading 2,h2,H2,H21,Œ©�o‚µ 2,?c�o??E 2,Œ©_o‚µ 2,?c,Œ©1,뙥2,?c1,?c�o?ƒÊ 2,?2,Œ1,Œ2,Œ©2,?c_o??E 2,...,título 2,DO NOT USE_h2,©1,2,Header 2,2nd level" Heading 2,h2,H2,H21,Œ©�o‚µ 2,?c�o??E 2,Œ©_o‚µ 2,?c,Œ©1,뙥2,?c1,?c�o?ƒÊ 2,?2,Œ1,Œ2,Œ©2,?c_o??E 2,...,título 2,DO NOT USE_h2,©1,2,Header 2,2nd level

 SET libH1NAME "Heading 1" Heading 1

 SET LibDesc ""

 SET LibDescD ""

 SET LibDescE ""

 SET LibDescF ""

 SET NATSubVer "0" 0

 SET CENSubVer "2" 2

 SET ISOSubVer ""

 SET LIBVerMSDN "STD Version 2.1c2" STD Version 2.1c2

 SET LIBStageCode "50" 50

 SET LibRpl ""

 SET LibICS ""

 SET LIBFIL " 4" 4

 SET LIBFrFileName ""

 SET LIBDeFileName ""

 SET LIBNatFileName ""

 SET LIBFileOld ""

 SET LIBTypeTitreCEN ""

 SET LIBTypeTitreNAT ""

 SET LibEnteteCEN ""

 SET LibEnteteNAT ""

 SET LIBASynchroVF ""

 SET LIBASynchroVE ""

 SET LIBASynchroVD ""
Part 11:
Scene description and application engine
1 Scope

This part of ISO/IEC 14496 specifies:

1. the coded representation of the spatio-temporal positioning of audio-visual objects as well as their behavior in response to interaction (scene description);

2. the Extensible MPEG-4 Textual (XMT) format, a textual representation of the multimedia content described in ISO/IEC 14496 using the Extensible Markup Language (XML); and
3. a system level description of an application engine (format, delivery, lifecycle, and behavior of downloadable Java byte code applications).

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 639-2:1998, Codes for the representation of names of languages — Part 2: Alpha-3 code
ISO 3166-1:1997, Codes for the representation of names of countries and their subdivisions — Part 1: Country codes
ISO 9613-1:1993, Acoustics — Attenuation of sound during propagation outdoors — Part 1: Calculation of the absorption of sound by the atmosphere

ISO/IEC 11172-2:1993, Information technology — Coding of moving pictures and associated audio for digital storage media at up to about 1,5 Mbit/s — Part 2: Video
ISO/IEC 11172-3:1993, Information technology — Coding of moving pictures and associated audio for digital storage media at up to about 1,5 Mbit/s — Part 3: Audio
ISO/IEC 13818-3:1998, Information technology — Generic coding of moving pictures and associated audio information — Part 3: Audio
ISO/IEC 13818-7: 2004, Information technology — Generic coding of moving pictures and associated audio information — Part 7: Advanced Audio Coding (AAC)

ISO/IEC 14496-2:2004, Information technology — Coding of audio-visual objects — Part 2: Visual

ISO/IEC 14772-1:1997, Information technology — Computer graphics and image processing — The Virtual Reality Modeling Language — Part 1: Functional specification and UTF-8 encoding
ISO/IEC 14772-1:1997/Amd.1:2003, Information technology — Computer graphics and image processing — The Virtual Reality Modeling Language — Part 1: Functional specification and UTF-8 encoding — Amendment 1: Enhanced interoperability

ISO/IEC 16262:2002, Information technology — ECMAScript language specification

ISO/IEC 13818-2:2000, Information technology — Generic coding of moving pictures and associated audio information — Part 2: Video
ISO/IEC 10918-1:1994, Information technology — Digital compression and coding of continuous-tone still images: Requirements and guidelines
IEEE Std 754-1985, Standard for Binary Floating-Point Arithmetic

Addison-Wesley:September 1996, The Java Language Specification, by James Gosling, Bill Joy and Guy Steele, ISBN 0-201-63451-1

Addison-Wesley:September 1996, The Java Virtual Machine Specification, by T. Lindholm and F. Yellin, ISBN 0-201-63452-X
Addison-Wesley:July 1998, Java Class Libraries Vol. 1 The Java Class Libraries, Second Edition Volume 1, by Patrick Chan, Rosanna Lee and Douglas Kramer, ISBN 0-201-31002-3

Addison-Wesley:July 1998, Java Class Libraries Vol. 2 The Java Class Libraries, Second Edition Volume 2, by Patrick Chan and Rosanna Lee, ISBN 0-201-31003-1
Addison-Wesley, May 1996, Java API, The Java Application Programming Interface, Volume 1: Core Packages, by J. Gosling, F. Yellin and the Java Team, ISBN 0-201-63453-8
DAVIC 1.4.1 specification Part 9: Information Representation
ANSI/SMPTE 291M-1996, Television — Ancillary Data Packet and Space Formatting

SMPTE 315M -1999, Television — Camera Positioning Information Conveyed by Ancillary Data Packets
3 Additional reference

ISO/IEC 13522-6:1998, Information technology — Coding of multimedia and hypermedia information — Part 6: Support for enhanced interactive applications. This reference contains the full normative references to Java APIs and the Java Virtual Machine as described in the normative references above.

4 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

Access Unit (AU)

individually accessible portion of data within an elementary stream
NOTE
An access unit is the smallest data entity to which timing information can be attributed.

Alpha map

representation of the transparency parameters associated with a texture map

audio-visual object

representation of a natural or synthetic object that has an audio and/or visual manifestation
NOTE
The representation corresponds to a node or a group of nodes in the BIFS scene description. Each audio-visual object is associated with zero or more elementary streams using one or more object descriptors.
audio-visual scene (AV scene)

set of audio-visual objects together with scene description information that defines their spatial and temporal attributes including behaviors resulting from object and user interactions
Binary Format for Scene (BIFS)

coded representation of a parametric scene description format
buffer model

model that defines how a terminal complying with ISO/IEC 14496 manages the buffer resources that are needed to decode a presentation
byte aligned

position in a coded bit stream with a distance of a multiple of 8-bits from the first bit in the stream
4.1

clock reference

special time stamp that conveys a reading of a time base
composition

process of applying scene description information in order to identify the spatio-temporal attributes and hierarchies of audio-visual objects
Composition Memory (CM)

random access memory that contains composition units
Composition Time Stamp (CTS)

indication of the nominal composition time of a composition unit
Composition Unit (CU)

individually accessible portion of the output that a decoder produces from access units
compression layer

layer of a system according to the specifications in ISO/IEC 14496 that translates between the coded representation of an elementary stream and its decoded representation
NOTE
It incorporates the decoders.

decoder

entity that translates between the coded representation of an elementary stream and its decoded representation
decoding buffer (DB)

buffer at the input of a decoder that contains access units
decoder configuration

configuration of a decoder for processing its elementary stream data by using information contained in its elementary stream descriptor
Decoding Time Stamp (DTS)

indication of the nominal decoding time of an access unit
delivery layer

generic abstraction for delivery mechanisms (computer networks, etc.) able to store or transmit a number of multiplexed elementary streams or M4Mux streams
descriptor

data structure that is used to describe particular aspects of an elementary stream or a coded audio-visual object

Elementary Stream (ES)

consecutive flow of mono-media data from a single source entity to a single destination entity on the compression layer
Elementary Stream Descriptor (ESD)
structure contained in object descriptors that describes the encoding format, initialization information, sync layer configuration, and other descriptive information about the content carried in an elementary stream

M4Mux Channel (FMC)

label to differentiate between data belonging to different constituent streams within one M4Mux Stream
NOTE
A sequence of data in one M4Mux channel within a M4Mux stream corresponds to one single SL-packetized stream.

M4Mux packet

smallest data entity managed by the M4Mux tool, consisting of a header and a payload
M4Mux stream

sequence of M4Mux Packets with data from one or more SL-packetized streams that are each identified by their own M4Mux channel
M4Mux tool

tool that allows the interleaving of data from multiple data streams
graphics profile

profile that specifies the permissible set of graphical elements of the BIFS tool that may be used in a scene description stream
NOTE
Note BIFS comprises both graphical and scene description elements.

inter

mode for coding parameters that uses previously coded parameters to construct a prediction
interaction stream

elementary stream that conveys user interaction information
intra

mode for coding parameters that does not make reference to previously coded parameters to perform the encoding
initial object descriptor

special object descriptor that allows the receiving terminal to gain initial access to portions of content encoded according to ISO/IEC 14496
NOTE
It conveys profile and level information to describe the complexity of the content.

Intellectual Property Identification (IPI)

unique identification of one or more elementary streams corresponding to parts of one or more audio-visual objects
Intellectual Property Management and Protection System (IPMP)

generic term for mechanisms and tools to manage and protect intellectual property
NOTE
Only the interface to such systems is normatively defined.
media node
following list of time dependent nodes that refers to a media stream through a URL field: AnimationStream, AudioBuffer, AudioClip, AudioSource, Inline, MovieTexture
media stream

one or more elementary streams whose ES descriptors are aggregated in one object descriptor and that are jointly decoded to form a representation of an AV object
media time line

time line expressing normal play back time of a media stream
4.2

Object Clock Reference (OCR)

clock reference that is used by a decoder to recover the time base of the encoder of an elementary stream
Object Content Information (OCI)

additional information about content conveyed through one or more elementary streams
NOTE
It is either aggregated to individual elementary stream descriptors or is itself conveyed as an elementary stream.

Object Descriptor (OD)

descriptor that aggregates one or more elementary streams by means of their elementary stream descriptors and defines their logical dependencies
Object Descriptor Command

command that identifies the action to be taken on a list of object descriptors or object descriptor IDs, e.g. update or remove
Object Descriptor Profile

profile that specifies the configurations of the object descriptor tool and the sync layer tool that are allowed
Object Descriptor Stream

elementary stream that conveys object descriptors encapsulated in object descriptor commands
Object Time Base (OTB)

time base valid for a given elementary stream, and hence for its decoder
NOTE
The OTB is conveyed to the decoder via object clock references. All time stamps relating to this object’s decoding process refer to this time base.
Parametric Audio Decoder

set of tools for representing and decoding speech signals coded at bit rates between 6 Kbps and 16 Kbps, according to the specifications in ISO/IEC 14496-3
Quality of Service (QoS)

performance that an elementary stream requests from the delivery channel through which it is transported
NOTE
QoS is characterized by a set of parameters (e.g. bit rate, delay jitter, bit error rate, etc.).

random access

process of beginning to read and decode a coded representation at an arbitrary point within the elementary stream
reference point

location in the data or control flow of a system that has some defined characteristics
rendering

action of transforming a scene description and its constituent audio-visual objects from a common representation space to a specific presentation device (i.e., speakers and a viewing window)
rendering area

portion of the display device’s screen into which the scene description and its constituent audio-visual objects are to be rendered
Symbolic Music Representation (SMR)

A method of describing a logical structure consisting of: symbolic elements that represent audiovisual events; the relationship between those events; and aspects of rendering those events as defined by ISO/IEC 14496‑23.

scene description

information that describes the spatio-temporal positioning of audio-visual objects as well as their behavior resulting from object and user interactions
NOTE
The scene description makes reference to elementary streams with audio-visual data by means of pointers to object descriptors.

scene description stream

elementary stream that conveys scene description information
scene graph elements

elements of the BIFS tool that relate only to the structure of the audio-visual scene (spatio-temporal positioning of audio-visual objects as well as their behavior resulting from object and user interactions) excluding the audio, visual and graphics nodes as specified in 14496-11
scene graph profile

profile that defines the permissible set of scene graph elements of the BIFS tool that may be used in a scene description stream
NOTE
Note BIFS comprises both graphical and scene description elements.

seekable
media stream is seekable if it is possible to play back the stream from any position
SL-Packetized Stream (SPS)

sequence of sync layer packets that encapsulate one elementary stream
stream object
media stream or a segment thereof
NOTE
A stream object is referenced through a URL field in the scene in the form “OD:n” or “OD:n#<segmentName>”.

structured audio

method of describing synthetic sound effects and music as defined by ISO/IEC 14496-3
Sync Layer (SL)

layer to adapt elementary stream data for communication across the DMIF Application Interface, providing timing and synchronization information, as well as fragmentation and random access information
NOTE
The sync layer syntax is configurable and can be configured to be empty.

Sync Layer Configuration

configuration of the sync layer syntax for a particular elementary stream using information contained in its elementary stream descriptor
Sync Layer Packet (SL-Packet)

smallest data entity managed by the sync layer consisting of a configurable header and a payload
NOTE
The payload may consist of one complete access unit or a partial access unit.

Syntactic Description Language (SDL)

language defined by ISO/IEC 14496-1 that allows the description of a bitstream’s syntax
Systems Decoder Model (SDM)

model that provides an abstract view of the behavior of a terminal compliant to ISO/IEC 14496
NOTE
It consists of the buffer model and the timing model.

System Time Base (STB)

time base of the terminal
NOTE
Its resolution is implementation-dependent. All operations in the terminal are performed according to this time base.
terminal

system that sends, or receives and presents the coded representation of an interactive audio-visual scene as defined by ISO/IEC 14496-11
NOTE
It can be a stand alone system, or part of an application system complying with ISO/IEC 14496.

time base

notion of a clock, equivalent to a counter that is periodically incremented
timing model

model that specifies the semantics of timing information, how it is incorporated (explicitly or implicitly) in the coded representation of information, and how it can be recovered at the receiving terminal
time stamp

indication of a particular time instant relative to a time base
4.3

interaction stream

elementary stream that conveys user interaction information
5 Abbreviations and Symbols

	AFX
	Animation Framework eXtension

	AU
	Access Unit

	AV
	Audio-visual

	BIFS
	Binary Format for Scene

	CM
	Composition Memory

	CTS
	Composition Time Stamp

	CU
	Composition Unit

	DAI
	DMIF Application Interface (see ISO/IEC 14496-6)

	DB
	Decoding Buffer

	DTS
	Decoding Time Stamp

	ES
	Elementary Stream

	ESI
	Elementary Stream Interface

	ESID
	Elementary Stream Identifier

	FAP
	Facial Animation Parameters

	FAPU
	FAP Units

	FDP
	Facial Definition Parameters

	FIG
	FAP Interpolation Graph

	FIT
	FAP Interpolation Table

	FMC
	M4Mux Channel

	FMOD
	The floating point modulo (remainder) operator which returns the remainder of x/y such that:

Fmod(x/y) = x – k*y, where k is an integer,

sgn(fmod(x/y)) = sgn(x), and

abs(fmod(x/y)) < abs(y)

	IP
	Intellectual Property

	IPI
	Intellectual Property Identification

	IPMP
	Intellectual Property Management and Protection

	NCT
	Node Coding Tables

	NDT
	Node Data Type

	NINT
	Nearest INTeger value

	OCI
	Object Content Information

	OCR
	Object Clock Reference

	OD
	Object Descriptor

	ODID
	Object Descriptor Identifier

	OTB
	Object Time Base

	PLL
	Phase Locked Loop

	QoS
	Quality of Service

	SAOL
	Structured Audio Orchestra Language

	SASL
	Structured Audio Score Language

	SDL
	Syntactic Description Language

	SDM
	Systems Decoder Model

	SL
	Synchronization Layer

	SL-Packet
	Synchronization Layer Packet

	SPS
	SL-Packetized Stream

	STB
	System Time Base

	TTS
	Text-To-Speech

	URL
	Universal Resource Locator

	VOP
	Video Object Plane

	VRML
	Virtual Reality Modeling Language

6 Conventions

For the purpose of unambiguously defining the syntax of the various bitstream components defined by the normative parts of ISO/IEC 14496 a syntactic description language is used. This language allows the specification of the mapping of the various parameters in a binary format as well as how they are placed in a serialized bitstream. The definition of the language is provided in 14496-1.

7 MPEG-4 Systems Node Semantics

7.1 Scene Description

7.1.1 Concepts

7.1.1.1 BIFS Elementary Streams

7 Overview

BIFS is a compact binary format representing a pre-defined set of audio-visual objects, their behaviors, and their spatio-temporal relationships. The BIFS scene description may, in general, be time-varying. Consequently, BIFS data is carried in a dedicated elementary stream and is subject to the provisions of the systems decoder model (see 8.2). Portions of BIFS data that become valid at a given point in time are contained in BIFS CommandFrames or AnimationFrames and are delivered within time-stamped access units. Note that the initial BIFS scene is sent as a BIFS-Command, although it is not required, in general, that a BIFS CommandFrame contains a complete BIFS scene description.

7 BIFS Decoder Configuration

BIFS configuration information is contained in a BIFSConfig (see 8.5.2) syntax structure, which is transmitted as DecoderSpecificInfo for the BIFS elementary stream in the corresponding object descriptor (see 7.2.6.7, ISO/IEC 14496-1). This gives basic information that must be known by the terminal in order to parse the BIFS elementary stream. In particular, it indicates whether the stream consists of BIFS-Command or BIFS-Anim entities.

7 BIFS Access Units

A BIFS data access unit consists of one BIFS CommandFrame or AnimationFrame, as defined in 8.6.2 and 8.8.2 respectively. The BIFS CommandFrame or AnimationFrame shall convey all the data that is to be processed at any given instant in time. Access units in BIFS streams shall be labelled and time-stamped by suitable means. This shall be done via the related flags and the composition time stamps (CTS), respectively, in the SL packet header (see 7.3.2.4, ISO/IEC 14496-1). The composition time indicates the point in time at which the CommandFrame or AnimationFrame embedded in a BIFS access unit shall become valid. This means that any changes to audio-visual objects that are described in the BIFS access unit will become visible or audible at precisely this time in an ideal compositor, unless a different behavior is specified by the fields of their nodes. Decoding and composition time for a BIFS access unit shall always have the same value.

An access unit does not necessarily convey a complete scene. In that case it just modifies the persistent state of the scene description. However, if an access unit conveys a complete scene as required at a given point in time it shall set the randomAccessPointFlag in the SL packet header to ‘1’ for this access unit. Otherwise, the randomAccessPointFlag shall be set to ‘0’.

7 Time base for BIFS streams

The time base associated with a BIFS stream shall be indicated by suitable means. This shall be done by means of object clock reference time stamps in the SL packet headers (see 7.3.2.4, ISO/IEC 14496-1) for this stream or by indicating the elementary stream from which this BIFS stream inherits the time base (see 7.3.2.3, ISO/IEC 14496-1). All time stamps in the SL-packetized BIFS stream refer to this time base.

7 Multiple BIFS streams

Scene description data may be conveyed in more than one BIFS elementary streams. Two distinct mechanisms exist to associate a set of BIFS elementary streams to a single scene.

The first method uses Inline nodes (see 7.2.2.70) in a BIFS scene description. Each such node refers to further BIFS elementary streams. In this case, multiple BIFS streams have a hierarchical dependency. Each Inline node opens a new name scope for the identifiers used to label BIFS elements (nodeID, ROUTEID, objectDescriptorID). Therefore, it is not possible to pass events between parts of a scene that reside below different Inline nodes.

EXAMPLE 1 (An application of hierarchical BIFS streams is a multi-user virtual conferencing scene, where sub-scenes originate from different sources. Usually, it is neither possible nor useful to specify interaction between two such disjoint parts of the scene.

The second method to associate multiple BIFS elementary streams to a single scene is to group their elementary stream descriptors in a single object descriptor (see 7.2.7.2.2, ISO/IEC 14496-1). In this case, these BIFS streams share the same scope for the identifiers they use (nodeID, ROUTEID, objectDescriptorID). This allows a single scene to be partitioned into multiple streams.

EXAMPLE 2 (An application may offer a presentation with different levels of detail, corresponding to different data rates and different computational complexity. By sharing the same name scope, the more detailed scene description can build on the simple one, rather than sending the entire scene again.

7 Time

7 Stream Objects

A Media Stream consists of one or more elementary streams whose ES descriptors are aggregated in one object descriptor and that are jointly decoded to form a representation of an AV object. Such streams may be streamed in response to player requests, in particular in the case of Media nodes that control play back of media. Streams may be seekable, in which case the stream can be played from any (randomly accessible) time position in the stream, or they may be non-seekable, in which case the player has no control over the playback of the stream, as is the case in broadcast scenarios.

7 Time-dependent Media Nodes

This specification defines the notion of a Media Node. Such nodes control the opening and playback of remote streams and are time-dependent nodes.

The url field of a media node shall contain at most one element which must point to a complete media stream, i.e. it is of the form “OD:n”. Media Nodes may become active or inactive based on the value of their startTime and stopTime fields. The mediaTime of the played stream is controlled by a MediaControl node, and is not dependent on the startTime and stopTime in the media Node.

The semantics of the loop, startTime and stopTime exposedFields and the isActive eventOut in time-dependent nodes are as described in ISO/IEC 14772-1:1998, Subclause 4.6.9. startTime, stopTime and loop apply only to the local start, pause and restart of these nodes. In the case of media Nodes, these fields affect the delivery of the stream attached to media nodes as described below. The following media nodes exist: AnimationStream, AudioBuffer, AudioClip, AudioSource, MovieTexture.

When a media node becomes active and the stream associated with that media node is already active, the media node simply joins the session. If the stream is not active when the media node becomes active, the stream becomes active; i.e. it is played.

When a media node becomes inactive, the stream shall become inactive if there are no other active media nodes referring to that stream, otherwise the stream remains active.

For media nodes that reference streams that are synchronized with the scene, reaching startTime and stopTime shall not cause the streams to become active or inactive. Instead, the media shall be muted (i.e. hidden) and unmuted, respectively.

Loop and speed in a MediaControl node shall over-ride the same fields, when they exist, in any media node referencing the controlled stream. These fields retain their semantics when no controlling MediaControl node is present in the scene.
7 Time fields in BIFS nodes

SFTime field in BIFS nodes define either a time duration or a point in time.

Durations expressed by relative SFTime values like the cycleTime field of the TimeSensor node are determined unambiguously by the time base of the BIFS stream as defined in 7.1.1.1.4. Note that the time base of a stream (and hence the scene time of a scene sub-tree) can be modified by the TemporalTransform node which is used to synchronize different streams.
The startTime and stopTime SFTime fields in BIFS Media nodes and the TimeSensor node represent an absolute position on the time line of the BIFS stream. This absolute position is defined as follows:

Each node in the scene description has an associated point in time at which it is inserted in the scene graph or at which an absolute-position SFTime field in such a node is updated through a CommandFrame in a BIFS access unit (see 7.1.1.1.3). The value of such an SFTime field in the scene graph shall be calculated as the sum of the value encoded in the BIFS command (or the default value, if no value is encoded in the BIFS command) and the scene time as evaluated in the scene graph (e.g. the value of the time field of a TimeSensor) when the command is composed.

Offset to startTime / stopTime fields shall be applied in the following cases:

· insertion of the node with explicit or default value for the startTime / stopTime fields;

· replacement of the value of the startTime / stopTime field through a BIFS Command ;

· replacement of the PROTO interface field to which the startTime / stopTime field is routed through an IS statement;

· insertion of a PROTO instance whose body contains startTime / stopTime fields.

No offset shall be applied to a startTime / stopTime field in the following cases:

· modification through a ROUTE;

· replacement of the value of the startTime / stopTime field through a Script or MPEG-J.

NOTE 1 — Absolute time in ISO/IEC 14772-1:1998 is defined slightly differently. Due to the non-streamed nature of the scene description in that case, absolute time corresponds to wallclock time in ISO/IEC 14772-1.

EXAMPLE (The example in Figure 4 shows a BIFS access unit that is to become valid at CTS. It conveys a node that has an associated media elementary stream. The startTime of this node is set to a positive value (t. Hence, startTime will occur (t seconds after the CTS of the BIFS access unit that has incorporated this node (or the value of the startTime field) in the scene graph.

[image: image4.wmf]OCRstream

BIFS time line

BIFS stream

OCR

OCR

OCR

OCR

OCR

BIFS AU

BIFS AU

CTS

Media time line

Media stream

CU

CU

CU

CU

CU

CU

CU

CU

CU

CU

CU

CU

CU

CU

CU

CU

0

0

D

t

CTS+

D

t

Figure 4 — Media start times and CTS

7 Sensor Reaction to Scene Changes

When the whichChoice field of a Switch node is changed or when a BIFS-command is executed, the current pointing device position shall be reevaluated with respect to all sensors in the scene.

7 BIFS Scene Graph

7 Structure of the BIFS scene graph

Conceptually, BIFS scenes represent (as in ISO/IEC 14772-1:1998) a set of visual and audio primitives distributed in a directed acyclic graph, in a 3D space. However, BIFS scenes may fall into several sub-categories representing particular cases of this conceptual model. In particular, BIFS scene descriptions support scenes composed of:

2D primitives (only)

3D primitives (only)

A combination of 2D and 3D primitives

Audio primitives (only)

In scenes combining 2D and 3D primitives, the following possibilities exist:

Complete 2D and 3D scenes layered in a 2D space with depth

2D and 3D scenes used as texture maps for 2D or 3D primitives

2D scenes drawn in the local X-Y plane of the local co-ordinate system in a 3D scene

Figure 5 describes a typical BIFS scene structure.

A BIFS scene shall start with a one of the following nodes: OrderedGroup, Group, Layer2D, Layer3D. When the profile used enables visual elements to be composed, the first node indicates the co-ordinate system and context (2D or 3D) to be used for the children of that node. The following rules apply:

· Scene starts with a Layer2D or OrderedGroup node: A 2D co-ordinate system and context is assumed.

· Scene starts with a Layer3D or Group node : A 3D co-ordinate system and context is assumed.

[image: image5.wmf]2D Layer-2

3D Layer-1

3D Obj-1

3D Layer-2

3D Obj-2

3D Obj-3

3D Obj-4

3D Obj-5

root

2DLayer

2D Layer-1

2D Obj-1

2D

Obj- 2

2D Obj-3

3D Obj-4

Layers

Scene graph

3D

Scene graph

2D

Scene graph

Pointer to 2D scene

2D Scene-1

3D Scene-1

3D Scene-2

Figure 5 — Scene graph example.

The hierarchy of three different scene graphs is shown: a 2D graphics scene graph and two 3D graphics scene graphs combined with the 2D scene via layer nodes. As shown in the picture, the 3D Layer-2 is the same scene as 3D Layer-1, but the viewpoint may be different. The 3D Obj-3 is an Appearance node that uses the 2D Scene-1 as a texture node.

7 2D Co-ordinate System

The origin of the 2D co-ordinate system is positioned in the center of the rendering area, the x-axis is positive to the right, and the y-axis is positive upwards.

The width of the rendering area represents -1.0 to +1.0 (meters) on the x-axis (see Figure 6). The extent of the y-axis in the positive and negative directions is determined by the aspect ratio of the rendering area so that the unit of distance is equal in both directions. The rendering area is either the entire screen, or window on a computer screen, when viewing a single 2D scene, or the rectangular area defined by the texture used in a CompositeTexture2D node, or a Layer2D node that contains a subordinate 2D scene description.

[image: image6.wmf]-1.0

Figu

re

1

+1.0

o

+AR

-1

-AR

-1

Figure 6 — 2D co-ordinate system (AR = Aspect Ratio)

7 3D Co-ordinate System

The 3D co-ordinate system is as described in ISO/IEC 14772-1:1998, subclause 4.4.5. When 2D objects are described in a 3D space, they are drawn in the local (x,y) plane (z=0), and the units used are those of the 3D co-ordinate system for the x and y directions.

7 Mixing 2D and 3D scenes

A single BIFS scene may contain both 2D and 3D elements. The following methods exist:

2D primitives may be placed in a 3D scene graph. In this cased, the 2D primitives are drawn in the local (x,y) plane, and use the local coordinate system, restricted to this (x,y) plane.

2D and 3D scenes may be composed and overlapped on the screen using Layer2D and Layer3D nodes. This is useful, for instance, when it is desirable to have 2D interfaces to 3D worlds ("head up" display), or a 3D insert in a 2D scene.

2D and 3D scenes may be mapped onto any given geometry using the CompositeTexture2D and CompositeTexture3D nodes. For instance, 2D scenes may be mapped onto animated 3D geometry to perform special effects.

7 Drawing Order

It is possible to specify the drawing order of elements of the scene, using the OrderedGroup node. This feature may be used for 2D or 3D scenes. 2D scenes are considered to have zero depth. Nonetheless, it is important to be able to specify the order in which 2D objects are composed, in order to describe their apparent depths. 3D scenes may use the drawing order facility to solve conflicts of coplanar polygons or other rendering optimizations.

The following rules determine the drawing order, including conflict resolution for objects having the same drawing order:

1. The object having the lowest drawing order shall be drawn first (taking into account negative values).

2. Objects having the same drawing order shall be drawn in the order in which they appear in the scene description.

7 Pixel and Meter metrics

In addition to meter-based metrics, it is also possible to use pixel-based metrics. In this case, 1 meter is set to be equal to the distance between two pixels. This applies to both the horizontal (x-axis) and vertical (y-axis) directions.

The selection of the appropriate metrics is performed by the content creator. In particular, it is controlled by the BIFSConfig syntax (see 8.5.2).

When pixelMetric is set to 1, pixel metrics shall be used for the entire scene . This implies that rendered node sizes (such as for a Rectangle) and rendered node positions are integers. If non-integer values appear due to for example scaling, rounding shall be implied towards -infinity.

7 Nodes and fields

7 Nodes

The BIFS scene description consists of a collection of nodes that describe the scene structure. An audio-visual object in the scene is described by one or more nodes, which may be grouped together (using a grouping node). Nodes are grouped into node data types (NDTs) and the exact type of the node is specified using a nodeType field.

An audio-visual object may be completely described within the BIFS information, e.g. Box with Appearance, or may also require elementary stream data from one or more audio-visual objects, e.g. MovieTexture or AudioSource. In the latter case, the node includes a reference to an object descriptor that indicates which elementary stream(s) is (are) associated with the node, or directly to a URL description (see ISO/IEC 14772-1:1998, subclause 4.5.2). With the exception of the Anchor and Script nodes, a url field may only refer to content that conforms to a valid profile and level for the terminal. When a url field is not an OD ID url, the behaviour of the terminal is unspecified.

 In the case of InputSensor, the node includes a reference to an object descriptor that indicates which user interaction stream is associated with the node.
7 Fields and Events

See ISO/IEC 14772-1:1998, subclause 5.1.

7 Object descriptor references in URL fields

The url fields in several nodes contain references to media streams. Depending on the profile and level settings (see subclause 7.9), references to media streams are made through object descriptor Ids. The textual syntax for the url fields in this case is as follows:

“od:<number>” - refers to the object descriptor with the id <number>.

“od:<number>#<segmentName>” - refers to the stream object defined within the object descriptor with the id <number> that has the name <segmentName>.

“od:<number>#<segmentName1>:<segmentName2>” - refers to all stream objects defined within the object descriptor with the id <number> that start at the same time or later as <segmentName1> and that end at the same time or earlier than <segmentName2>

“od:<number>#<segmentName1>+” - refers to all stream objects defined within the object descriptor with the id <number> start start at the same time or later as <segmentName1> until the end of the media stream.
7 Routing of Nodes

If a node is routed, the target node of this route becomes as if it were a USE of the source. If the source is a USE itself, then it becomes as if it were a USE of the original DEF. If the source node is not an existing DEF or USE then it becomes an implicit DEF with the target node on the route becoming a USE of it. This behavior for node routing is thus copy by reference, rather than copy by value for the basic fields. An implementation shall behave as if it holds a reference count for nodes that are DEF’d, whether implicit or explicit. The reference count will be the number of nodes that use the definition (the count starting at one for the original DEF). Any nodes overwritten by the routing will have their reference count decremented. When the node is no longer required, i.e. the reference count has been reduced to zero, the node is deleted and is no longer available for re-use.

7 Internal, ASCII and Binary Representation of Scenes

ISO/IEC 14496-1 describes the attributes of audio-visual objects using node structures and fields. These fields can be one of several types (see 7.1.1.2.7.2). To facilitate animation of the content and modification of the objects’ attributes in time, within the terminal, it is necessary to use an internal representation of nodes and fields as described in the node specifications (see 7.2). This is essential to ensure deterministic behaviour in the terminal’s compositor, for instance when applying ROUTEs or differentially coded BIFS-Anim frames. The observable behaviour of compliant terminals shall not be affected by the way in which they internally represent and transform data; that is, they shall behave as if their internal representation is as defined herein.

However, when encoding the BIFS scene description, different attributes may need to be quantized or compressed appropriately. Thus, the binary representation of fields may differ according to the types of fields, or according to the precision needed to represent a given audio-visual object's attributes. The semantics of nodes are described in subclause 7.2. The binary syntax which represents the binary format as transported in streams conforming to ISO/IEC 14496-11 is provided in clause 8 and uses the node coding parameters provided as an electronic attachment.

7 Binary Syntax Overview

7 Scene Description

The entire scene is represented by a binary encoding of the scene graph. This encoding restricts the VRML grammar as defined in ISO/IEC 14772-1:1997, Annex A, but still enables the representation of any scene that can be generated by this grammar.

EXAMPLE (One example of the grammatical differences is the fact that all ROUTEs are represented at the end of a BIFS scene, and that a global grouping node is required at the top level of the scene.

7 Node Description

Node types are encoded according to the context of the node. This improves efficiency by exploiting the fact that not all nodes are valid at all places in the scene graph. In many instances, only one of a subset of all BIFS nodes is valid at a particular place in the scene graph, and hence in the bitstream.

7 Fields description

Fields may be quantized to improve compression efficiency. Several aspects of the inverse quantization process can be controlled by adjusting the parameters of the QuantizationParameter node.

7.1.1.1.1.1 ROUTE description

All ROUTEs are described at the end of the scene. This improves bit efficiency by grouping these elements in a single location in the bitstream and removes the need for switches in the syntax to allow ROUTEs and nodes to be described in a mixed format.

7.7.7.8.15 Basic Data Types

There are two general classes of fields and events: fields/events that contain a single value (e.g. a single number or a vector), and fields/events that contain multiple values. Multiple-valued fields/events have names that begin with MF, whereas single valued begin with SF.

7.7.7.8.15.1 Numerical data and string data types

7 Introduction

For each basic data type, single field and multiple field data types are defined in ISO/IEC 14772-1:1998, subclause 5.2. Some further restrictions are described herein.

7 SFInt32/MFInt32

When routing values between two SFInt32s note shall be taken of the valid range of the destination. If the value being conveyed is outside the valid range, it shall be clipped to be equal to either the maximum or minimum value of the valid range, as follows:

if x > max, x := max

if x < min, x := min

7 SFTime

The SFTime field and event specifies a single time value. Time values shall consist of 64-bit floating point numbers indicating a duration in seconds or the number of seconds elapsed since the origin of time as defined in the semantics for each SFTime field.

7.7.7.8.15.2 Node data types

Nodes in the scene are also represented by a data type, namely SFNode and MFNode types. ISO/IEC 14496-1 also defines a set of sub-types, such as SFColorNode, SFMaterialNode. These node data types (NDTs) allow efficient binary representation of BIFS scenes, taking into account the usage context to achieve better compression. However, the generic SFNode and MFNode types are sufficient for internal representations of BIFS scenes.

7.7.7.8.16 Attaching nodeIDs to nodes

Each node in a BIFS scene graph may have a nodeID associated with it, to be used for referencing. ISO/IEC 14772-1:1998, subclause 4.6.2, describes the DEF statement which is used to attach names to nodes. In BIFS scenes, an integer value is used for the same purpose for nodeIDs. The number of bits used to represent these integer values is specified in the BIFSConfig syntax (see 8.5.2).

The following restrictions apply:

a) Nodes are identified by the use of nodeIDs, which are binary numbers conveyed in the BIFS bitstream.

b) The scope of nodeIDs is given in 7.1.1.1.5.

c) No two nodes in the scene graph may have the same nodeID at any point in time.

Nodes that have been assigned a nodeID may be re-used, as described in ISO/IEC 14772-1:1998, subclause 4.6.3. Note that this mechanism results in a scene description that is a directed acyclic graph, rather than a simple tree.

The mechanisms that allow modifications to the BIFS scene also depend on the use of nodeIDs.

7.7.7.8.17 Standard Units

As described in ISO/IEC 14772-1:1998, subclause 4.4.5, the standard units used in the scene description are the following:

Table 1 — Standard units

	Category
	Unit

	Distance
	Meter

	Color Space
	RGB [0,1] [0,1] [0,1]

	Time
	Seconds

	Angle
	Radians

7.7.7.8.18 Mapping of Scenes to Screens

BIFS scenes may contain still images and videos that are to be pixel-copied to the rendering device using their native dimensions as produced at the output of their terminals. The Bitmap node (see 7.2.2.22) provides a screen-aligned geometry that has the pixel dimensions of the texture that is mapped onto it.

NOTE — When Bitmap is used, the same scene will appear differently on screens with different resolutions. BIFS scenes that do not use the Bitmap node are independent from the screen on which they are viewed.

7.7.7.8.18.1 Transparency of visual objects

Content complying with ISO/IEC 14496-1 may include still images or video sequences with representations that include alpha values. These values provide transparency information and are to be treated as specified in ISO/IEC 14772-1:1998, subclause 4.14. For video sequences represented according to ISO/IEC 14496-2, transparency is handled as specified in ISO/IEC 14496-2.

7.7.7.8.19 Special considerations for audio

7.7.7.8.19.1 Audio sub-graphs

Audio nodes are used to build audio scenes in the terminal from audio sources coded with tools specified in ISO/IEC 14496-3. The audio scene description capabilities provide two functionalities:

“Physical modelling” composition for virtual-reality applications, where the goal is to recreate the acoustic space of a real or virtual environment.

“Post-production” composition for traditional content applications, where the goal is to apply high-quality signal processing transformations.

Audio may be included in either 2D or 3D scene graphs. In a 3D scene, the audio may be spatially presented to sound as though it originates from a particular 3D direction, according to the positions of the object and the listener.

The Sound, DirectiveSound, WideSound and SurroundingSound nodes are used to attach audio to 3D scene graphs and the Sound2D node is used to attach audio to 2D scene graphs. However, by use of the Transform3DAudio node 3D audio nodes can also be used in 2D scenes. As with visual objects, an audio object represented by one of these nodes has a position in space and time, and is transformed by the spatial and grouping transforms of nodes hierarchically above it in the scene.

The nodes below the Sound, DirectiveSound, WideSound, SurroundingSound, Sound2D nodes, however, constitute an audio sub-graph.This sub-graph is used to describe a particular audio object through the mixing and processing of several audio streams. Rather than representing a hierarchy of spatio-temporal transformations, the nodes within the audio sub-graph represent a signal flow graph that describes how to create the audio object from the audio coded in the AudioSource streams. That is, each audio sub-graph node (AudioSource, AudioMix, AudioSwitch, AudioFX, AudioClip, AudioBuffer, Advanced​AudioBuffer, AudioDelay, AudioChannelConfig) accepts one or several channels of input audio, and describes how to turn these channels of input audio into one or more channels of output. The only sounds presented in the audio-visual scene are those which are the output of audio nodes that are children of a Sound / DirectiveSound / WideSound / SurroundingSound / Sound2D node (that is, the “highest” outputs in the audio sub-graph). The remaining nodes represent “intermediate results” in the sound computation process and the sound represented therein is not presented to the user.
The normative semantics of each of the audio sub-graph nodes describe the exact manner in which to compute the output audio from the input audio for each node based on its parameters.

7.7.7.8.19.2 Overview of sound node semantics

This subclause describes the concepts for normative calculation of the audio objects in the scene in detail, and describes the normative procedure for calculating the audio signal which is the output of a Sound, DirectiveSound, WideSound, SurroundingSound, Sound2D node given the audio signals which are its input.

Recall that the audio nodes present in an audio sub-graph do not each represent a sound to be presented in the scene. Rather, the audio sub-graph represents a signal-flow graph which computes a single (possibly multi-channel) audio object based on a set of audio inputs (in AudioSource nodes) and parametric transformations. The only sounds which are presented to the listener are those which are the “output” of these audio sub-graphs, as connected to a Sound, DirectiveSound, WideSound, SurroundingSound, Sound2D node. This subclause describes the proper computation of this signal-flow graph and resulting audio object.
As each audio source is decoded, it produces data that is stored in composition memory (CM). At a particular time instant in the scene, the compositor shall receive from each audio decoder a CM such that the decoded time of the first audio sample of the CM for each audio source is the same (that is, the first sample is synchronized at this time instant). Each CM will have a certain length, depending on the sampling rate of the audio source and the clock rate of the system. In addition, each CM has a certain number of channels, depending on the audio source .

Each node in the audio sub-graph has an associated input buffer and output buffer, except for the AudioSource node which has no input buffer. The CM for the audio source acts as the input buffer of audio for the AudioSource with which the decoder is associated. As with CM, each input and output buffer for each node has a certain length, and a certain number of channels.

As the signal-flow graph computation proceeds, the output buffer of each node is placed in the input buffer of its parent node, as follows:

If an audio node, N, has n children, and each of the children produces k(i) channels of output, for 1 <= i <= n, then the node, N, shall have k(1) + k(2) + ... + k(n) channels of input, where the first k(1) channels [number 1 through k(1)] shall be the channels of the first child, the next k(2) channels [number k(1)+1 through k(1)+k(2)] shall be the channels of the second child, and so forth.

Then, the output buffer of the node is calculated from the input buffer based on the particular rules for that node.

7 Sample-rate conversion

If the various children of a Sound, DirectiveSound, WideSound, SurroundingSound, Sound2D node do not produce output at the same sampling rate, then the lengths of the output buffers of the children do not match, and the sampling rates of the children’s’ output must be brought into alignment in order to place their output buffers in the input buffer of the parent node. The sampling rate of the input buffer for the node shall be the fastest of the sampling rates of the children. The output buffers of the children shall be resampled to be at this sampling rate. The particular method of resampling is non-normative, but the quality shall be close in accuracy to the DAC that the signal is targeted for, i.e. according to the rule dB SNR = 6 * (nbits –1), where nbits is the number of bits corresponding to the maximum bit depth of any of the signals being so converted and/or composited. Aliasing artifacts may be at this level of signal-to-noise ratio. The noise level due to arithmetic accuracy and other uncorrelated noise sources should be below the rule dB SNR = 6* nbits.
The output sampling rate of a node shall be the output sampling rate of the input buffers after this resampling procedure is applied.

Content authors are advised that content which contains audio sources operating at many different sampling rates, especially sampling rates which are not related by simple rational values, may produce scenes with a high computational complexity.

EXAMPLE (Suppose that node N has children M1 and M2, all three audio nodes, and that M1 and M2 produce output at S1 and S2 sampling rates respectively, where S1 > S2. Then if the decoding frame rate is F frames per second, then M1’s output buffer will contain S1/F samples of data, and M2’s output buffer will contain S2/F samples of data. Then, since M1 is the faster of the children, its output buffer values are placed in the input buffer of N. The output buffer of M2 is resampled by the factor S1/S2 to be S1/F samples long, and these values are placed in the input buffer of N. The output sampling rate of N is S1.

7 Number of output channels

If the numChan field of an audio node, which indicates the number of output channels, differs from the number of channels produced according to the calculation procedure in the node description, or if the numChan field of an AudioSource node differs in value from the number of channels of an input audio stream, then the numChan field shall take precedence when including the source in the audio sub-graph calculation, as follows:

If the value of the numChan field is strictly less than the number of channels produced, then only the first numChan channels shall be used in the output buffer.

If the value of the numChan field is strictly greater than the number of channels produced, then the “extra” channels shall be set to all 0’s in the output buffer.

7.7.7.8.19.3 Audio-specific BIFS Nodes

In the following table, nodes that are related to audio scene description are listed.

Table 2 — Audio-Specific BIFS Nodes
	Node
	Purpose
	Subclause

	AudioBuffer,
AdvancedAudioBuffer
	Interactively trigger snippets of sound
	7.2.2.8, 7.2.2.2

	AudioChannelConfig
	Label channel configuration of audio data
	7.2.2.9

	AudioClip
	Insert an audio clip into a scene
	7.2.2.10

	AudioDelay
	Add delay to sound
	7.2.2.11

	AudioFX
	Apply post-production effects to sound
	7.2.2.12

	AudioMix
	Mix sounds
	7.2.2.14

	AudioSource
	Define audio source input to a scene
	7.2.2.15

	AudioSwitch
	Switching of audio sources in a scene
	7.2.2.16

	ListeningPoint
	Define listening point in a scene
	7.2.2.76

	Sound,
Sound2D,
DirectiveSound,
WideSound,
SurroundingSound
	Define properties of sound
	7.2.2.116, 7.2.2.117, 7.2.2.46,
7.2.2.140,

7.2.2.121

7.7.7.8.19.4 Spatialization of sound sources according to the acoustic environment

This specification contains a set of nodes of extended node types, that can be used to include positional and directive sound sources to 3-D BIFS scenes, and process them in a way that the acoustics of the environment is taken into account. These nodes enable parametrization and rendering of the acoustic properties of a virtual environment according to the current relative positions of the sound source, the listening point, and the acoustically relevant objects in the BIFS scene. Such properties are, e.g., room reverberation time (and other statistical room acoustic parameters), speed of sound, acoustic properties of surfaces, and sound source directivity. Functionalities that are made possible with these parameters include immersive audiovisual rendering, room acoustic modeling, and enhanced 3-D sound presentation.

Two distinct approaches of acoustic environment rendering are incorporated in the 3-D sound processing. One is based on physical, or geometrical modeling of the acoustic scene while the second is based on the perceptual description of room acoustic effects. These two schemes of virtual acoustics rendering are referred to as the physical and the perceptual approach.

The nodes that are involved in the sound environment modeling are AcousticScene, AcousticMaterial, DirectiveSound, and PerceptualParameters, and their main functionalities are presented in the table below, and the rendering scheme where they are used is listed in the rightmost column:

Table 3 — Nodes for environmental spatialization of sound
	Node
	Purpose
	Approach
	Subclause

	AcousticScene
	Restrict each audio rendering process to a defined 3-D region in the BIFS scene, and specify a reverberation time that is applied to the sound sources currently within that region.
	physical
	7.2.2.3

	AcousticMaterial
	Define sound reflectivity and transmission properties (along with the visual properties) for each acoustically relevant (flat, polygonal) surface.
	physical
	7.2.2.1

	DirectiveSound
	Define a directive sound source that also enables natural distance dependent attenuation and air absorption modeling, as well as rendering of the propagation delay between the source and the listener.
	physical and perceptual
	7.2.2.46

	PerceptualParameters
	Node for attaching perceptual properties to a directive sound source (DirectiveSound) in order to simulate virtual room effects that do not need to relate to the geometrical and/or visual BIFS scene.
	perceptual

	7.2.2.93

In the following, overviews of the physical and perceptual audio rendering schemes are presented.

7 Physical approach

In this approach the acoustics rendering is defined as creating a virtual auditory environment that models an existent or non-existent space. This rendering is called auralization, the relation of which to graphics (visualization) is understood as the creation of audiovisual scenes that are perceptually (visually and aurally) relevant. An example of this could be a virtual concert performance, where the acoustical behavior of the space as well as the graphical outlook is modeled. Another example could be a scene, where the listener moves from a very small room to a larger hall, and the changes in the acoustic and graphical rendering is immediately perceived. Also sound sources without a room acoustic response but with effects such as source directivity, Doppler effect, and echoes (distinctive sound reflections) can be modeled. The acoustical behaviors and properties are:

Acoustic properties of surface materials (walls), that enable modeling of sound reflections of surfaces, as well as transmission of sound through them. This way sound reflections are tracked and rendered according to the geometry of the walls and positions of the sound sources and the listener. Obstruction effects are automatically rendered when walls or obstacles are present between the source and the listener

Reverberation time of a specified region in the scene. This enables modeling of reverberating spaces by a simple parameter, and without the necessary need to describe the physical walls of a room.

Acoustic properties of the sound transmitting medium. These include the speed of sound, distance dependent attenuation and lowpass filtering effect caused by air absorption (see ISO 9613-1:1993). Speed of sound is used to control the sound propagation delay between source and the listener, and therefore also the strength of the Doppler effect which depends on the relative motion between the source and the listener.

Directivity characteristics of sound sources. This enables flexible modeling of different sound sources (e.g., human speaker, or a musical instrument). The directivity patterns can be frequency dependent, or it can be defined by a direction dependent coefficient, or in the simplest case the source can be omnidirectional.

In the physical approach, the geometrical and physical sound propagation operator is used in real time during playback in order to derive the auralization signal processing parameters to be applied to each sound source signal. This propagation operator exploits the knowledge of the positions of the sound sources and the listener relative to the walls to compute the arrival time, amplitude (and spectrum) and direction of arrival for each early reflection. This computation is performed in real time for a limited number of reflections per sound source, with dynamic refresh of reflection parameters according to movements of the sound sources or the listener.

7 Perceptual approach

In this model, the sound transformation associated with room reflections and reverberation is described by a set of perceptual attributes (such as source presence and brilliance, room reverberance, envelopment). These attributes may be manipulated directly and individually for each sound source in the scene.

This approach provides simple and intuitive parameters to the content provider, allowing:

Manipulation of environmental effects for each sound event directly (without requiring that the source or the point of view be moved).

Sound design adjustments beyond the physical constraints implied by the graphic representation, for example:

Distorted or exaggerated distance sensation and room-related effects

Unconstrained spatial sound effects for audio-only scene nodes (no visual correspondence) or when the point of view is out of the room

In this approach, an absolute (exocentric) representation of the sound scene containing several sources and the listener can be manipulated as follows:

The environment (room) is described by setting the values of the perceptual attributes for a reference source-listener distance. These attributes and their values make up a "preset", which specifies, at that reference distance and for an omnidirectional sound source, the delay and intensity of the early reflection, as well as the delay, decay time and spectrum of the late reverberation.

The sound transformation to be applied to each sound event is derived from the above preset by use of a perceptual sound propagation operator which takes into account the relative positions and orientations of the sources and the listener, and a model of the directivity of sound sources.

In this model, only the relative positions and orientations of the sound sources with respect to the listener are taken into account. The model does not exploit any knowledge of wall positions in order to compute the parameters of the early reflections. The temporal pattern of the early reflections is determined by the definition of the environment “preset”. The perceptual sound propagation operator adjusts one perceptual attribute (called "source presence") according to source-listener distance. Adjusting this single parameter produces a convincing sensation of proximity or remoteness of the sound source. Additionally, the operator takes into account the orientation of the source and its directivity pattern.

7.7.7.8.19.5 Channel configuration aspects in the audio subtree

Audio decoders require a channel configuration that is either known implicitly or is conveyed by some configuration information. Note that ISO/IEC 14496-3, Subpart 4 forbids the use of implicit channel mappings via the PCE (program config element) in subclause 4.5.1.2.1, if MPEG-4 Audio is used together with MPEG-4 Systems audio compositor (i.e., AudioBIFS). In an audio subtree the channel configuration of the decoders or from the DecoderSpecificInfo can normally be used for the loudspeaker mapping behind the sound node, especially in the multichannel case (numChan > 1) if the phase group flags in the audio nodes has been set. Therefore an MPEG-4 Player implementation has to pass this information from the decoder output via the audio nodes to the presenter. Some audio nodes (AudioMix, AudioSwitch and AudioFX) have channel-variant behavior. For these nodes conflicts in the channel configuration transmission can occur, as illustrated in Figure 7 where two different conflicts are shown.

[image: image7.wmf]Decoder

AudioSource

2.0

Decoder

2.0

AudioSource

AudioMix

2.0

2.0

Sound

L, R

LS, RS

undefined channel

configurationn (conflict)

for arbitrary mix matrix

Interactivity

any node

Decoder

AudioSource

2.0

Decoder

2.0

AudioSource

AudioMix

2.0

2.0

2.0

2.0

Sound

L, R

LS, RS

undefined channel

configurationn (conflict)

for arbitrary mix matrix

Interactivity

any node

Decoder

AudioSource

5.0

Decoder

2.0

AudioSource

AudioSwitch

1.

0

1.

0

Sound

M

Interactivity

any node

2.0

2.0

undeterminable

RS

R

M

2

nd

ch

undeterminable

LS

L

C

1

st

ch

Output

3

2

1

Choice

undeterminable

RS

R

M

2

nd

ch

undeterminable

LS

L

C

1

st

ch

Output

3

2

1

Choice

5.

0

5.

0

L, R, C, LS, RS

a)

b)

4.

0

4.

0

Figure 7 — Channel configuration flow conflicts
The first conflict occurs behind the mix node (Figure 7 a)), where a mix of a first stereo signal and a second stereo signal shall be mixed into 4 channels. The resulting channel configuration after the mix is undefined, since it is not obvious what kind of configuration has been produced. The second conflict occurs in a sequence of whichChoice field updates (Figure 7 b)) behind the AudioSwitch node (choice 1…3). In this sequence different channels from the Source node and a single channel from a second Source node are sequentially selected. There is no way to know the desired channel configuration at the output in both cases. Introucing an AudioChannelConfig node behind the conflicting node solves this problem by labeling the channels with a determined configuration.

The format of the transmitted channels is restricted to the formats of the decoder configurations. Despite these configurations, presets of other configurations are possible and can be composed with the help of an AudioBIFS scene. Two problems can arise in general: missing channel descriptions and composition of formats. It is not foreseen in the channel configuration table of the MPEG-1/2 encoders to transmit multichannel subsets, for example only the 2 surround channels LS, RS. The composition of multichannel formats with the help of several 2-channel streams, for example encoded in the MPEG-1/2 Layer 3 format, cannot be done unambiguously without the AudioChannelConfig node as illustrated in Figure 8: a composition of 3 stereo channels to a 6-channel mix can be labeled as a 5.1 multichannel set or as a 6-channel Ambisonics® signal.

[image: image8.wmf]Decoder

AudioSource

2.0

Sound

Decoder

2.0

AudioSource

Decoder

2.0

AudioSource

AudioChannelConfig

5.1 {L, R, LS, RS, C,

Lfe

,

Lfe

}

or

Ambisonics {W, X, Y, Z, U, V}

Figure 8 — The audioChannelConfig node for the composition of new formats
7.7.7.8.19.6 Implementation details on SurroundingSound transformations

For the case where the SurroundingSound node is "fed" with multi-channel flow labeled as a 1st order Ambisonics® sound field, transformations rely on formulae that already exist. Rotation effects are a quite trivial matter and involve basic trigonometry formulae (see Figure 9). Angular or perspective distortions derive from the existing "Forward dominance" effect.

Forward dominance is an effect to parametrically enlarge or narrow the frontal sound scene (and inversely the back scene). It derives from the "Lorentz Transform" (see Figure 9) applied to the 1st order spherical harmonics. This transform is parameterized by a value  which range is]0; +inf[, the value 1 corresponding to "no effect".The angle distortion is such that a sound source that was localized at azimuth  will be moved to azimuth ', with: cos ' = ( +cos )/(1+  cos ) and  = (2(1)/(2+1).

If the ListeningPoint moves front or back in the scene, one can mimic the distortion of the angular perspective by applying the "Lorentz Transform" (see Figure 9) with a parameter being a function of the ListeningPoint distance (from the SurroundingSound center) weighted by the distortionFactor. If d is the displacement along the back-front axis, one can propose the following mapping law:  = exp(- d), with  being the distortionFactor.

If the ListeningPoint moves along an arbitrary axis (not necessary the front-back axis), one has to rotate the soundfield towards this axis before applying the Lorentz Transform, then rotate it with the opposite angle, towards the front-back axis again.

[image: image9.wmf]0

°

reference

axis

0

°

reference

axis

Change of ListeningPoint

in the scene

SoundField modification

at the reproduction stage

h

0

°

reference

axis

Listener’s head

rotates

0

°

reference

axis

d

Listener moves

forward

Matrix

transformations

on Ambisonic field

'100

'0cossin.

'0sincos

WW

XX

YY

qq

qq

æöæöæö

ç÷ç÷ç÷

=

ç÷ç÷ç÷

ç÷ç÷ç÷

-

èøèøèø

Rotation

11

11

()()

0

2

22

'

()()

'0.

2

2

'

001

WW

XX

YY

llll

llll

--

--

æö

+-

ç÷

ç÷

æöæö

ç÷

-+

ç÷ç÷

=

ç÷

ç÷ç÷

ç÷

ç÷ç÷

èøèø

ç÷

ç÷

ç÷

èø

Lorentz Transform

0

°

reference

axis

Frontal scene

enlarges

Back scene

narrows

0

°

reference

axis

h

Sound sources

rotate oppositely

Original sound field

is represented by 3

components: W, X, Y

(horizontal sound field)

As the sound

field is

supposed

to be heard

Figure 9 — Ambisonics® Sound Field transformations applied in connection with listener's moves
For non-Ambisonics® materials, angular transformations can be applied by panning the signals over the rendering layout, as if transformations would concern the originally dedicated loudspeakers as being the sources contained in the sound field.

7.7.7.8.20 Bindable Children Nodes

MPEG-4 extends the notion of bindable children nodes described in VRML, ISO/IEC 14772-1:1998. As in VRML, the scene maintains a collection of stacks, one for each type of bindable node. The bindable nodes are the Viewpoint, Viewport, Background, Background2D, Fog, and NavigationInfo nodes. In MPEG-4 some of these nodes may be bound to stacks held in the Layer2D, Layer3D, CompositeTexture2D, and CompositeTexture3D grouping nodes. Bindable nodes can be shared between these grouping nodes and the scene using the set_bind mechanism, but in the absence of such an event, the top most bindable node within a sub-scene will bind to its inner most grouping node that holds a stack for it.

The following rules shall apply in the absence of a set_bind event:

· The top-most Background, Fog, NavigationInfo, and Viewpoint nodes in a Layer3D or CompositeTexture3D node shall be bound to the respective stacks within that node.

· The top-most Background2D and Viewport nodes in a Layer2D or CompositeTexture2D node shall be bound to the respective stacks within that node.

· The top-most Background2D node in a Layer3D or CompositeTexture3D node shall be bound to the same stack as the Background node and shall appear in the background field of those nodes.

· The top-most bindable node that is not a child of any grouping node that holds a stack for it shall be bound to the respective scene stack for that node.

NOTE - For example, a Background2D node that is a child of an OrderedGroup or Group node would bind to the scene stack. A Background2D node that is a child of a Layer3D or CompositeTexture3D node would be bound using the same stack as for Background in that node and would render behind all other geometries in the frame of that node. A Background node in a Layer2D would bind to the scene stack.
7.7.7.9 Sources of modification to the scene

7.7.7.9.1 Interactivity and behaviors

To describe interactivity and behavior of scene objects, the event architecture defined in ISO/IEC 14772-1:1998, subclause 4.10, is used. Sensors and routes describe interactivity and behaviors. Sensor nodes generate events based on user interaction or a change in the scene. These events are routed to interpolator or other nodes to change the attributes of these nodes. If routed to an interpolator, a new parameter is interpolated according to the input value, and is finally routed to the node which must process the event.

Events shall be generated and evaluated in the order in which their ROUTEs appear in or are inserted into the scene. Events are collected and applied to the scene together, with subsequently generated events collected and applied together repeatedly in an event cascade.

NOTE – the event cascade model differs from a depth-first, immediate execution model. In the latter, side effects from node deletions can create race conditions which would lead to different results on different implementations.
7.7.7.9.1.1 Attaching ROUTEIDs to routes

ROUTEIDs may be attached to routes using the DEF mechanism, described in ISO/IEC 14772-1:1998, subclause 4.6.2. This allows routes to be subsequently referenced in BIFS-Command structures. ROUTEIDs are integer values and the namespace for routes is distinct from that of nodeIDs. The number of bits used to represent these integer values is specified in the BIFS DecoderConfigDescriptor.

The scope of ROUTEIDs is defined in see 7.1.1.1.5. The following restrictions apply:

a) Routes are identified by the use of ROUTEIDs, which are binary numbers conveyed in the BIFS bitstream.

b) The scope of ROUTEIDs is given in 7.1.1.1.5.

c) No two routes in the scene graph may have the same ROUTEID at any point in time.

The mechanisms that allow modifications to the BIFS scene also depend on the use of nodeIDs (see 7.1.1.2.10). The USE mechanism shall not be used with routes.

7.7.7.9.1.2 Conditional node

The Conditional node (see 7.2.2.36) allows BIFS-Commands to be described in the scene which shall only be applied to the scene graph when an event is received on one of the Conditional node's inputs.

7.7.7.9.2 External modification of the scene: BIFS-Commands

The BIFS-Command mechanism enables the change of properties of the scene graph, its nodes and behaviors.

EXAMPLE (Transform nodes can be modified to move objects in space; Material nodes can be changed to modify an object’s appearance, and fields of geometric nodes can be totally or partially changed to modify the geometry of objects.

7.7.7.9.2.1 Overview

BIFS-Commands are used to modify a set of properties of the scene at a given time instant in time. Commands are grouped into CommandFrames (see 8.6.2) in order to be able to send several commands in a single access unit. The following four basic commands are defined:
1. Replacement of an entire scene

2. Insertion

3. Deletion

4. Replacement

The first of these commands allows the replacement of the entire BIFS scene. The replacement of the entire scene requires a scene graph representing a valid BIFS scene to be transmitted. The SceneReplace command is the only random access point in the BIFS stream.

The other three commands can be used to update the following structures:

1. A node

2. An eventIn, exposedField or an indexed value in an MFField

3. A ROUTE

In order to modify the scene the sender must transmit a BIFS CommandFrame that contains one or more update commands. A single source of BIFS-Commands is assumed. The identification of a node in the scene is provided by a nodeID. Note that it is the sender’s responsibility to provide this nodeID, which must be unique (see 7.1.1.1.5). The identification of a node's fields is provided by sending the INid of the field (see node coding tables in electronic attachment).

[image: image10.wmf]ROUTE: routeID

Insert

Delete

Replace

Replace

Scene

Node: nodeID

IdxValue: nodeID

ROUTE: nodeID1

Index

Begin

End

NodeValue

Index

Begin

End

Value

FieldNb

Field1

nodeID2

Field2

Node: nodeID

IdxValue: nodeID

Index

Begin

End

Value

FieldNb

Node: nodeID

IdxValue: nodeID

ROUTE: routeID

NodeValue

Index

Begin

End

Value

FieldNb

Field1

nodeID2

Field2

Field: nodeID

FieldValue

FieldNb

nodeID1

Scene: SceneValue

BIFS

Update

Figure 10 — BIFS-Command Types

7.7.7.9.2.2 Modification of indexed values

Insertion of an indexed value in a field implies that all later values in the field have their indices incremented and the length of the field increases accordingly. Appending a value to an indexed value field also increases the length of the field but the indices of existing values in the field do not change.

Deletion of an indexed value in a field implies that all later values in the field have their indices decremented and the length of the field decreases accordingly.

7.7.7.9.2.3 Timing of BIFS-Commands

The time at which a BIFS-Command is applied shall be the composition time stamp of the access unit in which the command is contained, as defined in the sync layer (see 7.3.2, ISO/IEC 14496-1).

7.7.7.9.3 External animation of the scene: BIFS-Anim

BIFS-Anim provides for the continuous update of the certain fields of nodes in the scene graph. BIFS-Anim is used to integrate different kinds of animation, including the ability to animate face models as well as meshes, 2D and 3D positions, rotations, scale factors, and color attributes. Although BIFS-Anim and BIFS-Command have the same elementary stream type (see Table 5, ISO/IEC 14496-1) they may not occupy the same elementary stream. BIFS-Anim information is conveyed in a separate elementary stream from that which carries BIFS-Command elements.

7.7.7.9.3.1 Overview

BIFS-Anim elementary streams consist of a sequence of AnimationFrames. The AnimationMask, which is required to interpret these AnimationFrames, is transmitted in the DecoderSpecificInfo for the BIFS-Anim elementary stream in the corresponding object descriptor (see 7.2.6.7, ISO/IEC 14496-1).

7.7.7.9.3.2 BIFS-Anim configuration

The AnimationMask contains one ElementaryMask for each node that is to be animated. These ElementaryMasks specify the fields that are contained in the AnimationFrames for a given animated node, and their associated quantization parameters. Only eventIn or exposedField fields that have an animation method (see node coding tables electronic attachment and 7.1.1.3.3.3) can be modified using BIFS-Anim. Such fields are called dynamic fields. In addition, the animated field must be part of an updateable node; that is, a node that has been assigned a nodeID. The AnimationMask is composed of several elementary masks defining these parameters.

7.7.7.9.3.3 BIFS-Anim animation parameters

Animation parameters are transmitted as a sequence of AnimationFrames. AnimationFrames specify the values of the dynamic fields of updateable nodes that are being animated in BIFS-Anim streams. An AnimationFrame contains the new values of all animated parameters at a specified time, unless if it is specified that, for some frames, these parameters are not sent. The parameters can be sent in Intra (the absolute value is sent) and Predictive modes (the difference between the current and previous values is sent).

Animation parameters can be applied to any eventIn or exposedField of any updateable node of a scene which has an assigned animation method (see node coding tables in electronic attachments).

NOTE (Some node tables, in the electronic attachment, contain an eventIn or exposedField that has an animation method but for which there is no associated dynID. This is the case when only one exposedField or eventIn in a node has an animation method. In such cases, it is not necessary for the field to have a dynID since the terminal can assume that BIFS-Anim animations for this type of node refer to the only dynamic field of the node.

The types of dynamic fields are:

SFInt32/MFInt32

SFFloat/MFFloat

SFRotation/MFRotation

SFColor/MFColor

SFVec2f/MFVec2f

SFVec3f/MFVec3f

SFVec4f/MFVec4f

7.7.7.9.4 Order of application of modifications to the scene

Where modifications to the scene graph, resulting from the use of more than one of the permitted methods, must be applied simultaneously, the following order of application shall be observed:

1. BIFS-Anim

2. Conditional node

3. BIFS-Command

7.8 Node Semantics

7.8.1 Overview

The BIFS nodes include nodes that have been defined in ISO/IEC 14772-1:1998. For these nodes, the semantic information is given by normative reference with any restrictions defined herein.

7.8.2 Node specifications

7.8.2.1 AcousticMaterial

7.8.2.1.1 Node interface

AcousticMaterial {

	
	field
	SFFloat
	reffunc
	0

	
	field
	SFFloat
	transfunc
	1

	
	field
	MFFloat
	refFrequency
	[]

	
	field
	MFFloat
	transFrequency
	[]

	
	exposedField
	SFFloat
	ambientIntensity
	0.2

	
	exposedField
	SFColor
	diffuseColor
	0.8, 0.8, 0.8

	
	exposedField
	SFColor
	emissiveColor
	0, 0, 0

	
	exposedField
	SFFloat
	shininess
	0.2

	
	exposedField
	SFColor
	specularColor
	0, 0, 0

	
	exposedField
	SFFloat
	transparency
	0

}

NOTE - For the binary encoding of this node see node coding tables in electronic attachment.
7.8.2.1.2 Functionality and semantics

The AcousticMaterial node is used for attaching acoustic and visual properties to surfaces (planar polygons) defined by an IndexedFaceSet node that is a sibling or exist in a sub-graph of a sibling of an AcousticScene node. The fields of this node define the visual appearance properties, as well as sound reflection and transmission properties of the IndexedFaceSet surfaces it is attached to. It is used in the material field of an Appearance node that is attached to a Shape node under which the IndexedFaceSet is defined. Each polygon in an IndexedFaceSet that AcousticMaterial is associated with can produce a single specular reflection to sound whenever a corresponding sound image source is visible to the listening point (Viewpoint or ListeningPoint), or obstruct sound transmission when it appears between the sound source and the listener. Note that these reflectivity and sound transmission properties of a surface are only applied to sounds that are attached to a 3-D scene with a DirectiveSound and WideSound nodes. The delay of a reflection (a predelay that is added to sound) is computed from the relative distance between the image source corresponding to the reflection, and the speed of sound which is given as a field in the DirectiveSound and WideSound nodes (see 7.2.2.46).

There are two different ways of defining the reflectivity and transmission properties of AcousticMaterial:

The reffunc and refFrequency fields specify the sound reflectivity of the material. If refFrequency is an empty vector, reffunc is a system function representation of a linear, time-invariant system, the reflectivity transfer function of a digital filter for that material. Generally, a system function H(z) is represented in the z-domain as a division of the z-transform of the output sequence Y(z) with the z-transform of the input sequence X(z):

[image: image11.wmf]å

å

=

-

=

-

+

=

=

N

k

k

k

M

k

k

k

z

a

z

b

z

X

z

Y

z

H

1

0

1

)

(

)

(

)

(

.

The reflection function is given as digital filter coefficients in the following order:

[image: image12.wmf]...]

...

[

2

1

2

1

0

a

a

b

b

b

Thus, a simple scalar value
[image: image13.wmf]0

b

 can be given to a material for frequency-independent reflectivity of a surface. On the other hand, complex reflection functions can also be represented using this formulation. For example, if the reffunc field is 1, the amplitude of the reflection of sound off a surface will be the same as that of the incident sound, and if the field is set to 0, no sound will reflect off that surface. The default value of this field is 0, implying no reflectivity.

If refFrequency is different from an empty vector, the semantics of the reffunc is different than described above. In this case refFrequency specifies a set of frequencies (in Hz) at which the gains in reffunc field are valid; The filter applied to sound when it is reflected off this surface implements a frequency magnitude response where at the given frequencies (in refFrequency field) the gains in reffunc field are valid. An example of refFrequency field is:

[250 1000 2000 4000],

and an example of reffunc in this approach is:

[0.75 0.9 0.9 0.2]

The transfunc and transFrequency fields specify the transmission properties of the material, e.g., the filtering that is applied to sound when it passes through an IndexedFaceSet surface this AcousticMaterial is attached to, when the IndexedFaceSet surface appears on the direct path between the sound source and the listener. The transmission function is given similarly as in the reflectivity in reffunc and refFrequency fields with two different ways of expressing the filtering.

The fields ambientIntensity, diffuseColor, emissiveColor, and shininess are used for the visual appearance rendering similarly as in the Material node.

7.8.2.2 AdvancedAudioBuffer

7.8.2.2.1 Node interface

AdvancedAudioBuffer {
	
	eventIn
	MFNode
	addChildren
	

	
	eventIn
	MFNode
	removeChildren
	

	
	exposedField
	MFNode
	children
	[]

	
	exposedField
	SFBool
	loop
	FALSE

	
	exposedField
	SFFloat
	pitch
	1.0

	
	exposedField
	SFTime
	startTime
	0

	
	exposedField
	SFTime
	stopTime
	0

	
	exposedField
	SFTime
	startLoadTime
	0

	
	exposedField
	SFTime
	stopLoadTime
	0

	
	exposedField
	SFInt32
	loadMode
	0

	
	exposedField
	SFInt32
	numAccumulatedBlocks
	0

	
	exposedField
	SFInt32
	deleteBlock
	0

	
	exposedField
	SFInt32
	playBlock
	0

	
	exposedField
	SFFloat
	length
	0.0

	
	field
	SFInt32
	numChan
	1

	
	field
	MFInt32
	phaseGroup
	[1]

	
	eventOut
	SFTime
	duration_changed
	

	
	eventOut
	SFBool
	isActive
	

}

NOTE — For binary encoding of this node see node coding tables in electronic attachment
7.8.2.2.2 Functionality and semantics

The AdvancedAudioBuffer node provides an interface for stored sound. It can be used instead of the AudioBuffer node. This node has corrected functionality and enhanced reload mechanism compared to the AudioBuffer node, e.g to accumulate snippets of sound in the AdvancedAudioBuffer. These snippets can be accessed directly or as the full accumulated content.
The functionality of the children, loop, pitch, startTime, stopTime, numChan, phaseGroup, duration_changed and isActive fields is described in 7.2.2.8, AudioBuffer node.

The length field specifies the length in seconds of the audio buffer. Audio data should be buffered at the instantiation of the node and whenever the length field changes. Additional modes to control loading, deletion and demand of data can be selected with loadMode as defined in Table 4.

Table 4 — loadMode association table
	Value
	LoadMode
	Functionality

	0
	compatibility mode
	Audio data should be buffered immediately after the node has been instantiated and whenever the length field changes.

startLoadTime, stopLoadTime, numAccumulatedBlocks, deleteBlock and playBlock have no effect.

	1
	reload mode
	startLoadTime and stopLoadTime are valid.

When the time in startLoadTime is reached, the internal buffer is cleared and the samples at the input of the node are stored until stopLoadTime is reached or the stored data have the length defined in length . If startLoadTime >= stopLoadTime a data block with the length defined in the length field will be loaded when startLoadTime is reached.

numAccumulatedBlocks, deleteBlock and playBlock have no effect.

	2
	accumulate mode
	An audio data block defined by the interval between startLoadTime and stopLoadTime will be appended at the end of the buffer. The index of the internal audio data blocks has to be continous to be addressable.

When the limit defined by length will be reached loading will be finished.

numAccumulatedBlocks has no effect.

	3
	continuous accumulate mode
	An audio data block defined by the interval between startLoadTime and stopLoadTime will be appended at the end of the buffer. The index of the internal audio data blocks has to be continous to be addressable.

When the limit defined by length will be reached the oldest audio data block(s) has/have to be discarded until the data are stored.

numAccumulatedBlocks has no effect.

	4
	accumulate mode with limited number of buffer blocks
	In the accumulate mode the number of stored blocks are limited to numAccumulatedBlocks.

length has no effect.

	5…7
	reserved for ISO use
	

A transition from 0 to a value below 0 in the deleteBlock field starts deletion of a data block relative to the latest data block in the following modes: ‘accumulate mode’, ‘continuous accumulate mode’ and ‘accumulate mode with limited number of buffer blocks’. The latest block will be addressed with –1 the previous audio data block with –2 etc.

playBlock defines the block to be played. If playBlock is set to 0 (default) the whole content will be played regarding to the startTime and stopTime conditions (compatibility mode). A value < 0 addresses a block relative to the latest block. The latest block will be addressed with –1 the previous audio data block with –2 etc.

7.8.2.3 AcousticScene

7.8.2.3.1 Node interface

AcousticScene {

	
	field
	SFVec3f
	center
	0 0 0

	
	field
	SFVec3f
	Size
	-1 –1 –1

	
	field
	MFTime
	reverbTime
	0

	
	field
	MFFloat
	reverbFreq
	1000

	
	exposedField
	SFFloat
	reverbLevel
	0.4

	
	exposedField
	SFTime
	reverbDelay
	0.5

}
NOTE - For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.3.2 Functionality and semantics

AcousticScene is a node the parameters of which are used for rendering of the acoustic response of the environment, together with the acoustic reflectivity or transmission defined in the siblings or their sub-graphs of this AcousticScene. AcousticScene also defines four fields (reverbTime, reverbFreq, reverbLevel, and reverbDelay) which can be used to add reverberation to sounds that are affected by this node. Only audio that has been attached to the scene through a DirectiveSound node performing the physical rendering scheme is spatialized according to these definitions.

Only those IndexedFaceSet nodes that AcousticMaterial node is associated with, and that are defined in the siblings of AcousticScene (or in the sub-graph of the siblings) have effect on the room acoustic response that is applied to sound sources. Only DirectiveSound nodes that are currently positioned in a 3-D rectangular region defined by center and size fields, are affected by these acoustic surfaces. The size field defines the size of a rectangular 3-D region where the parameters of AcousticScene and the acoustic surfaces in the siblings or sibling sub-graphs of the AcousticScene are taken into account in the auralization process (sound processing according to the acoustics of the environment). The default value of this field is –1, -1, -1.
The center field specifies the center of the above described region in the local coordinate system of the scene. Only when at the decoder a DirectiveSound and the Viewpoint (or ListeningPoint) are located within the same AcousticScene region defined by its center and size the sound attached to the DirectiveSound is heard. The default value (-1, –1, –1) of size equals to an infinite rectangular region (i.e., the sound is heard everywhere in the scene). DirectiveSound is rendered at one time only according to one AcousticScene, i.e., if the source and the viewpoint are in an overlapping area of several AcousticScenes, the one which is the first in the rendering order has effect on the DirectiveSound.

The reverbTime field specifies the reverberation time (time of 60 dB attenuation in the late reverberation response) at frequencies given in reverbFreq field to be applied to each DirectiveSound node that is within the 3-D region specified by the AcousticScene. This information is used for producing late reverberation at the maximum quality possible. With the default value 0, late reverberation is not added to the room response. It should be noted, however, that this field is useful for enabling simple room response modeling whenever there is not enough computational power to render several room reflections, or when the reflective properties of the surfaces are not specified. I.e., it is possible to specify a reverberant room with the boundaries defined by the size and center fields, even without specifying the reflectivity of individual surfaces. If only one value of reverbTime is given, it is taken as the reverberation time at the 1kHz frequency, and the decision about the frequency dependence of the reverberation time would be decided at the terminal (in natural environments the reverberation time decreases as a function of frequency). An example of reverbTime field is:

[2.0 0.5],

and example of reverbFreq is:

[0 16000],

yielding a late reverberation with a reverberation time of 2.0 s at 0 Hz frequency, and 0.5 s at 16000 Hz frequency.

reverbDelay specifies the time delay between the direct sound and the start of the reverberation in seconds. reverbLevel defines the level of the first output from the reverberator with respect to the direct sound.

In order to define which AcoustcScene is applied to DirectiveSound in the case that it is positioned in an overlapping area of more than one AcousticScene, an OrderedGroup can be used above the various AcousticScenes.

7.8.2.4 Anchor

7.8.2.4.1 Node interface

Anchor {

	
	eventIn
	MFNode
	addChildren
	

	
	eventIn
	MFNode
	removeChildren
	

	
	exposedField
	MFNode
	children
	[]

	
	exposedField
	SFString
	description
	""

	
	exposedField
	MFString
	parameter
	[]

	
	exposedField
	MFString
	url
	[]

	
	eventIn
	SFBool
	activate
	

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.4.2 Functionality and semantics

The semantics of the Anchor node are specified in ISO/IEC 14772-1:1998, subclause 6.2. ISO/IEC 14496-1 does not support the bounding box parameters (bboxCenter and bboxSize). Upon reception of an SFBool event of value TRUE on the activate eventIn the Anchor node will activate and behavior will be identical to that which would result from activating (e.g. clicking) any geometry contained within its children field.

7.8.2.5 AnimationStream

7.8.2.5.1 Node interface

AnimationStream {

	
	exposedField
	SFBool
	loop
	FALSE

	
	exposedField
	SFFloat
	speed
	1.0

	
	exposedField
	SFTime
	startTime
	0

	
	exposedField
	SFTime
	stopTime
	0

	
	exposedField
	MFString
	url
	[""]

	
	eventOut
	SFBool
	isActive
	

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.5.2 Functionality and semantics

The AnimationStream node is designed to implement control parameters for a scene description stream.
The loop, startTime, and stopTime exposedFields and the isActive eventOut, and their effects on the AnimationStream node are described in 7.1.1.1.6.2.

The semantics of the speed exposedField are identical to those for the MovieTexture node (see 7.2.2.82).

The url field specifies the data source to be used. The data source referred to shall be a BIFS-Anim stream (see also 7.1.1.3.3) or a BIFS-Command stream. In both cases, the stream shall operate within the same name scope as the scene containing the AnimationStream node.

7.8.2.6 Appearance

7.8.2.6.1 Node interface

Appearance {

	
	exposedField
	SFNode
	material
	NULL

	
	exposedField
	SFNode
	texture
	NULL

	
	exposedField
	SFNode
	textureTransform
	NULL

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.6.2 Functionality and semantics

The semantics of the Appearance node are specified in ISO/IEC 14772-1:1998, subclause 6.3.

The material field, if non-NULL, shall contain either a Material node or a Material2D node depending on the type of geometry node used in the geometry field of the Shape node that contains the Appearance node. The list below shows the geometry nodes that require a Material node, those that require a Material2D node and those where either may apply:

Material2D only: Circle, Curve2D, IndexedFaceSet2D, IndexedLineSet2D, PointSet2D, Rectangle;

Material only: Box, Cone, Cylinder, ElevationGrid, Extrusion, IndexedFaceSet, IndexedLineSet, PointSet, Sphere;
Material2D or Material: Bitmap, Text.
Inside a Shape node in a 2D context, if no Appearance and therefore no Material2D is defined, the default values and behavior of the Material2D node shall be used. In a 3D context, the default behavior is specified in ISO/IEC14772-1 (the object is unlit and has color 1 1 1).
7.8.2.7 ApplicationWindow

7.8.2.7.1 Node interface

ApplicationWindow {

	
	exposedField
	SFBool
	isActive
	FALSE

	
	exposedField
	SFTime
	startTime
	0

	
	exposedField
	SFTime
	stopTime
	0

	
	exposedField
	SFString
	description
	“”

	
	exposedField
	MFString
	parameter
	[]

	
	exposedField
	MFString
	url
	[]

	
	exposedField
	SFVec2f
	size
	0, 0

}
NOTE - For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.7.2 Functionality and semantics

ApplicationWindow is an SF2DNode that allows an external application such as a web browser to exist within the MPEG-4 scene graph. Unlike a texture node, the windowed region is controlled and rendered by the external application, allowing natural user interaction with the application. The particular application to be opened is signaled in the url field, and any required parameters for starting the application may be placed in the parameter field.

The position of the application, its dimension and whether the application is active or not, is specified through BIFS scene authoring.

The startTime exposed field indicates when the application is to be started. The application is given control of the rendering window defined by the size field.

The stopTime exposedField indicates that the application is finished and should be shut down. The rendering window defined by the size field is returned to the MPEG-4 player.

The isActive exposedField signals the application to relinquish its rendering window to the MPEG-4 player, but to continue to run.

The description exposedField allows a prompt to be displayed as an alternative to the url in the url field. This choice should be user selectable.

The parameter exposedField carries parameters to be interpreted by the application decoder when the application window is instantiated.

The url exposedField carries the location of the windowed application.

The size exposedField provides the dimension (width and height) of the application window.

7.8.2.8 AudioBuffer

7.8.2.8.1 Node interface

AudioBuffer {

	
	exposedField
	SFBool
	loop
	FALSE

	
	exposedField
	SFFloat
	pitch
	1.0

	
	exposedField
	SFTime
	startTime
	0

	
	exposedField
	SFTime
	stopTime
	0

	
	exposedField
	MFNode
	children
	[]

	
	exposedField
	SFInt
	numChan
	1

	
	exposedField
	MFInt
	phaseGroup
	[1]

	
	exposedField
	SFFloat
	length
	0.0

	
	eventOut
	SFTime
	duration_changed
	

	
	eventOut
	SFBool
	isActive
	

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.8.2 Functionality and semantics

The AudioBuffer node provides an interface to short snippets of sound to be used in an interactive scene.

EXAMPLE (Sounds triggered as “auditory icons” upon mouse clicks.

It buffers the audio generated by its children to support random restart capability upon interaction events. It differs from the AudioClip node in the following ways:

AudioBuffer can be used in broadcast and other one-way applications in which URLs from remote locations cannot be retrieved interactively

AudioBuffer can be used to trigger sounds made from processed sound (ie, with the other sound nodes) rather than only raw sound data as transmitted in the elementary stream

The loop, startTime, and stopTime exposedFields and the isActive eventOut, and their effects on the AudioBuffer node are described in 7.1.1.1.6.2.

The length field specifies the length in seconds of the audio buffer. Audio shall be buffered at the instantiation of the node, and whenever the length field changes.

The pitch field specifies a pitch-shift to apply to the output sound. The pitch-shift is calculated by simple resampling; that is, a pitch-shift of 2 corresponds to playing the sound twice as fast and an octave higher. If pitch is negative, the buffer is played backwards at the indicated speed, beginning at the last sample in the buffer and proceeding to the first, then returning to the last sample if loop is TRUE.

The children field specifies the child nodes that provide the sound for this node. Each child shall be an AudioBIFS node; that is, one of the following: AudioSource, AudioDelay, AudioMix, AudioSwitch, AudioFX, AudioClip, AudioChannelConfig, AudioBuffer or AdvancedAudioBuffer.
An event shall be generated via the duration_changed field whenever a change is made to the startTime or stopTime fields. An event shall also be triggered if these fields are changed simultaneously, even if the duration does not actually change.

The numChan field specifies the number of output channels of this node. If there are more output channels than input channels, the “extra” channels shall contain all 0s; if there are more input channels than output channels, the “extra” channels shall be ignored.

The phaseGroup field specifies phase relationships in the output of the node, see 7.1.1.2.13 and 7.2.2.15.

The output of this node is not calculated based on the current input values, but according to the startTime event, the pitch field and the contents of the clip buffer. When the startTime is reached (that is, the current scene time is greater than or equal to startTime), the sound output shall begin at the beginning of the clip buffer and isActive shall be set to TRUE. At each time step thereafter, the value of the output buffer shall be the value of the next portion of the clip buffer, upsampled or downsampled as necessary according to pitch. When the end of the clip buffer according to the value of length is reached, if loop is TRUE, the audio shall begin again from the beginning of the clip buffer; if loop is FALSE, the playback shall cease. This playback shall be continued until stopTime is reached. When the current scene time is greater than or equal to stopTime, the node shall cease to produce sound.

The clip buffer shall be calculated as follows. When the node is instantiated, or whenever the length field is changed, the first length seconds of the audio input to the AudioBuffer node shall be copied to the clip buffer. That is, after t seconds, where t < length, audio sample number t * S of channel i (where 0 <= i < numChan) in the buffer is set to contain the audio sample corresponding to time t of channel i of the input, where S is the sampling rate of this node. After the first length seconds, the input to this node has no effect. Changes to the length field that are received when isActive is TRUE shall be ignored.

When the playback is not active, the audio output of the node is all 0s.

7.8.2.9 AudioChannelConfig

7.8.2.9.1 Node interface

AudioChannelConfig {
	
	eventIn
	MFNode
	addChildren
	

	
	eventIn
	MFNode
	removeChildren
	

	
	exposedField
	MFNode
	children
	[]

	
	exposedField
	SFInt32
	generalChannelFormat
	0

	
	exposedField
	SFInt32
	fixedPreset
	0

	
	exposedField
	SFInt32
	fixedPresetSubset
	0

	
	exposedField
	SFInt32
	fixedPresetAddInf
	0

	
	exposedField
	MFInt32
	channelCoordinateSystems
	[]

	
	exposedField
	MFFloat
	channelSoundLocation
	[]

	
	exposedField
	MFInt32
	channelDirectionalPattern
	[]

	
	exposedField
	MFVec3f
	channelDirection
	[]

	
	exposedField
	SFInt32
	ambResolution2D
	1

	
	exposedField
	SFInt32
	ambResolution3D
	0

	
	exposedField
	SFInt32
	ambEncodingConvention
	0

	
	exposedField
	SFFloat
	ambNfcReferenceDistance
	1.5

	
	exposedField
	SFFloat
	ambSoundSpeed
	340.0

	
	exposedField
	SFInt32
	ambArrangementRule
	0

	
	exposedField
	SFInt32
	ambRecombinationPreset
	0

	
	exposedField
	MFInt32
	ambComponentIndex
	[]

	
	exposedField
	MFFloat
	ambBackwardMatrix
	[]

	
	exposedField
	MFInt32
	ambSoundfieldResolution
	[]

	
	field
	SFInt32
	numChannel
	0

}

NOTE — For binary encoding of this node see node coding tables in electronic attachment
7.8.2.9.2 Functionality and semantics

This node is used to label the audio data in the audio subtree to supply the audio presenter with the required information for multichannel or soundfield signals. This is necessary in the following cases:

· channel configuration conflicts
Some audio nodes have channel-variant behavior (AudioMix, AudioSwitch and AudioFX). For these nodes conflicts in the channel configuration can occur, e.g. if the matrix field in an AudioMix specifies an interchannel mixing.
· insufficient information
A decoder can be used to transport subsets of multichannel formats that are not defined in the audioChannel config table (ISO/IEC 14496-3), e.g. the LS and RS channels of a 5.1 multichannel system.

· construction of soundfields
E.g., a 5.1 soundfield can be transmitted with 3 two-channel audio decoders. This soundfield can be composed and labeled with the AudioChannelConfig node in the audio subtree.
· unsupported soundfield formats
A decoder can be used to transport new or unsupported soundfields, for example an Ambisonics® soundfield. The soundfield formats are not defined in the audioChannel config table (ISO/IEC 14496-3). These soundfields can be composed and labeled with the AudioChannelConfig node in the audio subtree.
The node has the standard audio node interfaces, but no signal processing capability. The samples are passed through and get new channel configuration information.

A heterogenous audiochannel configuration cannot be described with this node – and does not make any sense. Therefore a phaseGroup does not exist in this node. Due to ambiguity between information provided in the phaseGroup field and the AudioChannelConfig node all nodes above the AudioChannelConfig node shall ignore the phaseGroup fields.
The addChildren eventIn specifies a list of nodes that shall be added to children.

The removeChildren eventIn specifies a list of nodes that shall be removed from children.

The children array specifies the nodes affected by the AudioChannelConfig. Each child shall be one of the following nodes: AudioSource, AudioDelay, AudioMix, AudioSwitch, AudioFX, AudioClip or AudioBuffer.
The numChan field specifies the number of channels of audio output by this node.

The generalChannelFormat determines the general format of the channel label as described in Table 5.

Table 5 — generalChannelFormat table
	Value
	Configuration
	Description
	Valid fields

	0
	pass through
	no labeling
	none

	1
	ChannelPreset
	Select the fixed values from the Channel Configuration Table in ISO/IEC 14496-3
	fixedPreset

fixedPresetAddInf

	2
	ChannelPreset-Subset
	Select a subset from the Channel Configuration Table in ISO/IEC 14496-3 according to the mask in the fixedPresetSubset field
	fixedPreset

fixedPresetSubset

fixedPresetAddInf

	3
	ParametricChan-nelOriented
	parametric channel oriented configuration
	channelCoordinateSystems
channelSoundLocation
channelDirectionalPattern
channelDirection

	4
	ParametricAmbi-sonicsOriented
	parametric Ambisonics® configuration
	ambResolution2D

ambResolution3D

ambEncodingConvention

ambNfcReferenceDistance

ambSoundSpeed

ambArrangementRule

ambRecombinationPreset

ambComponentIndex

ambBackwardMatrix

ambSoundfieldResolution

	5..7
	reserved for ISO use
	
	

If generalChannelFormat is set to 1 (ChannelPreset) a fixed preset from the Channel Configuration in ISO/IEC 14496-3 is selected by the value of fixedPreset. Additional channel preset information can be specified from Table 6 by the value of fixedPresetAddInf. The order of the channels in AudioBIFS shall be adopted from Table 1.11 in ISO/IEC 14496-3, Subpart 1. I.e., the order starts with the center speaker (if present), continues with the stereo pairs, each beginning with the left followed by the right channel and ends with a back center speaker (if present) and the LFE channel (if present).
If generalChannelFormat is set to 2 (ChannelPresetSubset), a fixed preset of Channel Configuration in ISO/IEC 14496-3 is selected by the value of fixedPreset. A subset of the selected fixed preset is masked by fixedPresetSubset. Each bit of the value in this field represents an input channel according to the channel to speaker mapping column of the Channel Configuration Table in ISO/IEC 14496-3 where the first channel is indicated with the LSB of the fixedPresetSubset field.
EXAMPLE — fixedPreset=6 (5+1 multichannel) is the channel to speaker mapping C, L, R, LS, RS, LFE. This preset can be used to describe a 2-channel stream containing the LS and RS channels by masking the 4th and the 5th element of the fixed preset with fixedPresetSubset set to [MSB…LSB] […0 0 1 1 0 0 0] = 2410
Additional channel preset information can be specified from Table 6 by the value of fixedPresetAddInf.
The fixedPresetAddInf can set additional properties of the channels labeled with fixedPreset and fixedPresetSubset. Values for these additional labels can be found in Table 6:

Table 6 — fixedPresetAddInf table
	Value
	Configuration

	0
	none

	1
	Binaural

	2
	Transaural

	3..7
	reserved for ISO use

If generalChannelFormat is set to 3 (ParametricChannelOriented), channelCoordinateSystems, channelSoundLocation, channelDirectionalPattern and channelDirection for a generic format are valid. For its functional description see 7.2.2.9.2.1.

If generalChannelFormat is set to 4 (ParametricAmbisonicsOriented), ambResolution2D, ambResolution3D, ambEncodingConvention, ambNfcReferenceDistance, ambSoundSpeed, ambArrangementRule, ambComponentIndex, ambBackwardMatrix, and ambSoundfieldResolution are valid. For its functional description see 7.2.2.9.2.2.

7.8.2.9.2.1 Generic channel configuration parameters

The channelCoordinateSystems field determines the coordinate system for the corresponding channels. Each channel can have its own coordinate system as described in Table 7. Measurement units are meter for the cartesian coordinates and radians for the angle coordinates. In polar coordinates or cylindric coordinates a radius with the value r=0 indicates an unused component. An example is the 5.1 format where no radius is specified.

Table 7 — channelCoordinateSystems table
	Value
	Coordinate system
	ChannelSoundLocation format

	0
(default)
	Cartesian

origin = scene origin

(locations relative to the scene)
	{x, y, z}

	1
	Cartesian

origin = user position

(locations relative to the user)
	{x, y, z}

	3
	Polar

origin = scene origin

(locations relative to the scene)
	{r, azimuth, elevation}

	4
	Polar

origin = user position

(locations relative to the user)
	{r, azimuth, elevation}

	5
	Cylindric

origin = scene origin

(locations relative to the scene)
	{r, azimuth, z}

	6
	Cylindric

origin = user position

(locations relative to the user)
	{r, azimuth, z}

	7
	reserved for ISO use
	

channelSoundLocation determines the location of the sound of the corresponding channel. Each location is a 3-element vector. This field is in MFFloat-format instead of MFVec3f due to its multiple format possibility. Each vector consists of three elements.
For example in a 5-channel configuration the second channel can be configured as follows:
channelCoordinateSystems[1] == 4 (channelSoundLocation[3:5] is a 3D-vector in polar coordinates relative to the listener describing the position of the sound of the second channel.
The channelDirectionalPattern is an integer vector restricted to the values from Table 8. Each element describes the desired directional pattern of the sound of the corresponding channel.

Table 8 — channelDirectionalPattern association table
	Value
	Polarity

	0
	Sphere 0th order (monopole)

	1
	Sphere 1st order (dipole)

	2
	Cardioide

	3..7
	reserved for ISO use

This is useful for example in case of Dolby ProLogic where the front channels have monopole patterns and the surround channel has to have dipole characteristics (channelDirectionalPattern[0:3] = [0 0 0 1] for the four channels L, R, C, S).

The channelDirection field is valid for values of the channelDirectionalPattern > 0. It describes the direction of the channelDirectionalPattern in the coordinate system channelCoordinateSystems (see Table 7) defined for the corresponding channel.

7.8.2.9.2.2 Ambisonics® channel configuration parameters

These parameters are used to interpret the audio channels as "Ambisonics® components" Bmn, which represent the spatial encoding/recording of the sound field according to the spherical harmonics Ymn (see Figure 11).

[image: image14.emf]y

pitch

u



yaw

z

O



x

roll

 [image: image15.png]

Figure 11 — Left part: spherical coordinate system (radius r, azimuth , elevation ), X-axis being considered to be forward pointing while Y-axis is left-hand pointing. Right part: 3D view of spherical harmonics Ymn with usual designation of associated Ambisonics® components. 0th and 1st order components W, X, Y and Z compose the so-called "B-format"
Each component Bmn is re-paired in terms of indexes m, n (with 0(n(m) and  =±1. Components with  =+1 have an azimuth dependence in cos n while components with  =-1 have an azimuth dependence in sin n. In case of increasing m and n the newly considered components provide a more accurate angular resolution to the 3D sound scene description. Note that for each m there's only one component with n=0 which has no azimuth dependence. Components with n=m are "horizontal" or "2D" components, and are generally privileged over other components since in many cases rendering may be performed on horizontal-only loudspeaker configurations. For convenience Ambisonics® components will be referred to by a single index SID (Table 9) derived by enumerating indexes (m,n,) according to this rule: increase m from 0; for each m, decrease n from m to 0; for each n, choose  =+1, then  =-1 (except if n=0).

Table 9 — Single Index Designation (SID) for Ambisonics® Components

	Usual Name
	W
	X
	Y
	Z
	U
	V
	No more usual names

	(m,n,)

designation
	0,0

+1
	1,1

+1
	1,1

-1
	1,0

+1
	2,2

+1
	2,2

-1
	…
	m,m

+1
	…
	m,n

+1
	m,n

1
	…
	m,0

+1
	…

	Single Index Designation
	0
	1
	2
	3
	4
	5
	…
	m2
	…
	m2

+2(m-n)
	m2

+2(m(n)+1
	…
	(m+1)2

-1
	…

Further explanation of concepts and parameters of this part can be found in [1]. To be complete, and in order to let no ambiguity (related to the presence/absence of the Condon-Shortley phase), the Legendre polynomials and associated Legendre functions used are also specified as follows.

Associated Legendre functions:
[image: image16.png]= d’
P = (1 7:1)5517,,.(:). 0<n<m

With Legendre polynomials defined as:

[image: image17.png]1 4™

= o dx™

G- m

ambResolution2D: Upper order m of 2D (horizontal only) components (i.e. such that m=n).

ambResolution3D: Upper order m of 3D (non-horizontal) components (i.e. such that n<m); will be generally less than or equal to ambResolution2D.
ambEncodingConvention: The encoding convention characterized by the set of weighting factors applied to the components or spherical harmonics. Possible values are: 'N2D'=0, 'SN2D'=1, 'N3D'=2, 'SN3D'=3, 'MaxN'=4, 'FMH'=5, etc. Conversion formulae are described in details in [1]. Note that the specified convention applies to the Ambisonics® components finally obtained, for example after backward matrixing (or channel recombination) in case of occurrence (see comments on ambBackwardMatrix).
The intrinsic parameter for Near-Field Compensated Ambisonics® sound fields is the ratio of a reference distance (=ambNfcReferenceDistance) and the sound speed (=ambSoundSpeed) as measured in the real world. The reference distance refers to the loudspeaker array radius for which the sound field rendering is preferably dedicated to (in the sense that spatial decoding requires no sound field curvature adaptation).

ambArrangementRule: a value that describes how to interpret the conveyed channels as ambisonic components. Its binary coding can be interpreted as a "flag container". Bit number 0 is interpreted as "explicit ordering" flag: if binary masking of ambArrangementRule by 001 yields 001 (flag is true), then ambComponentIndex field is valid. Bits number 1 and number 2 are interpreted as respectively "recombination" flag and "explicit recombination" flag: if binary masking by 110 yields 010, ambRecombinationPreset field is valid and predefined recombination rules apply; if it yields 110, ambBackwardMatrix field is valid and explicit channel recombination applies.

ambRecombinationPreset: describes predefined rules (listed in Table 10) of channel recombination. Channel recombination operates the same way as described with ambBackwardMatrix below, but using parameters N and K of Table 10 and processing the first N channels with a predefined conversion rule instead of an explicit matrix.

Table 10 — Particular cases of channels recombination. "Value" is the 3-bit right-shifted value of the ambArrangementRule field. UHJ Format is described in [ref_UHJ]
	Value
	Special rules for channels recombination
	N
	K

	0
	2-channel UHJ: First 2 channels conform to UHJ format
	2
	2

	1
	3-channel UHJ: First 3 channels conform to UHJ format
	3
	3

	2
	4-channel UHJ: First 4 channels conform to UHJ format
	4
	4

	3..15
	reserved for ISO use
	
	

ambComponentIndex: A vector containing the single indexes (as defined in Table 9) that identify Ambisonics® components, as resulting from the channel recombination described below if applied, or as being directly represented by the conveyed channels otherwise.

ambBackwardMatrix: A vector describing the recombination matrix. First 2 elements are the number of lines (K) and the number of columns (N). The other elements are the line-wise listed matrix coefficients ai,j (1(i(K, 1(j(N):

[image: image18.wmf][

]

N

K

j

K

K

N

i

j

i

i

N

j

a

a

a

a

a

a

a

a

a

N

K

,

,

1

,

,

,

1

,

,

1

,

1

1

,

1

...

...

...

...

...

...

...

...

dMatrix

ambBackwar

=

If not null the length of ambBackwardMatrix shall be 2+N*K. The presenter may apply this matrix to the first N elementary channels {C1 … CN} in order to extract K Ambisonic components {B1 … BK}:
[image: image19.wmf]å

=

=

N

j

j

j

i

i

C

a

B

1

,

, which can also be written as:

[image: image20.wmf]ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

=

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

N

j

N

K

j

K

K

N

i

j

i

i

N

j

K

i

C

C

C

a

a

a

a

a

a

a

a

a

B

B

B

M

M

K

K

M

O

M

M

K

K

M

M

O

M

K

K

M

M

1

,

,

1

,

,

,

1

,

,

1

,

1

1

,

1

1

Then the list of restored Ambisonic components is completed by the remaining (numChannel-N) conveyed channels {CN+1, … CnumChannel} that represent "unmatrixed" Ambisonic components {BK+1, … BnumChannel-N+K}:

[image: image21.wmf]ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

=

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

-

+

+

+

-

+

numChannel

'

1

numChannel

'

1

C

C

C

B

B

B

K

N

i

N

K

N

i

K

M

M

M

M

This way, the total number of Ambisonic components is numChannel-N+K.

Remind that ambComponentIndex, ambSoundfieldResolution and ambEncodingConvention fields actually apply to this resulting set of Ambisonic components {B1 … BnumChannel-N+K} rather than the conveyed channels {C1, ... CnumChannel}.

ambSoundfieldResolution: A vector containing information on the global sound field resolution associated to each component. Indeed when mixing Ambisonic sound fields of different resolutions (as defined by their respective upper order) the content creator may have to provide several versions of the lower order component(s), in order to make possible some optimization of the spatial decoding at the rendering stage. For example: when mixing 1st and 2nd order sound fields, provide two W channels (SID=0), the one being the result of mixing both sound fields, the second being the one of either the 1st or the 2nd order sound field. The ambSoundfieldResolution should have the same number of elements as ambComponentIndex and requires ambArrangementRule=1 since several components might have the same “Single Index Designation”. Each element of ambSoundfieldResolution, when positive, refers to the upper sound field resolution the indexed channel belongs to (that means that it's the result of mixing sound fields having spatial resolutions up to the considered value). In the case of negative values each associated absolute value refers to a lower resolution instead of an upper resolution.

7.8.2.10 AudioClip

7.8.2.10.1 Node interface

AudioClip {

	
	exposedField
	SFString
	description
	""

	
	exposedField
	SFBool
	loop
	FALSE

	
	exposedField
	SFFloat
	pitch
	1.0

	
	exposedField
	SFTime
	startTime
	0

	
	exposedField
	SFTime
	stopTime
	0

	
	exposedField
	MFString
	url
	[]

	
	eventOut
	SFTime
	duration_changed
	

	
	eventOut
	SFBool
	isActive
	

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.10.2 Functionality and semantics

The semantics of the Audioclip node are specified in ISO/IEC 14772-1:1998, subclause 6.4.

The loop, startTime, and stopTime exposedFields and the isActive eventOut, and their effects on the AudioClip node are described in 7.1.1.1.6.2.

The url field specifies the data source to be used (see 7.1.1.2.7.1).

The use of this node should be avoided in new applications. It should only be used for VRML backward compatible applications.
7.8.2.11 AudioDelay

7.8.2.11.1 Node interface

AudioDelay {

	
	eventIn
	MFNode
	addChildren
	

	
	eventIn
	MFNode
	removeChildren
	

	
	exposedField
	MFNode
	children
	[]

	
	exposedField
	SFTime
	delay
	0

	
	field
	SFInt32
	numChan
	1

	
	field
	MFInt32
	phaseGroup
	[]

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.11.2 Functionality and semantics

The AudioDelay node allows sounds to be started and stopped under temporal control. The start time and stop time of the child sounds are delayed or advanced accordingly.

The addChildren eventIn specifies a list of nodes that shall be added to the children field.

The removeChildren eventIn specifies a list of nodes that shall be removed from the children field.

The children array specifies the nodes affected by the delay. Each child shall be an AudioBIFS node; that is, one of the following: AudioSource, AudioDelay, AudioMix, AudioSwitch, AudioFX, AudioClip, AudioChannelConfig, AudioBuffer or AdvancedAudioBuffer.
The delay field specifies the delay to apply to each child node.

The numChan field specifies the number of channels of audio output by this node.

The phaseGroup field specifies the phase relationships among the various output channels; see 7.1.1.1.6.2.

Implementation of the AudioDelay node requires the use of a buffer of size d * S * n, where d is the length of the delay in seconds, S is the sampling rate of the node, and n is the number of output channels from this node. At scene startup, a multichannel delay line of length d and width n is initialized to reside in this buffer.

At each time step, the k * S audio samples in each channel of the input buffer, where k is the length of the system time step in seconds, are inserted into this delay line. If the number of input channels is strictly greater than the number of output channels, the extra input channels are ignored; if the number of input channels is strictly less than the number of output channels, the extra channels of the delay line shall be taken as all 0’s.

The output buffer of the node is the k * S audio samples which fall off the end of the delay line in this process. Note that this definition holds regardless of the relationship between k and d.

If the delay field is updated during playback, discontinuties (audible artefacts or “clicks”) in the output sound may result. If the delay field is updated to a greater value than the current value, the delay line is immediately extended to the new length, and zero values inserted at the beginning, so that d * S seconds later there will be a short gap in the output of the node. If the delay field is updated to a lesser value than the current value, the delay line is immediately shortened to the new length, truncating the values at the end of of the line, so that there is an immediate discontinuity in sound output. Manipulation of the delay field in this manner is not recommended unless the audio is muted within the terminal or by appropriate use of an AudioMix node at the same time, since it gives rise to impaired sound quality.

7.8.2.12 AudioFX

7.8.2.12.1 Node interface

AudioFX {

	
	eventIn
	MFNode
	addChildren
	

	
	eventIn
	MFNode
	removeChildren
	

	
	exposedField
	MFNode
	children
	[]

	
	field
	SFCommandBuffer
	orch
	""

	
	field
	SFCommandBuffer
	score
	""

	
	exposedField
	MFFloat
	params
	[]

	
	field
	SFInt32
	numChan
	1

	
	field
	MFInt32
	phaseGroup
	[]

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.12.2 Functionality and semantics

The AudioFX node is used to allow arbitrary signal-processing functions defined using structured audio tools to be included and applied to its children (see ISO/IEC 14496-3 subpart 5, subclause 5.15).
The addChildren eventIn specifies a list of nodes that shall be added to the children field.

The removeChildren eventIn specifies a list of nodes that shall be removed from the children field.

The children array contains the nodes operated upon by this effect. Each child shall be an AudioBIFS node; that is, one of the following: AudioSource, AudioDelay, AudioMix, AudioSwitch, AudioFX, AudioClip, AudioChannelConfig, AudioBuffer or Advanced​AudioBuffer. If this array is empty, the node has no function (the node may not be used to create new synthetic audio in the middle of a scene graph).
The orch command buffer contains a tokenised block of signal-processing code written in SAOL (Structured Audio Orchestra Language). This code block shall contain an orchestra header and some instrument definitions, and conform to the bitstream syntax of the orchestra class as defined in ISO/IEC 14496-3 Subpart 5 subclause 5.5.2.2 and subclause 5.8.

The score command buffer may contain a tokenized score for the given orchestra written in SASL (Structured Audio Score Language). This score may contain control operators to adjust the parameters of the orchestra, or even new instrument instantiations. A score is not required. If present it shall conform to the bitstream syntax of the score_file class as defined in ISO/IEC 14496-3 Subpart 5, subclause 5.5.2 and 5.11.

The params field allows BIFS commands and events to affect the sound-generation process in the orchestra. The values of params are available to the FX orchestra as the global array global ksig params[128]; see ISO/IEC 14496-3, Subpart 5, subclause 5.15.
The numchan field specifies the number of channels of audio output by this node.

The phaseGroup field specifies the phase relationships among the various output channels; see 7.1.1.1.6.2.

The node is evaluated according to the semantics of the orchestra code contained in the orch field. See ISO/IEC 14496-3, subpart 5, for the normative description of this process. Within the orchestra code, the multiple channels of input sound are placed on the global bus, input_bus; first, all channels of the first child, then all the channels of the second child, and so on. The orchestra header shall ‘send’ this bus to an instrument for processing. The phaseGroup arrays of the children are made available as the inGroup variable within the instrument(s) to which the input_bus is sent.

The orchestra code block shall not contain the spatialize statement.

The output buffer of this node is the sound produced as the final output of the orchestra applied to the input sounds, as described in ISO/IEC 14496-3, Subpart 5, subclause 5.7.3.

7.8.2.13 AudioFXProto

7.8.2.13.1 PROTO interface

AudioFxProto {

PROTO audio"Name"[

	
	exposedField
	MFNode
	audioFXChildren
	[]

	
	exposedField
	MFFloat
	audioFXParams
	[]

	
	exposedField
	SFInt32
	audioFXnumChannel
	1

	
	exposedField
	MFInt32
	audioFXPhaseGroup
	[]

]

DEF "Name" AudioFX {

	
	eventIn
	MFNode
	addChildren
	
	

	
	eventIn
	MFNode
	removeChildren
	
	

	
	exposedField
	MFNode
	children
	[]
	children IS audioFXChildren

	
	exposedField
	SFCommand

Buffer
	orch
	[]
	only used in players with S.A. capability

	
	exposedField
	SFCommand

Buffer
	score
	[]
	only used in players with SA capability

	
	exposedField
	MFFloat
	params
	[]
	params[128] IS audioFXParams[128]

	
	Field
	SFInt32
	numChannel
	1
	numChannel IS audioFXNumChannel

	
	Field
	MFInt32
	phaseGroup
	[]
	phaseGroup IS audioFXPhaseGroup

}

}

7.8.2.13.2 Functionality and semantics

The AudioFxPROTO node provides an implementation of a tailored subset of functionality available through the AudioFX node. The AudioFX node normally requires a Structured Audio implementation. The tailored subset allows players without Structured Audio capability to use these standard audio effects. These standard audio effects are identified by means of predefined values of the protoName field (see 8.7.2.3 PROTOinterfaceDefinition). For compatibility, the PROTO shall encapsulate the AudioFX node so enhanced MPEG 4 players with Structured Audio capability can decode the SAOL resp. SASL token streams directly in order to apply the effect. Players that are aware of the predefined protoName values may identify the effects solely based on this name and apply these standard audio effects using internal effect representations, if available.

The description of the fields to be used in the AudioFXProto can be found in the description of the AudioFX node (subclause 7.2.2.12.2, AudioFX, Functionality and semantics).

The protoName string (see 8.7.2.3 PROTOinterfaceDefinition) shall be set to the appropriate value identified in Table 11. For the corresponding protoName strings the JAVA naming convention shall be used.

Table 11 — AudioFXProto names
	audioChorus

	audioCompressor

	audioEcho

	audioEqualizer

	audioFilter

	audioFlange

	audioNaturalReverb

	audioReverb

	audioSpeedChange

	audioStereoBase

	audioVirtualStereo

The standard audio effects to be defined can be seen in Table 11. SpeedChange requires MediaControl, AudioBuffer or AdvancedAudioBuffer.

7.8.2.13.3 The standard audio effects

The Structured Audio effects as described in ISO/IEC 14496-3:2001, subclause 5.9.14, ‘Effects’ are not normative. If content authors wish to have exactly normative effects, they can be authored using strictly normative core opcodes. This means that an effect (in Structured Audio) is normative, if it uses these opcodes and combines them in a suitable way. There is no definition, how this combination has to be done and if it can injure the normativity, e.g. with the presence of additional code in the calling function. It is assumed that the orchestra adds no further functionality and combines the core opcodes in an "additive" way due to the routing defined in the route and send statements of the orchestra.

The following paragraphs describe the interfaces and the parameters to the above mentioned standard audio effects.
7.8.2.13.3.1 PROTO audioChorus

The audioChorus contains the following parameters:

	Data type
	Function
	Default value
	Range

	float
	rate
	2
	0..5

	float
	depth
	0.5
	0..1

	float
	modulation
	1
	0..16

The chorus PROTO creates a sound with a corusing effect. Its speed is defined by rate and its strength can be varied with depth.

rate is specified in cycles per second.

modulation defines the modulation function as listed in Table 12.

Table 12 — audioChorus effect modulation
	Value
	Modulation function

	0
	Sine

	1
	Triangle

	2..
	reserved for ISO use

depth is specified as excursion with 0<=depth<=1.0.

rate, modulation and depth shall map to the params[] array as follows:
rate
= params [0]
depth
= params [1]
modulation
= params [2]

7.8.2.13.3.2 PROTO audioCompressor

The audioCompressor contains the following parameters:

	Data type
	Function
	Default value
	Range

	float
	nfloor
	--
	--

	float
	threshold
	--
	--

	float
	loknee
	--
	--

	float
	hiknee
	--
	--

	float
	ratio
	--
	--

	float
	att
	--
	--

	float
	rel
	--
	--

	float
	look
	--
	--

	float
	delay
	--
	--

For the description of compressor and parameter ranges see ISO/IEC 14496-3:2001, subclause 5.9.11.4.

nfloor, threshold, loknee, hiknee, ratio, att, rel, look and delay shall map to the params[] array as follows :

nfloor

= params [0]
threshold

= params [1]
loknee

= params [2]
hiknee

= params [3]
ratio

= params [4]
att

= params [5]
rel

= params [6]
look

= params [7]
delay

= params [8]

7.8.2.13.3.3 PROTO audioEcho

The audioEcho contains the following parameters:

	Data type
	Function
	Default value
	Range

	float
	numChannels
	2
	0..n

	float
	numTaps
	1
	0..n

	float
	feedback
	25
	0..100

	float[]
	delayTime
	440
	0..2000

The echo PROTO creates a sound with an typical echo effect.

numChannels defines the number of audio channels to be processed.

numTaps defines the number of echoes to be calculated. every tap gets its own delay time from the delayTime-field.

feedback defines the relative level in % of samples inserted into the delay-buffer again after processing.

delayTime[n] defines the time between original signal and echo tap n in milliseconds.

numChannels, numTaps, feedback and delayTime shall be mapped to the params[] array as follows:

numChannels
= params [0]
numTaps
= params [1]
feedback
= params [2]
delayTime
= params [3 … numTaps]
7.8.2.13.3.4 PROTO audioEqualizer

The audioEqualizer contains the following parameters:

	Data type
	Function
	Default value
	Range

	float
	numFreqBands
	2
	0..16

	float[]
	centerFreq
	[]
	0..20000

	float[]
	bandwidth
	[]
	0..20000

	float[]
	gain
	1
	0.1 .. 10

The numFreqBands value sets the number of frequency bands.
The default value is 2 for a typical shelving filter.

The centerFreq vector sets the center frequency of each frequency band. If the vector is not defined the effect will be switched off.

The bandwidth vector sets the bandwidth of each frequency band (see bandwidth definition in ISO/IEC 14496-3:2001, subclause 5.9.9.4). If the vector is not defined the effect will be switched off.

The gain vector sets the gain per frequency band.

numFreqBands, centerFreq, bandwidth and gain shall map to the params[] array as follows:
numFreqBands

= params [0]
centerFreq [0...numFreqBands-1]

= params [1...numFreqBands]
bandwidth [0...numFreqBands-1]

= params [numFreqBands+1...2*numFreqBands]
gain [0...numFreqBands1]

= params [2*numFreqBands+1...3*numFreqBands]

7.8.2.13.3.5 PROTO audioFilter

The audioFilter contains the following parameters:

	Data type
	Function
	Default value
	Range

	float
	filtertype
	2
	{low, high, pass, stop}

	float
	filterorder
	0
	0..4

	float
	frequency
	2000
	0..20000

	float
	bandwidth
	20000
	0..20000

	float
	characteristic
	0
	{butterworth, bessel}

The AudioFilter PROTO is used to filter its input signal with a lowpass, highpass, bandpass or bandstop filter characteristic.

filtertype defines the type of the filter as listed in Table 13:

Table 13 — audioFilter filtertype function
	Value
	Filtertype function

	0
	lowpass

	1
	highpass

	2
	bandpass

	3
	bandstop

	4..
	reserved for ISO use

filterorder defines the order of the filter in a range from 0..4. If filterorder is 0, the filter is switched off.
frequency defines the cutoff frequency (filtertype 0 or 1) resp. the center frequency (filtertype 2 or 3).

bandwidth defines the bandwidth in filtertypes 2 or 3. It is not used with in filtertypes 0 or 1.
7.8.2.13.3.6 PROTO audioFlange

The audioFlange contains the following parameters:

	Data type
	Function
	Default value
	Range

	float
	rate
	2
	0..5

	float
	depth
	0.5
	0..1

	float
	modulation
	1
	0..16

	float
	feedback
	0
	0..1

The audioFlange PROTO creates a sound with a flanged effect. Its speed is defined by rate and its strength can be varied with depth. The sound characteristic can also be changed with feedback.

The rate is specified in cycles per second.

The modulation defines the modulation function as listed in Table 14.

Table 14 — audioFlange effect modulation
	Value
	Modulation function

	0
	Sine

	1
	Triangle

	2..
	reserved for ISO use

The depth is specified as excursion with 0<=depth<=1.0.

The feedback is specified as feedback gain factor. 0 means no feedback and 1.0 means maximum feedback at stable operation.

rate, modulation, depth and feedback shall map to the params[] array as follows:
rate
= params [0]
modulation
= params [1]
depth
= params [2]
feedback
= params [3]

7.8.2.13.3.7 PROTO audioNaturalReverb

The audioNaturalReverb contains the following parameters:

First params[] field:

	Data type
	Function
	Default value
	Range

	float
	numParamsFields
	1
	1..60000

	float
	numImpResp
	0
	0..32

	float
	sampleRate
	
	

	float[]
	reverbChannels
	0
	0,1,2,3,...,31

	float
	impulseResponseCoding
	0
	0..1

	…
	
	
	reserved

Following params[] fields:

	Data type
	Function
	Default value
	Range

	float
	impulseResponseLength
	0
	240000 *

	float[]
	impulseResponse
	
	 *

	
	
	 * numImpResp times

The NaturalReverb PROTO uses the impulse responses of different sound channels to create a reverberation effect. Since these impulse responses can be very long (several seconds for a big church or hall), one params[] array is not sufficient to transmit the complete data set. Therefore a bulk of consecutive params[] arrays is used in the following way:

The first block of params[] contains information about the following params[] fields:
The numParamsFields field determines the number of following params[] fields to be used. The NaturalReverb PROTO has to provide sufficient memory to store these fields.
The numImpResp defines the number of impulse responses (= number of channels used for reverberation). It must be smaller than audioFXnumChannel in the AudioFX PROTO node interface.

The reverbChannels field defines the mapping of the impulse responses to the input channels. The mapping is the same as for the matrix field in the AudioMix node of the MPEG-4 Systems standard (ISO/IEC 14496-11) whereas the linear factor of the matrix elements from the Audio Mix node (multiply operation) have to be replaced by the impulse responses (convultion operation).

The impulseResponseCoding field shows how the impulse response is coded (Table 15).

Table 15 — audioNaturalReverb effect coding
	Value
	Coding function

	0
	consecutive samples

	1
	sample-number/sample

	2..
	reserved for ISO use

Coding 1 can be useful to reduce the length of sparse impulse responses.

The fields shall map to the first params[] array as follows:

numParamsFields

 = params [0]
numRevChan

 = params [1]
sampleRate

 = params [2]
reverbChannels [0... numRevChan -1]
 = params [3...3 + numRevChan - 1]
impulseResponseCoding
 = params [3 + numRevChan]

The following params[] fields contain the numImpResp consecutive impulse responses as follows:

The impulseResponseLength gives the length of the following impulseResponse.

The impulseResponseLength and the impulseResponse are repeated numImpResp times.

The fields shall map to the following params[] arrays as follows:

impulseResponseLength
= params [0]
impulseResponse

= params [1... 1 + impulseResponseLength]

The exact method of calculating the reverberation according to the specified parameters is not normative.

The output shall be the reverberated sound signal.

7.8.2.13.3.8 PROTO audioReverb

The audioReverb contains the following parameters:

	Data type
	Function
	Default value
	Range

	float
	preset
	2
	0..5

	float
	length
	1
	0..10

	float
	numFreqBands
	0
	0..16

	float[]
	frequencyBand
	0
	0..20000

	float[]
	reverberation
	0
	0..10

The preset value is used for predefined reverb setups. It shall map to the params[] array as follows:
presets = params [0]

The presets are defined in Table 16.

Table 16 — audioReverb presets
	Value
	Characteristic

	0
	none

	1
	Use length, frequencyBand and reverberation

	2
	Room

	3
	Hall

	4
	Church

	5..
	reserved for ISO use

If only the length is given it is taken as a full-range reverberation time which is the amount of time delay until the sound amplitude is attenuated 60 dB compared to the source sound (RT60).

length shall map to the params[] array as follows:
length = params [1]

If numFreqBands is greater than one and frequencyBand and reverberation are given, they represent the responses at different frequencies. At each frequencyBand the reverberation is given as the reverberation time (RT60).

numFreqBands, frequencyBand and reverberation shall map to the params[] array as follows:
numFreqBands

 = params [2]
frequencyBand [0...numFreqBands-1] = params
[3...3+numFreqBands-1]
reverberation
 [0...numFreqBands-1] = params [numFreqBands + 3...3 + 2*numFreqBands - 1]

The exact method of calculating the reverberation according to the specified parameters is not normative.

The output shall be the reverberated sound signal.

7.8.2.13.3.9 PROTO audioSpeedChange

The audioSpeedChange contains the following parameters:

	Data type
	Function
	Default value
	Range

	float
	speedFactor
	1
	0.1..10

The SpeedChange PROTO changes the Speed of the signal without influence on its pitch. SpeedChange must use an AudioBuffer or AdvancedAudioBuffer as input.

The children field is restricted to an AudioBuffer or AdvancedAudioBuffer node only.

The speedFactor describes the amount of speed change and shall map to the params[] array as follows:

speedFactor = params [0]

7.8.2.13.3.10 PROTO audioStereoBase

The audioSteroBase contains the following parameters:

	Data type
	Function
	Default value
	Range

	float
	stereoBase
	1
	0..2

The audioStereoBase PROTO is used to manipulate the basewidth of a 2.0 or 2.1 channel signal. The basewidth is defined in as follows:

	StereoBase
	Basewidth

	0
	Mono

]0...1[
	reduced base

	1
	Stereo

]1...2
	widened base

stereoBase shall map to the params[] array as follows:
stereoBase = params [0]

7.8.2.13.3.11 PROTO audioVirtualStereo

The audioVirtualStereo contains the following parameter:

	Data type
	Function
	Default value
	Range

	Float
	virtualStereo
	0
	0..1

The audioVirtualStereo PROTO is used to generate a virtual stereo signal from a mono source signal, whereby virtualStereo=0 disables the effect and virtualStereo=1 enables the effect.

With values between 0 and 1 the strength of the effect, measured as decorrelation between the 2 output channels, can be controlled.

virtualStereo shall map to the params[] array as follows:
virtualStereo = params [0]
7.8.2.14 AudioMix

7.8.2.14.1 Node interface

AudioMix {

	
	eventIn
	MFNode
	addChildren
	

	
	eventIn
	MFNode
	removeChildren
	

	
	exposedField
	MFNode
	children
	[]

	
	exposedField
	SFInt32
	numInputs
	1

	
	exposedField
	MFFloat
	matrix
	[]

	
	field
	SFInt32
	numChan
	1

	
	field
	MFInt32
	phaseGroup
	[]

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.14.2 Functionality and semantics

This node is used to mix together several audio signals in a simple, multiplicative way. Any relationship that may be specified in terms of a mixing matrix may be described using this node.

The addChildren eventIn specifies a list of nodes that shall be added to the children field.

The removeChildren eventIn specifies a list of nodes that shall be removed from the children field.

The children field specifies which nodes’ outputs to mix together. Each child shall be an AudioBIFS node; that is, one of the following: AudioSource, AudioDelay, AudioMix, AudioSwitch, AudioFX, AudioClip, AudioChannelConfig, AudioBuffer or AdvancedAudioBuffer.

The numInputs field specifies the number of input channels. It shall be the sum of the number of channels of the children.

The matrix array specifies the mixing matrix which relates the inputs to the outputs. matrix is an unrolled numInputs x numChan matrix which describes the relationship between numInputs input channels and numChan output channels. The numInputs * numChan values are in row-major order. That is, the first numInputs values are the scaling factors applied to each of the inputs to produce the first output channel; the next numInputs values produce the second output channel, and so forth.

That is, if the desired mixing matrix is
[image: image22.wmf]ú

û

ù

ê

ë

é

f

e

d

c

b

a

, specifying a “2 into 3” mix, the value of the matrix field shall be [a b c d e f].

The numchan field specifies the number of channels of audio output by this node.

The phaseGroup field specifies the phase relationships among the various output channels; see 7.1.1.1.6.2.

The value of the output buffer for an AudioMix node is calculated as follows. For each sample number x of output channel i, 1 <= i <= numChan, the value of that sample is

matrix[(0) * numChan + i] * input[1][x] +

matrix[(1) * numChan + i] * input[2][x] + ...

matrix[(numInputs – 1) * numChan + i] * input[numInputs][x],

where input[i][j] represents the jth sample of the ith channel of the input buffer, and the matrix elements are indexed starting from 1.

7.8.2.15 AudioSource

7.8.2.15.1 Node interface

AudioSource {

	
	eventIn
	MFNode
	addChildren
	

	
	eventIn
	MFNode
	removeChildren
	

	
	exposedField
	MFNode
	children
	[]

	
	exposedField
	MFString
	url
	[]

	
	exposedField
	SFFloat
	pitch
	1.0

	
	exposedField
	SFFloat
	speed
	1.0

	
	exposedField
	SFTime
	startTime
	0

	
	exposedField
	SFTime
	stopTime
	0

	
	field
	SFInt32
	numChan
	1

	
	field
	MFInt32
	phaseGroup
	[]

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.
7.8.2.15.2 Functionality and semantics

This node is used to add sound to a BIFS scene. See ISO/IEC 14496-3 for information on the various audio tools available for coding sound.

The addChildren eventIn specifies a list of nodes that shall be added to the children field.

The removeChildren eventIn specifies a list of nodes that shall be removed from the children field.

The children field allows buffered AudioBuffer or AdvancedAudioBuffer data to be used as sound samples within a structured audio decoding process. Only AudioBuffer and AdvancedAudioBuffer nodes shall be children to an AudioSource node, and only in the case where url indicates a structured audio bitstream.
The pitch field controls the playback pitch for the structured audio, the parametric speech (HVXC) and the parametric audio (HILN) decoder. It is specified as a ratio, where 1 indicates the original bitstream pitch, values other than 1 indicate pitch-shifting by the given ratio. This field is available through the getttune() core opcode in the structured audio decoder (see ISO/IEC 14496-3, subpart 5). To adjust the pitch of other decoder types, use the AudioFX node with an appropriate effects orchestra.

The speed field controls the playback speed for the structured audio decoder (see ISO/IEC 14496-3, section 5), the parametric speech (HVXC) and the parametric audio (HILN) decoder. It is specified as a ratio, where 1 indicates the original speed; values other than 1 indicate multiplicative time-scaling by the given ratio (i.e. 0.5 specifies twice as fast). The value of this field shall be made available to the structured audio decoder indicated by the url field. ISO/IEC 14496-3, Subpart 5, subclause 5.7.3.3.6, list item 8, describe the use of this field to control the structured audio decoder. To adjust the speed of other decoder types, use the AudioFX node with an appropriate effects orchestra (see ISO/IEC 14496-3, Subpart 5, subclause 5.9.14.4).

The startTime and stopTime exposedFields and their effects on the AudioSource node are described in 7.1.1.1.6.2.

The numChan field describes how many channels of audio are in the decoded bitstream.

The phaseGroup array specifies whether or not there are important phase relationships between the multiple channels of audio. If there are such relationships – for example, if the sound is a multichannel spatialized set or a “stereo pair” – it is in general dangerous to do anything more complex than scaling to the sound. Further filtering or repeated “spatialization” will destroy these relationships. The values in the array divide the channels of audio into groups; if phaseGroup[i] = phaseGroup[j] then channel i and channel j are phase-related. Channels for which the phaseGroup value is 0 are not related to any other channel.

The url field specifies the data source to be used (see 7.1.1.2.7.1).

The audio output from the decoder according to the bitstream(s), referenced in the specified URL, at the current scene time is placed in the output buffer for this node, unless the current scene time is earlier than the current value of startTime or later than the current value of stopTime, in which case 0 values are placed in the output buffer for this node for the current scene time.

For audio sources decoded using the main object of the structured audio decoder (ISO/IEC 14496-3, subpart 5), several variables from the scene description must be mapped into standard names in the orchestra. See ISO/IEC 14496-3, Subpart 5, subclause 5.15 and subclause 5.8.6.8.

If AudioBuffer children are provided for a structured audio decoder, the audio data buffered in the AudioBuffer(s) must be made available to the decoding process. See subclause ISO/IEC 14496-3, Subpart 5, subclause 5.10.2.
7.8.2.16 AudioSwitch

7.8.2.16.1 Node interface

AudioSwitch {

	
	eventIn
	MFNode
	addChildren
	

	
	eventIn
	MFNode
	removeChildren
	

	
	exposedField
	MFNode
	children
	[]

	
	exposedField
	MFInt32
	whichChoice
	[]

	
	field
	SFInt32
	numChan
	1

	
	field
	MFInt32
	phaseGroup
	[]

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.16.2 Functionality and semantics

The AudioSwitch node is used to select a subset of audio channels from the child nodes specified.

The addChildren eventIn specifies a list of nodes that shall be added to the children field.

The removeChildren eventIn specifies a list of nodes that shall be removed from the children field.

The children field specifies a list of child options. Each child shall be an AudioBIFS node; that is, one of the following: AudioSource, AudioDelay, AudioMix, AudioSwitch, AudioFX, AudioClip, AudioChannelConfig, AudioBuffer or AdvancedAudioBuffer.
The whichChoice field specifies which channels shall be passed through. If whichChoice[i] is 1, then the i-th child channel shall be passed through.

The numchan field specifies the number of channels of audio output by this node; ie, the number of channels in the passed child.

The phaseGroup field specifies the phase relationships among the various output channels; see subclause 7.1.1.1.6.2.

The values for the output buffer are calculated as follows:

For each sample number x of channel number i of the output buffer, 1 <= i <= numChan, the value in the buffer is the same as the value of sample number x in the jth channel of the input, where j is the least value such that whichChoice[0] + whichChoice[1] + ... + whichChoice[j] = i.

7.8.2.17 Background

7.8.2.17.1 Node interface

Background {

	
	eventIn
	SFBool
	set_bind
	

	
	exposedField
	MFFloat
	groundAngle
	[]

	
	exposedField
	MFColor
	groundColor
	[]

	
	exposedField
	MFString
	backURL
	[]

	
	exposedField
	MFString
	bottomURL
	[]

	
	exposedField
	MFString
	frontURL
	[]

	
	exposedField
	MFString
	leftURL
	[]

	
	exposedField
	MFString
	rightURL
	[]

	
	exposedField
	MFString
	topURL
	[]

	
	exposedField
	MFFloat
	skyAngle
	[]

	
	exposedField
	MFColor
	skyColor
	0, 0, 0

	
	eventOut
	SFBool
	isBound
	

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.17.2 Functionality and semantics

The semantics of the Background node are specified in ISO/IEC 14772-1:1998, subclause 6.5.

The backUrl, bottomURL, frontUrl, leftUrl, rightUrl, topUrl fields specify the data sources to be used (see 7.1.1.2.7.1).

7.8.2.18 Background2D

7.8.2.18.1 Node interface

Background2D {

	
	eventIn
	SFBool
	set_bind
	

	
	exposedField
	SFColor
	backColor
	0 0 0

	
	exposedField
	MFString
	url
	[]

	
	eventOut
	SFBool
	isBound
	

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.18.2 Functionality and semantics

There exists a Background2D stack, in which the top-most background is the current active background one. The Background2D node allows a background to be displayed behind a 2D scene. The functionality of this node can also be accomplished using other nodes, but use of this node may be more efficient in some implementations.

If set_bind is set to TRUE the Background2D is moved to the top of the stack.If set_bind is set to FALSE, the Background2D is removed from the stack so the previous background which is contained in the stack is on top again.

The isBound event is sent as soon as the backdrop is put at the top of the stack, so becoming the current backdrop.

The url field specifies the data source to be used (see 7.1.1.2.7.1).

The backColor field specifies a colour to be used as the background.

This is not a geometry node. The top-left corner of the image is mapped to the top-left corner of the Layer2D and the right-bottom corner of the image is stretched to the right-bottom corner of the Layer2D, regardless of the current transformation. Scaling and/or rotation do not have any effect on this node. The background image will always exactly fill the entire Layer2D, regardless of Layer2D size, without tiling or cropping.

When a Background2D node is included in a 3D context, that is in a Group, Layer3D, or CompositeTexture3D node, then it shall be rendered behind all other geometries and be scaled to fit in the enclosing frame. For Group node, this frame is the whole scene. For Layer3D and CompositeTexture3D the background image is scaled to fit in the frame of the node.
EXAMPLE (Changing the background for 5 seconds.

Group {

children [

…

DEF TIS TimeSensor {

startTime 5.0

stopTime 10.0

}

DEF BG1 Background2D {

…

}

]

}

ROUTE TIS.isActive TO BG1.set_bind
7.8.2.19 BAP

7.8.2.19.1 Node interface

BAP {

	
	exposedField
	SFInt32
	sacroiliac_tilt
	+I

	
	exposedField
	SFInt32
	sacroiliac_torsion
	+I

	
	exposedField
	SFInt32
	sacroiliac_roll
	+I

	
	exposedField
	SFInt32
	l_hip_flexion
	+I

	
	exposedField
	SFInt32
	r_hip_flexion
	+I

	
	exposedField
	SFInt32
	l_hip_abduct
	+I

	
	exposedField
	SFInt32
	r_hip_abduct
	+I

	
	exposedField
	SFInt32
	l_hip_twisting
	+I

	
	exposedField
	SFInt32
	r_hip_twisting
	+I

	
	exposedField
	SFInt32
	l_knee_flexion
	+I

	
	exposedField
	SFInt32
	r_knee_flexion
	+I

	
	exposedField
	SFInt32
	l_knee_twisting
	+I

	
	exposedField
	SFInt32
	r_knee_twisting
	+I

	
	exposedField
	SFInt32
	l_ankle_flexion
	+I

	
	exposedField
	SFInt32
	r_ankle_flexion
	+I

	
	exposedField
	SFInt32
	l_ankle_twisting
	+I

	
	exposedField
	SFInt32
	r_ankle_twisting
	+I

	
	exposedField
	SFInt32
	l_subtalar_flexion
	+I

	
	exposedField
	SFInt32
	r_subtalar_flexion
	+I

	
	exposedField
	SFInt32
	l_midtarsal_flexion
	+I

	
	exposedField
	SFInt32
	r_midtarsal_flexion
	+I

	
	exposedField
	SFInt32
	l_metatarsal_flexion
	+I

	
	exposedField
	SFInt32
	r_metatarsal_flexion
	+I

	
	exposedField
	SFInt32
	l_sternoclavicular_abduct
	+I

	
	exposedField
	SFInt32
	r_sternoclavicular_abduct
	+I

	
	exposedField
	SFInt32
	l_sternoclavicular_rotate
	+I

	
	exposedField
	SFInt32
	r_sternoclavicular_rotate
	+I

	
	exposedField
	SFInt32
	l_acromioclavicular_abduct
	+I

	
	exposedField
	SFInt32
	r_acromioclavicular_abduct
	+I

	
	exposedField
	SFInt32
	l_acromioclavicular_rotate
	+I

	
	exposedField
	SFInt32
	r_acromioclavicular_rotate
	+I

	
	exposedField
	SFInt32
	l_shoulder_flexion
	+I

	
	exposedField
	SFInt32
	r_shoulder_flexion
	+I

	
	exposedField
	SFInt32
	l_shoulder_abduct
	+I

	
	exposedField
	SFInt32
	r_shoulder_abduct
	+I

	
	exposedField
	SFInt32
	l_shoulder_twisting
	+I

	
	exposedField
	SFInt32
	r_shoulder_twisting
	+I

	
	exposedField
	SFInt32
	l_elbow_flexion
	+I

	
	exposedField
	SFInt32
	r_elbow_flexion
	+I

	
	exposedField
	SFInt32
	l_elbow_twisting
	+I

	
	exposedField
	SFInt32
	r_elbow_twisting
	+I

	
	exposedField
	SFInt32
	l_wrist_flexion
	+I

	
	exposedField
	SFInt32
	r_wrist_flexion
	+I

	
	exposedField
	SFInt32
	l_wrist_pivot
	+I

	
	exposedField
	SFInt32
	r_wrist_pivot
	+I

	
	exposedField
	SFInt32
	l_wrist_twisting
	+I

	
	exposedField
	SFInt32
	r_wrist_twisting
	+I

	
	exposedField
	SFInt32
	skullbase_roll
	+I

	
	exposedField
	SFInt32
	skullbase_torsion
	+I

	
	exposedField
	SFInt32
	skullbase_tilt
	+I

	
	exposedField
	SFInt32
	vc1roll
	+I

	
	exposedField
	SFInt32
	vc1torsion
	+I

	
	exposedField
	SFInt32
	vc1tilt
	+I

	
	exposedField
	SFInt32
	vc2roll
	+I

	
	exposedField
	SFInt32
	vc2torsion
	+I

	
	exposedField
	SFInt32
	vc2tilt
	+I

	
	exposedField
	SFInt32
	vc3roll
	+I

	
	exposedField
	SFInt32
	vc3torsion
	+I

	
	exposedField
	SFInt32
	vc3tilt
	+I

	
	exposedField
	SFInt32
	vc4roll
	+I

	
	exposedField
	SFInt32
	vc4torsion
	+I

	
	exposedField
	SFInt32
	vc4tilt
	+I

	
	exposedField
	SFInt32
	vc5roll
	+I

	
	exposedField
	SFInt32
	vc5torsion
	+I

	
	exposedField
	SFInt32
	vc5tilt
	+I

	
	exposedField
	SFInt32
	vc6roll
	+I

	
	exposedField
	SFInt32
	vc6torsion
	+I

	
	exposedField
	SFInt32
	vc6tilt
	+I

	
	exposedField
	SFInt32
	vc7roll
	+I

	
	exposedField
	SFInt32
	vc7torsion
	+I

	
	exposedField
	SFInt32
	vc7tilt
	+I

	
	exposedField
	SFInt32
	vt1roll
	+I

	
	exposedField
	SFInt32
	vt1torsion
	+I

	
	exposedField
	SFInt32
	vt1tilt
	+I

	
	exposedField
	SFInt32
	vt2roll
	+I

	
	exposedField
	SFInt32
	vt2torsion
	+I

	
	exposedField
	SFInt32
	vt2tilt
	+I

	
	exposedField
	SFInt32
	vt3roll
	+I

	
	exposedField
	SFInt32
	vt3torsion
	+I

	
	exposedField
	SFInt32
	vt3tilt
	+I

	
	exposedField
	SFInt32
	vt4roll
	+I

	
	exposedField
	SFInt32
	vt4torsion
	+I

	
	exposedField
	SFInt32
	vt4tilt
	+I

	
	exposedField
	SFInt32
	vt5roll
	+I

	
	exposedField
	SFInt32
	vt5torsion
	+I

	
	exposedField
	SFInt32
	vt5tilt
	+I

	
	exposedField
	SFInt32
	vt6roll
	+I

	
	exposedField
	SFInt32
	vt6torsion
	+I

	
	exposedField
	SFInt32
	vt6tilt
	+I

	
	exposedField
	SFInt32
	vt7roll
	+I

	
	exposedField
	SFInt32
	vt7torsion
	+I

	
	exposedField
	SFInt32
	vt7tilt
	+I

	
	exposedField
	SFInt32
	vt8roll
	+I

	
	exposedField
	SFInt32
	vt8torsion
	+I

	
	exposedField
	SFInt32
	vt8tilt
	+I

	
	exposedField
	SFInt32
	vt9roll
	+I

	
	exposedField
	SFInt32
	vt9torsion
	+I

	
	exposedField
	SFInt32
	vt9tilt
	+I

	
	exposedField
	SFInt32
	vt10roll
	+I

	
	exposedField
	SFInt32
	vt10torsion
	+I

	
	exposedField
	SFInt32
	vt10tilt
	+I

	
	exposedField
	SFInt32
	vt11roll
	+I

	
	exposedField
	SFInt32
	vt11torsion
	+I

	
	exposedField
	SFInt32
	vt11tilt
	+I

	
	exposedField
	SFInt32
	vt12roll
	+I

	
	exposedField
	SFInt32
	vt12torsion
	+I

	
	exposedField
	SFInt32
	vt12tilt
	+I

	
	exposedField
	SFInt32
	vl1roll
	+I

	
	exposedField
	SFInt32
	vl1torsion
	+I

	
	exposedField
	SFInt32
	vl1tilt
	+I

	
	exposedField
	SFInt32
	vl2roll
	+I

	
	exposedField
	SFInt32
	vl2torsion
	+I

	
	exposedField
	SFInt32
	vl2tilt
	+I

	
	exposedField
	SFInt32
	vl3roll
	+I

	
	exposedField
	SFInt32
	vl3torsion
	+I

	
	exposedField
	SFInt32
	vl3tilt
	+I

	
	exposedField
	SFInt32
	vl4roll
	+I

	
	exposedField
	SFInt32
	vl4torsion
	+I

	
	exposedField
	SFInt32
	vl4tilt
	+I

	
	exposedField
	SFInt32
	vl5roll
	+I

	
	exposedField
	SFInt32
	vl5torsion
	+I

	
	exposedField
	SFInt32
	vl5tilt
	+I

	
	exposedField
	SFInt32
	l_pinky0_flexion
	+I

	
	exposedField
	SFInt32
	r_pinky0_flexion
	+I

	
	exposedField
	SFInt32
	l_pinky1_flexion
	+I

	
	exposedField
	SFInt32
	r_pinky1_flexion
	+I

	
	exposedField
	SFInt32
	l_pinky1_pivot
	+I

	
	exposedField
	SFInt32
	r_pinky1_pivot
	+I

	
	exposedField
	SFInt32
	l_pinky1_twisting
	+I

	
	exposedField
	SFInt32
	r_pinky1_twisting
	+I

	
	exposedField
	SFInt32
	l_pinky2_flexion
	+I

	
	exposedField
	SFInt32
	r_pinky2_flexion
	+I

	
	exposedField
	SFInt32
	l_pinky3_flexion
	+I

	
	exposedField
	SFInt32
	r_pinky3_flexion
	+I

	
	exposedField
	SFInt32
	l_ring0_flexion
	+I

	
	exposedField
	SFInt32
	r_ring0_flexion
	+I

	
	exposedField
	SFInt32
	l_ring1_flexion
	+I

	
	exposedField
	SFInt32
	r_ring1_flexion
	+I

	
	exposedField
	SFInt32
	l_ring1_pivot
	+I

	
	exposedField
	SFInt32
	r_ring1_pivot
	+I

	
	exposedField
	SFInt32
	l_ring1_twisting
	+I

	
	exposedField
	SFInt32
	r_ring1_twisting
	+I

	
	exposedField
	SFInt32
	l_ring2_flexion
	+I

	
	exposedField
	SFInt32
	r_ring2_flexion
	+I

	
	exposedField
	SFInt32
	l_ring3_flexion
	+I

	
	exposedField
	SFInt32
	r_ring3_flexion
	+I

	
	exposedField
	SFInt32
	l_middle0_flexion
	+I

	
	exposedField
	SFInt32
	r_middle0_flexion
	+I

	
	exposedField
	SFInt32
	l_middle1_flexion
	+I

	
	exposedField
	SFInt32
	r_middle1_flexion
	+I

	
	exposedField
	SFInt32
	l_middle1_pivot
	+I

	
	exposedField
	SFInt32
	r_middle1_pivot
	+I

	
	exposedField
	SFInt32
	l_middle1_twisting
	+I

	
	exposedField
	SFInt32
	r_middle1_twisting
	+I

	
	exposedField
	SFInt32
	l_middle2_flexion
	+I

	
	exposedField
	SFInt32
	r_middle2_flexion
	+I

	
	exposedField
	SFInt32
	l_middle3_flexion
	+I

	
	exposedField
	SFInt32
	r_middle3_flexion
	+I

	
	exposedField
	SFInt32
	l_index0_flexion
	+I

	
	exposedField
	SFInt32
	r_index0_flexion
	+I

	
	exposedField
	SFInt32
	l_index1_flexion
	+I

	
	exposedField
	SFInt32
	r_index1_flexion
	+I

	
	exposedField
	SFInt32
	l_index1_pivot
	+I

	
	exposedField
	SFInt32
	r_index1_pivot
	+I

	
	exposedField
	SFInt32
	l_index1_twisting
	+I

	
	exposedField
	SFInt32
	r_index1_twisting
	+I

	
	exposedField
	SFInt32
	l_index2_flexion
	+I

	
	exposedField
	SFInt32
	r_index2_flexion
	+I

	
	exposedField
	SFInt32
	l_index3_flexion
	+I

	
	exposedField
	SFInt32
	r_index3_flexion
	+I

	
	exposedField
	SFInt32
	l_thumb1_flexion
	+I

	
	exposedField
	SFInt32
	r_thumb1_flexion
	+I

	
	exposedField
	SFInt32
	l_thumb1_pivot
	+I

	
	exposedField
	SFInt32
	r_thumb1_pivot
	+I

	
	exposedField
	SFInt32
	l_thumb1_twisting
	+I

	
	exposedField
	SFInt32
	r_thumb1_twisting
	+I

	
	exposedField
	SFInt32
	l_thumb2_flexion
	+I

	
	exposedField
	SFInt32
	r_thumb2_flexion
	+I

	
	exposedField
	SFInt32
	l_thumb3_flexion
	+I

	
	exposedField
	SFInt32
	r_thumb3_flexion
	+I

	
	exposedField
	SFInt32
	humanoidRoot_tr_vertical
	+I

	
	exposedField
	SFInt32
	humanoidRoot_tr_lateral
	+I

	
	exposedField
	SFInt32
	humanoidRoot_tr_frontal
	+I

	
	exposedField
	SFInt32
	humanoidRoot_rt_body_turn
	+I

	
	exposedField
	SFInt32
	humanoidRoot_rt_body_roll
	+I

	
	exposedField
	SFInt32
	humanoidRoot_rt_body_tilt
	+I

	
	exposedField
	SFInt32
	extensionBap187
	+I

	
	exposedField
	SFInt32
	extensionBap188
	+I

	
	exposedField
	SFInt32
	extensionBap189
	+I

	
	exposedField
	SFInt32
	extensionBap190
	+I

	
	exposedField
	SFInt32
	extensionBap191
	+I

	
	exposedField
	SFInt32
	extensionBap192
	+I

	
	exposedField
	SFInt32
	extensionBap193
	+I

	
	exposedField
	SFInt32
	extensionBap194
	+I

	
	exposedField
	SFInt32
	extensionBap195
	+I

	
	exposedField
	SFInt32
	extensionBap196
	+I

	
	exposedField
	SFInt32
	extensionBap197
	+I

	
	exposedField
	SFInt32
	extensionBap198
	+I

	
	exposedField
	SFInt32
	extensionBap199
	+I

	
	exposedField
	SFInt32
	extensionBap200
	+I

	
	exposedField
	SFInt32
	extensionBap201
	+I

	
	exposedField
	SFInt32
	extensionBap202
	+I

	
	exposedField
	SFInt32
	extensionBap203
	+I

	
	exposedField
	SFInt32
	extensionBap204
	+I

	
	exposedField
	SFInt32
	extensionBap205
	+I

	
	exposedField
	SFInt32
	extensionBap206
	+I

	
	exposedField
	SFInt32
	extensionBap207
	+I

	
	exposedField
	SFInt32
	extensionBap208
	+I

	
	exposedField
	SFInt32
	extensionBap209
	+I

	
	exposedField
	SFInt32
	extensionBap210
	+I

	
	exposedField
	SFInt32
	extensionBap211
	+I

	
	exposedField
	SFInt32
	extensionBap212
	+I

	
	exposedField
	SFInt32
	extensionBap213
	+I

	
	exposedField
	SFInt32
	extensionBap214
	+I

	
	exposedField
	SFInt32
	extensionBap215
	+I

	
	exposedField
	SFInt32
	extensionBap216
	+I

	
	exposedField
	SFInt32
	extensionBap217
	+I

	
	exposedField
	SFInt32
	extensionBap218
	+I

	
	exposedField
	SFInt32
	extensionBap219
	+I

	
	exposedField
	SFInt32
	extensionBap220
	+I

	
	exposedField
	SFInt32
	extensionBap221
	+I

	
	exposedField
	SFInt32
	extensionBap222
	+I

	
	exposedField
	SFInt32
	extensionBap223
	+I

	
	exposedField
	SFInt32
	extensionBap224
	+I

	
	exposedField
	SFInt32
	extensionBap225
	+I

	
	exposedField
	SFInt32
	extensionBap226
	+I

	
	exposedField
	SFInt32
	extensionBap227
	+I

	
	exposedField
	SFInt32
	extensionBap228
	+I

	
	exposedField
	SFInt32
	extensionBap229
	+I

	
	exposedField
	SFInt32
	extensionBap230
	+I

	
	exposedField
	SFInt32
	extensionBap231
	+I

	
	exposedField
	SFInt32
	extensionBap232
	+I

	
	exposedField
	SFInt32
	extensionBap233
	+I

	
	exposedField
	SFInt32
	extensionBap234
	+I

	
	exposedField
	SFInt32
	extensionBap235
	+I

	
	exposedField
	SFInt32
	extensionBap236
	+I

	
	exposedField
	SFInt32
	extensionBap237
	+I

	
	exposedField
	SFInt32
	extensionBap238
	+I

	
	exposedField
	SFInt32
	extensionBap239
	+I

	
	exposedField
	SFInt32
	extensionBap240
	+I

	
	exposedField
	SFInt32
	extensionBap241
	+I

	
	exposedField
	SFInt32
	extensionBap242
	+I

	
	exposedField
	SFInt32
	extensionBap243
	+I

	
	exposedField
	SFInt32
	extensionBap244
	+I

	
	exposedField
	SFInt32
	extensionBap245
	+I

	
	exposedField
	SFInt32
	extensionBap246
	+I

	
	exposedField
	SFInt32
	extensionBap247
	+I

	
	exposedField
	SFInt32
	extensionBap248
	+I

	
	exposedField
	SFInt32
	extensionBap249
	+I

	
	exposedField
	SFInt32
	extensionBap250
	+I

	
	exposedField
	SFInt32
	extensionBap251
	+I

	
	exposedField
	SFInt32
	extensionBap252
	+I

	
	exposedField
	SFInt32
	extensionBap253
	+I

	
	exposedField
	SFInt32
	extensionBap254
	+I

	
	exposedField
	SFInt32
	extensionBap255
	+I

	
	exposedField
	SFInt32
	extensionBap256
	+I

	
	exposedField
	SFInt32
	extensionBap257
	+I

	
	exposedField
	SFInt32
	extensionBap258
	+I

	
	exposedField
	SFInt32
	extensionBap259
	+I

	
	exposedField
	SFInt32
	extensionBap260
	+I

	
	exposedField
	SFInt32
	extensionBap261
	+I

	
	exposedField
	SFInt32
	extensionBap262
	+I

	
	exposedField
	SFInt32
	extensionBap263
	+I

	
	exposedField
	SFInt32
	extensionBap264
	+I

	
	exposedField
	SFInt32
	extensionBap265
	+I

	
	exposedField
	SFInt32
	extensionBap266
	+I

	
	exposedField
	SFInt32
	extensionBap267
	+I

	
	exposedField
	SFInt32
	extensionBap268
	+I

	
	exposedField
	SFInt32
	extensionBap269
	+I

	
	exposedField
	SFInt32
	extensionBap270
	+I

	
	exposedField
	SFInt32
	extensionBap271
	+I

	
	exposedField
	SFInt32
	extensionBap272
	+I

	
	exposedField
	SFInt32
	extensionBap273
	+I

	
	exposedField
	SFInt32
	extensionBap274
	+I

	
	exposedField
	SFInt32
	extensionBap275
	+I

	
	exposedField
	SFInt32
	extensionBap276
	+I

	
	exposedField
	SFInt32
	extensionBap277
	+I

	
	exposedField
	SFInt32
	extensionBap278
	+I

	
	exposedField
	SFInt32
	extensionBap279
	+I

	
	exposedField
	SFInt32
	extensionBap280
	+I

	
	exposedField
	SFInt32
	extensionBap281
	+I

	
	exposedField
	SFInt32
	extensionBap282
	+I

	
	exposedField
	SFInt32
	extensionBap283
	+I

	
	exposedField
	SFInt32
	extensionBap284
	+I

	
	exposedField
	SFInt32
	extensionBap285
	+I

	
	exposedField
	SFInt32
	extensionBap286
	+I

	
	exposedField
	SFInt32
	extensionBap287
	+I

	
	exposedField
	SFInt32
	extensionBap288
	+I

	
	exposedField
	SFInt32
	extensionBap289
	+I

	
	exposedField
	SFInt32
	extensionBap290
	+I

	
	exposedField
	SFInt32
	extensionBap291
	+I

	
	exposedField
	SFInt32
	extensionBap292
	+I

	
	exposedField
	SFInt32
	extensionBap293
	+I

	
	exposedField
	SFInt32
	extensionBap294
	+I

	
	exposedField
	SFInt32
	extensionBap295
	+I

	
	exposedField
	SFInt32
	extensionBap296
	+I

}
NOTE - For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.19.2 Functionality and semantics

BAP defines the current look of the body by means of body animation parameters. The semantics of the fields of BAP is described in Annex C of ISO/IEC 14496-2: 2004.

7.8.2.20 BDP

7.8.2.20.1 Semantic Table

BDP {

	
	exposedField
	MFNode
	bodySceneGraph
	[]

	
	exposedField
	MFNode
	bodyDefTables
	[]

	
	exposedField
	MFNode
	bodySegmentConnectionHint
	[]

}

NOTE - For the binary encoding of this node see node coding tables in electronic attachment.
7.8.2.20.2 Funcionality and semantics

The BDP node is used to customize the proprietary body model of the decoder to a particular body, or to download a body model along with the information of how to animate it. The Body Definition Parameters (BDPs) are normally transmitted once per session, followed by a stream of coded Body Animation Parameters (BAPs). It is also possible to transmit BDPs more than once per session. If the decoder does not receive the BDPs, the use of a default model ensures that it can still interpret the FBA stream containing BAPs. This insures minimal operation in broadcast or teleconferencing applications.

BDPs specify the following properties:

1. Body surface geometry (with texture coordinates if texture is used)

· The body surface geometry is downloaded using the BIFS stream. The body geometry surfaces are specified using the BIFS Segment PROTO definitions as defined In subclause 8.9.
2. Joint center locations.

· The positions of the joints are specified using the BIFS Joint PROTO definitions.

· Texture images as part of the BIFS Segment definitions.

3. Deformation tables, that describe how to deform the body surfaces using the received BAPs.

The scene graph or a body definition is strongly based on ISO/IEC 14772-1 Amendment 1. The texture images can be defined for each surface. Note that the texture images are part of the PROTO SEGMENT geometry, defined in 8.9
.

The following are the basic assumptions about BDP:

1. Default posture to initialize a human body model.

· Standing posture: This posture is defined as follows: the feet should point to the front direction, the two arms should be placed on the side of the body with the palm of the hands facing inward. This posture also implies that all BAPs have value zero (see ISO/IEC 14496-2:2004).

2. Establishing the coordinate system.

The origin of the body coordinate system is located at ground (y=0) level, between the humanoid's feet, with the lateral and frontal position the same as spine origin (l5tilt). The orientation of the coordinate is x points to the left, y points up, and z points to the front of the humanoid. The BDP node defines the body model to be used at the receiver. Two options are supported:

· The bodyDefTables is [], the body scene graph is downloaded, in which case the proprietary body of the decoder has to be replaced by the downloaded graph. The bodySceneGraph field has to be in the syntax described in 8.9
.

· The bodyDefTables is different from [], in which case the decoder has to replace its local model by the downloaded graph. The bodySceneGraph field has to be in the format, as described below. The bodyDefTables field defines how the IndexedFaceSet child of bodySceneGraph Segment Node is modified based on sets of BAPs. By means of bodyDefTables, the skin or clothes surface geometry of the model can be deformed. The bodyDefTables field is defined below.

bodyDefTables defines the behavior of the deformation of the body based on BAP values. See 7.2.2.25.

bodySceneGraph defines the joint center, default geometry, and texture of the body. See 8.9
.

bodySegmentConnectionHint contains a BodySegmentConnectionHint node (see 7.2.2.26).

7.8.2.21 Billboard

7.8.2.21.1 Node interface

Billboard {

	
	eventIn
	MFNode
	addChildren
	

	
	eventIn
	MFNode
	removeChildren
	

	
	exposedField
	SFVec3f
	axisOfRotation
	0, 1, 0

	
	exposedField
	MFNode
	children
	[]

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.21.2 Functionality and semantics

The semantics of the Billboard node are specified in ISO/IEC 14772-1:1998, subclause 6.6. ISO/IEC 14496-1 does not support the bounding box parameters (bboxCenter and bboxSize).

7.8.2.22 Bitmap

7.8.2.22.1 Node interface

Bitmap {

	
	exposedField
	SFVec2f
	scale
	-1, -1

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.22.2 Functionality and semantics

Bitmap is a geometry node centered at (0,0) in the local coordinate system, to be placed in the geometry field of a Shape node. It is a screen-aligned rectangle, which means that the surface normal of this rectangle will always be in the same direction as the screen surface normal, namely straight out to the viewer. It is for example not possible to view the Bitmap under an angle from the side. Bitmap has the dimensions of the texture that is mapped onto it, as specified in the Appearance node of its parent Shape node. However, the effective geometry of Bitmap is defined by the non-transparent pixels of the image or video that is mapped onto it. When no scaling is specified, a trivial texture-mapping (pixel copying) is performed.

The scale field specifies a scaling of the geometry in the x and y dimensions, respectively. The scale values shall be strictly positive or equal to -1. A scale value of -1 indicates that no scaling shall be applied in the relevant dimension. The special case where both scale dimensions are -1 indicates that the natural dimensions of the texture that is mapped onto the Bitmap shall be used.

Bitmap shall not be rotated but may be subject to translation.

Geometry sensors shall respond to the effective geometry of the Bitmap, which is defined by the non-transparent pixels of the texture that is mapped onto it.

If a Material or Material2D node is specified in the appearance of the parent Shape of a Bitmap, the final transparency of each pixel is given by the Material or Material2D transparency multiplied by the transparency (1-alpha) value of each pixel of the texture. If the texture has no alpha plane then the final transparency of each pixel is purely given by Material or Material2D transparency (as if the texture had an alpha value of 0).
Example (To specify semi-transparent video:

Shape {

appearance Appearance {

texture MovieTexture { // Visual object

…

}

material Material2D {

transparency 0.5 // semi-transparent

}

}

geometry Bitmap {}

}

7.8.2.23 BitWrapper

7.8.2.23.1 Node interface

BitWrapper {

	
	field
	SFNode
	node
	NULL

	
	field
	SFInt32
	type
	0

	
	field
	MFString
	url
	[]

	
	field
	SFString
	buffer
	“”

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.23.2 Functionality and semantics

A node may have a dedicated node compression scheme. This compressed representation may be carried in the BIFS stream or in a separate stream.

The node field contains the node that has a compressed representation. The BitWrapper node can be used in lieu and place of the node it wraps. The type field is used in the buffer mode of bitwrapper. It makes the distinction between different decoding methods for the same node. The value of the type field is specified by each tool using the bitwrapper mechanism.
The compressed representation is carried either in a separate stream or within the scene stream. The url field indicates the stream that contains the compressed representation and the buffer field contains the compressed representation when carried within the scene.
When the compressed representation is carried in separate streams by using url field, node decoders must be configured. In the object descriptor stream, a node decoder is indicated in the DecoderConfig descriptor for streamType 0x03, objectTypeIndication 0x05, and code defined in AFX object code table of ISO/IEC 14496-1. The decoder is configured with a AFXConfig descriptor
Note that buffer is an array of 8-bit values. It shall not be interpreted as a UTF-8 string. For in-band scenario, compressed media stream is transmitted within a scene description stream through buffer field as shown in Figure 12 (a). For out-band scenario, compressed media stream is transmitted outside scene description stream through url field in Figure 12 (b). It is used when the specific node requires upstream to send a specific information to a server.

[image: image23.emf]Scene Description Stream

BIFS Command Frame

Bitwrapper {

node PositionInterpolator {…}

type 0

buffer “sdfssdddf…”

}

Scene Description Stream

BIFS Command Frame

Bitwrapper {

node PositionInterpolator {…}

type 0

buffer “sdfssdddf…”

}

(a)

[image: image24.emf]Scene Description Stream

Object Descriptor Stream

Elementary Stream To Server

Elementary Stream From Server

BIFS Command Frame

Object Descriptor Command

Object Descriptor{

ID 1

ES_Descriptor_down

ES_Descriptor_up

}

Object Descriptor{

ID 1

ES_Descriptor_down

ES_Descriptor_up

}

ES_ID

Bitwrapper {

node PositionInterpolator {…}

type 0

url “od:1”

}

ES_ID

(b)

Figure 12 — Two scenarios of the carriage of the node associated bitstream by a generic BIFS stream using BitWapper; (a) in-band case, (b) out-band case

EXAMPLE 1
BitWrapper for behavioral nodes

Stream 10 contains the compressed representation of MyInterp's PositionInterpolator node.

BitWrapper {

node
DEF MyInterp PositionInterpolator {}

url
"od:10"

}

EXAMPLE 2
BitWrapper used in lieu and place as the node it wraps, e.g. a geometry node here.

Shape {

geometry BitWrapper {

node MeshGrid { … }

url "od:10"

}

}

EXAMPLE 3
Separation of concerns: BitWrapper updates a node defined in the scene.

Shape {

geometry DEF MyNode MeshGrid { … }

}

…

BitWrapper {

node USE MyNode

url "od:10"

}

7.8.2.24 Body

7.8.2.24.1 Node interface

Body {

	
	exposedField
	SFNode
	bdp
	NULL

	
	exposedField
	SFNode
	bap
	NULL

	
	exposedField
	MFNode
	renderedBody
	[]

}

NOTE - For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.24.2 Functionality and semantics

The Body node organizes definition and animation of a body. The bap field shall be always specified. Defining the particular look of a body by means of downloading the position of joint centers or an entire model is optional. If the bdp field is NULL, i.e., the BDP node is not specified, the default body model of the decoder is used.

bdp contains a BDP node.

bap contains a BAP node.
renderedBody
is the scene graph of the body after it is rendered (all BAP parameters are applied).

If the bdp field of the Body node is [] and the Body node is a child of a Group node that only has one Face and one Body node, then the Body node is associated to that Face node.

7.8.2.25 BodyDefTable

7.8.2.25.1 Node interface

BodyDefTable {

	
	exposedField
	SFString
	bodySceneGraphNodeName
	NULL

	
	exposedField
	MFInt32
	bapIDs
	[]

	
	exposedField
	MFInt32
	vertexIds
	[]

	
	exposedField
	MFInt32
	bapCombinations
	[]

	
	exposedField
	MFVec3f
	displacements
	[]

	
	exposedField
	SFInt32
	numInterpolateKeys
	2

}

NOTE - For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.25.2 Functionality and semantics

Defines the behavior of body animation parameters (BAPs) on a downloaded bodySceneGraph by specifying displacement vectors of moved vertices inside IndexedFaceSet objects as a function of a combination of BAPs. The listed vertices typically represent the deformable body skin surface, or clothe animation for the body.

The BodyDefTable node is transmitted directly after the BIFS bitstream of the BDP node. There is no limit on the number of BodyDefTable nodes transmitted for one body. A vertex can be listed on more than one BodyDefTable nodes. A BAP can be listed on more than one BodyDefTable nodes. In this case, the displacements of the same vertex from various BodyDefTable nodes are added to obtain resulting displacement.

Each BodyDefTable node contains a list of BAPs, and a list of vertices in the bodySceneGraph that are normally affected by these BAPs (for example, the upper and lower arm skin vertices are affected by the elbow joints).
Detailed semantics:

Contains a BodySegmentConnectionHint node contains the name of the segment containing an IndexedFaceSet node for which the deformation is defined. This node shall be part of the bodySceneGraph as defined in the BDP node. This node will be contained in the children field of the Segment node.

bapIDs contains the BAP indices, for which the deformation behavior is defined in the bodySceneGraphNodeName field. (Any number of BAPs can be listed in this field). The BAP Ids are defined in the Visual FPDAM1. The values between [1-186] denote the standard BAPs, the values [187-296] denote the user-defined. Other values are undefined.

vertexIDs contains a list of indices into the Coordinate node of the IndexedFaceSet node specified by the child of node with name bodySceneGraphNodeName.

bapCombinations contains a list of interval borders for BAP values, i.e. a list of possible BAP combinations, for the BAPs listed in the bapIDs field. The number of values in this field shall be an integer multiple of BAP indices as given in the bapIDs field. The entries shall be ordered as follows: first, the BAP combinations with the first listed BAP having lowest values are listed. If there are more than one entry with the same value for the first BAP, the entries are sorted considering the second listed BAP, etc.

displacements is a list of vectors; for each vertex indexed in the vertexIDs field, the displacement vectors are given for the BAP combinations defined in the bapCombinations field. There must be exactly (num(VertexIDs)*num(bapCombinations)/num(bapIDs)) values in this field.

numInterpolateKeys is the number of BAP keys for interpolation, as defined below. The allowed values are 1-5.

In most cases, the list of BAPs in the bapIDs field will be the related BAPs (for example, the shoulder BAPs will typically be listed in the same BodyDefTable node). During animation, when the decoder receives a list of BAPs, which affects one or more IndexedFaceSets of the body model, it finds the associated BAP combination entries in the BodyDefTable nodes, and displaces the vertices from the original surface, with the vector specified by the displacement field.

Example:

BodyDefTable {

bodySceneGraphNodeName

“l_forearm”

bapIDs

[38, 40]

vertexIds

[50, 51, 52]

bapCombinations
[0, 0, 0, 100, 0, 200,

100, 0, 100, 100, 100, 200,

200, 0, 200, 100, 200, 200]

displacements

[1 0 0,0.9 0 0,5.0 0.1 0.1,

0 0.3 0.3,0.4 0 0,5.0 0 0.1,

0.5 0.6 0,0.9 0 0,5 0.7 0.1]

}
This BodyDefTable node defines the deformation of the forearm based on the combination of l_elbow_flexion and l_elbow_twisting BAPs. The vertices with indices 50,51,52 on surface l_forearm are deformed. The displacements for vertex 50 are: (1 0 0), (0 0.3 0.3) and (0.5 0.6 0) for the BAP l_elbow_flexion and l_elbow_twisting combinations (0 0) (0 100) (0 200), respectively.

The number of entries in the displacements field is calculated as:

Ndisplacements = NbapCombinations * NvertexIds

where Nm represents the number of entries in node m.

NbapCombinations = O(NbapIDs , Nkey_postures)

Any number of BAPs can be listed in one table, and a number of BodyDefTable nodes can be used for the same bodySceneGraphNodeName.

Interpolation

When the current BAP set for one frame does not contain the bapCombinations as listed in the BodyDefTable node, the entries in this node need to be interpolated to obtain the deformations. (For example, let the deformation of the right forearm be defined by BAPs 39 and 41 (right_elbow_flexion and right_elbow_twisting). Let the bapCombination entries in the table be (0,0), (0,10000), (10000,0). Then, when a BAP39-BAP41 combination of (5000,5000) is received, the displacements for the frame should be interpolated from the listed BAP values.)

Given several BAP keys P1, P2, P3,...,Pn computing linear interpolation at BAP point P. n represents the numInterpolateKeys field in the BodyDefTable node.

Let d1, d2, d3...dn be respective distances from P to keys.

Let v1, v2, v3,..vn be tabular displacement values of a vertex at the keys.

For any key Pi, the deformation contributed by Pi should be inversely proportional to distance di from point P. Let this proportionality factor be fi.

Thus DEFi (deformation due to Pi) = fi*vi
DEF (Total deformation at P) = f1*v1 + f2*v2 + ...+ fn*vn
With the condition that f1 + f2 + ...+fn = 1.0

computing fi is obtained in the following way:

Let total distance D = d1 + d2 + ...+ dn
fi = (1 - di/D)/(n-1)

calculation:

First compute DIRECT proportionality factors ti
t1 = d1/D, t2 = d2/D,...,tn = dn/D
Now t1 + t2 + ...+ tn = 1.0

If we take deformation contribution by Pi as DEFi = tivi

then keys closest to point p contribute least. To have the opposite effect we get inverse proportionality by replacing ti s

ti <-- (1 - ti) <-- (1 - di/D)

t1 <-- 1 -d1/D, t2 <- 1 - d2/D, ... tn <- 1 -dn/D
But now

t1 + t2 + ...+tn = n - 1

To make right hand side 1.0, we divide by n-1. Thus the final factor fi
fi = ti/(n-1) = (1-di/D)/(n-1)

Note that the default body posture is defined where all BAPs are 0 and the displacements are 0. This default posture shall not be used as a BAP combinations entry for interpolation, unless it is defined explicitly as BAP combinations in the BodyDefTable.

7.8.2.26 BodySegmentConnectionHint

7.8.2.26.1 Node Interface

BodySegmentConnectionHint {

	
	exposedField
	SFString
	firstSegmentNodeName
	NULL

	
	exposedField
	SFString
	secondSegmentNodeName
	NULL

	
	exposedField
	MFInt32
	firstVertexIdList
	[]

	
	exposedField
	MFInt32
	secondVertexIdList
	[]

}

NOTE - For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.26.2 Functionality and semantics

Defines the connection information of segments as a hint for maintaining connected surfaces. Typically, two segments connected by a joint might require listing corresponding vertices in both segments, as a hint to the BodyDefTable interpreter to remove holes.

The BodySegmentConnectionHint node is transmitted after the BIFS bitstream of BDP and BodyDefTable nodes. There is no limit on the number of BodySegmentConnectionHint nodes transmitted for one body. This node is a hint to the BDP interpreter; it is not required to use this node.

Each BodySegmentConnectionHint node contains two segments, a list of vertex ids in the two segments that need to be connected to each other for smooth rendering (for example, vertices near the elbow joint can be listed).

Detailed Semantics:

firstSegmentNodeName is the name of the segment containing the first IndexedFaceSet node. This node shall be part of the bodySceneGraph as defined in the BDP node. This node will be contained in the children field of the Segment node.

secondSegmentNodeName is the name of the segment containing the second IndexedFaceSet node. This node shall be part of the bodySceneGraph as defined in the BDP node. This node will be contained in the children field of Segment node.
firstVertexIdList is a list of indices into the Coordinate node of the first IndexedFaceSet node specified by firstSegmentNodeName.

secondVertexIdList is a list of indices into the Coordinate node of the second IndexedFaceSet node specified by secondSegmentNodeName.

The number of entries in firstVertexIdList and secondVertexIdList fields has to be the same. The corresponding vertex ids should be in the same sequence in both fields.

During animation, when the decoder displaces vertices from the original surfaces based on the vectors specified by BodyDefTable nodes, it can use the BodySegmentConnectionHint node to connect the two surfaces. If two corresponding vertices are not displaced with the same amount due to different BodyDefTable displacement values or due to numerical error, then the decoder can take the average displacement of two corresponding vertices.

7.8.2.27 Box

7.8.2.27.1 Node interface

Box {

	
	field
	SFVec3f
	size
	2, 2, 2

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.27.2 Functionality and semantics

The semantics of the Box node are specified in ISO/IEC 14772-1:1998, subclause 6.7.
7.8.2.28 CacheTexture

7.8.2.28.1 Node interface
CacheTexture {

	
	Field
	SFInt32
	objectTypeIndication
	0

	
	Field
	SFString
	decoderSpecificInfo
	NULL

	
	Field
	SFString
	image
	NULL

	
	Field
	SFString
	cacheURL
	NULL

	
	Field
	MFURL
	cacheOD
	[]

	
	Field
	SFInt32
	expirationDate
	0

	
	Field
	SFBool
	repeatS
	TRUE

	
	Field
	SFBool
	repeatT
	TRUE

}

NOTE
For the binary encoding of this node see node coding tables in electronic attachment.
7.8.2.28.2 Functionality and semantics

The CacheTexture allows carriage of visual data embedded inside the BIFS stream rather than using the OD framework. The objectTypeIndication field identifies the media type of the visual data. The compressed data is carried in the image field, as a single access unit. If a decoder configuration is needed, it may be carried in the decoderSpecificInfo field. The node can be used as a texture object in an Appearance node. The node can also be used in as a child node of a 2D or 3D container when it is only used for image caching. Additionally, the CacheTexture node allows for caching the embedded image by specifying a cacheURL name to be referred to by other nodes in the scene, as well as an expirationDate indicating the time in seconds the terminal should keep the data in its cache. If expirationDate is 0, the data shall not be cached. If expirationDate is strictly negative, the data should be cached for as long as possible. In any case, whether the data is cached or not is implementation specific.

The cacheOD field identifies an existing OD in the scene to be cached with the given cacheName and expirationDate. If cacheOD is set, image, decoderSpecificInfo and objectTypeIndication shall be ignored. Results are undefined if the OD indicated by the cacheOD is not a still image object such as JPEG or PNG.

The scoping of the CacheTexture node shall be done at the service level (same broadcast channel or same service URL of the initial scene). Sub-scenes opened through inline nodes are part of the same caching scope as the parent scene.

Example of cache usage

Shape {

 appearance Appearance {

 texture ImageTexture {

 url "some_cache_url_name"

 }

 }

}

...

CacheTexture {

 objectTypeIndication 0x6D

 image ...

 cacheURL "some_cache_url_name"

 expirationDate 3600
//one hour caching

}
7.8.2.29 Circle

7.8.2.29.1 Node interface

Circle {

	
	exposedField
	SFFloat
	radius
	1.0

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.29.2 Functionality and semantics

This node specifies a circle centred at (0,0) in the local coordinate system. The radius field specifies the radius of the circle and shall be greater than 0. The default texture mapping coordinates are defined as the four corners of the bounding box of the circle.
7.8.2.30 Clipper2D

7.8.2.30.1 Node interface

Clipper2D {

	
	eventIn
	MFNode
	addChildren
	

	
	eventIn
	MFNode
	removeChildren
	

	
	exposedField
	MFNode
	children
	[]

	
	exposedField
	SFNode
	geometry
	NULL

	
	exposedField
	SFBool
	inside
	TRUE

	
	exposedField
	SFNode
	transform
	NULL

	
	exposedField
	SFBool
	XOR
	FALSE

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.30.2 Functionality and semantics

The Clipper2D node is a 2D grouping node that defines a free-form 2D rendering area for its children nodes. If another Clipper2D node is found in its children, children of that second clipper shall be clipped/cut using the combination of both clipping geometries, as indicated by the inside and XOR fields of both clippers.

The geometry field specifies a 2D graphical primitive to be used as the clipper shape. All 2D graphical primitives are allowed except Bitmap, PointSet2D and IndexedLineSet2D. If the geometry defines an open shape (for instance, Curve2D), the shape shall be ignored. If the geometry is NULL, children nodes are completely drawn if the inside field is FALSE, otherwise children are not drawn.

The inside field specifies whether the node shall perform a clipping operation or a cut operation. If its value is TRUE, the inside of the clipping geometry is drawn. If it is FALSE, the outside of the clipping geometry is drawn.

The transform field specifies a 2D transformation node (Transform2D or TransformMatrix2D). This node shall have no child, and is used to assign a 2D transformation to the geometry of the Clipper2D node.

The XOR field specifies whether union or intersection of this clipper with its parent clipper is made using a XOR operation or not. The XOR field is used only if this clipper and its parent clipper have the same value for the inside field, otherwise it is ignored.

Example of clipper cascade:

Let’s draw the following scene (pixel metrics, scene size 100x100):

OrderedGroup {

 children [

 Background2D {backColor 1 1 1}

 DEF Clip1 Clipper2D {

 geometry rectangle { size 75 25}

 children [

 DEF Clip2 Clipper2D {

 geometry Circle { radius 25 }

 children [

 Shape {

 appearance Appearance {

 material Material2D {

 emissiveColor 0 0 0

 filled TRUE

 }

 }

 geometry Rectangle { size 100 100 }

 }

]

 }

]

 }

]

}

Figure 13 shows the result of the preceding scene with different inside and XOR fields for both clippers.

Figure 13 — Usage of the Clipper2D Node[image: image397.wmf]Title:

/tmp/TIFF2EPS/BOCQUETD.iso.ch/bocquet/Logo0014c.tif

Creator:

tiff2ps

Preview:

This EPS picture was not saved

with a preview included in it.

Comment:

This EPS picture will print to a

PostScript printer, but not to

other types of printers.

7.8.2.31 Collision

7.8.2.31.1 Node interface

Collision {

	
	eventIn
	MFNode
	addChildren
	

	
	eventIn
	MFNode
	removeChildren
	

	
	exposedField
	MFNode
	children
	[]

	
	exposedField
	SFBool
	collide
	TRUE

	
	field
	SFNode
	proxy
	NULL

	
	eventOut
	SFTime
	collideTime
	

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.31.2 Functionality and semantics

The semantics of the Collision node are specified in ISO/IEC 14772-1:1998, subclause 6.8. ISO/IEC 14496-1 does not support the bounding box parameters (bboxCenter and bboxSize).

7.8.2.32 Color

7.8.2.32.1 Node interface

Color {

	
	exposedField
	MFColor
	color
	[]

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.32.2 Functionality and semantics

The semantics of the Color node are specified in ISO/IEC 14772-1:1998, subclause 6.9.

7.8.2.33 ColorInterpolator

7.8.2.33.1 Node interface

ColorInterpolator {

	
	eventIn
	SFFloat
	set_fraction
	

	
	exposedField
	MFFloat
	key
	[]

	
	exposedField
	MFColor
	keyValue
	[]

	
	eventOut
	SFColor
	value_changed
	

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.33.2 Functionality and semantics

The semantics of the ColorInterpolator node are specified in ISO/IEC 14772-1:1998, subclause 6.10.

7.8.2.34 ColorTransform

7.8.2.34.1 Node interface

ColorTransform {

	
	eventIn
	MFNode
	addChildren
	

	
	eventIn
	MFNode
	removeChildren
	

	
	exposedField
	MFNode
	children
	[]

	
	exposedField
	SFFloat
	mrr
	1

	
	exposedField
	SFFloat
	mrg
	0

	
	exposedField
	SFFloat
	mrb
	0

	
	exposedField
	SFFloat
	mra
	0

	
	exposedField
	SFFloat
	tr
	0

	
	exposedField
	SFFloat
	mgr
	0

	
	exposedField
	SFFloat
	mgg
	1

	
	exposedField
	SFFloat
	mgb
	0

	
	exposedField
	SFFloat
	mga
	0

	
	exposedField
	SFFloat
	tg
	0

	
	exposedField
	SFFloat
	mbr
	0

	
	exposedField
	SFFloat
	mbg
	0

	
	exposedField
	SFFloat
	mbb
	1

	
	exposedField
	SFFloat
	mba
	0

	
	exposedField
	SFFloat
	tb
	0

	
	exposedField
	SFFloat
	mar
	0

	
	exposedField
	SFFloat
	mag
	0

	
	exposedField
	SFFloat
	mab
	0

	
	exposedField
	SFFloat
	maa
	1

	
	exposedField
	SFFloat
	ta
	0

}

NOTE - For the binary encoding of this node see node coding tables in electronic attachment.
7.8.2.34.2 Functionality and semantics

The ColorTransform node is a grouping node that defines a color space transformation for any Color field of its children in the RGBA space. See ISO/IEC 14772-1:1998 for a description of the children, addChildren, and removeChildren fields and eventIns.

The m* and t* fields define a color transformation in RGBA intensity space (each component varying between 0.0 and 1.0) based on the following transformation matrix:

[image: image25.wmf]÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

è

æ

=

1

0

0

0

0

t

m

m

m

m

t

m

m

m

m

t

m

m

m

m

t

m

m

m

m

a

aa

ab

ag

ar

b

ba

bb

bg

br

g

ga

gb

gg

gr

r

ra

rb

rg

rr

T

Given an RGBA color C and a ColorTransform node, C is transformed into point C' the transformation whose matrix is T.

C' = T × C

Colors defined with an SFColor are converted to RGBA by using the related transparency (see Material, Material2D and XLineProperties) information, with A = 1.0 – transparency, or the related opacity information (see RadialGradient, LinearGradient) with A = opacity.

7.8.2.35 CompositeTexture2D

7.8.2.35.1 Node interface

CompositeTexture2D {

	
	eventIn
	MFNode
	addChildren
	

	
	eventIn
	MFNode
	removeChildren
	

	
	exposedField
	MFNode
	children
	[]

	
	exposedField
	SFInt32
	pixelWidth
	-1

	
	exposedField
	SFInt32
	pixelHeight
	-1

	
	exposedField
	SFNode
	background
	NULL

	
	exposedField
	SFNode
	viewport
	NULL

	
	field
	SFInt32
	repeatSandT
	3

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.35.2 Functionality and semantics

The CompositeTexture2D node represents a texture that is composed of a 2D scene, which may be mapped onto another object.

This node may only be used as the texture field of an Appearance node. All behaviors and user interaction are enabled when using a CompositeTexture2D.

The addChildren eventIn specifies a list of nodes that shall be added to the children field.

The removeChildren eventIn specifies a list of nodes that shall be removed from the children field.

The children field contains a list of 2D children nodes that define the 2D scene that is to form the texture map.

The pixelWidth and pixelHeight fields specify the ideal size in pixels of this map. The default values result in an undefined size being used. This is a hint for the content creator to define the quality of the texture mapping.

The semantics of the background and viewport fields are identical to the semantics of the Layer2D (see 7.2.2.72) fields of the same name.

The meaning of the field repeatSandT is the meaning of the combined repeatS and repeatT of the ImageTexture node. The value 0 is equivalent to repeatS = false, repeatT = false. The value 1 is equivalent to repeatS = true, repeatT = false. The value 2 is equivalent to repeatS = false, repeatT = true. The value 3 is equivalent to repeatS = true, repeatT = true.

Value (-1, -1) for the couple of fields (pixelWidth, pixelHeight) should not be used by authors since it does not give any hint on what should be the size of the off-screen surface allocated for the texture. Although these are exposedFields they should not be dynamically modified since they represent the physical size of the off-screen surface used for compositing.

[image: image26.wmf]
Figure 14 — A CompositeTexture2D example. The 2D scene is projcted onto the 3D cube.

[image: image27.wmf](0,1,0)

(1,1,0)

Z

Y

X

(1,0,0)

Figure 15 — A CompositeTexture2D example.

Here the 2D scene as defined in Figure 14 composed of an image, a logo, and a text, is textured on a rectangle n in the local X,Y plane of the back wall. A similar effect may be obtained by simply placing the 2D objects in the (3D) Transform. However, CompositeTexture2D and CompositeTexture3D shall be used when maping onto non-flat geometries.

7.8.2.36 CompositeTexture3D

7.8.2.36.1 Node interface

CompositeTexture3D {

	
	eventIn
	MFNode
	addChildren
	

	
	eventIn
	MFNode
	removeChildren
	

	
	exposedField
	MFNode
	children
	[]

	
	exposedField
	SFInt32
	pixelWidth
	-1

	
	exposedField
	SFInt32
	pixelHeight
	-1

	
	exposedField
	SFNode
	background
	

	
	exposedField
	SFNode
	fog
	

	
	exposedField
	SFNode
	navigationInfo
	

	
	exposedField
	SFNode
	viewpoint
	

	
	field
	SFBool
	repeatS
	TRUE

	
	field
	SFBool
	repeatT
	TRUE

	
	eventIn
	MFNode
	addChildren
	

	
	eventIn
	MFNode
	removeChildren
	

	
	exposedField
	MFNode
	children
	[]

	
	exposedField
	SFInt32
	pixelWidth
	-1

	
	exposedField
	SFInt32
	pixelHeight
	-1

	
	exposedField
	SFNode
	background
	

	
	exposedField
	SFNode
	fog
	

	
	exposedField
	SFNode
	navigationInfo
	

	
	exposedField
	SFNode
	viewpoint
	

	
	field
	SFInt32
	repeatSandT
	3

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.36.2 Functionality and semantics

The CompositeTexture3D node represents a texture mapped onto a 3D object that is composed of a 3D scene.

Behaviors and user interaction are enabled when using a CompositeTexture3D. However, the standard user navigation on the textured scene is disabled. Instead, sensors contained in the scene which forms the CompositeTexture3D may be used to define behaviours. This node may only be used as a texture field of an Appearance node.

The addChildren eventIn specifies a list of nodes that shall be added to the children field.

The removeChildren eventIn specifies a list of nodes that shall be removed from the children field.

The children field is the list of 3D children nodes that define the 3D scene that forms the texture map.

The pixelWidth and pixelHeight fields specify the ideal size in pixels of this map. The default values result in an undefined size being used. This is a hint for the content creator to define the quality of the texture mapping.

The background, fog, navigationInfo and viewpoint fields represent the current values of the bindable children nodes used in the 3D scene. This node may only be used as the texture field of an Appearance node. All behaviors and user interaction are enabled when using a CompositeTexture2D.

The semantics of the field repeatSandT is the same as those of the same field of the CompositeTexture2D node.

[image: image28.wmf]
Figure 16 — CompositeTexture3D example. The 3D view of the earth is projected onto the 3D cube

7.8.2.37 Conditional

7.8.2.37.1 Node interface

Conditional {

	
	eventIn
	SFBool
	activate
	

	
	eventIn
	SFBool
	reverseActivate
	

	
	exposedField
	SFString
	buffer
	""

	
	eventOut
	SFBool
	isActive
	

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.37.2 Functionality and semantics

The Conditional node interprets a buffered bit string of BIFS-Commands when it is activated. This allows events to trigger node updates, deletions, and other modifications to the scene. The buffered bit string is interpreted as if it had just been received.

Upon reception of either an SFBool event of value TRUE on the activate eventIn, or an SFBool event of value FALSE on the reverseActivate eventIn, the contents of the buffer field shall be interpreted as a BIFS CommandFrame (see 8.6.2). These updates are not time-stamped; they are executed at the time of the event, assuming a zero-decoding time.

The isActive eventOut field sends out a TRUE event just before the BIFS command(s) in the buffer are executed. The command(s) are then executed, and then isActive sends out a FALSE event. Since the complete execution of the BIFS command(s) in the buffer happens within one time stamp, implementations shall ensure that the isActive TRUE event is propagated before the FALSE event is sent out.

NOTE — The propagation of the isActive TRUE and FALSE events allows the creation of an execution chain of Conditional nodes by routing the isActive event of a Conditional to the reverseActivate field of the next one in the chain.

EXAMPLE (A typical use of this node is for the implementation of the action of a button. The button geometry is enclosed in a grouping node which also contains a TouchSensor node. The isActive eventOut of the TouchSensor is routed to the activate eventIn of Conditional C1 and to the reverseActivate eventIn of Conditional C2; C1 then implements the “mouse-down” action and C2 implements the “mouse-up” action.

7.8.2.38 Cone

7.8.2.38.1 Node interface

Cone {

	
	field
	SFFloat
	bottomRadius
	1.0

	
	field
	SFFloat
	height
	2.0

	
	field
	SFBool
	side
	TRUE

	
	field
	SFBool
	bottom
	TRUE

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.38.2 Functionality and semantics

The semantics of the Cone node are specified in ISO/IEC 14772-1:1998, subclause 6.11.

7.8.2.39 Coordinate

7.8.2.39.1 Node interface

Coordinate {

	
	exposedField
	MFVec3f
	point
	[]

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.39.2 Functionality and semantics

The semantics of the Coordinate node are specified in ISO/IEC 14772-1:1998, subclause 6.12.

7.8.2.40 Coordinate2D

7.8.2.40.1 Node interface

Coordinate2D {

	
	exposedField
	MFVec2f
	point
	[]

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.40.2 Functionality and semantics

This node defines a set of 2D coordinates to be used in the coord field of geometry nodes.

The point field contains a list of points in the 2D coordinate space (see 7.1.1.2.2).

7.8.2.41 CoordinateInterpolator

7.8.2.41.1 Node interface

CoordinateInterpolator {

	
	eventIn
	SFFloat
	set_fraction
	

	
	exposedField
	MFFloat
	key
	[]

	
	exposedField
	MFVec3f
	keyValue
	[]

	
	eventOut
	MFVec3f
	value_changed
	

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.41.2 Functionality and semantics

The semantics of the CoordinateInterpolator node are specified in ISO/IEC 14772-1:1998, subclause 6.13.

7.8.2.42 CoordinateInterpolator2D

7.8.2.42.1 Node interface

CoordinateInterpolator2D {

	
	eventIn
	SFFloat
	set_fraction
	

	
	exposedField
	MFFloat
	key
	[]

	
	exposedField
	MFVec2f
	keyValue
	[]

	
	eventOut
	MFVec2f
	value_changed
	

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.42.2 Functionality and semantics

CoordinateInterpolator2D is the 2D equivalent of CoordinateInterpolator (see 7.2.2.40).

7.8.2.43 CoordinateInterpolator4D

7.8.2.43.1 Node interface

CoordinateInterpolator4D {

	
	eventIn
	SFFloat
	set_fraction
	

	
	exposedField
	MFFloat
	key
	[]

	
	exposedField
	MFVec4f
	keyValue
	[]

	
	eventOut
	MFVec4f
	value_changed
	

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.43.2 Functionality and semantics

As CoordinateInterpolator, this node linearly interpolates 4-dimensional values.

7.8.2.44 Curve2D

7.8.2.44.1 Node interface

Curve2D {

	
	exposedField
	SFNode
	point
	NULL

	
	exposedField
	SFFloat
	fineness
	0.5

	
	exposedField
	MFInt32
	type
	[]

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.44.2 Functionality and semantics

This node is used to describe the Bezier approximation of a polygon in the scene at an arbitrary level of precision. It behaves as other “lines”, which means it is sensitive to modifications of line width and “dotted-ness”, and can be filled or not.

The given parameters are a control polygon and a parameter setting the quality of approximation of the curve. Internally, another polygon of fineness points is computed on the basis of the control polygon. The coordinates of that internal polygon are given by the following formula:

[image: image29.wmf]i

n

f

j

i

f

j

i

n

i

n

i

n

xc

j

x

i

-

-

÷

÷

ø

ö

ç

ç

è

æ

-

´

÷

÷

ø

ö

ç

ç

è

æ

´

-

-

-

´

=

å

=

1

1

)!

1

(

!

)!

1

(

]

[

]

[

0

,

where x[j] is the jth x coordinate of the internal polygon, n is the number of points in the control polygon, xc[i] is the ith x coordinate of the control polygon and f is short for the above fineness parameter. A similar formula yields the y coordinates.

The point field shall list the vertices of the control polygon.

The fineness parameter is an SFFloat value that indicates how finely to tessellate the Bezier curves. A value of 1 means that the curve shall be fine enough that no edges are visible. A value of 0 indicates that a straight line shall be drawn between the two points of the curve. The default value of 0.5 gives an intermediate level of smoothness. The amount of tessellation may be adjusted according to scale of the shape, making it possible to avoid visible edges appearing when the shape is zoomed. When the field type is specified, the above functionality is extended as follows: the curve is now defined piecewise either with the above equation or as straight segments or as non-segments, depending on the values in type. The point field is now taken to contain all key-points (points where the curve passes) and control-points (points defining the aspect of the curve around them). The values in the type field define the semantics of the elements of point.

The point field contains a Coordinate2D field with the list of points. If the type field is non-empty, then it shall contain tokens indicating how the point list is to be interpreted, according to the following algorithm (expressed in pseudo-code):

SFInt32 i = 0;

SFInt32 j = 0;

SFVec2f cur = point[i++];

SFVec2f first = cur;

SFVec2f curctl;

while (i < point.length)

SFInt32 t = 0;

if (type.length > j) t = type[j++];

switch(t) {

case 0: // move, use 1 point

if (is_filled) draw_line(cur, point[i]);

cur = point[i];

i++;

break;

case 1: // line, use 1 point

draw_line(cur, point[i]);

cur = point[i];

i++;

break;

case 2: // bezier curve, use 3 points

draw_curve(cur, point[i], point[i+1], point[i+2]);

cur = point[i+2];

curctl =point[i+1];

i += 3;

break;

case 3: // tangent curve, use 2 points

SFVec2f tanctl;

tanctl.x = 2*cur.x – curctl.x;

tanctl.y = 2*cur.y – curctl.y;

draw_curve(cur, tanctl, point[i], point[i+1]);

cur = point[i+1];

curctl = point[i];

i += 2;

break;

}

}

if (is_filled) draw_line(cur, first);

In the above pseudo-code, draw_line(a,b) draws a line from a to b and draw_curve(a,b,c,d) draws a Bezier curve from a to d, using b as the control point for a and c as the control point for d. Note that, because of the move command (type = 0) multiple disjoint segments are possible. In the case of a filled shape, each segment is closed by drawing a straight line from the last point in the segment to the first. Shapes are filled using the odd-even winding fill rule. If one segment is contained within another, the inside of the inner shape is not filled, allowing shapes with holes.

The first coordinate pair in point is the starting point of the curve. The first value in type describes the treatment to be applied to the subsequent coordinate pairs. At any time, a value in type describes the characteristics of the next curve segment. If P is the starting point or the last point of the previous segment of the curve; N the ending point of the current curve segment; C1 the control point on the side of P and C2 the control point on the side of N.
The permitted values of type are:

0 = MoveTo: One coordinate pair in the point list is consumed, defining N. P ends the curve. The curve shall start again at N. Sequences of two or more MoveTos shall not occur. MoveTo shall not occur as the first element in type.
1 = LineTo: One coordinate pair in the point list is consumed, defining N. A straight line is drawn from P to N.

2 = CurveTo: Three coordinate pairs in the point list are consumed, defining C1, C2 and N respectively. The first coordinate pair specifies the control point the start of this curve segment (C1), the second specifies the control point for end of the curve segment (C2) and the third specifies the ending point of the curve segment (N).

3 = NextCurveto: Two coordinate pairs in the point list are consumed, defining C2 and N in this order. The first coordinate pair specifies the control point for the end of the curve segment (C2), and the second specifies the ending point of the curve segment (N). The control point C1 for the start of the curve segment is derived from the previous control point. If the previous segment was formed with CurveTo or NextCurveTo, the start control point C1 is symmetrical to the end control point C’2 of the previous curve segment with respect to point P. This control type shall not occur immediately following a MoveTo or LineTo.

The formula for obtaining the coordinates of C1 in the case of a NextCurveTo is:

C1x = 2.Px – C’2x
and
C1y = 2.Py – C’2y
The first point in point, as the first point in the curve, is implicitly a MoveTo.

For CurveTo and NextCurveTo, the piece of curve is constructed using the above formula as applied to a polygon constructed from four points, that is the starting point P, the first control point C1, the second control point C2 and the end point N, which is the next point in the point list.

The curve shall be continuous except at points tagged with MoveTo. The tangent of the curve is only continuous at points tagged with NextCurveTo, or at points where the previous second control point C’2, the key point P and the next first control point C1 are aligned.

If there are more values in point than specified by type, then the unused points shall describe a curve as if no type was defined.

An unfilled curve shall not be lit, texture mapped, nor collided with during collision detection. A filled curve that is texture mapped shall used texture mapping coordinates as defined by the four corners of the bounding box of the internal polygon.

EXAMPLE (
geometry Curve2D {

point Coordinate2D {

points [0 0 0 100 200 100 200 200 210 200 220 200]

}

type [2 0 1]

}

The first segment of curve starts at 0,0 goes to 200,200 and control points are 0,100 and 200,100. The Bezier curve drawn is the one with the polygon [0 0 0 100 200 100 200 200] (represented in dotted gray) when types=null, with the same fineness. When types is specified, the fineness parameter is applied to each curve segment. Then we have a "move to", from 200,200 to 210,200. Then we have a "line to", from 210,200 to 220,200 (small segment in upper right corner).
In Figure 17, the curve is drawn in wide black, and the control polygon is drawn in dotted gray. The curve has two connex components.

[image: image30.png]

Figure 17 — Curve node example

7.8.2.45 Cylinder

7.8.2.45.1 Node interface

Cylinder {

	
	field
	SFBool
	bottom
	TRUE

	
	field
	SFFloat
	height
	2.0

	
	field
	SFFloat
	radius
	1.0

	
	field
	SFBool
	side
	TRUE

	
	field
	SFBool
	top
	TRUE

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.45.2 Functionality and semantics

The semantics of the Cylinder node are specified in ISO/IEC 14772-1:1998, subclause 6.14.

7.8.2.46 CylinderSensor

7.8.2.46.1 Node interface

CylinderSensor {

	
	exposedField
	SFBool
	autoOffset
	TRUE

	
	exposedField
	SFFloat
	diskAngle
	0.262

	
	exposedField
	SFBool
	enabled
	TRUE

	
	exposedField
	SFFloat
	maxAngle
	-1.0

	
	exposedField
	SFFloat
	minAngle
	0.0

	
	exposedField
	SFFloat
	offset
	0.0

	
	eventOut
	SFBool
	isActive
	

	
	eventOut
	SFRotation
	rotation_changed
	

	
	eventOut
	SFVec3f
	trackPoint_changed
	

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.46.2 Functionality and semantics

The semantics of the CylinderSensor node are specified in ISO/IEC 14772-1:1998, subclause 6.15.

7.8.2.47 DirectiveSound

7.8.2.47.1 Node interface

DirectiveSound {

	
	field
	MFFloat
	angles
	0

	
	field
	MFFloat
	directivity
	1

	
	field
	MFFloat
	frequency
	[]

	
	field
	SFFloat
	speedOfSound
	340

	
	field
	SFFloat
	distance
	1000

	
	field
	SFBool
	useAirabs
	FALSE

	
	exposedField
	SFVec3f
	direction
	0, 0, 1

	
	exposedField
	SFFloat
	intensity
	1

	
	exposedField
	SFVec3f
	location
	0, 0, 0

	
	exposedField
	SFNode
	source
	NULL

	
	exposedField
	SFNode
	perceptualParameters
	NULL

	
	exposedField
	SFBool
	roomEffect
	FALSE

	
	exposedField
	SFBool
	spatialize
	TRUE

}

NOTE - For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.47.2 Functionality and semantics

The purpose of the DirectiveSound node is to obtain sound source directivity which is characteristic to the sound source present in a 3-D scene. It is also needed for rendering of the acoustic response of the virtual environment. The modeling of sound propagation from the source to the listening point includes distance dependent attenuation, propagation delay between the source and the listener, and modeling of sound reflections, transmission through objects, and reverberation. Two different rendering schemes are applied to DirectiveSound depending on the value of perceptualParameters field. If this field is NULL, the physical approach is applied, and if it contains a PerceptualParameters node, the perceptual approach is applied (see 7.1.1.2.13.4).

DirectiveSound is rendered in a specified area in a 3-D scene. The distance field specifies the radius of a spherical region around the source where the sound is audible to the user. Additionally, in the physical approach, a 3-D rectangular region specified in the AcousticScene nodes specify areas in the scene where the sound is audible when the DirectiveSound and the Viewpoint or ListeningPoint are both inside that area.

The direction dependent sound radiation properties of the sound source is defined in the directivity field of the node for an arbitrary number of angles given in the angles field with respect to the main direction axis (defined in the direction field) to the back of the sound source.

The angles field specifies the angles between the direction vector of the source and the vector between the sound source location and the listener (Viewpoint or ListeningPoint) in radians, at which the directivity parameters apply.

The semantics of the directivity field is defined in two different ways depending on the value of the frequency field, which in one case is an empty vector [], and in the other case is a MFField containing a set of frequencies at which digital filter magnitude response gains are valid. Both ways are allowed in the physical approach, but in the perceptual approach only one is allowed.

frequency field defines the frequencies at which the directivity gains are valid (similarly as refFrequency and transFrequency for reffunc and transfunc in AcousticMaterial, see 7.2.2.1).

There are two different ways of defining directivity for a sound source. If the frequency field is [], the parameters in the directivity field are considered as a set of digital filter coefficients, and if this field is different from [] its semantics are as explained above.

In the physical approach both ways of defining directivity are possible. If frequency is equal to [], the directivity can be defined as a single scale factor associated to each given azimuth angle, or as frequency modifying digital filter parameters. In the latter case, the general form for the field is:

[b, b, b, …, b, a, a,.., a, b, b, b, …, b, a, a,.., a,..]

where is the first specified angle in the angles field, is the second angle etc., and M is the order of the digital filter. If the directivity is specified as gains, the form of the field is:

[b, b, …, bK,]

where K is the number of specified angles.

These coefficients represent a digital filter, whose system function H(z) is represented in the z-domain as a division of the z-transform of the output sequence Y(z) with the z-transform of the input sequence X(z):

[image: image31.wmf]å

å

=

-

=

-

+

=

=

M

k

k

k

M

k

k

k

z

a

z

b

z

X

z

Y

z

H

1

0

1

)

(

)

(

)

(

.

The distinction between the coefficients of different filters is obtained by dividing the length of the directivity field by the amount of specified angles (length of the angles field):

[image: image32.wmf],

1

2

)

(

)

(

a

b

m

m

M

length

length

n

+

=

+

×

=

=

angles

y

directivit

,

where n is the number of coefficients in each filter, and M is the order of the filter, mb is the number of b coefficients, and ma is the number of a coefficients Thus, the number of a coefficients is

[image: image33.wmf]2

1

-

=

n

m

a

,

and the number of b coefficients is

[image: image34.wmf]1

2

1

+

-

=

n

m

b

.

If the first angle  > 0, the directivity at angles 0 <  <  is the same as at , and if the last specified angle M is smaller than , the directivity at angles M <  <  is the same as at M.

The second way of defining directivity is to give a set of gains in directivity field at frequencies defined in frequency field. This scheme can be used both in perceptual and in the physical approaches.

The source directivity is defined as gain factors at specified frequencies for a set of reference angles (specified in the angles field). In this approach, the general form for the directivity field is then:

 [gain00, gain01,...gain0nf-1,gain10, gain11,...gain1nf-1..., gain na-10, gain na-11,...gain na-1nf-1].

Where, nf is the number of reference frequencies, and freq j is the jth reference frequency

gainij is the gain for the ith reference angle and the jth reference frequency, and na is the length of the angles field.

The form of the frequency field is then:

[freq0, freq1, ...freqnf-1]

The number of reference angles is the same as the length of the angles field, and the number of reference frequencies is the same as the length of frequency field. An example of directivity is given below:

[0.9,0.85,0.7,0.6,0.55,

0.85,0.75,0.6,0.5,0.4,

0.8,0.65,0.5,0.4,0.3,

0.5,0.45,0.3,0.2,0.1]

and an example of frequency in this case is:

[250, 500, 1000, 2000, 4000]

Axisymmetry is assumed, so only angles from 0 to  radians are needed to fully define frequency-dependent directivity.

If not specified in the node, the default filtering at 0 rad is the same as for the first specified angle (0). If not specified in the node, the default gain at  rad is gain na-1j for the jth frequency.

If not specified in the node, the default gain at Hz is gain i0 for the ith angle.

By default, the gain for frequencies above fnf-1is gain inf-1 for the ith angle.

The directivity filtering is defined by these gains at the specified frequencies.

In both physical and the perceptual approaches the output of directivity filtering between the specified angles should perform an interpolated result of the magnitude responses of the specified directivities. This can be a result of, e.g., crossfading between different filter outputs, or suitable interpolation of coefficients of the filters.

The direction field specifies the direction the DirectiveSound node is facing. This field is used in the directivity computation of the sound source, i.e., it defines the direction of the angle of 0 (rad) in the directivity field.

The intensity field specifies the gain the original sound stream is multiplied with.

The speedOfSound field is used to enable control of the pre-delay added to the sound depending on the distance between the source and the listener. With other values of speedOfSound than 0 the delay is computed as:

[image: image35.wmf]nd

speedOfSou

dist

d

=

,

where dist is the current distance between the source and the listener in meters, and speedOfSound is the value of speedOfSound field in meters.

speedOfSound field also defines the delay of the reflections off acoustic surfaces in the physical approach, since they are computed according to the corresponding image source locations and the speed of sound. These acoustic surfaces are polygons defined in IndexedFaceSet nodes that have AcousticMaterial associated to them as their appearance (see 7.2.2.1). This field also controls the Doppler effect that is caused by the changing distance between the listening point and the listener. Thus the smaller the value of speedOfSound is, the stronger the Doppler effect is (pitch shift caused by the changing distance between the source and the listener). The changing delay caused by a varying distance between the source (direct sound or image source corresponding to a reflection) and the listener should always be interpolated to avoid artifacts such as clicks in the delayed sound.

The default value of speedOfSound is 0. With this value, and roomEffect = FALSE, no delay of sound propagation between the direct sound and the listener is rendered (except when there are physically rendered early reflections, see next paragraph). This enables a DirectiveSound node to be spatialized in a 3-D space so that the direction and attenuation of the sound are perceived according to the sound source location relative to the listener, but neither Doppler effect nor delay is implemented.

If the sound is rendered according to the physical approach, and the source and the listening point are located within an AcousticScene audibility region, and there are IndexedFaceSet surfaces with acoustic reflectivity, associated to that AcousticScene, and the value of roomEffect is TRUE, the Doppler effect and the delays of the direct sound and physical early reflections are computed according to the speed of sound in the air (340 m/s), even if this field is set to 0.

The distance field specifies the distance dependent attenuation of the sound. Its definition depends on the type of rendering :
Physical approach: Within distance meters from the source the sound is multiplied by the value of the intensity field before any spatial processing (directivity filtering, spatialization, or room effect). At a distance in meters given by the distance field, the sound has attenuated 60dB from the value within the 1-meter distance. Outside this distance from the sound source the sound is not audible. The attenuation function varies linearly on a dB vs. logarithm of distance scale between the source and the given cutoff distance such:

Attdb(d) = 0

, 0<= d <=1
Attdb(d) = 60 log2(d) / log2(distance)
,1<= d <=distance

The radiation pattern defined by the directivity field will thus give the overall directivity, which will be uniformly attenuated as a function of distance. If, however, the distance field is set to 0, no distance dependent attenuation is applied.

Perceptual approach: Within distance meters from the source, the sound is multiplied by the value of the intensity field before any spatial processing (directivity filtering, spatialization, or room effect). Outside this distance from the sound source, the sound is not audible. Between 0 and distance, the distance dependent attenuation is performed according to 7.2.2.93.2.2 by modifying the source presence Es. If, however, the distance field is set to 0, no distance dependent attenuation shall be applied.

Field useAirabs specifies whether the distance dependent air absorption filtering is applied to the direct sound. ISO 9613-1:1993 specifies equations for air absorption curves in different humidity and temperature conditions, and the frequency modification of the distance dependent air absorption filtering should follow one of these curves at maximum accuracy possible.

location field specifies the 3-D location of the sound source in the local coordinate system of the DirectiveSound.

source field allows the connection of an audio source containing the sound.

The spatialize field has the same semantics concerning the direct sound, as in the Sound node, i.e., if this flag is set to TRUE, the sound stream attached to this node should be processed so that appears to come from the direction of sound source with respect to the current direction of the viewpoint. In the case of DirectiveSound (physical approach), this flag is also applied to the reflections caused by acoustic surfaces (specified by IndexedFaceSets and AcousticMaterials). When spatialize = TRUE, also the directions of the reflections are rendered. If the value of this flag is FALSE, the sound routed through DirectiveSound node, or its reflections are not spatialized according to their 3-D direction of arrival at the listener.

Field roomEffect is used for enabling and disabling environmental spatialization of audio. This field specifies whether the environmental response (physical case: reflections, reverberation, sound transmission filtering when propagating through surfaces; perceptual case: reverberation according to the PerceptualParameters node) is applied to this sound node. When this flag is TRUE the DirectiveSound source is spatialized according to the reflections and reverberation in the virtual environment. If, like mentioned above, also the spatialize flag is TRUE, the directions of the physical reflections are also rendered, and if spatialize is FALSE (but roomEffect is TRUE), a monophonic room acoustic effect is produced.

7.8.2.48 DiscSensor

7.8.2.48.1 Node interface

DiscSensor {

	
	exposedField
	SFBool
	autoOffset
	TRUE

	
	exposedField
	SFBool
	enabled
	TRUE

	
	exposedField
	SFFloat
	maxAngle
	-1.0

	
	exposedField
	SFFloat
	minAngle
	0.0

	
	exposedField
	SFFloat
	offset
	0.0

	
	EventOut
	SFBool
	isActive
	

	
	EventOut
	SFFloat
	rotation_changed
	

	
	EventOut
	SFVec2f
	trackPoint_changed
	

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.48.2 Functionality and semantics

This sensor enables the rotation of an object in the 2D plane around an axis specified in the local coordinate system. The semantics are as similar to those for CylinderSensor, but restricted to a 2D case.

7.8.2.49 DirectionalLight

7.8.2.49.1 Node interface

DirectionalLight {

	
	exposedField
	SFFloat
	ambientIntensity
	0.0

	
	exposedField
	SFColor
	color
	1, 1, 1

	
	exposedField
	SFVec3f
	direction
	0, 0, -1

	
	exposedField
	SFFloat
	intensity
	1.0

	
	exposedField
	SFBool
	on
	TRUE

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.49.2 Functionality and semantics

The semantics of the DirectionalLight node are specified in ISO/IEC 14772-1:1998, subclause 6.16.

7.8.2.50 ElevationGrid

7.8.2.50.1 Node interface

ElevationGrid {

	
	EventIn
	MFFloat
	set_height
	

	
	exposedField
	SFNode
	color
	NULL

	
	exposedField
	SFNode
	normal
	NULL

	
	exposedField
	SFNode
	texCoord
	NULL

	
	Field
	MFFloat
	height
	[]

	
	Field
	SFBool
	ccw
	TRUE

	
	Field
	SFBool
	colorPerVertex
	TRUE

	
	Field
	SFFloat
	creaseAngle
	0.0

	
	Field
	SFBool
	normalPerVertex
	TRUE

	
	Field
	SFBool
	solid
	TRUE

	
	Field
	SFInt32
	xDimension
	0

	
	Field
	SFFloat
	xSpacing
	1.0

	
	Field
	SFInt32
	zDimension
	0

	
	Field
	SFFloat
	zSpacing
	1.0

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.50.2 Functionality and semantics

The semantics of the ElevationGrid node are specified in ISO/IEC 14772-1:1998, subclause 6.17.

7.8.2.51 Ellipse

7.8.2.51.1 Node interface

Ellipse {

	
	exposedField
	SFVec2f
	radius
	1 1

}

NOTE - For the binary encoding of this node see node coding tables in electronic attachment.
7.8.2.51.2 Functionality and semantics

An ellipse is a planar geometry node and is defined by two-radius extent in its local coordinate system: radius[0] along x-direction and radius[1] along y-direction. By default, the ellipse is a unit circle (rx = ry = 1).
7.8.2.52 EnvironmentTest
7.8.2.52.1 Node interface

EnvironmentTest {

	
	eventIn
	SFBool
	evaluate
	

	
	exposedField
	SFBool
	enabled
	TRUE

	
	exposedField
	SFInt32
	parameter
	0

	
	exposedField
	SFString
	compareValue
	NULL

	
	exposedField
	SFBool
	evaluateOnChange
	TRUE

	
	eventOut
	SFBool
	valueLarger
	

	
	eventOut
	SFBool
	valueEqual
	

	
	eventOut
	SFBool
	valueSmaller
	

	
	eventOut
	SFString
	parameterValue
	

}

7.8.2.52.2 NOTE
For the binary encoding of this node see node coding tables in electronic attachment.
7.8.2.52.3 Functionality and semantics
The EnvironmentTest node enables testing a parameter of the terminal environment, possibly comparing their values with the compareValue. The evaluation of the parameter triggers different eventOuts depending on the type of the parameter:

· If the parameter type is Boolean, the evaluation triggers a valueEqual eventOut, and the compareValue field is ignored.

· If the parameter type is a number and the compareValue represents a number, the two values are compared and the following eventOuts are generated:

· valueEqual if parameter and compareValue are equal

· valueLarger if compareValue is strictly larger than parameter
· valueSmaller if compareValue is strictly less then than parameter
The supported parameter types are defined in Table AMD7.1.

In any case, the parameterValue eventOut is triggered after evaluation.

If evaluateOnChange is set to FALSE, the node only evaluates upon receiving the evaluate eventIn; otherwise, the node evaluates on any change of parameter or compareValue.

The node evaluates and triggers events only when its enabled field is true.
Table 0\IF >= 1 "A."

SEQ Table
17
 — Environmental parameters
	Value
	Definition
	Type

	0
	Display region Aspect Ratio (larger dimension divided by smaller dimension, regardless of screen orientation)
	Float

	1
	Portrait mode of the display region (TRUE if width<height)
	Boolean

	2
	Display region width in pixels
	Integer

	3
	Display region height in pixels
	Integer

	4
	Horizontal DPI
	Integer

	5
	Vertical DPI
	Integer

	6
	Automotive Situation (terminal user drives a moving vehicle)
	Boolean

	7
	User is Visually Challenged
	Boolean

	8
	Touch Screen present on terminal
	Boolean

	9
	Navigation Keypad present on terminal
	Boolean

	0x00000007- 0xEFFFFFFF
	ISO Reserved
	

	0xF0000000-0xFFFFFFFF
	User Reserved
	

The display region is the area onto which the BIFS content is rendered. This region may be the entire screen, some part of the screen or an off-screen memory region.
7.8.2.53 Expression

7.8.2.53.1 Node interface

Expression {

	
	Field
	SFInt32
	expression_select1
	0

	
	Field
	SFInt32
	expression_intensity1
	0

	
	Field
	SFInt32
	expression_select2
	0

	
	Field
	SFInt32
	expression_intensity2
	0

	
	Field
	SFBool
	init_face
	FALSE

	
	Field
	SFBool
	expression_def
	FALSE

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.53.2 Functionality and semantics

The Expression node is used to define the expression of the face as a combination of two expressions from the standard set of expressions defined ISO/IEC 14496-2, Annex C, Table C-3.

The expression_select1 and expression_select2 fields specify the expression types. The expression_intensity1 and expression_intensity2 fields specify the corresponding expression intensities.

If init_face is set, a neutral face may be modified before applying FAPs 1 and 3-68.
If expression_def is set, current FAPs are used to define an expression and store it.

7.8.2.54 Extrusion

7.8.2.54.1 Node interface

Extrusion {

	
	EventIn
	MFVec2f
	set_crossSection
	

	
	EventIn
	MFRotation
	set_orientation
	

	
	EventIn
	MFVec2f
	set_scale
	

	
	EventIn
	MFVec3f
	set_spine
	

	
	Field
	SFBool
	beginCap
	TRUE

	
	Field
	SFBool
	ccw
	TRUE

	
	Field
	SFBool
	convex
	TRUE

	
	Field
	SFFloat
	creaseAngle
	0.0

	
	Field
	MFVec2f
	crossSection
	1, 1, 1, -1, -1, -1, -1, 1, 1, 1

	
	Field
	SFBool
	endCap
	TRUE

	
	Field
	MFRotation
	orientation
	0, 0, 1, 0

	
	Field
	MFVec2f
	scale
	1, 1

	
	Field
	SFBool
	solid
	TRUE

	
	Field
	MFVec3f
	spine
	0, 0, 0, 0, 1, 0

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.54.2 Functionality and semantics

The semantics of the Extrusion node are specified in ISO/IEC 14772-1:1998, subclause 6.18.

7.8.2.55 Face

7.8.2.55.1 Node interface

Face {

	
	exposedField
	SFNode
	fit
	NULL

	
	exposedField
	SFNode
	fdp
	NULL

	
	exposedField
	SFNode
	fap
	NULL

	
	exposedField
	SFNode
	ttsSource
	NULL

	
	exposedField
	MFNode
	renderedFace
	NULL

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.55.2 Functionality and semantics

The Face node is used to define and animate a face in the scene. In order to animate the face with a facial animation stream, ut us necessary to link the Face node to a BIFS-Anim stream. The node shall be assigned a nodeID, through the DEF mechanism. Then, as for any BIFS-Anim stream, an animation mask is sent in the object descriptor of the BIFS-Anim stream (specificInfo field). The animation mask points to the Face node using its nodeID. The terminal shall then connect the facial animation decoder to the appropriate Face node.

The FAP field shall contain a FAP node, describing the facial animation parameters (FAPs). Each Face node shall contain a non-NULL FAP field.

The FDP field, which defines the particular look of a face by means of downloading the position of face definition points or an entire model, is optional. If the FDP field is not specified, the default face model of the terminal shall be used.

The FIT field, when specified, allows a set of FAPs to be defined in terms of another set of FAPs. When this field is non-NULL, the terminal shall use FIT to compute the maximal set of FAPs before using the FAPs to compute the mesh.

The ttsSource field shall only be non-NULL if the facial animation is to determine the facial animation parameters from an audio TTS source (see ISO/IEC 14496-3, subpart 6). In this case the ttsSource field shall contain an AudioSource node and the face shall be animated using the phonemes and bookmarks received from the TTS. See also subclause 7.7.

renderedFace is the scene graph of the face after it is rendered (all FAP’s applied).

7.8.2.56 FaceDefMesh

7.8.2.56.1 Node interface

FaceDefMesh {

	
	Field
	SFNode
	faceSceneGraphNode
	NULL

	
	Field
	MFInt32
	intervalBorders
	[]

	
	Field
	MFInt32
	coordIndex
	[]

	
	Field
	MFVec3f
	displacements
	[]

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.56.2 Functionality and semantics

The FaceDefMesh node allows for the deformation of an IndexedFaceSet as a function of the amplitude of a FAP as specified in the related FaceDefTable node. The FaceDefMesh node defines the piece-wise linear motion trajectories for vertices of the faceSceneGraphNode field, which shall contain an IndexedFaceSet node. This IndexedFaceSet node belongs to the scenegraph of the faceSceneGraph field of the FDP node.

The intervalBorders field specifies interval borders for the piece-wise linear approximation in increasing order. Exactly one interval border shall have the value 0.
The coordIndex field shall contain a list of indices into the Coordinate node of the IndexedFaceSet node specified by the faceSceneGraphNode field.
For each vertex indexed in the coordIndex field, displacement vectors are given in the displacements field for the intervals defined in the intervalBorders field. There must be exactly (num(intervalBorders)-1)*num(coordIndex) values in this field.
In most cases, the animation generated by a FAP cannot be specified by updating a Transform node. Thus, a deformation of an IndexedFaceSet node needs to be performed. In this case, the FaceDefTables shall define which IndexedFaceSets are affected by a given FAP and how the coord fields of these nodes are updated. This is done by means of tables.

If a FAP affects an IndexedFaceSet, the FaceDefMesh shall specify a table of the following format for this IndexedFaceSet:

Table 17 — Vertex displacements

	Vertex no.
	1st Interval [I1, I2]
	2nd Interval [I2, I3]
	…

	Index 1
	Displacement D11
	Displacement D12
	…

	Index 2
	Displacement D21
	Displacement D22
	…

	…
	…
	…
	…

Exactly one interval border Ik must have the value 0:

[I1, I2], [I2, I3], …[Ik-1, 0], [0, Ik+1], [Ik+1, Ik+2], …[Imax-1, Imax]

During animation, when the terminal receives a FAP, which affects one or more IndexedFaceSets of the face model, it shall piece-wise linearly approximate the motion trajectory of each vertex of the affected IndexedFaceSets by using the appropriate table.

[image: image36.png]

Figure 18 — An arbitrary motion trajectory is approximated as a piece-wise linear one.

If Pm is the position of the mth vertex in the IndexedFaceSet in neutral state (FAP = 0), P’m the position of the same vertex after animation with the given FAP and Dmk the 3D displacement in the kth interval, the following algorithm shall be applied to determine the new position P’m.

Determine, in which of the intervals listed in the table the received FAP is lying.

If the received FAP is lying in the jth interval [Ij, Ij+1] and 0=Ik (Ij, the new vertex position P’m of the mth vertex of the IndexedFaceSet is given by:

P’m = FAPU * ((Ik+1-0) * Dm,k + (Ik+2-Ik+1) * Dm, k+1 + … + (Ij - Ij-1) * Dm, j-1 + (FAP-Ij) * Dm, j) + Pm.
(Eq. 1)

If FAP (Imax, then P’m is calculated by using equation Eq. 1 and setting the index j = max.

If the received FAP is lying in the jth interval [Ij, Ij+1] and Ij+1 (Ik=0, the new vertex position P’m is given by:

P’m = FAPU * ((Ij+1 - FAP) * Dm, j + (Ij+2 - Ij+1) * Dm, j+1 + … + (Ik-1 - Ik-2) * Dm, k-2 + (0 - Ik-1) * Dm, k-1) + Pm
(Eq. 2)

If FAP (I1, then P’m is calculated by using equation Eq. 1 and setting the index j+1 = 1.

If for a given FAP and IndexedFaceSet the table contains only one interval, the motion is strictly linear:

P’m = FAPU * FAP * Dm1 + Pm.

EXAMPLE (

FaceDefMesh {

objectDescriptorID UpperLip

intervalBorders [-1000, 0, 500, 1000]

coordIndex [50, 51]

displacements [1 0 0, 0.9 0 0, 1.5 0 4, 0.8 0 0, 0.7 0 0, 2 0 0]

}

This FaceDefMesh defines the animation of the mesh “UpperLip”. For the piecewise-linear motion function three intervals are defined: [-1000, 0], [0, 500] and [500, 1000]. Displacements are given for the vertices with the indices 50 and 51. The displacements for the vertex 50 are: (1 0 0), (0.9 0 0) and (1.5 0 4), the displacements for vertex 51 are (0.8 0 0), (0.7 0 0) and (2 0 0). Given a FAPValue of 600, the resulting displacement for vertex 50 would be:

displacement(vertex 50) = 500*(0.9 0 0)T + 100 * (1.5 0 4)T = (600 0 400)T.

If the FAPValue is outside the given intervals, the boundary intervals are extended to +I or -I, as appropriate.

7.8.2.57 FaceDefTables

7.8.2.57.1 Node interface

FaceDefTables {

	
	Field
	SFInt32
	fapID
	0

	
	Field
	SFInt32
	highLevelSelect
	0

	
	exposedField
	MFNode
	faceDefMesh
	[]

	
	exposedField
	MFNode
	faceDefTransform
	[]

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.57.2 Functionality and semantics

The FaceDefTables node defines the behavior of a facial animation parameter FAP on a downloaded face model in faceSceneGraph by specifying the displacement vectors for moved vertices inside IndexedFaceSet objects as a function of the FAP fapID and/or specifying the value of a field of a Transform node as a function of FAP fapID.

The FaceDefTables node is transmitted directly after the BIFS bitstream of the FDP node. The FaceDefTables lists all FAPs that animate the face model. The FAPs animate the downloaded face model by updating the Transform or IndexedFaceSet nodes of the scene graph in faceSceneGraph. For each listed FAP, the FaceDefTables node describes which nodes are animated by this FAP and how they are animated. All FAPs that occur in the bitstream have to be specified in the FaceDefTables node. The animation generated by a FAP can be specified either by updating a Transform node (using a FaceDefTransform), or as a deformation of an IndexedFaceSet (using a FaceDefMesh).

The FAPUs shall be calculated by the terminal using the feature points that shall be specified in the FDP. The FAPUs are needed in order to animate the downloaded face model.

7.8.2.57.3 Semantics

The fapID field specifies the FAP, for which the animation behavior is defined in the faceDefMesh and faceDefTransform fields.
If fapID has value 1 or 2, the highLevelSelect field specifies the type of viseme or expression. In other cases this field has no meaning and shall be ignored.
The faceDefMesh field shall contain a FaceDefMesh node.
The faceDefTransform field shall contain a FaceDefTransform node.
7.8.2.58 FaceDefTransform

7.8.2.58.1 Node interface

FaceDefTransform {

	
	Field
	SFNode
	faceSceneGraphNode
	NULL

	
	Field
	SFInt32
	fieldId
	1

	
	Field
	SFRotation
	rotationDef
	0, 0, 1, 0

	
	Field
	SFVec3f
	scaleDef
	1, 1, 1

	
	Field
	SFVec3f
	translationDef
	0, 0, 0

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.58.2 Functionality and semantics

The FaceDefTransform node defines which field (rotation, scale or translation) of a Transform node (faceSceneGraphNode) of faceSceneGraph (defined in an FDP node) is updated by a facial animation parameter, and how the field is updated. If the face is in its neutral position, the faceSceneGraphNode has its translation, scale, and rotation fields set to the neutral values (0,0,0) T, (1,1,1)T, (0,0,1,0), respectively.

The faceSceneGraphNode field specifies the Transform node for which the animation is defined. The node shall be part of faceScenegraph as defined in the FDP node.
The fieldId field specifies which field in the Transform node, specified by the faceSceneGraphNode field, is updated by the FAP during animation. Possible fields are translation, rotation, scale.

If fieldID==1, rotation shall be updated using rotationDef and FAPValue.

If fieldID==2, scale shall be updated using scaleDef and FAPValue.

If fieldID==3, translation shall be updated using translationDef and FAPValue.

The rotationDef field is of type SFRotation. With rotationDef=(rx,ry,rz,(), the new value of the rotation field of the Transform node faceSceneGraphNode is:

rotation: =(rx,ry,rz,(*FAPValue*AU) [AU is defined in ISO/IEC 14496-2]
The scaleDef field is of type SFVec3f. The new value of the scale field of the Transform node faceSceneGraphNode is:

scale:= FAPValue*scaleDef

The translationDef field is of type SFVec3f. The new value of the translation field of the Transform node faceSceneGraphNode is:

translation:= FAPValue*translationDef
7.8.2.59 FAP

7.8.2.59.1 Node interface

FAP {

	
	exposedField
	SFNode
	viseme
	NULL

	
	exposedField
	SFNode
	expression
	NULL

	
	exposedField
	SFInt32
	open_jaw
	+I

	
	exposedField
	SFInt32
	lower_t_midlip
	+I

	
	exposedField
	SFInt32
	raise_b_midlip
	+I

	
	exposedField
	SFInt32
	stretch_l_corner
	+I

	
	exposedField
	SFInt32
	stretch_r_corner
	+I

	
	exposedField
	SFInt32
	lower_t_lip_lm
	+I

	
	exposedField
	SFInt32
	lower_t_lip_rm
	+I

	
	exposedField
	SFInt32
	lower_b_lip_lm
	+I

	
	exposedField
	SFInt32
	lower_b_lip_rm
	+I

	
	exposedField
	SFInt32
	raise_l_cornerlip
	+I

	
	exposedField
	SFInt32
	raise_r_cornerlip
	+I

	
	exposedField
	SFInt32
	thrust_jaw
	+I

	
	exposedField
	SFInt32
	shift_jaw
	+I

	
	exposedField
	SFInt32
	push_b_lip
	+I

	
	exposedField
	SFInt32
	push_t_lip
	+I

	
	exposedField
	SFInt32
	depress_chin
	+I

	
	exposedField
	SFInt32
	close_t_l_eyelid
	+I

	
	exposedField
	SFInt32
	close_t_r_eyelid
	+I

	
	exposedField
	SFInt32
	close_b_l_eyelid
	+I

	
	exposedField
	SFInt32
	close_b_r_eyelid
	+I

	
	exposedField
	SFInt32
	yaw_l_eyeball
	+I

	
	exposedField
	SFInt32
	yaw_r_eyeball
	+I

	
	exposedField
	SFInt32
	pitch_l_eyeball
	+I

	
	exposedField
	SFInt32
	pitch_r_eyeball
	+I

	
	exposedField
	SFInt32
	thrust_l_eyeball
	+I

	
	exposedField
	SFInt32
	thrust_r_eyeball
	+I

	
	exposedField
	SFInt32
	dilate_l_pupil
	+I

	
	exposedField
	SFInt32
	dilate_r_pupil
	+I

	
	exposedField
	SFInt32
	raise_l_i_eyebrow
	+I

	
	exposedField
	SFInt32
	raise_r_i_eyebrow
	+I

	
	exposedField
	SFInt32
	raise_l_m_eyebrow
	+I

	
	exposedField
	SFInt32
	raise_r_m_eyebrow
	+I

	
	exposedField
	SFInt32
	raise_l_o_eyebrow
	+I

	
	exposedField
	SFInt32
	raise_r_o_eyebrow
	+I

	
	exposedField
	SFInt32
	squeeze_l_eyebrow
	+I

	
	exposedField
	SFInt32
	squeeze_r_eyebrow
	+I

	
	exposedField
	SFInt32
	puff_l_cheek
	+I

	
	exposedField
	SFInt32
	puff_r_cheek
	+I

	
	exposedField
	SFInt32
	lift_l_cheek
	+I

	
	exposedField
	SFInt32
	lift_r_cheek
	+I

	
	exposedField
	SFInt32
	shift_tongue_tip
	+I

	
	exposedField
	SFInt32
	raise_tongue_tip
	+I

	
	exposedField
	SFInt32
	thrust_tongue_tip
	+I

	
	exposedField
	SFInt32
	raise_tongue
	+I

	
	exposedField
	SFInt32
	tongue_roll
	+I

	
	exposedField
	SFInt32
	head_pitch
	+I

	
	exposedField
	SFInt32
	head_yaw
	+I

	
	exposedField
	SFInt32
	head_roll
	+I

	
	exposedField
	SFInt32
	lower_t_midlip_o
	+I

	
	exposedField
	SFInt32
	raise_b_midlip_o
	+I

	
	exposedField
	SFInt32
	stretch_l_cornerlip
	+I

	
	exposedField
	SFInt32
	stretch_r_cornerlip_o
	+I

	
	exposedField
	SFInt32
	lower_t_lip_lm_o
	+I

	
	exposedField
	SFInt32
	lower_t_lip_rm_o
	+I

	
	exposedField
	SFInt32
	raise_b_lip_lm_o
	+I

	
	exposedField
	SFInt32
	raise_b_lip_rm_o
	+I

	
	exposedField
	SFInt32
	raise_l_cornerlip_o
	+I

	
	exposedField
	SFInt32
	raise_r_cornerlip_o
	+I

	
	exposedField
	SFInt32
	stretch_l_nose
	+I

	
	exposedField
	SFInt32
	stretch_r_nose
	+I

	
	exposedField
	SFInt32
	raise_nose
	+I

	
	exposedField
	SFInt32
	bend_nose
	+I

	
	exposedField
	SFInt32
	raise_l_ear
	+I

	
	exposedField
	SFInt32
	raise_r_ear
	+I

	
	exposedField
	SFInt32
	pull_l_ear
	+I

	
	exposedField
	SFInt32
	pull_r_ear
	+I

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.59.2 Functionality and semantics

This node defines the current look of the face by means of expressions and FAPs and gives a hint to TTS controlled systems on which viseme to use. For a definition of the facial animation parameters see ISO/IEC 14496-2, Annex C.

The viseme field shall contain a Viseme node.
The expression field shall contain an Expression node.
The semantics for the remaining fields are described in the ISO/IEC 14496-2, Annex C and in particular in Table C-1.
A FAP of value +I shall be interpreted as indicating that the particular FAP is uninitialized.
7.8.2.60 FDP

7.8.2.60.1 Node interface

FDP {

	
	exposedField
	SFNode
	featurePointsCoord
	NULL

	
	exposedField
	SFNode
	textureCoords
	NULL

	
	exposedField
	SFBool
	useOrthoTexture
	FALSE

	
	exposedField
	MFNode
	faceDefTables
	[]

	
	exposedField
	MFNode
	faceSceneGraph
	[]

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.60.2 Functionality and semantics

The FDP node defines the face model to be used at the terminal. Two options are supported:

1. If faceDefTables is NULL, calibration information is downloaded, so that the proprietary face of the terminal can be calibrated using facial feature points and, optionally, the texture information. In this case, the featurePointsCoord field shall be set. featurePointsCoord contains the coordinates of facial feature points, as defined in ISO/IEC 14496-2, Annex C, Figure C-1, corresponding to a neutral face. If a coordinate of a feature point is set to +I, the coordinates of this feature point shall be ignored. The textureCoord field, if set, is used to map a texture on the model calibrated by the feature points. The textureCoord points correspond to the feature points. Tthat is, each defined feature point shall have corresponding texture coordinates. In this case, the faceSceneGraph shall contain exactly one texture image, and any geometry it might contain shall be ignored. The terminal shall interpret the feature points, texture coordinates, and the faceSceneGraph in the following way:

· Feature points of the terminal’s face model shall be moved to the coordinates of the feature points supplied in featurePointsCoord, unless a feature point is to be ignored, as explained above.

· If textureCoord is set, the texture supplied in the faceSceneGraph shall be mapped onto the terminal's default face model. The texture coordinates are derived from the texture coordinates of the feature points supplied in textureCoords. The useOrthoTexture field provides a hint to the decoding terminal that, when FALSE, indicates that the texture image is best obtained by cylindrical projection of the face. If useOrthoTexture is TRUE, the texture image is best obtained by orthographic projection of the face.

2. A face model as described in the faceSceneGraph is decoded. This face model replaces the terminal's default face model in the terminal. The faceSceneGraph shall contain the face in its neutral position (all FAPs = 0). If desired, the faceSceneGraph shall contain the texture maps of the face. The functions defining the way in which the faceSceneGraph shall be modified, as a function of the FAPs, shall also be decoded. This information is described by faceDefTables that define how the faceSceneGraph is to be modified as a function of each FAP. By means of faceDefTables, IndexedFaceSets and Transform nodes of the faceSceneGraph can be animated. Since the amplitude of FAPs is defined in units that are dependent on the size of the face model, the featurePointsCoord field defines the position of facial features on the surface of the face described by faceSceneGraph. From the location of these feature points, the terminal computes the units of the FAPs. Generally, only two node types in the scene graph of a decoded face model are affected by FAPs: IndexedFaceSet and Transform nodes. If a FAP causes a deformation of an object (e.g. lip stretching), then the coordinate positions in the affected IndexedFaceSets shall be updated. If a FAP causes a movement which can be described with a Transform node (e.g. FAP 23, yaw_l_eyeball), then the appropriate fields in this Transform node shall be updated. It shall be assumed that this Transform node has its rotation, scale, and translation fields set to neutral values if the face is in its neutral position. A unique nodeId shall be assigned via the DEF statement to all IndexedFaceSet and Transform nodes which are affected by FAPs so that they can be accessed unambiguously during animation.

The featurePointsCoord field shall contain a Coordinate node that specifies feature points for the calibration of the terminal's default face. The coordinates are specified in the point field of the Coordinate node in the prescribed order, that a feature point with a lower label number is listed before a feature point with a higher label naumber.

EXAMPLE (Feature point 3.14 before feature point 4.1

The textureCoords field shall contain a Coordinate node that specifies texture coordinates for the feature points. The coordinates are listed in the point field in the Coordinate node in the prescribed order, that a feature point with a lower label is listed before a feature point with a higher label.

The useOrthoTexture field may contain a hint to the terminal as to the type of texture image, in order to allow better interpolation of texture coordinates for the vertices that are not feature points. If useOrthoTexture is FALSE, the terminal may assume that the texture image was obtained by cylindrical projection of the face. If useOrthoTexture is 1, the terminal may assume that the texture image was obtained by orthographic projection of the face.

The faceDefTables field shall contain FaceDefTables nodes. The behavior of FAPs is defined in this field for the face in faceSceneGraph.

The faceSceneGraph field shall contain a Group node. In the case of option 1 (above), this may be used to contain a texture image as described above. In the case of option 2, this shall be the grouping node for the face model rendered in the compositor and shall contain the face model. In this case, the effect of facial animation parameters is defined in the faceDefTables field.

7.8.2.61 FIT

7.8.2.61.1 Node interface

FIT {

	
	exposedField
	MFInt32
	FAPs
	[]

	
	exposedField
	MFInt32
	Graph
	[]

	
	exposedField
	MFInt32
	numeratorTerms
	[]

	
	exposedField
	MFInt32
	denominatorTerms
	[]

	
	exposedField
	MFInt32
	numeratorExp
	[]

	
	exposedField
	MFInt32
	denominatorExp
	[]

	
	exposedField
	MFInt32
	numeratorImpulse
	[]

	
	exposedField
	MFFloat
	numeratorCoefs
	[]

	
	exposedField
	MFFloat
	denominatorCoefs
	[]

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.61.2 Functionality and semantics

The FIT node allows a smaller set of FAPs to be sent during a facial animation. This small set can then be used to determine the values of other FAPs, using a rational polynomial mapping between parameters. In a FIT node, rational polynomials are used to specify interpolation functions.

EXAMPLE (The top inner lip FAPs can be sent and then used to determine the top outer lip FAPs. Another example is that only viseme and/or expression FAPs are sent to drive the face. In this case, low-level FAPs are interpolated from these two high-level FAPs.

To make the scheme general, sets of FAPs are specified, along with a FAP interpolation graph (FIG) between the sets that specifies which sets are used to determine which other sets. The FIG is a graph with directed links. Each node contains a set of FAPs. Each link from a parent node to a child node indicates that the FAPs in the child node can be interpolated from the parent node. Expression (FAP#1) or Viseme (FAP #2) and their fields shall not be interpolated from other FAPs.

In a FIG, a FAP may appear in several nodes, and a node may have multiple parents. For a node that has multiple parent nodes, the parent nodes are ordered as 1st parent node, 2nd parent node, etc. During the interpolation process, if this child node needs to be interpolated, it is first interpolated from 1st parent node if all FAPs in that parent node are available. Otherwise, it is interpolated from 2nd parent node, and so on.

An example of FIG is shown in Figure 19. Each node has a nodeID. The numerical label on each incoming link indicates the order of these links.

[image: image37.wmf]expression

lower_t_

midlip

raise_b_

midlip

bottom_inner_lip

 FAPs

bottom_outer_lip

 FAPs

top_outer_lip

 FAPs

top_inner_lip

 FAPs

1

1

1

1

2

2

2

2

1

1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Figure 19 — A FIG example

The interpolation process based on the FAP interpolation graph is described using pseudo-C code as follows:

do {

interpolation_count = 0;

for (all Node_i) { // from Node_1 to Node_N

for (ordered Node_i’s parent Node_k) {

if (FAPs in Node_i need interpolation and

FAPs in Node_k have been interpolated or are available) {

interpolate Node_i from Node_k; //using interpolation function

// table here

interpolation_count ++;

break;

}

}

}

} while (interpolation_count != 0);

Each directed link in a FIG is a set of interpolation functions. Suppose F1, F2, …, Fn are the FAPs in a parent set and f1, f2, …, fm are the FAPs in a child set.

Then, there are m interpolation functions denoted as:

f1 = I1(F1, F2, …, Fn)

f2 = I2(F1, F2, …, Fn)

…

fm = Im(F1, F2, …, Fn)

Each interpolation function Ik () is in a rational polynomial form if the parent node does not contain viseme FAP or expression FAP.

[image: image38.wmf]å

Õ

å

Õ

=

-

=

=

-

=

=

1

0

1

1

0

1

2

1

)

(

)

(

)

,...,

,

(

P

i

n

j

m

j

i

K

i

n

j

l

j

i

n

ij

ij

F

b

F

c

F

F

F

I

Otherwise, an impulse function is added to each numerator polynomial term to allow selection of expression or viseme.

[image: image39.wmf]å

Õ

å

Õ

-

=

-

=

=

-

=

=

1

0

1

1

0

1

2

1

)

(

)

)(

(

)

,...,

,

(

P

i

n

j

m

j

i

K

i

n

j

l

j

i

i

s

n

ij

ij

i

F

b

F

c

a

F

F

F

F

I

d

In both equations, [image: image40.wmf]K

and [image: image41.wmf]P

are the numbers of polynomial products, [image: image42.wmf]c

i

and [image: image43.wmf]i

b

are the coefficient of the ith product. [image: image44.wmf]l

ij

and [image: image45.wmf]ij

m

 are the power of[image: image46.wmf]F

j

in the ith product. An impulse function equals 1 when [image: image47.wmf]i

s

a

F

i

=

, otherwise, equals 0.
[image: image48.wmf]i

s

F

 can only be viseme_select1, viseme_select2, expression_select1, and expression_select2. [image: image49.wmf]i

a

 is an integer that ranges from 0 to 6 when
[image: image50.wmf]i

s

F

is expression_select1 or expression_select2, ranges 0 to 14 when
[image: image51.wmf]i

s

F

 is viseme_select1 or viseme_select2. The encoder shall send an interpolation function table which contains [image: image52.wmf]K

,[image: image53.wmf]P

,[image: image54.wmf]i

a

,[image: image55.wmf]i

s

,[image: image56.wmf]c

i

,[image: image57.wmf]i

b

,[image: image58.wmf]l

ij

,[image: image59.wmf]ij

m

 to the terminal.

To aid in the explanation below, it is assumed that there are N different sets of FAPs with index 1 to N, and that each set has ni, i=1,..,N parameters. It is also assumed that there are L directed links in the FIG and that each link points from the FAP set with index Pi to the FAP set with index Ci, for i = 1, .. , L

The FAPs field shall contain a list of FAP-indices specifying which animation parameters form sets of FAPs. Each set of FAP indices is terminated by –1. There shall be a total of N + n1 + n2 + … + nN numbers in this field, with N of them being –1. FAP#1 to FAP#68 are of indices 1 to 68. Fields of the Viseme FAP (FAP#1), namely, viseme_select1, viseme_select2, viseme_blend, are of indices from 69 to 71. Fields of the Expression FAP (FAP#2), namely, expression_select1, expression_select2, expression_intensity1, expression_intensity2 are of indices from 72 to 75. When the parent node contains a Viseme FAP, three indices, 69, 70, 71, shall be included in the node (but not index 1). When a parent node contains an Expression FAP, four indices, 72,73,74,75, shall be included in the node (but not index 2).
The Graph field shall contain a list of pairs of integers, specifying a directed links between sets of FAPs. The integers refer to the indices of the sets specified in the FAPs field, and thus range from 1 to N. When more than one direct link terminates at the same set, that is, when the second value in the pair is repeated, the links have precedence determined by their order in this field. This field shall have a total of 2L numbers, corresponding to the directed links between the parents and children in the FIG.
The numeratorTerms field shall be a list containing the number of terms in the polynomials of the numerators of the rational functions used to interpolae parameter values. Each element in the list corresponds to K in equation 1 above). Each link i (that is, the ith integer pair) in the Graph field must have nCi values specified, one for each child FAP. The order in the numeratorTerms list shall correspond to the order of the links in the Graph field and the order that the child FAP appears in the FAPs field. There shall be nC1 + nC2 + … + nCL numbers in this field.
The denominatorTerms field shall contain a list of the number of terms in the polynomials of the denominator of the rational functions controlling the parameter value. Each element in the list corresponds to P in equation 1. Each link i (that is, the ith integer pair) in the Graph field must have nCi values specified, one for each child FAP. The order in the denominatorTerms list corresponds to the order of the links in the Graph field and the order that the child FAP appears in the FAPs field. There shall be nC1 + nC2 + … + nCL numbers in this field.
The numeratorImpulse field shall contain a list of impulse functions in the numerator of the rational function for links with the Viseme or Expression FAP in parent node. This list corresponds to the [image: image60.wmf])

(

i

s

a

F

i

-

d

. Each entry in the list is ([image: image61.wmf]i

s

, [image: image62.wmf]i

a

).

The numeratorExp field shall contain a list of exponents of the polynomial terms in the numerator of the rational function controlling the parameter value. This list corresponds to [image: image63.wmf]l

ij

. For each child FAP in each link i, nPi*K values need to be specified. The order in the numeratorExp list shall correspond to the order of the links in the Graph field and the order that the child FAP appears in the FAPs field.

NOTE — K may be different for each child FAP.
The denominatorExp field shall contain a list of exponents of the polynomial terms of the denominator of the rational function controlling the parameter value. This list corresponds to [image: image64.wmf]ij

m

. For each child FAP in each link i, nPi*P values need to be specified. The order in the denominatorExp list shall correspond to the order of the links in the Graph field and the order that the child FAP appears in the FAPs field.

NOTE — P may be different for each child FAP.

The numeratorCoefs field shall contain a list of coefficients of the polynomial terms of the numerator of the rational function controlling the parameter value. This list corresponds to [image: image65.wmf]c

i

. The list shall have K terms for each child parameter that appears in a link in the FIG, with the order in numeratorCoefs corresponding to the order in Graph and FAPs.

NOTE — K is dependent on the polynomial, and is not a fixed constant.

The denominatorCoefs field shall contain a list of coefficients of the polynomial terms in the numerator of the rational function controlling the parameter value. This list corresponds to [image: image66.wmf]i

b

. The list shall have P terms for each child parameter that appears in a link in the FIG, with the order in denominatorCoefs corresponding to the order in Graph and FAPs.

NOTE — P is dependent on the polynomial, and is not a fixed constant.

EXAMPLE (Suppose a FIG contains four nodes and 2 links. Node 1 contains FAP#3, FAP#3, FAP#5. Node 2 contains FAP#6, FAP#7. Node 3 contains an expression FAP, which means contains FAP#72, FAP#73, FAP#74, and FAP#75. Node 4 contains FAP#12 and FAP#17. Two links are from node 1 to node 2, and from node 3 to node 4. For the first link, the interpolation functions are

[image: image67.wmf])

6

5

/(

)

4

3

2

(

5

4

3

5

2

4

3

5

4

3

6

F

F

F

F

F

F

F

F

F

F

+

+

+

+

=

[image: image68.wmf]4

7

F

F

=

.

For the second link, the interpolation functions are

[image: image69.wmf])

6

.

0

)(

6

(

)

6

.

0

)(

6

(

75

73

74

72

12

F

F

F

F

F

-

+

-

=

d

d

[image: image70.wmf])

5

.

1

)(

6

(

)

5

.

1

)(

6

(

75

73

74

72

17

F

F

F

F

F

-

-

+

-

-

=

d

d

.

The second link simply says that when the expression is surprise (FAP#72=6 or FAP#73=6), for FAP#12, the value is 0.6 times of expression intensity FAP#74 or FAP#75; for FAP#17, the value is –1.5 tims of FAP#74 or FAP#75.

After the FIT node given below, we explain each field separately.

FIT {

FAPs

[3 4 5 -1 6 7 –1 72 73 74 75 –1 12 17 -1]

Graph

[1 2 3 4]

numeratorTerms
[4 1 2 2]

denominatorTerms
[2 1 1 1]

numeratorExp

[1 0 0 0 1 0 0 0 1 1 2 0 0 1 0

0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1]

denominatorExp
[0 0 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0]

numeratorImpulse
[72 6 73 6 72 6 73 6]

numeratorCoefs
[1 2 3 4 1 0.6 0.6 -1.5 –1.5]

denominatorCoefs
[5 6 1 1 1]

}

FAPs [3 4 5 -1 6 7 –1 72 73 74 75 –1 12 17 -1]
Four sets of FAPs are defined, the first with FAPs number 3, 4, and 5, the second with FAPs number 6 and 7, the third with FAPs number 72, 73, 74, 75, and the fourth with FAPs number 12, 17.

Graph [1 2 3 4]

The first set is made to be the parent of the second set, so that FAPs number 6 and 7 will be determined by FAPs 3, 4, and 5. Also, the third set is made to be the parent of the fourth set, so that FAPs number 12 and 17 will be determined by FAPs 72, 73, 74, and 75.

numeratorTerms [4 1 2 2]

The rational functions that define F6 and F7 are selected to have 4 and 1 terms in their numerator, respectively. Also, the rational functions that define F12 and F17 are selected to have 2 and 2 terms in their numerator, respectively.

denominatorTerms [2 1 1 1]

The rational functions that define F6 and F7 are selected to have 2 and 1 terms in their denominator, respectively. Also, the rational functions that define F12 and F17 are selected to both have 1 term in their denominator.

numeratorExp [1 0 0 0 1 0 0 0 1 1 2 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1]

The numerator selected for the rational function defining F6 is F3 + 2F4 + 3 F5 + 4F3F42. There are 3 parent FAPs, and 4 terms, leading to 12 exponents for this rational function. For F7, the numerator is just F4, so there are three exponents only (one for each FAP). Values for F12 and F17 are derived in the same way.

denominatorExp [0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0]

The denominator selected for the rational function defining F6 is 5F5+ 6F3F4F5 , so there are 3 parent FAPs and 2 terms and hence, 6 exponents for this rational function. For F7, the denominator is just 1, so there are three exponents only (one for each FAP). Values for F12 and F17 are derived in the same way.

numeratorImpulse [72 6 73 6 72 6 73 6]

For the second link, all four numerator polynomial terms contain impulse function [image: image71.wmf])

6

(

72

-

F

d

 or [image: image72.wmf])

6

(

73

-

F

d

.

numeratorCoefs [1 2 3 4 1 0.6 0.6 -1.5 –1.5]

There is one coefficient for each term in the numerator of each rational function.

denominatorCoefs [5 6 1 1 1]

There is one coefficient for each term in the denominator of each rational function.

7.8.2.62 Fog

7.8.2.62.1 Node interface

Fog {

	
	exposedField
	SFColor
	color
	1 1 1

	
	exposedField
	SFString
	fogType
	"LINEAR"

	
	exposedField
	SFFloat
	visibilityRange
	0.0

	
	eventIn
	SFBool
	set_bind
	

	
	eventOut
	SFBool
	isBound
	

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.62.2 Functionality and semantics

The semantics of the Fog node are specified in ISO/IEC 14772-1:1998, subclause 6.19.

7.8.2.63 FontStyle

7.8.2.63.1 Node interface

FontStyle {

	
	exposeField
	MFString
	family
	["SERIF"]

	
	exposeField
	SFBool
	horizontal
	TRUE

	
	exposeField
	MFString
	justify
	["BEGIN"]

	
	exposeField
	SFString
	language
	""

	
	exposeField
	SFBool
	leftToRight
	TRUE

	
	exposeField
	SFFloat
	size
	1.0

	
	exposeField
	SFFloat
	spacing
	1.0

	
	exposeField
	SFString
	style
	"PLAIN"

	
	exposeField
	SFBool
	topToBottom
	TRUE

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.
7.8.2.63.2 Functionality and semantics

The semantics of the FontStyle node are specified in ISO/IEC 14772-1:1998, subclause 6.20, with the exception that the field types are exposedField and the semantics of the size and spacing fields are as follows.

The size field defines the size of the EM box of a font (The EM is a relative measure of the height of the glyphs in a font defined in a device- and resolution-independent font design units). This value corresponds to the distance between two adjacent baselines of unadjusted text, set in a particular font. The value of the size field is conveyed using the same metric units that are used for a scene description. If a scene uses pixel-based metrics, the value of the size field is specified in pixels, otherwise it specifies the size in meters.

The spacing field defines the distance between two adjacent lines of text as the product of size and spacing.

Special fonts provided in a font data stream can be accessed using the following syntax:
“OD:<odid>;FSID:<fsid>”, where :

· <odid> is the numeric value of the objectDescriptorID of the associated font data stream,

· <fsid> is the numeric value of the requested font subset as conveyed by fontSubsetID within the associated font data stream.
EXAMPLE:
fontStyle FontStyle {

family [“OD:104;FSID:33”]

size 25.0

style “BOLD”

}
7.8.2.64 Form

7.8.2.64.1 Node interface

Form {

	
	eventIn
	MFNode
	addChildren
	

	
	eventIn
	MFNode
	removeChildren
	

	
	exposedField
	MFNode
	children
	[]

	
	exposedField
	SFVec2f
	size
	-1, -1

	
	exposedField
	MFInt32
	groups
	[]

	
	exposedField
	MFString
	constraints
	[]

	
	exposedField
	MFInt32
	groupsIndex
	[]

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.64.2 Functionality and semantics

The Form node specifies the placement of its children according to relative alignment and distribution constraints. Distribution spreads objects regularly, with an equal spacing between them.

The children field shall specify a list of nodes that are to be arranged. The children’s position is implicit and order is important.

The size field specifies the width and height of the layout frame.

The groups field specifies the list of groups of objects on which the constraints can be applied. The children of the Form node are numbered from 1 to n, 0 being reserved for a reference to the form itself. A group is a list of child indices, terminated by a -1.

The constraints and the groupsIndex fields specify the list of constraints. One constraint is constituted by a constraint type from the constraints field, coupled with a set of group indices terminated by a –1 contained in the groupsIndex field. There shall be as many strings in constraints as there are –1-terminated sets in groupsIndex. The n-th constraint string shall be applied to the n-th set in the groupsIndex field. A value of 0 in the groupsIndex field references the form node itself, otherwise a groupsIndex field value is a 1-based index into the group field.

Constraints belong to two categories: alignment and distribution constraints.

Groups referred to in the tables below are groups whose indices appear in the list following the constraint type. When rank is mentioned, it refers to the rank in that list.

The semantics of the <s>, when present in the name of a constraint, is the following. It shall be a number, integer when the scene uses pixel metrics, and float otherwise, which specifies the space mentioned in the semantics of the constraint.

In case the form itself is specified in alignment constraint (group index 0), the form rectangle shall be used as the base of the alignment computation and other groups in the constraint list shall be aligned as specified by the constraint

Table 18 — Alignment Constraints

	Alignment Constraints
	Type Index
	Effect

	AL: Align Left edges
	“AL”
	The xmin of constrained groups becomes equal to the xmin of the left-most group.

	AH: Align centers Horizontally
	“AH”
	The (xmin+xmax)/2 of constrained groups becomes equal to the (xmin+xmax)/2 of the group of constrained groups as computed before this constraint is applied.

	AR: Align Right edges
	“AR”
	The xmax of constrained groups becomes equal to the xmax of the right-most group.

	AT: Align Top edges
	“AT”
	The ymax of all constrained groups becomes equal to the ymax of the top-most group.

	AV: Align centers Vertically
	“AV”
	The (ymin+ymax)/2 of constrained groups becomes equal to the (ymin+ymax)/2 of the group of constrained groups as computed before this constraint is applied.

	AB: Align Bottom edges
	“AB”
	The ymin of constrained groups becomes equal to the ymin of the bottom-most group.

	ALspace: Align Left edges by specified space
	“AL <s>”
	The xmin of the second and following groups become equal to the xmin of the first group plus the specified space.

	ARspace: Align Right edges by specified space
	“AR <s>”
	The xmax of the second and following groups becomes equal to the xmax of the first group minus the specified space.

	ATspace: Align Top edges by specified space
	“AT <s>”
	The ymax of the second and following groups becomes equal to the ymax of the first group minus the specified space.

	ABspace: Align Bottom edges by specified space
	“AB <s>”
	The ymin of the second and following groups become equal to the ymin of the first group plus the specified space.

The purpose of distribution constraints is to specify the space between groups, by making such pairwise gaps equal either to a given value or to the effect of filling available space.

Table 19 — Distribution Constraints

	Distribution Constraints
	Type Index
	Effect

	SH: Spread Horizontally
	“SH”
	The differences between the xmin of each group and the xmax of the previous one all become equal. The first and the last group shall be constrained horizontally already.

	SHin: Spread Horizontally in container
	“SHin”
	The differences between the xmin of each group and the xmax of the previous one all become equal.

References are the edges of the layout.

	SHspace: Spread Horizontally by specified space
	“SH <s>”
	The difference between the xmin of each group and the xmax of the previous one all become equal to the specified space. The first group is not moved.

	SV: Spread Vertically
	“SV”
	The differences between the ymin of each group and the ymax of the previous one all become equal. The first and the last group shall be constrained vertically already.

	SVin: Spread Vertically in container
	“SVin”
	The differences between the ymin of each group and the ymax of the previous one all become equal.

References are the edges of the layout.

	SVspace: Spread Vertically by specified space
	“SV <s>”
	The difference between the ymin of each group and the ymax of the previous one all become equal to the specified space. The first group is not moved.

All objects start at the center of the Form. The constraints are then applied in sequence.

EXAMPLE (Laying out five 2D objects.

Shape {

geometry Rectangle { size 50 55 } // draw the Form’s frame.

appearance use AppRect

}

Transform2D {

translation 10 10

children [

Form {

children [

Shape { use OBJ1 }

Shape { use OBJ2 }

Shape { use OBJ3 }

Shape { use OBJ4 }

Shape { use OBJ5 }

]

size 50 55

groups [1 -1 2 -1 3 -1 4 -1 5 -1 1 3 -1]

constraints [“SH” “SV” “AR” “AB” “AB 6”

“AB 7” “AL 7” “AT –2” “AR –2”]

groupsIndex [6 -1 1 -1 0 2 -1 0 2 -1 0 3 -1

 0 4 -1 0 4 -1 0 5 -1 0 5 -1]

}

]

}

}

The above constraints specify the following operations:

spread group 6 (objects 1 and 3) horizontally in container (object 0)

spread group 1 (object 1) vertically in container

align the right edges of groups 0 (container) and 2 (object 2)

align the bottom edges of the container and group 2 (object 2)

align the bottom edges of the container and group 3 (object 3) with spacing of size 6

align the bottom edges of the container and group 4 (object 4) with spacing of size 7

align the left edges of the container and group 4 (object 4) with spacing of size 7

align the top edges of the container and group 5 (object 5) with spacing size of -2

align the right edges of the container and group 5 (object 5) with spacing size of -2

[image: image73.png]

Figure 20 — Visual result of the Form node example

7.8.2.65 Group

7.8.2.65.1 Node interface

Group {

	
	eventIn
	MFNode
	addChildren
	

	
	eventIn
	MFNode
	removeChildren
	

	
	exposedField
	MFNode
	children
	[]

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.65.2 Functionality and semantics

The semantics of the Group node are specified in ISO/IEC 14772-1:1998, subclause 6.21. ISO/IEC 14496-1 does not support the bounding box parameters (bboxCenter and bboxSize).

Where multiple sub-graphs containing audio content (i.e. Sound nodes) occur as children of a Group node, the sounds shall be combined as described in 7.2.2.116.

7.8.2.66 Hierarchical3Dmesh

7.8.2.66.1 Node Interface

Hierarchical3DMesh {

	
	eventIn
	SFInt32
	triangleBudget
	

	
	exposedField
	SFFloat
	level
	

	
	field
	MFString
	url
	[]

	
	eventOut
	SFBool
	doneLoading
	

}

NOTE - For the binary encoding of this node see node coding tables in electronic attachment.
7.8.2.66.2 Functionality and Semantics

The Hierarchical3DMesh is used to represent multi-resolution polygonal models with multiple levels of detail (LOD), smooth transition (interpolation) between consecutive levels, and hierarchical transmission through an independent elementary stream encoded with the 3D Mesh Coding tools (see ISO/IEC 14496-2:2004). The implementation of the Hierarchical3DMesh requires two execution threads, the decoder thread, and the player thread.

The decoder thread decodes the compressed 3D Mesh bitstream from the elementary stream specified in the url field, and reconstructs the LOD hierarchy and the information necessary to implement the smooth transition property in internal data structures. How the LOD hierarchy is stored in the internal data structures, and whether all or a subset of the transmitted hierarchy is stored for player interaction is implementation-dependent.

The decoder thread is started immediately after instantiation. Once this thread finishes decoding the compressed 3D Mesh bitstream, it sends a done_loading eventOut with the value TRUE to the player, and dies.

The Hierarchical3DMesh is seen by the player as a read-only IndexedFaceSet node. That is, the player has access to the following fields for rendering purposes, but they can neither be explicitly instantiated, nor modified by routing events into them:

field
SFNode
color

field
SFNode
coord

field
SFNode
normal

field
SFNode
texCoord

field
SFBool

ccw

field
MFInt32
colorIndex

field
SFBool

colorPerVertex

field
SFBool

convex

field
MFInt32
coordIndex

field
SFFloat

creaseAngle

field
MFInt32
normalIndex

field
SFBool

normalPerVertex

field
SFBool

solid

field
MFInt32
texCoordIndex

The player thread is responsible for switching levels of detail responding to the set_level and triangleBudget eventIn events sent by the player. It does so by modifying the fields of the IndexedFaceSet seen by the player from information stored in the internal data structures build by the decoder thread.

The level exposedField (between 0 and 1) is used to (1) set a particular fractional level, (2) query the current level, (3) as an eventOut to notify the browser when a level was actually set and which level it is.

Optionally, the player can set the level of detail by sending a triangleBudget eventIn to the node. The value of the triangleBudget eventIn represents the desired number of triangles that the player assigns to the node. The node must select a level of detail that best matches the given budget.

7.8.2.67 ImageTexture

7.8.2.67.1 Node interface

ImageTexture {

	
	exposedField
	MFString
	url
	[]

	
	field
	SFBool
	repeatS
	TRUE

	
	field
	SFBool
	repeatT
	TRUE

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.67.2 Functionality and semantics

The semantics of the ImageTexture node are specified in ISO/IEC 14772-1:1998, subclause 6.22.

The url field specifies the data source to be used (see 7.1.1.2.7.1).

7.8.2.68 IndexedFaceSet

7.8.2.68.1 Node interface

IndexedFaceSet {

	
	eventIn
	MFInt32
	set_colorIndex
	

	
	eventIn
	MFInt32
	set_coordIndex
	

	
	eventIn
	MFInt32
	set_normalIndex
	

	
	eventIn
	MFInt32
	set_texCoordIndex
	

	
	exposedField
	SFNode
	color
	NULL

	
	exposedField
	SFNode
	coord
	NULL

	
	exposedField
	SFNode
	normal
	NULL

	
	exposedField
	SFNode
	texCoord
	NULL

	
	field
	SFBool
	ccw
	TRUE

	
	field
	MFInt32
	colorIndex
	[]

	
	field
	SFBool
	colorPerVertex
	TRUE

	
	field
	SFBool
	convex
	TRUE

	
	field
	MFInt32
	coordIndex
	[]

	
	field
	SFFloat
	creaseAngle
	0.0

	
	field
	MFInt32
	normalIndex
	[]

	
	field
	SFBool
	normalPerVertex
	TRUE

	
	field
	SFBool
	solid
	TRUE

	
	field
	MFInt32
	texCoordIndex
	[]

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.68.2 Functionality and semantics

The semantics of the IndexedFaceSet node are specified in ISO/IEC 14772-1:1998, subclause 6.23. Some restrictions on these semantics are described below.

The IndexedFaceSet node represents a 3D polygon mesh formed by constructing faces (polygons) from points specified in the coord field. If the coordIndex field is not NULL, IndexedFaceSet uses the indices in its coordIndex field to specify the polygonal faces by connecting together points from the coord field. An index of -1 shall indicate that the current face has ended and the next one begins. The last face may be followed by a -1. IndexedFaceSet shall be specified in the local coordinate system and shall be affected by parent transformations.

The coord field specifies the vertices of the face set and is specified by Coordinate node.

If the coordIndex field is not NULL, the indices of the coordIndex field shall be used to specify the faces by connecting together points from the coord field. An index of -1 shall indicate that the current face has ended and the next one begins. The last face may be followed by a -1.

If the coordIndex field is NULL, the vertices of the coord field are laid out in their respective order to specify one face.

If the color field is NULL and there is a Material node defined for the Appearance affecting this IndexedFaceSet, then the emissiveColor of the Material node shall be used to draw the faces.

In order to use 3D Mesh Coding (3DMC) with the IndexedFaceSet node, the use3DMeshCoding flag in BIFSv2Config should be set to TRUE, as described in subclause 8.5.3. This will require every IndexedFaceSet node in that elementary stream to be coded with 3DMC. Note that 3DMC does not support the use of DEF and USE within the fields of IndexedFaceSet. Also, an empty IndexedFaceSet should not be included in a stream where use3DmeshCoding flag is set to TRUE.

A scene with both 3DMC coded and BIFS coded IndexedFaceSet nodes can be created by sending the compressed and uncompressed nodes in separate streams.This can be done with an Inline node or by sending separate elementary streams in the same object descriptor. The latter approach has the advantage of keeping the nodes in the same name space, see the example in subclause 7.8 (3D Mesh Coding in BIFS scenes).
7.8.2.69 IndexedFaceSet2D

7.8.2.69.1 Node interface

IndexedFaceSet2D {

	
	eventIn
	MFInt32
	set_colorIndex
	

	
	eventIn
	MFInt32
	set_coordIndex
	

	
	eventIn
	MFInt32
	set_texCoordIndex
	

	
	exposedField
	SFNode
	color
	NULL

	
	exposedField
	SFNode
	coord
	NULL

	
	exposedField
	SFNode
	texCoord
	NULL

	
	field
	MFInt32
	colorIndex
	[]

	
	field
	SFBool
	colorPerVertex
	TRUE

	
	field
	SFBool
	convex
	TRUE

	
	field
	MFInt32
	coordIndex
	[]

	
	field
	MFInt32
	texCoordIndex
	[]

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.69.2 Functionality and semantics

The IndexedFaceSet2D node is the 2D equivalent of the IndexedFaceSet node as defined in 7.2.2.66. The IndexedFaceSet2D node represents a 2D shape formed by constructing 2D faces (polygons) from 2D vertices (points) specified in the coord field. The coord field contains a Coordinate2D node that defines the 2D vertices, referenced by the coordIndex field. The faces of an IndexedFaceSet2D node shall not overlap each other.

The detailed semantics are identical to those for the IndexedFaceSet node (see 7.2.2.66), restricted to the 2D case, and with the additional differences described here.

If the texCoord field is NULL, a default texture coordinate mapping is calculated using the local 2D coordinate system bounding box of the 2D shape, as follows. The X dimension of the bounding box defines the S coordinates, and the Y dimension defines the T coordinates. The value of the S coordinate ranges from 0 to 1, from the left end of the bounding box to the right end. The value of the T coordinate ranges from 0 to 1, from the lower end of the bounding box to the top end. Figure 21 illustrates the default texture mapping coordinates for a simple IndexedFaceSet2D shape consisting of a single polygonal face.

[image: image74.wmf](x0, y0)

(s=0.0, t=0.0)

(x0+Xsize, y0+Ysize)

(s=1.0, t=1.0)

Xsize

Ysize

 s = (x-x0)/Xsize

 t = (y-y0)/Ysize

Figure 21 — IndexedFaceSet2D default texture mapping coordinates for a simple shape

When the Material2D indicates "filled" the faces (polygons) are drawn and each face (polygon) is filled on the insides according to the following simple inside rule:

To determine if a point is inside draw an imaginary line through the entire polygon and each time the line crosses the polygon’s border increment a counter that was initialized to zero. When the count is odd the line is inside, when the count is even the line is outside.

When color field is non-null the color(s) are used either to fill the faces or to draw outlines of the faces depending on whether Material2D filled field is true or false respectively. In addition, if the filled field is true and the Material2D lineProps field is non-null then lines are drawn using the LineProperties lineColor.

When color field is null then the faces are filled and outlines are drawn using the rules listed in the Material2D node, see 7.2.2.80.2.

In all cases that outlines are drawn the lines are drawn using the lineStyle and width field values from the Material2D lineProps, whether explicitly specified, or default values when the field is null.

7.8.2.70 IndexedLineSet

7.8.2.70.1 Node interface

IndexedLineSet {

	
	eventIn
	MFInt32
	set_colorIndex
	

	
	eventIn
	MFInt32
	set_coordIndex
	

	
	exposedField
	SFNode
	color
	NULL

	
	exposedField
	SFNode
	coord
	NULL

	
	field
	MFInt32
	colorIndex
	[]

	
	field
	SFBool
	colorPerVertex
	TRUE

	
	field
	MFInt32
	coordIndex
	[]

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.70.2 Functionality and semantics

The semantics of the IndexedLineSet node are specified in ISO/IEC 14772-1:1998, subclause 6.24.

7.8.2.71 IndexedLineSet2D

7.8.2.71.1 Node interface

IndexedLineSet2D {

	
	eventIn
	MFInt32
	set_colorIndex
	

	
	eventIn
	MFInt32
	set_coordIndex
	

	
	exposedField
	SFNode
	color
	NULL

	
	exposedField
	SFNode
	coord
	NULL

	
	field
	MFInt32
	colorIndex
	[]

	
	field
	SFBool
	colorPerVertex
	TRUE

	
	field
	MFInt32
	coordIndex
	[]

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.71.2 Functionality and semantics

The IndexedLineSet2D node specifies a collection of lines or polygons.

The coord field shall list the vertices of the lines. When coordIndex is empty, the order of vertices shall be assumed to be sequential in the coord field. Otherwise, the coordIndex field determines the ordering of the vertices, with an index of -1 representing an end to the current polyline.

If the color field is not NULL, it shall contain a Color node, and the colors are applied to the line(s) as with the IndexedLineSet node (see 7.2.2.68).

The lines shall be drawn using the LineProperties node (whether explicit or default) attributes of lineStyle and width. If the IndexedLineSet2D color field is null then the Material2D is used to set the color of all the lines and emissiveColor shall be used unless the lineProps field is non-null when the LineProperties lineColor shall be used instead.
7.8.2.72 Inline

7.8.2.72.1 Node interface

Inline {

	
	exposedField
	MFString
	url
	[]

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.72.2 Functionality and semantics

The semantics of the Inline node are specified in ISO/IEC 14772-1:1998, subclause 6.25. ISO/IEC 14496-1 does not support the bounding box parameters (bboxCenter and bboxSize).

The url field specifies the data source to be used (see 7.1.1.2.7.1). The external source must contain a valid scene description stream.

7.8.2.73 InputSensor

7.8.2.73.1 Node interface

InputSensor {

	
	exposedField
	SFBool
	enabled
	TRUE

	
	exposedField
	SFString
	buffer
	""

	
	exposedField
	MFString
	url

	""

	
	eventOut
	SFTime
	eventTime
	

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.73.2 Functionality and semantics

The InputSensor node is used to add entry points for user inputs into a BIFS scene. It allows user events to trigger updates of the value of a field or the value of an element of a multiple field of an existing node.

Input devices are modelled as devices that generate frames of user input data. A device data frame (DDF) consists in a list of values of any of the allowed types for node fields. Values from DDFs are used to update the scene. For example, the DDF definition for a simple mouse is:

MouseDataFrame [[

SFVec2f
cursorPosition

SFBool
singleButtonDown

]]

NOTE — The encoding of the DDF is implementation-dependent. Devices may send only complete DDF or sometimes subsets of DDF as well.

The buffer field is a buffered bit string which contains a list of BIFS-Commands in the form of a CommandFrame (see 8.6.2). Allowed BIFS-Commands are the following: FieldReplacement (see 8.6.21), IndexedValueReplacement (see 8.6.22) and NodeDeletion with a NULL node argument (see 8.7.3.2). The buffer shall contain a number of BIFS-Commands that matches the number of fields in the DDF definition for the attached device. The type of the field replaced by the nth command in the buffer shall match the type of the nth field in the DDF definition.

The url field specifies the data source to be used (see 7.1.1.2.7.1). The url field shall point to a stream of type UserInteractionStream, which “access units” are DDFs.

When the enabled is set to TRUE, upon reception of a DDF, each value (in the order of the DDF definition) is placed in the corresponding replace command according to the DDF definition, then the replace command is executed. These updates are not time-stamped; they are executed at the time of the event, assuming a zero-decoding time. It is not required that all the replace commands be executed when the buffer is executed. Each replace command in the buffer can be independently triggered depending on the data present in the current DDF. Moreover, the presence in the buffer field of a NodeDeletion command at the nth position indicates that the value of the DDF corresponding to the nth field of the DDF definition shall be ignored.

The eventTime eventOut carrying the current time is generated after a DDF has been processed.

EXAMPLE (A typical use of this node is to handle the inputs of a keyboard.

7.8.2.73.3 Adding New Devices and Interoperability

In order to achieve interoperability when defining new devices, the way to use InputSensor with the new device needs to be specified. The following steps are necessary:

· define the content of the DDF definition: this sets the order and type of the data coming from the device and then mandates the content of the InputSensor buffer.

· define the deviceName string which will designate the new device.
· define the optional devSpecInfo of UIConfig.

NOTE — the bitstream syntax does not need to change.
7.8.2.73.4 Keyboard Mappings

The KeySensor mapping is defined as follows.

The KeySensor DDF definition is:

KeySensorDataFrame [[

 SFInt32 keyPressed

 SFInt32 keyReleased

 SFInt32 actionKeyPressed

 SFInt32 actionKeyReleased

 SFBool shiftKeyChanged

 SFBool controlKeyChanged

 SFBool altKeyChanged

]]

keyPress and keyRelease events are generated as keys which produce characters are pressed and released on the keyboard. The value of these events is a string of length 1 containing the single UTF-8 character associated with the key pressed. The set of UTF-8 characters that can be generated will vary between different keyboards and different implementations.

actionKeyPress and actionKeyRelease events are generated as 'action' keys are pressed and released on the keyboard. The value of these events are:

	 KEY
	 VALUE
	KEY
	VALUE
	KEY
	VALUE

	 HOME
	13
	END
	14
	PGUP
	15

	 PGDN
	16
	UP
	17
	DOWN
	18

	 LEFT
	19
	RIGHT
	20
	F1-F12
	1-12

shiftKeyChanged, controlKeyChanged, and altKeyChanged events are generated as the shift, alt and control keys on the keyboard are pressed and released. Their value is TRUE when the key is pressed and FALSE when the key is released.

The KeySensor UIConfig.devSpecInfo is empty.

The KeySensor deviceName is “KeySensor”

The StringSensor mapping is defined as follows.

The StringSensor DDF definition is:

StringSensorDataFrame [[

 SFString enteredText

 SFString finalText

]]

The StringSensor UIConfig.devSpecInfo contains 2 UTF-8 strings: the first one is called terminationCharacter and the second one is called deletionCharacter. When no devSpecInfo is provided, the default terminationCharacter is ‘\r’ and the default deletionCharacter is ‘\b’.

enteredText events are generated as keys which produce characters are pressed on the keyboard. The value of this event is the UTF-8 string entered including the latest character struck. The set of UTF-8 characters that can be generated will vary between different keyboards and different implementations. If deletionCharacter is provided, the previously entered character in the enteredText is removed. The deletionCharacter field contains a string comprised of one UTF-8 character. It may be a control character. If the deletionCharacter is the empty string, no deletion operation is provided.

The finalText event is generated whenever a sequence of keystrokes are recognized which match the keys in the terminationText string. When this recognition occurs, the enteredText is moved to the finalText and the enteredText is set to the empty string. This causes both a finalText event and an enteredText event to be generated.

The StringSensor deviceName is “StringSensor”.

7.8.2.73.5 Mouse Mappings

The Mouse mapping is defined as follows.

The Mouse DDF definition is:

MouseDataFrame [[

 SFVec2f position

 SFBool leftButtonDown

 SFBool middleButtonDown

 SFBool rightButtonDown

 SFFloat wheel

]]

position is specified in screen coordinates, pixels or meter as specified in the BifsConfig. leftButtonDown becomes true when the left button is down, and false otherwise. Likewise for the middle and right buttons respectively. wheel values are: 0 when the wheel is inactive, +1 (resp. –1) when the wheel is moved forward (resp. backward) by one delta.

The Mouse UIConfig.devSpecInfo is empty.

The Mouse deviceName is “Mouse”.

NOTE — This mouse mapping can be used with mice with 1 button, 2 buttons or 3 buttons, and possibly a wheel. DDF fields for missing buttons or wheel are simply never activated.
7.8.2.74 KeyNavigator
7.8.2.74.1 Node interface

KeyNavigator {

	
	eventIn
	SFBool
	setFocus
	

	
	exposedField
	SFNode
	sensor
	NULL

	
	exposedField
	SFNode
	left
	NULL

	
	exposedField
	SFNode
	right
	NULL

	
	exposedField
	SFNode
	up
	NULL

	
	exposedField
	SFNode
	down
	NULL

	
	exposedField
	SFNode
	select
	NULL

	
	exposedField
	SFNode
	quit
	NULL

	
	exposedField
	SFFloat
	step
	0

	
	eventOut
	SFBool
	focusSet
	

}

NOTE
For the binary encoding of this node see node coding tables in electronic attachment.
7.8.2.74.2 Functionality and semantics
The KeyNavigator node enables simple, pre-defined 2D navigation in the scene. Each KeyNavigator is associated with an existing sensor node (TouchSensor, PlaneSensor2D...) through the sensor field. The first KeyNavigator node found in the scene is used to determine the initial focusable object. If the attached sensor node is NULL or is disabled, the focus is not attached to any visual part of the scene. Focus can be changed by using the navigation pad of the terminal as follows:

· Pressing the left key will move focus to the left KeyNavigator node

· Pressing the right key will move focus to the right KeyNavigator node

· Pressing the up key will move focus to the up KeyNavigator node

· Pressing the down key will move focus to the down KeyNavigator node

· Pressing the validation key (OK, Enter, Select...) will move focus to the select KeyNavigator node

· Pressing the escape key (escape, back, end call...) will move focus to the quit KeyNavigator node

· At any time, a KeyNavigator can be focused by sending the node a setFocus eventIn.

Whenever a KeyNavigator node receives the focus, it triggers a focusSet = true eventOut. When the KeyNavigator node loses the focus, it triggers a focusSet = false eventOut.

A pointing device sensor is controlled through the keypad as indicated in , with directions given in the local coordinate system of the sensor node. Processing of keystrokes by the KeyNavigator node is inhibited while the sensor is active.

NOTE
The attribution of keys for activation and deactivation of the associated sensor is implementation specific.

The step field indicates the horizontal or vertical mouse displacement to simulate when using directional keys, and indicates the displacement in the sensor local coordinate system. If the value of step is less than or equal to 0, the mouse displacement is implementation specific.

Table 0\IF >= 1 "A."

SEQ Table
20
 — Mapping of keys for BIFS sensor nodes

	Sensor Type
	focusIn
	focusOut
	LEFT
	RIGHT
	UP
	DOWN

	TouchSensor
	isOver=true
	isOver=false
	N/A
	N/A
	N/A
	N/A

	PlaneSensor2D
	N/A
	N/A
	Left move
	Right move
	up move
	Down move

	DiscSensor
	N/A
	N/A
	Counter clockwise move
	Clockwise move
	N/A
	N/A

	PlaneSensor
	N/A
	N/A
	Left move
	Right move
	up move
	Down move

	CylinderSensor
	N/A
	N/A
	Counter clockwise move
	Clockwise move
	N/A
	N/A

	SphereSensor
	N/A
	N/A
	I/S
	I/S
	I/S
	I/S

N/A: Non-Applicable - I/S: Implementation Specific.
NOTE 1
Authors should be aware that when activating a TouchSensor node, the focus might automatically be moved to the select field of the associated key navigator.

NOTE 2
A terminal handling both key navigation and pointing device should automatically manage the active KeyNavigator node. When the pointing device moves over an active sensor associated with a KeyNavigator node, this KeyNavigator node should become the current focused KeyNavigator node.

NOTE 3
A terminal should trigger the key events on key down and handle key repeat, when the key is not released for some period of time.
7.8.2.75 Layer2D

7.8.2.75.1 Node interface

Layer2D {

	
	eventIn
	MFNode
	addChildren
	

	
	eventIn
	MFNode
	removeChildren
	

	
	exposedField
	MFNode
	children
	NULL

	
	exposedField
	SFVec2f
	size
	-1, -1

	
	exposedField
	SFNode
	background
	NULL

	
	exposedField
	SFNode
	viewport
	NULL

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.75.2 Functionality and semantics

The Layer2D node is a transparent rendering rectangle region on the screen where a 2D scene is drawn. The rectangle always faces the viewer of the scene. Layer2D and Layer3D nodes enable the composition of multiple 2D and 3D scenes (see Figure 22).

EXAMPLE (This allows users to have 2D interfaces to a 2D scene, or 3D interfaces to a 2D scene, or to view a 3D scene from different viewpoints in the same scene.

The addChildren eventIn specifies a list of 2D nodes that shall be added to the Layer2D’s children field.

The removeChildren eventIn specifies a list of 2D nodes that shall be removed from the Layer2D's children field.

The children field may contain any 2D children nodes that define a 2D scene. Layer nodes are considered to be 2D objects within the scene. The layering of the 2D and 3D layers is specified by any relevant transformations in the scene graph. The Layer2D node is composed with its center at the origin of the local coordinate system and shall not be present in 3D contexts (see 7.1.1.2.1).

The size parameter shall be a floating point number that expresses the width and height of the layer in the units of the local coordinate system. In case of a layer at the root of the hierarchy, the size is expressed in terms of the default 2D coordinate system (see 7.1.1.2.2). A size of -1 in either direction, means that the Layer2D node is not specified in size in that direction, and that the size is adjusted to the size of the parent layer, or the global rendering area dimension if the layer is on the top of the hierarchy. In the case where a 2D scene or object is shared between several Layer2D nodes, the behaviours are defined exactly as for objects that are multiply referenced using the DEF/USE mechanism. A sensor triggers an event whenever the sensor is triggered in any of the Layer2D in which it is contained. The behaviors triggered by the shared sensors as well as other behaviors that apply on objects shared between several layers apply on all layers containing these objects.

A Layer2D stores the stack of bindable children nodes that can affect the children scene of the layer. All relevant bindable children nodes have a corresponding exposedField in the Layer2D node. During presentation, these fields take the value of the currently bound bindable children node for the scene that is a child of the Layer2D node. Initially, the bound bindable children node is the corresponding field value of the Layer2D node if it is defined. If the field is undefined, the first bindable children node defined in the child scene will be bound. When the binding mechanism of the bindable children node is used (set_bind field set to TRUE), all the parent layers containing this node set the corresponding field to the current bound node value. It is therefore possible to share scenes across layers, and to have different bound nodes active, or to trigger a change of bindable children node for all layers containing a given bindable children node. For 2D scenes, the background field specifies the bound Background2D node. The viewport field is reserved for future extensions for 2D scenes.

All the 2D objects contained in a single Layer2D node form a single composed object. This composed object is considered by other elements of the scene to be a single object. In other words, if a Layer2D node, A, is the parent of two objects, B and C, layered one on top of the other, it will not be possible to insert a new object, D, between B and C unless D is added as a child of A.

Layers are transparent to user input if the background field is set to NULL. If the background field is specified, any transparent part of the background will also let user input through to lower layers.
EXAMPLE (In the following example, the same scene is used in two different Layer2D nodes. However, one scene is initially viewed with background b1, the other with background b2. When the user clicks on the button1 object, all layers are set with background b3.

OrderedGroup{

children [

Transform2D { # A set of transforms to translate and scale the layer

...

children [

Layer2D {

background DEF b1 Background2D {…}

It is possible to define the bindable children node directly in

the corresponding field

children [

DEF MYSCENE Transform2D {

children [

DEF b3 Background2D {…} # A shared background

DEF TS TouchSensor{}

DEF button1 Shape{..} # The button 1

The objects of my scene

]

}

]

}

]

}

Transform2D {

Another set of transforms to translate and scale the layer

children [

Layer2D {

children [

DEF b2 Background2D{…} # It is possible to define the bindable

children node in the children field.

b2 is initially bound sicne it is the

first background 2D in the children

field OF the parent Layer2d

Transform2D USE MYSCENE

]

}

]

}

]

}

ROUTE TS.isActive TO b3.set_bind

7.8.2.76 Layer3D

7.8.2.76.1 Node interface

Layer3D {

	
	eventIn
	MFNode
	addChildren
	

	
	eventIn
	MFNode
	removeChildren
	

	
	exposedField
	MFNode
	children
	NULL

	
	exposedField
	SFVec2f
	size
	-1, -1

	
	exposedField
	SFNode
	background
	NULL

	
	exposedField
	SFNode
	fog
	NULL

	
	exposedField
	SFNode
	navigationInfo
	NULL

	
	exposedField
	SFNode
	viewpoint
	NULL

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.76.2 Functionality and semantics

The Layer3D node is a transparent, rectangular rendering region where a 3D scene is drawn. The Layer3D node may be composed in the same manner as any other 2D node. It represents a rectangular region on the screen facing the viewer. The basic Layer3D semantics are identical to those for Layer2D (see 7.2.2.72) but with 3D (rather than 2D) children. In general, Layer3D nodes shall not be present in 3D co-ordinate systems. The permitted exception to this in when a Layer3D node is the "top" node that begins a 3D scene or context (see 7.1.1.2.1).

The following fields specify bindable children nodes for Layer3D:

background for Background and Background2D nodes

fog for Fog nodes

navigationInfo for NavigationInfo nodes

viewpoint for Viewpoint nodes

The viewpoint field can be used to allow the viewing of the same scene with several viewpoints.

NOTE — The rule for transparency to behaviors is also true for navigation in Layer3D. Authors should carefully design the various Layer3D nodes in a given scene to take account of navigation. Overlapping several Layer3D with navigation turned on may trigger strange navigation effects which are difficult to control by the user. Unless it is a feature of the content, navigation can be easily turned off using the NavigationInfo type field, or Layer3D’s can be designed not to be superimposed.

[image: image75.wmf](a)

(b)

(c)

Figure 22 — Three Layer2D and Layer3D examples composed in a 2D space.

Layer2D’s are indicated by a continuous line; Layer3D’s by a dashed line. Image (a) shows a Layer3D containing a 3D view of the earth on top of a Layer2D composed of a video, a logo and a text. Image (b) shows a Layer3D of the earth with a Layer2D containing various icons on top. Image (c) shows 3 views of a 3D scene with 3 non-overlapping Layer3D.

7.8.2.77 Layout

7.8.2.77.1 Node interface

Layout {

	
	eventIn
	MFNode
	addChildren
	

	
	eventIn
	MFNode
	removeChildren
	

	
	exposedField
	MFNode
	children
	[]

	
	exposedField
	SFBool
	wrap
	FALSE

	
	exposedField
	SFVec2f
	size
	-1, -1

	
	exposedField
	SFBool
	horizontal
	TRUE

	
	exposedField
	MFString
	justify
	["BEGIN"]

	
	exposedField
	SFBool
	leftToRight
	TRUE

	
	exposedField
	SFBool
	topToBottom
	TRUE

	
	exposedField
	SFFloat
	spacing
	1.0

	
	exposedField
	SFBool
	smoothScroll
	FALSE

	
	exposedField
	SFBool
	loop
	FALSE

	
	exposedField
	SFBool
	scrollVertical
	TRUE

	
	exposedField
	SFFloat
	scrollRate
	0.0

	
	exposedField
	SFInt32
	scrollMode
	0

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.77.2 Functionality and semantics

The Layout node specifies the placement (layout) of its children in various alignment modes as specified. For text children, this is by their fontStyle fields, and for non-text children by the fields horizontal, justify, leftToRight, topToBottom and spacing present in this node. It also provides the functionality of scrolling its children horizontally or vertically.

The children field shall specify a list of nodes that are to be arranged. Note that the children’s position is implicit and that order is important.

The wrap field specifies whether children are allowed to wrap to the next row (or column in vertical alignment cases) after the edge of the layout frame is reached. If wrap is set to TRUE, children that would be positioned across or past the frame boundary are wrapped (vertically or horizontally) to the next row or column. If wrap is set to FALSE, children are placed in a single row or column that is clipped if it is larger than the layout.

When wrap is TRUE, if text objects larger than the layout frame need to be placed, these texts shall be broken down into pieces that are smaller than the layout. The preferred places for breaking text are spaces, tabs, hyphens, carriage returns and line feeds. When there is no such character in the texts to be broken, the texts shall be broken at the last character that is entirely placed in the layout frame.

The size field specifies the width and height of the layout frame.

The horizontal, justify, leftToRight, topToBottom and spacing fields have the same meaning as in the FontStyle node (see 7.2.2.61).

The scrollRate field specifies the time needed in seconds to scroll the layout in the given direction. For example, a layout of 200x100 pixels scrolling vertically with a scrollRate value of 2 will translate its objects vertically of 100/2 times the simulation frame duration in seconds (eg, 1.65 pixels at 30 fps). When scrollRate is zero, then there is no scrolling and the remaining scroll-related fields are ignored.
The smoothScroll field selects between smooth and line-by-line/character-by-character scrolling of children. When TRUE, smooth scroll is applied.

The loop field specifies continuous looping of children when set to TRUE. When loop is FALSE, child nodes that have scrolled out of the scroll layout frame will be deleted. When loop is TRUE, then the set of children scrolls continuously, wrapping around when they have scrolled out of the layout area. If the set of children is smaller than the layout area, some empty space will be scrolled with the children. If the set of children is bigger than the layout area, then only some of the children will be displayed at any point in time. When scrollVertical is TRUE and loop is TRUE and scrollRate is negative (top-to-bottom scrolling), then the bottom-most object will reappear on top of the layout frame as soon as the top-most object has scrolled entirely into the layout frame.

The scrollVertical field specifies whether the scrolling is done vertically or horizontally. When set to TRUE, the scrolling rate shall be interpreted as a vertical scrolling rate and a positive rate shall be interpreted as scrolling towards the top. When set to FALSE, the scrolling rate shall be interpreted as a horizontal scrolling rate and a positive rate shall mean scrolling to the right.

Objects are placed one by one, in the order they are given in the children list. Text objects are placed according to the horizontal, justify, leftToRight, topToBottom and spacing fields of their FontStyle node. Other objects are placed according to the same fields of the Layout node. The reference point for the placement of an object is the reference point as left by the placement of the previous object in the list.

In the case of vertical alignment, objects may be placed with respect to their top, bottom, center or baseline. The baseline of non-text objects is the same as their bottom.

Spacing shall be coherent only within sequences of objects with the same orientation (same value of horizontal field). The notions of top edge, bottom edge, base line, vertical center, left edge, right edge, horizontal center, line height and row width shall have a single meaning over coherent sequences of objects. This means that over a sequence of objects where horizontal is TRUE, topToBottom is TRUE and spacing has the same value, then the vertical size of the lines is computed as follows:

maxAscent is the maximum of the ascent on all text objects.

maxDescent is the maximum of the descent on all text objects.

maxHeight is the maximum height of non-text objects.

If the minor mode in the justify field of the layout is FIRST (baseline alignment), then the non-text objects shall be aligned on the baseline, which means the vertical size of the line is:

size = max(maxAscent, maxHeight) + maxDescent

If the minor mode in the justify field of the layout is any other value, then the non-text objects shall be aligned with respect to the top, bottom or center, which means the size of the line is:

size = max(maxAscent+maxDescent, maxHeight)

The first line is placed with its top edge flush to the top edge of the layout; the base line is placed maxAscent units lower, and the bottom edge is placed maxDescent units lower. The center line is in the middle, between the top and bottom edges. The top edges of subsequent lines are placed at regular intervals of value spacing (size.

The other cases can be inferred from the above description. When the orientation is vertical, then the baseline, ascent and descent are not useful for the computation of the width of the rows. All objects only have a width. Column size is the maximum width over all objects.

EXAMPLE (
If wrap is FALSE:

a) If horizontal is TRUE, then objects are placed in a single line. The layout direction is given by the leftToRight field. Horizontal alignment in the row is done according to the first argument in justify (major mode = flush left, flush right, centered), and vertical alignment is done according to the second argument in justify (minor mode = flush top, flush bottom, flush baseline, centered). The topToBottom field is meaningless in this configuration.

b) If horizontal is FALSE, then objects are placed in a single column. The layout direction is given by the topToBottom field. Vertical alignment in the column is done according to the first argument in justify (major mode), and horizontal alignment is done according to the second argument in justify (minor mode).

If wrap is TRUE:

a) If horizontal is TRUE, then objects are placed in multiple lines. The layout direction is given by the leftToRight field. The wrapping direction is given by the topToBottom field. Horizontal alignment in the lines is done according to the first argument in justify (major mode), and vertical alignment is done according to the second argument in justify (minor mode).

b) If horizontal is FALSE, then objects are placed in multiple column. The layout direction is given by the topToBottom field. The wrapping direction is given by the leftToRight field. Vertical alignment in the columns is done according to the first argument in justify (major mode), and horizontal alignment is done according to the second argument in justify (minor mode).

If scrollRate is zero, then the Layout is static and positions change only when children are modified.

If scrollRate is non-zero, then the position of the children is updated according to the values of scrollVertical, scrollRate, smoothScroll and loop.

If scrollVertical is TRUE, then if scrollRate is positive, then the scrolling direction is left-to-right, and vice-versa.

If scrollVertical is FALSE, then if scrollRate is positive, then the scrolling direction is bottom-to-top, and vice-versa.

The scrollMode field specifies the scrolling mode. The allowed values are –1, 0 and +1 and there meaning is respectively scroll-in, scroll-in-out, scroll-out.
Given that all the objects to be laid out are positioned, the bounding box (BB) of these objects is computed, and the scrollMode field values are interpreted as follows:

	scrollMode
	scrollVertical = FALSE
	scrollVertical = TRUE

	
	scrollRate < 0
	scrollRate > 0
	scrollRate < 0
	scrollRate > 0

	-1 (scroll-in)

Objects are initially translated so that :

	left edge of BB is aligned with right edge of the layout frame (LF)
	right edge of BB is aligned with left edge of LF
	bottom edge of BB is aligned with top edge
	top edge of BB is aligned with bottom edge

	1 (scroll-out):

Objects are scrolled until:

	right edge of BB is aligned with left edge of LF
	left edge of BB is aligned with right edge of LF
	top edge of BB is aligned with bottom edge
	bottom edge of BB is aligned with top edge

Value 0 of the scrollMode field corresponds to the combination of both scroll-in and scroll-out modes.

If the major mode in the justify field of the layout is "JUSTIFY", then the layout of children starts at the "BEGIN" edge of the layout and ends at the "END" edge of the layout with space adjustments if needed. "BEGIN" and "END" are defined in the FontStyle node semantics. If wrap is false and the line is larger than the layout frame, the terminal may alter the text to indicate it has been truncated.
7.8.2.78 LineProperties

7.8.2.78.1 Node interface

LineProperties {

	
	exposedField
	SFColor
	lineColor
	0, 0, 0

	
	exposedField
	SFInt32
	lineStyle
	0

	
	exposedField
	SFFloat
	width
	1.0

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.78.2 Functionality and semantics

The LineProperties node specifies line parameters used in 2D and 3D rendering.

The lineColor field specifies the color with which to draw the lines and outlines of 2D geometries.

The lineStyle field shall contain the line style type to apply to lines. The allowed values are:

Table 22 — lineStyle description

	lineStyle
	Description

	0
	solid

	1
	dash

	2
	dot

	3
	dash-dot

	4
	dash-dash-dot

	5
	dash-dot-dot

The terminal shall draw each line style in a manner that is distiguishable from each other line style.

The width field determines the width, in the local coordinate system, of rendered lines. The width is not subject to the local transformation.
The cap and join style to be used are as follows. The wide lines should end with a square form flush with the end of the lines. The join style is described in Figure 23.

[image: image76.wmf]width

Figure 23 — Cap and join style for LineProperties
7.8.2.79 LinearGradient

7.8.2.79.1 Node interface

LinearGradient {

	
	exposedField
	SFNode
	transform
	NULL

	
	exposedField
	SFVec2f
	startPoint
	0 0

	
	exposedField
	SFVec2f
	endPoint
	1 0

	
	exposedField
	SFInt32
	spreadMethod
	0

	
	exposedField
	MFFloat
	key
	[]

	
	exposedField
	MFColor
	keyValue
	[]

	
	exposedField
	MFFloat
	opacity
	[1]

}

NOTE - For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.79.2 Functionality and semantics

The LinearGradient node is a texture node that generates a texture procedurally.

The
startPoint and endPoint fields define the gradient vector, as a percentage of the bounds of the object.

The key field represents a location along the gradient vector, expressed in percentage of its length. At each location, an RGB color is specified in keyValue. opacity for each color value can be specified. By default, colors are 100% opaque. One value of opacity can be specified meaning all color values have the same opacity, else an opacity must be specified for each color value.

The transform field is an optional parameter that defines how the coordinate system of the gradient can be transformed from the gradient coordinate system onto the target coordinate system. By default, the gradient coordinate system is the same as the object it is applied to. This allows effects such as skewing the gradient. Only a 2D Transformation node (e.g. Transform2D, TransformMatrix2D) can be present here.

The spreadMethod field can be pad (0), reflect (1), or repeat (2). It indicates what happens if the gradient starts or ends inside the bounds of the object. Pad means that the last color is used, reflect says to reflect the gradient pattern start-to-end, end-to-start, … repeatedly until the target object is filled, and repeat says to repeat the gradient pattern start-to-end, start-to-end, … until the target object is filled.

The opacity field for each color value can be specified. By default, colors are 100% opaque. One value of opacity can be specifed meaning all color values have the same opacity, else an opacity must be specified for each color value.

EXAMPLE

Shape {

geometry Rectangle { size 3 1 }

appearance Appearance {

material GradientLinear {

key[0 1]

keyValue [0 1 0, 1 1 0]

}

}

[image: image77.png]

7.8.2.80 ListeningPoint

7.8.2.80.1 Node interface

ListeningPoint {

	
	eventIn
	SFBool
	set_bind
	

	
	exposedField
	SFBool
	jump
	TRUE

	
	exposedField
	SFRotation
	orientation
	0, 0, 1, 0

	
	exposedField
	SFVec3f
	position
	0, 0, 10

	
	field
	SFString
	description
	""

	
	eventOut
	SFTime
	bindTime
	

	
	eventOut
	SFBool
	isBound
	

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.80.2 Functionality and semantics

The ListeningPoint node specifies the reference position and orientation for spatial audio presentation. If there is no ListeningPoint given in a scene, the apparent listener position is slaved to the active ViewPoint.

The semantics are identical to those of the Viewpoint node (see 7.2.2.136).

7.8.2.81 LOD

7.8.2.81.1 Node interface

LOD {

	
	exposedField
	MFNode
	level
	[]

	
	field
	SFVec3f
	center
	0, 0, 0

	
	field
	MFFloat
	range
	[]

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.81.2 Functionality and semantics

The semantics of the LOD node are specified in ISO/IEC 14772-1:1998, subclause 6.26.

7.8.2.82 Material

7.8.2.82.1 Node interface

Material {

	
	exposedField
	SFFloat
	ambientIntensity
	0.2

	
	exposedField
	SFColor
	diffuseColor
	0.8, 0.8, 0.8

	
	exposedField
	SFColor
	emissiveColor
	0, 0, 0

	
	exposedField
	SFFloat
	shininess
	0.2

	
	exposedField
	SFColor
	specularColor
	0, 0, 0

	
	exposedField
	SFFloat
	transparency
	0.0

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.82.2 Functionality and semantics

The semantics of the Material node are specified in ISO/IEC 14772-1:1998, subclause 6.27.

7.8.2.83 Material2D

7.8.2.83.1 Node interface

Material2D {

	
	exposedField
	SFColor
	emissiveColor
	0.8, 0.8, 0.8

	
	exposedField
	SFBool
	filled
	FALSE

	
	exposedField
	SFNode
	lineProps
	NULL

	
	exposedField
	SFFloat
	transparency
	0.0

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.83.2 Functionality and semantics

The Material2D node specifies the characteristics of a rendered 2D Shape. Material2D shall be used as the material field of an Appearance node in certain circumstances (see 7.2.2.6.2)
The emissiveColor field specifies the color of the 2D Shape. If the shape is not filled, the interior is not drawn.

The filled field specifies whether rendered nodes are filled or drawn using lines. This field affects IndexedFaceSet2D, Circle and Rectangle nodes. If the rendered node is not filled the line shall be drawn centered on the rendered node outline. That means that half the line will fall inside the rendered node, and the other half outside.

The lineProps field contains information about line rendering in the form of a LineProperties node. When filled is true, if lineProps is null, no outline is drawn; if lineProps is non-null, an outline is drawn using lineProps information. When filled is false and lineProps is null, an outline is drawn with default width (1), default style (solid) and as line color the emissive color of the Material2D. When filled is false and lineProps is defined, line color, width and style are taken from the lineProps node. See 7.2.2.75 for more information on LineProperties.

The transparency field specifies the transparency of the 2D Shape and applies both to the filled interior as well as to the outline when drawn.
The part of the line which lies outside of the geometry shall not be sensitive to pointer activity.

When mapping texture onto a geometry and an outline is to be drawn, the texture shall first mapped onto the geometry, where the geometry dimensions are those without an outline. Then after the geometry is textured the outline shall be drawn.
7.8.2.84 MaterialKey

7.8.2.84.1 Node interface

MaterialKey {

	
	exposedField
	SFBool
	isKeyed
	TRUE

	
	exposedField
	SFBool
	isRGB
	TRUE

	
	exposedField
	SFColor
	keyColor
	0, 0, 0

	
	exposedField
	SFFloat
	lowThreshold
	0

	
	exposedField
	SFFloat
	highThreshold
	0

	
	exposedField
	SFFloat
	transparency
	0

}

NOTE - For the binary encoding of this node see node coding tables in electronic attachment.
7.8.2.84.2 Functionality and semantics

The MaterialKey node can be used in the material field of the Appearance node, which only appears in the appearance field of a Shape node. It can be used when the texture of the Shape node is defined by either an image (ImageTexture or PixelTexture) or a video sequence (MovieTexture). Its functionality is similar to the Material2D node, but is specific to the BitMap geometry, so it does not include the line properties functionality. It generates a shape mask, based on a color and the threshold values defined in the node. It also defines a transparency value, which will behave identically to the transparency values in both Material and Material2D, except that it applies only to the visible part of the shape.

The fields of the MaterialKey node are defined as follows:

The isKeyed field specifies whether the keying functionality is enabled or disabled.

The isRGB field allows the content author to choose which color space they wish to define the keying in, either RGB or YUV.

The keyColor field specifies the reference color used for keying of shape.

The lowThreshold field defines the magnitude of the variance from the exact key value for which the pixel will be considered completely transparent.

The highThreshold field defines the magnitude of the variance from the exact key value for which the pixel will be considered opaque (visable).

The transparency field defines the level of transparency assigned to the opaque or visable region of the shape.

An example implementation of MaterialKey is given in subclause

 REF _Ref68430776 \r \h
 * MERGEFORMAT 7.5.

7.8.2.85 MatteTexture

7.8.2.85.1 Node interface

MatteTexture {

	
	Field
	SFNode
	surfaceA
	NULL

	
	Field
	SFNode
	surfaceB
	NULL

	
	Field
	SFNode
	alphaSurface
	NULL

	
	exposedField
	SFString
	operation
	“”

	
	Field
	SFBool
	overwrite
	FALSE

	
	exposedField
	SFFloat
	fraction
	0

	
	exposedField
	MFFloat
	parameter
	0

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.
7.8.2.85.2 Functionality and semantics

The MatteTexture node uses image compositing operations to combine the image data from two surfaces onto a third surface. The result of the compositing operation is computed at the resolution of surfaceB. If the size of surfaceA differs from that of surfaceB, the image data on surfaceA is zoomed up or down before performing the operation.

The compositing operations that are defined are capable of being hardware accelerated using low-cost, widely available graphics accelerators.

The surfaceA, surfaceB and alphaSurface fields specify the three surfaces that provide the input image data for the compositing operation. Not all three surfaces have to specified. In particular, there are unary, binary, and ternary operations. Each of these fields can contain any MPEG-4 texture node. These include CompositeTexture2D, CompositeTexture3D, PixelTexture, MovieTexture, ImageTexture and MatteTexture
The operation field specifies what compositing function to perform on the input surfaces.
The parameter and fraction fields provides one or more floating point parameters that can alter the effect of the compositing function. The specific interpretation of the parameter values depends upon which operation is specified.

The overwrite field indicates whether the MatteTexture node should allocate a new surface for storing the result of the compositing operation (overwrite = FALSE) or whether the data stored on surfaceB should be overwritten with the results of the compositing operation (overwrite = TRUE).

Note:Authors should only set overwrite to TRUE when they are certain that overwriting the contents of surfaceB will not have any adverse side-effects.

The possible values for operation are:

Unary Operations operate on the texture in the surfaceB field:

“INVERT” replaces the value C in each channel of with 1-C. The parameter field is used to specify whether or not channels containing alpha are inverted. If parameter is 0, then alpha channels are not inverted. If parameter is 1, then alpha channels are inverted.

“OFFSET” shifts the image DX pixels to the right and DY pixels to the top. Negative DX and DY values shift the image left and down, respectively. The DX and DY value are taken as the first two values in the parameter field. The color of pixels that are exposed by the OFFSET operation is set to black with an alpha value of 1.

“SCALE” scales each channel independently by multiplying the color in channel i by the value in parameter[i]. Pixel color and alpha values are clamped to the range 0 to 1.“BIAS” modifies the color in channel i by adding to it the value in parameter[i]. Pixel color and alpha values are clamped to the range 0 to 1.

“BLUR” performs a Gaussian blur operation on the image. The Gaussian blur kernel is an approximation of the normalized convolution:

H(x) = exp(-x2/ (2s2)) / sqrt(2* pi*s2)

Where ‘s’ is the standard deviation.

The value of stdDeviation is specified in the parameter field and can be either one or two numbers. If two numbers are provided, the first number represents a standard deviation value along the x-axis of the surface and the second value represents a standard deviation along the y-axis. If one number is provided, then that value is used for both x and y. Even if only one value is provided for stdDeviation, this can be implemented as a separable convolution.

NOTE — For larger values of 's' (s >= 2.0), an approximation may be used: Three successive box-blurs build a piece-wise quadratic convolution kernel, which approximates the Gaussian kernel to within roughly 3%.

let d = floor(s * 3*sqrt(2*pi)/4 + 0.5)

... if d is odd, use three box-blurs of size 'd', centered on the output pixel.

... if d is even, two box-blurs of size 'd' (the first one centered one pixel to the left, the second one centered one pixel to the right of the output pixel) and one box blur of size 'd+1' centered on the output pixel.

“COLOR_MATRIX” multiplies the RGBA value of each pixel by a matrix:

R'		a00 a01 a02 a03		R
G'		a10 a11 a12 a13	*	G
B'	=	a20 a21 a22 a23		B
A'		a30 a31 a32 a33		A

This matrix can be used for many purposes, including swapping channels and performing color space conversions. The matrix values are given in row order in the parameter field.
As an example, the following matrix swaps the red and blue channels:

| 0 0 1 0 |
| 0 1 0 0 |
| 1 0 0 0 |
| 0 0 0 1 |

The following matrix converts luminance to alpha:

| 0
0
 0
0 |
| 0
0
 0
0 |
| 0
0
 0
0 |
| 0.299
0.587
0.114
0 |

Binary Operations operate on the textures in the surfaceB and either the surfaceA or alphaSurface fields:

"REPLACE_ALPHA" combines the RGB channels of surfaceB with the alpha channel from alphaSurface. If alphaSurface has 1 component (grayscale intensity only), that component is used as the alpha values. If alphaSurface has 2 or 4 components (grayscale intensity+alpha or RGBA), the alpha channel is used to provide the alpha values. If alphaSurface has 3 components (RGB), the operation is undefined. This operation can be used to provide static or dynamic alpha masks for static or dynamic imagery. For example, a texture node could render an animating James Bond character against a transparent background. The alpha from this image could then be used as a mask shape for a video clip.

"MULTIPLY_ALPHA" behaves just like REPLACE_ALPHA, except the alpha values from alphaSurface are multiplied with the alpha values from surfaceB.

"CROSS_FADE" fades between two surfaces using the value in the fraction field to control the percentage of each surface that is visible. This operation can dynamically fade between two static or dynamic images. By animating the fraction field value from 0 to 1, the imagery on surfaceA fades into that of surfaceB.

"BLEND" combines the image data from surfaceA and surfaceB using the alpha channel from surfaceB to control the blending percentage. This operation allows the alpha channel of surfaceB to control the blending of the two images. By animating the alpha channel of surfaceB by rendering a texture node or playing a MovieTexture, you can produce a complex traveling matte effect. If R1, G1, B1, and A1 represent the red, green, blue, and alpha values of a pixel of surfaceA and R2, G2, B2, and A2 represent the red, green, blue, and alpha values of the corresponding pixel of surfaceB, then the resulting values of the red, green, blue, and alpha components of that pixel are:

 red = R1 * (1 - A2) + R2 * A2

 green = G1 * (1 - A2) + G2 * A2

 blue = B1 * (1 - A2) + B2 * A2

 alpha = 1

"ADD", and "SUBTRACT" add or subtract the color channels of surfaceA and surfaceB. The alpha of the result equals the alpha of surfaceB.

“A” is the identity operator for surfaceA. In other words, the resulting image contains the contents of surfaceA. If overwrite is TRUE, then the contents of surfaceB are overwritten with the contents of surfaceA.

“B” is the identity operator for surfaceB. In other words, the resulting image contains the contents of surfaceB.

Ternary Operations operate on the textures in the surfaceA, surfaceB, and alphaSurface fields:

"REVEAL" is similar to CROSS_FADE except that the fraction value does not directly specify the percentage of surface1 and surface2 to use in the result. Instead, the fraction value specifies a threshold level for a third surface (i.e. the alphaSurface). In regions of the alphaSurface where the alpha values are less than the threshold, the resulting pixels come from surface1. In regions of the alphaSurface where the alpha values are greater than the threshold, the resulting pixels come from surface2.

So far, this describes a hard-edged transition region between surface1 and surface2. In other words, each pixel of the result comes directly from either surface1 or surface2. Introducing a softness value (which is specified using the first value of the parameter field), allows a range of alpha values surrounding the threshold value to be specified where the result is a linear blend of surface1 and surface2.

For example, if softness (soft) = 0.1, and threshold (thresh) = 0.5, then for alpha values less than or equal to (thresh - soft) = 0.4, the result would be surface1. For alpha values greater than or equal to (thresh + soft) = 0.6, then result would be surface2. For alpha values between 0.4 and 0.6, then result would be a linear combination of surface1 and surface2:
1 - (1/(2*soft)) * (alpha + soft - thresh)) * surface1 + (1/(2*soft)) * (alpha + soft - thresh) * surface2

Example :

The following example shows how the node can be used to mix three surfaces.

The following scene uses a “REVEAL” operation to mix two images using an alphaSurface. The figures below show the alphaSurface used (Figure 24) and a snap shot of the operation for a value of TransitionEffect.fraction between 0 and 1 (Figure 25).

content fragment showing an image processing transition effect using

MatteSurface and its REVEAL operator

#

MovieA transitions to reveal MovieB on the same in-scene texture,

as TransitionEffect.fraction is animated from 0.0 to 1.0

DEF VideoScreen Transform {

 children
Shape {

 appearance
Appearance {

texture DEF TransitionEffect MatteTexture {

surfaceA DEF MovieA MovieTexture{

url "A.roll.mpg"

}

surfaceB DEF MovieB MovieTexture {

url "B.roll.mpg"

}

alphaSurface ImageTexture {

url "revealDiamondArt.png"

}

parameter 0.063

operation "REVEAL"

}

 }

 }

 geometry
IndexedFaceSet {

 coord
Coordinate {

point
[-10 -7.5 0,

-10 7.5 0,

10 7.5 0,

10 -7.5 0]

}

coordIndex
[0, 1, 2, 3, -1]

solid
FALSE

 }

 }

}

[image: image78.jpg]

Figure 24 — An alphaSurface (revealDiamondArt.png) used in a “REVEAL” operation to mix two videos.

[image: image79.jpg]

Figure 25 — An image resulting from a “REVEAL” operation on A.roll.mpg and B.roll.mpg using the alphaSurface in Figure 24.

Repeat pattern (repeatS and repeatT) of a MatteTexture node is given by the repeat pattern of the surfaceB texture of that node.
7.8.2.86 MediaBuffer

7.8.2.86.1 Node interface

MediaBuffer {

	
	exposedField
	SFFloat
	bufferSize
	0.0

	
	exposedField
	MFString
	url
	[]

	
	exposedField
	SFTime
	mediaStartTime
	-1

	
	exposedField
	SFTime
	mediaStopTime
	+I

	
	EventOut
	SFBool
	isBuffered
	

	
	exposedField
	SFBool
	enabled
	TRUE

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.86.2 Functionality and semantics

The MediaBuffer node allows storage of media streams in local buffers created specifically for playback. This allows, for instance, storage of clips for interactive playback or looping.

Storage of a stream object in the MediaBuffer shall occur only if the stream is active (see MediaControl section).

The time interval of the stream object with media time between mediaStartTime and mediaStopTime shall be stored. If these values are changed as a stream object is being buffered, the result is undefined.

The mediaStartTime or mediaStopTime fields have special values; see the MediaControl section.

The url field refers to the stream objects that are to be stored; there shall be one buffer for each stream object.

The bufferSize field signals how many seconds of media shall be stored locally. If bufferSize = –1.0 the whole range of mediaStartTime to mediaStopTime shall be stored. If this range is unbounded because the duration of the stream object is not known, no buffering shall occur.

Note – The physical buffer sizes can be computed from stream parameters and either the bufferSize value or mediaStartTime and mediaStopTime.

The isBuffered event sends a TRUE value when all of the streams in the url have been completely buffered.

When the enabled field is set to TRUE, the buffers shall be allocated. When the enabled field is set to FALSE the buffers may be freed and no buffering shall take place. If a media buffer has insufficient space to add more media samples, the earliest added media samples are discarded and replaced with the most recently received media samples.

When buffering of a stream object is started, all previous buffer contents shall be discarded.

Playback of a stream object shall occur through the MediaBuffer under the following conditions:

A media node referring to the same stream object referenced in the url field of the MediaBuffer becomes active, and

the requested playback time interval of that stream object is completely available in the MediaBuffer.

Note – Play back of buffered stream object may be controlled by a MediaControl node.

7.8.2.87 MediaControl

7.8.2.87.1 Node interface

MediaControl {

	
	exposedField
	MFString
	url
	“”

	
	exposedField
	SFTime
	mediaStartTime
	-1

	
	exposedField
	SFTime
	mediaStopTime
	+I

	
	exposedField
	SFFloat
	mediaSpeed
	1.0

	
	exposedField
	SFBool
	loop
	FALSE

	
	exposedField
	SFBool
	preRoll
	TRUE

	
	exposedField
	SFBool
	mute
	FALSE

	
	exposedField
	SFBool
	enabled
	TRUE

	
	EventOut
	SFBool
	isPreRolled
	

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.87.2 Functionality and semantics

The MediaControl node controls the play back and, hence, delivery of a media stream referenced by a media node. The MediaControl node allows selection of a time interval within one or more stream objects for play back, modification of the playback direction and speed, as well as pre-rolling and muting of the stream.

A media node may be used with or without an associated MediaControl node. A media node for which no MediaControl node is present shall behave as if a MediaControl node for that media stream were present in the scene, with default values set.

The url field contains a reference to one or more stream objects (“OD:n#segment” or “OD:n”), called the controlled stream objects, all of which must belong to the same media stream. This media stream is called the controlled stream. When any media node referring to a media stream in its url field is active, the associated media stream is said to be active.

Note – This means that the controlled stream becomes active exactly when some media node pointing to it becomes active. The controlled stream becomes inactive, when all media nodes referring to it become inactive.

When a controlled media stream becomes active, the associated controlled stream objects in the url field of the MediaControl node shall be played sequentially.

The mediaStartTime and mediaStopTime fields define the time interval, in media time, of each controlled stream object to be played back.

If media time of the media stream is undefined, selection of a time interval of the controlled stream object for play back is not supported. In that case the mediaStartTime and mediaStopTime fields shall be ignored.

The following values have special meaning for mediaStartTime and mediaStopTime:

0 indicates the beginning of the controlled stream object

-1 indicates the media time of the controlled stream object when the associated media node becomes active.

+I, or any value greater than the duration of the controlled stream object indicates its end.

Semantics of mediaStartTime and mediaStopTime depend on the delivery scenario.

Semantics in case of delivery scenarios that permit seeking:

Play back of the controlled stream object shall start at mediaStartTime of the first controlled media object when the controlled stream becomes active.

When the controlled stream becomes inactive and then active again, then if mediaStartTime is –1 the stream starts playing from the point where it was last stopped. Otherwise the first controlled stream object in the url field restarts playing from mediaStartTime.

If the loop field is TRUE, all the controlled stream objects are played in a loop, each in the range mediaStartTime to mediaStopTime while the controlled stream is active. If mediaStartTime is –1, each stream object will start from the beginning.

In all delivery scenarios, play back of the controlled stream object shall occur only in the range defined by mediaStartTime and mediaStopTime. Outside this range the play back shall be muted. The loop field shall be ignored in delivery scenarios that do not permit seeking.

The mediaSpeed is a requested multiplication factor to the normal speed of each controlled stream object. Negative values for mediaSpeed request that the controlled stream object plays backward from mediaStartTime to mediaStopTime. When this field is zero, the controlled stream shall be paused.

NOTE — All streams, independent of speed, are only played in the range defined by mediaStartTime and mediaStopTime. When mediaSpeed < 0, the stream object can only be played if the server reassigns time stamps to be increasing from mediaStopTime to mediaStartTime.

If mediaSpeed > 0 (forward play back) and mediaStopTime < mediaStartTime, then the controlled stream object will play until the end.

If mediaSpeed < 0 (backward play back) and mediaStopTime > mediaStartTime, then the controlled stream object will play to the beginning.

In these equations, the special value –1 is substituted by the actual value of media time that it represents.

There is no requirement that a delivery service supports specific ranges of mediaSpeed other than mediaSpeed = 1. Media content shall comply with maximum and average bit rates specified for the stream, irrespective of the value of the mediaSpeed field.

If the preRoll field is set to TRUE the controlled stream should be pre-rolled in order to be ready to start instantly when the controlled stream becomes active. All streams that are associated to the same object time base as the stream that is pre-rolled should also be pre-rolled.

If the delivery scenario does not permit seeking, preRoll = TRUE means that the controlled stream object should be delivered and recently received access units should be stored in the decoding buffer in order to enable instantaneous play back when the media node becomes active.

Note – Play back of stream objects in media nodes that are not controlled by MediaControl or where preRoll is FALSE may suffer an unspecified startup delay if play back is requested by an unpredictable action (e.g. user interaction, script).

The isPreRolled event sends a TRUE value when the controlled stream object has completed pre-rolling.

If the mute field is set to TRUE, the stream objects in the url field are not rendered when they are played. However, their media clock is not stopped. For visual streams, whether natural video or synthetic such as animation streams or Inline nodes, mute means that the visual texture remains unchanged; for audio streams, the audio is not played.

If the enabled field is set to TRUE the MediaControl node controls the stream object it refers to. More than one MediaControl node may be used to control a stream object within the same stream. At most one of these MediaControl nodes shall be enabled at any time.

If one of these MediaControl nodes becomes enabled, the enabled field of all other MediaControl nodes that refer to the same stream shall automatically be set to FALSE.

If the enabled field is set to FALSE the MediaControl node shall cease to control the play back and muting of the controlled stream object, however, preRoll shall still be evaluated. If the controlled stream object is playing when enabled is set to FALSE and no other MediaControl node takes control of the stream, the stream object shall continue playing as if it were still controlled by the disabled MediaControl node.

Only one MediaControl node shall refer to any of the set of media streams that are associated to a single object time base.

Note – MediaControl affects the OTB of the controlled stream and therefore affects all the streams that are associated to the same OTB. Therefore changing play position, speed or direction of one stream will correspondingly affect all the active streams that are associated to the same OTB.

EXAMPLE (The following scene shows how to control a video from a MediaControl the Script also receives the current video time and can trigger events according to the video time: In the example, when the TouchSensor is touched, the video will play the section ranging between 10 to 20 seconds from the start of the sequence.
 [....]
Shape {

texture DEF M MovieTexture { url "od:5"}

geometry BitMap{}

}

DEF MS MediaSensor {

url "od:5"

}

MediaControl {

url "od:5"

mediaStartTime 10.0

mediaStopTime 20.0

}

DEF T TouchSensor {}

DEF S Script {

eventIn SFTime videoTime

...

}

ROUTE MS.mediaCurrentTime TO S.videoTime

ROUTE T.touchTime TO M.startTime

The following table lists values for various node fields in order to play, pause, and stop streams:

	Action
	Node Values

	Play stream from beginning to end.
	mediaStartTime = 0

mediaStopTime = +I

	Play stream backwards from end to beginning
	mediaStartTime = +I

mediaStopTime = 0

mediaSpeed = -1.0

	Pause stream
	stopTime = NOW in the controlled media node and mediaStartTime = -1

Or

mediaSpeed = 0

	Play stream from current position to end
	mediaStartTime = -1

mediaStopTime = +I

	Play stream backwards from current position to beginning
	mediaStartTime = -1

mediaStopTime = 0

mediaSpeed = -1.0

	Play stream from 10 seconds past start to 20 seconds past start at half speed
	mediaStartTime = 10

mediaStopTime = 20

mediaSpeed = 0.5

	Play stream backwards from 20 seconds past start to 10 seconds past start at double speed
	mediaStartTime = 20

mediaStopTime = 10

mediaSpeed = -2.0

	Play stream forwards from current position to 10 seconds past start
	mediaStartTime = -1

mediaStopTime = 10

7.8.2.88 MediaSensor

7.8.2.88.1 Node interface

MediaSensor {

	
	exposedField
	MFString
	url
	[]

	
	eventOut
	SFTime
	mediaCurrentTime
	

	
	eventOut
	SFTime
	streamObjectStartTime
	

	
	eventOut
	SFTime
	mediaDuration
	

	
	eventOut
	SFBool
	isActive
	

	
	eventOut
	MFString
	info
	

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.88.2 Functionality and semantics

The MediaSensor node monitors the availability and presentation status of one or more stream objects.

The url field identifies a list of stream objects monitored by the MediaSensor node. All the stream objects in the url field shall belong to the same media stream.

A stream object is considered to be available when any of its composition units is available in the composition buffer and is due for composition at that time. A stream object is considered to be no longer available when it is paused or stopped. A stream object is considered to “become available” when it “is available” for the first time. When there are several monitored stream objects available at the same time, the fields in the MediaSensor convey information about the stream object that became available last. If the stream that last became available becomes inactive, the MediaSensor node shall convey information about the first active stream in its url field.

The isActive event sends a TRUE value each time one of the monitored stream objects referred by the url field becomes available, and a FALSE value when all of them become not available.

Whenever a new composition unit is due for composition, a mediaCurrentTime event is sent and indicates the media time of that composition unit within the stream object.
The streamObjectStartTime event conveys the start of the stream object within a stream, relative to media time zero of the whole stream.

The mediaDuration event conveys the duration of the stream object in seconds. It is set to –1 if this duration is unknown.

The info event conveys information about the stream object that is currently monitored. Its first element identifies the stream object using the same syntax as in the url field.
The streamObjectStartTime, mediaDuration and info events are triggered when any stream object in the url field becomes available.

7.8.2.89 MovieTexture

7.8.2.89.1 Node interface

MovieTexture {

	
	exposedField
	SFBool
	loop
	FALSE

	
	exposedField
	SFFloat
	speed
	1.0

	
	exposedField
	SFTime
	startTime
	0

	
	exposedField
	SFTime
	stopTime
	0

	
	exposedField
	MFString
	url
	[]

	
	field
	SFBool
	repeatS
	TRUE

	
	field
	SFBool
	repeatT
	TRUE

	
	eventOut
	SFTime
	duration_changed
	

	
	eventOut
	SFBool
	isActive
	

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.
7.8.2.89.2 Functionality and semantics

The loop, startTime, and stopTime exposedFields and the isActive eventOut, and their effects on the MovieTexture node, are described in 7.1.1.1.6.2.

The speed exposedField controls playback speed. It does not affect the delivery of the stream attached to the MovieTexture node. For streaming media, value of speed other than 1 shall be ignored.

A MovieTexture shall display frame or VOP 0 if speed is 0. For positive values of speed, the frame or VOP that an active MovieTexture will display at time now corresponds to the frame or VOP at movie time (i.e., in the movie’s local time base with frame or VOP 0 at time 0, at speed = 1):

 fmod (now - startTime, duration/speed)

If speed is negative, then the frame or VOP to display is the frame or VOP at movie time:

 duration + fmod(now - startTime, duration/speed).
A MovieTexture node is inactive before startTime is reached. If speed is non-negative, then the first VOP shall be used as texture, if it is already available. If speed is negative, then the last VOP shall be used as texture, if it is already available.

When a MovieTexture becomes inactive, the VOP corresponding to the time at which the MovieTexture became inactive shall persist as the texture. The speed exposedField indicates how fast the movie shall be played. A speed of 2 indicates the movie plays twice as fast. Note that the duration_changed eventOut is not affected by the speed exposedField. set_speed events shall be ignored while the movie is playing.

The url field specifies the data source to be used (see 7.1.1.2.7.1).
7.8.2.90 MusicScore
7.8.2.91 Node interface

MusicScore {

	
	eventIn
	SFBool
	executeCommand
	

	
	eventIn
	SFString
	gotoLabel
	

	
	eventIn
	SFInt32
	gotoMeasure
	

	
	eventIn
	SFTime
	highlightTimePosition
	

	
	eventIn
	SFVec3f
	mousePosition
	

	
	exposedField
	MFString
	argumentsOnExecute
	[]

	
	exposedField
	SFString
	commandOnExecute
	[]

	
	exposedField
	SFInt32
	firstVisibleMeasure
	0

	
	exposedField
	SFBool
	hyperlinkEnable
	TRUE

	
	exposedField
	SFBool
	loop
	FALSE

	
	exposedField
	MFString
	partsLyrics
	[]

	
	exposedField
	MFInt32
	partsShown
	[]

	
	exposedField
	SFTime
	scoreOffset
	0.0

	
	exposedField
	SFVec2f
	size
	-1, -1

	
	exposedField
	SFFloat
	speed
	1.0

	
	exposedField
	SFTime
	startTime
	0.0

	
	exposedField
	SFTime
	stopTime
	

	
	exposedField
	SFFloat
	transpose
	0.0

	
	exposedField
	MFURL
	url
	[]

	
	exposedField
	MFURL
	urlSA
	[]

	
	exposedField
	SFString
	viewType
	[]

	
	eventOut
	SFString
	activatedLink
	

	
	eventOut
	MFString
	availableCommands
	

	
	eventOut
	MFString
	availableLabels
	

	
	eventOut
	MFString
	availableLyricLanguages
	

	
	eventOut
	MFString
	availableViewTypes
	

	
	eventOut
	SFBool
	isActive
	

	
	eventOut
	SFVec3f
	highlightPosition
	

	
	eventOut
	SFInt32
	lastVisibleMeasure
	

	
	eventOut
	SFInt32
	numMeasures
	

	
	eventOut
	MFString
	partNames
	

}

7.8.2.92 NOTE
For the binary encoding of this node see node coding tables in electronic attachment.
7.8.2.92.1 Functionality and semantics

Rendering of Symbolic Music allows different solutions ranging from bitmap to vector graphics. To minimize the impact on some widespread existing solutions, including the SMR reference software, two new nodes are defined: ScoreShape, similarly to Shape, is used to map a MusicScore on a geometry, and a MusicScore as a child node. In such a way different solutions are allowed, including vector graphics and bitmaps.

The loop, startTime, and stopTime exposedFields and the isActive eventOut, and their effects on the MusicScore node, are described in 7.1.1.1.6.2. A MusicScore node is inactive before startTime is reached.

The MusicScore node displays the score at SMR stream time t=0 until it is activated, and keep the last composed image available when it is deactivated. Please note that the internal SMR decoder has also its own time representation and it may continue to run after stopTime with SMR stream being processed. However, a loop field set to TRUE may infer a restart of a certain portion of the score rendering.

The executeCommand eventIn is an input event indicating that when the hyperlinkEnable field is FALSE the command set in commandOnExecute has to be performed considering the values of argumentsOnExecute and of mousePosition while if hyperlinkEnable is TRUE the value of mousePosition is used to see if in that position is present something with an associated link, if this is the case the activatedLink eventOut is generated with the value of the link.

The gotoLabel eventIn positions the score on the page containing the specified label (one of the availableLabels).

The gotoMeasure eventIn positions the score on the page containing the specified measure.

The highlightTimePosition eventIn highlights the time position indicated relative to the scoreOffset field.

The mousePosition eventIn is used to indicate the point where the user has clicked; the position will be taken into account when the next executeCommand eventIn will be issued.

The argumentsOnExecute exposedField indicates arguments for the commandOnExecute command.

The commandOnExecute exposedField indicates the command to be executed when the user clicks on the score (via executeCommand eventIn).

Some commands that shall be supported by the commandOnExecute, according to the profile, are:

· "ADD_TEXT_ANNOTATION"
the first value in argumentsOnExecute contains the text to be added to the score in the position indicated by the last mousePosition eventIn (that is the position where the user clicked)

· "ADD_LABEL"
the first value in argumentsOnExecute contains the label text to be added to the measure indicated by the last mousePosition eventIn, if the measure already has a label the label is substituted

· "ADD_NOTE"
the first value in argumentsOnExecute contains the note duration: "D1", "D1_2", "D1_4", "D1_8", "D1_16", "D1_32", "D1_64"; the second value indicates the notehead type: "CLASSIC", "X", "DSHARP", "DIAMOND", "RYTHMIC", "DIDAPTIC", etc. (see Table 11 in ISO/IEC 14496-23) the note is inserted where the user clicks or it is added to a chord if sufficiently near to another note/chord.

· "ADD_REST"
the first value in argumentsOnExecute contains the rest duration: "D1", "D1_2", "D1_4", "D1_8", "D1_16", "D1_32", "D1_64"; the rest is inserted in the position indicated by the last mousePosition eventIn.
· "SET_ALTERATION"
the first value in argumentsOnExecute contains the alteration to be set on the note, it can be: "SHARP","DSHARP","FLAT","DFLAT","NATURAL". The alteration is set to the note indicated by the last mousePosition eventIn.

· "SET_DOTS"
the first value in argumentsOnExecute contains the number of dots to be set on the note, it can be: "0","1","2". The dots are set to the note indicated by the last mousePosition eventIn.

· "ADD_SYMBOL"
the first value in argumentsOnExecute contains the symbol to be added on the note/rest/measure, it can be: "STACCATO", "TENUTO" or any symbol defined using the formatting language (see Table 116 in ISO/IEC 14496-23). The symbol is added in the position indicated by the last mousePosition eventIn.

· "ADD_MEASURE"
adds a measure to the score, the first value in argumentsOnExecute can be: "BEFORE", "AFTER" or "APPEND", the second value in argumentsOnExecute indicates the measure number with respect to the new measure is added. If the second value is not present or empty the last mousePosition eventIn is used to identify the reference measure. Note that adding a measure means add a measure to all the parts

· "DEL_MEASURE"
removes a measure of the score; the first value in argumentsOnExecute indicates the measure number to be removed. If the first value is not present or empty the last mousePosition eventIn is used to identify the measure to be delete. Note that deleting a measure means delete a measure from all the parts.

· "CHANGE_CLEF"
changes the clef of a measure and for all the following until another clef change or to the end. The first value in argumentsOnExecute contains the clef type, it can be: "TREBLE", "SOPRANO", "BASS", "TENOR" etc. (see Table 9 in ISO/IEC 14496-23) The clef change applies to the measure indicated by the last mousePosition eventIn.

· "CHANGE_KEYSIGNATURE"
changes the key signature of a measure and for all the following until another key signature change or to the end. The first value in argumentsOnExecute contains the key signature type, it can be: "DOdM", "FAdM", "SIM", etc. (see Table 10 in ISO/IEC 14496-23) The key signature change applies to the measure indicated by the last mousePosition eventIn.

· "CHANGE_TIME"
changes the time of a measure and for all the following until another time change or to the end. The first value in argumentsOnExecute contains the time, it can be: "4/4", "3/4", "2/4", "C" or "C/". The time change applies to the measure indicated by the last mousePosition eventIn.

· "SET_METRONOME"
sets the metronome for the whole piece. The first value in argumentsOnExecute contains the reference note duration (D1, D1_2, D1_4,…) the second value contains "TRUE" if the reference note is with augmentation dot ("FALSE" or empty otherwise), the third value indicates the number of reference notes in one minute. For example ["D1_4", "TRUE", "100"] sets a metronome with 100 dotted quarters in one minute. The metronome is set using the executeCommand eventIn.

· "DELETE"
allows deleting any symbol, note, rest, alteration, label and annotation added by the user in the position indicated by the last mousePosition eventIn..

· "TRANSPOSE"
allows transposing the score. The first value in argumentsOnExecute contains the part to be transposed (0 for the whole main score, 1 for the first upper part, 2 the second part, …), the second value indicates the measure from which to start the transposition, the third value indicates the measure where to end transposition (the measure is included) a value of 0 or negative indicates to transpose until the last measure, the fourth value indicates the amount of transposition in half tones (e.g. 1 to increase of a half tone, 2 to increase of a tone, -1 to decrease of a half tone). This command does not depend on the mouse position and it is executed when the executeCommand eventIn is issued.

The firstVisibleMeasure exposedField is the first measure currently visible.

When the hyperlinkEnable exposedField is set to TRUE hyperlinks are shown; when the user clicks (via executeCommand eventIn) on a link an eventOut activatedLink is generated.
The partsLyrics exposedField is an array of strings indicating for which part to view the lyrics and in which language (e.g. ["it", "en", ""] to view lyrics for part 1 in Italian and for part 2 in English).

The partsShown exposedField is an array of integers indicating which parts have to be shown; the number is the position in the array of parts names; if partShown is empty all parts will be visible (e.g. [] to view main score with all parts, [2] to view single part number 2, [1,3] view main score with parts 1 and 3, etc.).

The scoreOffset exposedField indicates the initial (or point 0) offset from the beginning of the score; it may be used to change page or move inside the score before starting it, or in pause etc. scoreOffset is indicated in seconds from the beginning of the score. scoreOffset can be used only if synchronization information is provided or a metronome indication is present in the score.

The size exposedField parameter expresses the width and height of the music score in the units of the local coordinate system. A size of -1 in either coordinate means that the MusicScore node is not specified in size in that dimension, and that the size is adjusted to the size of the parent node.

The speed exposedField indicates how fast the score shall be played. It shall be a strictly positive (>0) tempo multiplier, so a speed of 2 indicates the score plays twice as fast the tempo metronomic indication.

The transpose exposedField defines the transposition in half tones (e.g. 1 to increase of a half tone, 2 to increase of a tone, -1 to decrease of a half tone) to be applied to the whole score (all parts and all measures). For a more fine grained transposition the "TRANSPOSE" command can be used.

The url exposedField defines the SMR data stream; the stream may be composed by different data blocs for parts, lyrics, score, and synchronization info as described in ISO/IEC 14496-23.

The urlSA exposedField defines a possibly associated SA (i.e. MIDI) data stream.

The viewType exposedField indicates the kind of view to be used (one of the availableViewTypes).

The activatedLink eventOut is generated when the user clicks on a link via executeCommand when hyperlinkEnable is TRUE; it has associated the link value.

The availableCommands eventOut is an array of commands that can be performed on the score by the user when the user clicks on the score (e.g. ["ADD_LABEL", "ADD_TEXT_ANNOTATION", "DELETE"]) some commands will be normative other may be decoder dependent, see in the following for details.

The availableLabels eventOut is an array of strings with labels (e.g. ["A", "B", "SEGNO", "CODA"]).
The availableLyricLanguages eventOut is an array of strings where for each part there is the list of languages (using the ISO 639-2 standard), separated with ";", for which the lyric is available (e.g. ["en;it", "en;it", ""]) (this field may or may not be filled by the scene author, which is supposed to know the SMR content and thus languages that are available).

The availableViewTypes eventOut is an array of strings describing which view types are available for the score and for the decoder (e.g. ["CWMN", "braille", "neumes"]).

The highlightPosition eventOut outputs the highlight position in local coordinates.
The lastVisibleMeasure eventOut is the last measure currently visible.

The numMeasures eventOut is the number of measures in the score.

7.8.2.93 The partNames eventOut is an array of strings with part names (instruments, e.g. ["soprano", "baritone", "piano"]).
7.8.2.94 NavigationInfo

7.8.2.94.1 Node interface

NavigationInfo {

	
	eventIn
	SFBool
	set_bind
	

	
	exposedField
	MFFloat
	avatarSize
	[0.25, 1.6, 0.75]

	
	exposedField
	SFBool
	headlight
	TRUE

	
	exposedField
	SFFloat
	speed
	1.0

	
	exposedField
	MFString
	type
	["WALK", "ANY"]

	
	exposedField
	SFFloat
	visibilityLimit
	0.0

	
	eventOut
	SFBool
	isBound
	

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.
7.8.2.94.2 Functionality and semantics

The semantics of NavigationInfo are specified in ISO/IEC 14772-1:1998, subclause 6.29.

7.8.2.95 Normal

7.8.2.95.1 Node interface

Normal {

	
	exposedField
	MFVec3f
	vector
	[]

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.
7.8.2.95.2 Functionality and semantics

The semantics of the Normal node are specified in ISO/IEC 14772-1:1998, subclause 6.30.

7.8.2.96 NormalInterpolator

7.8.2.96.1 Node interface

NormalInterpolator {

	
	eventIn
	SFFloat
	set_fraction
	

	
	exposedField
	MFFloat
	key
	[]

	
	exposedField
	MFVec3f
	keyValue
	[]

	
	eventOut
	MFVec3f
	value_changed
	

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.
7.8.2.96.2 Functionality and semantics

The semantics of the NormalInterpolator node are specified in ISO/IEC 14772-1:1998, subclause 6.31.

7.8.2.97 OrderedGroup

7.8.2.97.1 Node interface

OrderedGroup {

	
	eventIn
	MFNode
	addChildren
	

	
	eventIn
	MFNode
	removeChildren
	

	
	exposedField
	MFNode
	children
	[]

	
	exposedField
	MFFloat
	order
	[]

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.97.2 Functionality and semantics

The OrderedGroup node controls the visual layering order of its children. When used as a child of a Layer2D node, it allows the control of which shapes obscure others. When used as a child of a Layer3D node, it allows content creators to specify the rendering order of elements of the scene that have identical z values. This allows conflicts between coplanar or close polygons to be resolved.

The addChildren eventIn specifies a list of objects that shall be added to the OrderedGroup node.

The removeChildren eventIn specifies a list of objects that shall be removed from the OrderedGroup node.

The children field is the current list of objects contained in the OrderedGroup node.

When the order field is empty (the default) children are layered in order, first child to last child, with the last child being rendered last. If the order field contains values, one value is assigned to each child. Entries in the order field array match the child in the corresponding element of the children field array. The child with the lowest order value is rendered before all others. The remaining children are rendered in increasing order. The child corresponding to the highest order value is rendered last. If there are more children than entries in the order field, those children that do not have a drawing order are drawn in the order in which they appear in the children field, but after the ones that have an entry in the order field.

If there are more order entries than children, the excess order entries are ignored.
Since 2D shapes have no z value, this is the sole determinant of the visual ordering of the shapes. However, when the OrderedGroup node is used with 3D shapes, its ordering mechanism shall be used in place of the natural z order of the shapes themselves. The resultant image shall show the shape with the highest order value on top, regardless of its z value. However, the resultant z-buffer contains a z value corresponding to the shape closest to the viewer at that pixel. The order shall be used to specify which geometry should be drawn first, to avoid conflicts between coplanar or close polygons.

NOTE — Content authors must use this functionality carefully since, depending on the Viewpoint, 3D shapes behind a given object in the natural z order may appear in front of this object.
7.8.2.98 OrientationInterpolator

7.8.2.98.1 Node interface

OrientationInterpolator {

	
	eventIn
	SFFloat
	set_fraction
	

	
	exposedField
	MFFloat
	key
	[]

	
	exposedField
	MFRotation
	keyValue
	[]

	
	eventOut
	SFRotation
	value_changed
	

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.
7.8.2.98.2 Functionality and semantics

The semantics of the OrientationInterpolator node are specified in ISO/IEC 14772-1:1998, subclause 6.32.

7.8.2.99 PathLayout

7.8.2.99.1 Node Interface

PathLayout {

	
	eventIn
	MFNode
	addChildren
	

	
	eventIn
	MFNode
	removeChildren
	

	
	exposedField
	MFNode
	children
	[]

	
	exposedField
	SFNode
	geometry
	NULL

	
	exposedField
	MFInt32
	alignment
	[0, 0]

	
	exposedField
	SFFloat
	pathOffset
	0

	
	exposedField
	SFFloat
	spacing
	1.0

	
	exposedField
	SFBool
	reverseLayout
	FALSE

	
	exposedField
	SFInt32
	wrapMode
	0

	
	exposedField
	SFBool
	splitText
	TRUE

}

NOTE - For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.99.2 Functionality and Semantics

The PathLayout node is a grouping node used to place its 2D children along a given 2D path and possibly move them along that path. See ISO/IEC 14772-1:1998 for a description of the children, addChildren, and removeChildren fields and eventIns.

The geometry field contains a 2D geometry node defining the path. The following nodes are allowed in that field: IndexedFaceSet2D, IndexedLineSet2D, Curve2D and XCurve2D. The path is oriented from the first point to the last point. The length of the path is the sum of all the length of its sub-paths (set of connected curves or lines).

pathOffset describes the offset along the path to place the first object. Value 0 corresponds to the beginning of the path and value 1 to the end of the path. Negative values or values greater than 1 are handled according to the wrapMode field.

The reverseLayout field specifies whether the children are placed following the orientation of the path (FALSE) or the opposite orientation (TRUE).

The alignment field describes horizontal and vertical alignment in that order.

An object is placed as follows :

The tangent to the path at the current position is computed, chosen with the same orientation as the path;

The object is rotated so that the X-axis of its local coordinate system is parallel to the tangent and oriented in the same direction as the tangent;

Alignment is applied (see below).

The current position along the path is incremented by the current increment.

The initial position on the path is the value of the pathOffset field multiplied by the length of the path. The current increment depends on the current object, the next object to be placed and the alignment constraints.

Text nodes are considered as graphical objects if they are not direct children of the PathLayout node and therefore obey to the alignment constraints as specified by the alignment field. Otherwise, the fontStyle field of the Text node is used.

For graphical objects, alignment is applied as follows:

	alignment[0]
	Meaning
	Increment

	
	
	ReverseLayout
TRUE
	ReverseLayout
FALSE

	-1
	left edge of the object is aligned with the current position
	spacing (wi
	–spacing (wi+1

	0
	middle of the object is aligned with the current position
	spacing ((wi+wi+1)/2
	–spacing ((wi+wi+1)/2

	1
	right edge of the object is aligned with the current position
	spacing (wi+1
	–spacing (wi

where wi is the width of the current object to place and wi+1 is the width of the next object to place. If there is no further object, the increment is meaningless.

	alignment[1]
	Meaning

	-1
	top edge is aligned with the tangent

	0
	center is placed on the tangent

	1
	bottom edge is aligned with the tangent

For Text nodes that are direct children of the PathLayout node, their placement depends on the value of the splitText field.

If splitText is FALSE, the text is placed according to the fontStyle field of the Text node, with the origin of the local coordinate system being the current position on the path, and the X-axis of that system rotated so that it is parallel to the tangent and oriented in the same direction.

If splitText is TRUE, each character of the text is placed separately as if it was a single Text node with the same fontStyle field.

The wrapMode field indicates action to take when the current position is less than 0 or greater that the length of the path. The following values are defined:

	wrapMode
	Meaning

	0
	The current object is not rendered, but the current position is updated as specified above.

	1
	The current position is increased or decreased by a integer number of times the path length so that it is positive and less than the length of the path.

	2
	The path is virtually extended by a tangent line at the first and last point and the current position refers to that virtual path.

7.8.2.100 PerceptualParameters

7.8.2.100.1 Node interface

PerceptualParameters {

	
	exposedField
	SFFloat
	sourcePresence
	1.0

	
	exposedField
	SFFloat
	sourceWarmth
	1.0

	
	exposedField
	SFFloat
	sourceBrilliance
	1.0

	
	exposedField
	SFFloat
	roomPresence
	0.0

	
	exposedField
	SFFloat
	runningReverberance
	1.0

	
	exposedField
	SFFloat
	envelopment
	0.0

	
	exposedField
	SFTime
	lateReverberance
	1.0

	
	exposedField
	SFFloat
	heavyness
	1.0

	
	exposedField
	SFFloat
	liveness
	1.0

	
	exposedField
	MFFloat
	omniDirectivity
	1.0

	
	exposedField
	MFFloat
	directFilterGains
	1.0, 1.0, 1.0

	
	exposedField
	MFFloat
	inputFilterGains
	1.0, 1.0, 1.0

	
	exposedField
	SFFloat
	refDistance
	1.0

	
	exposedField
	SFFloat
	freqLow
	250.0

	
	exposedField
	SFFloat
	freqHigh
	4000.0

	
	exposedField
	SFTime
	timeLimit1
	0.02

	
	exposedField
	SFTime
	timeLimit2
	0.04

	
	exposedField
	SFTime
	timeLimit3
	0.1

	
	exposedField
	SFFloat
	modalDensity
	0.8

}

NOTE - For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.100.2 Functionality and Semantics

PerceptualParameters is a node that contains information about the perceptual properties of DirectiveSound objects when the perceptual rendering is desired. It contains a set of nine perceptual parameters that characterizes, for a given reference distance refDistance and for non-directive sounds, the acoustic to be rendered in the virtual scene. In addition it allows for physical-like effects such as transmission through a wall from another room (with inputFilterGains) or occlusion/diffraction of the direct path by an obstacle (with directFilterGains). The directivity properties of the sound source is defined in the directivity fields in the DirectiveSound node level and in omniDirectivity field of this node for an arbitrary amount of azimuth angles from the front (defined in the direction field at the DirectiveSound node level) to the back of the sound source.

Generic reverberation response model:

The perceptual model is based on a temporal division of the reverberation response into four sections (see Figure 26):

direct sound (R0)

directional early reflections (R1)

diffuse early reflections (R2)

diffuse late reverberation (R3)

These four sections are separated by temporal limits (denoted l0, l1, l2, l3), and characterized by their energies in 3 frequency bands (low, mid, high). These frequency bands are separated by two cross-over frequencies denoted flow and fhigh.

[image: image80.wmf]dB

R

0

R

1

R

2

R

3

time

l

3

l

2

l

1

l

0

[image: image81.wmf]f

r

e

q

t

i

m

e

low

mid

high

Figure 26 — Generic reverberation response model. R0 represents the direct sound, R1 the directional early relfections, R2 the diffuse reflections, ad R3 the exponentially decaying, diffuse late reverberation.

Based on the above model, the reverberation response is completely characterized by the following set of parameters:

energies

R0, R1, R2, R3 (low, mid, high)

decay time

Rt (low, mid, high)

temporal parameters

l0, l1, l2, l3 + modal density

frequencies

flow, fhigh
The modal density is defined as the number of modes per Hz. This parameter is useful for the design and control of artificial reverberation algorithms based on recursive (IIR) digital filter structures.

High-level (perceptual) parameters:

In the perceptual acoustics rendering nine orthogonal perceptual parameters that directly relate to the audible sensations, are used to define the acoustic response for each sound source. A measurable acoustical criterion is defined for each perceptual parameter. These acoustical criteria represent an attempt to provide an exhaustive characterization of room acoustical quality in concert halls, opera houses and auditoria, by use of a minimal set of independent parameters. They can be expressed from energetic measures (low-level parameters) derived from a decomposition of the impulse response in three frequency bands and four temporal sections (see Figure 26), assuming time limits l1, l2, l3 respectively equal to 20, 40, 100 ms relative to the time of arrival of the direct sound l0, and with a dependence on the directional distribution of early reflections The formulas that define the mapping from perceptual parameters (and their corresponding acoustical criteria) to the low-level parameters are given in subclause 7.2.2.93.2.1.

The first nine fields of the PerceptualParameters node can be divided in three groups:

Three perceptual parameters describe effects which are characteristic of the room (the corresponding objective criteria are indicated in parentheses):

lateReverberance (late decay time, denoted Rt)

heaviness and liveness (relative decay time at low and high frequencies, denoted Drtl and Drth)

The six other perceptual parameters describe effects that can depend of the position of the source in a given room. The first three are perceived as characteristics of the source, while the remaining three are perceptually associated with the room:

sourcePresence (Es, affecting the “early energy”, i.e. the energy of the direct sound and early room effect)

brilliance and warmth (Desl, Desh, relative early energy at low and high frequencies)

roomPresence (Rev, affects mostly the energy of the late room effect)

runningReverberance (relative early decay time, denoted Edt)

envelopment (Rdl, energy of early room effect relative to direct sound)

A variation of sourcePresence creates a convincing effect of proximity or remoteness of the sound source. The term "reverberance" refers to the sensation that sounds are prolonged by the room reverberation. lateReverberance differs from runningReverberance by the fact that it is essentially perceived during interruptions of the sound radiated by the source, for example when the source falls silent. runningReverberance, on the contrary, remains perceived during continuous music.

omniDirectivity is the diffuse-field spectrum for the source. This will be called the omnidirectional directivity because it defines the directivity of an “equivalent omnidirectional source” (equivalent with regards to the reverberation, but not the direct path). It could be derived from the directivity field as defined in the DirectiveSound node by averaging the radiated power over all directions around the source. However, it is simpler and more reliable to transmit it separately in the bitstream. The same approach as for directivity is considered except that it doesn’t depend on the angles.

The general form for the omniDirectivity field is:

[nf, freq0,freq1,....freqnf-1, gain0, gain1,....gainnf-1].

Where,

nf is the number of reference frequencies

freq j is the jth reference frequency

gainj is the linear gain for the jth reference frequency.

An example of omniDirectivity is given below:

[5, 250, 500, 1000, 2000, 4000,

0.9, 0.85, 0.7, 0.6, 0.55]

If not specified in the node, the default gains at Hz is gain 0.

By default, the gain for frequencies above fnf-1is gain nf-1.

directFilterGains specifies a filter applied to the direct path only (amplitude gains in the three frequency bands defined by the crossover frequencies freqLow, freqHigh).

inputFilterGains specifies a filter applied to the source signal similarly as directFilterGains for the direct path.

refDistance is a reference distance at which the above set of perceptual parameters is defined (in meters). If the distance in the scene is different from this value, it is used for calculating a new value for the sourcePresence. RefDistance shall be strictly positive.

The generic room response that is modeled in the perceptual approach is characterized in the frequency domain by two frequency limits, freqLow and freqHigh (see Figure 26). This generic room response is also characterized in the temporal domain by four time limits and by the modal density of the late reverb. The PerceptualParameters node contains timeLimit1, timeLimit2, timeLimit3 which are the temporal limits l1, l2, l3 (relative to l0) and modalDensity (in seconds).

7.8.2.100.2.1 Mapping from high-level to low-level parameters

In order to use a reverberator to process the sound sources, it is necessary to convert from perceptual parameters to energetic parameters.

When an acoustical or perceptual criterion is updated at the higher level, the necessary modifications in the low-level energetic description of the room response can be readily computed via a nonlinear matrix inversion procedure (this is explained below). When the signal processing model is scaled down in order to reduce the computational cost, this is reflected in the behaviour of the perceptual control interface. For instance, if the reverb block is shared between several sources, the late decay time settings are constrained to be identical for these sources. If the cluster block is suppressed, the running reverberance and the room envelopment are no longer independently controllable.

When computing the energetic parameters of the room response, the perceptual parameters are denoted as follows :

Table 21 — Perceptual parameters

	Perceptual parameter field
	Notation
	Min
	Max

	 sourcePresence
	Es
	0.0
	1.0

	 SourceWarmth
	Desl
	0.1
	10.0

	 sourceBrilliance
	Desh
	0.1
	10.0

	 roomPresence
	Rev
	0.0
	1.0

	 runningReverberance
	Edtrel
	0.0
	1.0

	 envelopment
	Rdlrel
	0.0
	1.0

	 lateReverberance
	Rt (s)
	0.1
	1000.0

	 heaviness
	Drtl
	0.1
	10.0

	 liveness
	Drth
	0.1
	1.0

Es and Rev are absolute energies, and Rdlrel is a relative energy value. Desl, Desh, Drtl, Drth are multiplicative factors. Rt (reverberation time) is expressed in seconds, and Edtrel is a relative early decay time value.

With the above notations, the energetic factors are calculated as follows:

C = pow(10, -1.2 / Rt)

if Rev/Es =< 2*(1+C)/(1-C)

R3=(-C + sqrt[C2+0.5*Rev/Es*(1-C)2]) *4*Es/(1-C)2
else

R3= Rev + 2*Es

if (2*Es/R3 =< 30.622)

Edtmin= 0.4 + Rt * [1 - 0.667*log10(1 + 2*Es/R3)]

else

Edtmin= 0.6 / log10(1 + 2*Es/R3)

if (Es/R3 =< 30.622)

Edtmax= 0.4 + Rt * [1 - 0.667*log10(1 + Es/R3)]

else

Edtmax= 0.6 / log10(1 + Es/R3))

The early decay time in seconds is calculated as:

Edt= Edtmin+ (Edtmax- Edtmin)*Edtrel

If Edt > 0.4

R2
= -Es + R3 [pow(10, 1.5 * (1 + (0.4-Edt)/Rt)) -1]

else

R2
 = -Es + R3 [pow(10, 0.6 / Edt) -1]

Rdlmin = 0.05*R2 /Es

Rdlmax = 0.27 + 0.05*R2 /Es

The absolute envelopment is computed as:

Rdl = Rdlmin + (Rdlmax - Rdlmin)* Rdlrel
R1= (Es*Rdl - 0.05*R2) / 0.3

R1low= R1*Desl

R1high= R1*Desh

R0= Es - R1

R0low= R0*Desl

R0high= R0*Desh

Rt low
= Drtl * Rt

Rt high
= Drth * Rt

NOTE - All the values are energies expressed in the linear domain.

7.8.2.100.2.2 Mapping from positional to perceptual parameters

If the source is not placed at the reference distance refDistance for which the perceptual “preset” is defined, the following correction is applied (when distance field of the parent DirectiveSound node is different from 0):

10*Log10(Es) = 10*log10(Es) – 60*log2(d / refDistance) / log2(distance) ,

where d is the actual distance between the source and the listening point. In order to avoid saturation when d is small, Es shall be clipped to the value it takes when d = 1m.
For an example implementation of perceptual approach, see 7.6.

7.8.2.101 PixelTexture

7.8.2.101.1 Node interface

PixelTexture {

	
	exposedField
	SFImage
	image
	0 0 0

	
	field
	SFBool
	repeatS
	TRUE

	
	field
	SFBool
	repeatT
	TRUE

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.
7.8.2.101.2 Functionality and semantics

The semantics of the PixelTexture node are specified in ISO/IEC 14772-1:1998, subclause 6.33.

7.8.2.102 PlaneSensor

7.8.2.102.1 Node interface

PlaneSensor {

	
	exposedField
	SFBool
	autoOffset
	TRUE

	
	exposedField
	SFBool
	enabled
	TRUE

	
	exposedField
	SFVec2f
	maxPosition
	-1 -1

	
	exposedField
	SFVec2f
	minPosition
	0 0

	
	exposedField
	SFVecf3f
	offset
	0 0 0

	
	eventOut
	SFBool
	isActive
	

	
	eventOut
	SFVec3f
	trackPoint_changed
	

	
	eventOut
	SFVec3f
	translation_changed
	

}

7.8.2.102.2 Fnctionality and semantics

The semantics of the PlaneSensor node are specified in ISO/IEC 14772-1:1998, subclause 6.34.

7.8.2.103 PlaneSensor2D

7.8.2.103.1 Node interface

PlaneSensor2D {

	
	exposedField
	SFBool
	autoOffset
	TRUE

	
	exposedField
	SFBool
	enabled
	TRUE

	
	exposedField
	SFVec2f
	maxPosition
	0, 0

	
	exposedField
	SFVec2f
	minPosition
	0, 0

	
	exposedField
	SFVec2f
	offset
	0, 0

	
	eventOut
	SFBool
	isActive
	

	
	eventOut
	SFVec2f
	trackPoint_changed
	

	
	eventOut
	SFVec2f
	translation_changed
	

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.
7.8.2.103.2 Functionality and semantics

This sensor detects pointer device dragging and enables the dragging of objects on the 2D rendering plane.

The semantics of PlaneSensor2D are a restricted case for 2D of the semantics for the PlaneSensor node (see 7.2.2.95).

7.8.2.104 PointLight

7.8.2.104.1 Node interface

PointLight {

	
	exposedField
	SFFloat
	ambientIntensity
	0.0

	
	exposedField
	SFVec3f
	attenuation
	1, 0, 0

	
	exposedField
	SFColor
	color
	1, 1, 1

	
	exposedField
	SFFloat
	intensity
	1.0

	
	exposedField
	SFVec3f
	location
	0, 0, 0

	
	exposedField
	SFBool
	on
	TRUE

	
	exposedField
	SFFloat
	radius
	100.0

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.
7.8.2.104.2 Functionality and semantics

The semantics of the PointLight node are specified in ISO/IEC 14772-1:1998, subclause 6.35.

7.8.2.105 PointSet

7.8.2.105.1 Node interface

PointSet {

	
	exposedField
	SFNode
	color
	NULL

	
	exposedField
	SFNode
	coord
	NULL

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.
7.8.2.105.2 Functionality and semantics

The semantics of the PointSet node are specified in ISO/IEC 14772-1:1998, subclause 6.36.

7.8.2.106 PointSet2D

7.8.2.106.1 Node interface

PointSet2D {

	
	exposedField
	SFNode
	color
	NULL

	
	exposedField
	SFNode
	coord
	NULL

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.106.2 Functionality and semantics

This is a 2D equivalent of the PointSet node (see 7.2.2.98), with semantics that are the 2D restriction of that node.

7.8.2.107 PositionAnimator

7.8.2.107.1 Node interface

PositionAnimator {

	
	eventIn
	SFFloat
	set_fraction
	

	
	exposedField
	SFVec2f
	fromTo
	0 1

	
	exposedField
	MFFloat
	key
	[]

	
	exposedField
	SFInt32
	keyType
	0

	
	exposedField
	MFVec2f
	keySpline
	[0 0, 1 1]

	
	exposedField
	MFVec3f
	keyValue
	[]

	
	exposedField
	MFRotation
	keyOrientation
	[]

	
	exposedField
	MFFloat
	weight
	[]

	
	exposedField
	SFInt32
	keyValueType
	0

	
	exposedField
	SFVec3f
	offset
	0 0 0

	
	eventOut
	SFVec3f
	value_changed
	

	
	eventOut
	SFRotation
	rotation_changed
	

	
	eventOut
	SFVec3f
	endValue
	

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.107.2 Functionality and semantics

The model of the node follows a content creator way of designing animation. Animator nodes specify the path as well as timelines. The Animator nodes also have flags for cumulative path when it is repeated as well as normal vector to the path for specifying the orientation at the beginning of the animation.

The timeline is specified by key, keyType, and keySpline fields. The path is specified with keyValue, keyValueType, and keyValueSpline fields. The orientation at each key position is specified in keyOrientation.

Timeline specification

fromTo specifies when the Animator is active. By default, an animator is active for the whole duration of the timeline: from t=0 to t=1. fromTo can be used to produce animations with interruptions (Figure 27).

[image: image82]
Figure 027

\IF >= 1 "A."
 — fromTo field usage. The same timer can be used to trigger two Animator nodes starting and ending at different times.

keyType defines the timeline and five types of predefined timelines are possible (Figure 28). By default, if key is empty, linear timeline model is assumed (keyType 2).

For keyType 0 and key empty cases, the behavior is similar to VRML/BIFS interpolators.

[image: image83.emf]0

1

0

1

Discrete

Linear

Paced Velocity spline

t

value

1

1 0

0

Figure 28 – Predefined types of timelines: discrete, linear, paced (constant speed), and velocity spline. The first type (keyType 0) is not shown and is user-specified. Note how the animation paths are identical but the timelines so different.

Let’s denote

· [image: image84.wmf][

]

1

,

0

Î

t

 the time fraction received in set_fraction field,

· i is the curve segment defined by two keyValues i and i+1,

· [image: image85.wmf]1

,

,

0

],

[

-

=

=

n

i

i

key

t

i

K

.

· [image: image86.wmf]1

,

,

0

],

[

-

=

=

n

i

i

keyValue

i

K

v

.

· [image: image87.wmf]1

,

,

0

],

[

-

=

=

n

i

i

tion

keyOrienta

i

K

q

.

· ti and ti+1 the time corresponding to [image: image88.wmf]i

v

and [image: image89.wmf]i

v

,

· n is the number of keyValues.

	0
	User defined, like interpolators. The time is specified for each keyValue. If there are n keyValues, there must be exactly n keys.

	1
	Discrete. The timeline is divided into n equal intervals. The value remains constant on interval i to [image: image90.wmf]i

v

:

[image: image91.wmf]ë

û

1

)

(

)

(

*

+

<

£

=

=

=

=

i

i

i

i

t

t

t

t

n

i

t

t

f

n

t

i

v

v

	2
	Linear. The timeline is divided into (n-1) equal intervals.

[image: image92.wmf]ë

û

ë

û

)

(

)

(

)

(

)

(

)

(

1

)

1

(

*

)

1

(

*

t

t

t

t

t

t

f

n

n

t

t

n

t

i

i

i

i

Q

q

C

v

=

=

=

-

-

=

-

=

For a line segment[image: image93.wmf]i

C

, the position is[image: image94.wmf])

(

)

(

1

1

i

i

i

i

i

i

t

t

t

t

t

v

v

v

v

-

-

-

+

=

+

+

.

	3
	Paced. The speed remains constant over the animation path. A reparametrization by arclength (the distance traveled) is needed. The arclength is defined as

[image: image95.wmf]ò

¢

=

t

du

u

t

s

0

)

(

)

(

C

where [image: image96.wmf])

(

u

C

¢

is the first order derivative of the animation path [image: image97.wmf])

(

u

C

by the animation parameter u, In general, [image: image98.wmf])

(

u

C

¢

 is not integrable (especially for splines) and it is left to the implementation to decide which quadrature formula to use. Whatever the approximation used, the speed should remain constant, the exact position of keyframes is not mandatory.

For piecewise linear paths, the arclength is:

[image: image99.wmf]paths

linear

piecewise

for

1

0

1

å

-

=

+

-

=

i

j

j

j

i

d

P

P

,

Let [image: image100.wmf]i

d

be the distance traveled up to [image: image101.wmf]i

v

, [image: image102.wmf]n

d

 the total length of the animation path, and [image: image103.wmf]n

i

i

d

d

t

=

 the time spent to travel [image: image104.wmf]i

d

, then

[image: image105.wmf])

(

)

(

1

1

i

i

i

i

i

i

t

t

t

t

t

v

v

v

v

-

-

-

+

=

+

+

For orientation, [image: image106.wmf]i

i

i

t

t

t

t

-

-

+

1

is used to interpolate between [image: image107.wmf]i

q

and [image: image108.wmf]1

+

i

q

.

	4
	Spline. Defines a cubic Bézier velocity curve. Such a curve is defined by 4 points[image: image109.wmf][

]

3

2

1

0

P

P

P

P

,

,

,

: end points are [image: image110.wmf])

0

,

0

(

0

=

P

and [image: image111.wmf])

1

,

1

(

3

=

P

 and the two intermediate points [image: image112.wmf]2

1

,

P

P

are defined in keySpline, see Figure 29. The equation of the velocity curve is:

[image: image113.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

-

-

-

=

=

1

0

0

0

0

1

0

0

3

3

0

3

6

3

1

3

3

1

]

1

[

)

(

2

1

2

3

P

P

P

UM

f

B

u

u

u

u

c

[image: image114.emf]1

1

0

1

1

0

1

1

0

1

1

0

keySpline [0 0, 1 1] keySpline [0 0.75, 0.25 1]

keySpline [0.5 0, 0.5 1] keySpline [1 0, 0.25 0.25]

t

u u

u

u

t

t t

Figure 29 – Timeline control using cubic Bézier spline.

Algorithmically, [image: image115.wmf]t

u

C

x

=

)

(

 is first solved for the parameter u using a simple bisection algorithm, which is appropriate since the function is strictly monotonically increasing. [image: image116.wmf])

(

u

C

t

y

=

¢

 is determined for u. t’ is then used to determine the path segment it belongs to determine the position value [image: image117.wmf])

'

(

t

v

 and orientation [image: image118.wmf])

'

(

t

q

[image: image119.wmf]ë

û

)

(

)

(

)

'

(

)

'

(

)

1

(

*

t

t

t

t

n

t

i

i

i

¢

=

¢

=

-

¢

=

Q

q

C

v

key must contain the keyframes for each keyValue and keyOrientation.

Path specification

keyValueType specifies the type of curve characteristics. Apart from 1 (line), a curve is represented as a NURBS curve (type 3) and types 1 (quadratic Bézier) and 2 (cubic Bézier) are special cases. For NURBS and interpolating curves, the number of points N used must follow the type i.e. like [… 3 N …]. Type 0 allows cusps in the animation path; this enables jumping from one path to another without in the same Animator node.

Table 0\IF >= 1 "A."

SEQ Table
22
 — This table gives for each keyValueType, the number of keyValue that must be in the keyValue field.

	0
	Line
	1

	1
	Quadratic Bézier
	3

	2
	Cubic Bézier
	4

	3
	NURBS curve
	<N>

	4
	Interpolating cubic spline curve
	<N>

Notes:

For type 0, multiple line segments can be defined: the polyline passes though each point in keyValue field (like any interpolator). For other types, only one type of curve is possible (for example, if a path needs to have two cubic Bézier curves, they can be represented by a single NURBS curve and continuity constraints resolved in the knot vector).

For other type, an Animator node specifies only one type of curve characteristic. In general, any continuous path can be represented by a NURBS. Also, using cumulating (offset and endValue fields, see below), two Animator can be chained.

keyValue specifies the points [image: image120.wmf]{

}

i

P

the animation path should pass through (line and interpolating types) or the control points for curves (quadratic and cubic Bézier, and NURBS).

weight specifies the weights [image: image121.wmf]{

}

i

w

for each keyValue. If weight is empty then [image: image122.wmf]i

w

i

"

=

1

 is assumed. Else, there must be as many weights as control points.

Note that type 1 and 2 are special cases of NURBS curves. They are separate for convenience and better compression due to their important use in animation:

For quadratic Bézier curves (keyValueType 2), [image: image123.wmf]2

=

p

 and[image: image124.wmf]{

}

1

1

1

0

0

0

=

U

. 3 control points (from keyValue) are needed.

For cubic Bézier curves (keyValueType 3), [image: image125.wmf]3

=

p

 and[image: image126.wmf]{

}

1

1

1

1

0

0

0

0

=

U

. 4 control points (from keyValue) are needed.

Non-rational B-spline curves are obtained for NURBS curve (keyValueType 4) with[image: image127.wmf]i

w

i

"

=

1

 and a knot vector.

For NURBS curves (keyValueType 3), key contains the knot vector[image: image128.wmf]{

}

i

u

. While this specification allows unclamped knot-vectors (first and last knot not repeated p times), this would produce curves not passing through end points and hence produce cusps in the animation path.

An interpolating cubic spline curves (keyType 4) passes through all <N> points specified just after the type in keyValueType field. Chord length parametrization with averaging knots shall be used:

[image: image129.wmf]2

,

,

1

1

0

with

,

,

1

1

1

0

1

1

1

0

1

1

1

0

1

1

1

-

=

-

+

=

=

=

-

=

=

=

=

=

=

=

=

-

=

-

-

-

-

+

=

+

-

-

-

-

=

-

å

å

n

k

d

u

u

u

u

p

n

j

u

p

u

u

u

u

u

d

k

k

k

k

n

p

j

j

i

i

p

j

m

p

m

p

n

i

k

k

K

K

L

L

C

C

C

C

With this method the knots reflect the distribution of the[image: image130.wmf]k

u

. Furthermore, this results in a system of equation totally positive and banded with a bandwidth less than[image: image131.wmf]p

, which can be solved by Gaussian elimination without pivoting. Note that the resulting animation would be similar to a paced timeline if linear timeline is used with this type of path. A cubic spline was chosen but other degrees are possible. However, choosing a cubic spline provides C2 continuity, which is desirable in animation.

keyOrientation specifies the orientation [image: image132.wmf]{

}

i

q

 at each key value as a set of SFRotation (axis, angle). The algorithm in subclause A.2 is used except for keyType 0 (discrete) where no interpolation is done.

Cumulating specification

offset specifies an offset in position to be added to value_changed (Figure 30). By default no offset is added (offset is (0,0,0)). To cumulate two animations, animation 1 routes its endValue to animation 2’s offset. If animation 2 starts at (0,0,0), the two animations will follow one after the other seamlessly.

[image: image133.emf]offset

Figure 30 – Left: two animations without offset. Right: two animations chained by an offset.

Outputs

value_changed, orientation_changed, and endValue events are output.:

value_changed is [image: image134.wmf])

(

t

v

of Eq. 2.

orientation_changed is the frame orientation at [image: image135.wmf])

(

t

q

 of Eq. 2.

endValue is emitted when the end of the animation is reached (i.e. fromTo[1]).

7.8.2.108 PositionAnimator2D

7.8.2.108.1 Node interface

PositionAnimator2D {

	
	eventIn
	SFFloat
	set_fraction
	

	
	exposedField
	SFVec2f
	fromTo
	0 1

	
	exposedField
	MFFloat
	key
	[]

	
	exposedField
	SFInt32
	keyType
	0

	
	exposedField
	MFVec2f
	keySpline
	[0 0, 1 1]

	
	exposedField
	MFVec2f
	keyValue
	[]

	
	exposedField
	SFInt32
	keyOrientation
	0

	
	exposedField
	MFFloat
	weight
	[]

	
	exposedField
	SFInt32
	keyValueType
	0

	
	exposedField
	SFVec2f
	offset
	0 0 0

	
	eventOut
	SFVec2f
	value_changed
	

	
	eventOut
	SFFloat
	rotation_changed
	

	
	eventOut
	SFVec2f
	endValue
	

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.108.2 Functionality and semantics

The semantic is the same as for PositionAnimator except that input and output values are 2D positions and keyOrientation has the following semantic.

If keyOrientation is 0, no angle is generated.

If keyOrientation is 1, the object is oriented normal to the curve in the direction of the curve parameter. The angle is output in rotation_changed.

If keyOrientation is 2, the object is oriented normal to the curve in the opposite direction of the curve parameter. The angle is output in rotation_changed.

7.8.2.109 PositionInterpolator

7.8.2.109.1 Node interface

PositionInterpolator {

	
	eventIn
	SFFloat
	set_fraction
	

	
	exposedField
	MFFloat
	key
	[]

	
	exposedField
	MFVec3f
	keyValue
	[]

	
	eventOut
	SFVec3f
	value_changed
	

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.
7.8.2.109.2 Functionality and semantics

The semantics of the PositionInterpolator node are specified in ISO/IEC 14772-1:1998, subclause 6.37.

7.8.2.110 PositionInterpolator2D

7.8.2.110.1 Node interface

PositionInterpolator2D {

	
	eventIn
	SFFloat
	set_fraction
	

	
	exposedField
	MFFloat
	key
	[]

	
	exposedField
	MFVec2f
	keyValue
	[]

	
	eventOut
	SFVec2f
	value_changed
	

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.
7.8.2.110.2 Functionality and semantics

This is a 2D equivalent of the PositionInterpolator node (see 7.2.2.100) with semantics that are the 2D restriction of that node.

7.8.2.111 PositionInterpolator4D

7.8.2.111.1 Node interface

PositionInterpolator4D {

	
	eventIn
	SFFloat
	set_fraction
	

	
	exposedField
	MFFloat
	key
	[]

	
	exposedField
	MFVec4f
	keyValue
	[]

	
	eventOut
	SFVec4f
	value_changed
	

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.
7.8.2.111.2 Functionality and semantics

As PositionInterpolator, this node linearly interpolates 4-dimensional values.

7.8.2.112 ProceduralTexture

7.8.2.112.1 Node interface

ProceduralTexture {
	
	exposedField
	SFInt32
	type
	0

	
	exposedField
	SFInt32
	width
	7

	
	exposedField
	SFInt32
	height
	7

	
	exposedField
	SFInt32
	cellWidth
	4

	
	exposedField
	SFInt32
	cellHeight
	4

	
	exposedField
	SFInt32
	roughness
	0

	
	exposedField
	SFFloat
	distortion
	0

	
	exposedField
	SFInt32
	seed
	129093

	
	exposedField
	MFColor
	color
	0.3 0.698 1, 0.8 0.8 0.8, 1 1 1, 0 0 0]

	
	exposedField
	MFVec2f
	xWarpmap
	[]

	
	exposedField
	MFVec2f
	yWarpmap
	[]

	
	exposedField
	SFBool
	xSmooth
	FALSE

	
	exposedField
	SFBool
	ySmooth
	FALSE

	
	exposedField
	MFVec2f
	aWarpmap
	[0 0, 1 1]

	
	exposedField
	MFVec2f
	bWarpmap
	[0 0, 1 1]

	
	exposedField
	SFBool
	aSmooth
	FALSE

	
	exposedField
	SFBool
	bSmooth
	FALSE

	
	exposedField
	MFFloat
	aWeights
	[0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]

	
	exposedField
	MFFloat
	bWeights
	[0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]

	
	eventOut
	SFImage
	image_changed
	

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.
7.8.2.112.2 Functionality and semantics

The processes underlying the creation of procedural textures include the generation of a fractal ‘plasma’ field, subdivision of the texture into cells, spatial distortion of the texture, selection of colors to apply to the texture, and control of how the colors vary within a cell. The five cell types supported are shown in Figure 31.

	[image: image136.jpg]i

(a)
	[image: image137.jpg]

(b)
	[image: image138.jpg]

(c)

	[image: image139.jpg]

(d)
	[image: image140.jpg]

(e)
	

Figure 031

\IF >= 1 "A."
 — The 5 cell types: (a) Rectangle, (b) Brick, (c) Weave, (d) Hexagon, (e) Ring.

The type field specifies the basic cell type (Figure 31), while width and height specify the overall texture dimensions and cellWidth, cellHeight the basic cell size. Note that the actual sizes in pixels are 2width, 2height, 2cellWidth and 2cellHeight respectively.

The plasma properties are controlled through the roughness, distortion and seed parameters (subclause B.2).

The color field describes the four colors used to generate the final texture.

The xWarpmap, yWarpmap, xSmooth and ySmooth parameters warp the x and y coordinates prior to the lookup into the plasma, while the aWarpmap, bWarpmap, aSmooth and bSmooth fields provide an extra warping stage prior to the final interpolation between the four color parameters. See subclause B.3 for details.

The aWeights and bWeights arrays are used to provide a weighted blend between x, y, xwarp, ywarp, xdist, ydist, xoffset, yoffset, roffset, eoffset, aoffset, pcenter, pdist, poffset, randcell, randdist (see subclause B.2 for details). Note that for the majority of textures most of these weights will be zero.

[image: image141.jpg]K Material #7
W Ao Uy

Figure 032

\IF >= 1 "A."
 — Default plasma texture.
The output image_changed can be employed directly as a texture map. Figure 32 shows the basic texture generated by the default values.

7.8.2.112.3 Texture Generation

Underlying all procedural textures is a pseudo-random fractal ‘plasma’ (subclause B.2) which is constructed so that it can be tiled horizontally and vertically without discontinuities between one tile and its neighbor(s).

The generation of the texture is effectively a mapping from a pair of coordinates (x, y) to a color value. The stages in this procedure are as follows:

The coordinates are ‘warped’ (subclause B.3) to produce (xwarp, ywarp) using a set of user-supplied parameters. This can be used to produce large-scale variations in the texture, such as a gradual shift from bottom to top, or ripple effects.

The warped coordinates are subsequently distorted to produce (xdist, ydist). This can be used to change a regular cell pattern, such as a simple square grid, into something more ‘organic’, perhaps similar to the scales on crocodile skin. The distortion itself is generated using the plasma so the result is tileable. It also produces the appearance of stretched and compressed regions, rather than the ‘noisy’ image that would result from completely random distortion (Figure 33).

The distorted coordinates are subsequently analyzed to determine which cell they lie in (the basic cell types are shown in Figure 31). A record is made of the center of the cell (xcenter, ycenter) and the offset (xoffset, yoffset) of the distorted coordinates from the cell origin. In addition, a polar coordinate representation of the offset is calculated (roffset, aoffset), and eoffset, a variation on roffset representing distance to the nearest cell edge. Repeatable random values are derived from the cell center position, and from the distorted coordinates. Plasma values are looked up corresponding to the cell center (pcenter), the distorted coordinates (pdist), and a fixed offset from the distorted coordinates (poffset).

A weighted blend of (x, y, xwarp, ywarp, xdist, ydist, xoffset, yoffset, roffset, eoffset, aoffset, pcenter, pdist, poffset) is used to produce a pair of values which, after a further warping stage, are merged with two further weighted repeatable random values (randcell, randdist). The repeatability is achieved through cell specific seeding of a pseudo-random number generator (subclause B.4).

The resulting coordinates are used to interpolated between four colors, the result of which is the RGB pixel data for the texture at position (x, y).

	[image: image142.jpg]

	[image: image143.jpg]

	[image: image144.jpg]

	[image: image145.jpg]

Figure 33 — The effects of distortion: (a) 25%, (b) 50%, (c) 75%, (d) 100%.

The generation of the texture (T) can be represented by the following pseudo-code:

P[] = plasma(width, height, roughness, seed)

for every pixel x, y

xwarp = remap(x, xWarpmap[], xSmooth) * width

ywarp = remap(y, yWarpmap[], ySmooth) * height

xdist = xwarp + P[(xwarp + width / 2) % width, ywarp] * width * distortion

ydist = ywarp + P[xwarp, (ywarp + height / 2) % height] * height * distortion

Create vector v[] of 16 cell-related values:

x, y

xwarp, ywarp

xdist, ydist

xoffset, yoffset = offset of xdist, ydist from cell bottom-left

roffset = radial distance of xdist, ydist from cell center

eoffset = distance towards nearest edge

aoffset = angle of xdist, ydist around cell center

pcenter = P[xdist, ydist] // per-cell plasma value

pdist = P[xcenter, ycenter] // per-pixel plasma value

poffset = P[xdist + width / 2, ydist + height / 2]

randcell = nonrandom(xcenter, ycenter) // per-cell random value

randdist = nonrandom(xdist, ydist) // per-pixel random value

	A =
	[image: image146.wmf]å

å

=

=

15

0

15

0

]

[

]

[

]

[

i

i

i

aweights

i

aweights

i

v

	B =
	[image: image147.wmf]å

å

=

=

15

0

15

0

]

[

]

[

]

[

i

i

i

bweights

i

bweights

i

v

Awarp = remap(A, aWarpmap[], aSmooth)

Bwarp = remap(B, bWarpmap[], bSmooth)

c01 = color[0] + Awarp * (color[1] - color[0]);

c23 = color[2] + Awarp * (color[3] - color[2]);

T[x, y] = c01 + Bwarp * (c23 – c01);

Where width, height, roughness, distortion, seed, colors, xWarpmap, xSmooth, yWarpmap, ySmooth, aWarpmap, aSmooth, bWarpmap, bSmooth, aWeights and bWeights correspond directly to the node fields while the procedures plasma, remap and nonrandom are defined in Annex B.2.

EXAMPLES

	[image: image148.png]

	DEF Brickwork ProceduralTexture {

 Type 1

 CellWidth 8

 CellHeight 8

 roughness 2

 seed 63530

 color [0.447 0.43137 0, 0.6549 0.2 0.07843,

 0.447 0.43137 0, 0.447 0.43137 0]

 aWarpmap [0 0, 0.14 1, 0.83 1, 1 0]

 bWarpmap [0 0, 0.14 1, 0.83 1, 1 0]

 aWeights [0, 0, 0, 0, 0, 0, 0.48, 0, 0, 0, 0, 0, 0, 0, 0.40, 0.12]

 bWeights [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]

}

	[image: image149.jpg]

	DEF Fabric ProceduralTexture {

 type 2

 width 256

 height 256

 cellWidth 4

 cellHeight 4

 roughness 1

 distortion 0.05

 seed 114300

 color [0.898 0.89418 0.95294, 0.34118 0.29418 0.70196,

 0 0 0, 0 0 0]

 aWarpmap [0 0, 0.03 1, 0.88 1, 1 0]

 bWarpmap [0 0, 0.48 1, 1 0]

 aWeights [0, 0, 0, 0, 0, 0, 0.56, 0, 0, 0, 0, 0, 0, 0, 0.20, 0.24]

 bWeights [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]

}

	[image: image150.jpg]

	DEF GranitePink ProceduralTexture {

 width 256

 height 256

 cellWidth 8

 cellHeight 8

 roughness 5

 seed 36792

 color [0.72157 0.5647 0.5647, 0 0 0,

 0.91373 0.86275 0.86275, 0.80784 0.55294 0.51765]

 aWarpmap [0 0, 0.5 0, 0.5 1, 1 1]

 bWarpmap [0 0, 0.5 0, 0.5 1, 1 1]

 aWeights [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.90, 0, 0, 0.10]

 bWeights [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]

}

	[image: image151.jpg]

	DEF Horizon ProceduralTexture {

 width 256

 height 256

 roughness 4

 distortion 2

 seed 108436

 color [0.30196 0.69804 1, 0.56078 0.56078 0.56078,

 0.05098 0.2549 0.03921, 0.4902 0.67059 0]

 bWarpmap [0 0, 0.55 0, 0.59 1, 1 1]

}

DEF Marble ProceduralTexture {

	 width 256

 height 256

 roughness 1

 seed 22209

 color [0.8 0.7098 0.6902, 0.95686 0.8902 0.87451,

 0.87451 0.37255 0.23529, 0.95686 0.8902 0.87451]

 aWarpmap [0 1, 0.33 0, 1 1]

 bWarpmap [0 0, 0.55 0, 0.6 1, 0.65 0, 1 0]

 bWeights [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]

}
	

7.8.2.113 ProximitySensor

7.8.2.113.1 Node interface

ProximitySensor {

	
	exposedField
	SFVec3f
	center
	0, 0, 0

	
	exposedField
	SFVec3f
	size
	0, 0, 0

	
	exposedField
	SFBool
	enabled
	TRUE

	
	eventOut
	SFBool
	isActive
	

	
	eventOut
	SFVec3f
	position_changed
	

	
	eventOut
	SFRotation
	orientation_changed
	

	
	eventOut
	SFTime
	enterTime
	

	
	eventOut
	SFTime
	exitTime
	

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.
7.8.2.113.2 Functionality and semantics

The semantics of the ProximitySensor node are specified in ISO/IEC 14772-1:1998, subclause 6.38.

7.8.2.114 ProximitySensor2D

7.8.2.114.1 Node interface

ProximitySensor2D {

	
	exposedField
	SFVec2f
	center
	0, 0

	
	exposedField
	SFVec2f
	size
	0, 0

	
	exposedField
	SFBool
	enabled
	TRUE

	
	eventOut
	SFBool
	isActive
	

	
	eventOut
	SFVec2f
	position_changed
	

	
	eventOut
	SFFloat
	orientation_changed
	

	
	eventOut
	SFTime
	enterTime
	

	
	eventOut
	SFTime
	exitTime
	

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.
7.8.2.114.2 Functionality and semantics

This is the 2D equivalent of the ProximitySensor node (see 7.2.2.105) with semantics that are the 2D restriction of the that node.

The orientation_changed field is meaningless in 2D and can be ignored.

The ProximitySensor2D sensor generates an event when the pointing device (cursor) enters, exits, and moves within a region in space (defined by a rectangle according to center and size fields).
7.8.2.115 QuantizationParameter

7.8.2.115.1 Node interface

QuantizationParameter {

	
	field
	SFBool
	isLocal
	FALSE

	
	field
	SFBool
	position3DQuant
	FALSE

	
	field
	SFVec3f
	position3DMin
	-(, -(, -(

	
	field
	SFVec3f
	position3DMax
	+(, +(, +(

	
	field
	SFInt32
	position3DNbBits
	16

	
	field
	SFBool
	position2DQuant
	FALSE

	
	field
	SFVec2f
	position2DMin
	-(, -(

	
	field
	SFVec2f
	position2DMax
	+(, +(

	
	field
	SFInt32
	position2DNbBits
	16

	
	field
	SFBool
	drawOrderQuant
	FALSE

	
	field
	SFVec3f
	drawOrderMin
	-(

	
	field
	SFVec3f
	drawOrderMax
	+(

	
	field
	SFInt32
	drawOrderNbBits
	8

	
	field
	SFBool
	colorQuant
	TRUE

	
	field
	SFFloat
	colorMin
	0.0

	
	field
	SFFloat
	colorMax
	1.0

	
	field
	SFInt32
	colorNbBits
	8

	
	field
	SFBool
	textureCoordinateQuant
	TRUE

	
	field
	SFFloat
	textureCoordinateMin
	0.0

	
	field
	SFFloat
	textureCoordinateMax
	1.0

	
	field
	SFInt32
	textureCoordinateNbBits
	16

	
	field
	SFBool
	angleQuant
	TRUE

	
	field
	SFFloat
	angleMin
	0.0

	
	field
	SFFloat
	angleMax
	2(

	
	field
	SFInt32
	angleNbBits
	16

	
	field
	SFBool
	scaleQuant
	FALSE

	
	field
	SFFloat
	scaleMin
	0.0

	
	field
	SFFloat
	scaleMax
	+(

	
	field
	SFInt32
	scaleNbBits
	8

	
	field
	SFBool
	keyQuant
	TRUE

	
	field
	SFFloat
	keyMin
	0.0

	
	field
	SFFloat
	keyMax
	1.0

	
	field
	SFInt32
	keyNbBits
	8

	
	field
	SFBool
	normalQuant
	TRUE

	
	field
	SFInt32
	normalNbBits
	8

	
	field
	SFBool
	sizeQuant
	FALSE

	
	field
	SFFloat
	sizeMin
	0.0

	
	field
	SFFloat
	sizeMax
	+(

	
	field
	SFInt32
	sizeNbBits
	8

	
	field
	SFBool
	useEfficientCoding
	FALSE

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.
7.8.2.115.2 Functionality and semantics

The QuantizationParameter node describes the quantization values to be applied on single fields of numerical types. For each of identified categories of fields, a minimal and maximal value is given as well as a number of bits to represent the given class of fields. Additionally, it is possible to set the isLocal field to apply the quantization only to the node following the QuantizationParameter node. The use of a node structure for declaring the quantization parameters allows the application of the DEF and USE mechanisms that enable reuse of the QuantizationParameter node. Also, it enables the parsing of this node in the same manner as any other scene information.
The QuantizationParameter node may only appear as a child of a grouping node. When a QuantizationParameter node appears in the scene graph, the quantization is set to TRUE, and will apply to subsequent nodes as follows:

If the isLocal boolean is set to FALSE, the quantization applies to all siblings following the QuanitzationParameter node, and thus to all their children as well.

If the isLocal boolean is set to TRUE, the quantization only applies to the following sibling node in the children list of the parent node. If no sibling is following the QuantizationParameter node declaration, the node has no effect.

For each scene, by default, there is no quantization. A global quantizer can be defined or modified by using a GlobalQuantizationConfiguration command, see subclause 9.3.6.23. The global quantizer applies to all subsequent BIFS access units where no QuantizationParameter node apply. The global quantizer may be DEFed and then USEd within the scene. The global quantizer may be set to a USE of an existing QuantizationParameter present in the scene.

NOTE
If DEFed, the global quantizer may be ROUTEd and/or modified by Script, MPEG-J and FieldReplacement commands.

Unless the QuantizationParameter node is present in a GlobalQuantizationConfiguration command, the quantization is applied only in the scope of a single BIFS command. That is, if a command in the same access unit, or in another access unit inserts a node in a context in which the quantization was active, no quantization will be applied, except if a new QuantizationParameter node is defined in this new command.

The information contained in the QuantizationParameter node fields applies within the context of the node scope as follows. For each category of fields, a boolean sets the quantization on or off, the minimal and maximal values are set, as well as the number of bits for the quantization. This information, combined with the node coding table, enables the relevant information to quantize the fields to be obtained. The quantization parameters are applied as explained in subclause 8.3.
If the useEfficientCoding boolean is set to FALSE, the encoding of floats shall be performed using 32 bits, according to IEEE Std 754-1985.

If the useEfficientCoding boolean is set to TRUE, the encoding of floats shall use the syntax described in subclause 8.7.19. The scope of the use of the efficient coding is the same as that of the QuantizationParameter node. This means that the values of the fields of the current QuantizationParameter node are not sent in the efficient coding mode unless the context is within the scope of a previously sent QuantizationParameter whose useEfficientCoding bit was set to true.

7.8.2.116 RadialGradient

7.8.2.116.1 Node interface

RadialGradient {

	
	exposedField
	SFNode
	transform
	NULL

	
	exposedField
	SFVec2f
	center
	0.5 0.5

	
	exposedField
	SFFloat
	radius
	0.5

	
	exposedField
	SFVec2f
	focalPoint
	0.5 0.5

	
	exposedField
	SFInt32
	spreadMethod
	0

	
	exposedField
	MFFloat
	key
	[]

	
	exposedField
	MFColor
	keyValue
	[]

	
	exposedField
	MFFloat
	opacity
	[1]

}

NOTE - For the binary encoding of this node see node coding tables in electronic attachment.
7.8.2.116.2 Functionality and semantics

The RadialGradient node is a texture node that generates a texture procedurally.

The center and radius fields define the outermost circle (cx, cy, r) for the radial gradient. The gradient will be drawn such that 100% of the gradient stop is mapped to the perimeter of this outermost circle. The units for center and radius are in percentages of the bounds of the colored object. Length is x- and y-direction in the local coordinate system of the shape. By default, the center of the outermost circle is in the middle of the shape (0.5 means 50%).

focalPoint (fx, fy) represents the focal point of the gradient. The gradient will be drawn such that 0% of the gradient stop is at (fx, fy). The units are also in percentage of the bounds of the object.

spreadMethod can be pad (0), reflect (1), or repeat (2). It indicates what happens if the gradient starts or ends inside the bounds of the object. Pad means that the last color is used, reflect says to reflect the gradient pattern start-to-end, end-to-start, … repeatedly until the target object is filled, and repeat says to repeat the gradient pattern start-to-end, start-to-end, … until the target object is filled.

transform is an optional parameter that defines how the coordinate system of the gradient can be transformed from the gradient coordinate system onto the target coordinate system. By default, the gradient coordinate system is the same as the object it is applied to. This allows effects such as skewing the gradient. Only a 2D Transformation node (e.g. Transform2D, TransformMatrix2D) can be present here.

key and keyValue define the ramp of colors to use on a gradient. At least two values are necessary to define a gradient. key indicates, in percentage, where the keyValue (a RGB color value) will be placed. key represents the percentage distance between the focalPoint (fx, fy) and the edge of the outermost circle (cx, cy, r). opacity for each color value can be specified. By default, colors are 100% opaque. One value of opacity can be specified meaning all color values have the same opacity, else an opacity must be specified for each color value.

EXAMPLE

Shape {

geometry Rectangle { size 3 1 }

appearance Appearance {

texture RadialGradient {

key [0 0.5 1]

keyValue [0 0 1, 1 0 0, 0 0 1]

}

}

[image: image153.png]

7.8.2.117 Rectangle

7.8.2.117.1 Node interface

Rectangle {

	
	exposedField
	SFVec2f
	size
	2, 2

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.
7.8.2.117.2 Functionality and semantics

This node specifies a rectangle centered at (0,0) in the local coordinate system. The size field specifies the horizontal and vertical size of the rendered rectangle.

7.8.2.118 ScalarAnimator

7.8.2.118.1 Node Interface

ScalarAnimator {

	
	eventIn
	SFFloat
	set_fraction
	

	
	exposedField
	SFVec2f
	fromTo
	0 1

	
	exposedField
	MFFloat
	key
	[]

	
	exposedField
	SFInt32
	keyType
	0

	
	exposedField
	MFVec2f
	keySpline
	[0 0, 1 1]

	
	exposedField
	MFFloat
	keyValue
	[]

	
	exposedField
	MFFloat
	weight
	[]

	
	exposedField
	SFInt32
	keyValueType
	0

	
	exposedField
	SFFloat
	offset
	0

	
	eventOut
	SFFloat
	value_changed
	

	
	eventOut
	SFFloat
	endValue
	

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.
7.8.2.118.2 Functionality and semantics

Same semantic as for PositionAnimator except input and output key values are scalars (and no orientation is generated).

EXAMPLE
Curve paths

This example shows how to define a cubic B-Spline.

DEF TS TimeSensor {

 stopTime -1

 cycleInterval 5

 loop TRUE

}

linear animator

DEF PA1 PositionAnimator {

 fromTo 0.2 0.8

 key [0 0 0 0 0.25 0.5 0.75 1 1 1 1]

 keyValue [-2 0 0, -3 2 0, 2 2 0, 0 0 0, -1 -1 0, 3 -2 0, 2.5 0 0]

 keyValueType 3

 keyType 1

}

DEF XF1 Transform {

 children [

 Shape {

appearance Appearance {

material Material { diffuseColor 1 0 0 }

}

geometry Cone { height 1 bottomRadius 0.5 }

 }

]

}

ROUTE TS.fraction_changed TO PA1.set_fraction

ROUTE PA1.value_changed TO XF1.translation

ROUTE PA1.rotation_changed TO XF1.rotation

[image: image154.png]

Figure 34 — Curve path (cubic B-spline), control points, and a cone moving along.

EXAMPLE
Cumulating animations

Two animations are chained together but both use the same timer and output their position and orientation valued to the same node.

[image: image155.emf]PA1 PA2

endValue

offset

Timer

Transform

fraction_changed

set_fraction set_fraction

position

Figure 35 — Schematic of the events while cumulating two Animators.

DEF TIMER TimeSensor {

 stopTime -1

 cycleInterval 5

 loop TRUE

}

linear animator

DEF PA1 PositionAnimator {

 fromTo 0 0.5

 key [0 0 0 0 0.25 0.5 0.75 1 1 1 1]

 keyValue [-2 0 0, -3 2 0, 2 2 0, 0 0 0, -1 -1 0, 3 -2 0, 2.5 0 0]

 keyValueType 3

 keyType 1

}

DEF PA2 PositionAnimator {

 fromTo 0.5 1

 key [0 0 0 0 1 1 1 1]

 keyValue [0 0 0, 1 3 1,3 3 -1, 4 0 2]

 keyValueType 3

 keyType 1

}

ROUTE PA1.endValue TO PA2.offset # cumul

DEF XF1 Transform {

 children [

 Shape {

 appearance Appearance { material Material { diffuseColor 1 0 0 } }

 geometry Cone { height 1 bottomRadius 0.5 }

 }

]

}

ROUTE TIMER.fraction_changed TO PA1.set_fraction

ROUTE TIMER.fraction_changed TO PA2.set_fraction

ROUTE PA1.value_changed TO XF1.translation

ROUTE PA1.rotation_changed TO XF1.rotation

ROUTE PA2.value_changed TO XF1.translation

ROUTE PA2.rotation_changed TO XF1.rotation

[image: image156.png]

Figure 36 — Cumulating two Animators.

7.8.2.119 ScalarInterpolator

7.8.2.119.1 Node interface

ScalarInterpolator {

	
	eventIn
	SFFloat
	set_fraction
	

	
	exposedField
	MFFloat
	key
	[]

	
	exposedField
	MFFloat
	keyValue
	[]

	
	eventOut
	SFFloat
	value_changed
	

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.
7.8.2.119.2 Functionality and semantics

The semantics of the ScalarInterpolator node are specified in ISO/IEC 14772-1:1998, subclause 6.39.
7.8.2.120 ScoreShape
7.8.2.120.1 Node interface

ScoreShape {

	
	exposedField
	SFMusicScoreNode
	score
	NULL

	
	exposedField
	SFNode
	geometry
	NULL

}

NOTE
For the binary encoding of this node see node coding tables in electronic attachment.
7.8.2.120.2 Functionality and semantics

The score field allows the connection of a MusicScore node containing the Symbolic Music Representation formatted content.

The semantics of the geometry field are the same of the field with equivalent name in the Shape node specification, and are specified in ISO/IEC 14772-1:1998, subclause 6.41

When the score field is NULL nothing shall be done.

When the geometry field is NULL the node shall be rendered as if Bitmap node is specified as geometry
7.8.2.121 Script

7.8.2.121.1 Node interface

Script {

	
	exposedField
	MFString
	url
	[]

	
	field
	SFBool
	directOutput
	FALSE

	
	field
	SFBool
	mustEvaluate
	FALSE

	
	Any number of the following may then follow:

	
	eventIn
	eventType
	eventName
	

	
	field
	fieldType
	fieldName
	initialValue

	
	eventOut
	eventType
	eventName
	

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.
7.8.2.121.2 Functionality and semantics

The Script node is used to describe behaviour in a programmtic way in a scene. Script nodes typically

signify a change or user action

receive events from other nodes

contain a program module that performs some computation

effect change somewhere else in the scene by sending events

Each Script node has associated programming language code, referenced by the url field, that is executed to carry out the Script node's function. That code is referred to as the "script" in the rest of this description.

7.8.2.121.2.1 Detailed Semantics

The semantics of this node are as defined in ISO/IEC 14772-1:1998, subclause 6.40, with the following exception. The interface functions CreateVRMLFromString() and CreateVRMLFromURL() are not supported. The terminal shall support JavaScript.

EXAMPLE (The following scene contains two spheres that exchange colors when they are clicked with the mouse. The script is used to hold the current color state (in the variable num). The script variables color1 and color2 are used to hold the colors that are flipped back and forth between the two spheres. The script variable color is used to hold the last color state of the first sphere, and this color is routed to the second sphere. The first sphere color is set directly in the script.

Group {

children [

Viewpoint {

fieldOfView 0.785398

}

DirectionalLight {

color 1 1 1

}

Shape {

geometry Sphere { radius 0.5} # first sphere…

appearance Appearance {

material DEF COLOR Material {diffuseColor 1 0 0}

}

}

Transform {

translation -2 0 0

children [

Shape {

geometry Sphere { radius 1.0} #second sphere…

appearance Appearance {

material DEF COLOR2 Material {diffuseColor 1 1 1}

}

}

DEF TS TouchSensor{} #clicking on the 2nd sphere will activate the script

]

}

DEF SC Script {

eventIn SFBool touch

field SFNode node USE COLOR

field SFColor color1 0 1 0 # constant color for sphere

field SFColor color2 0 0 1 # same as above

field SFInt32 num 1 # holds the current color state

eventOut SFColor color # holds the last color in COLOR

url "javascript:

function touch (value, tp) {

color = node.diffuseColor;

if (num==1) {

node.diffuseColor = color1;

num = 2;

} else {

node.diffuseColor = color2;

num = 1;

}

}

"

}

]

}

ROUTE TS.isActive TO SC.touch # activates the script when sensor is touched

ROUTE SC.color TO COLOR2.diffuseColor # routes the last color of COLOR to COLOR2

7.8.2.122 ServerCommand

7.8.2.122.1 Node Interface

ServerCommand {

	
	eventIn
	SFBool
	trigger
	

	
	exposedField
	SFBool
	enable
	FALSE

	
	exposedField
	MFString
	url
	[]

	
	exposedField
	SFString
	command
	""

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.
7.8.2.122.2 Functionality and Semantics

The ServerCommand in BIFS enables the application signaling in MPEG-4 Systems. The application-signaling framework allows an application to communicate the application signaling messages or commands to a server(s). Commands are sent to servers upon the occurrence of events (synchronous events specified in the scene description or asynchronous events as a result of user interaction). The ServerCommand framework consists of two elements; a ServerCommand node, and a ServerCommandRequest structure. While the ServerCommand enables event routing to the server, the ServerCommandRequest structure specifies the syntax for the messages communicated to the server over a back channel.

The ServerCommand is processed only when trigger receives a TRUE event and enable is TRUE. When the ServerCommand is processed, the command is sent to the servers indicated by the specified url. A url identifies the object descriptor that contains an elementary stream that flows from the terminal back to the server. If that object descriptor has more than one such elementary stream, then the one specified will be used. The command field contains the information that is transmitted back to the server. The syntax and semantics of the command string are application specific and not specified. The syntax of the ServerCommandRequest structures used to communicate the command to a server is specified below.

7.8.2.122.3 ServerCommandRequest

When the ServerCommand is processed the associated command is communicated to the servers specified in the url using the ServerCommandRequest structures. The ServerCommandRequest is encapsulated into SL packets, using the SLConfigDescriptor contained in the ESDescriptor of the upchannel elementary stream that carries the commands. If a timestamp is provided in the SL layer (either decoding or composition) then it is directly derived from the System Time Base of the terminal.

Syntax

class ServerCommandRequest(BIFSConfig cfg) {

bit(cfg.nodeIDbits) nodeID;

SFString
command;

}
where nodeID is node ID of the ServerCommand node that triggered the command (all such nodes must have IDs in order to route events into them), and command is the string contained in the ServerCommand node's command field.

7.8.2.123 Shape

7.8.2.123.1 Node interface

Shape {

	
	exposedField
	SFNode
	appearance
	NULL

	
	exposedField
	SFNode
	geometry
	NULL

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.
7.8.2.123.2 Functionality and semantics

The semantics of the Shape node are specified in ISO/IEC 14772-1:1998, subclause 6.41.

7.8.2.124 Sound

7.8.2.124.1 Node interface

Sound {

	
	exposedField
	SFVec3f
	direction
	0, 0, 1

	
	exposedField
	SFFloat
	intensity
	1.0

	
	exposedField
	SFVec3f
	location
	0, 0, 0

	
	exposedField
	SFFloat
	maxBack
	10.0

	
	exposedField
	SFFloat
	maxFront
	10.0

	
	exposedField
	SFFloat
	minBack
	1.0

	
	exposedField
	SFFloat
	minFront
	1.0

	
	exposedField
	SFFloat
	priority
	0.0

	
	exposedField
	SFNode
	source
	NULL

	
	field
	SFBool
	spatialize
	TRUE

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.
7.8.2.124.2 Functionality and semantics

The Sound node is used to attach sound to a scene, thereby giving it spatial qualities and relating it to the visual content of the scene.

The Sound node relates an audio BIFS sub-graph to the rest of an audio-visual scene. By using this node, sound may be attached to a group, and spatialized or moved around as appropriate for the spatial transforms above the node. By using the functionality of the audio BIFS nodes, sounds in an audio scene dscribed using ISO/IEC 14496-1 may be filtered and mixed before being spatially composited into the scene.

The semantics of this node are as defined in ISO/IEC 14472-1:1997, subclause 6.42, with the following exceptions and additions.

The source field allows the connection of an audio sub-graph containing the sound.

The spatialize field determines whether the Sound shall be spatialized. If this flag is set, the sound shall be presented spatially according to the local coordinate system and current listeningPoint, so that it apparently comes from a source located at the location point, facing in the direction given by direction. The exact manner of spatialization is implementation-dependant, but implementators are encouraged to provide the maximum sophistication possible depending on terminal resources.

If there are multiple channels of sound output from the child sound, they may or may not be spatialized, according to the phaseGroup properties of the child, as follows. Any individual channels, that is, channels not phase-related to other channels, are summed linearly and then spatialized. Any phase-grouped channels are not spatialized, but passed through this node unchanged. The sound presented in the scene is thus a single spatialized sound, represented by the sum of the individual channels, plus an “ambient” sound represented by mapping all the remaining channels into the presentation system as described in 7.1.1.2.13.2.2.

If the spatialize field is not set, the audio channels from the child are passed through unchanged, and the sound presented in the scene due to this node is an “ambient” sound represented by mapping all the audio channels output by the child into the presentation system as described in 7.1.1.2.13.2.2.

As with the visual objects in the scene, the Sound node may be included as a child or descendant of any of the grouping or transform nodes. For each of these nodes, the sound semantics are as follows.

Affine transformations presented in the grouping and transform nodes affect the apparant spatialization position of spatialized sound. They have no effect on “ambient” sounds.

If a particular grouping or transform node has multiple Sound nodes as descendants, then they are combined for presentation as follows. Each of the Sound nodes may be producing a spatialized sound, a multichannel ambient sound, or both. For all of the spatialized sounds in descendant nodes, the sounds are linearly combined through simple summation from presentation. For multichannel ambient sounds, the sounds are linearly combined channel-by-channel for presentation.

EXAMPLE (Sound node S1 generates a spatialized sound s1 and five channels of multichannel ambient sound a1[1-5]. Sound node S2 generates a spatialized sound s2 and two channels of multichannel ambient sound a2[1-2]. S1 and S2 are grouped under a single Group node. The resulting sound is the superposition of the spatialized sound s1, the spatialized sound s2, and the five-channel ambient multichannel sound represented by a3[1-5], where

a3[1] = a1[1] + a2[1]

a3[2] = a1[2] + a2[2]

a3[3] = a1[3]

a3[4] = a1[4]

a3[5] = a1[5]

7.8.2.125 Sound2D

7.8.2.125.1 Node interface

Sound2D {

	
	exposedField
	SFFloat
	intensity
	1.0

	
	exposedField
	SFVec2f
	location
	0,0

	
	exposedField
	SFNode
	source
	NULL

	
	field
	SFBool
	spatialize
	TRUE

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.125.2 Functionality and semantics

The Sound2D node relates an audio BIFS sub-graph to the other parts of a 2D audio-visual scene. It shall not be used in 3D contexts (see 7.1.1.2.1). By using this node, sound may be attached to a group of visual nodes. By using the functionality of the audio BIFS nodes, sounds in an audio scene may be filtered and mixed before being spatially composed into the scene.

The intensity field adjusts the loudness of the sound. Its value ranges from 0.0 to 1.0, and this value specifies a factor that is used during the playback of the sound.

The location field specifies the location of the sound in the 2D scene.

The source field connects the audio source to the Sound2D node.

The spatialize field specifies whether the sound shall be spatialized on the 2D screen. If this flag is set, the sound shall be spatialized with the maximum sophistication possible. The 2D sound is spatialized assuming a distance of one meter between the user and a 2D scene of size 2m x 1.5m, giving the minimum and maximum azimuth angles of –45(and +45(, and the minimum and maximum elevation angles of -37(and +37 (.

The same rules for multichannel audio spatialization apply to the Sound2D node as to the Sound (3D) node (see 7.2.2.116). Using the phaseGroup flag in the AudioSource node it is possible to determine whether the channels of the source sound contain important phase relations, and that spatialization at the terminal should not be performed.

As with the visual objects in the scene (and for the Sound node), the Sound2D node may be included as a child or descendant of any of the grouping or transform nodes. For each of these nodes, the sound semantics are as follows.

Affine transformations presented in the grouping and transform nodes affect the apparent spatialization position of spatialized sound.

If a transform node has multiple Sound2D nodes as descendants, then they are combined for presentation as described in 7.2.2.116. If Sound and Sound2D nodes are both used in a scene, all shall be treated the same way according to these semantics.

7.8.2.126 Sphere

7.8.2.126.1 Node interface

Sphere {

	
	field
	SFFloat
	Radius
	1.0

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.126.2 Functionality and semantics

The semantics of the Sphere node are specified in ISO/IEC 14772-1:1998, subclause 6.43.

7.8.2.127 SphereSensor

7.8.2.127.1 Node interface

SphereSensor {

	
	exposedField
	SFBool
	autoOffset
	TRUE

	
	exposedField
	SFBool
	enabled
	TRUE

	
	exposedField
	SFRotation
	offset
	0 1 0 0

	
	eventOut
	SFBool
	isActive
	

	
	eventOut
	SFRotation
	rotation_changed
	

	
	eventOut
	SFVec3f
	trackPoint_changed
	

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.127.2 Functionality and semantics

The semantics of the SphereSensor node are specified in ISO/IEC 14772-1:1998, subclause 6.44.

7.8.2.128 SpotLight

7.8.2.128.1 Node interface

SpotLight {

	
	exposedField
	SFFloat
	ambientIntensity
	0.0

	
	exposedField
	SFVec3f
	attenuation
	1, 0, 0

	
	exposedField
	SFFloat
	beamWidth
	1.5708

	
	exposedField
	SFColor
	color
	1, 1, 1

	
	exposedField
	SFFloat
	cutOffAngle
	0.785398

	
	exposedField
	SFVec3f
	direction
	0, 0, -1

	
	exposedField
	SFFloat
	intensity
	1.0

	
	exposedField
	SFVec3f
	location
	0, 0, 0

	
	exposedField
	SFBool
	on
	TRUE

	
	exposedField
	SFFloat
	radius
	100.0

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.128.2 Functionality and semantics

The semantics of the SpotLight node are specified in ISO/IEC 14772-1:1998, subclause 6.45.
7.8.2.129 Storage
7.8.2.129.1 Node interface

Storage {

	
	eventIn
	SFBool
	forceSave
	

	
	eventIn
	SFBool
	forceRestore
	

	
	exposedField
	SFBool
	auto
	TRUE

	
	Field
	SFInt32
	expireAfter
	0

	
	Field
	SFString
	name
	NULL

	
	Field
	MFAttrRef
	storageList
	[]

}

7.8.2.130 NOTE
For the binary encoding of this node see node coding tables in electronic attachment.
7.8.2.130.1 Functionality and semantics

The Storage node enables saving and restoring any field values in a scene to a private storage zone of the terminal. The name parameter allows defining several storage zones in a single scene. The terminal should keep the stored value for the number of seconds indicated in the expireAfter field, or for an undetermined period of time, up to the implementation, if this value is less than or equal to zero. The scoping of the Storage node shall be done at the service level (e.g., same broadcast channel or same service URL of the initial scene). Sub-scenes opened through inline nodes are part of the same storage scope as the parent scene. In a same service, there shall not be more than one storage node with a given name field.

The set of node fields to be saved or restored is specified in the storageList field. Conceptually, saving node fields is equivalent to remembering the number of fields, their types and their values, and restoring is the opposite operation. This allows saving and restoring of node fields independently from node IDs which may vary across different scenes. The target field shall be an SF or an MF field with an underlying SF type equal to SFBool, SFInt32, SFFloat, SFTime, SFString, SFVec3f, SFVec2f, SFColor, and SFRotation. For complexity reasons, storing and restoring of SFNode/MFNode, SFImage/MFImage and SFCommandBuffer fields are not allowed.

Results are undefined if the target field types do not match between the save and the restore operations.

If auto is TRUE, then the terminal restores the information after decoding of the Storage object, and saves the information upon exiting the scene. If auto is FALSE, the terminal saves the node field values when the eventIn forceSave is triggered, and restores them when the eventIn forceRestore is triggered.
7.8.2.131 SurroundingSound

7.8.2.131.1 Node interface

SurroundingSound {

	
	exposedField
	SFNode
	source
	NULL

	
	exposedField
	SFFloat
	intensity
	1.0

	
	exposedField
	SFFloat
	distance
	0.0

	
	exposedField
	SFVec3f
	location
	0, 0, 0

	
	exposedField
	SFFloat
	distortionFactor
	0.0

	
	exposedField
	SFRotation
	orientation
	0, 0, 1, 0

	
	exposedField
	SFBool
	isTransformable
	TRUE

}

NOTE — For binary encoding of this node see node coding tables in electronic attachment.
7.8.2.131.2 Functionality and semantics

The SurroundingSound node is used to attach sound to a scene. This causes spatial qualities and makes it related to the visual content of the scene. This includes multichannel signals that cannot be spatially transformed with the other sound nodes due to their restrictions to the specification of the phaseGroup field and the spatialize field.

The SurroundingSound node relates an audio BIFS sub-graph to the rest of an audio-visual scene. By using this node, sound may be attached to a group and spatialized or moved around as appropriate for the spatial transforms above the node. By using the functionality of the audio BIFS nodes sounds in an audio scene described using ISO/IEC 14496-1 may be filtered and mixed before being spatially composited into the scene.

The Ambisonics® coordinate system as well as the one used for multichannel setups differs from the one used in MPEG‑4 scene description. A Transform or Transform3DAudio should be used to align the coordinate systems.
The source field allows connection to an audio sub-graph containing the sound. The phaseGroup field of the child node shall be ignored. Instead an AudioChannelConfig node has to be included into the audio subtree to deliver the required channel configuration information, e.g. Ambisonics® or multichannel format information.

The intensity field adjusts the loudness of the sound. Its value ranges from 0.0 to 1.0, and this value specifies a factor that is used during the playback of the sound.

The distance field describes how the intensity of the sound field shall be faded with increasing distance of the listener (ListeningPoint) from the location of the SurroundingSound. Its functionality is identical to the distance dependent attenuation of the sound described in subclause 7.2.2.46.2 DirectiveSound. If distance is set to 0, no distance dependent fading shall be applied.

The location field specifies the center of the sound field in the local coordinate system of the SurroundingSound.

The orientation field is the orientation given to the sound field in the scene, with regard to the local coordinate system of the considered SurroundingSound node. This supposes applying sound field rotations at rendering stage.

The distortionFactor field describes the strength of the angular distortion to be applied on the surrounding sound field when the listener moves from the sound field's reference point (SurroundingSound's location). This distortion effect assumes that "side" sources (i.e. in directions orthogonal to the motion) contained in the sound field, are at the same distance 1/distortionFactor from the reference point so that a small (e.g. forward) displacement d of the Listener produce a (resp. backward) angular change for side sources:  (tan d(distortionFactor. At the same time, frontal and back scenes respectively enlarge and narrow in a way that should be as continuous and convincing as possible. Nevertheless the precise distortion in these latter sectors is not normative, since it may not be independently controlled. An informative part (see 7.1.1.2.13.6) provides suitable formulae for the case of Ambisonics® sound fields and suggests methods for other multi-channel contents. The default zero value means that no distortion is applied whatever the ListeningPoint's position. DistortionFactor should take positive values in case of effects are consistent with the motion. Negative values may be used for supernatural effects.

isTransformable specifies whether the transformations from the transform hierarchy have to be applied or not.

7.8.2.132 Switch

7.8.2.132.1 Node interface

Switch {

	
	exposedField
	MFNode
	choice
	[]

	
	exposedField
	SFInt32
	whichChoice
	-1

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.132.2 Functionality and semantics

The semantics of the Switch node are specified in ISO/IEC 14772-1:1998, subclause 6.46, with the following restrictions.

If some of the child sub-graphs contain audio content (i.e., the subgraphs contain Sound nodes), the child sounds are switched on and off according to the value of the whichChoice field. That is, only sound that corresponds to Sound nodes in the whichChoice’th subgraph of this node are played. The others are muted.

7.8.2.133 TemporalGroup

The TemporalGroup node carries the temporal constraints of its child nodes that will be used by the FlexTime model (or Advanced Synchronization Model). The FlexTime Model supports synchronization of objects from multiple sources with possibly different time bases. The FlexTime Model specifies timing using a flexible, constraint-based timing model. In this model, media objects can be linked to one another in a time graph using relationship constraints such as "CoStart", "CoEnd", or "Meet". And, in addition, to allow some flexibility to meet these constraints, each object may have a flexible duration with specific stretch and shrink mode preferences that may be applied.

The FlexTime model is based upon a so-called "spring" metaphor. A spring has a set of three constants: the minimum length below which it will not shrink, the maximum length beyond which it will not stretch, and the optimal length at which it rests comfortably being neither compressed nor extended. Following this spring model, the temporal playback of media objects can be viewed as springs, with a set of playback durations corresponding to these three spring constants. The optimal playback duration (optimal spring length) can be viewed as the author’s preferred choice of playback duration for the media object. A player should, where possible, keep the playback length as close to the optimal duration as the presentation allows but may choose any duration between the minimum and maximum durations as specified by the author. Note, that whereas stretching or shrinking the duration continuous media, e.g. for video, implies respectively slowing down or speeding up playback, for discrete media such as a still image, shrinking or stretching is merely adjusting the rendering period to be shorter or longer.

The FlexTime model requires a small change to the MPEG-4 buffer model in terms of media delivery and decoding. Decoding may be delayed on the client, beyond the standard decoding time, by an amount determined by the flexibility expressed in the relationships. The buffer model for FlexTime can thus be specified as follows: “At any time from the instant of time corresponding to its DTS up to a time limit specified by FlexTime, and AU is instantaneously decoded and removed from the decoding buffer.”

To support synchronization of nodes within the scene to a media stream, or part thereof, a new node supporting flexible transformation to scene time is introduced. This grouping node is the TemporalTransform and can flexibly support the slowing down, speeding up, freezing or shifting of the scene time for rendering of nodes contained within. This transform node is also a grouping node and provides the flexible component for the FlexTime model.

The TemporalGroup provides the constraint for the FlexTime model and gives it the tools it needs to align in time both nodes and media streams with nodes in the scene graph. TemporalGroup can examine the temporal properties of its children, check for the availability of media in the composition buffer, and consequently decide which temporal transformation parameters to apply to each of its child nodes.

7.8.2.133.1 Node Interface

TemporalGroup {

	
	eventIn
	MFNode
	addChildren
	

	
	eventIn
	MFNode
	removeChildren
	

	
	exposedField
	MFNode
	children
	[]

	
	field
	SFBool
	costart
	TRUE

	
	field
	SFBool
	coend
	FALSE

	
	field
	SFBool
	meet
	FALSE

	
	exposedField
	MFFloat
	priority
	[]

	
	eventOut
	SFBool
	isActive
	

	
	eventOut
	SFInt32
	activeChild
	

}

NOTE — For the binary encoding of this node see subclause node coding tables in electronic attachment.
7.8.2.133.2 Functionality and semantics

The TemporalGroup node specifies the temporal relationship between a given number of TemporalTransform nodes.

The children field specifies the list of TemporalTransform or TemporalGroup nodes on which the constraint is applied.

The costart, coend and meet fields specify the temporal relationships amongst the node’s children. If costart is TRUE, all child nodes must be activated (start) together. If coend is TRUE, all child nodes must be deactivated (end) together. When meet is TRUE, the child nodes are activated one after another in a row. When one node ends, the next node in the list needs to start. If either costart or coend are set to TRUE the meet field is ignored.

The priority field specifies the list of priority numbers that determines the preferred scaling direction when two child nodes need to meet a constraint. The list of priorities is in the same order as the children field. More than one child can have the same value. In the case of coend the highest priority object will determine the end and cause all other objects to end at that time, providing all objects have at least reached their minimum durations. If the field is empty all nodes are assumed to have equal priority.

The isActive eventOut is triggered at the following events:

If costart is true a TRUE value will be sent when the co-start constraint is met.

If coend is true a FALSE value will be sent when the co-end constraint is met.

If meet is true a TRUE value will be sent when the first child is activated, and a FALSE value will be sent when the last one finishes.

The activeChild eventOut is sent when a new child is activated under a meet constant and will indicate the index of that child. The first child is index 0.

7.8.2.134 TemporalTransform

TemporalTransform is a grouping node that assigns temporal properties, and applies temporal transformation, to scene nodes and elementary streams.

7.8.2.134.1 Node Interface

TemporalTransform {

	
	eventIn
	MFNode
	addChildren
	

	
	eventIn
	MFNode
	removeChildren
	

	
	exposedField
	MFNode
	children
	[]

	
	exposedField
	MFString
	url
	[]

	
	exposedField
	SFTime
	startTime
	-1.0

	
	exposedField
	SFTime
	optimalDuration
	-1.0

	
	exposedField
	SFBool
	active
	FALSE

	
	exposedField
	SFFloat
	speed
	1.0

	
	exposedField
	SFVec2F
	scalability
	[1.0, 1.0]

	
	exposedField
	MFInt32
	stretchMode
	[0]

	
	exposedField
	MFInt32
	shrinkMode
	[0]

	
	exposedField
	SFTime
	maxDelay
	0

	
	eventOut
	SFTime
	actualDuration
	

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.
7.8.2.134.2 Functionality and semantics

The TemporalTransform node serves two purposes:

To apply temporal transformation to media objects.

To hold properties that will be used when the node has as a parent a TemporalGroup node.

The node operates on two types of objects. Its children field may contain a list of nodes of the type SF3DNode. In addition, it has a url field that may reference an elementary stream. In the first case, the node has the effect of slowing down, speeding up, freezing or shifting the time base of the compositor when it renders the child nodes that are transformed by the node. In the second case, the node affects the time base of the stream. Note that a Route between two nodes whose time bases are different, because one or both are affected by a TemporalTransform, will have undefined behavior. Also, a node with startTime / StopTime fields which is DEFed and USEd under different TemporalTransforms will have undefined behavior.
The startTime specifies the starting point of the media stream relative to the composition time of the first access unit received from the url that is controlled by this node. If startTime is negative, the entire media referred by this url is controlled.

The optimalDuration field specifies the nominal duration of the objects that are controlled by this node. This is also the optimal duration, which the FlexTime model opts for when scaling this node. If optimalDuration is negative, or outside the bounds defined by the scalability field, optimal duration is not available.

The active field determines whether the node, its children, and the stream controlled by the node are active. When the node is inactive, the time base of the compositor is frozen when the child nodes are composed. This means that:

The nodes are not visible and the stream is not played.

Timed nodes, e.g. TimeSensor, do not have their time running.

Node fields such as startTime and stopTime are processed as if the time is not running.

Nodes that react to user interaction, such as TouchSensor, or to their spatial position, such as ProximitySensors cannot be activated.

However operations that would normally be performed at that time are still performed, even if the node is frozen. For instance:

Script nodes are executed if activated.

ROUTEs are executed.

eventIns are processed (with no rendering).

DMIF (network stack) methods are called if necessary. Therefore the delivery of streams, if required, will be requested, even though their sync layer time base is frozen.

Another field that affects the temporal transformation is speed. When the value of this field is not 1 and the node is active, the scene time base of the node, its children, and the time base of the stream will slow down or speed up according to this factor. If speed is set to zero, the node remains active but its time stops. Therefore time-related operations behave as if time is constant, and audio rendering pauses.

The other fields of the TemporalTransform node have no effect on the execution of the node, but are used by a parent TemporalGroup node to determine the temporal layout of the node in relation to other TemporalTransform objects.

The scalability field specifies the maximum ratios by which this object is allowed to shrink or stretch. If a nominal duration is known, either from optimalDuration or the stream length, the ratio determines the absolute values of the minimum and maximum duration. Otherwise, for unknown duration, the field dictates either the ratio by which the time bases controlled by the node are allowed to scale; or, when optimalDuration lies outside the bound of the values calculated, they are minimum and maximum durations (optimal duration unknown).

The stretchMode field specifies an ordered list of the preferred modes of stretching according to the table below.

The shrinkMode field specifies an ordered list of the preferred modes of shrinking according to the table below.

Table 23 — Preferred Mode of Stretch/Shrink Values.

	StretchMode

Value
	StretchMode

Description
	
	ShrinkMode

Value
	ShrinkMode

Description

	0
	Hold rendering of the last Access Unit
	
	0
	Stop rendering

	1
	Linear Composition Unit rendering rate decrease
	
	1
	Linear Composition Unit rendering rate increase

	2
	Repeat
	
	

The maxDelay field specifies how long the FlexTime model can wait for the stream specified by the url field. If this time elapses before the stream is available, the model behaves as if the node starts at that time, but the player will not render the children of this node and will discard the stream if it arrives later.

The actualDuration eventOut is triggered when the node is activated and sends the value of the estimated actual play duration of the node.
7.8.2.135 SynthesizedTexture

7.8.2.135.1 Node interface

SynthesizedTexture {
	
	exposedField
	MFVec3f
	Translation
	[]

	
	exposedField
	MFRotation
	Rotation
	[]

	
	exposedField
	SFInt32
	pixelWidth
	-1

	
	exposedField
	SFInt32
	pixelHeight
	-1

	
	exposedField
	SFBool
	Loop
	FALSE

	
	exposedField
	SFFloat
	Speed
	1.0

	
	exposedField
	SFTime
	startTime
	0

	
	exposedField
	SFTime
	stopTime
	0

	
	exposedField
	MFString
	url
	[]

	
	eventOut
	SFTime
	duration_changed
	

	
	eventOut
	SFBool
	isActive
	

}
7.8.2.135.2 Functionality and Semantics
The semantics of this node are described in ISO/IEC 14496-19:2004: Information technology — Coding of audio-visual objects — Part 19: Synthesized texture stream.
The translation field is a sequence of N+1 vectors where N is the number of objects in the SynthesizedTexture stream. Each vector represents the initial 3D translation of a certain plane. The first vector ([0]) refers to the plane of the SynthesizedTexture's Camera. The following pairs (n = 1..N-1) refer to the plane of the nth Object appearing in the SynthesizedTexture stream. This information is combined with the respective Keyframe information of the Camera Scenario and the Object Animation.

Similarly, the rotation field represents the initial 3D rotation of the respective aforementioned planes.

The pixelWidth and pixelHeight fields specify the required scaled frame size of the rendered SynthesizedTexture node, in pixels. The default value –1 causes the respective dimension to preserve its authored value.

7.8.2.136 The semantics of the remaining fields in the interface are identical to those of the corresponding fields in the MovieTexture node interface.
7.8.2.137 TermCap

7.8.2.137.1 Node interface

TermCap {

	
	eventIn
	SFTime
	evaluate
	

	
	field
	SFInt32
	capability
	0

	
	eventOut
	SFInt32
	value
	

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.137.2 Functionality and semantics

The TermCap node is used to query the resources of the terminal. By ROUTEing the result to a Switch node, simple adaptive content may be authored using BIFS.

When this node is instantiated, the value of the capability field shall be examined by the system and the value eventOut generated to indicate the associated system capability. The value eventOut is updated and generated whenever an evaluate eventIn is received.

The capability field specifies a terminal resource to query. The semantics of the value field vary depending on the value of this field. The capabilities which may be queried are:

Table 24 — Semantics of value, dependent on capability
	capability
	Semantics of value

	0
	frame rate

	1
	color depth

	2
	screen size

	3
	graphics hardware

	32
	audio output format

	33
	maximum audio sampling rate

	34
	spatial audio capability

	64
	CPU load

	65
	memory load

The exact semantics differ depending on the value of the capability field, as follows.

capability: 0 (frame rate)

For this value of capability, the current rendering frame rate is measured. The exact method of measurement not specified.

Table 25 — Semantics of value for capability=0

	value
	Semantics

	0
	unknown or can’t determine

	1
	less than 5 fps

	2
	5-10 fps

	3
	10-20 fps

	4
	20-40 fps

	5
	more than 40 fps

For the breakpoint between overlapping values between each range (i.e. 5, 10, 20, and 40), the higher value of value shall be used (ie, 2, 3, 4, and 5 respectively). This applies to each of the subsequent capability-value tables as well.

capability: 1 (color depth)

For this value of capability, the color depth of the rendering terminal is measured. At the time this node is instantiated, the value field is set to indicate the color depth as follows:

Table 26 — Semantics of value for capability=1

	value
	Semantics

	0
	unknown or can’t determine

	1
	1 bit/pixel

	2
	grayscale

	3
	color, 3-12 bit/pixel

	4
	color, 12-24 bit/pixel

	5
	color, more than 24 bit/pixel

capability: 2 (screen size)

For this value of capability, the window size (in horizontal lines) of the output window of the rendering terminal is measured:

Table 27 — Semantics of value for capability=2

	value
	Semantics

	0
	unknown or can’t determine

	1
	less than 200 lines

	2
	200-400 lines

	3
	400-800 lines

	4
	800-1600 lines

	5
	1600 or more lines

capability: 3 (graphics hardware)

For this value of capability, the available of graphics acceleration hardware of the rendering terminal is measured. At the time this node is instantiated, the value field is set to indicate the available graphics hardware:

Table 28 — Semantics of value for capability=3

	value
	Semantics

	0
	unknown or can’t determine

	1
	no acceleration

	2
	matrix multiplication

	3
	matrix multiplication +
texture mapping (less than 1M memory)

	4
	matrix multiplication +
texture mapping (less than 4M memory)

	5
	matrix multiplication +
texture mapping (more than 4M memory)

capability: 32 (audio output format)

For this value of capability, the audio output format (speaker configuration) of the rendering terminal is measured. At the time this node is instantiated, the value field is set to indicate the audio output format.

Table 29 — Semantics of value for capability=32

	value
	Semantics

	0
	unknown or can’t determine

	1
	mono

	2
	stereo speakers

	3
	stereo headphones

	4
	five-channel surround

	5
	more than five speakers

capability: 33 (maximum audio sampling rate)

For this value of capability, the maximum audio output sampling rate of the rendering terminal is measured. At the time this node is instantiated, the value field is set to indicate the maximum audio output sampling rate.

Table 30 — Semantics of value for capability=33

	value
	Semantics

	0
	unknown or can’t determine

	1
	less than 16000 Hz

	2
	16000-32000 Hz

	3
	32000-44100 Hz

	4
	44100-48000 Hz

	5
	48000 Hz or more

capability: 34 (spatial audio capability)

For this value of capability, the spatial audio capability of the rendering terminal is measured. At the time this node is instantiated, the value field is set to indicate the spatial audio capability.

Table 31 — Semantics of value for capability=34

	value
	Semantics

	0
	unknown or can’t determine

	1
	no spatial audio

	2
	panning only

	3
	azimuth only

	4
	full 3-D spatial audio

capability: 64 (CPU load)

For this value of capability, the CPU load of the rendering terminal is measured. The exact method of measurement is not specified. The value of the value eventOut indicates the available CPU resources as a percentage of the maximum available; that is, if all of the CPU cycles are being consumed, and no extra calculation can be performed without compromising real-time performance, the indicated value is 100%; if twice as much calculation as currently being done can be so performed, the indicated value is 50%.

Table 32 — Semantics of value for capability=64

	value
	Semantics

	0
	unknown or can’t determine

	1
	less than 20% loaded

	2
	20-40% loaded

	3
	40-60% loaded

	4
	60-80% loaded

	5
	80-100% loaded

capability: 65 (RAM available)

For this value of capability, the available memory of the rendering terminal is measured. The exact method of measurement is not specified.

Table 33 — Semantics of value for capability=65

	value
	Semantics

	0
	unknown or can’t determine

	1
	less than 100 KB free

	2
	100 KB – 500 KB free

	3
	500 KB – 2 MB free

	4
	2 MB – 8 MB free

	5
	8 MB – 32 MB free

	6
	32 MB – 200 MB free

	7
	more than 200 MB free

7.8.2.138 Text

7.8.2.138.1 Node interface

Text {

	
	exposedField
	MFString
	string
	[]

	
	exposedField
	MFFloat
	length
	[]

	
	exposedField
	SFNode
	fontStyle
	NULL

	
	exposedField
	SFFloat
	maxExtent
	0.0

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.138.2 Functionality and semantics

The semantics of the Text node are specified in ISO/IEC 14772-1:1998, subclause 6.47. When text is textured in a 2D context, the default texture mapping coordinates are defined as the four corners of the bounding box of the complete rendered text string.
7.8.2.139 TextureCoordinate

7.8.2.139.1 Node interface

TextureCoordinate {

	
	exposedField
	MFVec2f
	point
	[]

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.139.2 Functionality and semantics

The semantics of the TextureCoordinate node are specified in ISO/IEC 14772-1:1998, subclause 6.48.

7.8.2.140 TextureTransform

7.8.2.140.1 Node interface

TextureTransform {

	
	exposedField
	SFVec2f
	center
	0, 0

	
	exposedField
	SFFloat
	rotation
	0.0

	
	exposedField
	SFVec2f
	scale
	1, 1

	
	exposedField
	SFVec2f
	translation
	0, 0

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.140.2 Functionality and semantics

The semantics of the TextureTransform node are specified in ISO/IEC 14772-1:1998, subclause 6.49.

7.8.2.141 TimeSensor

7.8.2.141.1 Node interface

TimeSensor {

	
	exposedField
	SFTime
	cycleInterval
	1

	
	exposedField
	SFBool
	enabled
	TRUE

	
	exposedField
	SFBool
	loop
	FALSE

	
	exposedField
	SFTime
	startTime
	0

	
	exposedField
	SFTime
	stopTime
	0

	
	eventOut
	SFTime
	cycleTime
	

	
	eventOut
	SFFloat
	fraction_changed
	

	
	eventOut
	SFBool
	isActive
	

	
	eventOut
	SFTime
	time
	

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.141.2 Functionality and semantics

The semantics of the TimeSensor node are specified in ISO/IEC 14772-1:1998, subclause 6.50.

7.8.2.142 TouchSensor

7.8.2.142.1 Node interface

TouchSensor {

	
	exposedField
	SFBool
	enabled
	TRUE

	
	eventOut
	SFVec3f
	hitNormal_changed
	

	
	eventOut
	SFVec3f
	hitPoint_changed
	

	
	eventOut
	SFVec2f
	hitTexCoord_changed
	

	
	eventOut
	SFBool
	isActive
	

	
	eventOut
	SFBool
	isOver
	

	
	eventOut
	SFTime
	touchTime
	

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.142.2 Functionality and semantics

The semantics of the TouchSensor node are specified in ISO/IEC 14772-1:1998, subclause 6.51.

In a 2D context, there are restrictions on the SFVec3f eventOuts:

hitNormal_changed always returns [0.0, 0.0, 1.0]
hitPoint_changed always has 0.0 as Z coordinate.

7.8.2.143 Transform

7.8.2.143.1 Node interface

Transform {

	
	eventIn
	MFNode
	addChildren
	

	
	eventIn
	MFNode
	removeChildren
	

	
	exposedField
	SFVec3f
	center
	0, 0, 0

	
	exposedField
	MFNode
	children
	[]

	
	exposedField
	SFRotation
	rotation
	0, 0, 1, 0

	
	exposedField
	SFVec3f
	scale
	1, 1, 1

	
	exposedField
	SFRotation
	scaleOrientation
	0, 0, 1, 0

	
	exposedField
	SFVec3f
	translation
	0, 0, 0

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.143.2 Functionality and semantics

The semantics of the Transform node are specified in ISO/IEC 14772-1:1998, subclause 6.52. ISO/IEC 14496-1 does not support the bounding box parameters (bboxCenter and bboxSize).

If some of the child subgraphs contain audio content (i.e., the subgraphs contain Sound nodes), the child sounds are transformed and mixed as follows.

If each of the child sounds is a spatially presented sound, the Transform node applies to the local coordinate system of the Sound nodes to alter the apparent spatial location and direction. If the children are not spatially presented but have equal numbers of channels, the Transform node has no effect on the childrens’ sounds. After any such transformation, the combination of sounds is performed as described in 7.2.2.116.

If the children are not spatially presented but have equal numbers of channels, the Transform node has no effect on the childrens’ sounds. The child sounds are summed equally to produce the audio output at this node.

If some children are spatially presented and some not, or all children do not have equal numbers of channels, the semantics are not defined.

7.8.2.144 Transform2D

7.8.2.144.1 Node interface

Transform2D {

	
	eventIn
	MFNode
	addChildren
	

	
	eventIn
	MFNode
	removeChildren
	

	
	exposedField
	SFVec2f
	center
	0, 0

	
	exposedField
	MFNode
	children
	[]

	
	exposedField
	SFFloat
	rotationAngle
	0.0

	
	exposedField
	SFVec2f
	scale
	1, 1

	
	exposedField
	SFFloat
	scaleOrientation
	0.0

	
	exposedField
	SFVec2f
	translation
	0, 0

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.144.2 Functionality and semantics

The Transform2D node allows the translation, rotation and scaling of its 2D children objects.

The rotation field specifies a rotation of the child objects, in radians, which occurs about the point specified by center.

The scale field specifies a 2D scaling of the child objects. The scaling operation takes place following a rotation of the 2D coordinate system that is specified, in radians, by the scaleOrientation field. The rotation of the co-ordinate system is notional and purely for the purpose of applying the scaling and is undone before any further actions are performed. No permanent rotation of the co-ordinate system is implied.

The translation field specifies a 2D vector which translates the child objects.

The scaling, rotation and translation are applied in the following order: scale, rotate, translate.

The children field contains a list of zero or more children nodes which are grouped by the Transform2D node.

The addChildren and removeChildren eventIns are used to add or remove child nodes from the children field of the node. Children are added to the end of the list of children and special note should be taken of the implications of this for implicit drawing orders.

If some of the child subgraphs contain audio content (i.e., the subgraphs contain Sound nodes), the child sounds are transformed and mixed as follows.

If each of the child sounds is a spatially presented sound, the Transform2D node applies to the local coordinate system of the Sound2D nodes to alter the apparent spatial location and direction. If the children are not spatially presented but have equal numbers of channels, the Transform2D node has no effect on the childrens’ sounds. After any such transformation, the combination of sounds is performed as described in 7.2.2.117.

If the children are not spatially presented but have equal numbers of channels, the Transform node has no effect on the children’s sounds. The child sounds are summed equally to produce the audio output at this node.

If some children are spatially presented and some not, or all children do not have equal numbers of channels, the semantics are not defined.

7.8.2.145 Transform3DAudio

7.8.2.145.1 Node interface

Transform3DAudio {

	
	eventIn
	MFNode
	addChildren
	

	
	eventIn
	MFNode
	removeChildren
	

	
	exposedField
	MFNode
	children
	[]

	
	exposedField
	SFFloat
	thirdCenterCoordinate
	0

	
	exposedField
	SFVec3f
	rotationVector
	[0, 0, 1]

	
	exposedField
	SFFloat
	thirdScaleCoordinate
	0.0

	
	exposedField
	SFVec3f
	scaleOrientationVector
	[0, 0, 1]

	
	exposedField
	SFFloat
	thirdTranslationCoordinate
	0.0

	
	exposedField
	SFRotation
	coordinateTransform
	[1, 0, 0, -(/2]

}

NOTE — For binary encoding of this node see node coding tables in electronic attachment.

7.8.2.145.2 Functionality and semantics

The node is used for adaptation of 2D visual scenes to 3D audio subtrees. The basic functionality is similar to a Transform(2D) node above the Sound nodes with additional functionalities:

· Add additional coordinates and vectors to the input data coming from the 2D transform hierarchy to achieve a full 3D addressing, if desired. This enables a full 3D functionality of the 3D audio nodes in a 2D visual context.

· Rotate this new coordinates and rotations about a desired value. This enables for example the x-y to x-z plane mapping, which is the default audio plane.

The context of the 2D transform hierarchy contains the following information: center, rotationAngle, scale, scaleOrientation and translation. These values have to be extended to a 3D context by using the fields thirdCenterCoordinate, rotationVector, thirdScaleCoordinate, scaleOrientationVector and thirdTranslationCoordinate as described in Table 34.

The rotation of the coordinate system is determined by coordinateTransform. The default value maps the x-y position into the x-z plane. In this case the z components from thirdCenterCoordinate, thirdScaleCoordinate and thirdTranslationCoordinate address the y-components of the sound object.

Table 34 — Field functionality table
	Node field
	Input from the transform hierarchy
	Is composed as output to target field for 3D descendant node(s)

	thirdCenterCoordinate
	z
	SFFloat
	center
	{x, y}
	SFVec2f
	SFVec3f
	{x, y, z}

	rotationVector
	{x, y, z}
	SFVec3f
	rotationAngle
	(
	SFFloat
	SFRotation
	{x, y, z, (}

	thirdScaleCoordinate
	z
	SFFloat
	scale
	{x, y}
	SFVec2f
	SFVec3f
	{x, y, z}

	scaleOrientationVector
	{x, y, z}
	SFVec3f
	scaleOrien-tation
	(
	SFFloat
	SFRotation
	{x, y, z, (}

	thirdTranslationCoordinate
	z
	SFFloat
	translation
	{x, y}
	SFVec2f
	SFVec3f
	{x, y, z}

7.8.2.146 TransformMatrix2D

7.8.2.146.1 Node interface

TransformMatrix2D {

	
	eventIn
	MFNode
	addChildren
	

	
	eventIn
	MFNode
	removeChildren
	

	
	exposedField
	MFNode
	children
	[]

	
	exposedField
	SFFloat
	mxx
	1

	
	exposedField
	SFFloat
	mxy
	0

	
	exposedField
	SFFloat
	tx
	0

	
	exposedField
	SFFloat
	myx
	0

	
	exposedField
	SFFloat
	myy
	1

	
	exposedField
	SFFloat
	ty
	0

}

NOTE - For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.146.2 Functionality and semantics

The TransformMatrix2D node is a grouping node that defines a coordinate system for its children that is relative to the coordinate systems of its ancestors. See ISO/IEC 14772-1:1998 for a description of coordinate systems and transformations and for a description of the children, addChildren, and removeChildren fields and eventIns.

The mxx, mxy, tx, myx, myy and ty fields define a geometric 2D transformation based on the following transformation matrix:

[image: image157.wmf]÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

è

æ

=

1

0

0

y

yy

yx

x

xy

xx

t

m

m

t

m

m

T

Given a 2-dimensional point P and TransformMatrix2D node, P is transformed into point P' in its parent's coordinate system by the transformation whose matrix is T.

P' = T × P

The behaviour of TransformMatrix2D with respect to the Sound2D node is the same as the behaviour of the Transform2D node.

The addChildren and removeChildren eventIns are used to add or remove child nodes from the children field of the node as for a Transform2D node.

7.8.2.147 Valuator

7.8.2.147.1 Node interface

Valuator {

	
	eventIn
	SFBool
	inSFBool
	

	
	eventIn
	SFColor
	inSFColor
	

	
	eventIn
	MFColor
	inMFColor
	

	
	eventIn
	SFFloat
	inSFFloat
	

	
	eventIn
	MFFloat
	inMFFloat
	

	
	eventIn
	SFInt32
	inSFInt32
	

	
	eventIn
	MFInt32
	inMFInt32
	

	
	eventIn
	SFRotation
	inSFRotation
	

	
	eventIn
	MFRotation
	inMFRotation
	

	
	eventIn
	SFString
	inSFString
	

	
	eventIn
	MFString
	inMFString
	

	
	eventIn
	SFTime
	inSFTime
	

	
	eventIn
	SFVec2f
	inSFVec2f
	

	
	eventIn
	MFVec2f
	inMFVec2f
	

	
	eventIn
	SFVec3f
	inSFVec3f
	

	
	eventIn
	MFVec3f
	inMFVec3f
	

	
	eventOut
	SFBool
	outSFBool
	

	
	eventOut
	SFColor
	outSFColor
	

	
	eventOut
	MFColor
	outMFColor
	

	
	eventOut
	SFFloat
	outSFFloat
	

	
	eventOut
	MFFloat
	outMFFloat
	

	
	eventOut
	SFInt32
	outSFInt32
	

	
	eventOut
	MFInt32
	outMFInt32
	

	
	eventOut
	SFRotation
	outSFRotation
	

	
	eventOut
	MFRotation
	outMFRotation
	

	
	eventOut
	SFString
	outSFString
	

	
	eventOut
	MFString
	outMFString
	

	
	eventOut
	SFTime
	outSFTime
	

	
	eventOut
	SFVec2f
	outSFVec2f
	

	
	eventOut
	MFVec2f
	outMFVec2f
	

	
	eventOut
	SFVec3f
	outSFVec3f
	

	
	eventOut
	MFVec3f
	outMFVec3f
	

	
	exposedField
	SFFloat
	Factor1
	1.0

	
	exposedField
	SFFloat
	Factor2
	1.0

	
	exposedField
	SFFloat
	Factor3
	1.0

	
	exposedField
	SFFloat
	Factor4
	1.0

	
	exposedField
	SFFloat
	Offset1
	0.0

	
	exposedField
	SFFloat
	Offset2
	0.0

	
	exposedField
	SFFloat
	Offset3
	0.0

	
	exposedField
	SFFloat
	Offset4
	0.0

	
	exposedField
	SFBool
	Sum
	FALSE

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.147.2 Functionality and semantics

The Valuator node serves as a simple type casting method. It can receive events of multiple types. On reception of such an event, eventOuts of many different types can be generated. Both the eventIn and the eventOut values can be single field (SF) or multiple field (MF) types. In addition, the possible eventIn and eventOut types include both scalar types, like SFBool, and vector types, like SFVec2f.

Each component of the (possibly vector) eventOut value is calculated from the corresponding component of the (possibly vector) eventIn value with the following relationship that is also visualized in Figure 37:

output.i = factor.i * input.i + offset.i

All values specified in the above equation are floating point values.

input.i is the value of the ith component of the eventIn type and output.i is the value of the ith component of one of the eventOut types specified in the node inteface. input.i shall be extended by zeros for all components i that do not exist in the input type (e.g., input.z=0.0 in case an SFVec2f is cast to an SFVec3f). factor.i and offset.i are the exposedField values for the ith component of the vectorial calculation.

In the special case of a scalar input type (e.g. SFBool, SFInt32) that is cast to a vectorial output type (e.g. SFVec2f), for all components i of output.i, input.i shall take the value of the scalar input type, after appropriate type conversion.

[image: image158.wmf]Output

value

Output

value

Output

value

Output

value

Factor

1

+

x

x

x

x

S

+

+

+

Type cast to

output type

Type cast to

output type

Type cast to

output type

Type cast to

output type

Summing

flag

Factor

2

Factor

3

Factor

4

Offset1

Offset2

Offset3

Offset4

Figure 37 — Valuator functionaliy

Depending on the number of dimensions of the data type, there may be one up to four input values. For example an eventIn of type SFRotation will require four input paths but SFInt32 will only require the first input path. Each input path operates identically.

Each input value is converted to a floating-point value using a simple typecasting rule as illustrated in Table 35. After conversion, the values are multiplied by the corresponding factor.i value and added to the corresponding offset.i value as specified above. Depending on whether the summer is enabled, either the summed value or the individual values are presented at the output. The summer sums all 4 computed input paths independent of the number of dimensions of the eventIn type.

Table 35 — Simple typecasting conversion from other data types to float.

	From
	Conversion to float

	Integer
	Direct conversion.

(1 to 1.0)

	Boolean
	true – 1.0

false – 0.0

	Double
	Truncate to 32-bit precision

	String
	Convert if the content of the string represents an int, float or double value. ‘Boolean’ string values “true” and “false” are converted to 1.0 and 0.0 respectively. Any other string is converted to 0.0

Table 36 — Simple typecasting conversion from float to other data types.

	To
	Conversion from float

	Integer
	Truncate floating point.

eg (1.11 to 1)

	Boolean
	0.0 to false

Any other values to true

	Double
	Direct conversion

	String
	Convert to a string representing the float

For conversion of data types to and from strings the values of multiple valued data types, such as SFColor, are separated by spaces.

Depending on the dimension of the eventOut type, the corresponding number of output values are computed and converted to the output types according to Table 36 and as detailed below.

If the eventIn is of an SF type then an eventOut for an MF type shall consist of just one element, i.e., the MF type collapses to a SF type.

If the eventIn is of an MF type then an eventOut for an SF type shall be created by using the first element of the MF input only.

If the eventIn is of an MF type then an eventOut for an MF type shall be created by using each element of the MF input to generate one element of the MF output type, respecting the order of the elements in the eventIn MF type.

If the eventIn is of SFTime type then the conversion to string format shall be in the format “hh:mm:ss” where ‘hh’, ‘mm’, ‘ss’ are respectively hours, minutes and seconds of the input SFTime value.
If the eventIn is inMFString then the outSFString eventOut shall be created by using the first element of inMFString input if the “Sum” field is set to “false”, or the concatenation of all strings in the inMFString input if the “Sum” field is set to “true”. In this special case, FactorX and OffsetX fields are ignored.
EXAMPLE (The Valuator node can be seen as an event type adapter. One use of this node is the modification of the SFInt32 whichChoice field of a Switch node by an event. There is no interpolator or sensor node with a SFInt32 eventOut. Thus, if a two-state button is described with a Switch containing the description of each state in choices 0 and 1. The triggering event of any type can be routed to a Valuator node whose SFInt32 field is routed to the whichChoice field of the Switch.

SFVec4f fields cannot be routed to Valuator node.

7.8.2.148 Viewpoint

7.8.2.148.1 Node interface

Viewpoint {

	
	eventIn
	SFBool
	set_bind
	

	
	exposedField
	SFFloat
	fieldOfView
	0.785398

	
	exposedField
	SFBool
	jump
	TRUE

	
	exposedField
	SFRotation
	orientation
	0, 0, 1, 0

	
	exposedField
	SFVec3f
	position
	0, 0, 10

	
	field
	SFString
	description
	""

	
	eventOut
	SFTime
	bindTime
	

	
	eventOut
	SFBool
	isBound
	

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.148.2 Functionality and semantics

The semantics of the Viewpoint node are specified in ISO/IEC 14772-1:1998, subclause 6.53.

7.8.2.149 Viewport

7.8.2.149.1 Node interface

Viewport {

	
	eventIn
	SFBool
	set_bind
	

	
	exposedField
	SFVec2F
	position
	0 0

	
	exposedField
	SFVec2F
	size
	-1 -1

	
	exposedField
	SFFloat
	orientation
	0

	
	exposedField
	MFInt32
	alignment
	[0 0]

	
	exposedField
	SFInt32
	fit
	0

	
	field
	SFString
	description
	“”

	
	eventOut
	SFTime
	bindTime
	

	
	eventOut
	SFBool
	isBound
	

}

NOTE - For the binary encoding of this node see node coding tables in electronic attachment.
7.8.2.149.2 Functionality and semantics

A Viewport node can be placed in the viewport field of a Layer2D or CompositeTexture2D node or in the scene tree as a 2D node. It defines a new viewport and implicitly establishes a new local coordinate system. The bounds of the new viewport are defined by the size and position field. The new local coordinate system’s origin is at the center of the parent node in the parent’s local coordinate system.

The orientation field specifies the rotation which is applied to the viewport in the parent node’s local coordinate system with respect to the X-axis.

Viewport nodes are bindable nodes (see 7.1.1.2.14) and thus there exists a Viewport node stack which follows the same rules as other bindable nodes (e.g. Background2D).

The description field specifies a textual description of the Viewport node.

The alignment and fit fields specify how the viewing area is mapped to the rendering area of the parent node (i.e. Layer2D, CompositeTexture2D, or the 2D top-node).

If the fit field is set to 0, the viewing area is scaled to fit the rendering area without preserving the aspect ratio.

If the fit field is set to 1, the viewing area is scaled preserving the aspect ratio to fit entirely inside the rendering area. The scaling operation is performed possibly after rotation as specified by the orientation field.

If the fit field is set the 2, the viewing area is scaled preserving the aspect ratio to cover entirely the rendering area. The scaling operation is performed possibly after rotation as specified by the orientation field.

The alignement field is an MFInt32 field that contains two values. The first value specifies alignment along the X-axis and the second value specifies alignment along the Y-axis. The first value belongs to the following set of SFInt32: -1, 0, 1. The second value belongs to the following set of SFInt32: -1, 0, 1. An empty alignement field is equivalent to the default value. When the fit field is set to 0, the alignment field is ignored. The meaning of the different values of the fit and alignment fields is described in the following Figure.

[image: image159.png]Viewing Area

[£] viewpor

Rendering Area

Layer2D
or
CompositeTexture2D

fit=1 alignment

4 0 1
ELI[ED [HE !ii
2

fit=
El

El 0 1
0 1

Figure 38 — description of alignment and fit fields
7.8.2.150 Viseme

7.8.2.150.1 Node interface

Viseme {

	
	field
	SFInt32
	viseme_select1
	0

	
	field
	SFInt32
	viseme_select2
	0

	
	field
	SFInt32
	viseme_blend
	0

	
	field
	SFBool
	viseme_def
	FALSE

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.150.2 Functionality and semantics

The Viseme node defines a blend of two visemes from a standard set of 14 visemes as defined in ISO/IEC 14496-2, Annex C, Table C-5.

The viseme_select1 field specifies viseme 1.
The viseme_select2 field specifies viseme 2.
The viseme_blend field specifies the blend of the two visemes.
If viseme_def is TRUE, the current FAPs shall be used to define a viseme and store it.

7.8.2.151 VisibilitySensor

7.8.2.151.1 Node interface

VisibilitySensor {

	
	exposedField
	SFVec3f
	center
	0 0 0

	
	exposedField
	SFBool
	enabled
	TRUE

	
	exposedField
	SFVec3f
	size
	0 0 0

	
	eventOut
	SFTime
	enterTime
	

	
	eventOut
	SFTime
	exitTime
	

	
	eventOut
	SFBool
	isActive
	

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.151.2 Functionality and semantics

The semantics of the VisibilitySensor node are specified in ISO/IEC 14772-1:1998, subclause 6.54.

7.8.2.152 WideSound

7.8.2.152.1 Node interface

WideSound {

	
	exposedField
	SFNode
	source
	NULL

	
	exposedField
	SFFloat
	intensity
	1.0

	
	exposedField
	SFVec3f
	location
	0, 0, 0

	
	exposedField
	SFBool
	spatialize
	TRUE

	
	exposedField
	SFNode
	perceptualParameters
	NULL

	
	exposedField
	SFBool
	roomEffect
	FALSE

	
	exposedField
	SFInt32
	shape
	0

	
	exposedField
	MFFloat
	size
	[]

	
	exposedField
	SFVec3f
	direction
	0, 1, 0

	
	exposedField
	SFFloat
	density
	0.5

	
	exposedField
	SFInt32
	diffuseSelect
	1

	
	exposedField
	SFFloat
	decorrStrength
	1

	
	field
	SFFloat
	speedOfSound
	340

	
	field
	SFFloat
	distance
	1000

	
	field
	SFBool
	useAirabs
	FALSE

}

NOTE — For binary encoding of this node see node coding tables in electronic attachment.

7.8.2.152.2 Functionality and semantics

The WideSound node is used to attach sound to a scene, thereby giving it spatial qualities with a determinable widening for not phase related signals from its descendant audio nodes and relating it to the visual content of the scene.

The WideSound node relates an audio BIFS subgraph to the rest of an audio-visual scene. By using this node, sound may be attached to a group, and spatialized or moved around as appropriate for the spatial transforms above the node. By using the functionality of the audio BIFS nodes, sounds in an audio scene described using ISO/IEC 14496-11 may be filtered and mixed before being spatially composed into the scene.

The semantics of the source, intensity, location and spatialize fields are described in subclause 7.2.2.116 Sound.

The semantics of the speedOfSound, distance, useAirabs, perceptualParameters and roomEffect fields are specified in subclause 7.2.2.46 DirectiveSound.
Figure 39 shows a scene with two audio sources, a choir (or orchestra) and audience making applause. The choir consists of one WideSound node generating an ellipsoid and the audience consists out of three WideSound nodes generating boxes with decorrelated sounds positioned at three different locations.

[image: image160.wmf]applause 1

applause 3

applause 2

choir

listener

applause 1

applause 3

applause 2

choir

listener

Figure 39 — Scene with 2 sources and 4 WideSound nodes
The single shape should consist of several equally distributed uncorrelated sound sources (see Figure 40).

The density distribution of the sound sources determines the subjective impression of the shape (sources/meter). To get different shapes from one source material, the sources have to be decorrelated independent from each other.

Different decorrelations can be selected with diffuseSelect. It should start with 1 and should be incremented for each new WideSound that is connected with the same source.

The field decorrStrength indicates the grade of decorrelation (measured by the cross-correlation function) each decorrelator should produce. A value of 0.0 signals full correlation.

[image: image161.wmf]

Figure 40 — Shapes consist of several uncorrelated sound sources
In the case of the enabled spatialize field a geometric figure of the spatialized sound can be set with the shape field (see Table 37).

Table 37 — Selectable shapes and associated size and direction functionalities
	Shape
	Description
	Format of size
	Range*
	Function of direction

	0
	no wideness
	--
	--
	--

	1
	shuck
	width {horizontal, vertical}
	{0…2(, 0…2(}
	--

	2
	box
	width {x, y, z}

the orientation is normal to the x-z-plane (positive y-axis)
	{0..inf, 0..inf, 0..inf}
	object direction vector

	3
	ellipsoid
	width {x, y, z}

the orientation is normal to the x-z-plane (positive y-axis)
	{0..inf, 0..inf, 0..inf}
	object direction vector

	4
	cylinder
	width {x, y, z}

the cylinder is defined in the x-z-plane; the axis of the cylinder (orientation) is normal to the x-z-plane (positive y-axis)
	{0..inf, 0..inf, 0..inf}
	object direction vector
(cylinder axis)

	5..15
	reserved for ISO use
	
	
	

	* The value –1 indicates an infinite value in the size field

The shuck shape is a fixed format related to the default listener position. It describes a surrounding hull with a select-able opening angle at the location. The three shapes box, ellipsoid and cylinder can be seen in Figure 41.

[image: image162.wmf]x

y

z

3D {x, y, z}

Z=0

y=0

z=0

y,z=0

y,z=0

z=0

x

y

z

x

y

z

3D {x, y, z}

Z=0

y=0

z=0

y,z=0

y,z=0

z=0

Figure 41 — Box, cylinder and ellipsoid (with equal widths == sphere) shapes
To signal plane waves the decorrStrength field can be set to 0, which means no decorrelation. Selecting the ‘box’ shape (shape = 2) and setting size to {‑1, 0, 0} results in signaling a two-dimensional plane wave. Setting size to {‑1, ‑1, 0} signals a three-dimensional plane wave.

7.8.2.153 WorldInfo

7.8.2.153.1 Node interface

WorldInfo {

	
	field
	MFString
	info
	[]

	
	field
	SFString
	title
	""

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.153.2 Functionality and semantics

The semantics of the WorldInfo node are specified in ISO/IEC 14772-1:1998, subclause 6.55.

7.8.2.154 XCurve2D

7.8.2.154.1 Node interface

XCurve2D {

	
	exposedField
	SFNode
	point
	NULL

	
	exposedField
	SFFloat
	fineness
	0.5

	
	exposedField
	MFInt32
	type
	[]

}

NOTE - For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.154.2 Functionality and semantics

The XCurve2D node behave exactly as the Curve2D node except that is allows more values in the type field. The permitted values for the type field are:

0 = MoveTo: Same as the value 0 for the type field of the Curve2D node. In addition, the coordinate pair consumed from the point list also defines the starting point P0 of a new subpath. MoveTo shall not occur as the first element in type field.

1 = LineTo: Same as the value 1 for the type field of the Curve2D node.

2 = CurveTo: Same as the value 2 for the type field of the Curve2D node.

3 = NextCurveTo: Same as the value 3 for the type field of the Curve2D node.
4 = CounterClockWiseArcTo: Three coordinate pairs in the point list are consumed, defining F1, F2 and N. F1 and F2 are the focal points of the ellipse to which P and N belong. On this ellipse, P and N define two arcs. Considering the polar parametric representation of the ellipse
[image: image163.wmf](

)

)

sin(

,

)

cos(

q

q

×

×

ry

rx

 and assuming that F1 is the focal point with the negative coordinate on the x-axis, the drawn arc is the one that corresponds to an increase of (when sweeping the arc from P to N. If the points P, F1, F2 and N do not belong to the same ellipse, then the arc is drawn using the quadruple of points P, F1’, F2’ and N, where F1’ and F2’ are scaled version of F1 and F2 with the middle of [F1F2] being the middle of [F1’F2’].
5 = ClockWiseArcTo: Same as CounterClockWiseArcTo except that the drawn arc is the one that corresponds to a decrease (when sweeping the arc from P to N.
6 = ClosePath: No coordinate pair is consumed from the point list. The current subpath is closed by drawing a straight line from P to the current subpath's initial point P0. If a ClosePath is followed immediately by any other command than a MoveTo or RelativeMoveTo, then the next subpath starts at the same initial point as the current subpath, i.e. P0. Note: The difference between closing the subpath and explicitly drawing a line between P and P0 is that in the first case the line in P0 will be closed with the current value of line-join while in the second case the line will be closed using the current value of line-cap.
7 = QuadraticArcTo: Two coordinate pairs in the point list are consumed. The first coordinate pair constitutes the control point of a quadratic Bezier curve starting at the current point P and going to the point defined by the second consumed coordinate pair.
8 = Reserved
7.8.2.155 XFontStyle

7.8.2.155.1 Node Interface

XFontStyle {

	
	exposedField
	MFString
	fontName
	["SERIF"]

	
	exposedField
	SFBool
	horizontal
	TRUE

	
	exposedField
	MFString
	justify
	["BEGIN"]

	
	exposedField
	SFString
	language
	""

	
	exposedField
	SFBool
	leftToRight
	TRUE

	
	exposedField
	SFFloat
	size
	1.0

	
	exposedField
	SFFloat
	spacing
	1.0

	
	exposedField
	SFString
	stretch
	“NORMAL“

	
	exposedField
	SFFloat
	letterSpacing
	0.0

	
	exposedField
	SFFloat
	wordSpacing
	0.0

	
	exposedField
	SFInt32
	weight
	4

	
	exposedField
	SFBool
	fontKerning
	TRUE

	
	exposedField
	MFString
	style
	["PLAIN"]

	
	exposedField
	SFBool
	topToBottom
	TRUE

	
	exposedField
	MFString
	featureName
	[“”]

	
	exposedField
	MFInt32
	featureStartOffset
	0

	
	exposedField
	MFInt32
	featureLength
	0

	
	exposedField
	MFInt32
	featureValue
	0

}

NOTE - For the binary encoding of this node see node coding tables in electronic attachment.
7.8.2.155.2 Functionality and semantics

The fields of the XFontStyle node are defined as follows.

The horizontal, justify, leftToRight and topToBottom fields have the same meaning as in the FontStyle node.

The fontName field has the same semantic as the family field of the FontStyle node. Special fonts provided in a font data stream can be accessed using the following syntax:
“OD:<odid>;FSID:<fsid>”, where :

· <odid> is the numeric value of the objectDescriptorID of the associated font data stream,

· <fsid> is the numeric value of the requested font subset as conveyed by fontSubsetID within the associated font data stream.
The size field defines the size of the EM box of a font (The EM is a relative measure of the height of the glyphs in a font defined in a device- and resolution-independent font design units). This value corresponds to the distance between two adjacent baselines of unadjusted text, set in a particular font. The value of the size field is conveyed using the same metric units that are used for a scene description. If a scene uses pixel-based metrics, the value of the size field is specified in pixels, otherwise it specifies the size in meters.

The spacing field defines the distance between two adjacent lines of text as the product of size and spacing.

The language field has the same meaning as in the FontStyle node. However, the format of the field is based on the RFC 3066, which supersedes RFC 1766.

The stretch field has an enumerated set of values that specify the font-stretch – desired amount of condensing or expansion of the glyphs in major and minor direction of the alignment “NORMAL | ULTRA-CONDENSED | EXTRA-CONDENSED | CONDENSED | SEMI-CONDENSED | SEMI-EXPANDED | EXPANDED | EXTRA-EXPANDED | ULTRA-EXPANDED”. The value of this field should be consistent with the value “usWidthClass” defined by a font. For description of the set of values please refer to OpenType Specification, version 1.4, chapter “Font File Tables”, section “Required Tables”, OS/2 table.

The weight field represents the boldness of a character. It has a range of values [100..900]. The value of this field should be consistent with the value “usWeightClass” defined by a font. For description of the set of values please refer to OpenType Specification, version 1.4, chapter “Font File Tables”, section “Required Tables”, OS/2 table.

The style field has an extended set of enumerated values specifying text attributes and decoration effects. The permitted values are “PLAIN”, “italic”, “BOLD”, “BOLDitalic”, “UNDERLINE”, “OUTLINE”, “EMBOSS”, “ENGRAVE”, “LEFTDROPSHADOW”, “RIGHTDROPSHADOW”. The font styles should be implemented according to the standard EIA-708-B “Digital Television (DTV) closed captioning”, subclause 8.5.

The fontKerning field specifies whether font specific kerning data should be applied.

The letterSpacing field specifies, in the font metrics units, the additional space between letters after applying the font kerning.

The wordSpacing field specifies, in the font metrics units, the additional space between words after applying the letterSpacing.

The featureName, featureStartOffset, featureLength and featureValue fields are to be processed as a group. The four fields must have the same length to be valid. These parameters are a set that are to be applied to a run of text. The feature may apply to only one character in the run, or it may apply to the entire run. This is necessary to allow for correct typographic interaction during OpenType operations.

The featureName field specifies a list of four character registered tags that are assigned for a specific feature. Please refer to the registered features listed in the OpenType Specification, version 1.4, Appendix “OpenType Layout Common Table Format”, section “OpenType Layout Registered Features”.

The featureStartOffset field specifies the character offset into the run where the feature will be applied.

The featureLength field specifies the number of characters to which the feature is applied.

The featureValue field specifies the value that is applied for feature processing. A value of 0 is off (false), 1 is on (true). LookupType3 Alternate substitution may have values larger than 1. Please refer to OpenType Specification, version 1.4, chapter “Font File Tables”, section “Advanced Typographic Tables”, GSUB table.

EXAMPLE
Text {

string “The red light is on”

fontStyle XFontStyle {

fontName [“OD:104;FSID:33”]

size 24.0

style “BOLD”

featureSet [“smcp”, “smcp”]

featureStartOffset [4, 17]

featureLength [3, 2]

featureValue [1, 1]

}

}

For the above example, the rendered text string:

The red light is on
7.8.2.156 XLineProperties

7.8.2.156.1 Node interface

XLineProperties {

	
	exposedField
	SFColor
	lineColor
	0, 0, 0

	
	exposedField
	SFInt32
	lineStyle
	0

	
	exposedField
	SFFloat
	width
	1.0

	
	exposedField
	SFBool
	isScalable
	TRUE

	
	exposedField
	SFInt32
	lineCap
	0

	
	exposedField
	SFInt32
	lineJoin
	0

	
	exposedField
	SFFloat
	miterlimit
	4

	
	exposedField
	SFFloat
	transparency
	0.0

	
	exposedField
	SFBool
	isCenterAligned
	TRUE

	
	exposedField
	SFFloat
	dash_offset
	0.0

	
	exposedField
	MFFloat
	dashes
	[]

	
	exposedField
	SFNode
	texture
	NULL

	
	exposedField
	SFNode
	textureTransform
	NULL

}

NOTE — For the binary encoding of this node see node coding tables in electronic attachment.

7.8.2.156.2 Functionality and semantics

The XLineProperties node specifies line parameters used in 2D rendering.

The semantics of lineColor and lineStyle are the same as for the LineProperties node. But, value 6 for the lineStyle field means that dashing uses the dash information of the XLineProperties node. For the other values of lineStyle, the values of the dash_offset and dashes fields are ignored.

The dash_offset field determines the position from the start of the outline, along the outline, in the local coordinate system, where dashing begins. In case of high level primitives such as Rectangle, Circle and Ellipse, the start of the outline is not specified and therefore the use of dash_offset is undetermined. For a deterministic behavior, authors should use primitives that explicitly define the start of the outline.

The dashes array specifies the dash pattern. Each element is a strictly positive number expressed relatively to the width of the pen. Values at even positions in the array specify the length of drawn parts of the line. Values at odd positions in the array specify the length of non-drawn parts of the line. Dashes shall be drawn using the lineCap information.

The width field determines the width, in the local coordinate system, of rendered lines. The width is subject to scaling only when the isScalable field is set. When isScalable is TRUE, the outline path of the shape is computed in the local coordinate system with the given width, then the world transform for the object is applied. Otherwise the outline path is of the object is directly computed in the world coordinate system with the given width.

The lineCap field specifies the line cap style type to apply to lines. The allowed values are:

Table 38 — lineCap description
	lineCap
	Description

	0
	flat

	1
	round

	2
	square

	3
	triangle

	4-7
	reserved

[image: image164.png]'
— B ——— - P —
L]

'butt’ cap 'round' cap 'square' cap 'triangle' cap

The lineJoin field specifies the line join style type to apply to lines. The allowed values are:

Table 39 — lineJoin description
	lineJoin
	Description

	0
	miter

	1
	round

	2
	bevel

	3
	reserved

[image: image165.png]AN AN

'miter' join 'round' join 'bevel' join

The miterlimit field specifies the limit on the ratio of the miter length to the line width. The value of miterlimit must be a number greater than or equal to 1.

The transparency field specifies the transparency of the outline of a shape when drawn. It supersedes the value of the transparency of a material node.

The isCenterAligned field specifies the positioning of the outline a shape. If TRUE, the line that represents the outline of the shape is drawn centered on the outline of the shape. If FALSE, the outside edge of the line that represents the outline of the shape is aligned on the outside edge of the shape.

The texture field, if specified, shall contain one of the various types of texture nodes. If NULL or unspecified, the line is not textured. Texture mapping coordinates are defined by the four corners of the bounding rectangle of the outer polygon defining the shape (that is, taking into account the width of the line).

 The textureTransform field, if specified, shall contain a texture transformation node (TextureTransform or TransformMatrix2D without children). If the textureTransform is NULL or unspecified, the texture is not transformed.

7.9 Informative: Differences Between MPEG-4 Scripts and ECMA Scripts

7.9.1 MPEG-4 Scripts Have a Rigid Representation

MPEG-4 scripts differ slightly from ECMA scripts. The most important difference is that MPEG-4 scripts are not represented textually, but are transmitted as a parse tree representation. This means that only constructs that can be represented by the MPEG-4 parse grammar can be encoded and transmitted. Not all ECMA script constructs can be represented in MPEG-4 scripts.

The differences between ECMA scripts and scripts that can be represented in MPEG-4 are given below.

7.9.2 Keywords

MPEG-4 scripts cannot utilize the following keywords: catch delete do finally in instanceof throw try typeof void with .
This means that do – while loops and for – in loops are not possible.

7.9.3 Relational operators

The relational operators “===” and “!==” cannot be included in MPEG-4 Scripts.

7.9.4 Labeled statements
In MPEG-4 scripts it is impossible to label statements and to break or continue to labeled statements.

7.9.5 Switch statement restriction

MPEG-4 scripts with switch statements can only take numerical case expressions and always must have at least one case statement.
In particular this means that

switch {

case (x+1): ….

}

is not possible, while

Switch {

case 1: ….

}

is okay.

7.9.6 Functions, not programs

The MPEG-4 event driven script model only allows functions to be called in response to events.

7.9.7 Expressions

Statements that include statement blocks, such as for, are represented in the parse tree as having an empty statement block, where as in ECMA script they can omit this block. Functionally, the statements behave identically. For example, the expression:

for (<expr>; <expr>; <expr>)

must be represented as

for (<expr>; <expr>; <expr>) {}

7.9.8 Array and Object Literals

Array and object literals of the form [value1, value2, .., valueN] and {property1:value1, property2: value2, .. propertyN:valueN} cannot be used in MPEG-4 scripts.

7.10 Informative: FlexTime behavior

7.10.1 FlexTime behavior

At a very basic level, FlexTime allows nodes and a media stream to be synchronized, such that the nodes and the texture (coming from a media stream) can be rendered together. To do this, we transform the scene for the nodes to co-start with the media stream. We achieve this effect by inserting the nodes under a TemporalTransform. The removal of a node can also be synchronized with the end of the stream in this manner.

When the FlexTime manager has no corrections to make, the playback speed of continuous media is set to meet the optimal duration and hence this speed is expected to be the normal standard playback speed. The timing relationships of the temporal groups allow flexibility of duration. Alteration of duration can be done through adjustment of playing speed to allow these timing relationships to be met. Without playback speed modification only truncate and freeze are possible. Alterations, when permitted, are specified in the TemporalTransform with stretch and shrink preferences. Playback speed is not expressed explicitly in the TemporalTransform at all - rather the speed can be adjusted to meet timing needs and as such playback speed is a secondary effect not the prime motivator behind FlexTime. The prime motivator being synchronization and timing adjustments using application-level (author) specified guidelines.

7.10.2 Updates of fields

In order to support synchronization of field value replacements with a temporally transformed scene, an appropriate construct other than directly replacing the field with a BIFS command may need to be chosen. Such a construct should be temporally transformed commensurate with the scene that it is to update. For example a time sensor/valuator/route combination can be used, or a BIFS command frame containing the replace field can be put into a conditional node that is activated at the desired (temporally transformed) time.

BIFS-Anim streams, being media streams, can be re-timed as is done for other media streams.

7.10.3 Authoring considerations

7.10.3.1 Plan the possible different playback scenarios

Authors should take special care such that the MPEG-4 usual constraints are always respected. However, authors should avoid possible ODid overlapping and Nodeid overlapping as streams are flexed for instance. Furthermore, it is possible to reuse ODid, but the author should ensure that streams that designate 2 different ODs, using the same ODid, should not occur together anywhere under a TemporalGroup.

7.10.3.2 Flexed Objects

The objects that are affected by the FlexTime model, called “flexed” objects, may be streams, such as a movie or audio clips, part of streams, or graphic animations, such as a progress bar, a revolving globe, an opening door etc. Such animations can be realized in MPEG via animation streams and BIFS update, but also through interaction between scene nodes, Routes and TimeSensor nodes.

7.10.3.3 Why a children field?

The case where a “flexed” object is a stream is well covered with the url field in TemporalTransform. However, we need to support “flexed” objects that are composed of a group of scene nodes and their mutual interaction. For instance, consider the case of two movies that are played one after the other, with a “credits” screen shown in between. The credits screen shows a scroll of textual information that needs to start after the first movie ends and to complete when the next movie starts. However, the end and start times of the two movies are not fully deterministic and might shift in time. In this case we have three “flexed” objects – the two movies and the credit screen in between. The FlexTime model enables the player to apply temporal transformation on the objects so that they do play in perfect sequence. Therefore the speed of the text scrolling in the credit screen may be changed by the model.

With the current proposal, this scenario would be implemented very easily. The two movies will be defined in the url fields of two TemporalTransform nodes, while the entire set of scene nodes, that compose the credit screen, would be referenced by the children field of a third TemporalTransform node. The TemporalGroup node would then define a meet constraint on these three objects.

It could be claimed that the same effect can be achieved without a children field, by defining only the two movies as “flexed” objects, and use the events generated when the two objects start and stop, routed into Conditional nodes, interpolators, evaluators and scripts. In theory this may work, but would be extremely difficult to author and there is no proof it will work in all cases.

7.11 Informative: Implementation of MaterialKey node

An example implementation is presented below to reveal the intended use of the color key information. To calculate the transparency (alpha) value for each pixel, first the distance d between the unnormalized key color (C1, C2, C3) and the color (X1, X2, X3) of the pixel of interest is calculated.

If the magnitude of the variance of the pixel falls between the 2 thresholds, the alpha value for that pixel will be scaled between completely transparent, and the transparency value given for the opaque region. The following describes how the alpha value for a given pixel is determined.
c1 – The normalized value of the R (or Y) component of the keycolor (in range 0.0 to 1.0)

c2 – The normalized value of the G (or U) component of the keycolor (in range 0.0 to 1.0)

c3 – The normalized value of the B (or V) component of the keycolor (in range 0.0 to 1.0)
The respective unnormalized values of c1, c2, c3 are C1, C2, C3 and are obtained by multiplying c1, c2, c3 by k = 2n –1, which for n=8 bit video is 255; this computation is performed only once at the time of selection of a new keycolor and the results are stored. Also, by scaling k, a factor K=3(k can be precomputed and stored; this needs to be done just once.

X1 – The value of the R (orY) component (in the range 0 to k) of the pixel for which the alpha value is to be computed

X2 – The value of the G (or U) component (in the range 0 to k) of the pixel for which the alpha value is to be computed

X3 – The value of the B (or V) component (in the range 0 to k) of the pixel for which the alpha value is to be computed

T – Transparency value assigned to the opaque region (in range 0.0 to 1.0)

d1 – Low threshold for transparency detection (in range 0.0 to T)

d2 – High threshold for transparency detection (in range 0.0 to T)
d =(| C1 – X1| + | C2 – X2| + | C3 – X3 |)*T/K
The resulting normalized value of distortion d lies in the range of 0.0 to T.

[image: image166.wmf]T

0

d1

d2

d

alpha

Figure 42 — Alpha value as a function of distance measure

The reconstructed alpha value for each pixel is computed by comparing the distance d with the thresholds as follows:

if (d (d1) then alpha = 0,

else if (d > d2) then alpha = T,

else if (d1 (d (d2) then alpha = (d-d1)/(d2-d1)* T
Here, alpha = 0 is transparent and alpha = T is the transparency value assigned to the opaque region.
Further, d1 = d2 implies binary shape, otherwise grey scale shape is obtained.

7.12 Informative: Example implementation of spatial audio processing (perceptual approach)

7.12.1 Example algorithm implementation

This section describes a rendering algorithm which can be controlled by the proposed perceptual parameters. It receives as inputs an audio source url, the nine perceptual parameters, the position of the source with respect to the view point, the directivity diagram of the source, and the directFilter and inputFilter parameters. It produces seven channels, one for the direct sound C, two for the early reflections L and R, and four for the diffuse field S1, S2, S3 and S4. Ideally these are to be played back according to the diagram shown below. The four main parts of the Room module are detailed below in the case of an 8-channel implementation of the complete model (including the early and cluster blocks).

[image: image167.wmf]C

early

reverb

cluster

diff

R

1

+

R

2

+

R

3

+

+

R

0

pan

pan

pan

diff

delays

matrix

matrix

delays

d. line

L

R

S1

S2

S3

S4

Pan

Room

Figure 43 — Association of Room and Pan modules forming a Spat processor.

[image: image168.wmf]Cluster

t

1

t

2

t

3

t

4

t

5

t

6

t

7

t

8

G

G

C

L,R

S1,..,S4

Eq

R2

R1

l

,R1

m

,R1

h

Eq

Eq

Eq

Eq

Eq

Eq

Eq

Eq

Rt

l

,

Rt

m

,

Rt

h

R3/K

Eq

Eq

O

l

,

O

m

, O

h

I

l

,

I

m

,

I

h

Eq

(D

l

*

A

l

*R0

l

), (D

m

*

A

m

*R0

m

), (

D

h

* A

h

*R0

h

)

t

1

t

2

t

3

t

4

t

5

t

6

t

7

t

8

t

1

t

2

t

3

t

4

t

5

t

6

t

7

t

8

Gain

Equalizer

Unitary mixing

matrix NxN

Delay

Direct

Early

Reverb

l0

Figure 44 — Block diagram of the Room module
[image: image169.wmf]q

d

S

C

R

L

S2

S4

S1

S3

x

z

Figrue 45 — Directional rendering by the Pan module

7.12.2 Elementary spectral corrector

An elementary component used in multiple instances in the Room module is the second order IIR filter whose equation is given by :

y(n)=box(n)+b1x(n-1)+b2x(n-2)-a1y(n-1)-a2y(n-2).

This filter is used as a 3-band parametric equalizer, the characteristics of which are given by:

flow
: higher crossover frequency expressed in Hz

fhigh
: lower crossover frequency expressed in Hz

glow
: filter gain in the low band expressed w.r.t amplitude

gmid
: filter gain in the mid band expressed w.r.t amplitude

ghigh
: filter gain in the high band expressed w.r.t amplitude

The method to calculate the 2nd order cell coefficients is given by :

a)

frlow= flow/fs
frhigh= fhigh/fs
where fs is the sampling rate

b)

grlow = grlow/g

grmid = grmid/g

grhigh = grhigh/g

where g is a gain factor that prevent the filter coefficients from being inaccurate for very low values of glow, gmid and ghigh and so degrading the filtering process. Generally, gain is taken to be equal to gmid .

c)

k1= grlow/ grmid
r1=tan( * frlow)/k10.5
1=(r1-1)/(r1+1)

1= (k1*r1-1)/(k1*r1+1)

1= (k1*r1-1)/(r1+1)

d)

k2= grmid/ grhigh
r2=tan(* frhigh)/k20.5
2=(r2-1)/(r2+1)

2= (k2*r2-1)/(k2*r2+1)

2= (k2*r2-1)/(r2+1)

e)

k= grmid* g

bo= 1*2*k

b1 = (1+2)*bo
b2 = (1*2)*bo

a1 = 1+2

a2 = 1*2

7.12.3 Input Filter

In order to simulate sound sources that are outside the virtual room, a pre-filtering process can be performed with the values given in the inpultFilter field, Ilow, Imid, Ihigh, via a three-band equalization.

Direct path

The signal which stands for the direct path (without any reflection) is calculated via a 3-band equalizer from the input signal S. The coefficients of this equalizer are calculated according to the avant-propos with the following energetic parameters Alow*Dlow*R0low, Amid*Dmid*R0mid, Ahigh*Dhigh*R0high, fmin and fmax, where the A's, D's and R0's represents respectively the axis directivity, the direct filter coefficients and the energetic repartition of the source in the three bands [0, fmin],[fmin, fmax] and [fmax,fs/2]

fmin and fmax are given in the PerceptualParameters node fields.

7.12.4 Directional early reflections

The source signal S is first filtered in an equalizer which depends only on the diffuse-field frequency response of the source, i.e. the omnidirectivity of the source. Its parameters are Olow,Omid,Ohigh, fmin and fmax where the O's give the diffuse-field amplitude of the source in the three bands [0, fmin],[fmin, fmax] and [fmax,fs/2]

The output of this equalizer feeds a delay line that produces eight channels, early[i], i=0,..7, which are time shifted.

The eight delay lengths are randomly distributed between approximately 20 and 40 ms for a large room, but could be set differently in order to simulate a smaller room. The early signals are multiplied by gains, gi, and combined to produce two signals, Lo and Ro as follows :

Lo= early[0]*g0 + early[2]*g2 + early[4]*g4 + early[6]*g8

Ro= early[1]*g1 + early[3]*g3 + early[5]*g5 + early[7]*g7
NOTE - In the proposed implementation gi = 1.0, i=0,...,7 .

Lo and Ro are then filtered with two equalizers having the following parameters R1low, R1mid, R1high, fmin and fmax, in order to produce L and R that represent the early reflections.

Diffuse early reflections

The eight outputs of the Early delay line are mixed in a unitary Hadamard (8x8) matrix to produce eight scrambled signals :

[Cscramb i]i=0,..., 7=H8x8[earlyi],i=0,..., 7
The scrambled signals are independently delayed :

Cscramb d[i](t)=Cscramb[i](t-i), i=0,...,7

The values of the i are randomly distributed between 20 and 60 ms approximately (default setting for a large room). The exact values to be used are given in 1.2.6.6.6.

The Cscrambd[i] are combined to produce four intermediate signals that will feed the cluster equalizers R2 :

Ctemp1= Cscrambd[0]+ Cscrambd[4]

Ctemp2= Cscrambd[1]+ Cscrambd[5]

Ctemp3= Cscrambd[2]+ Cscrambd[6]

Ctemp4= Cscrambd[3]+ Cscrambd[7]

The four signals Ctempi i=0,...,3, are then filtered with four equalizers that have the following parameters R2low,R2mid,R2high, fmin and fmax, in order to produce the diffuse field signals corresponding to the cluster part of the impulse response: R20, R21, R22 and R23
7.12.5 Diffuse late reverberation

This stage is quite similar to the previous one except that in order to reproduce the late reverberation decay, a feedback delay network (FDN) is used.

The eight input signals are mixed in a unitary Hadamard (8x8) matrix producing eight scrambled signals :

[Rscramb i]i=0,..., 7=H8x8[Cscrambdi+Rscrambdi],i=0,..., 7
The scrambled signals are independently delayed:

Rscramb d[i](t)=Rscramb[i](t-i), i=0,...,7

The values of the i are randomly distributed between 60 and 140 ms approximately (for a large room).

Then these signals are filtered with 8 equalizers that have the following parameters :

plowi,pmidi,phighi,fmin,fmax

where

plowi=10(-60*i/Rtlow)
pmidi=10(-60*i/Rtmid)
phighi=10(-60*i/Rthigh)
to produce the Rscrambeq[i] signals

The Rscrambeq[i] are combined to produce four intermediate signals :

Rtemp1= Rscrambeq [0]+ Rscrambeq [4]

Rtemp2= Rscrambeq [1]+ Rscrambeq [5]

Rtemp3= Rscrambeq [2]+ Rscrambeq [6]

Rtemp4= Rscrambeq [3]+ Rscrambeq [7]

The four signals Rtempi i=0,...,3, are then scaled by a gain R3.

[image: image398.png]

The FDN (FeedBack Delay Network) used for the late reverberation introduces a gain K that have to be compensated for in order to achieve the expected energy R3.

This gain can be estimated from the absorptive gains ki=10(-60*i /Rtmid)/10 by the following formulae :
The complete diffuse field is simply calculated from the cluster and the late reverberation fields signals as follows :

S1= R20 + R30
S2= R21 + R31
S3= R22 + R32
S4= R23 + R33

7.12.6 Setting the delays

In the Perceptual node field, four values related to the temporal characteristics of the impulse response are given: the time limits l1, l2, l3 and the modal density.
The Room structure has three sets of delays, respectively for the Early, Cluster and Reverb modules.

The delay ranges to be used can be calculated as follows :

Table 40 — delay ranges
	
	min
	max

	early delays
	l1
	l2

	cluster delays
	l2(l1
	L3(l2+e

	reverb delays
	l3(l2(e
	(*)

e can be used to create some overlapping between the temporal sections R2 and R3 if necessary.

(*): in the Reverb module, the distribution of delay lengths is not constrained by their maximum, but by their sum, which is equal to the value modal density (expressed indifferently in seconds or modes per hertz).

7.12.7 Scalability
The above modular signal processing model provides several forms of scalability:

· modifying the number of discrete reflections in the early block

· modifying the number of delay channels in the cluster and reverb blocks (typically 4, 6 or 8 channels)

· suppressing the cluster block, and possibly the early block

· sharing the reverb block and possibly the cluster block between several sources (located in the same room)

· replacing the equalizers by simple gains. In that case the frequency effects will not be rendered, e.g room liveness and source warmth.

7.13 Informative: MPEG-4 Audio TTS application with Facial Animation

To clarify the basic architecture and operations of an MPEG-4 terminal when the MPEG-4 Audio Text-to-Speech Decoder is used with Facial Animation, application specific interpretations of the bitstream syntax and semantics of MPEG-4 Systems and MPEG-4 Audio are addressed here.

As this application has two different outputs including synthesized speech and animated face decoders, the TTS synthesizer and the face decoder should be incorporated. In addition to these decoders, a special component "Phoneme/bookmark-to-FAP converter" is used to animate the face synchronously with synthesized phonemes. As the TTS stream drives the face decoder, the Phoneme/bookmark-to-FAP converter generates FAPs with appropriate timing information. The speech synthesizer feeds phonemes and their duration to the Phoneme/bookmark-to-FAP converter. The MPEG-4 terminal is configured to associate a Sound node and a Face node through the TTSsource field of the Face node which may contain the AudioSource node of the TTS.

If the MPEG-4 terminal receives a Face node with a non-NULL TTSsource field, it connects the Face node to the AudioSource node as defined in this TTSsource field. The AudioSource node contains the MPEG-4 Audio Text-to-Speech. The MPEG-4 Audio Text-to-Speech Decoder communicates with the Face node using the ttsFAPInterface of the Phoneme/bookmark-to-FAP converter.
7.14 Informative: 3D Mesh Coding in BIFS scenes

7.14.1 Vertex Ordering

The IndexedFaceSet (IFS) node in BIFS can be compressed using 3D Mesh Coding (3DMC). While the decompressed 3DMC bitstream produces the results for IFS node, the order of vertices in original IFS node may be changed due to the fact that Topological Surgery, a key element in 3DMC, may alter the order of vertices in the encoding process. This means that different encoders may yield different vertex orders for the same IFS node. However, given the 3D Mesh bitstream, the order of vertices in the decoded 3D mesh is unique.

This may not be a problem for the BIFS Scenes where the order of vertices has no impact. For those applications where the order of the vertices is critical, the order of vertices after the encoding process can be used instead of the original order of the vertices.

For example, when 3DMC is used for IFS node, the index of the coord field may be changed. If there is a node that relates to coord field, such as CoordinateInterpolator node, the changed index of coord should be applied.

7.14.2 Using separate streams

In order to use 3DMC for the IndexedFaceSet node, the use3DMeshCoding flag in BIFSv2Config should be set to TRUE, as described in subclause 8.5.3. This will cause every IndexedFaceSet node in that stream to be coded with 3DMC. However, if the user wants some IndexedFaceSet nodes within a scene compressed with 3DMC and have some uncompressed without 3DMC, they must be sent as separate elementary streams. In order to keep them in a single scene and have them in the same name scope, these elementary streams should be defined in the same (Initial) ObjectDescriptor. Each stream will be of type SceneDescriptionStream but will have the use3DMeshCoding flag set true or false, as required, in the BIFSv2Config carried within the DecoderSpecificInfo inside the DecoderConfigDescriptor for each stream.

7.15 Profiles

7.15.1 Introduction

This subclause defines profiles and levels for the usage of the tools defined in this part of ISO/IEC 14496. Each profile at a given level constitutes a subset of this part of ISO/IEC 14496 to which system manufacturers and content creators can claim conformance in order to ensure interoperability.

The scene graph profiles specify the allowed scene graph elements of the BIFS tool. The graphics profiles specify the graphics elements of the BIFS tool that are allowed. The MPEG-J profiles specify the packages of the MPEG-J API specification that are allowed in an MPEG-J terminal.

Profile definitions, by themselves, are not sufficient to provide a full characterization of a receiving terminal’s capabilities and the resources needed for a presentation. For this reason, levels are defined within each profile. Levels constrain the values of parameters in a given profile in order to specify an upper complexity bound.

7.15.2 Scene Graph Profile Definitions

7.15.2.1 Overview

The scene graph profiles specify the scene graph elements of the BIFS tool that are allowed. These elements provide the means to describe the spatio-temporal locations, the hierarchical dependencies as well as the behaviors of audio-visual objects in a scene. Profiling of scene graph elements of the BIFS tool serves to restrict the memory requirements and computational complexities of scene graph traversal and processing of specified behaviors during the composition and rendering processes.

7.15.2.2 Scene Graph Profiles Tools

The following tools are available to construct the definitions for scene graph profiles:

BIFS nodes related to scene description as defined in Table 41.

BIFS commands and BIFS animation as defined in 8.6
 and 8.8
 respectively.

BIFS ROUTES as defined in 8.7.56.

3D audio scene graph profile as defined in 7.9.2.3.3.

7.15.2.3 Scene Graph Profiles

The following table defines the scene graph profiles:

Table 41 — Scene graph profiles

		Scene Graph Profiles

	Scene Graph Tools

	Basic

2D

	Simple

2D

	Core

2D

	Extended

Core 2D

	Main

2D

	Advanced

2D

	Complete

2D

	Audio

	3D

Audio

	Complete

	AcousticScene

									X

	
	AdvancedAudioBuffer

										
	AnimationStream

						X

	X

		X

	X

	Anchor

			X

	X

	X

	X

	X

		X

	X

	ApplicationWindow

										
	AudioBuffer

						X

	X

	X

	X

	X

	AudioDelay

							X

	X

	X

	X

	AudioFX

							X

	X

	X

	X

	AudioMix

							X

	X

	X

	X

	AudioSwitch

						X

	X

	X

	X

	X

	Billboard

									X

	X

	BitWrapper

										
	CacheTexture

				X

						
	Clipper2D

										
	ColorInterpolator

			X

	X

	X

	X

	X

			X

	ColorTransform

										
	Collision

										X

	CompositeTexture2D

				X

			X

			X

	CompositeTexture3D

										X

	Conditional

			X

	X

	X

	X

	X

		X

	X

	CoordinateInterpolator2D

			X

	X

	X

	X

	X

			X

	CoordinateInterpolator

									X

	X

	CoordinateInterpolator4D

										
	CylinderSensor

										X

	DirectiveSound

									X

	
	DiscSensor

					X

	X

	X

			X

	EnvironmentTest

				X

						
	Form

							X

			X

	Group

						X

	X

	X

	X

	X

	Inline

			X

	X

	X

	X

	X

		X

	X

	InputSensor

			X

	X

	X

	X

				
	KeyNavigator

				X

						
	Layer2D

				X

	X

	X

	X

			X

	Layer3D

										X

	Layout

				X

			X

			X

	ListeningPoint

							X

	X

	X

	X

	LOD

									X

	X

	MediaBuffer

						X

				
	MediaControl

			X

	X

	X

	X

				
	MediaSensor

			X

	X

	X

	X

				
	NavigationInfo

										X

	NormalInterpolator

										X

	OrderedGroup

	X

	X

	X

	X

	X

	X

	X

			X

	OrientationInterpolator

									X

	X

	PathLayout

										
	PerceptualParameters

									X

	
	PlaneSensor2D

					X

	X

	X

			X

	PlaneSensor

										X

	PositionAnimator

										
	PositionAnimator2D

										
	PositionInterpolator

									X

	X

	PositionInterpolator2D

			X

	X

	X

	X

	X

			X

	PositionInterpolator4D

										
	ProximitySensor

									X

	X

	ProximitySensor2D

					X

	X

	X

			X

	QuantizationParameter

			X

	X

	?

	X

	X

		X

	X

	ScalarAnimator

										
	ScalarInterpolator

			X

	X

	X

	X

	X

			X

	Script

						X

			X

	X

	ServerCommand

			X

	X

	X

	X

				
	Sound

								X

	X

	X

	Sound2D

	X

	X

	X

	X

	X

	X

	X

		X

	X

	SphereSensor

										X

	Storage

				X

						
	Switch

			X

	X

	X

	X

	X

		X

	X

	TemporalTransform

					X

	X

				
	TemporalGroup

					X

	X

				
	TermCap

						X

	X

		X

	X

	TimeSensor

			X

	X

	X

	X

	X

		X

	X

	TouchSensor

			X

	X

	X

	X

	X

		X

	X

	Transform

									X

	X

	Transform2D

		X

	X

	X

	X

	X

	X

			X

	Transform3Daudio

										
	TransformMatrix2D

				X

						
	Valuator

			X

	X

	X

	X

	X

		X

	X

	Viewpoint

									X

	X

	Viewport

				X

						
	VisibilitySensor

									X

	X

	WorldInfo

				X

		X

	X

		X

	X

	Node Update

			X

	X

	X

	X

	X

		X

	X

	Route Update

			X

	X

	X

	X

	X

		X

	X

	Scene Update

		X

	X

	X

	X

	X

	X

	X

	X

	X

	ROUTE

			X

	X

	X

	X

	X

		X

	X

	PROTO

				X

		X

				
	Extended Updates

				X

						
	Interpolator Compression

										
	PredictiveMF coding

						X

				

	
	

	
	

	

	

	

	

	

	
	

	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	Scene Graph Profiles

	Scene Graph Tools
	Basic

2D
	Simple

2D
	Core

2D
	Extended

Core 2D
	Main

2D
	Advanced

2D
	Complete

2D
	Audio
	3D

Audio
	Complete

	AcousticScene
	
	
	
	
	
	
	
	
	X
	

	AdvancedAudioBuffer
	
	
	
	
	
	
	
	
	
	

	AnimationStream
	
	
	
	
	
	X
	X
	
	X
	X

	Anchor
	
	
	X
	X
	X
	X
	X
	
	X
	X

	ApplicationWindow
	
	
	
	
	
	
	
	
	
	

	AudioBuffer
	
	
	
	
	
	X
	X
	X
	X
	X

	AudioDelay
	
	
	
	
	
	
	X
	X
	X
	X

	AudioFX
	
	
	
	
	
	
	X
	X
	X
	X

	AudioMix
	
	
	
	
	
	
	X
	X
	X
	X

	AudioSwitch
	
	
	
	
	
	X
	X
	X
	X
	X

	Billboard
	
	
	
	
	
	
	
	
	X
	X

	BitWrapper
	
	
	
	
	
	
	
	
	
	

	CacheTexture
	
	
	
	X
	
	
	
	
	
	

	Clipper2D
	
	
	
	
	
	
	
	
	
	

	ColorInterpolator
	
	
	X
	X
	X
	X
	X
	
	
	X

	ColorTransform
	
	
	
	
	
	
	
	
	
	

	Collision
	
	
	
	
	
	
	
	
	
	X

	CompositeTexture2D
	
	
	
	X
	
	
	X
	
	
	X

	CompositeTexture3D
	
	
	
	
	
	
	
	
	
	X

	Conditional
	
	
	X
	X
	X
	X
	X
	
	X
	X

	CoordinateInterpolator2D
	
	
	X
	X
	X
	X
	X
	
	
	X

	CoordinateInterpolator
	
	
	
	
	
	
	
	
	X
	X

	CoordinateInterpolator4D
	
	
	
	
	
	
	
	
	
	

	CylinderSensor
	
	
	
	
	
	
	
	
	
	X

	DirectiveSound
	
	
	
	
	
	
	
	
	X
	

	DiscSensor
	
	
	
	
	X
	X
	X
	
	
	X

	EnvironmentTest
	
	
	
	X
	
	
	
	
	
	

	Form
	
	
	
	
	
	
	X
	
	
	X

	Group
	
	
	
	
	
	X
	X
	X
	X
	X

	Inline
	
	
	X
	X
	X
	X
	X
	
	X
	X

	InputSensor
	
	
	X
	X
	X
	X
	
	
	
	

	KeyNavigator
	
	
	
	X
	
	
	
	
	
	

	Layer2D
	
	
	
	X
	X
	X
	X
	
	
	X

	Layer3D
	
	
	
	
	
	
	
	
	
	X

	Layout
	
	
	
	X
	
	
	X
	
	
	X

	ListeningPoint
	
	
	
	
	
	
	X
	X
	X
	X

	LOD
	
	
	
	
	
	
	
	
	X
	X

	MediaBuffer
	
	
	
	
	
	X
	
	
	
	

	MediaControl
	
	
	X
	X
	X
	X
	
	
	
	

	MediaSensor
	
	
	X
	X
	X
	X
	
	
	
	

	NavigationInfo
	
	
	
	
	
	
	
	
	
	X

	NormalInterpolator
	
	
	
	
	
	
	
	
	
	X

	OrderedGroup
	X
	X
	X
	X
	X
	X
	X
	
	
	X

	OrientationInterpolator
	
	
	
	
	
	
	
	
	X
	X

	PathLayout
	
	
	
	
	
	
	
	
	
	

	PerceptualParameters
	
	
	
	
	
	
	
	
	X
	

	PlaneSensor2D
	
	
	
	
	X
	X
	X
	
	
	X

	PlaneSensor
	
	
	
	
	
	
	
	
	
	X

	PositionAnimator
	
	
	
	
	
	
	
	
	
	

	PositionAnimator2D
	
	
	
	
	
	
	
	
	
	

	PositionInterpolator
	
	
	
	
	
	
	
	
	X
	X

	PositionInterpolator2D
	
	
	X
	X
	X
	X
	X
	
	
	X

	PositionInterpolator4D
	
	
	
	
	
	
	
	
	
	

	ProximitySensor
	
	
	
	
	
	
	
	
	X
	X

	ProximitySensor2D
	
	
	
	
	X
	X
	X
	
	
	X

	QuantizationParameter
	
	
	X
	X
	?
	X
	X
	
	X
	X

	ScalarAnimator
	
	
	
	
	
	
	
	
	
	

	ScalarInterpolator
	
	
	X
	X
	X
	X
	X
	
	
	X

	Script
	
	
	
	
	
	X
	
	
	X
	X

	ServerCommand
	
	
	X
	X
	X
	X
	
	
	
	

	Sound
	
	
	
	
	
	
	
	X
	X
	X

	Sound2D
	X
	X
	X
	X
	X
	X
	X
	
	X
	X

	SphereSensor
	
	
	
	
	
	
	
	
	
	X

	Storage
	
	
	
	X
	
	
	
	
	
	

	Switch
	
	
	X
	X
	X
	X
	X
	
	X
	X

	TemporalTransform
	
	
	
	
	X
	X
	
	
	
	

	TemporalGroup
	
	
	
	
	X
	X
	
	
	
	

	TermCap
	
	
	
	
	
	X
	X
	
	X
	X

	TimeSensor
	
	
	X
	X
	X
	X
	X
	
	X
	X

	TouchSensor
	
	
	X
	X
	X
	X
	X
	
	X
	X

	Transform
	
	
	
	
	
	
	
	
	X
	X

	Transform2D
	
	X
	X
	X
	X
	X
	X
	
	
	X

	Transform3Daudio
	
	
	
	
	
	
	
	
	
	

	TransformMatrix2D
	
	
	
	X
	
	
	
	
	
	

	Valuator
	
	
	X
	X
	X
	X
	X
	
	X
	X

	Viewpoint
	
	
	
	
	
	
	
	
	X
	X

	Viewport
	
	
	
	X
	
	
	
	
	
	

	VisibilitySensor
	
	
	
	
	
	
	
	
	X
	X

	WorldInfo
	
	
	
	X
	
	X
	X
	
	X
	X

	Node Update
	
	
	X
	X
	X
	X
	X
	
	X
	X

	Route Update
	
	
	X
	X
	X
	X
	X
	
	X
	X

	Scene Update
	
	X
	X
	X
	X
	X
	X
	X
	X
	X

	ROUTE
	
	
	X
	X
	X
	X
	X
	
	X
	X

	PROTO
	
	
	
	X
	
	X
	
	
	
	

	Extended Updates
	
	
	
	X
	
	
	
	
	
	

	Interpolator Compression
	
	
	
	
	
	
	
	
	
	

	PredictiveMF coding
	
	
	
	
	
	X
	
	
	
	

Decoders that claim compliance to a given profile shall implement all the tools with an ‘X’ entry for that profile.
NOTE
Extended Updates comprise the following scene updates: PROTOlist, PROTOlistDeletion, removal of all protos, MultipleIndexedFieldReplacement, MultipleFieldReplacement, GlobalQuantizationConfiguration, NodeDeletionEx, ExtendedReplace, ReplaceFromExternalData, ReplaceToExternalData
7.15.2.3.1 BIFS nodes for audio objects

The presence of AudioClip and AudioSource nodes in BIFS scene graph depends on the selected Audio profile. Note, however, that certain Scene Graph profiles place limitations on the complexity of these nodes. The following table describes what nodes are allowed in the BIFS scene graph depending on the Audio profile. Note that Systems profiles supporting the AudioFX node in decoders where the Audio Main or Synthetic Profiles are not supported, shall at least be compliant with Audio Object Type 16 “Algorithmic Synthesis and AudioFX,” as defined in ISO/IEC 14496-3 Subpart 1, in order to guarantee the correct functionality of the Audio subtree.
Table 42 — BIFS nodes for audio objects

	Audio Profiles
	Allowed Audio Object Nodes

	Main
	AudioClip, AudioSource

	Scalable
	AudioClip, AudioSource

	Speech
	AudioClip, AudioSource

	Synthesis
	AudioClip, AudioSource

	High Quality Audio
	AudioClip, AudioSource

	Low Delay Audio
	AudioClip, AudioSource

	Natural Audio
	AudioClip, AudioSource

	Mobile Audio Internetworking
	AudioClip, AudioSource

7.15.2.3.2 BIFS nodes for visual objects

The presence of ImageTexture, Background2D, Background, MovieTexture, Face, Expression, FAP, FDP, FIT, FaceDefMesh, FaceDefTable, FaceDefTransform, Viseme nodes in a BIFS scene graph depends on the selected Visual profile. The following table describes what nodes are allowed in the BIFS scene graph depending on the choice of the Visual profile.

Table 43 — BIFS nodes for visual objects

	Visual Profiles
	Allowed visual object nodes

	Simple
	ImageTexture, Background2D, Background, MovieTexture

	Simple Scalable
	ImageTexture, Background2D, Background, MovieTexture

	Core
	ImageTexture, Background2D, Background, MovieTexture

	Main
	ImageTexture, Background2D, Background, MovieTexture

	N-Bit
	ImageTexture, Background2D, Background, MovieTexture

	Advanced Real Time Simple
	ImageTexture, Background2D, Background, MovieTexture

	Core Scalable
	ImageTexture, Background2D, Background, MovieTexture

	Advanced Coding Efficiency
	ImageTexture, Background2D, Background, MovieTexture

	Advance Core Profile
	ImageTexture, Background2D, Background, MovieTexture

	Hybrid
	ImageTexture, Background2D, Background, MovieTexture, Face, Expression, FAP, FDP, FIT, FaceDefMesh, FaceDefTable, FaceDefTransform, Viseme

	Basic Animated Texture
	ImageTexture, Background2D, Background, Face, Expression, FAP, FDP, FIT, FaceDefMesh, FaceDefTable, FaceDefTransform, Viseme

	Scaleable Texture
	ImageTexture, Background2D, Background

	Simple Face Animation
	Face, Expression, FAP, FDP, FIT, FaceDefMesh, FaceDefTable, FaceDefTransform, Viseme

	Advanced Scalable Texture
	ImageTexture, Background2D, Background

	Simple FBA
	Face, Expression, FAP, FDP, FIT, FaceDefMesh, FaceDefTable, FaceDefTransform, Viseme, Body, BAP, BDP,BodyDefTable, BodySegmentConnectionHint

If the terminal complies with a 2D graphics profile only, the terminal may choose to ignore the contents of the FDP, FIT, FaceDefMesh, FaceDefTable, FaceDefTransform nodes.

7.15.2.3.3 3D Audio Scene Graph Profile

The 3D Audio Scene Graph profile provides tools for three-dimensional sound positioning in relation either with acoustic parameters of the scene or its perceptual attributes. The user can interact with the scene by changing the position of the sound source, changing the room effect or by moving the listening point.

The following list defines the 3D Audio Profile scene graph profiles:

AcousticScene, Anchor, AudioBuffer, AudioClip, AudioDelay, AudioFX, AudioMix, AudioSource, AudioSwitch, Billboard, Conditional, DirectiveSound, Group, Inline, ListeningPoint, LOD, NavigationInfo, OrderedGroup, PerceptualParameters, QuantizationParameter, Sound, Sound2D, Switch, Transform, Viewpoint, WorldInfo, Node Update, Route Update, Scene Update, AnimationStream, Script, CoordinateInterpolator, OrientationInterpolator, PositionInterpolator, PositionInterpolator2D, ProximitySensor, ROUTE, TermCap, TimeSensor, TouchSensor, VisibilitySensor, Valuator.
For nodes that are also included in the Audio Scene Graph Profile, values reported in Table 45 (and consequently Table 46) shall be used, with the exception of the number of spatialized sources, as reported in Table 47.

7.15.2.4 Scene Graph Profiles@Levels

The following table gives the sceneProfileLevelIndication used in the initial object descriptor, as described in 14496-1.

Table 44 — sceneProfileLevelIndication Values

	Value
	Profile
	Level

	0x00
	Reserved for ISO use
	-

	0x01
	Simple 2D
	L1

	0x02
	Simple 2D
	L2

	0x03
	Audio
	L1

	0x04
	Audio
	L2

	0x05
	Audio
	L3

	0x06
	Audio
	L4

	0x07
	3D Audio
	L1

	0x08
	3D Audio
	L2

	0x09
	3D Audio
	L3

	0x0A
	3D Audio
	L4

	0x0B
	Basic 2D
	L1

	0x0C
	Core 2D
	L1

	0x0D
	Core 2D
	L2

	0x0E
	Advanced 2D
	L1

	0x0F
	Advanced 2D
	L2

	0x10
	Advanced 2D
	L3

	0x11
	Main 2D
	L1

	0x12
	Main 2D
	L2

	0x13
	Main 2D
	L3

	0x14
	ExtendedCore2D
	L1

	0x15-0x7F
	reserved for ISO use
	-

	0x80-0xFD
	user private
	-

	0xFE
	no scene graph profile specified
	-

	0xFF
	no scene graph capability required
	-

	NOTE — Usage of the value 0xFE indicates that the content described by this InitialObjectDescriptor does not comply to any scene graph profile specified in ISO/IEC 14496-1. Usage of the value 0xFF indicates that none of the scene graph profile capabilities are required for this content.

7.15.2.4.1 Levels for the Audio Scene Graph Profile

7.15.2.4.1.1 Functionalities provided

The Audio scene graph profile provides for a set of BIFS scene graph elements for usage in audio only applications. The Audio scene graph profile supports applications like broadcast radio. When the Audio Scene graph profile is used, OT16 shall be supported.

7.15.2.4.1.2 Levels for the Audio Scene Graph Profile

In order to define Levels for the Audio Scene Graph Profile, the following parameters have been selected that may influence in a considerable way the decoding complexity of a bitstream.

Table 45 — BIFS Complexity restriction parameters
	
	Restriction parameters

	Audio Feature
	

	BIFS Field Update
	Maximum reaction time until a BIFS field update is audible

	AudioMix, AudioSwitch, AudioSource
	Maximum width, maximum depth of the sub-tree, click-free switching

	AudioDelay, AudioClip, AudioBuffer
	Total buffer memory, click-free delay

	Sample Rate Conversion
	Total conversion processing power, sample-rate conversion ratios.

	AudioFX
	According to the restrictions of SA approved by the Audio group (SAOL level definition based on abstract complexity metrics)

	Sound, Sound2D

	# spatialized

Parameters mentioned in the above table are defined as follows:

· Depth of an audio sub-tree: maximum number of consecutive nodes from the output of a AudioSource or AudioClip node to the input of a Sound/Sound2D node.

· Width of audio sub-tree: maximum number of parallel channels from the output of an AudioSource or AudioClip node to the input of a Sound/Sound2D node.

· Total Memory Buffer: an amount of memory needed to store samples shared between the different AudioDelay, AudioClip and AudioBuffer nodes present in a scene according to the formula:

Total Memory = SUM(NbChannels(j)*NbBufferedSamples(j))

where:
 j is the considered node

NbChannels is the number of channels for this node

NbBufferedSamples = Delay(j)*SamplingFrequency(j)
· Reaction Time of a BIFS field update is the maximum time in milliseconds. until the changes is audible.

· Total Conversion Processing Power: an amount of PCU shared among the different sampling conversions present in a scene according to: ISO/IEC 14496-3, Subpart 1, subclause 1.5.2 Audio Profiles and Levels, subclause 1.5.2.2 Complexity Units.

· Spatializable Objects: number of possible spatialized channels.

· AudioFX: see Table 47 below and abstract complexity metrics as defined in ISO/IEC 14496-4 (Conformance), Clause 6 (Audio Conformance) for the Algorithmic Synthesis and AudioFX Object Type.

· Reaction Time of a BIFS field update: the maximum time in milliseconds until the changes is audible.

Levels for the Audio scene graph profile are defined in the following table:

Table 46 — Systems Audio Scene Graph Profile Levels

	Audio Parameter
	Level 1
	Level 2
	Level 3
	Level 4

	Reaction time [msec]
	64
	32
	32
	16

	Width
	8
	32
	64
	128

	Depth
	1
	4
	6
	8

	Click free fadings
	N
	Y
	Y
	HQ

	Total memory buffer
	256 ksamples
	512 ksamples
	2 Megasamples
	6 Megasamples
(2s for 64 channels at 48 kHz)

	SR Conversion ratio
	1
	INT
	any allowed ratio
	any allowed ratio

	Total Conversion Processing Power
	0
(sampling rate conversion is forbidden)
	16 PCU
	64 PCU
	128 PCU

	AudioFX
	Very Low Complexity
(Table 47)
	Low Complexity (Table 47)
	Medium Complexity (Table 47)
	High Complexity (Table 47)

	Spatialization
	0
	4
	16
	32

Table 47 — Complexity values for AudioFX node levels

	Parameter
	Very Low Complexity
	Low Complexity
	Medium Complexity
	High Complexity

	Total opcode calls
	1M
	1M
	4M
	8M

	Floating-point operations
	0
	4M
	12M
	20M

	Multiplications
	0
	2M
	8M
	16M

	Tests
	0
	1M
	4M
	8M

	Math methods
	0
	2M
	6M
	12M

	Noise generators
	0
	0.05 M
	0.2M
	0.5M

	Interpolations
	0
	0.3M
	1.2M
	2M

	Multiply-and-add
	2M
	2M
	4M
	8M

	Filters
	0.2M
	0.2M
	1M
	4M

	Effects
	96k
	96k
	0.4M
	2M

	Allocated memory
	96k
	96k
	1M
	16M

7.15.2.4.2 Levels for the Basic 2D Scene graph Profile

7.15.2.4.2.1 Functionalities provided

The Basic 2D Scene Graph profile is designed for very simple scenes that may handle only few (possibly only 1) audio and visual elements. This profile includes basic 2D composition and audio and video nodes interfaces. The application area for the Basic 2D Scene Graph Profile is related to audio-video only scene description.

The only allowed BIFS nodes for audio objects is : {AudioSource}

The allowed BIFS nodes for visual objects are : {ImageTexture, MovieTexture}

7.15.2.4.2.2 Level 1

Level 1 of Basic 2D Scene Graph Profile is used to describe 1 audio and/or 1 visual object only.

The following restrictions apply for the Basic 2D Scene Graph Profile at Level 1 :

Table 48 — Restrictions for Basic 2D Scene Graph Profile at Level 1

	Nodes
	Restrictions

	AudioSource
	addChildren, removeChildren, chidren, pitch, speed, numChan,

phaseGroup not supported

	ImageTexture
	repeatS, repeatT not supported

	MovieTexture
	speed ignored (no rewind nor fast forward)

repeatS, repeatT not supported

	OrderedGroup
	addChildren and removeChildren not supported

2 children maximum allowed

only 1 OrderedGroup node per scene used as top node

	Sound2D
	intensity, spatialize, location not supported

The usage of repeated OrderedGroup nodes to build bigger scenes is forbidden.

7.15.2.4.3 Levels for the Simple 2D Scene Graph Profile

7.15.2.4.3.1 Functionalities provided

The Simple 2D scene graph profile provides for only those BIFS scene graph elements necessary to place one or more audio-visual objects in a scene. The Simple 2D scene graph profile allows presentation of audio-visual content with potential update of the complete scene but no interaction capabilities. The Simple 2D scene graph profile supports applications like broadcast television. Note that the AudioClip node is not included in the Simple2D profile, irrespective of the Audio profile used.

7.15.2.4.3.2 Level 1

This level defines a scene that includes only audio and video objects; there are no capabilities to transform or manipulate the objects in the scene. It is intended for very simple, low complexity applications with image/video composition in 2D.

The following restrictions apply for the Simple 2D scene graph profile at Level 1:

Table 49 — Restrictions for Simple 2D scene graph profile at Level 1

	Transform2D
	

	Field name
	

	addChildren
	Ignored

	removeChildren
	Ignored

	children
	X.

	center
	Ignored

	rotationAngle
	0

	scale
	1, 1

	scaleOrientation
	0

	translation
	X

	X = allowed;
else: default value

The metric shall be the pixel metrics. BIFSConfig.isPixel=1.

A cascade of Transform2D nodes is not allowed. Children nodes of a Transform2D node shall not be Transform2D nodes. Only one initial update to convey the complete scene graph is allowed.

7.15.2.4.3.3 Level 2

The following restrictions apply for the Simple 2D Graphics Profile at Level 2:

Table 50 — Restrictions for Simple 2D Scene Graph Profile at Level 2

	Nodes
	Restrictions

	AudioClip
	pitch, description not supported

	AudioSource
	addChildren, removeChildren, chidren, pitch, speed, numChan,

PhaseGroup not supported

	ImageTexture
	tepeatS, repeatT not supported

	MovieTexture
	speed ignored (no rewind nor fast forward)

repeatS, repeatT not supported

	OrderedGroup
	addChildren and removeChildren not supported

order not supported

31 children maximum allowed

	Scene Update
	No restriction

	Sound2D
	Intensity, spatialize, location not supported

	Transform2D
	addChildren and removeChildren not supported

center, rotationAngle, ScaleOrientation not supported

(only translations and scalings are allowed)

31 children maximum allowed

For Simple 2D Scene Graph Profile @ Level 2, the maximum number of nodes in a scene is limited to 64 including all instances of these nodes through DEF/USE mechanism.

7.15.2.4.4 Levels for the Core 2D Scene Graph Profile

7.15.2.4.4.1 Functionalities provided

The Core 2D Scene Graph profile includes basic 2D composition, 2D texturing, local interaction, local animation, BIFS updates, quantization, access to web links and sub-scenes, in addition to audio and visual elements. It also introduces tools such as back channel (ServerCommand) and VoD features (MediaControl, MediaSensor).

7.15.2.4.4.2 Level 1

The following restrictions apply for the Core 2D Scene Graph Profile at Level 1:

Table 51 — Restrictions for Core 2D Scene Graph Profile at Level 1

	Nodes
	Restrictions

	Anchor
	addChildren and removeChildren not supported

31 children maximum allowed

	AudioClip
	pitch, description ignored

	AudioSource
	addChildren, removeChildren, chidren, pitch, speed, numChan,

phaseGroup not supported (no rewind nor fast forward)

	ColorInterpolator
	255 key-value pairs

	Conditional
	No restriction

	CoordinateInterpolator2D
	31 coordinates per keyValue

255 key-value pairs

	ImageTexture
	repeatS, repeatT not supported

	Inline
	No restriction

	InputSensor
	restriction to mice, keyboards, remote controls

	MediaControl
	mediaSpeed not supported (no rewind nor fast forward)

31 url maximum

	MediaSensor
	Info ignored

	MovieTexture
	speed ignored (no rewind nor fast forward)

repeatS, repeatT not supported

	Node Update
	Add and remove commands for children fields are not allowed

	OrderedGroup
	addChildren and removeChildren not supported

31 children maximum allowed

	PositionInterpolator2D
	255 key-value pairs

	QuantizationParameter
	No restriction

	ROUTE
	No restriction

	ROUTE Update
	No restriction

	ScalarInterpolator
	255 key-value pairs

	Scene Update
	No restriction

	ServerCommand
	No restriction

	Sound2D
	Intensity, spatialize, location not supported

	Switch
	No restriction

	TimeSensor
	Ignored if cycleInterval < 0.03 second

	TouchSensor
	No restriction

	Transform2D
	addChildren and removeChildren not supported.

center, rotationAngle, scaleOrientation not supported

(only translations and scalings are allowed)

31 children maximum allowed. Negative scale not allowed.

	Valuator
	No restriction

The maximum number of nodes that is allowed in a scene compliant with the Core 2D Scene Graph Profile @ Level 1 is 8,191 including all instances of these nodes through DEF/USE mechanism or Inlined content.

7.15.2.4.4.3 Level 2

The following restrictions apply for the Core 2D Scene Graph Profile at Level 2:

Table 52 — Restrictions for Core 2D Scene Graph Profile at Level 2

	Nodes
	Restrictions

	Anchor
	127 children maximum allowed

	AudioClip
	pitch, description ignored

	AudioSource
	addChildren, removeChildren, chidren, pitch, speed, numChan,

phaseGroup not supported (no rewind nor fast forward)

	ColorInterpolator
	255 key-value pairs

	Conditional
	No restriction

	CoordinateInterpolator2D
	127 coordinates per keyValue

255 key-value pairs

	ImageTexture
	repeatS, repeatT not supported

	Inline
	No restriction

	InputSensor
	restriction to mice, keyboards, remote controls

	MediaControl
	mediaSpeed not supported (no rewind nor fast forward)

127 url maximum

	MediaSensor
	info ignored

	MovieTexture
	speed ignored

repeatS, repeatT not supported

	Node Update
	No restriction

	OrderedGroup
	127 children maximum allowed

	PositionInterpolator2D
	255 key-value pairs

	QuantizationParameter
	No restriction

	ROUTE
	No restriction

	ROUTE Update
	No restriction

	ScalarInterpolator
	255 key-value pairs

	Scene Update
	No restriction

	ServerCommand
	No restriction

	Sound2D
	intensity, spatialize, location not supported

	Switch
	No restriction

	TimeSensor
	Ignored if cycleInterval < 0.03 second

	TouchSensor
	No restriction

	Transform2D
	addChildren and removeChildren not supported

center, rotationAngle, scaleOrientation not supported

(only translations and scaling are allowed)

127 children maximum allowed

	Valuator
	No restriction

The maximum number of nodes that is allowed in a scene compliant with the Core 2D Scene Graph Profile @ Level 2 is 32,767 including all instances of these nodes through DEF/USE mechanism or Inlined content.

7.15.2.4.5 Levels for the Main 2D Scene Graph Profile

7.15.2.4.5.1 Functionalities provided

The Main2D Scene Graph profile includes basic 2D composition, 2D texturing, local interaction, local animation, BIFS updates, access to web links and sub-scenes, in addition to audio and visual elements. It also introduces tools such as back channel (ServerCommand), VoD features (MediaControl, MediaSensor) and Flextime nodes (TemporalGroup, TemporalTransform) for advanced, flexible synchronization.

7.15.2.4.5.2 Level 1

The following restrictions apply for the Main2D Scene Graph Profile at Level 1:

Table 53 — Restrictions for Main2D Scene Graph Profile at Level 1

	Nodes
	Restrictions

	Anchor
	addChildren and removeChildren not supported

31 children maximum allowed

	AudioClip
	pitch, description ignored

	AudioSource
	addChildren, removeChildren, chidren, pitch, speed, numChan,

phaseGroup not supported (no rewind nor fast forward)

	ColorInterpolator
	255 key-value pairs

	Conditional
	No restriction

	CoordinateInterpolator2D
	31 coordinates per keyValue

255 key-value pairs

	DiscSensor
	No restriction

	Inline
	Ignored

	ImageTexture
	repeatS, repeatT not supported; always treated as TRUE

	InputSensor
	restriction to mice, keyboards, remote controls

	Layer2D
	addChildren and removeChildren not supported

31 children maximum allowed

	MediaControl
	mediaSpeed not supported (no rewind nor fast forward)

31 url maximum

	MediaSensor
	info ignored, speed shall be 1.

	MovieTexture
	speed ignored (no rewind nor fast forward)

repeatS, repeatT not supported; always treated as TRUE

	Node Update
	No restriction

	OrderedGroup
	addChildren and removeChildren not supported

31 children maximum allowed

	PlaneSensor2D
	No restriction

	PositionInterpolator2D
	255 key-value pairs

	ProximitySensor2D
	No restriction

	QuantizationParameter
	Ignored

	ROUTE
	No restriction

	ROUTE Update
	No restriction

	ScalarInterpolator
	255 key-value pairs

	Scene Update
	No restriction

	ServerCommand
	No restriction

	Sound2D
	intensity, spatialize, location not supported

	Switch
	31 choices maximum allowed

	TemporalGroup
	addChildren and removeChildren not supported

7 children maximum allowed

	TemporalTransform
	addChildren and removeChildren not supported

31 children maximum allowed

speed not supported

stretchMode values linear and repeat not supported

shrinkMode value linear not supported

	TimeSensor
	Ignored if cycleInterval < 0.03 second

	TouchSensor
	No restriction

	Transform2D
	addChildren and removeChildren not supported

center, rotationAngle, scaleOrientation not supported

(only translations and scalings are allowed)

31 children maximum allowed. Negative scale not allowed.

	Valuator
	No restriction

The maximum number of nodes that is allowed in a scene compliant with the Main2D Scene Graph Profile @ Level 1 is 8,191 including all instances of these nodes through DEF/USE mechanism or Inlined content.

NOTE — Where addChildren and removeChildren fields are not supported this refers only to in-scene routing. Node update is permitted to add and remove children from all MFNode fields.

7.15.2.4.5.3 Level 2

The following restrictions apply for the Main2D Scene Graph Profile at Level 2:

Table 54 — Restrictions for Main2D Scene Graph Profile at Level 2

	Nodes
	Restrictions

	Anchor
	addChildren and removeChildren not supported

255 children maximum allowed

	AudioClip
	pitch, description ignored

	AudioSource
	addChildren, removeChildren, chidren, pitch, speed, numChan,

phaseGroup not supported (no rewind nor fast forward)

	ColorInterpolator
	511 key-value pairs

	Conditional
	No restriction

	CoordinateInterpolator2D
	511 coordinates per keyValue

511 key-value pairs

	DiscSensor
	No restriction

	Inline
	No more than 4 nodes in the scene at any one time. Restricted to supporting content to that created with Simple or Basic Profile Scene Graph, and Simple2D Graphics (Simple2D+Text)

	ImageTexture
	repeatS, repeatT not supported; always treated as TRUE

	InputSensor
	restriction to mice, keyboards, remote controls

	Layer2D
	addChildren and removeChildren not supported

255 children maximum allowed

	MediaControl
	255 url maximum

speed adjustments supported, but audio resampling is not required

	MediaSensor
	info ignored

	MovieTexture
	speed ignored

repeatS, repeatT not supported; always treated as TRUE

	Node Update
	No restriction

	OrderedGroup
	addChildren and removeChildren not supported

255 children maximum allowed

	PlaneSensor2D
	No restriction

	PositionInterpolator2D
	1023 key-value pairs

	ProximitySensor2D
	No restriction

	QuantizationParameter
	No restriction

	ROUTE
	No restriction

	ROUTE Update
	No restriction

	ScalarInterpolator
	1023 key-value pairs

	Scene Update
	No restriction

	ServerCommand
	No restriction

	Sound2D
	Spatialize, location not supported

	Switch
	255 choices maximum allowed

	TemporalGroup
	addChildren and removeChildren not supported

15 children maximum allowed

	TemporalTransform
	addChildren and removeChildren not supported

255 children maximum allowed

speed adjustments supported, but audio resampling is not required

	TimeSensor
	Ignored if cycleInterval < 0.03 second

	TouchSensor
	No restriction

	Transform2D
	addChildren and removeChildren not supported

255 children maximum allowed

	Valuator
	No restriction

The maximum number of nodes that is allowed in a scene compliant with the Main2D Scene Graph Profile @ Level 2 is 65,535 including all instances of these nodes through DEF/USE mechanism or Inlined content.

NOTE — Where addChildren and removeChildren fields are not supported this refers only to in-scene routing. Node update is permitted to add and remove children from all MFNode fields.

7.15.2.4.5.4 Level 3

The following restrictions apply for the Main2D Scene Graph Profile at Level 3:

Table 55 — Restrictions for Main2D Scene Graph Profile at Level 3

	Nodes
	Restrictions

	Anchor
	addChildren and removeChildren not supported

255 children maximum allowed

	AudioClip
	pitch, description ignored

	AudioSource
	addChildren, removeChildren, chidren, pitch, speed, numChan,

phaseGroup not supported

	ColorInterpolator
	511 key-value pairs

	Conditional
	No restriction

	CoordinateInterpolator2D
	511 coordinates per keyValue

511 key-value pairs

	DiscSensor
	No restriction

	Inline
	Inlined content shall not exceed profiles of parent scene

	ImageTexture
	repeatS, repeatT not supported; always treated as TRUE

	InputSensor
	restriction to mice, keyboards, remote controls

	Layer2D
	addChildren and removeChildren not supported

255 children maximum allowed

	MediaControl
	255 url maximum

speed adjustments supported, but audio resampling is not required

	MediaSensor
	info ignored

	MovieTexture
	speed ignored

repeatS, repeatT not supported; always treated as TRUE

	Node Update
	No restriction

	OrderedGroup
	addChildren and removeChildren not supported

255 children maximum allowed

	PlaneSensor2D
	No restriction

	PositionInterpolator2D
	1023 key-value pairs

	ProximitySensor2D
	No restriction

	QuantizationParameter
	isLocal, useEfficientCoding not supported

	ROUTE
	No restriction

	ROUTE Update
	No restriction

	ScalarInterpolator
	1023 key-value pairs

	Scene Update
	No restriction

	ServerCommand
	No restriction

	Sound2D
	No restriction

	Switch
	255 choices maximum allowed

	TemporalGroup
	addChildren and removeChildren not supported

15 children maximum allowed

	TemporalTransform
	addChildren and removeChildren not supported

255 children maximum allowed

speed adjustments supported, but audio resampling is not required

	TimeSensor
	Ignored if cycleInterval < 0.03 second

	TouchSensor
	No restriction

	Transform2D
	addChildren and removeChildren not supported

255 children maximum allowed

	Valuator
	No restriction

The maximum number of nodes that is allowed in a scene compliant with the Main2D Scene Graph Profile @ Level 3 is 65,535 including all instances of these nodes through DEF/USE mechanism or Inlined content.

NOTE — Where addChildren and removeChildren fields are not supported this refers only to in-scene routing. Node update is permitted to add and remove children from all MFNode fields.

7.15.2.4.6 Levels for the Advanced 2D Scene Graph Profile

7.15.2.4.6.1 Functionalities provided

The Advanced 2D Scene Graph profile comprises all Basic 2D and Core 2D Scene Graph functionalities. The Advanced 2D Scene Graph profile allows in addition : advanced 2D composition, advanced local interaction, streamed animation (BIFS-Anim.), scripting, advanced audio, PROTO.

7.15.2.4.6.2 Level 1

The following restrictions apply for the Advanced 2D Scene Graph Profile at Level 1:

Table 56 — Restrictions for Advanced 2D Scene Graph Profile at Level 1

	Nodes
	Restrictions

	Anchor
	511 children maximum allowed

	AnimationStream
	No restriction

	AudioBuffer
	No restriction

	AudioClip
	pitch not supported

	AudioSource
	63 children maximum allowed

pitch, speed, numChan, phaseGroup not supported

(no rewind nor fast forward)

	AudioSwitch
	No restriction

	ColorInterpolator
	1,023 key-value pairs

	Conditional
	No restriction

	CoordinateInterpolator2D
	128 coordinates per keyValue

1,023 key-value pairs

	DiscSensor
	No restriction

	Group
	511 children maximum allowed

	ImageTexture
	No restriction

	Inline
	No restriction

	InputSensor
	No restriction

	Layer2D
	511 children maximum allowed

	MediaBuffer
	No restriction

	MediaControl
	255 url maximum

speed adjustments supported but audio resampling is not required

	MediaSensor
	No restriction

	MovieTexture
	speed ignored (no rewind nor fast forward)

	Node Update
	No restriction

	OrderedGroup
	511 children maximum allowed

	PlaneSensor2D
	No restriction

	PositionInterpolator2D
	1,023 key-value pairs

	PredictiveMF coding
	No restriction

	PROTO
	31 fields

31 eventIns

31 eventOuts

31 exposedFields

7 levels

	ProximitySensor2D
	No restriction

	QuantizationParameter
	No restriction

	ROUTE
	No restriction

	ROUTE Update
	No restriction

	ScalarInterpolator
	1,023 key-value pairs

	Scene Update
	No restriction

	Script
	31 eventIns

31 eventOuts

31 fields

	ServerCommand
	No restriction

	Sound2D
	spatialize, location not supported

	Switch
	No restriction

	TemporalGroup
	addChildren and removeChildren not supported

15 children maximum allowed

	TemporalTransform
	addChildren and removeChildren not supported

255 children maximum allowed

speed adjustments supported but audio resampling is not required

	TermCap
	No restriction

	TimeSensor
	Ignored if cycleInterval < 0.03 second

	TouchSensor
	No restriction

	Transform2D
	511 children maximum allowed

	Valuator
	No restriction

	WorldInfo
	No restriction

The maximum number of nodes that is allowed in a scene compliant with the Advanced 2D Scene Graph Profile @ Level 1 is 32,767 including all instances of these nodes through Inline, DEF/USE or PROTO mechanisms.

7.15.2.4.6.3 Level 2

The following restrictions apply for the Advanced 2D Scene Graph Profile at Level 2:

Table 57 — Restrictions for Advanced 2D Scene Graph Profile at Level 2

	Nodes
	Restrictions

	Anchor
	16,383 children maximum allowed

	AnimationStream
	No restriction

	AudioBuffer
	No restriction

	AudioClip
	pitch not supported

	AudioSource
	255 children maximum allowed

pitch, speed, numChan, phaseGroup not supported

(no rewind nor fast forward)

	AudioSwitch
	No restriction

	ColorInterpolator
	16,383 key-value pairs

	Conditional
	No restriction

	CoordinateInterpolator2D
	1,023 coordinates per keyValue

16,383 key-value pairs

	DiscSensor
	No restriction

	Group
	16,383 children maximum allowed

	ImageTexture
	No restriction

	Inline
	No restriction

	InputSensor
	No restriction

	Layer2D
	16,383 children maximum allowed

	MediaBuffer
	No restriction

	MediaControl
	255 url maximum

speed adjustments supported but audio resampling is not required

	MediaSensor
	No restriction

	MovieTexture
	speed ignored (no rewind nor fast forward)

	Node Update
	No restriction

	OrderedGroup
	16,383 children maximum allowed

	PlaneSensor2D
	No restriction

	PositionInterpolator2D
	16,383 key-value pairs

	PredictiveMF coding
	No restriction

	PROTO
	255 fields

255 eventIns

255 eventOuts

255 exposedFields

7 levels

	ProximitySensor2D
	No restriction

	QuantizationParameter
	No restriction

	ROUTE
	No restriction

	ROUTE Update
	No restriction

	ScalarInterpolator
	16,383 key-value pairs

	Scene Update
	No restriction

	Script
	255 eventIns

255 eventOuts

255 fields

	ServerCommand
	No restriction

	Sound2D
	spatialize, location not supported

	Switch
	No restriction

	TemporalGroup
	addChildren and removeChildren not supported

15 children maximum allowed

	TemporalTransform
	addChildren and removeChildren not supported

255 children maximum allowed

speed adjustments supported but audio resampling is not required

	TermCap
	No restriction

	TimeSensor
	Ignored if cycleInterval < 0.03 second

	TouchSensor
	No restriction

	Transform2D
	16,383 children maximum allowed

	Valuator
	No restriction

	WorldInfo
	No restriction

The maximum number of nodes that is allowed in a scene compliant with the Advanced 2D Scene Graph Profile @ Level 2 is 131,071 including all instances of these nodes through Inline, DEF/USE or PROTO mechanism.

7.15.2.4.6.4 Level 3

The following restrictions apply for the Advanced 2D Scene Graph Profile at Level 2:

Table 58 — Restrictions for Advanced 2D Scene Graph Profile at Level 3

	Nodes
	Restrictions

	Anchor
	16,383 children maximum allowed

	AnimationStream
	No restriction

	AudioBuffer
	No restriction

	AudioClip
	pitch not supported

	AudioSource
	255 children maximum allowed

pitch, speed, numChan, phaseGroup not supported

(no rewind nor fast forward)

	AudioSwitch
	No restriction

	ColorInterpolator
	16,383 key-value pairs

	Conditional
	No restriction

	CoordinateInterpolator2D
	1,023 coordinates per keyValue

16,383 key-value pairs

	DiscSensor
	No restriction

	Group
	16,383 children maximum allowed

	ImageTexture
	No restriction

	Inline
	No restriction

	InputSensor
	No restriction

	Layer2D
	16,383 children maximum allowed

	MediaBuffer
	No restriction

	MediaControl
	255 url maximum

	MediaSensor
	No restriction

	MovieTexture
	speed ignored (no rewind nor fast forward)

	Node Update
	No restriction

	OrderedGroup
	16,383 children maximum allowed

	PlaneSensor2D
	No restriction

	PositionInterpolator2D
	16,383 key-value pairs

	PredictiveMF coding
	No restriction

	PROTO
	255 fields

255 eventIns

255 eventOuts

255 exposedFields

7 levels

	ProximitySensor2D
	No restriction

	QuantizationParameter
	No restriction

	ROUTE
	No restriction

	ROUTE Update
	No restriction

	ScalarInterpolator
	16,383 key-value pairs

	Scene Update
	No restriction

	Script
	255 eventIns

255 eventOuts

255 fields

	ServerCommand
	No restriction

	Sound2D
	spatialize, location not supported

	Switch
	No restriction

	TemporalGroup
	addChildren and removeChildren not supported

15 children maximum allowed

	TemporalTransform
	addChildren and removeChildren not supported

255 children maximum allowed

	TermCap
	No restriction

	TimeSensor
	Ignored if cycleInterval < 0.03 second

	TouchSensor
	No restriction

	Transform2D
	16,383 children maximum allowed

	Valuator
	No restriction

	WorldInfo
	No restriction

The maximum number of nodes that is allowed in a scene compliant with the Advanced 2D Scene Graph Profile @ Level 3 is 131,071 including all instances of these nodes through Inline, DEF/USE or PROTO mechanism.
7.15.2.4.7 Levels for the Complete 2D Scene Graph Profile

7.15.2.4.7.1 Functionalities provided

The Complete 2D scene graph profile provides for all the 2D scene description elements of the BIFS tool. It supports features such as 2D transformations and alpha blending. The Complete 2D scene graph profile enables 2D applications that require extensive and customized interactivity.

7.15.2.4.7.2 Levels

No levels are yet defined for the Complete 2D scene graph profile.
7.15.2.4.8 Levels for the Complete Scene Graph Profile

7.15.2.4.8.1 Functionalities provided

The Complete scene graph profile provides the complete set of scene graph elements of the BIFS tool. The Complete scene graph profile will enable applications like dynamic virtual 3D world and games.

7.15.2.4.8.2 Levels

No levels are yet defined for the Complete scene graph profile..
7.15.2.4.9 Levels for the 3D Audio Profile

7.15.2.4.9.1 Functionalities Provided

The 3D Audio profile provides for a set of BIFS scene graph elements for usage in audio only applications. The 3D Audio profile supports applications with advanced 3D rendering of audio.

7.15.2.4.9.2 3D Audio Profile Level Definitions

In the following table, levels definitions for the 3D Audio profile are given. The levels are based on sampling rate of 44100 Hz at 16-bit resolution. Their complexities depend on:

- the maximum number of spatialized sources per scene (these spatialized sources can include discrete reflections that are perceptually equivalent to individual sound sources);

- the number of temporal sections whose levels and time limits can be controlled individually for each source;

- the maximum number of independent late reverberation processes per scene;

- the maximum number of control frequencies in reverberation process filters, source directivity filters, and material filters.

Table 59 — 3D Audio Scene Graph Profile Levels.

	Level
	Level 1
	Level 2
	Level 3
	Level 4

	Maximum number of spatialized sources per scene
	8
	32
	64
	128

	Number of temporal sections whose levels and time limits can be controlled individually for each source
	1
	1
	2
	3

	Maximum number of independent late reverberation processes per scene
	1
	1
	2
	4

	Maximum number of control frequencies in reverberation process filters, source directivity filters, and material filters
	2
	2
	3
	3

For nodes that are also included in the Audio Scene Graph Profile, criteria exposed in section 7.9.2.4.1.2 and values reported in Table 46 and Table 47 shall be used in addition, with the exception of the number of spatialized sources, as reported in Table 60.

Table 60 — 3D Audio Scene Graph Profile Levels - II.

	Audio Parameter
	Level 1
	Level 2
	Level 3
	Level 4

	Reaction time [msec]
	64
	32
	32
	16

	Width
	8
	32
	64
	128

	Depth
	1
	4
	6
	8

	Click free fadings
	N
	Y
	Y
	HQ

	Total memory buffer
	256 ksamples
	512 ksamples
	2 Megasamples
	6 Megasamples
(2s for 64 channels at 48 kHz)

	SR Conversion ratio
	1
	INT
	any allowed ratio
	any allowed ratio

	Total Conversion Processing Power
	0
(sampling rate conversion is forbidden)
	16 PCU
	64 PCU
	128 PCU

	AudioFX
	Very Low Complexity
 (Table 47)
	Low Complexity (Table 47)
	Medium Complexity (Table 47)
	High Complexity (Table 47)

7.15.2.4.10 Levels for the ExtendedCore2D Scene Graph Profile
7.15.2.4.10.1 Functionalities Provided

The ExtendedCore2D Scene Graph profile comprises all Core 2D Scene Graph functionalities. The ExtendedCore2D Scene Graph profile allows in addition: advanced 2D composition, advanced local interaction.

7.15.2.4.10.2 Level 1
The following restrictions apply for the XCore2D Scene Graph Profile at Level 1:
Table 0\IF >= 1 "A."

SEQ Table
63
 — Restrictions for ExtendedCore2D Scene Graph Profile at Level 1
	Nodes
	Restrictions

	Anchor
	addChildren and removeChildren not supported

31children maximum allowed

	AudioClip
	pitch, description ignored

	AudioSource
	addChildren, removeChildren, chidren, pitch, speed, numChan,

phaseGroup not supported (no rewind nor fast forward)

	CacheTexture
	repeatS, repeatT not supported

	ColorInterpolator
	255 key-value pairs

	CompositeTexture2D
	No scene commands or ROUTEs connected to the node or a node in the subtree of the node; an implementation is allowed to cache the rasterized version of the node and discard the node subtree.

	Conditional
	No restriction

	CoordinateInterpolator2D
	31 coordinates per keyValue

255 key-value pairs

	EnvironmentTest
	No restrictions

	ImageTexture
	repeatS, repeatT not supported

	Inline
	No restriction

	InputSensor
	restriction to mice, keyboards, remote controls

	Layer2D
	addChildren, removeChildren not supported

31 children maximum allowed

Background and viewport nodes only allowed as fields of the Layer2D node. Any Background2D or Viewport node present in the subtree of the Layer2D shall be ignored.

	Layout
	addChildren, removeChildren not supported

31 children maximum allowed

scroll fields supported ?

Only text children are supported. Text children shall only be present once on screen at the same time.Size not animatable nor updatable.

	MediaControl
	mediaSpeed not supported (no rewind nor fast forward)

31 url maximum

	MediaSensor
	Info ignored

	MovieTexture
	speed ignored (no rewind nor fast forward)

repeatS, repeatT not supported

	Node Update
	Add and remove commands for addChildren and removeChildren fields are not supported

	OrderedGroup
	addChildren and removeChildren not supported

31 children maximum allowed

	PositionInterpolator2D
	255 key-value pairs

	QuantizationParameter
	No restriction

	ROUTE
	No restriction

	ROUTE Update
	No restriction

	ScalarInterpolator
	255 key-value pairs

	Scene Update
	All updates and Extended Updates

	ServerCommand
	No restriction

	Storage
	No restriction

	Sound2D
	Intensity, spatialize, location not supported

	Switch
	No restriction

	TimeSensor
	Ignored if cycleInterval < 0.03 second

	TouchSensor
	No restriction

	Transform2D
	addChildren and removeChildren not supported.

31 children maximum allowed.

	TransformMatrix2D
	addChildren and removeChildren not supported.

31 children maximum allowed.

	Valuator
	No restriction

	Viewport
	Only 1 Viewport node allowed in a context (a scene, a Layer2D node or a CompositeTexture node)

set_bind, bindTime, isBound are not supported.

	WorldInfo
	No restriction

	PROTO
	Nested proto declarations and nested protos are forbidden. DEF/USE nodes are not allowed within a proto.

The maximum number of nodes that is allowed in a scene compliant with the ExtendedCore2D Scene Graph Profile @ Level 1 is 8,191 including all instances of these nodes through Inline, DEF/USE or PROTO mechanism.
7.15.3 Graphics Profile Definitions

7.15.3.1 Overview

The graphics profiles specify the graphics elements of the BIFS tool that are allowed. These elements provide means to represent graphics visual objects in a scene. Profiling of graphics elements of the BIFS tool serves to restrict the memory requirements for the storage of the graphical elements as well as to restrict the computational complexities of composition and rendering processes.

7.15.3.2 Graphics Profiles Tools

The following tools are available to construct the graphics profiles:

BIFS nodes related to graphics as defined in Table 61.

3D Audio Graphics Profile as defined in subclause 7.9.3.3.1.

7.15.3.3 Graphics Profiles

The following table defines the graphics profiles:

Table 61 — Graphics profiles

		Graphics Profiles

	Graphics Tools

	Simple2D

	Simple2D

+Text

	Core

2D

	ExtendedCore 2D

	Advanced

2D

	Complete

2D

	3D

Audio

	Complete

	AcousticMaterial

							X

	
	Appearance

	X

	X

	X

	X

	X

	X

	X

	X

	Background

								X

	Background2D

		X

	X

	X

	X

	X

		X

	BAP

								
	BDP

								
	Bitmap

	X

	X

	X

	X

	X

	X

		X

	Body

								
	BodyDefTable

								
	BodySegment ConnectionHint

								
	Box

								X

	Circle

			X

	X

	X

	X

		X

	Color

			X

	X

	X

	X

		X

	Cone

								X

	Coordinate

							X

	X

	Coordinate2D

			X

	X

	X

	X

		X

	Curve2D

				X

	X

	X

		X

	Cylinder

								X

	DirectionalLight

								X

	ElevationGrid

								X

	Ellipse

				X

				
	Expression

								X

	Extrusion

								X

	Face

								X

	FaceDefMesh

								X

	FaceDefTable

								X

	FaceDefTransform

								X

	FAP

								X

	FDP

								X

	FIT

								X

	Fog

								X

	FontStyle

		X

	X

	X

	X

	X

		X

	Hierarchical3Dmesh

								
	IndexedFaceSet

							X

	X

	IndexedFaceSet2D

			X

	X

	X

	X

		X

	IndexedLineSet

								X

	IndexedLineSet2D

					X

	X

		X

	LineProperties

				X

	X

	X

		X

	LinearGradient

				X

				
	Material

								X

	Material2D

		X

	X

	X

	X

	X

		X

	MaterialKey

					X

			
	MatteTexture

					X

			
	Normal

							X

	X

	PixelTexture

			X

	X

	X

	X

		X

	PointLight

								X

	PointSet

								X

	PointSet2D

						X

		X

	RadialGradient

				X

				
	Rectangle

		X

	X

	X

	X

	X

		X

	Shape

	X

	X

	X

	X

	X

	X

	X

	X

	Sphere

								X

	SpotLight

								X

	Text

		X

	X

	X

	X

	X

		X

	TextureCoordinate

					X

	X

		X

	TextureTransform

					X

	X

		X

	Viseme

								X

	XCurve2D

				X

				
	XfontStyle

								
	XlineProperties

				X

				

	
	

	
	
	

	

	

	

	

	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	Graphics Profiles

	Graphics Tools
	Simple2D
	Simple2D

+Text
	Core

2D
	ExtendedCore 2D
	Advanced

2D
	Complete

2D
	3D

Audio
	Complete

	AcousticMaterial
	
	
	
	
	
	
	X
	

	Appearance
	X
	X
	X
	X
	X
	X
	X
	X

	Background
	
	
	
	
	
	
	
	X

	Background2D
	
	X
	X
	X
	X
	X
	
	X

	BAP
	
	
	
	
	
	
	
	

	BDP
	
	
	
	
	
	
	
	

	Bitmap
	X
	X
	X
	X
	X
	X
	
	X

	Body
	
	
	
	
	
	
	
	

	BodyDefTable
	
	
	
	
	
	
	
	

	BodySegment ConnectionHint
	
	
	
	
	
	
	
	

	Box
	
	
	
	
	
	
	
	X

	Circle
	
	
	X
	X
	X
	X
	
	X

	Color
	
	
	X
	X
	X
	X
	
	X

	Cone
	
	
	
	
	
	
	
	X

	Coordinate
	
	
	
	
	
	
	X
	X

	Coordinate2D
	
	
	X
	X
	X
	X
	
	X

	Curve2D
	
	
	
	X
	X
	X
	
	X

	Cylinder
	
	
	
	
	
	
	
	X

	DirectionalLight
	
	
	
	
	
	
	
	X

	ElevationGrid
	
	
	
	
	
	
	
	X

	Ellipse
	
	
	
	X
	
	
	
	

	Expression
	
	
	
	
	
	
	
	X

	Extrusion
	
	
	
	
	
	
	
	X

	Face
	
	
	
	
	
	
	
	X

	FaceDefMesh
	
	
	
	
	
	
	
	X

	FaceDefTable
	
	
	
	
	
	
	
	X

	FaceDefTransform
	
	
	
	
	
	
	
	X

	FAP
	
	
	
	
	
	
	
	X

	FDP
	
	
	
	
	
	
	
	X

	FIT
	
	
	
	
	
	
	
	X

	Fog
	
	
	
	
	
	
	
	X

	FontStyle
	
	X
	X
	X
	X
	X
	
	X

	Hierarchical3Dmesh
	
	
	
	
	
	
	
	

	IndexedFaceSet
	
	
	
	
	
	
	X
	X

	IndexedFaceSet2D
	
	
	X
	X
	X
	X
	
	X

	IndexedLineSet
	
	
	
	
	
	
	
	X

	IndexedLineSet2D
	
	
	
	
	X
	X
	
	X

	LineProperties
	
	
	
	X
	X
	X
	
	X

	LinearGradient
	
	
	
	X
	
	
	
	

	Material
	
	
	
	
	
	
	
	X

	Material2D
	
	X
	X
	X
	X
	X
	
	X

	MaterialKey
	
	
	
	
	X
	
	
	

	MatteTexture
	
	
	
	
	X
	
	
	

	Normal
	
	
	
	
	
	
	X
	X

	PixelTexture
	
	
	X
	X
	X
	X
	
	X

	PointLight
	
	
	
	
	
	
	
	X

	PointSet
	
	
	
	
	
	
	
	X

	PointSet2D
	
	
	
	
	
	X
	
	X

	RadialGradient
	
	
	
	X
	
	
	
	

	Rectangle
	
	X
	X
	X
	X
	X
	
	X

	Shape
	X
	X
	X
	X
	X
	X
	X
	X

	Sphere
	
	
	
	
	
	
	
	X

	SpotLight
	
	
	
	
	
	
	
	X

	Text
	
	X
	X
	X
	X
	X
	
	X

	TextureCoordinate
	
	
	
	
	X
	X
	
	X

	TextureTransform
	
	
	
	
	X
	X
	
	X

	Viseme
	
	
	
	
	
	
	
	X

	XCurve2D
	
	
	
	X
	
	
	
	

	XfontStyle
	
	
	
	
	
	
	
	

	XlineProperties
	
	
	
	X
	
	
	
	

Decoders that claim compliance to a given profile shall implement all the tools with an ‘X’ entry for that profile.

7.15.3.3.1 3D Audio Graphics Profile

This profile defines graphics tools that are required to define the acoustical properties of the scene (geometry, acoustics absorption, diffusion, transparency of the material). The following list defines the 3D Audio Graphics profile: AcousticMaterial, Appearance, Coordinate, IndexedFaceSet, Normal, Shape.
7.15.3.4 Graphics Profiles@Levels

The following table gives the graphicsProfileLevelIndication used in the initial object descriptor, as described in 14496-1.

Table 62 — graphicsProfileLevelIndication Values

	Value
	Profile
	Level

	0x00
	Reserved for ISO use
	

	0x01
	Simple2D profile
	L1

	0x02
	Simple 2D + Text profile
	L1

	0x03
	Simple 2D + Text profile
	L2

	0x04
	Core 2D profile
	L1

	0x05
	Core 2D profile
	L2

	0x06
	Advanced 2D profile
	L1

	0x07
	Advanced 2D profile
	L2

	0x08
	ExtendedCore2D profile
	L1

	0x09-0x7F
	reserved for ISO use
	

	0x80-0xFD
	user private
	

	0xFE
	no graphics profile specified
	

	0xFF
	no graphics capability required
	

	NOTE — Usage of the value 0xFE may indicate that the content described by this InitialObjectDescriptor does not comply to any conformance point specified in ISO/IEC 14496-1. Usage of the value 0xFF indicates that none of the graphics profile capabilities are required for this content.

7.15.3.4.1 Levels for the Simple 2D Graphics Profile

7.15.3.4.1.1 Functionalities provided

The Simple 2D graphics profile provides for only those graphics elements of the BIFS tool that are necessary to place one or more visual objects in a scene.

7.15.3.4.1.2 Levels

The following restrictions apply for the Simple 2D Graphics Profile at Level 1:

Table 63 — Restrictions for Simple 2D Graphics Profile at Level 1

	Nodes
	Restrictions

	Appearance
	material not supported

textureTransform not supported

	Bitmap
	No restriction

	Shape
	No restriction

7.15.3.4.2 Levels for the Simple 2D + Text Graphics Profile

7.15.3.4.2.1 Functionalities provided

The Simple 2D + Text Graphics profile is designed for applications where the only graphics to be used are text elements (possibly colored or transparent, and maybe in addition to audio and visual objects).

7.15.3.4.2.2 Level 1

The following restrictions apply for the Simple 2D + Text Graphics Profile at Level 1:

Table 64 — Restrictions for Simple 2D + Text Graphics Profile at Level 1

	Nodes
	Restrictions

	Appearance
	textureTransform not supported

	Background2D
	only 1 Background2D node allowed in a scene for color only background

url, set_bind not supported

	Bitmap
	No restriction

	FontStyle
	No restriction

	Material2D
	lineProps not supported

Used for colored and/or transparent text and transparent visual objects

	Rectangle
	No restriction

	Shape
	No restriction

	Text
	maxExtent not supported

No texture mapping allowed

1,200 characters maximum in the scene at a time

7.15.3.4.3 Levels for the Core 2D Graphics Profile

7.15.3.4.3.1 Functionalities provided

The Core 2D Graphics profile is designed for applications using some simple graphics elements (may be in addition to audio and visual objects).

7.15.3.4.3.2 Level 1

The following restrictions apply for the Core 2D Graphics Profile at Level 1 :

Table 65 — Restrictions for Core 2D Graphics Profile at Level 1

	Nodes
	Restrictions

	Appearance
	textureTransform not supported

	Background2D
	only 1 Background2D node allowed in a scene for color and image background only

set_bind not supported

	Bitmap
	No restriction

	Circle
	No texture mapping allowed

	Color
	No restriction (not used at this level)

	Coordinate2D
	4 points maximum

	FontStyle
	No restriction

	IndexedFaceSet2D
	15 IndexedFaceSet2D nodes maximum in a scene

set_colorIndex, set_coordIndex, set_texCoordIndex not supported

EventIns are ignored, the only field that can be modified is coord

color not supported

colorIndex, colorPerVertex , texCoordIndex not supported

The number of points is restricted to be equal to 4 (quadrilateral)

texCoord field is always considered to be (00 10 11 01)

coordIndex field is always considered to be (0 1 2 3 -1)

convex is always considered to be TRUE

Face list shall be well-defined as follows :

1. Each face contains at least three non-coincident vertices

2. A given coordIndex is not repeated in a face

3. The vertices of a face shall define a planar polygon

4. The vertices of a face shall not define a self-intersecting polygon

	Material2D
	lineProps not supported

	PixelTexture
	32x32 maximum image size

8 PixelTexture nodes maximum in a scene at a time

	Rectangle
	No restriction

	Shape
	No restriction

	Text
	maxExtent not supported

No texture mapping allowed

6,480 characters maximum in the scene at a time

7.15.3.4.3.3 Level 2

The following restrictions apply for the Core 2D Graphics Profile at Level 2 :

Table 66 — Restrictions for Core 2D Graphics Profile at Level 2

	Nodes
	Restrictions

	Appearance
	textureTransform not supported

	Background2D
	only 1 Background2D node allowed in a scene for color and image backgroound only

set_bind not supported

	Bitmap
	No restriction

	Circle
	No texture mapping allowed

	Color
	255 colors maximum in the scene at a time

	Coordinate2D
	255 points maximum in the scene at a time

	FontStyle
	No restriction

	IndexedFaceSet2D
	31 IndexedFaceSet2D nodes maximum in a scene

set_colorIndex, set_coordIndex, set_texCoordIndex not supported

EventIns are ignored

colorIndex, colorPerVertex, texCoordIndex not supported

convex is always considered to be TRUE

255 total indices maximum in all index fields in the scene

Face list shall be well-defined as follows :

1. Each face is terminated with -1, including the last face in the array

2. Each face contains at least three non-coincident vertices

3. A given coordIndex is not repeated in a face

4. The vertices of a face shall define a planar polygon

5. The vertices of a face shall not define a self-intersecting polygon

	Material2D
	lineProps not supported

	PixelTexture
	32x32 maximum image size

8 PixelTexture nodes maximum in a scene at a time

	Rectangle
	No restriction

	Shape
	No restriction

	Text
	maxExtent not supported

No texture mapping allowed

6,480 characters maximum in the scene at a time

7.15.3.4.4 Levels for the Advanced 2D Graphics Profile

7.15.3.4.4.1 Functionalities provided

The Advanced 2D Graphics profile is designed for applications using advanced graphics elements (possibly in addition to audio and visual objects).

7.15.3.4.4.2 Level 1

The following restrictions apply for the Advanced 2D Graphics Profile at Level 1 :

Table 67 — Restrictions for Advanced 2D Graphics Profile at Level 1

	Nodes
	Restrictions

	Appearance
	No restriction

	Background2D
	No restriction

	Bitmap
	No restriction

	Circle
	No restriction

	Color
	65,535 colors maximum in the scene at a time

	Coordinate2D
	65,535 points maximum in the scene at a time

	Curve2D
	255 Curve2D nodes maximum in a scene

65,535 total elements in all type fields in the scene

	FontStyle
	No restriction

	IndexedFaceSet2D
	255 IndexedFaceSet2D nodes maximum in a scene

65,535 total indices maximum in all index fields in the scene

Face list shall be well-defined as follows :

1. Each face is terminated with -1, including the last face in the array

2. Each face contains at least three non-coincident vertices

3. A given coordIndex is not repeated in a face

4. The vertices of a face shall define a planar polygon

5. The vertices of a face shall not define a self-intersecting polygon

	IndexedLineSet2D
	255 IndexedLineSet2D nodes maximum in a scene

65,535 total indices maximum in all index fields in the scene

	LineProperties
	No restriction

	Material2D
	No restriction

	MaterialKey
	No restriction

	MatteTexture
	Only one MatteTexture node allowed

No BLUR function for s>2

Total pixel area of MatteTexture less than or equal to twice CIF

	PixelTexture
	32x32 maximum image size

8 PixelTexture nodes maximum in a scene at a time

	Rectangle
	No restriction

	Shape
	No restriction

	Text
	12,288 characters maximum in the scene at a time

	TextureCoordinate
	65,535 coordinates maximum in the scene at a time

	TextureTransform
	No restriction

7.15.3.4.4.3 Level 2

The following restrictions apply for the Advanced 2D Graphics Profile at Level 2:

Table 68 — Restrictions for Advanced 2D Graphics Profile at Level 2

	Nodes
	Restrictions

	Appearance
	No restriction

	Background2D
	No restriction

	Bitmap
	No restriction

	Circle
	No restriction

	Color
	65,535 colors maximum in the scene at a time

	Coordinate2D
	65,535 points maximum in the scene at a time

	Curve2D
	32,767 Curve2D nodes maximum in a scene

1,048,575 total elements in all type fields in the scene

	FontStyle
	No restriction

	IndexedFaceSet2D
	32,767 IndexedFaceSet2D nodes maximum in a scene

1,048,575 total indices maximum in all index fields in the scene

	IndexedLineSet2D
	32,767 IndexedLineSet2D nodes maximum in a scene

1,048,575 total indices maximum in all index fields in the scene

	LineProperties
	No restriction

	Material2D
	No restriction

	MaterialKey
	No restriction

	MatteTexture
	No BLUR function for s>2

Total pixel area of MatteTexture less than or equal to twice CCIR 601

	PixelTexture
	32x32 maximum image size

8 PixelTexture nodes maximum in a scene at a time

	Rectangle
	No restriction

	Shape
	No restriction

	Text
	1,048,575 characters maximum in the scene at a time

	TextureCoordinate
	65,535 coordinates maximum in the scene at a time

	TextureTransform
	No restriction

7.15.3.4.5 Levels for the Complete 2D Graphics Profile

7.15.3.4.5.1 Provided functionality

The Complete 2D graphics profile provides two-dimensional graphics functionalities and supports features such as arbitrary two-dimensional graphics and text, possibly in conjunction with visual objects.

7.15.3.4.5.2 Levels

No levels are yet defined for the Complete 2D graphics profile. Future definition of Levels is anticipated; this will happen by means of an amendment to this part of the standard.

7.15.3.4.6 Levels for the Complete Graphics Profile

7.15.3.4.6.1 Provided functionality

The Complete graphics profile provides advanced graphical elements such as elevation grids and extrusions and allows creating content with sophisticated lighting. The Complete Graphics profile enables applications such as complex virtual worlds that exhibit a high degree of realism.

7.15.3.4.6.2 Levels

No levels are yet defined for the Complete Graphics profile. Future definition of Levels is anticipated; this will happen by means of an amendment to this part of the standard.

7.15.3.4.7 3D Audio Graphics Level Definitions

No visual rendering should be implemented.
7.15.3.4.8 Levels for the ExtendedCore2D Graphics Profile
7.15.3.4.9 Provided functionality
The ExtendedCore2D Graphics profile comprises all Core 2D Scene Graphics functionalities. The ExtendedCore2D Graphics profile allows in addition the ability to draw ellipses, curves, lines and gradients.
7.15.3.4.9.1 Level 1
The following restrictions apply for the ExtendedCore2D Scene Graphics Profile at Level 1:
Table 0\IF >= 1 "A."

SEQ Table
72
 — Restrictions for ExtendedCore2D Graphics Profile at Level 10\IF >= 1 "A."

	Nodes
	Restrictions

	Appearance
	textureTransform not supported

	Background2D
	only 1 Background2D node allowed in a context (a scene, a Layer2D node or a CompositeTexture2D node). set_bind not supported

	Bitmap
	No restriction.

	Circle
	No texture mapping allowed

	Color
	65535 colors maximum in the scene at a time

	Coordinate2D
	65535 points maximum

	Curve2D
	255 Curve2D or XCurve2D nodes maximum in a scene. 65 535 total elements in all type fields in the scene. No texture mapping allowed

	Ellipse
	No texture mapping allowed

	FontStyle
	No restriction

	IndexedFaceSet2D
	255 IndexedFaceSet2D nodes maximum in a scene

65 535 total indices maximum in all index fields in the scene

Face list shall be well-defined as follows :

1. Each face is terminated with -1, including the last face in the array

2. Each face contains at least three non-coincident vertices

3. A given coordIndex is not repeated in a face

4. The vertices of a face shall define a planar polygon

5. The vertices of a face shall not define a self-intersecting polygon

	LineProperties
	No restriction

	LinearGradient
	No restriction

	Material2D
	No restriction

	PixelTexture
	32x32 maximum image size

8 PixelTexture nodes maximum in a scene at a time

	RadialGradient
	No restriction

	Rectangle
	If a natural texture (image, video) is maped on the node, rectangle shall not be rotated

	Shape
	No restriction

	Text
	6 480 characters maximum in the scene at a time. No texture mapping allowed. No rotations allowed.

	XCurve2D
	255 Curve2D or XCurve2D nodes maximum in a scene.

65 535 total elements in all type fields in the scene.

No natural textures (image, video) allowed.

Segment type “elliptical arc” is not allowed

	XLineProperties
	texture and textureTransform are not supported

No texturing (gradients or natural images) allowed.

No animatable or updatable dash patterns. Dash offset not supported.

7.15.4 MPEG-J Profile Definitions

7.15.4.1 Overview

MPEG-J specifies the format, delivery, and behavior of downloadable byte code on MPEG-4 terminals. This enables content owners to embed complex control algorithms with the data. MPEG-J aplications, however, can be local or remote (MPEGlet). These applications use a specified set of Java APIs.

7.15.5 MPEG-J Profiles Tools

The following API packages are available to construct MPEG-J profiles:

Scene APIs (package org.iso.mpeg.mpegj.scene) as defined in 10.4.3.

Resource APIs (package org.iso.mpeg.mpegj.resource) as defined in 10.4.3.4.

Net APIs (package org.iso.mpeg.mpegj.net) as defined in 10.4.6.

Decoder APIs (package org.iso.mpeg.mpegj.decoder) as defined in 10.4.5.

Section Filtering and Service Information as defined in 10.4.7.

Please note that the package org.iso.mpeg.mpegj is required in all terminals.

7.15.6 MPEG-J Profiles

The MPEG-J profiles are defined in Table 69. Currently, the are two profiles defined, comprising all the API packages.

The Personal profile addresses a range of constrained devices ranging from mobile and portable devices up to personal computers. Examples of such devices are cell videophones, PDAs, personal gaming devices, multimedia computers, etc.

The Main profile is a superset of Personal profile and it addresses the broadcast oriented devices including entertainment devices. Examples of such devices are set top boxes, digital TVs, etc.

Table 69 — MPEG-J Profiles
	MPEG-J Packages
	MPEG-J Profiles

	
	Personal
	Main

	Scene
	X
	X

	Resource
	X
	X

	Decoder
	X
	X

	Net
	X
	X

	SI/SF
	
	X

Decoders that claim compliance to a given profile shall implement all the packages with an ‘X’ entry for that profile and the org.iso.mpeg.mpegj package (required for all profiles).

7.15.7 MPEG-J Profiles@Levels

7.15.7.1 Levels for the Personal MPEG-J Profile

No levels are defined yet for the MPEG-J Personal profile. No Levels are foreseen at the moment, but the possibility of adding Levels through amendments is left open.

7.15.7.2 Levels for the Main MPEG-J Profile

No levels are defined yet for the MPEG-J Main profile. No Levels are foreseen at the moment, but the possibility of adding Levels through amendments is left open.

7.16 Metric information for resident fonts

[image: image399.wmf]1

,

1

1

0

-

=

=

å

-

=

k

k

K

ki

N

k

N

i

All measurements and information on font metrics presented in this document is given in units equal to 1/1000 of the scale factor and are defined by the coordinate system used in the ISO 9541 “Font Information Interchange”. The origin of the coordinate system for roman characters, in which these units are defined, is located on the baseline to the left of the character. The X axis runs along baseline, as illustrated below:

The font metrics information for MPEG-4 resident fonts is derived from the AFM files AlbanyforMPEG.AFM, CumberlandforMPEG.AFM and ThorndaleforMPEG.AFM included in ISO/IEC 14496-5.

7.17 Font metrics for SANS SERIF font (Albany)

7.17.1 Global font information

The following table provides global font information:

	Character Set
	Basic Latin, Latin-1 Supplement

	Weight
	Regular

	Italic Angle
	0

	Fixed Pitch
	false

	Writing Direction
	0 (horizontal)

	Underline Position
	-100

	Underline Thickness
	50

	Cap Height
	689

	X height
	509

	Ascender
	726

	Descender
	-199

	Font Bounding Box

(Xmin, Ymin, Xmax, Ymax)
	-184, -210, 1002, 933

7.17.2 Character metrics

	Character Unicode
	Advanced Width (WX)
	Character Name
	Bounding Box

(Xmin, Ymin, Xmax, Ymax)

	U+0020
	278
	space
	0, 0, 0, 0

	U+0021
	278
	exclam
	80, -8, 197, 689

	U+0022
	355
	quotedbl
	50, 435, 305, 689

	U+0023
	556
	numbersign
	21, 0, 535, 689

	U+0024
	556
	dollar
	44, -103, 509, 782

	U+0025
	889
	percent
	58, -13, 831, 702

	U+0026
	667
	ampersand
	40, -14, 660, 702

	U+0027
	191
	quotesingle
	50, 435, 140, 689

	U+0028
	333
	parenleft
	68, -162, 301, 726

	U+0029
	333
	parenright
	33, -162, 266, 726

	U+002A
	389
	asterisk
	18, 311, 371, 689

	U+002B
	584
	plus
	55, 96, 529, 570

	U+002C
	278
	comma
	77, -117, 202, 108

	U+002D
	333
	hyphen
	32, 215, 301, 298

	U+002E
	278
	period
	80, -8, 197, 108

	U+002F
	278
	slash
	0, -12, 278, 702

	U+0030
	556
	zero
	45, -13, 511, 702

	U+0031
	556
	one
	97, 0, 362, 695

	U+0032
	556
	two
	40, 0, 498, 702

	U+0033
	556
	three
	27, -13, 497, 702

	U+0034
	556
	four
	28, 0, 525, 694

	U+0035
	556
	five
	34, -13, 504, 689

	U+0036
	556
	six
	51, -12, 517, 702

	U+0037
	556
	seven
	51, 0, 499, 689

	U+0038
	556
	eight
	43, -13, 512, 702

	U+0039
	556
	nine
	44, -13, 510, 702

	U+003A
	278
	colon
	80, -8, 197, 518

	U+003B
	278
	semicolon
	77, -117, 202, 518

	U+003C
	584
	less
	55, 90, 529, 574

	U+003D
	584
	equal
	55, 189, 529, 477

	U+003E
	584
	greater
	55, 90, 529, 574

	U+003F
	556
	question
	51, -8, 492, 702

	U+0040
	1015
	at
	68, -197, 948, 702

	U+0041
	667
	A
	5, 0, 663, 689

	U+0042
	667
	B
	80, 0, 616, 689

	U+0043
	722
	C
	47, -12, 691, 702

	U+0044
	722
	D
	80, 0, 672, 689

	U+0045
	667
	E
	80, 0, 606, 689

	U+0046
	611
	F
	80, 0, 557, 689

	U+0047
	778
	G
	47, -13, 698, 702

	U+0048
	722
	H
	80, 0, 642, 689

	U+0049
	278
	I
	94, 0, 184, 689

	U+004A
	500
	J
	21, -12, 420, 689

	U+004B
	667
	K
	80, 0, 661, 689

	U+004C
	556
	L
	80, 0, 526, 689

	U+004D
	833
	M
	80, 0, 753, 689

	U+004E
	722
	N
	80, 0, 643, 689

	U+004F
	778
	O
	47, -12, 731, 702

	U+0050
	667
	P
	80, 0, 610, 689

	U+0051
	778
	Q
	47, -147, 732, 702

	U+0052
	722
	R
	80, 0, 704, 689

	U+0053
	667
	S
	60, -12, 608, 701

	U+0054
	611
	T
	21, 0, 589, 689

	U+0055
	722
	U
	77, -13, 646, 689

	U+0056
	667
	V
	4, 0, 663, 689

	U+0057
	944
	W
	15, 0, 928, 689

	U+0058
	667
	X
	24, 0, 646, 689

	U+0059
	667
	Y
	5, 0, 662, 689

	U+005A
	611
	Z
	33, 0, 578, 689

	U+005B
	278
	bracketleft
	68, -199, 262, 726

	U+005C
	278
	backslash
	0, -12, 278, 702

	U+005D
	278
	bracketright
	16, -199, 210, 726

	U+005E
	469
	asciicircum
	27, 311, 444, 702

	U+005F
	500
	underscore
	-6, -115, 506, -65

	U+0060
	333
	grave
	56, 566, 256, 703

	U+0061
	556
	a
	39, -14, 510, 521

	U+0062
	556
	b
	68, -13, 516, 726

	U+0063
	500
	c
	40, -14, 473, 522

	U+0064
	556
	d
	40, -13, 488, 726

	U+0065
	556
	e
	40, -14, 515, 521

	U+0066
	278
	f
	4, 0, 315, 734

	U+0067
	556
	g
	40, -210, 488, 522

	U+0068
	556
	h
	68, 0, 490, 726

	U+0069
	222
	i
	60, 0, 163, 726

	U+006A
	222
	j
	-54, -210, 163, 726

	U+006B
	500
	k
	68, 0, 496, 726

	U+006C
	222
	l
	69, 0, 154, 726

	U+006D
	833
	m
	68, 0, 767, 522

	U+006E
	556
	n
	68, 0, 490, 522

	U+006F
	556
	o
	40, -13, 517, 521

	U+0070
	556
	p
	68, -199, 516, 522

	U+0071
	556
	q
	40, -199, 488, 522

	U+0072
	333
	r
	68, 0, 342, 521

	U+0073
	500
	s
	49, -13, 457, 521

	U+0074
	278
	t
	14, -14, 278, 648

	U+0075
	556
	u
	66, -13, 488, 509

	U+0076
	500
	v
	8, 0, 492, 509

	U+0077
	722
	w
	12, 0, 708, 509

	U+0078
	500
	x
	15, 0, 484, 509

	U+0079
	500
	y
	-6, -209, 492, 509

	U+007A
	500
	z
	31, 0, 481, 509

	U+007B
	334
	braceleft
	28, -210, 310, 728

	U+007C
	260
	bar
	92, -189, 168, 726

	U+007D
	334
	braceright
	24, -210, 306, 728

	U+007E
	584
	asciitilde
	43, 262, 542, 406

	U+00A1
	333
	exclamdown
	109, -176, 226, 521

	U+00A2
	556
	cent
	67, -119, 500, 612

	U+00A3
	556
	sterling
	56, 0, 528, 702

	U+00A4
	556
	currency
	38, 93, 518, 572

	U+00A5
	556
	yen
	2, 0, 555, 689

	U+00A6
	260
	brokenbar
	92, -189, 168, 726

	U+00A7
	556
	section
	47, -185, 513, 726

	U+00A8
	333
	dieresis
	25, 583, 309, 686

	U+00A9
	737
	copyright
	10, -13, 726, 702

	U+00AA
	370
	ordfeminine
	31, 355, 341, 702

	U+00AB
	556
	guillemotleft
	44, 55, 512, 461

	U+00AC
	584
	logicalnot
	55, 177, 529, 477

	U+00AE
	737
	registered
	10, -13, 726, 702

	U+00B0
	400
	degree
	67, 437, 333, 702

	U+00B1
	584
	plusminus
	55, 0, 529, 600

	U+00B2
	333
	twosuperior
	25, 280, 308, 702

	U+00B3
	333
	threesuperior
	14, 273, 307, 702

	U+00B4
	333
	acute
	77, 566, 277, 703

	U+00B5
	584
	mu
	68, -165, 490, 509

	U+00B6
	537
	paragraph
	9, -199, 529, 690

	U+00B8
	333
	cedilla
	57, -210, 271, 18

	U+00B9
	333
	onesuperior
	58, 280, 230, 695

	U+00BA
	365
	ordmasculine
	24, 354, 338, 702

	U+00BB
	556
	guillemotright
	44, 55, 512, 461

	U+00BC
	834
	onequarter
	61, -13, 789, 702

	U+00BD
	834
	onehalf
	61, -13, 807, 702

	U+00BE
	834
	threequarters
	24, -13, 789, 702

	U+00BF
	611
	questiondown
	98, -189, 539, 521

	U+00C0
	667
	Agrave
	5, 0, 663, 873

	U+00C1
	667
	Aacute
	5, 0, 663, 873

	U+00C2
	667
	Acircumflex
	5, 0, 663, 873

	U+00C3
	667
	Atilde
	5, 0, 663, 862

	U+00C4
	667
	Adieresis
	5, 0, 663, 856

	U+00C5
	667
	Aring
	5, 0, 663, 933

	U+00C6
	1000
	AE
	5, 0, 944, 689

	U+00C7
	722
	Ccedilla
	47, -210, 691, 702

	U+00C8
	667
	Egrave
	80, 0, 606, 873

	U+00C9
	667
	Eacute
	80, 0, 606, 873

	U+00CA
	667
	Ecircumflex
	80, 0, 606, 873

	U+00CB
	667
	Edieresis
	80, 0, 606, 856

	U+00CC
	278
	Igrave
	20, 0, 220, 873

	U+00CD
	278
	Iacute
	60, 0, 260, 873

	U+00CE
	278
	Icircumflex
	-4, 0, 281, 873

	U+00CF
	278
	Idieresis
	-3, 0, 281, 856

	U+00D0
	722
	Eth
	10, 0, 672, 689

	U+00D1
	722
	Ntilde
	80, 0, 643, 862

	U+00D2
	778
	Ograve
	47, -12, 731, 873

	U+00D3
	778
	Oacute
	47, -12, 731, 873

	U+00D4
	778
	Ocircumflex
	47, -12, 731, 873

	U+00D5
	778
	Otilde
	47, -12, 731, 862

	U+00D6
	778
	Odieresis
	47, -12, 731, 856

	U+00D7
	584
	multiply
	69, 110, 515, 556

	U+00D8
	778
	Oslash
	41, -14, 738, 702

	U+00D9
	722
	Ugrave
	77, -13, 646, 873

	U+00DA
	722
	Uacute
	77, -13, 646, 873

	U+00DB
	722
	Ucircumflex
	77, -13, 646, 873

	U+00DC
	722
	Udieresis
	77, -13, 646, 856

	U+00DD
	667
	Yacute
	5, 0, 662, 873

	U+00DE
	667
	Thorn
	80, 0, 620, 689

	U+00DF
	611
	germandbls
	68, -13, 577, 726

	U+00E0
	556
	agrave
	39, -14, 510, 703

	U+00E1
	556
	aacute
	39, -14, 510, 703

	U+00E2
	556
	acircumflex
	39, -14, 510, 703

	U+00E3
	556
	atilde
	39, -14, 510, 692

	U+00E4
	556
	adieresis
	39, -14, 510, 686

	U+00E5
	556
	aring
	39, -14, 510, 763

	U+00E6
	889
	ae
	39, -14, 849, 521

	U+00E7
	500
	ccedilla
	40, -210, 473, 522

	U+00E8
	556
	egrave
	40, –14, 515, 703

	U+00E9
	556
	eacute
	40, -14, 515, 703

	U+00EA
	556
	ecircumflex
	40, -14, 515, 703

	U+00EB
	556
	edieresis
	40, -14, 515, 686

	U+00EC
	278
	igrave
	23, 0, 223, 703

	U+00ED
	278
	iacute
	61, 0, 261, 703

	U+00EE
	278
	icircumflex
	-5, 0, 280, 703

	U+00EF
	278
	idieresis
	-4, 0, 280, 686

	U+00F0
	556
	eth
	40, -13, 517, 727

	U+00F1
	556
	ntilde
	68, 0, 490, 692

	U+00F2
	556
	ograve
	40, -13, 517, 703

	U+00F3
	556
	oacute
	40, -13, 517, 703

	U+00F4
	556
	ocircumflex
	40, -13, 517, 703

	U+00F5
	556
	otilde
	40, -13, 517, 692

	U+00F6
	556
	odieresis
	40, -13, 517, 686

	U+00F7
	584
	divide
	55, 96, 529, 570

	U+00F8
	611
	oslash
	20, -53, 591, 562

	U+00F9
	556
	ugrave
	66, -13, 488, 703

	U+00FA
	556
	uacute
	66, -13, 488, 703

	U+00FB
	556
	ucircumflex
	66, -13, 488, 703

	U+00FC
	556
	udieresis
	66, -13, 488, 686

	U+00FD
	500
	yacute
	-6, -209, 492, 703

	U+00FE
	556
	thorn
	68, -199, 516, 726

	U+00FF
	500
	ydieresis
	-6, -209, 492, 686

	U+0131
	278
	dotlessi
	97, 0, 182, 509

	U+0141
	556
	Lslash
	-21, 0, 526, 689

	U+0142
	222
	lslash
	-22, 0, 252, 726

	U+0152
	1000
	OE
	47, -12, 944, 702

	U+0153
	944
	oe
	40, -14, 903, 521

	U+0160
	667
	Scaron
	60, -12, 608, 873

	U+0161
	500
	scaron
	49, -13, 457, 703

	U+0178
	667
	Ydieresis
	5, 0, 662, 856

	U+017D
	611
	Zcaron
	33, 0, 578, 873

	U+017E
	500
	zcaron
	31, 0, 481, 703

	U+0192
	556
	florin
	29, -194, 511, 734

	U+02C6
	333
	circumflex
	25, 566, 310, 703

	U+02C7
	333
	caron
	24, 566, 309, 703

	U+02C9
	333
	macron
	19, 599, 314, 672

	U+02D8
	333
	breve
	22, 570, 311, 697

	U+02D9
	333
	dotaccent
	115, 598, 218, 701

	U+02DA
	333
	ring
	61, 551, 273, 763

	U+02DB
	333
	ogonek
	89, -208, 300, 12

	U+02DC
	333
	tilde
	3, 579, 330, 692

	U+02DD
	333
	hungarumlaut
	-13, 566, 347, 703

	U+2013
	556
	endash
	-2, 224, 558, 294

	U+2014
	1000
	emdash
	-2, 224, 1002, 294

	U+2018
	222
	quoteleft
	50, 478, 175, 703

	U+2019
	222
	quoteright
	48, 477, 173, 702

	U+201A
	222
	quotesinglbase
	46, -117, 171, 108

	U+201C
	333
	quotedblleft
	15, 478, 319, 703

	U+201D
	333
	quotedblright
	13, 477, 317, 702

	U+201E
	333
	quotedblbase
	13, -117, 317, 108

	U+2020
	556
	dagger
	39, -189, 517, 726

	U+2021
	556
	daggerdbl
	39, -189, 517, 726

	U+2022
	350
	bullet
	51, 178, 301, 428

	U+2026
	1000
	ellipsis
	109, -8, 892, 108

	U+2030
	1000
	perthousand
	20, -12, 979, 702

	U+2039
	333
	guilsinglleft
	44, 55, 281, 461

	U+203A
	333
	guilsinglright
	53, 55, 290, 461

	U+20AC
	556
	Euro
	4, -13, 535, 702

	U+2122
	1000
	trademark
	72, 276, 878, 689

	U+2212
	584
	minus
	55, 295, 529, 371

	U+2215
	167
	fraction
	-184, -13, 350, 702

	U+2219
	278
	periodcentered
	80, 284, 197, 400

	U+FB01
	500
	fi
	4, 0, 441, 734

	U+FB02
	500
	fl
	4, 0, 432, 734

7.17.3 Kerning Data

	Kerning Pair
	Value

	space A
	-55

	space T
	-18

	space Y
	-18

	one one
	-74

	A space
	-55

	A T
	-74

	A V
	-74

	A W
	-37

	A Y
	-74

	A v
	-18

	A w
	-18

	A y
	-18

	A quoterigh
	t -74

	F comma
	-111

	F period
	-111

	F A
	-55

	L space
	-37

	L T
	-74

	L V
	-74

	L W
	-74

	L Y
	-74

	L y
	-37

	L quoteright
	-55

	P space
	-18

	P comma
	-129

	P period
	-129

	P A
	-74

	R T
	-18

	R V
	-18

	R W
	-18

	R Y
	-18

	T space
	-18

	T comma
	-111

	T hyphen
	-55

	T period
	-111

	T colon
	-111

	T semicolon
	-111

	T A
	–74

	T O
	-18

	T a
	-111

	T c
	-111

	T e
	-111

	T I
	-37

	T o
	-111

	T r
	-37

	T s
	-111

	T u
	-37

	T w
	-55

	T y
	-55

	V comma
	-92

	V hyphen
	-55

	V period
	-92

	V colon
	-37

	V semicolon
	-37

	V A
	-74

	V a
	-74

	V e
	-55

	V I
	-18

	V o
	-55

	V r
	-37

	V u
	-37

	V y
	-37

	W comma
	-55

	W hyphen
	-18

	W period
	-55

	W colon
	-18

	W semicolon
	-18

	W A
	-37

	W a
	-37

	W e
	-18

	W o
	-18

	W r
	-18

	W u
	-18

	W y
	-9

	Y space
	-18

	Y comma
	-129

	Y hyphen
	-92

	Y period
	-129

	Y colon
	-55

	Y semicolon
	-65

	Y A
	-74

	Y a
	-74

	Y e
	-92

	Y I
	-37

	Y o
	-92

	Y p
	-74

	Y q
	-92

	Y u
	-55

	Y v
	-55

	f f
	-18

	f quoteright
	18

	r comma
	-55

	r period
	-55

	r quoteright
	37

	v comma
	-74

	v period
	-74

	w comma
	-55

	w period
	-55

	y comma
	-74

	y period
	-74

	quoteleft quoteleft
	-18

	quoteright space
	-37

	quoteright s
	-18

	quoteright quoteright
	-18

7.18 Font metrics for SERIF font (Thorndale)

7.18.1 Global font information

The following table provides global font information:

	Character Set
	Basic Latin, Latin-1 Supplement

	Weight
	Regular

	Italic Angle
	0

	Fixed Pitch
	False

	Writing Direction
	0 (horizontal)

	Underline Position
	-100

	Underline Thickness
	50

	Cap Height
	662

	X height
	457

	Ascender
	694

	Descender
	-214

	Font Bounding Box

(Xmin, Ymin, Xmax, Ymax)
	-166, -216, 1009, 877

7.18.2 Character metrics

	Character Unicode
	Advanced Width (WX)
	Character Name
	Bounding Box

(Xmin, Ymin, Xmax, Ymax)

	U+0020
	250
	space
	0, 0, 0, 0

	U+0021
	333
	exclam
	110, -15, 222, 677

	U+0022
	408
	quotedbl
	66, 392, 343, 677

	U+0023
	500
	numbersign
	18, -15, 482, 677

	U+0024
	500
	dollar
	53, -76, 452, 718

	U+0025
	833
	percent
	77, -15, 749, 677

	U+0026
	778
	ampersand
	35, -15, 764, 676

	U+0027
	180
	quotesingle
	41, 392, 139, 677

	U+0028
	333
	parenleft
	41, -216, 311, 694

	U+0029
	333
	parenright
	21, -216, 291, 694

	U+002A
	500
	Asterisk
	61, 263, 439, 677

	U+002B
	564
	plus
	19, 69, 545, 595

	U+002C
	250
	comma
	54, -167, 190, 93

	U+002D
	333
	hyphen
	40, 186, 293, 263

	U+002E
	250
	period
	71, -15, 179, 93

	U+002F
	278
	slash
	0, -14, 278, 694

	U+0030
	500
	zero
	37, -15, 463, 677

	U+0031
	500
	one
	90, 0, 405, 676

	U+0032
	500
	two
	34, 0, 449, 677

	U+0033
	500
	three
	24, -14, 461, 677

	U+0034
	500
	four
	15, 0, 474, 676

	U+0035
	500
	five
	40, -15, 451, 662

	U+0036
	500
	six
	36, -14, 468, 676

	U+0037
	500
	seven
	49, -14, 455, 662

	U+0038
	500
	eight
	31, -11, 466, 675

	U+0039
	500
	nine
	31, -13, 463, 678

	U+003A
	278
	colon
	85, -15, 193, 461

	U+003B
	278
	semicolon
	70, -167, 206, 461

	U+003C
	564
	less
	20, 91, 545, 573

	U+003D
	564
	equal
	20, 233, 545, 431

	U+003E
	564
	greater
	20, 91, 545, 573

	U+003F
	444
	question
	57, -15, 378, 677

	U+0040
	921
	At
	49, -214, 860, 677

	U+0041
	722
	A
	10, 0, 712, 677

	U+0042
	667
	B
	25, 0, 614, 662

	U+0043
	667
	C
	38, -15, 632, 677

	U+0044
	722
	D
	25, 0, 685, 662

	U+0045
	611
	E
	25, 0, 568, 662

	U+0046
	556
	F
	25, 0, 529, 662

	U+0047
	722
	G
	38, -15, 709, 677

	U+0048
	722
	H
	25, 0, 697, 662

	U+0049
	333
	I
	25, 0, 307, 662

	U+004A
	389
	J
	16, -15, 384, 662

	U+004B
	722
	K
	25, -9, 729, 662

	U+004C
	611
	L
	25, 0, 563, 662

	U+004D
	889
	M
	25, 0, 864, 662

	U+004E
	722
	N
	19, -11, 710, 662

	U+004F
	722
	O
	38, -15, 685, 676

	U+0050
	556
	P
	25, 0, 526, 662

	U+0051
	722
	Q
	38, -190, 745, 676

	U+0052
	667
	R
	25, -9, 675, 662

	U+0053
	556
	S
	61, -15, 504, 677

	U+0054
	611
	T
	35, 0, 575, 662

	U+0055
	722
	U
	9, -15, 712, 662

	U+0056
	722
	V
	10, -15, 711, 662

	U+0057
	944
	W
	12, -15, 934, 662

	U+0058
	722
	X
	9, 0, 712, 662

	U+0059
	722
	Y
	13, 0, 711, 662

	U+005A
	611
	Z
	28, 0, 572, 662

	U+005B
	333
	bracketleft
	81, -197, 297, 677

	U+005C
	278
	backslash
	0, -14, 278, 694

	U+005D
	333
	bracketright
	36, -198, 252, 677

	U+005E
	469
	asciicircum
	18, 324, 451, 676

	U+005F
	500
	underscore
	-8, -125, 508, -75

	U+0060
	333
	grave
	58, 513, 218, 658

	U+0061
	444
	A
	34, -14, 440, 471

	U+0062
	500
	B
	3, -14, 465, 694

	U+0063
	444
	c
	35, -15, 419, 471

	U+0064
	500
	d
	35, -14, 497, 694

	U+0065
	444
	e
	35, -15, 419, 471

	U+0066
	333
	f
	38, 0, 430, 694

	U+0067
	500
	g
	25, -213, 479, 471

	U+0068
	500
	h
	12, 0, 492, 694

	U+0069
	278
	i
	32, 0, 258, 677

	U+006A
	278
	j
	-69, -213, 196, 677

	U+006B
	500
	k
	13, 0, 506, 694

	U+006C
	278
	l
	33, 0, 248, 694

	U+006D
	778
	m
	12, 0, 766, 471

	U+006E
	500
	n
	12, 0, 487, 471

	U+006F
	500
	o
	34, -14, 466, 471

	U+0070
	500
	p
	3, -214, 465, 471

	U+0071
	500
	q
	35, -214, 489, 471

	U+0072
	333
	r
	13, 0, 337, 471

	U+0073
	389
	s
	38, -14, 359, 471

	U+0074
	278
	t
	10, -14, 279, 583

	U+0075
	500
	u
	10, -14, 495, 457

	U+0076
	500
	v
	4, -14, 491, 457

	U+0077
	722
	w
	8, -14, 714, 457

	U+0078
	500
	x
	10, 0, 489, 457

	U+0079
	500
	y
	4, -215, 491, 457

	U+007A
	444
	z
	18, 0, 419, 457

	U+007B
	480
	braceleft
	104, -216, 376, 694

	U+007C
	200
	bar
	80, -216, 120, 694

	U+007D
	480
	braceright
	104, -216, 376, 694

	U+007E
	541
	Asciitilde
	23, 252, 519, 412

	U+00A1
	333
	exclamdown
	110, -216, 222, 475

	U+00A2
	500
	cent
	58, -185, 442, 647

	U+00A3
	500
	sterling
	30, -15, 479, 677

	U+00A4
	500
	currency
	30, 112, 470, 552

	U+00A5
	500
	yen
	1, 0, 499, 662

	U+00A6
	200
	brokenbar
	80, -216, 120, 694

	U+00A7
	500
	section
	71, -191, 429, 678

	U+00A8
	333
	dieresis
	27, 536, 306, 644

	U+00A9
	760
	copyright
	34, -15, 726, 677

	U+00AA
	276
	ordfeminine
	2, 384, 295, 677

	U+00AB
	500
	guillemotleft
	37, 0, 463, 458

	U+00AC
	564
	logicalnot
	20, 233, 545, 431

	U+00AE
	760
	registered
	34, -15, 726, 677

	U+00B0
	400
	degree
	48, 379, 351, 676

	U+00B1
	564
	plusminus
	19, 69, 545, 595

	U+00B2
	300
	twosuperior
	9, 324, 255, 677

	U+00B3
	300
	threesuperior
	19, 316, 254, 677

	U+00B4
	333
	Acute
	115, 513, 275, 658

	U+00B5
	500
	mu
	10, -216, 495, 457

	U+00B6
	453
	paragraph
	6, -176, 442, 662

	U+00B8
	333
	cedilla
	75, -184, 257, 0

	U+00B9
	300
	onesuperior
	63, 324, 238, 677

	U+00BA
	310
	ordmasculine
	13, 383, 297, 677

	U+00BB
	500
	guillemotright
	37, 0, 463, 458

	U+00BC
	750
	onequarter
	63, -15, 735, 677

	U+00BD
	750
	onehalf
	63, -15, 716, 677

	U+00BE
	750
	threequarters
	19, -15, 734, 677

	U+00BF
	444
	questiondown
	66, -216, 387, 475

	U+00C0
	722
	Agrave
	10, 0, 712, 854

	U+00C1
	722
	Aacute
	10, 0, 712, 854

	U+00C2
	722
	Acircumflex
	10, 0, 712, 854

	U+00C3
	722
	Atilde
	10, 0, 712, 850

	U+00C4
	722
	Adieresis
	10, 0, 712, 840

	U+00C5
	722
	Aring
	10, 0, 712, 831

	U+00C6
	889
	AE
	-10, 0, 846, 662

	U+00C7
	667
	Ccedilla
	38, -184, 632, 677

	U+00C8
	611
	Egrave
	25, 0, 568, 854

	U+00C9
	611
	Eacute
	25, 0, 568, 854

	U+00CA
	611
	Ecircumflex
	25, 0, 568, 854

	U+00CB
	611
	Edieresis
	25, 0, 568, 840

	U+00CC
	333
	Igrave
	25, 0, 307, 854

	U+00CD
	333
	Iacute
	25, 0, 307, 854

	U+00CE
	333
	Icircumflex
	25, 0, 307, 854

	U+00CF
	333
	Idieresis
	25, 0, 307, 840

	U+00D0
	722
	Eth
	18, 0, 685, 662

	U+00D1
	722
	Ntilde
	19, -11, 710, 850

	U+00D2
	722
	Ograve
	38, -15, 685, 854

	U+00D3
	722
	Oacute
	38, -15, 685, 854

	U+00D4
	722
	Ocircumflex
	38, -15, 685, 854

	U+00D5
	722
	Otilde
	38, -15, 685, 850

	U+00D6
	722
	Odieresis
	38, -15, 685, 840

	U+00D7
	564
	multiply
	81, 131, 483, 533

	U+00D8
	722
	Oslash
	38, -23, 685, 683

	U+00D9
	722
	Ugrave
	9, -15, 712, 854

	U+00DA
	722
	Uacute
	9, -15, 712, 854

	U+00DB
	722
	Ucircumflex
	9, -15, 712, 854

	U+00DC
	722
	Udieresis
	9, -15, 712, 840

	U+00DD
	722
	Yacute
	13, 0, 711, 854

	U+00DE
	556
	Thorn
	25, 0, 526, 662

	U+00DF
	500
	germandbls
	20, -7, 466, 694

	U+00E0
	444
	Agrave
	34, -14, 440, 658

	U+00E1
	444
	Aacute
	34, -14, 440, 658

	U+00E2
	444
	Acircumflex
	34, -14, 440, 658

	U+00E3
	444
	Atilde
	34, -14, 440, 654

	U+00E4
	444
	Adieresis
	34, -14, 440, 644

	U+00E5
	444
	Aring
	34, -14, 440, 693

	U+00E6
	667
	Ae
	34, -14, 643, 471

	U+00E7
	444
	ccedilla
	35, -184, 419, 471

	U+00E8
	444
	egrave
	35, -15, 419, 658

	U+00E9
	444
	eacute
	35, -15, 419, 658

	U+00EA
	444
	ecircumflex
	35, -15, 419, 658

	U+00EB
	444
	edieresis
	35, -15, 419, 644

	U+00EC
	278
	igrave
	31, 0, 258, 658

	U+00ED
	278
	iacute
	32, 0, 258, 658

	U+00EE
	278
	icircumflex
	1, 0, 277, 658

	U+00EF
	278
	idieresis
	0, 0, 279, 644

	U+00F0
	500
	eth
	34, -14, 466, 694

	U+00F1
	500
	ntilde
	12, 0, 487, 654

	U+00F2
	500
	ograve
	34, -14, 466, 658

	U+00F3
	500
	oacute
	34, -14, 466, 658

	U+00F4
	500
	ocircumflex
	34, -14, 466, 658

	U+00F5
	500
	otilde
	34, -14, 466, 654

	U+00F6
	500
	odieresis
	34, -14, 466, 644

	U+00F7
	564
	divide
	20, 139, 545, 525

	U+00F8
	500
	oslash
	19, -37, 481, 494

	U+00F9
	500
	ugrave
	10, -14, 495, 658

	U+00FA
	500
	uacute
	10, -14, 495, 658

	U+00FB
	500
	ucircumflex
	10, -14, 495, 658

	U+00FC
	500
	udieresis
	10, -14, 495, 644

	U+00FD
	500
	yacute
	4, -215, 491, 658

	U+00FE
	500
	thorn
	3, -214, 465, 694

	U+00FF
	500
	ydieresis
	4, -215, 491, 644

	U+0131
	278
	dotlessi
	32, 0, 258, 471

	U+0141
	611
	Lslash
	13, 0, 563, 662

	U+0142
	278
	lslash
	2, 0, 283, 694

	U+0152
	889
	OE
	38, -15, 846, 676

	U+0153
	722
	oe
	34, -14, 697, 471

	U+0160
	556
	Scaron
	61, -15, 504, 877

	U+0161
	389
	scaron
	38, -14, 359, 681

	U+0178
	722
	Ydieresis
	13, 0, 711, 840

	U+017D
	611
	Zcaron
	28, 0, 572, 877

	U+017E
	444
	zcaron
	18, 0, 419, 681

	U+0192
	500
	florin
	-86, -206, 500, 694

	U+02C6
	333
	circumflex
	28, 513, 304, 658

	U+02C7
	333
	caron
	28, 536, 304, 681

	U+02C9
	333
	macron
	11, 559, 322, 622

	U+02D8
	333
	breve
	26, 521, 306, 658

	U+02D9
	333
	dotaccent
	113, 536, 221, 644

	U+02DA
	333
	ring
	73, 505, 261, 693

	U+02DB
	333
	ogonek
	72, -177, 287, 8

	U+02DC
	333
	tilde
	11, 526, 323, 654

	U+02DD
	333
	hungarumlaut
	46, 513, 323, 658

	U+2013
	500
	endash
	-9, 221, 509, 257

	U+2014
	1000
	emdash
	-9, 221, 1009, 257

	U+2018
	333
	quoteleft
	98, 417, 234, 677

	U+2019
	333
	quoteright
	98, 417, 234, 677

	U+201A
	333
	quotesinglbase
	98, -167, 234, 93

	U+201C
	444
	quotedblleft
	48, 417, 395, 677

	U+201D
	444
	quotedblright
	48, 417, 395, 677

	U+201E
	444
	quotedblbase
	48, -167, 395, 93

	U+2020
	500
	dagger
	49, -197, 451, 677

	U+2021
	500
	daggerdbl
	49, -216, 451, 677

	U+2022
	350
	bullet
	64, 220, 286, 442

	U+2026
	1000
	ellipsis
	112, -15, 888, 93

	U+2030
	1000
	perthousand
	31, -15, 969, 677

	U+2039
	333
	guilsinglleft
	57, 0, 276, 458

	U+203A
	333
	guilsinglright
	57, 0, 276, 458

	U+20AC
	500
	Euro
	-11, -15, 472, 677

	U+2122
	980
	trademark
	34, 265, 947, 662

	U+2212
	564
	minus
	19, 312, 545, 352

	U+2215
	167
	fraction
	-166, -15, 334, 677

	U+2219
	250
	periodcentered
	71, 277, 179, 385

	U+FB01
	556
	fi
	38, 0, 536, 694

	U+FB02
	556
	fl
	38, 0, 526, 694

7.18.3 Kerning Data

	Kerning Pair
	Value

	Space A
	-55

	Space T
	-18

	Space V
	-18

	space W
	-18

	Space Y
	-37

	one one
	-37

	A space
	-55

	A T
	-111

	A V
	-129

	A W
	-80

	A Y
	-92

	A v
	-74

	A w
	-92

	A y
	-92

	A quoteright
	-111

	F comma
	-80

	F period
	-80

	F A
	-74

	L space
	-37

	L T
	-92

	L V
	-92

	L W
	-74

	L Y
	-100

	L y
	-55

	L quoteright
	-92

	P space
	-37

	P comma
	-111

	P period
	-111

	P A
	-92

	R T
	-60

	R V
	-80

	R W
	-55

	R Y
	-55

	R y
	-40

	T space
	-18

	T comma
	-74

	T hyphen
	-92

	T period
	-74

	T colon
	-50

	T semicolon
	-55

	T A
	-80

	T O
	-18

	T a
	-70

	T c
	-70

	T e
	-70

	T i
	-35

	T o
	-70

	T r
	-35

	T s
	-70

	T u
	-35

	T w
	-70

	T y
	-70

	V space
	-18

	V comma
	-129

	V hyphen
	-92

	V period
	-129

	V colon
	-74

	V semicolon
	-74

	V A
	-129

	V a
	-111

	V e
	-111

	V i
	-60

	V o
	-129

	V r
	-60

	V u
	-60

	V y
	-111

	W space
	-18

	W comma
	-92

	W hyphen
	-55

	W period
	-92

	W colon
	-37

	W semicolon
	-37

	W A
	-111

	W a
	-80

	W e
	-80

	W i
	-40

	W o
	-80

	W r
	-40

	W u
	-40

	W y
	-60

	Y space
	-37

	Y comma
	-129

	Y hyphen
	-111

	Y period
	-129

	Y colon
	-92

	Y semicolon
	-92

	Y A
	-111

	Y a
	-100

	Y e
	-100

	Y i
	-55

	Y o
	-100

	Y p
	-92

	Y q
	-111

	Y u
	-111

	Y v
	-100

	f f
	-18

	f quoteright
	55

	r comma
	-40

	r hyphen
	-20

	r period
	-55

	r g
	-18

	r quoteright
	37

	v comma
	-65

	v period
	-65

	w comma
	-65

	w period
	-65

	y comma
	-65

	y period
	-65

	quoteleft quoteleft
	-74

	quoteright space
	-74

	quoteright s
	-55

	quoteright t
	-18

	quoteright quoteright
	-74

7.19 Font metrics for TYPEWRITER font (Cumberland)

7.19.1 Global font information

The following table provides global font information:

	Character Set
	Basic Latin, Latin-1 Supplement

	Weight
	Regular

	Italic Angle
	0

	Fixed Pitch
	true

	Writing Direction
	0 (horizontal)

	Underline Position
	-100

	Underline Thickness
	50

	Cap Height
	681

	X height
	462

	Ascender
	681

	Descender
	-184

	Font Bounding Box

(Xmin, Ymin, Xmax, Ymax)
	-13, -184, 613, 932

7.19.2 Character metrics

	Character Unicode
	Advanced Width (WX)
	Character Name
	Bounding Box

(Xmin, Ymin, Xmax, Ymax)

	U+0020
	600
	space
	0, 0, 0, 0

	U+0021
	600
	exclam
	243, -15, 358, 681

	U+0022
	600
	quotedbl
	146, 459, 454, 681

	U+0023
	600
	numbersign
	67, -16, 534, 697

	U+0024
	600
	dollar
	101, -42, 499, 697

	U+0025
	600
	percent
	36, -16, 563, 697

	U+0026
	600
	ampersand
	67, -16, 534, 648

	U+0027
	600
	quotesingle
	256, 459, 344, 681

	U+0028
	600
	parenleft
	278, -138, 468, 698

	U+0029
	600
	parenright
	132, -138, 323, 698

	U+002A
	600
	asterisk
	95, 291, 506, 681

	U+002B
	600
	plus
	77, 116, 524, 565

	U+002C
	600
	comma
	220, -147, 377, 118

	U+002D
	600
	hyphen
	91, 253, 509, 312

	U+002E
	600
	period
	227, -15, 377, 118

	U+002F
	600
	slash
	110, -27, 491, 697

	U+0030
	600
	zero
	80, -16, 521, 697

	U+0031
	600
	one
	115, 0, 519, 691

	U+0032
	600
	two
	76, 0, 492, 697

	U+0033
	600
	three
	66, -16, 507, 697

	U+0034
	600
	four
	56, 0, 555, 691

	U+0035
	600
	five
	66, -16, 508, 681

	U+0036
	600
	six
	88, -16, 519, 697

	U+0037
	600
	seven
	86, 0, 511, 681

	U+0038
	600
	eight
	84, -16, 518, 696

	U+0039
	600
	nine
	83, -15, 514, 697

	U+003A
	600
	colon
	225, -15, 375, 478

	U+003B
	600
	semicolon
	218, -147, 375, 478

	U+003C
	600
	less
	69, 92, 532, 587

	U+003D
	600
	equal
	76, 220, 523, 460

	U+003E
	600
	greater
	69, 92, 532, 587

	U+003F
	600
	question
	123, -15, 498, 696

	U+0040
	600
	at
	70, -96, 528, 697

	U+0041
	600
	A
	17, 0, 582, 681

	U+0042
	600
	B
	41, 0, 560, 681

	U+0043
	600
	C
	50, -15, 540, 697

	U+0044
	600
	D
	41, 0, 548, 681

	U+0045
	600
	E
	41, 0, 533, 681

	U+0046
	600
	F
	41, 0, 533, 681

	U+0047
	600
	G
	50, -15, 512, 697

	U+0048
	600
	H
	41, 0, 559, 681

	U+0049
	600
	I
	118, 0, 482, 681

	U+004A
	600
	J
	51, -15, 579, 681

	U+004B
	600
	K
	41, 0, 579, 681

	U+004C
	600
	L
	41, 0, 533, 681

	U+004D
	600
	M
	17, 0, 583, 681

	U+004E
	600
	N
	31, 0, 568, 681

	U+004F
	600
	O
	51, -15, 550, 697

	U+0050
	600
	P
	41, 0, 555, 681

	U+0051
	600
	Q
	51, -145, 550, 697

	U+0052
	600
	R
	41, 0, 579, 681

	U+0053
	600
	S
	74, -15, 526, 697

	U+0054
	600
	T
	57, 0, 543, 681

	U+0055
	600
	U
	31, -16, 569, 681

	U+0056
	600
	V
	17, 0, 582, 681

	U+0057
	600
	W
	10, 0, 586, 681

	U+0058
	600
	X
	26, 0, 573, 681

	U+0059
	600
	Y
	27, 0, 572, 681

	U+005A
	600
	Z
	47, 0, 550, 681

	U+005B
	600
	bracketleft
	249, -120, 462, 681

	U+005C
	600
	backslash
	109, -27, 490, 697

	U+005D
	600
	bracketright
	138, -120, 351, 681

	U+005E
	600
	asciicircum
	52, 298, 547, 681

	U+005F
	600
	underscore
	-2, -104, 602, -42

	U+0060
	600
	grave
	212, 542, 398, 719

	U+0061
	600
	a
	74, -16, 564, 478

	U+0062
	600
	b
	44, -16, 539, 681

	U+0063
	600
	c
	61, -16, 541, 478

	U+0064
	600
	d
	61, -16, 556, 681

	U+0065
	600
	e
	61, -16, 541, 478

	U+0066
	600
	f
	84, 0, 569, 697

	U+0067
	600
	g
	61, -184, 556, 478

	U+0068
	600
	h
	44, 0, 562, 681

	U+0069
	600
	i
	104, 0, 525, 681

	U+006A
	600
	j
	77, -177, 397, 681

	U+006B
	600
	k
	46, 0, 562, 681

	U+006C
	600
	l
	104, 0, 525, 681

	U+006D
	600
	m
	5, 0, 596, 478

	U+006E
	600
	n
	44, 0, 562, 478

	U+006F
	600
	o
	61, -16, 539, 478

	U+0070
	600
	p
	44, -184, 539, 478

	U+0071
	600
	q
	61, -184, 556, 478

	U+0072
	600
	r
	92, 0, 536, 478

	U+0073
	600
	s
	67, -16, 525, 478

	U+0074
	600
	t
	82, -16, 557, 622

	U+0075
	600
	u
	44, -16, 562, 462

	U+0076
	600
	v
	27, 0, 572, 462

	U+0077
	600
	w
	10, 0, 589, 462

	U+0078
	600
	x
	26, 0, 573, 462

	U+0079
	600
	y
	18, -184, 583, 462

	U+007A
	600
	z
	79, 0, 532, 462

	U+007B
	600
	braceleft
	188, -137, 411, 697

	U+007C
	600
	bar
	270, -127, 331, 697

	U+007D
	600
	braceright
	189, -137, 412, 697

	U+007E
	600
	asciitilde
	82, 202, 518, 368

	U+00A1
	600
	exclamdown
	241, -183, 356, 513

	U+00A2
	600
	cent
	61, -16, 541, 681

	U+00A3
	600
	sterling
	62, 0, 567, 697

	U+00A4
	600
	currency
	47, 55, 560, 629

	U+00A5
	600
	yen
	27, 0, 572, 681

	U+00A6
	600
	brokenbar
	270, -127, 331, 697

	U+00A7
	600
	section
	67, -133, 525, 697

	U+00A8
	600
	dieresis
	162, 544, 442, 630

	U+00A9
	600
	copyright
	2, -14, 599, 585

	U+00AA
	600
	ordfeminine
	161, 390, 465, 697

	U+00AB
	600
	guillemotleft
	106, 46, 493, 438

	U+00AC
	600
	logicalnot
	77, 148, 524, 427

	U+00AE
	600
	registered
	2, -14, 599, 585

	U+00B0
	600
	degree
	165, 427, 436, 696

	U+00B1
	600
	plusminus
	79, 0, 526, 565

	U+00B2
	600
	twosuperior
	164, 299, 417, 698

	U+00B3
	600
	threesuperior
	147, 289, 431, 698

	U+00B4
	600
	acute
	227, 542, 413, 719

	U+00B5
	600
	mu
	44, -148, 562, 462

	U+00B6
	600
	paragraph
	31, -124, 573, 681

	U+00B8
	600
	cedilla
	230, -183, 395, 7

	U+00B9
	600
	onesuperior
	179, 302, 424, 697

	U+00BA
	600
	ordmasculine
	151, 391, 453, 697

	U+00BB
	600
	guillemotright
	105, 46, 492, 438

	U+00BC
	600
	onequarter
	0, 0, 599, 697

	U+00BD
	600
	onehalf
	0, 0, 599, 697

	U+00BE
	600
	threequarters
	-3, 0, 599, 698

	U+00BF
	600
	questiondown
	117, -178, 492, 533

	U+00C0
	600
	Agrave
	17, 0, 582, 915

	U+00C1
	600
	Aacute
	17, 0, 582, 915

	U+00C2
	600
	Acircumflex
	17, 0, 582, 915

	U+00C3
	600
	Atilde
	17, 0, 582, 871

	U+00C4
	600
	Adieresis
	17, 0, 582, 826

	U+00C5
	600
	Aring
	17, 0, 582, 932

	U+00C6
	600
	AE
	0, 0, 594, 681

	U+00C7
	600
	Ccedilla
	53, -183, 543, 697

	U+00C8
	600
	Egrave
	41, 0, 533, 915

	U+00C9
	600
	Eacute
	41, 0, 533, 915

	U+00CA
	600
	Ecircumflex
	41, 0, 533, 915

	U+00CB
	600
	Edieresis
	41, 0, 533, 826

	U+00CC
	600
	Igrave
	118, 0, 482, 915

	U+00CD
	600
	Iacute
	118, 0, 482, 915

	U+00CE
	600
	Icircumflex
	118, 0, 482, 915

	U+00CF
	600
	Idieresis
	118, 0, 482, 826

	U+00D0
	600
	Eth
	15, 0, 548, 681

	U+00D1
	600
	Ntilde
	31, 0, 568, 871

	U+00D2
	600
	Ograve
	51, -15, 550, 915

	U+00D3
	600
	Oacute
	51, -15, 550, 915

	U+00D4
	600
	Ocircumflex
	51, -15, 550, 915

	U+00D5
	600
	Otilde
	51, -15, 550, 871

	U+00D6
	600
	Odieresis
	51, -15, 550, 826

	U+00D7
	600
	multiply
	98, 138, 502, 542

	U+00D8
	600
	Oslash
	52, -27, 551, 698

	U+00D9
	600
	Ugrave
	31, -16, 569, 915

	U+00DA
	600
	Uacute
	31, -16, 569, 915

	U+00DB
	600
	Ucircumflex
	31, -16, 569, 915

	U+00DC
	600
	Udieresis
	31, -16, 569, 826

	U+00DD
	600
	Yacute
	27, 0, 572, 915

	U+00DE
	600
	Thorn
	41, 0, 550, 681

	U+00DF
	600
	germandbls
	44, -16, 565, 697

	U+00E0
	600
	agrave
	74, -16, 564, 719

	U+00E1
	600
	aacute
	74, -16, 564, 719

	U+00E2
	600
	acircumflex
	74, -16, 564, 719

	U+00E3
	600
	atilde
	74, -16, 564, 675

	U+00E4
	600
	adieresis
	74, -16, 564, 630

	U+00E5
	600
	aring
	74, -16, 564, 738

	U+00E6
	600
	ae
	11, -16, 596, 478

	U+00E7
	600
	ccedilla
	61, -183, 541, 478

	U+00E8
	600
	egrave
	61, -16, 541, 719

	U+00E9
	600
	eacute
	61, -16, 541, 719

	U+00EA
	600
	ecircumflex
	61, -16, 541, 719

	U+00EB
	600
	edieresis
	61, -16, 541, 630

	U+00EC
	600
	igrave
	104, 0, 525, 719

	U+00ED
	600
	iacute
	104, 0, 525, 719

	U+00EE
	600
	icircumflex
	104, 0, 525, 719

	U+00EF
	600
	idieresis
	104, 0, 525, 630

	U+00F0
	600
	eth
	61, -16, 539, 702

	U+00F1
	600
	ntilde
	44, 0, 562, 675

	U+00F2
	600
	ograve
	61, -16, 539, 719

	U+00F3
	600
	oacute
	61, -16, 539, 719

	U+00F4
	600
	ocircumflex
	61, -16, 539, 719

	U+00F5
	600
	otilde
	61, -16, 539, 675

	U+00F6
	600
	odieresis
	61, -16, 539, 630

	U+00F7
	600
	divide
	91, 111, 509, 569

	U+00F8
	600
	oslash
	35, -33, 562, 496

	U+00F9
	600
	ugrave
	44, -16, 562, 719

	U+00FA
	600
	uacute
	44, -16, 562, 719

	U+00FB
	600
	ucircumflex
	44, -16, 562, 719

	U+00FC
	600
	udieresis
	44, -16, 562, 630

	U+00FD
	600
	yacute
	18, -184, 583, 719

	U+00FE
	600
	thorn
	44, -184, 539, 681

	U+00FF
	600
	ydieresis
	18, -184, 583, 630

	U+0131
	600
	dotlessi
	104, 0, 525, 462

	U+0141
	600
	Lslash
	7, 0, 533, 681

	U+0142
	600
	lslash
	104, 0, 525, 681

	U+0152
	600
	OE
	13, 0, 594, 681

	U+0153
	600
	oe
	11, -16, 596, 478

	U+0160
	600
	Scaron
	74, -15, 526, 916

	U+0161
	600
	scaron
	67, -16, 525, 720

	U+0178
	600
	Ydieresis
	27, 0, 572, 826

	U+017D
	600
	Zcaron
	47, 0, 550, 916

	U+017E
	600
	zcaron
	79, 0, 532, 720

	U+0192
	600
	florin
	17, -159, 589, 697

	U+02C6
	600
	circumflex
	125, 542, 477, 719

	U+02C7
	600
	caron
	125, 543, 477, 720

	U+02C9
	600
	macron
	152, 543, 450, 602

	U+02D8
	600
	breve
	125, 543, 475, 720

	U+02D9
	600
	dotaccent
	269, 575, 340, 681

	U+02DA
	600
	ring
	202, 544, 398, 738

	U+02DB
	600
	ogonek
	266, -161, 440, 2

	U+02DC
	600
	tilde
	114, 544, 486, 675

	U+02DD
	600
	hungarumlaut
	118, 542, 482, 719

	U+2013
	600
	endash
	91, 253, 509, 312

	U+2014
	600
	emdash
	-3, 253, 599, 312

	U+2018
	600
	quoteleft
	234, 433, 391, 698

	U+2019
	600
	quoteright
	209, 432, 366, 697

	U+201A
	600
	quotesinglbase
	220, -147, 377, 118

	U+201C
	600
	quotedblleft
	113, 433, 516, 698

	U+201D
	600
	quotedblright
	113, 432, 516, 697

	U+201E
	600
	quotedblbase
	113, -147, 516, 118

	U+2020
	600
	dagger
	109, -108, 490, 681

	U+2021
	600
	daggerdbl
	109, -108, 490, 681

	U+2022
	600
	bullet
	179, 190, 421, 432

	U+2026
	600
	ellipsis
	42, -8, 558, 108

	U+2030
	600
	perthousand
	17, -16, 600, 697

	U+2039
	600
	guilsinglleft
	207, 46, 394, 438

	U+203A
	600
	guilsinglright
	206, 46, 393, 438

	U+20AC
	600
	Euro
	0, -15, 540, 587

	U+2122
	600
	trademark
	-13, 259, 613, 681

	U+2212
	600
	minus
	75, 309, 522, 371

	U+2215
	600
	fraction
	79, 230, 513, 515

	U+2219
	600
	periodcentered
	227, 244, 377, 377

	U+FB01
	600
	fi
	8, 0, 598, 697

	U+FB02
	600
	fl
	8, 0, 598, 697

7.20 Informative: The SMR Decoder and MPEG-4
Symbolic representations of music have a logical structure consisting of: symbolic elements that represent audiovisual events; the relationship between those events; and aspects of rendering those events.

SMR is enabled in MPEG-4 by:

· defining an XML format for a text based symbolic music representation, to be used for interoperability with other symbolic music representation/notation formats and as a source for the production of an equivalent binary information that may be stored in files and/or streamed by a suitable transport layer; a format and decoding process for Symbolic Music Representation is specified in ISO/IEC 14496-23.

· specifying a binary stream containing Symbolic Music Representation, it basic formatting and synchronization information; the associated decoder will allow to manage the music notation model and to add the necessary “musical intelligence” for the interaction with humans;

· specifying the interface and the behavior for the symbolic music representation decoder and its relationship with the MPEG-4 Scene Representation, i.e. this specification.

The following diagram describes a possible use of Symbolic Music Representation in the authoring phase, highlighting the central role of the MPEG-SMR format:

[image: image170]
Figure 0\IF >= 1 "A."

SEQ Figure
46
 — SMR possible authoring phase

The MPEG-SMR binary stream contains information about music symbols and their synchronization. A decoder in the user’s terminal (MPEG-4 player) converts this stream into its e.g. visual representation, which can be rendered in different manners inside a BIFS scene at the proper time.

The structure of the SMR decoder is shown in the following figure:
[image: image171.wmf]

SMR Decoder

SMR

Model

SMR renderer

SMR

 Manager

Binary decoder

User Input,

fields value, etc.

Symbolic

music info,

events

Sync. info

SMR

Rendering

Rules

M

usic

Score

Node

SMR

C

omposition

Memory

MPEG

-

SMR

Stream

from DMIF

Figure 0\IF >= 1 "A."

SEQ Figure
47
 — SMR Decoder Block Diagram

The SMR decoder includes:

1. the Binary decoder decodes the binary stream coming from the MPEG-4 DMIF (Delivery Multimedia Integration Framework) interface or from an MPEG-4 file. The decoder extracts the optional SMR rendering rules and the synchronization information from the SMR access units, loading the SMR Rendering Rules data structure to any SMR Rendering Rules engine, and sending the synchronization info to the SMR Manager;

2. the SMR Model includes only symbolic music representation parameters, while the images, audio, video, etc. (other object types) are simply referred to other MPEG objects;

3. the SMR renderer, controlled by the SMR Manager, uses the SMR Model with its parameter values and the SMR Formatting Language to produce a view of the symbolic music information in the SMR Composition Memory. Rendering is based on modules of music justification and symbols positioning that work together in order to arrange the placement of symbolic music representation symbols on the page or screen according to different parameters such as: window (page) size, justification values, formatting rules and style, etc. For the positioning of symbols a rule based approach is currently used. This means that in the SMR decoder a file containing rules that are interpreted for positioning of symbols are included. For the justification, the decoder uses a set of algorithms and formulas to estimate the horizontal position of music symbols. The SMR code contains hints about the positions and numbers used by the justification algorithms. It is quite probable that rendering different music notations requires different algorithms or rules.

4. the SMR Composition Memory may contain pixels and/or vector graphics information. This is a solution dependent issue.

5. the SMR Manager coordinates the behavior of the SMR decoder. It (i) receives and interprets the events coming from the SMR node interface. According to the command type, it can modify parameters in the SMR Model (e.g., transposition) and/or control the SMR Renderer (e.g., change view, change page, etc.), and (ii) it controls the synchronized rendering using the synch info;

6. the MusicScore node specifies the interface events to the rest of the BIFS scene and to the user.

8 BIFS

8.1 Introduction
BIFS data consists of two distinct elements in the multiplexed bitstream. Terminal configuration information is first sent in the object descriptor. The remaining BIFS information is sent in a separate elementary stream.

The syntax and semantics of the terminal configuration is described in 8.5.2 and 8.5.3. Two different kinds of session can take place: a BIFS-Command session or a BIFS-Anim session.

If the session is a BIFS-Command session, a sequence of commands to modify the scene is sent. The syntax and semantics of these commands are described in 8.6.

If the session is a BIFS-Anim session, a sequence of animation data to change the values of specific fields in the scene is sent. The syntax and semantics of this session is described in 8.8.

8.2 Decoding tables, data structures and associated functions

8.2.1 Function of decoding tables, data structures and functions

This subclause describes tables and data structures used to contain necessary data, along with the associated functions, for decoding the BIFS elementary streams. These are not syntax elements but are descriptions, often in code or pseudo-code, of data and functions that are required to decode the bitstream. The tables and data structures may be known a priori at the terminal or may be constructed from data parsed from the bitstream. They are referenced throughout the syntax.

NOTE — The code or pseudo-code for the non-syntax data elements is purely notational and does not imply a normative requirement to use these code fragments in implementations.

Coding of individual nodes and field values is very regular, and follows a depth-first order (children or sub-nodes of a node are present in the bitstream before its siblings).

8.2.2 Node Data Type Tables

Identification of nodes and fields within a BIFS scene graph is context-dependent. Each field of a BIFS node that accepts nodes as fields can only accept a specific set of nodes. Each of these sets of nodes is stored in a node data type table and is referenced by a node data type (NDT).

A field of type SFNode is fully described by its NDT. Each node belongs to one or more NDT tables. These tables are provided in node coding tables in electronic attachment and identify the various nodes and node types they contain.

Identification of a particular node depends on the context of the NDT specified for its parent field. The node data types are listed in node coding tables in electronic attachment, and group 2 node data types in node coding tables in electronic attachment. For each node, the value zero (encoded with as many bits as required to encode the total number of nodes in that NDT table in node coding tables in electronic attachment.) is used before the actual node type to indicate that the node is of an extended node type. The value 0 in each extended NDT table is reserved for future extensions. Value one in each extended NDT table is reserved for encoding of PROTOs (see 8.7.2).

EXAMPLE 1 (Anchor is identified by the 5-bit code 0b0000.1 when the context of its parent’s field is SF2DNode, whereas the 7-bit code 0b0000.001 is used when the context of its parent’s field is SFWorldNode.

EXAMPLE 2 (AcousticScene is identified by a 3-bit code 0b010, when the context of its parent field is SF3DNode in the group 2 node data types in node coding tables in electronic attachment. Since that NDT exists in node coding tables in electronic attachment. (where the nodes of that data type are encoded with six bits), this node is completely encoded with 9 bits as: 0b000000010.

8.2.3 Node Coding Tables and field indexing

The syntactic description of fields is context-dependent. For a given node, its fields are indexed using a code called a fieldID. This fieldID is not unique for each field of a node but varies according to the “mode” in which the field is referenced. There are five modes in which a field may be referenced and, thus, five types of fieldID. For each field of each node, the binary values of the fieldIDs for each mode are defined in the node coding tables.

defID
The defIDs refer to the fieldIDs for those fields that may have a value when nodes are declared. They refer to fields of type exposedField and field. This indexing scheme is further referred to as the “def” mode.

inID
The inIDs refer to the fieldIDs for those events and fields that can be modified from outside the node. They refer to fields of type exposedField and eventIn types. This indexing scheme is further referred to as the “in” mode.

outID
The outIDs refer to the fieldIDs for those events and fields that can be output from the node. They refer to fields of type exposedField and eventOut types. This indexing scheme is further referred to as the “out” mode.

dynID
The dynIDs refer to the fieldIDs for those fields that can be animated using the BIFS-Anim scheme. They refer to a subset of the fields designated by inIDs. This indexing scheme is further referred to as the “dyn” mode.

allID
The allIDs refer to all events and fields of the node. That is, there is an allID for each field of a node. This indexing scheme is further referred to as the “all” mode.

The length of each of the fieldID types for each node depends on the number of fields of that type for the given node.

EXAMPLE (The AnimationStream node has four fields of type defID. Therefore, three bits are required to code the defIDs for this node. The Appearance node, however, has just three fields of type defID. Therefore, two bits are sufficient to code the defIDs for this node.

8.2.4 BIFSConfig

This data structure is a global data structure referred to in every BIFS access unit. The data contained in the BIFSConfiguration data structure is transmitted in either BIFSConfig or BIFSv2Config (see 8.5.2 and 8.5.3).

	Class BIFSConfiguration{
	

	
int nodeIDbits;
	The number of bits used to encode the nodeIDs.

	
int routeIDbit;
	The number of bits used to encode the routeIDs.

	
int PROTOIDbits;
	The number of bits used to encode the protoID. This value is in used only if the data for the structure was transmitted by BIFSv2Config

	
boolean randomAccess;
	The randomAccess boolean is set in the BIFSConfig to distinguish between BIFS-Anim elementary streams in which support random access at any intra frame, and those where random access may not be possible at all intra frames. In the latter case, greater compression efficiency may be achieved because a given intra frame may re-use quantization settings and statistics from the previous intra frame.

	
AnimationMask animMask;
	The AnimationMask used for BIFS-Anim

	}
	

8.2.5 AnimationMask

The AnimationMask structure contains all the relevant information to describe a BIFS-Anim session. It is constructed, upon receipt of the BIFSConfig or BIFSv2Config syntax element, during the configuration of the BIFS decoder, and updated for every received AnimationFrame.

	Class AnimationMask {
	

	
int numNodes;
	The number of nodes to be animated

	
NodeData animNode[numNodes];
	The array of animated nodes.

	
boolean isIntra;
	The status of the current frame: intra if isIntra is true, predictive otherwise.

	
boolean isActive[numNodes];
	The mask of active animated node for the current frame. If the node is not animated in the current frame, the boolean shall be false.

	}
	

8.2.6 NodeData

This data structure is built to decode the relevant information for one node. It is created from the node coding tables in electronic attachment. The following functions support relevant operations on this data structure:

NodeData MakeNode(nodeGroup, nodeDataType, int nodeType)

This function creates a NodeData structure from the node coding table in the node grouping nodeGroup for the given nodeDataType matching the given nodeType.

NodeData MakePROTO(PROTOinterfaceDefinition interface)

This function creates a NodeData structure from the given PROTOinterfaceDefinition. This NodeData structure is recursively forwarded to all the nodes in the PROTOcode to encode the ISed fields.
NodeData GetNodeFromID (int nodeID)

This function returns the NodeData structure matching the given nodeID.

	class NodeData {
	

	
int nodeType;
	The nodeType of the node.

	
FieldData field[];
	The fields of this node whose construction is described below. This array is indexed in “all” mode.

	
boolean isAnimField[];
	The mask of animated fields for the entire BIFS-Anim session, indexed in “dyn” mode. This array is only used in BIFS-Anim.

	
	The following data describes the indexing of the fields in “in”, “out”, “def”, “dyn” and “all” modes

	
int nDEFbits;
	The number of bits used for “def” field codes (the width of the codewords in the 3rd column of the node coding tables).

	
int nINbits;
	The number of bits used for “in” field codes (the width of the codewords in the 4th column of the node coding tables).

	
int nOUTbits;
	The number of bits used for “out” field codes (the width of the codewords in the 5th column of the node coding tables).

	
int numDEFfields;
	The number of “def” fields available for this node

	
int numDYNfields;
	The number of “dyn” fields available for this node.

	
int in2all[];
	The ids of eventIns and exposedFields in “all” mode, indexed with the ids in “in” mode.

	
int def2all[];
	The ids of fields and exposedFields in “all” mode, indexed with the ids in “def” mode.

	
int dyn2all[];
	The ids of dynamic fields in “all” mode, indexed with the ids in “dyn” mode.

	
boolean useQuant;
	When the NodeData is used for storing a prototype, the useQuant states whether the quantization is applied on the PROTO or not.

	
boolean useAnim;
	When the NodeData is used for storing a prototype, the useAnim states whether the BIFS-Anim is applied on the PROTO or not.

	
NodeData proto;
	In case that a node is contained in a PROTO, its NodeData structure points to the PROTO NodeData structure in the proto field.

	
int nALLbits;
	The number of bits to encode all the fields of the node. i.e. the smallest value such that 2nALLbits > number of fields.

	}
	

8.2.7 FieldData

This data structure is built to decode the relevant information for one field. It is created from the field’s entry in the relevant node coding table (see node coding tables in electronic attachment).
	Class FieldData {
	

	
int fieldType;
	The type of the field (e.g., SFInt32Type). This is given by the “Field Type” column of the node coding table for the node to which it belongs.

	
int quantType;
	The type of quantization used for the field. This is given by the “Q” column of the node coding table of the node to which it belongs. Types refer to Table 72 in 8.3.1.1.

	
int animType;
	The animation method for the field. This is given by the “A” column of the node coding table. Types refer to animation type in Table 78 in 8.3.2.1.

	
boolean useEfficientCoding;
	Set to true if the efficient coding is to be used. This value is FALSE by default. If there is a local QuantizationParameter node this value is the same as its useEfficientCoding field.

	
	The following data structures are used in the quantization process:

	
FieldCodingTable fct;
	This field is determined from the node coding table as described in 8.2.9.

	
AnimFieldQP aqp;
	This field is only used in BIFS-Anim. It references an AnimFieldQP stucture described in 8.2.10.

	
QuantizationParameter lqp;
	This field points to the local QuantizationParameter node.

	
boolean isQuantized;
	Set to true if the corresponding field is quantized, false otherwise.

	
int nbBits;
	The number of bits used for the quantization of the field.

	
float floatMin[];
	The minimum bounds for the quantization of vector fields. These values are obtained from the FieldCodingTable (described in 8.2.9) and the current QuantizationParameter node (for BIFS-Scene) or the animField (for BIFS-Anim).

	
float floatMax[];
	The maximum bounds for the quantization of vector fields. These values are obtained from the FieldCodingTable (described in 8.2.9) and the current QuantizationParameter node (for BIFS-Scene) or the animField (for BIFS-Anim).

	
int intMin[];
	The minimum bounds for integers (SFInt32 and MFInt32). These values are obtained from the FieldCodingTable (described in 8.2.9) and the current QuantizationParameter node (for BIFS-Scene) or the animField (for BIFS-Anim).

	}
	

It is assumed that the following functions are available:

int isSF(FieldData field)

This function returns TRUE if the field’s fieldType corresponds to a single field and FALSE otherwise.

int isDEF(FieldData field)

This function returns TRUE if the field has a DEF ID (i.e. if the field is of scope exposedField or eventIn).

FieldData MakeField(int fieldType)

This function creates a FieldData structure from the given fieldType.
int getNbComp(FieldData field)

Returns the number of quantized components for the field as given below:

Table 70 — Return values of getNbComp
	fieldType
	quantType
	animType
	value returned

	SFFloat

SFInt32
	any

	6,7,8

13
	1

	SFVec2f

SFVec3f
	any

9
	2,12

9
	2

	SFVec3f

SFRotation
	!=9

any
	1,4,11

10
	3

The number of quantized components is the same as the natural number of components (three for SFVec3f, two for SFVec2f, and so on) except for normals (2) and rotations (3) because of the quantization process (see 8.3.3).

8.2.8 Node Data Type Table Parameters

The following functions provide access to the node data type tables (described in node coding tables in electronic attachment):

Nodes are organized into groups where new nodes and node types, may be added as a new group in a future revisions of this standard. An extension mechanism is defined. See 8.2.2 and 8.7.3.2, for a discussion of how new groups are added.

The Groups are defined in node coding tables in electronic attachment.

The nodeGroup index starts at 1 for Basic Nodes, and increments for each new group added.

int GetNodeType(int nodeGroup, int nodeDataType, int localNodeType)

Returns the nodeType of the node indexed by localNodeType in the node data type table for the group of nodes specified by nodeGroup. The nodeType of a node is its index in the SFWorldNode NDT Table for that group.

int GetNDTnbBits(int nodeGroup, int nodeDataType)

Returns the number of bits used to index the nodes of the matching node data type table for that nodeGroup (this number is indicated in the last column of the first row of the node data type table).

int GetNDTFromID(int id)

Returns the nodeDataType for the children field of the node identified by the nodeID, id. Nodes having a children field may have restrictions on the types of node that may occupy the field. These node types are indicated in the node semantics (see 1 and ISO/IEC 14772-1:1998 , Table 4.3).
NodeData getNodeFromMFField (FieldData field, int position);

Returns the node located at the given position for the MFNode field identified by the specified field.

8.2.9 Field Coding Table

This data structure contains parameters relating to the quantization of the field. It is created from the field’s entry in the relevant node coding tables in electronic attachment.

	Class FieldCodingTable {
	

	
float floatMin[];
	The minimum default bounds for fields of type SFFloat, SFVec2f, SFColor and SFVec3f. These values are obtained from the “[m, M]” column of the node coding table or the InterfaceCodingParameters in the case of a field in a PROTO.

	
float floatMax[];
	The maximum default bounds for fields of type SFFloat, SFVec2f, SFColor and SFVec3f. These values are obtained from the “[m, M]” column of the node coding table or the InterfaceCodingParameters in the case of a field in a PROTO.

	
float intMin[];
	The minimum default bounds for fields of type SFInt32. These values are obtained from the “[m, M]” column of the node coding table.

	
float intMax[];
	The maximum default bounds for fields of type SFInt32. These values are obtained from the “[m, M]” column of the node coding table.

	
int defaultNbBits;
	The number of bits used by default for each field. Only used when the quantization category of the field is 13. For quantization category 13, the number of bits used for coding is also specified in the node coding (e.g “13 16” in the node coding table means category 13 with 16 bits).

	}
	

8.2.10 AnimFieldQP

This data structure contains the necessary quantization parameters and information for the animation of a field. It is updated throughout the BIFS-Anim session.

	class AnimFieldQP {
	

	
int animType;
	The animation method for the field. This is given by the “A” column of the node coding table for each node. Types refer to animation type in Table 72 in 8.3.2.1.

	
boolean useDefault;
	If this bit is set to TRUE, then the bounds used in intra mode are those specified in the “[m, M]” column of the node coding table. The default value is FALSE.

	
boolean isTotal;
	If the field is a multiple field and if this boolean is set to TRUE, all the components of the multiple field are animated.

	
int numElement;
	The number of elements being animated in the field. This is 1 for all single fields, and equal to or greater than 1 for multiple fields.

	
int indexList[];
	If the field is a multiple field and if isTotal is false, this is the list of the indices of the animated SFFields. For instance, if the field is an MFField with elements 3,4 and 7 being animated, the valuse of indexList will be {3,4,7}.

	
float[] Imin;
	The minimum values for bounds of the field in intra mode. This value is obtained from the “[m, M]” column of the node coding table (if useDefault is TRUE), the InitialAnimQP (if useDefault is FALSE and the last intra did not hold any new AnimQP), or the AnimQP.

	
float[] Imax;
	The maximum values for bounds of the field in intra mode. This value is obtained from the “[m, M]” column of the semantics table (if useDefault is TRUE), the InitialAnimQP (if useDefault is FALSE and if the last intra did not hold any new AnimQP), or the AnimQP.

	
int[] IminInt;
	The minimum value for bounds of variations of integer fields in intra mode. This value is obtained from the InitialAnimQP (if the last intra did not hold any new AnimQP) or AnimQP structure.

	
int[] Pmin;
	The minimum value for bounds of variations of the field in predictive mode. This value is obtained from the InitialAnimQP (if the last intra did not hold any new AnimQP) or AnimQP.

	
int INbBits;
	The number of bits used in intra mode for the field. This value is obtained from the InitialAnimQP or AnimQP.

	
int PNbBits;
	The number of bits used in predictive mode for the field. This value is obtained from the InitialAnimQP (if the last intra did not hold any new AnimQP) or AnimQP structure.

	}
	

It is assumed that the following function is available :

int getNbBounds(int type)

Returns the number of set of bounds matching the quantization type or animation type (see 8.2.7), as follows :

Table 71 — Return values of getNbBounds

	type
	value returned

	type>2
	1

	2
	2

	1
	3

Note that only Position2D and Position3D have specific sets of bounds for each of their components. The number of bounds is also the number of independent models used in predictive mode during the BIFS-Anim session.

8.3 Quantization

In BIFS scenes, the values of the fields may be quantized. BIFS-Anim data is always quantized. This subclause describes this quantization process. A number of parameters control the quantization of a field. Here, these parameters are used to construct a notational data structure called FieldData. In this subclause, the semantics of how to determine these parameters for BIFS scenes and BIFS-Anim are first described, followed by a description of the actual quantization process.

8.3.1 Quantization of BIFS scenes

8.3.1.1 Quantization categories

Single fields are coded according to the type of the field. The fields have a default syntax that specifies a non-quantized encoding. When quantization is used, the quantization parameters are obtained from a special node called QuantizationParameter. The following quantization categories are specified, providing suitable quantization procedures for the various types of quantities represented by the various fields of the BIFS nodes.

Table 72 — Quantization Categories

	Category
	Description

	0
	None

	1
	3D position

	2
	2D positions

	3
	Drawing order

	4
	SFColor

	5
	Texture Coordinate

	6
	Angle

	7
	Scale

	8
	Interpolator keys

	9
	Normals

	10
	Rotations

	11
	Object Size 3D (1)

	12
	Object Size 2D (2)

	13
	Linear Scalar Quantization

	14
	CoordIndex

	15
	SFVec4f

	16
	Reserved

Each field that may be quantized is assigned to one of the quantization categories (see node coding tables in electronic attachment). Along with quantization parameters, minimum and maximum values are specified for each field of each node.

To quantize an SFVec4f field of value (x, y, z, w), the position3D and scale quantizers of the QuantizationParameter node are used at the same time. Specifically, position3DQuant and scaleQuant should be set to TRUE. position3DMin, position3DMax, and position3DNbBits are the quantization parameters used to quantize the 3D part of the vector (x, y, z) and scaleMin, scaleMax, and scaleNbBits are the quantization parameters used to quantize the scaling factor w.

As two quantizers are used, they also apply to fields using position3D and scale quantizers. As a result, if a node using SFVec4f quantization is followed by a node using SFVec3f and scale fields, these two types of fields will be quantized using the quantization parameters for the node using SFVec4f fields. Otherwise, two QuantizationParameter nodes should be used: one for the node using SFVec4f fields and one for the node using SFVec3f and scale fields.

BIFS-Anim uses quantization of SFVec4f fields the same way it is described above for BIFS-Commands.

SFVec4f fields are only used in solid modeling detailed later in this specification that needs 4D geometry. These fields are not used in previous versions of MPEG-4 (up to amendment 3). As a result, BIFS decoders not supporting amendment 4 and above do not need to implement SFVec4f decoding.

8.3.1.2 Determining the quantization parameters for a given field

The scope of quantization is constrained to a single BIFS access unit. A field is quantized when:

The field is of type SFInt32, SFFloat, SFRotation, SFColor, SFVec2f, SFVec3f, MFInt32, MFFloat, SFRotation, MFColor, MFVec2f, or MFVec3f.

The quantization category of the field is not 0.

The node to which the field belongs has a QuantizationParameter (see 7.2.2.108) node in its context

The quantization for this type of field is activated (by setting the corresponding boolean to TRUE in the QuantizationParameter node.

The isQuantized, nbBits, floatMin, floatMax and intMin fields of the FieldData structure pertain to the quantization of the field. The values of these fields are determined from the local QuantizationParameter (lqp) and the FieldCodingTable (fct) stored in the FieldData. This is done in the following way:

isQuantized
isQuantized is set to true when the three following conditions are met :

lqp!=0 (there is a QuantizationParameter node in the scope of the field)

quantType !=0 (the field value is of a type that may be quantized), and
the following condition is met for the relevant quantization type:

Table 73 — Condition for setting isQuantized to true

	quantType
	Condition

	1
	lqp.position3DQuant == TRUE

	2
	lqp.position2DQuant == TRUE

	3
	lqp.drawOrderQuant == TRUE

	4
	lqp.colorQuant == TRUE

	5
	lqp.textureCoordinateQuant == TRUE

	6
	lqp.angleQuant == TRUE

	7
	lqp.scaleQuant == TRUE

	8
	lqp.keyQuant == TRUE

	9
	lqp.normalQuant == TRUE

	10
	lqp.normalQuant == TRUE

	11
	lqp.sizeQuant == TRUE

	12
	lqp.sizeQuant == TRUE

	13
	Always TRUE

	14
	Always TRUE

	15
	lqp. position3Dquant = TRUE

lqp.scaleQuant = TRUE

	16
	Always TRUE

nbBits
In the BIFS scene quantization process, nbBits is set in the following way :

Table 74 — Value of nbBits depending on quantType
	quantType
	nbBits

	1
	lqp.position3DNbBits

	2
	lqp.position2DNbBits

	3
	lqp.drawOrderNbBits

	4
	lqp.colorNbBits

	5
	lqp.textureCoordinateNbBits

	6
	lqp.angleNbBits

	7
	lqp.scaleNbBits

	8
	lqp.keyNbBits

	9,10
	lqp.normalNbBits

	11,12
	lqp.sizeNbBits

	13
	fct.defaultNbBits

	14
	This value is set according to the number of points received in the last received coord field of the node. Let N that number, then:

[image: image172.wmf](

)

)

1

(

log

Ceil

nbBits

2

+

=

N

where the function Ceil returns the smallest integer greater than its argument

	15
	lqp.position3DnbBits

lqp.scaleNbBits

	16
	0

floatMin[]

In the BIFS scene quantization process, floatMin is set in the following way:

Table 75 — Value of floatMin, depending on quantType and fieldType

	quantType
	FieldType
	floatMin

	1
	SFVec3fType
	max(lqp.position3Dmin[0],fct.floatMin[0]), max(lqp.position3Dmin[1],fct.floatMin[1]), max(lqp.position3Dmin[2],fct.floatMin[2])

	2
	SFVec2fType
	max(lqp.position2Dmin[0],fct.floatMin[0]), max(lqp.position2Dmin[1],fct.floatMin[1])

	3
	SFFloatType
	max(fct.floatMin[0],lqp.drawOrderMin)

	4
	SFFloatType
	max(lqp.colorMin, fct.floatMin[0])

	
	SFColorType
	max(lqp.colorMin, fct.floatMin[0]),

max(lqp.colorMin, fct.floatMin[0]),

max(lqp.colorMin, fct.floatMin[0])

	5
	SFVec2fType
	max(fct.floatMin[0],lqp.textureCoordinateMin)

	6
	SFFloatType
	Max(fct.floatMin[0],lqp.angleMin)

	7
	SFFloatType
	max(fct.floatMin[0],lqp.scaleMin)

	
	SFVec2fType
	max(fct.floatMin[0],lqp.scaleMin), max(fct.floatMin[0],lqp.scaleMin)

	
	SFVec3fType
	max(fct.floatMin[0],lqp.scaleMin), max(fct.floatMin[0],lqp.scaleMin), max(fct.floatMin[0],lqp.scaleMin)

	8
	SFFloatType
	Max(fct.floatMin[0],lqp.keyMin)

	9
	SFVec3fType
	0.0

	10
	SFRotationType
	0.0

	11,12
	SFFloatType
	max(fct.floatMin[0],lqp.sizeMin)

	
	SFVec2fType
	max(fct.floatMin[0],lqp.sizeMin), max(fct.floatMin[0],lqp.sizeMin)

	
	SFVec3fType
	max(fct.floatMin[0],lqp.sizeMin), max(fct.floatMin[0],lqp.sizeMin), max(fct.floatMin[0],lqp.sizeMin)

	13,14
	
	NULL

	15
	SFVec4fType
	lqp.position3Dmin

lqp.scaleMin

	16
	
	NULL

floatMax[]

In the BIFS scene quantization process, floatMax is set in the following way:

Table 76 — Value of floatMax, depending on quantType and fieldType

	quantType
	fieldType
	FloatMax

	1
	SFVec3fType
	min(lqp.position3Dmax[0],fct.floatMax[0]), min(lqp.position3Dmax[1],fct.floatMax[1]), min(lqp.position3Dmax[2],fct.floatMax[2])

	2
	SFVec2fType
	min(lqp.position2Dmax[0],fct.floatMax[0]), min(lqp.position2Dmax[1],fct.floatMax[1])

	3
	SFFloatType
	min(fct.floatMax[0],lqp.drawOrderMax)

	4
	SFFloatType
	min(lqp.colorMax, fct.floatMax[0])

	
	SFColorType
	min(lqp.colorMax, fct.floatMax[0]),

min(lqp.colorMax, fct.floatMax[0]),

min(lqp.colorMax, fct.floatMax[0])

	5
	SFVec2fType
	min(fct.floatMax[0],lqp.textureCoordinateMax)

	6
	SFFloatType
	Min(fct.floatMax[0],lqp.angleMax)

	7
	SFFloatType
	min(fct.floatMax[0],lqp.scaleMax)

	
	SFVec2fType
	min(fct.floatMax[0],lqp.scaleMax), min(fct.floatMax[0],lqp.scaleMax)

	
	SFVec3fType
	min(fct.floatMax[0],lqp.scaleMax), min(fct.floatMax[0],lqp.scaleMax), min(fct.floatMax[0],lqp.scaleMax)

	8
	SFFloatType
	Min(fct.floatMax[0],lqp.keyMax)

	9
	SFVec3fType
	0.0

	10
	SFRotationType
	0.0

	11,12
	SFFloatType
	min(fct.floatMax[0],lqp.sizeMax)

	
	SFVec2fType
	min(fct.floatMax[0],lqp.sizeMax), min(fct.floatMax[0],lqp.sizeMax)

	
	SFVec3fType
	min(fct.floatMax[0],lqp.sizeMax), min(fct.floatMax[0],lqp.sizeMax), min(fct.floatMax[0],lqp.sizeMax)

	13,14
	
	NULL

	15
	SFVec4fType
	lqp.position3Dmax

lqp.scaleMax

	16
	
	NULL

intMin[]

In the BIFS scene quantization process, intMin is set in the following way:

Table 77 — Value of intMin, depending on quantType
	quantType
	intMin

	1,2,3,4,5,6,7,8

9,10,11,12
	NULL

	13,14
	fct.intMin[0]

	15
	NULL

8.3.2 Quantization of BIFS-Anim

8.3.2.1 Animation Categories

The fields are grouped in the following categories for animation:

Table 78 — Animation Categories

	Category
	Description

	0
	None

	1
	Position 3D

	2
	Positions 2D

	3
	Reserved

	4
	Color

	5
	Reserved

	6
	Angle

	7
	Float

	8
	BoundFloat

	9
	Normals

	10
	Rotation

	11
	Size 3D

	12
	Size 2D

	13
	Integer

	14
	Reserved

	15
	Reserved

8.3.2.2 Determining the quantization parameters for a given field

The isQuantized, nbBits, floatMin, floatMax and intMin fields of the FieldData structure pertain to the quantization of the field. The values of these fields are determined from the local AnimFieldQP (aqp) and the FieldCodingTable (fct) stored in the FieldData. This is done in the following way:

isQuantized
In the BIFS-Anim quantization process, isQuantized is always TRUE.

nbBits
In the BIFS-Anim quantization process, nbBits is set in the following way :

Table 79 — Value of nbBits, depending on animType
	animType
	nbBits

	1,2,4,6,7,8,9

10,11,12,13
	animType.INbBits

floatMin[]

In the BIFS-Anim quantization process, floatMin is set in the following way:

Table 80 — Value of floatMin, depending on animType
	animType
	aqp.useDefault
	floatMin

	4
	Color
	true
	fct.floatMin[0], fct.floatMin[0], fct.floatMin[0]

	
	
	false
	aqp.IMin[0], aqp.IMin[0], aqp.IMin[0]

	8
	BoundFloat
	true
	fct.floatMin[0]

	
	
	false
	aqp.IMin[0]

	1
	Position 3D
	false
	aqp.Imin

	2
	Position 2D
	false
	aqp.Imin

	11
	Size 3D
	false
	aqp.IMin[0], aqp.IMin[0], aqp.IMin[0]

	12
	Size 2D
	false
	aqp.IMin[0], aqp.IMin[0]

	7
	Float
	false
	aqp.IMin[0]

	6

9

10
	Angle Normal

Rotation
	false
	0.0

	13
	Integer
	false
	NULL

	14,15
	Reseved
	
	NULL

floatMax[]
In the BIFS-Anim quantization process, floatMax is set in the following way:

Table 81 — Value of floatMax, depending on animType
	animType
	aqp.useDefault
	FloatMax

	4
	Color
	true
	fct.floatMax[0], fct.floatMax[0], fct.floatMax[0]

	
	
	false
	aqp.IMax[0], aqp.IMax[0], aqp.IMax[0]

	8
	BoundFloat
	true
	fct.max[0]

	
	
	false
	aqp.IMax[0]

	1
	Position 3D
	false
	aqp.Imax

	2
	Position 2D
	false
	aqp.Imax

	11
	Size 3D
	false
	aqp.IMax[0],aqp.IMax[0] ,aqp.IMax[0]

	12
	Size 2D
	false
	aqp.IMax[0], aqp.IMax[0]

	7
	Float
	false
	aqp.IMax[0]

	6

9

10
	Angle Normal

Rotation
	false
	2*Pi

	
	
	false
	1.0

	13
	Integer
	false
	NULL

	14,15
	Reseved
	
	NULL

intMin[]
In the BIFS-Anim quantization process, intMax is set in the following way:

Table 82 — Value of intMin, depending on animType
	animType
	IntMin

	1,2,4,6,7,8

9,10,11,12
	NULL

	13
	aqp.IminInt[0]

	14,15
	NULL

8.3.3 Quantization process

Let
[image: image173.wmf])

(

t

v

q

be the value decoded from the bitstream at an instant t. Then, the inverse-quantized value at time t is:

[image: image174.wmf](

)

)

(

InvQuant

)

(

t

v

t

v

q

=

The linear quantization and inverse quantization are:

int quantize (float Vmin, float Vmax, float v, int Nb)

which returns

[image: image175.wmf])

1

2

(

min

max

min

-

-

-

=

Nb

q

V

V

V

v

v

float invQuantize (float Vmin,float Vmax,int vq, int Nb)

which returns

[image: image176.wmf]1

2

ˆ

)

1

,

max(

min

max

min

-

-

+

=

Nb

q

V

V

v

V

v

If isQuantized is true, the quantization/inverse quantization process is the following :

Table 83 — Quantization and inverse quantization process

	QuantType
	animType
	Quantization/Inverse Quantization Process

	1,2,3,4,5

6,7,8

11,12
	1,2,4

6,7,8

11,12
	For each component of the vector, the float quantization is applied:

[image: image177.wmf])

nbBits

],

[

v

],

[

floatMax

],

[

floatMin

quantize(

]

[

i

i

i

i

v

q

=

For the inverse quantization:

[image: image178.wmf])

nbBits

],

[

v

],

[

floatMax

],

[

floatMin

uantize(

invQ

]

[

ˆ

q

i

i

i

i

v

=

	9,10
	9,10
	For normals and rotations, the quantization method is as follows.

Normals are first renormalized :

[image: image179.wmf]2

2

2

2

2

2

2

2

2

]

2

[

,

]

1

[

,

]

0

[

z

u

x

z

z

u

x

y

z

u

x

x

n

n

n

n

v

n

n

n

n

v

n

n

n

n

v

+

+

=

+

+

=

+

+

=

Rotations (axis
[image: image180.wmf]n

r

, angle
[image: image181.wmf]a

) are first written as quaternions :

[image: image182.wmf])

2

sin(

.

]

3

[

)

2

sin(

.

]

2

[

)

2

sin(

.

]

1

[

)

2

cos(

]

0

[

a

a

a

a

n

n

v

n

n

v

n

n

v

v

z

y

x

r

r

r

=

=

=

=

The number of reduced components is defined to be N: 2 for normals, and 3 for rotations. Note that
[image: image183.wmf]v

 is then of dimension N+1. The compression and quantization process is the same for both :

	QuantType
	animType
	Quantization/Inverse Quantization Process

	
	
	The orientation
[image: image184.wmf]k

 of the unit vector
[image: image185.wmf]v

 is determined by the largest component in absolute value:
[image: image186.wmf])

]

[

argMax(

i

v

k

=

. This is an integer between 0 and N that is encoded using two bits.

The direction of the unit vector
[image: image187.wmf]v

 is 1 or –1 and is determined by the sign of the component
[image: image188.wmf]]

[

k

v

.Note that this value is not written for rotations (because of the properties of quaternions).

The N components of the compressed vector are computed by mapping the square on the unit sphere
[image: image189.wmf]ï

þ

ï

ý

ü

ï

î

ï

í

ì

£

1

]

[

]

[

k

v

i

v

v

 into a N dimensional square :

[image: image190.wmf][

]

N

i

k

v

N

k

i

v

i

v

c

,...,

0

]

[

)

1

mod(

)

1

(

tan

4

]

[

1

=

÷

÷

ø

ö

ç

ç

è

æ

+

+

+

=

-

p

If nbBits=0, the process is complete. Otherwise, each component of
[image: image191.wmf]c

v

 (which lies between –1 and 1) is quantized as a signed integer as follows :

[image: image192.wmf](

)

1

nbBits

],

[

],

0

[

floatMax

],

0

[

floatMin

quantize

2

]

[

1

nbBits

-

+

=

-

i

v

i

v

c

q

The value is encoded in the bitstream as

[image: image193.wmf]

EMBED Equation.3[image: image194.wmf]]

[

i

v

q

The decoding process is the following :

The value decoded from the stream is converted to a signed value

[image: image195.wmf]1

.nbBits

2

]

[

-

-

=

decoded

q

v

i

v

The inverse quantization is performed

[image: image196.wmf])

1

nbBits

],

[

],

0

[

floatMin

],

0

[

floatMin

uantize(

invQ

]

[

-

=

i

v

i

v

q

c

After extracting the orientation (k) and direction (dir) , the inverse mapping can be performed :

[image: image197.wmf]å

<

=

+

=

N

i

i

c

i

v

k

v

0

2

4

]

[

.

tan

1

1

.

dir

]

[

ˆ

p

	QuantType
	animType
	Quantization/Inverse Quantization Process

	
	
	
[image: image198.wmf][

]

N

i

k

v

i

v

N

k

i

v

c

,...,

0

]

[

ˆ

.

4

]

[

.

tan

)

1

mod(

)

1

(

ˆ

=

÷

ø

ö

ç

è

æ

=

+

+

+

p

If the object is a rotation,
[image: image199.wmf]v

can be either used directly or converted back from a quaternion to a SFRotation :

[image: image200.wmf])

2

/

sin(

]

3

[

ˆ

)

2

/

sin(

]

2

[

ˆ

)

2

/

sin(

]

1

[

ˆ

])

0

[

ˆ

(

cos

.

2

1

a

a

a

a

v

n

v

n

v

n

v

z

y

x

=

=

=

=

-

The entire compression process therefore consists in projecting a vector of the unit sphere onto the face of a cube inscribed inside the sphere, and transmitting separately the face’s index (orientation: x, y or z – and direction : + or -) and the coordinates on the face.

EXAMPLE (How two different normals are encoded in the case nbBits=3. The compensation process (described in 8.4) is also illustrated.

[image: image201.wmf]y (ori=1)

z (ori=2)

x (ori=0)

ori=0, dir=+1,vq=[-2,+2]

inv=+1, delta=[+1,+2]

ori=2, dir=+1,vq=[+2,-1]

Note that two quaternions that lie in opposite directions on the unit sphere actually represent the same rotation. This is the reason why the direction is not coded for rotations.

	QuantType
	animType
	Quantization/Inverse Quantization Process

	13,14
	13
	For integers, the quantized value is the integer shifted to fit the interval [0, 2nbBits -1].

[image: image202.wmf]intMin

-

=

v

v

q

The inverse quantization process in then :

[image: image203.wmf]q

v

v

+

=

intMin

ˆ

	fieldType

SFImage
	
	For SFImage types, the width and height of the image are sent. numComponents defines the image type. The following four types are enabled:

If the value is ‘00’, then a grey scale image is defined.

If the value is ‘01’, a grey scale with alpha channel is used.

If the value is ‘10’, then an RGB image is used.

If the value is ‘11’, then an RGB image with alpha channel is used.

8.4 Compensation process

This subclause describes the mechanism used to compensate a quantized value for a given FieldData structure. In other words, how to add a delta to a quantized value to yield the result of addition, which is another quantized value. For vectorial types, this is simply an addition component by component, but for normals and rotations special care has to be taken when performing this addition. This process is used in predictive mode in BIFS-Anim sessions.

Let
[image: image204.wmf]1

q

v

 be the initial quantized value,
[image: image205.wmf]d

v

 be the delta value and
[image: image206.wmf]2

q

v

 be the quantized value resulting from the addition. The general inverse compensation process is :

[image: image207.wmf])

,

(

AddDelta

1

2

d

v

v

v

q

q

=

[image: image208.wmf]1

q

v

 and
[image: image209.wmf]d

v

 are interpreted as follows:

A quantized value
[image: image210.wmf]q

v

contains an array of integers vq[]. Additionally, for normals and rotations,
[image: image211.wmf]1

q

v

 contains an orientation and, for normals only, a direction (see 8.3.3).

A delta value
[image: image212.wmf]d

v

contains an array of integers vDelta[]. Additionnally, for normals, it contains an integer inverse whose value is –1 or 1.

The size of these arrays is that returned by the function getNbComp(field), as described in Table 70.

The result
[image: image213.wmf]2

q

v

 is then computed in the following way :

Table 84 — Compensation process for multiple fields and BIFS-Anim
	quantType
	animType
	Compensation Process

	1,2,4,6,7,8,
9 (other than
SFVec3fType),
10 (other than SFRotationType),
11,12,13
	1,2,4,6,7,8
11,12,13
	The components of
[image: image214.wmf]2

q

v

 are:

vq2[i] = vq1[i] + vDelta[i]

	9 (SFVec3fType),
10 (SFRotation)
	9,10
	The addition is first performed component by component and stored in a temporary array:

vqTemp[i] = vq1[i] + vDelta[i].

Let scale =
[image: image215.wmf]1

2

)

1

,

0

max(

-

-

nbBits

.

Let N the number of reduced components (2 for normals, 3 for rotations)

There are then three cases are to be considered:

	
	
	For every index I,

[image: image216.wmf]scale

vqTemp[i]

£

	
[image: image217.wmf]2

q

v

 is defined by,
vq2[i] = vqTemp[i]
orientation2= orientation1
direction2 = direction1 * inverse

	
	
	There is one and only one index k such that

[image: image218.wmf]scale

vqTemp[k]

>

	
[image: image219.wmf]2

q

v

 is rescaled as if gliding on the faces of the mapping cube.

Let inv = 1 if vqTemp[k]>=0 and –1 else
Let dOri = k+1
The components of vq2 are computed as follows

	
	
	
	[image: image220.wmf]dOri

-

N

i

0

<

£

	vq2[i] = inv*vqTemp[(i+dOri) mod N]

	
	
	
	[image: image221.wmf]dOri

-

N

i

=

	vq2[i] = inv*2*scale–vqTemp[dOri–1]

	
	
	
	[image: image222.wmf]N

i

dOri

-

N

<

<

	vq2[i] = inv*vqTemp[(i+dOri-1) mod N]

	
	
	
	orientation2 = (orientation1 + dOri) mod (N+1)
direction2 = direction1 * inverse * inv

	
	
	There are several indices k such that

[image: image223.wmf]scale

vqTemp[k]

>

	The result is undefined

Note: The BIFS-Anim process is identical to the process applied for optimal encoding of BIFS multiple fields.

8.5 BIFS Configuration

8.5.1 Overview

This subclause describes the terminal configuration for the BIFS elementary stream. It is encapsulated within the specificInfo fields of the general DecoderSpecificInfo structure (see 7.2.6.7, ISO/IEC 14496-1), which is contained in the DecoderConfigDescriptor that is carried in ES_Descriptors. If the session is a BIFS-Anim session, the BIFS configuration contains some specific information to describe the animation mask, which specifies the elements of the scene to be animated.

Two terminal configurations are defined in 8.5.2 and 8.5.3, the first being deprecated. The BIFS version of a specific scene description stream is determined by the objectTypeIndication field of the DecoderConfigDescriptor contained in the ES_Descriptor that describes this stream.

8.5.2 BIFSConfig

8.5.2.1 Syntax

class BIFSConfig extends DecoderSpecificInfo : bit(8) tag=DecSpecificInfoTag {

unsigned int(5) nodeIDbits;

unsigned int(5) routeIDbits;

bit(1) isCommandStream;

if(isCommandStream) {

bit(1) pixelMetric;

bit(1) hasSize;

if(hasSize) {

unsigned int(16) pixelWidth;

unsigned int(16) pixelHeight;

}

}

else {

bit(1)

randomAccess;

AnimationMask
animMask();

}

}

8.5.2.2 Semantics

BIFSConfig is the terminal configuration for the BIFS elementary streams having their object type indication set to 0x01 and their StreamType set to 0x03. It is encapsulated within the specificInfo fields of the general DecoderSpecificInfo structure (see 7.2.6.7, ISO/IEC 14496-1), which is contained in the DecoderConfigDescriptor that is carried in ES_Descriptors.

The parameter nodeIDbits sets the number of bits used to represent nodeIDs. Similarly, routeIDbits sets the number of bits used to represent ROUTEIDs.

The boolean isCommandStream identifies whether the BIFS stream is a BIFS-Command stream or a BIFS-Anim stream. If the BIFS-Command stream is selected (isCommandStream set to TRUE), the following parameters are contained in BIFSConfig:

The boolean isPixelMetric indicates whether pixel metrics or meter metrics are used.

The boolean hasSize indicates whether a desired scene size (in pixels) is specified. If hasSize is set to true, pixelWidth and pixelHeight provide to the receiving terminal the desired horizontal and vertical dimensions (in pixels) of the scene.

If isCommandStream is false, the following information is contained in BIFSConfig:

The randomAccess boolean signals the mode of the BIFS-Anim stream. If the bit is set to TRUE, it is possible to perform random access in the BIFS-Anim stream at any intra frame. At each intra frame, the statistics of the arithmetic decoder shall be reset. New quantization parameters shall be coded in the bistream or the default parameters sent in the BIFS-Anim mask are used. In this case, the randomAccessPointFlag of the BIFS Access Unit shall be set to 1 (see 7.1.1.1.3). If the randomAccess bit is set to FALSE, compression may be more efficient, but random access may not be possible at each intra frame. See 7.1.1.3.3 for detailed semantics.

The AnimationMask specifies the animation parameters of the BIFS-Anim elementary stream.

8.5.3 BIFSv2Config

8.5.3.1 Syntax

class BIFSv2Config extends DecoderSpecificInfo : bit(8) tag=DecSpecificInfoTag {

bit(1) use3DMeshCoding;

bit(1) usePredictiveMFField;

bit(5) nodeIDbits;

bit(5) routeIDbits;

bit(5) PROTOIDbits;

bit(1) isCommandStream;

if(isCommandStream) {

bit(1) pixelMetric;

bit(1) hasSize;

if(hasSize) {

int(16) pixelWidth;

int(16) pixelHeight;

}

}

else {

bit(1)

randomAccess;

AnimationMask
animMask();

}

}
8.5.3.2 Semantics

BIFSv2Config is the terminal configuration for elementary streams having their object type indication set to 0x02 and their StreamType set to 0x03. It is encapsulated within the decSpecificInfo field of the DecoderConfigDescriptor structure that is carried in ES_Descriptors. It extends the general DecoderSpecificInfo structure (see 7.2.6.7, ISO/IEC 14496-1) .
The use3DmeshCoding flag is used to signal that the syntax of 3D Mesh as sepecified by ISO/IEC 14496-2:2004 is used to encode IndexedFaceSet nodes. The usePredictiveMFField flag is used to signal that the syntax for predictive MFField, instead of the non-predictive mode, is used to encode IndexedFaceSet nodes. This flag is used for terminals supporting this tool.

Parameters nodeIDbits and routeIDbits are used similarly as in BIFSConfig. Additionnally, a PROTOIDbits field is contained in BIFSv2Config to determine the number of bits used to represent protoIDs.
Boolean variables isCommandStream, isPixelMetric, hasSize, pixelWidth, and pixelHeight are used similarly as in BIFSConfig.
If isCommandStream is false, randomAccess, and AnimationMask are contained and used in BIFSv2Config similarly as in BIFSConfig.
8.5.4 AnimationMask

8.5.4.1 Syntax

class AnimationMask() {

int numNodes = 0;

do {

ElementaryMask elemMask();

numNodes++;

bit(1) moreMasks;

} while (moreMasks);

}

8.5.4.2 Semantics

The AnimationMask describes the nodes and fields to be animated, along with the quantization parameters to help decode their values. It consists of a list of ElementaryMasks.

If the boolean moreMasks is TRUE, another ElementaryMask shall be present.

8.5.5 Elementary mask

8.5.5.1 Syntax

Class ElementaryMask() {

bit(BIFSConfiguration.nodeIDbits) nodeID;

NodeUpdateField node = GetNodeFromID(nodeID);

switch (node.nodeType) {

case FaceType:

break;

case BodyType:

break;

case IndexedFaceSet2DType:

break;

default:

InitialFieldsMask initMask(node);

}

}

8.5.5.2 Semantics

The ElementaryMask describes how to animate the elements of a node.

The integer nodeID identifies the animated node.

If the node’s nodeType is FDP, BDP or IndexedFaceSet2D, no further information is expected.

If any other case, an InitialFieldsMask shall be present.

8.5.6 InitialFieldsMask

8.5.6.1 Syntax

class InitialFieldsMask(NodeUpdateField node) {

for(i=0; i<node.numDYNfields; i++)

bit(1) node.isAnimField[i];

int i;

for(i=0; i<node.numDYNfields; i++) {

if (node.isAnimField[i]) {

FieldData field = node.field[node.dyn2all[i]];

AnimFieldQP aqp = field.aqp;

if (!isSF(field) {

bit(1) aqp.isTotal;

if (!aqp.isTotal) {

unsigned int(5)
nbBits;

do {

int(nbBits) aqp.indexList[aqp.numElement++];

bit(1) moreIndices;

} while (moreIndices);

}

InitialAnimQP QP[i](field.aqp);

}

}

}

8.5.6.2 Semantics

The InitialFieldsMask specifies which fields of a given node are animated.

The array of booleans isAnimField describes whether the fields (indexed with dynIDs) are animated.

If a multiple field is animated and if the boolean isTotal is TRUE, all the of the field’s individual elements are animated.

If a multiple field is animated and if the boolean isTotal is FALSE, the indices of the animated individual field are sent and stored in aqp.indexList[]. The number of bits used to encode them is specified by nbBits. If the boolean moreIndices is TRUE, another index shall be present.

An InitialAnimQP shall then be expected.

8.5.7 InitialAnimQP

8.5.7.1 Syntax

InitialAnimQP(animFieldQP aqp) {

aqp.useDefault=FALSE;

uint(4) type;

aqp.animType = type;

switch(aqp.animType) {

case 4:

// Color

case 8:

// BoundFloats

bit(1)

aqp.useDefault

case 1:

// Position 3D

case 2:

// Position 2D

case 15:

// Position 4D

case 11:

// Size 3D

case 12:

// Size 2D

case 7:

// Floats

if (!aqp.useDefault) {

for (i=0;i<getNbBounds(aqp.animType);i++) {

bit(1)

useEfficientCoding

GenericFloat
aqp.Imin[i](useEfficientCoding);

}

for (i=0;i<getNbBounds(aqp.animType);i++) {

bit(1)

useEfficientCoding

GenericFloat
aqp.Imax[i](useEfficientCoding);

}

}

break;

case 13:

// Integers

int(32)

aqp.IminInt[0];

break;

}

unsigned int(5)

aqp.INbBits;

for (i=0;i<getNbBounds(aqp.animType);i++) {

int(INbBits+1) vq

aqp.Pmin[i] = vq-2^aqp.INbBits;

}

unsigned int(4)

aqp.PNbBits;

}

8.5.7.2 Semantics

The InitialAnimQP specifies the field’s default quantization parameters.

The quantization bounds are first coded. For animTypes that have default finite bounds (Colors, BoundFloats), the default bounds of the field coding tables data structures can optionally be used by setting aqp.useDefault to TRUE. For all other animTypes, this boolean is set to FALSE. For all vectorial animTypes (Position3D, Position2D, Size3D, Size2D, Float, BoundFloat, Color), if aqp.useDefault is FALSE, the quantization bounds aqp.Imin[] and aqp.Imax[] are coded. Depending on the value of useEfficientCoding, these bounds are coded using GenericFloat as floats of 32 bits or less. For the animTypes Angle, Normal and Rotation, no quantization bounds are coded.

The number of bits used in the quantization process, aqp.INbBits, is then coded. The quantization process (see 8.3.3) is used in intra mode only.

The minimal bounds used to offset the values obtained from the compensatiation process in predictive mode, Pmin[], are then coded. Pmins may have values in the range –2INbBits to 2INbBits-1. The value is coded as an unsigned integer using INbBits+1 bits and has the value PMin+2INbBits.

The number of bits used for the predictive values, aqp.PNbBits, is then coded. The compensation process (see 8.4) is used in predictive mode only.

8.6 BIFS Command Syntax

8.6.1 Overview

This subclause describes the commands that can be sent to act on the scene. They allow insertion, modification, and deletion of elements of the scene (new scenes, nodes, fields). All BIFS information is encapsulated in BIFS command frames. Each frame may contain commands that perform a number of operations, such as insertion, deletion, or modification of scene nodes, their fields, or routes. When a BIFS command is invalid, for example if it references missing nodes or ROUTEs, the terminal shall ignore the command. If the command cannot be parsed, then the command and the rest of the access unit shall be ignored.
8.6.2 Command Frame

8.6.2.1 Syntax

class CommandFrame() {

do {

Command command();

bit(1) continue;

} while (continue);

}

8.6.2.2 Semantics

A CommandFrame is a collection of BIFS-Commands, and corresponds to one access unit. A sequence of commands may be sent. The boolean value continue, when TRUE, indicates that another command follows the current one.

8.6.3 Command

8.6.3.1 Syntax

class Command() {

bit(2) code;

switch (code) {

case 0:

InsertionCommand insert();

break;

case 1:

DeletionCommand delete();

break;

case 2:

ReplacementCommand replace();

break;

case 3:

SceneReplaceCommand sceneReplace();

break;

}

8.6.3.2 Semantics

For each Command, the 2-bit flag, code, signals one of the four basic commands: insertion, deletion, replacement, and scene replacement.

8.6.4 Insertion Command

8.6.4.1 Syntax

class InsertionCommand() {

bit(2) parameterType ;

switch parameterType {

case 0:

NodeInsertion nodeInsert();

break;

case 1:

ExtendedUpdate extendedUpdate();

break;

case 2:

IndexedValueInsertion idxInsert();

break;

case 3:

ROUTEInsertion ROUTEInsert();

break ;

}

}

8.6.4.2 Semantics

There are four basic insertion commands, signaled by the 2-bit flag parameterType.

If parameterType is 0, a NodeInsertion is expected.

If parameterType is 1, an ExtendedUpdate is expected.

If parameterType is 2, an IndexedValueInsertion is expected.

If parameterType is 3, a ROUTEInsertion is expected.

8.6.5 Node Insertion

8.6.5.1 Syntax

class NodeInsertion() {

bit(BIFSConfiguration.nodeIDbits) nodeID ;

int ndt=GetNDTFromID(nodeID);

bit(2) insertionPosition;

switch (insertionPosition) {

case 0:

// insertion at a specified position

bit (8) position;

SFNode node(ndt);

break;

case 2:

// insertion at the beginning of the field

SFNode node(ndt);

break;

case 3:

// insertion at the end of the field

SFNode node(ndt);

break;

}

}

8.6.5.2 Semantics

The insertion of a node may be performed on a node that has an MFNode children field. Inserting a node adds the node at the desired position in the children multiple field. The command is thus valid only if the node referred to by nodeID contains a children field of type MFNode.

A node may be inserted in the children field of a grouping node. The nodeID of this grouping node is first coded.

The NDT of the inserted node can be determined from the NDT of the children field in which the node is inserted.

The position in the children field where the node shall be inserted, insertionPosition is then coded on two bits :

If the insertionPosition is 0, the node is inserted at a specified position coded on 8 bits.

If the insertionPosition is 2, the node is inserted at the beginning of the field.

If the insertionPosition is 3, the node is inserted at the end of the field.

The node is then coded.

8.6.6 ExtendedUpdate

8.6.6.1 Syntax

class ExtendedUpdate() {

 bit(8) updateType ;

 switch (updateType) {

 case 0:

 PROTOlist protos();

 break;

 case 1:

 PROTOlistDeletion listDelete();

 break;

 case 2:

 // remove all existing PROTOs

 break ;

 case 3:

 MultipleIndexedFieldReplacement mifReplacement();

 break;

 case 4:

 MultipleFieldReplacement mfReplacement();

 break;

 case 5:

 GlobalQuantizationConfiguration globalQuantizer();

 break;

 case 6:

 NodeDeletionEx() nodeDeleteEx()

 break;

 case 7:

 ExtendedReplace xReplace();

 break;

 case 8:

 ReplaceToExternalData replaceTo();

 break;

 case 9:

 ReplaceFromExternalData replaceFrom();

 break;

 }

}

8.6.6.2 Semantics

There can be up to 256 extended update types.

If updateType is 0, the insertion of a list of PROTOs is signalled.

If updateType is 1, the deletion of a list of PROTOs is signalled.

If updateType is 2, the deletion of all previously defined PROTOs is signalled.

If updateType is 3, a MultipleIndexedFieldReplacement is signalled.

If updateType is 4, a MultipleFieldReplacement is signalled.

If updateType is 5, a GlobalQuantizationConfiguration is signalled.

8.6.7 PROTOlistInsertion
8.6.7.1 Syntax

class PROTOlistInsertion () {

 PROTOList list();

}

8.6.7.2 Semantics

This element signals the insertion of a list of PROTOs.

Inserting a new PROTO with id=PID means that, from that point in time on, there can be a PROTO instance referring to a PROTO declaration with id=PID.

When an existing PROTO already has the same id as a newly inserted PROTO, it means that new PROTO instances refer to the new definition, while previous PROTO instances are unchanged.

8.6.8 PROTOlistDeletion
8.6.8.1 Syntax

class PROTOlistDeletion () {

 bit(1) listDescription;

 if (listDescription) {

 bit(1) morePROTOs;

 while (morePROTOs) {

 bit(BIFSConfiguration.protoIDbits) protoID;

 bit(1) morePROTOs;

 }

 } else { // vector

 bit(5) len;

 bit(len) numPROTOs;

 for (i=0; i < numPROTOs; i++)

 bit(BIFSConfiguration.protoIDbits) protoID;

 }

}

8.6.8.2 Semantics

This command can delete a selection of the existing PROTO declarations. This only deletes the definition, i.e. existing instances are not influenced by the deletion, but no new instance of the deleted PROTOs can be created.

8.6.9 MultipleFieldReplacement
8.6.9.1 Syntax

class MultipleFieldReplacement () {

 bit(BIFSConfiguration.nodeIDbits) nodeID;

 nodeData = getNodeFromID(nodeID);

 bit(1) maskAccess;

 if (maskAccess)

 MaskNodeDescription mnode(nodeData);

 else

 ListNodeDescription lnode(nodeData);

}

8.6.9.2 Semantics

This element allows the modification of some fields of a node. This element is meant to replace a set of FieldReplacement commands operating on the same node. The fact that the nodeID is not repeated allows for better compression.

8.6.10 MultipleIndexedFieldReplacement
8.6.10.1 Syntax

class MultipleIndexedFieldReplacement () {

bit(BIFSConfiguration.nodeIDbits) nodeID;

NodeData node = GetNodeFromID(nodeID);

int(node.nINbits) inID;

bit (5) lenPosition;

bit (5) lenNum;

bit (lenNum) numPositions;

for (i=0; i < numPositions; i++) {

bit(lenPosition) position;

SFField value(node.field[node.in2all[inID]]);

}

}

8.6.10.2 Semantics

This element allows the modification of some values of a multiple field. This element is meant to replace a set of IndexedValueReplacement commands operating on the same field. The fact that the nodeID and inID are not repeated allows for better compression.

8.6.11 GlobalQuantizationConfiguration
8.6.11.1 Syntax

class GlobalQuantizationConfiguration () {

SFNode gqp();

}

8.6.11.2 Semantics

This element allows the setting of the global quantizer defined in 7.2.2.108.2. The use of the SFNode structure allows to give this global quantizer a DEF ID, or to reset global quantization by setting it to a NULL node, or to use a QuantizationParameter node already present in the scene.

In the context of this command, a node of any other type than QuantizationParameter shall be treated as a NULL node, resetting global quantization. The isLocal field of QuantizationParameter is meaningless in this context.

8.6.12 NodeDeletionEx
8.6.12.1 Syntax

class NodeDeletionEx () {

bit (BIFSConfiguration.nodeIDbits) nodeID;

}

8.6.12.2 Semantics

The NodeDeletionEx has semantics of NodeDeletion, see 8.6.16.2, except when deleting a child of an OrderedGroup from the children field the corresponding entry for the order, if it exists, is also deleted from the order field.
ExtendedReplace
Syntax
class ExtendedReplace () {

 int position;

 boolean forceSF = false;

 FieldData targetField;

 bit(BIFSConfiguration.nodeIDbits) targetNodeID;

 NodeData targetNode = GetNodeFromID(targetNodeID);

 int(targetNode.nINbits) inID;

 targetField = targetNode.field[targetNode.in2all[inID]];

 if (!isSF(targetField)) {

 bit (1) indexedReplacement;

 if (indexedReplacement) {

 bit (1) dynamicIndex;

 if (dynamicIndex) {

 bit(BIFSConfiguration.nodeIDbits) idxNodeID ;

 NodeData idxNode = GetNodeFromID(idxNodeID);

 int(idxNode.nDEFbits) defID;

 idxField = idxNode.field[idxNode.def2all[defID]];

 position = 0;

 switch (idxField.fieldType) {

 case SFInt32:

 //if field value is >=0, position is field value, otherwise position is 0

 break;

 case SFBool:

 //if field value is true, position is 1, otherwise position is 0

 break;

 case SFFloat:

 //if field value is >=0, position is floor(field value) , otherwise position is 0

 break;

 case SFTime:

 //if field value is >=0, position is floor(field value) , otherwise position is 0

 break;

 default:
//other field types default to position = 0

 break;

 }

 } else {

 bit(2) replacementPosition;

 switch (replacementPosition) {

 case 0: // replacement at a specified position

 bit (16) idx;

 position = idx;

 break;

 case 2: // replacement at the beginning of the field

 break;

 case 3: // replacement at the end of the field

 break;

 }

 }

 if (targetField.fieldType==MFNode) {

 bit(1) childField;

 //if childField, replacement happens on the field of the child node at the given position in the MFNode

 if (childField) {

 targetNode = getNodeFromMFField(targetField, position);

 int(targetNode.nINbits) inID;

 targetField = targetNode.field[targetNode.in2all[inID]];

 }

 } else {

 forceSF = true;

 }

 }

 }

 bit(1) valueFromNode;

 if (valueFromNode) {

 bit(BIFSConfiguration.nodeIDbits) sourceNodeID ;

 NodeData sourceNode = GetNodeFromID(sourceNodeID);

 int(sourceNode.nDEFbits) sourceID;

 FieldData sourceField = sourceNode.field[sourceNode.def2all[sourceID]];

 if (sourceField.fieldType != targetField.fieldType) return;

 //copy value from the source field

 } else if (forceSF) {

 SFField value(targetField);

 //use coded value

 } else {

 Field value(targetField);

 }

8.6.13 }
Semantics

The ExtendedReplace command allows field replacement on a node with a coded value or a field value from another node. The replacement can be done on an indexed value of an MFField, with an indexed value coded either in the bit stream or taken from another node field.

If an indexed replacement on an MFNode field is performed, the ExtendedReplace command allows replacing the child node or only a field of the child node.

Examples:

The following command replaces a child in the children field of the node TR located at the index given in the whichChoice field of the node SW with a reference to the node LABEL:

XREPLACE TR.children[SW.whichChoice] BY USE LABEL
The following command replaces the "activate" field of a child in the children field of the node TR located at the index given in the whichChoice field of the node SW with the Boolean value TRUE.

XREPLACE TR.children[SW.whichChoice].activate BY TRUE
The following command replaces the "emissiveColor" field of the LABEL node by the "emissiveColor" field of the LABEL2 node:

XREPLACE LABEL.emissiveColor BY LABEL2.emissiveColor

8.6.14 ReplaceFromExternalData
Syntax
class ReplaceFromExternalData () {

 bit(BIFSConfiguration.nodeIDbits) nodeID;

 NodeData node = GetNodeFromID(nodeID);

 int(node.nINbits) inID;

 if (!isSF(node.field[node.in2all[inID]])) {

 bit(2) replacementPosition;

 switch (replacementPosition) {

 case 0: // replacement at a specified position

 bit (16) position;

 break;

 case 2: // replacement at the beginning of the field

 break;

 case 3: // replacement at the end of the field

 break;

 }

 }

 SFString externalAddress;

8.6.15 }
Semantics
This command allows the modification of a value of a single or multiple field, from the evaluation of the string given in the externalAddress. If the target field is a multiple field, the replacement is done at the specified position in the field.

8.6.16 ReplaceToExternalData
Syntax
class ReplaceToExternalData () {

 bit(BIFSConfiguration.nodeIDbits) nodeID;

 NodeData node = GetNodeFromID(nodeID);

 int(node.nDEFbits) defID;

 if (!isSF(node.field[node.def2all[defID]]) {

 bit(2) replacementPosition;

 switch (replacementPosition) {

 case 0: // read data from the specified position

 bit (16) position;

 break;

 case 2: // read data from the first item of the field

 break;

 case 3: // read data from the last item of the field

 break;

 }

 }

 SFString externalAddress;

}

8.6.16.1 Semantics
This element allows the modification of external data from a value of a single or multiple field. The external data is given by the external address. If the field is a multiple field, the data value is read from the specified position in the field.

8.6.17 IndexedValue Insertion

8.6.17.1 Syntax

class IndexedValueInsertion() {

bit(BIFSConfiguration.nodeIDbits) nodeID;

NodeUpdateField node=GetNodeFromID(nodeID);

int(node.nINbits) inID;

bit(2) insertionPosition;

switch (insertionPosition) {

case 0:
// insertion at a specified position

bit (16) position;

SFField value(node.field[node.in2all[inID]]);

break;

case 2:
// insertion at the beginning of the field

SFField value(node.field[node.in2all[inID]]);

break;

case 3:
// insertion at the end of the field

SFField value(node.field[node.in2all[inID]]);

break;

}

}

8.6.17.2 Semantics

The IndexedValueInsertion syntax allows the insertion of a new value in a multiple field at the desired position.

The nodeID of the node in whose field the value is to be inserted is first coded.

The field in which the value is inserted must be a multiple field type. The field is signaled with an inID. The inID is parsed using the table for the node type of the node in which the value is inserted. The node type may be determined from the nodeID
The position in the children field where the node shall be inserted, insertionPosition, is then coded:

If the insertionPosition is 0, the node is inserted at a specified position coded using 16 bits.

If the insertionPosition is 2, the node is inserted at the beginning of the field.

If the insertionPosition is 3, the node is inserted at the end of the field.

The node is then coded.

8.6.18 ROUTE Insertion

8.6.18.1 Syntax

class ROUTEInsertion() {

bit(1) isUpdatable;

if (isUpdatable) {

bit(BIFSConfiguration.routeIDbits) routeID;

}

bit(BIFSConfiguration.nodeIDbits) departureNodeID;

NodeData nodeOUT=GetNodeFromID(departureNodeID);

int(nodeOUT.nOUTbits) departureID;

bit(BIFSConfiguration.nodeIDbits) arrivalNodeID;

NodeData nodeIN=GetNodeFromID(arrivalNodeID);

int(nodeIN.nINbits) arrivalID;

}

8.6.18.2 Semantics

The ROUTE insertion syntax permits the addition of a new ROUTE in the list of ROUTEs for the current scene.

A ROUTE is inserted in the list of ROUTEs by specifying a new ROUTE.

If the boolean isUpdatable is TRUE, a routeID is coded to allow the ROUTE to be referenced.

The nodeID of the route’s departure, departureNodeID, is first coded.

The outID of the departure field in the departure node, departureID,is then coded.

The nodeID of the route’s arrival, arrivalNodeID, is then coded.

The inID of the arrival field in the arrival node, arrivalID, is then coded.

8.6.19 Deletion Command

8.6.19.1 Syntax

class DeletionCommand() {

bit(2) parameterType ;

switch (parameterType) {

case 0:

NodeDeletion nodeDelete();

break ;

case 2:

IndexedValueDeletion idxDelete();

break ;

case 3:

ROUTEDeletion ROUTEDelete();

break ;

}

}

8.6.19.2 Semantics

There are three types of deletion commands, signalled by the 2-bit flag parameterType.

If parameterType is 0, a NodeDeletion is expected.

If parameterType is 2, an IndexedValueDeletion is expected.

If parameterType is 3, a ROUTEDeletion is expected.

8.6.20 Node Deletion

8.6.20.1 Syntax

class NodeDeletion() {

bit(BIFSConfiguration.nodeIDbits) nodeID;

}
8.6.20.2 Semantics

The NodeDeletion syntax permits the deletion of a node with a specific nodeID. The node deletion deletes the node and all its instances, if it was referenced elsewhere in the scene with a USE statement.

The node deletion is signalled by the nodeID of the node to be deleted. When deleting a node, all fields shall also deleted, as well as all ROUTEs related to the node or its fields.

8.6.21 IndexedValue Deletion

8.6.21.1 Syntax

class IndexedValueDeletion() {

bit(BIFSConfiguration.nodeIDbits) nodeID;

NodeData node=GetNodeFromID(nodeID);

int(node.nINbits) inID;

bit(2) deletionPosition;

switch (deletionPosition) {

case 0:
// deletion at a specified position

bit(16) position;

break;

case 2:
// deletion at the beginning of the field

break;

case 3:
// deletion at the end of the field

break;

}

}

8.6.21.2 Semantics

The IndexedValueDeletion syntax permits the deletion of an element of a multiple value field.

The nodeID of the node to be deleted is first coded.

The inID of the field to be deleted is then coded.

The position in the children field from where the value shall be deleted, deletionPosition, is then coded:

If the insertionPosition is 0, the value at specified position, coded using 16 bits, shall be deleted.

If the insertionPosition is 2, the value at the beginning of the field shall be deleted.

If the insertionPosition is 3, the value at the end of the field shall be deleted.

The IndexedValueDeletion operation on an MFNode element that is “DEF”ed or “USE”ed removes only that reference to the node and leaves any others intact. The implementation should behave as if the deleted node’s usage is reference counted and decrement the reference count; when the reference count indicates that there will be no more instances the node definition itself is removed.

8.6.22 ROUTE Deletion

8.6.22.1 Syntax

class ROUTEDeletion() {

bit(BIFSConfiguration.routeIDbits) routeID;
}

8.6.22.2 Semantics

The ROUTEDeletion syntax permits the deletion of a ROUTE with a given routeID from the list of active ROUTEs.

Deleting a ROUTE is performed by specifying its routeID. This is similar to the deletion of a node.

8.6.23 Replacement Command

8.6.23.1 Syntax

class ReplacementCommand() {

bit(2) parameterType ;

switch (parameterType) {

case 0:

NodeReplacement nodeReplace();

break;

case 1:

FieldReplacement fieldReplace();

break;

case 2:

IndexedValueReplacement idxReplace();

break;

case 3:

ROUTEReplacement ROUTEReplace();

break;

}

}

8.6.23.2 Semantics

There are 4 replacement commands, signalled by the 2-bit flag parameterType.

If parameterType is 0, a NodeReplacement is expected.

If parameterType is 1, a FieldReplacement is expected.

If parameterType is 2, a IndexedValueReplacement is expected.

If parameterType is 3, a ROUTEReplacement is expected.

8.6.24 Node Replacement

8.6.24.1 Syntax

class NodeReplacement() {

bit(BIFSConfiguration.nodeIDbits) nodeID;

SFNode node(SFWorldNode);

}

8.6.24.2 Semantics

The NodeReplacement syntax permits the deletion of an existing node and its replacement with a new node. All ROUTEs pointing to the deleted node as well as any instances of the node created through the USE mechanism shall be deleted.

The node to be replaced is signalled by its nodeID. The new node is encoded with the SFWorldNode node data type, which is valid for all BIFS nodes, in order to avoid necessitating the NDT of the replaced node to be established.

8.6.25 Field Replacement

8.6.25.1 Syntax

class FieldReplacement() {

bit(BIFSConfiguration.nodeIDbits) nodeID ;

NodeData node = GetNodeFromID(nodeID);

int(node.nINbits) inID;

Field value(node.field[node.in2all[inID]]);

}

8.6.25.2 Semantics

This FieldReplacement syntax permits the modification of the value of a field of an existing node. The existing value shall be deleted and replaced with the new value.

The nodeID of the node whose field is to be modified is first coded

The inID of the field to be modified is then coded

The new field is then coded

8.6.26 IndexedValueReplacement

8.6.26.1 Syntax

class IndexedValueReplacement() {

bit(BIFSConfiguration.nodeIDbits) nodeID;

NodeData node = GetNodeFromID(nodeID);

int(node.nINbits) inID;

bit(2) replacementPosition;

switch (replacementPosition) {

case 0:
// replacement at a specified position

bit (16) position;

SFField value(node.field[node.in2all[inID]]);

break;

case 2:
// replacement at the beginning of the field

SFField value(node.field[node.in2all[inID]]);

Break;

case 3:
// replacement at the end of the field

SFField value(node.field[node.in2all[inID]]);

break;

}

}

8.6.26.2 Semantics

The IndexedValueReplacement syntax permits the modification of the value of an element of a multiple field. As for any multiple field access, it is possible to replace at the beginning, the end or at a specified position in the multiple field.

The nodeID of the node whose field is to be modified is first coded

The inID of the field whose value is to be modified is then coded

The position in the children field where value has to be modified, replacementPosition, is then coded:

If the insertionPosition is 0, the value at specified position, coded using 16 bits, is modified.

If the insertionPosition is 2, the value at the beginning of the field is modified.

If the insertionPosition is 3, the value at the end of the field is modified.

The new value is then coded as a SFField.

The IndexedValueReplacement operation replaces an MFNode element. If the replaced element is “DEF”ed or “USE”ed, only that reference to the node is replaced and all others are left intact. The implementation should behave as if the replaced node’s usage is reference counted and decrement the reference count; when the reference count indicates that there are no more instances, the node definition itself is replaced.

8.6.27 ROUTE Replacement

8.6.27.1 Syntax

class ROUTEReplacement() {

bit(BIFSConfiguration.routeIDbits) routeID;

bit(BIFSConfiguration.nodeIDbits) departureNodeID;

NodeData nodeOUT = GetNodeFromID(nodeID);

int(nodeOUT.nOUTbits) departureID;

bit(BIFSConfiguration.nodeIDbits) arrivalNodeID;

NodeData nodeIN = GetNodeFromID(nodeID);

int(nodeIN.nINbits) arrivalID;

}

8.6.27.2 Semantics

Replacing a ROUTE deletes the replaced ROUTE and replaces it with the new ROUTE.

The routeID of the ROUTE to be replaced is first coded.

The nodeID of the new route’s departure, departureNodeID, is then coded.

The outID of the departure field in the departure node, departureID, is then coded.

The nodeID of the route’s arrival, arrivalNodeID, is then coded.

The inID of the arrival field in the arrival node, arrivalID, is then coded.

8.6.28 Scene ReplaceCommand

8.6.28.1 Syntax

class SceneReplaceCommand() {

BIFSScene scene();

}

8.6.28.2 Semantics

Replacing a scene results in the entire BIFS scene being replaced with a new BIFSScene scene. When used in the context of an Inline node, this corresponds to replacement of the sub-scene (previously assumed to be empty). In a BIFS elementary stream, the SceneReplacement commands are the only random access points.

8.7 BIFS Scene

8.7.1 BIFSScene

8.7.1.1 Syntax

class BIFSScene() {

bit(6) reserved;

bit(1) USENAMES;

PROTOlist protos();

SFNode nodes(SFTopNode);

bit(1) hasROUTEs;

if (hasROUTEs) {

ROUTEs routes();

}

}

8.7.1.2 Semantics

The integer reserved may be used in future extensions. It shall be set to 0.

The BIFSScene structure represents the global scene. A BIFSScene is always associated to a ReplaceScene BIFS-Command message. The BIFSScene is structured in the following way:

The nodes of the scene are described first as an SFNode. The first node in the scene shall be of type SFTopNode (see node coding tables in electronic attachment).

A boolean value, USENAMES, sets a global flag that indicates whether PROTOs, SFNodes, and ROUTEs store their field names and IDs as strings, as well as integer values. (This is needed for MPEG-J and Scripts, which refer to fields, by their explicit string name).

A list of PROTOs associated with the scene is stored in protos.

ROUTEs are described after all nodes

All BIFS scenes shall begin with a node of type SFTopNode. This implies that the top node may be one of Layer2D, OrderedGroup, Group or Layer3D.

8.7.2 Encoding of PROTOs

This subclause describes how PROTOs, a mechanism that allows scene components to be reused, are encoded. The encoding of PROTOs allows specification of quantization and animation categories for the PROTO parameters, so that PROTOs can take advantage of BIFS compression capabilities just like any other (predefined) node in the node coding tables in electronic attachment. A PROTOlist is stored in a BIFSScene and contains a list of PROTOs that are associated with that scene.

8.7.2.1 PROTOlist

8.7.2.1.1 Syntax

class PROTOlist() {

bit(1) morePROTOs;

while (morePROTOs) {

PROTOdeclaration proto();

bit(1) morePROTOs;

}

}

8.7.2.1.2 Semantics

The PROTOlist stores a list of PROTOs. A one-bit flag morePROTOs signals the fact that more PROTOs are being declared.

8.7.2.2 PROTOdeclaration

8.7.2.2.1 Syntax

PROTOdeclaration() {

PROTOinterfaceDefintion interface();

NodeData protoData = MakePROTOdata(interface);

PROTOcode code(protoData);

PROTOcodingTable table(protoData);

}

8.7.2.2.2 Semantics

The PROTO declaration is made of the PROTOinterface definition, the PROTO implementation in terms of nodes, and the PROTO coding table. The PROTO coding table codes the equivalent of the Node Coding table for the PROTO. This makes it possible to animate, quantize and update the PROTO instantiations using the identical mechanisms used for the pre-defined nodes.

8.7.2.3 PROTOinterfaceDefinition

8.7.2.3.1 Syntax

class PROTOinterfaceDefinition {

bit(protoIDbits) protoID;

if (USENAMES) {

String PROTOname;

}

bit(1) moreFields;

while (moreFields) {

bit(2) eventType;

bit(6) fieldType;

if (USENAMES) {

String fieldName;

}

if ((eventType == 0b00) || (eventType == 0b01)) {

FieldData fieldData = MakeField(fieldType);

Field defaultValue(fieldData, null);

}

bit(1) moreFields;

}

}

8.7.2.3.2 Semantics

A protoID is given to the PROTO in order to be able to refer to it. The protoIDbits is obtained from the BIFSConfiguration and encodes the ID of the PROTO in the PROTO table. The PROTO interface contains a one bit moreFields field that specifies if more PROTO fields are encoded. Then for each field, the event type (exposedField, field, eventIn, eventOut) and the fieldType is given (SFBool, SFFloat, etc). The eventType is coded using 2 bits according to Table 85. The fieldType is coded using 6 bits according toTable 86

. When the field type is a node, it is coded as an SFWorldNode or MFWorldNode. The USENAMES is a static constant set at the BIFSScene level, which selects the fact that node and field names are encoded as Strings as well as IDs.

Table 85 — eventTypes.

	field
	0b00

	exposedField
	0b01

	eventIn
	0b10

	eventOut
	0b11

8.7.2.4 PROTOcode

8.7.2.4.1 Syntax

class PROTOcode(isedNodeData protoData) {

 bit(1) isExtern;

 if (isExtern) {

 MFUrl locations;

 } else {

 PROTOlist subProtos();

 do {

 SFNode node(SFWorldNodeType, protoData);

 bit(1) moreNodes;

 } while (moreNodes);

 bit(1) hasROUTEs;

 if (hasROUTEs) {

 ROUTEs routes();

 }

 }

}
8.7.2.4.2 Semantics

First a flag signals whether the prototype is a PROTO, which then has his code included in the proto declaration, or if it is an EXTERNPROTO, in which case only an external reference is provided. The EXTERNPROTO is an authoring facility that makes possible the distribution of PROTOs in external libraries that can be reused across scenes. The EXTERNPROTO opens a BIFS-Command stream that contains a ReplaceScene command with a BIFSScene containing the PROTO definitions. The EXTERNPROTO code is found in the PROTO contained in this new scene. The url field allows to uniquely identify the EXTERNPROTO code through the following url scheme : “resource_URL#ProtoID” or “resource_URL#ProtoName”, where resource_URL is the location of the scene to open, ProtoID the binary ID of the proto in the new scene and ProtoName the name of the proto in the new scene when this scene is encoded with USENAMES. In case “#ProtoID” or “#ProtoName” is omitted in the location, the first proto in the new scene with the same PROTOinterfaceDefinition shall be used. Nodes contained in the EXTERNPROTO scene shall be ignored. Opening of the scene description stream follows the MPEG-4 content access procedure described in 7.2.7.3.8.2, ISO/IEC 14496-1.

In case of a PROTO, the PROTOcode contains a (possibly empty) list of the sub-PROTOs of this PROTO in subProtos, followed by the code to execute the PROTO. The code is specified as a set of SFNodes, using a standard SFNode definition with the additional possibility to declare an IS field. Moreover, the PROTO body may contain ROUTEs if the hasROUTE flag is set to 1.

8.7.2.5 PROTOCodingTable

8.7.2.5.1 Syntax

PROTOCodingTable(NodeData protoData) {

InterfaceCodingMask mask(protoData);

InterfaceCodingParameters icp(protoData);

}
8.7.2.5.2 Semantics

The PROTO coding table defines the Quant and Anim parameters and the parameters necessary to reconstruct a NCT table for the PROTO definition.

8.7.2.6 InterfaceCodingMask

8.7.2.6.1 Syntax

InterfaceCodingMask(NodeData protoData) {

bit(1) protoData.useQuant;

bit(1) protoData.useAnim;

}
8.7.2.6.2 Semantics

The mask encodes two Boolean values to store whether the PROTO can further be animated (using BIFS-Anim), or quantized.

8.7.2.7 InterfaceCodingParameters

8.7.2.7.1 Syntax

InterfaceCodingParameters(InterfaceCodingMask mask, NodeData protoData) {

for (int i =0; i < protoData.numALLfields ; i++) {

if (protoData.useQuant) {

if (protoData.field[i].isDEF()) {

bit(4) quantCategory;

if (quantCategory == 13)

bit(5) nbBits;

bit(1) hasMinMax;

if (hasMinMax) {

CastToSF(Field) minFieldValue(protoData.field[i]), null);

CastToSF(Field) maxFieldValue(protoData.field[i]), null);

}

}

}

if (protoData.useAnim) {

if (protoData.field[i].isIN()) {

bit(1) isDyn;

if (isDyn) {

int(4) animCategory;

}

}

}

}

}
8.7.2.7.2 Semantics

The InterfaceCodingParameters includes all the necessary parameters to further update, quantize and animate the PROTO instantiation.

If the useQuant information is TRUE, and the field is of « DEF » type, the quantization category will be encoded. If the category is 13, the number of bits for this category is further needed. To quantize, it is further necessary to encode the min and max values for the field. When the field is an SFField, the functions CastToSF(field) parses an SFField, but when the field is an MFField, the function CastToSF() parses the SFType corresponding to the MFType.

If the useAnim is TRUE and the field type is IN, then the anim category will be encoded.

8.7.3 SFNode

8.7.3.1 Syntax

class SFNode(int nodeDataType, NodeData protoNodeData) {

 bit(1) isReused;

 if (isReused) {

 bit(BIFSConfiguration.nodeIDbits) nodeID;

 } else {

 int nodeGroup = 0;

 do {

 nodeGroup++;

 bit(GetNDTnbBits(nodeGroup, nodeDataType)) localNodeType;

 } while (localNodeType == 0);

 if (nodeGroup == 2 && localNodeType == 1) {

 bit(BIFSConfiguration.PROTOIDbits) protoID;

 nodeDataType = PROTODataType;

 nodeType = GetNodeType(nodeGroup, nodeDataType, protoID);

 }

 else {

 nodeType = GetNodeType(nodeGroup, NodeDataType, localNodeType);

 }

 bit(1) isUpdateable;

 if (isUpdateable) {

 bit(BIFSConfiguration.nodeIDbits) nodeID;

 if (USENAMES) {

 String name;

 }

 }

if (nodeGroup == 1 && nodeType == IndexedFaceSetType
 && BIFSConfiguration.use3DmeshCoding == 1) {

 Mesh3D mnode;

 } else {

 bit(1) MaskAccess;

 NodeData nodeData = MakeNode(nodeGroup, nodeDataType, nodeType);

 nodeData.protoData = protoNodeData;

 if (MaskAccess) {

 MaskNodeDescription mnode(nodeData);

 } else {

 ListNodeDescription lnode(nodeData);

 }

 }

 }

}

8.7.3.2 Semantics

The SFNode syntax represents a generic node. The encoding depends on the context of the parent field of the node. This context is described by the parent field’s node data type (NDT).

If isReused is TRUE then this node is a reference to another node, identified by its nodeID. This is equivalent to the use of the USE statement in ISO/IEC 14772-1:1998. In the special case where the nodeID of the node has the value (2^(BIFSConfiguration.nodeIDbits) – 1), that is all 1s, then the node shall be deemed to have NULL value. This special value shall not be used as a node DEF ID.

If isReused is FALSE, then a complete node is provided in the bitstream. This requires that the nodeType be inferred from the node data type. The node is referenced by its localNodeType in the node data type table. Then, this information is converted into the node’s nodeType (e.g. its localNodeType in the SFWorldNode NDT table for the particular node group).

If the localNodeType is 0 this is an extension code to escape to the next node grouping (see 8.2.2 for a definition of node groups). For each extension code decoded the nodeGroup index is incremented until all extension codes are consumed.

Note clarifying extension coding: During the specification amendment process, new node data types have been added. When a new node data type is added to this specification it is always in a new node group. However, conceptually it is added to all existing groups. In many groups, and of course in those groups before it was defined, there will be no nodes of that type. Hence the only entry in the node type table for each group, except group 2, will be the extension code 0. Since it is the only entry it does not need to be explicitly coded. Only in group 2 is this not true; there the table also includes PROTO-value of 1. For example to code the BAP node from the SFBAPNode type from group 2 there is first an implicit 0 extension code to get to group 2 (there are no SFBAPNode types in group 1 hence there is only one entry, the zero extension, which does not need explicit coding) and then the BAP node itself is coded as 10.

If the nodeGroup is 2 and the LocalNodeType is equal to 1, this indicates that the NodeType is a PROTO. Then, the global node type is constructed according to the list of PROTOs declared and their ID. When a PROTO is declared, a new node type is created from the protoID and dynamically added to the SFWorldNode NDT table for the node group of index two. So, the nodeType can be inferred from the given protoID, irrespectively from the nodeDataType. To specify that nodeDataType is irrelevant in the case of PROTO its value is set to PROTODataType.
When a PROTO is declared, a new node type is created and added to the global node type table of supported nodes. The function GetPROTONodeType(PROTODataType, PROTONodeType) returns the ID for the extended global node type of a given PROTO given its PROTO type.

If a node is detected as an IndexedFaceSet node and the Mesh3D syntax is used (see 7.2.2.64), then the IndexedFaceSet node is coded as a specific visual object (see ISO/IEC 14496-2:2004).
The isUpdatable flag enables the assignment of a nodeID to the node. This is equivalent to the DEF statement of ISO/IEC 14772-1:1998.

The node definition follows using either a MaskNodeDescription, or a ListNodeDescription.

The nodeType is a number that represents the type of the node. This nodeType is coded using a variable number of bits for efficiency reasons. The exact type of node may be determined from the nodeType as follows:

1.
The data type of the field parsed indicates the node data type. The root node is always of type SFTopNode.

2.
From the nodeDataType, the nodeGroup expected and the total number of node types in the category, the number of bits representing the nodeType is obtained (this number is given in the NDT tables in node coding tables in electronic attachment).

3.
When greater than 0 (1 if nodeGroup is 2), the nodeType gives the nature of the node to be parsed.
EXAMPLE (The Shape node has 2 fields defined as:

exposedField SFAppearanceNode

Appearance

NULL

exposedField SFGeometry3DNode

geometry

NULL

When decoding a Shape node, if the first field is transmitted, a node of type SFAppearanceNode is expected. The only node with SFAppearanceNode type is the Appearance node, and hence the nodeType can be coded using 0 bits. When decoding the Appearance node, the following fields can be found:

exposedField SFMaterialNode

Material NULL

exposedField SFTextureNode

texture NULL

exposedField SFTextureTransformNode
TextureTransform NULL

8.7.4 MaskNodeDescription

8.7.4.1 Syntax

class MaskNodeDescription(NodeData node) {

if (node.protoData != null) {

for (i=0; i<node.numALLfields; i++) {

bit(1) Mask;

if (Mask) {

bit(1) isedField;

if (isedField) {

 unsigned int(node.proto.nALLbits) protoField;

} else {

 Field value(node.field[i]], node.protoData);

}

}

}

} else { //regular list of fields – not from a PROTO

for (i=0; i<node.numDEFfields; i++) {

bit(1) Mask;

if (Mask) {

Field value(node.field[node.def2all[i]], node.protoData);

}

}

}

}

8.7.4.2 Semantics

If the encoded node is a PROTO then all the fields are scanned. Those that have a Mask value of 1 either have a value read in or are ISed fields indicated by isedField. The ISed fields read a reference to the PROTO interface field to which they refer.

If the encoded node is not a PROTO, then in the MaskNodeDescription, a mask indicates, for each “def” mode field (those having a defID) of this node type, if the field value is specified. Fields are sent in the order indicated in node coding tables in electronic attachment . The field types are thus known and permit the field’s value to be decoded.

8.7.5 ListNodeDescription

8.7.5.1 Syntax

class ListNodeDescription (NodeData node) {

bit(1) endFlag;

while (!EndFlag){

if (node.protoData != null) {

bit(1) isedField;

if (isedField){

bit(node.nALLbits) fieldRef;

bit(node.proto.nALLbits) protoField;

} else {

bit(node.nDEFbits) fieldRef;

Field value(node.field[node.def2all[fieldRef]], node.protoData);

}

}

else {

bit(node.nDEFbits) fieldRef;

Field value(node.field[node.def2all[fieldRef]], node.protoData);

}

bit(1) endFlag;

}

}

8.7.5.2 Semantics

In the ListNodeDescription, fields are directly addressed by their field reference, fieldRef. The reference is sent as a defID and its parsing depends on the node type (see 8.2.3). When the fields belong to a PROTO, they may be ISed fields, indicated by isedField. In this case, a reference to the PROTOinterface is coded in protoField. A field may appear several times if ISed by different fields of the PROTOInterface. Since all fields may be ISed, PROTO field references are encoded using node.nALLbits, where as usual node field references are encoded using only node.nDEFbits. Fields that are not Ised may have a default value assigned to them.

Non-PROTO fields always have a default value coded.

8.7.6 Field

8.7.6.1 Syntax

class Field(FieldData field, NodeData protoNodeData) {

if (isSF(field))

SFField svalue(field, protoNodeData);

else {

if (BIFSConfig.usePredictiveMFField == 1) {

bit(1) usePredictive;

if (usePredictive)

PredictiveMFField mvalue(field);

else

MFField mvalue(field, protoNodeData);

} else {

MFField mvalue(field, protoNodeData);

}

}

}

8.7.6.2 Semantics

A field is encoded according to its type: single (SFField) or multiple (MFField). A multiple field is a collection of single fields.

8.7.7 MFField

8.7.7.1 Syntax

class MFField(FieldData field, NodeData protoNodeData) {

bit(1) reserved;

if (!reserved) {

bit(1) isListDescription;

if (isListDescription)

MFListDescription lfield(field, protoNodeData);

else

MFVectorDescription vfield(field, protoNodeData);

}

}

8.7.7.2 Semantics

The bit reserved is reserved for future extension. The bit shall be set to 0.

MFField types can be encoded with a list (MFListDescription) or vector (MFVectorDescription) description.

8.7.8 MFListDescription

8.7.8.1 Syntax

class MFListDescription(FieldData field, NodeData protoNodeData) {

bit(1) endFlag;

while (!endFlag) {

SFField field(field, protoNodeData);

bit(1) endFlag;

}

}

8.7.8.2 Semantics

The MFField type is encoded as a list of single fields.

8.7.9 MFVectorDescription

8.7.9.1 Syntax

class MFVectorDescription(FieldData field, NodeData protoNodeData) {

int(5) NbBits;

int(NbBits)
numberOfFields;

SFField field[numberOfFields](field, protoNodeData);
}

8.7.9.2 Semantics

The MFField type is encoded as a vector of fields whose dimension is specified.

The number of bits, NbBits, used to specify the dimension of the vector is first coded. The actual dimension is then coded as an unsigned integer using NbBits. The fields are then coded in order.

8.7.10 PredictiveMFField

8.7.10.1 Syntax

class PredictiveMFField (FieldData field) {

AnimFieldQP
aqp = new AnimFieldQP();

aqp.useDefault = FALSE;

field.aqp = aqp;

ArrayHeader
header(field);

ArrayOfValues
values(field);

}
8.7.10.2 Semantic

The array of data is composed of an ArrayHeader, and an ArrayOfValues. Note that the FieldData structure is filled as descrtibed in the BIFS-Scene quantization process (subclause 8.3.1).

The process applied for optimal encoding of BIFS multiple fields is exactly identical to the BIFS-Anim process (See Table 84):

· Compensation on the P values;

· Inverse Quantization into single field values.

The compensation process uses the quant type as well as Pmin and PNbBits, defined in the ArrayQP and InitialArrayQP, and is summarized in Table 84.

The inverse quantization process uses the values of floatMax, floatMin, and NbBit as defined in the BIFS quantization process and as defined by the QuantizationParameter node.

8.7.11 ArrayHeader

8.7.11.1 Syntax

class ArrayHeader(FieldData field){

uint(5) NbBits;

int(NbBits) numberOfFields;

bit(2) intraMode;

InitialArrayQP
qp(intraMode,field);

}
8.7.11.2 Semantic

The array header contains first information to specify the number of fields (NbBits is the number of bits used to code the numberOfFields). Then the Intra/Predictive policy (intraMode) is specified as follows:

0 : Only one Intra value at the beginning and then only predictive coded values;

1 : An Intra every given number of predictive values;

2 : A bit for each value to determine whether the value is an Intra or predictive value.

Lastly, the InitialArrayQP is coded.

8.7.12 InitialArrayQP

8.7.12.1 Syntax

class InitialArrayQP(int intraMode, FieldData field){

switch (intraMode) {

case 1 :

int(5)

NbBits;

int(NbBits)
intraInterval;

// no break

case 0 :

case 2 :

int(5) CompNbBits;

for (int i=0;i< getNbBound(field.quantType);i++) {

int(field.NbBits+1) vq;

field.aqp.Pmin[i] = vq-2^field.NbBits;

}

// no break

case 3:

break;

}

}
8.7.12.2 Semantic

If intraMode is 1, the size of the interval between two intras is first specified. Independent of the intraMode, the number of Bits used in Predictive mode CompNbBits and the CompMins are coded. The function getNbBound() is a function that returns the number of components of the quantizing bounds, and depends on the object. For instance it returns 4 for 4D positions, 3 for 3D positions, 2 for 2D positions, and 3 for rotations. SeeTable 84Table 71

. The values CompNbBits and CompMin are stored in the field.aqp AnimationQP structure and are used for the compensation process as defined in and subclause 8.4 .

8.7.13 ArrayQP

8.7.13.1 Syntax

class ArrayQP(int intraMode, FieldData field){

switch (intraMode) {

case 1 :

int(5) NbBits;

int(NbBits) intraInterval;

// no break

case 0 :

case 2 :

boolean(1)
hasCompNbBits

if (hasCompNbBits) {

int(5) CompNbBits;

}

boolean(1)
hasCompMin

if (hasCompMin) {

for (int i=0;i< getNbBound(field.quantType); ++i) {

int(field.NbBits+1) vq;

field.aqp.Pmin[i] = vq-2^field.NbBits;

}

}

case 3:

break;

}

}
8.7.13.2 Semantic

ArrayQP fulfills the same purpose as InitialArrayQP, but in this case, the parameters are optionaly set. If they are not set in the stream, they are set by default, in reference to the InitialArrayQP or the latest received value of the parameter.

If IntraMode is 1, the size of the interval between two intras is first specified. In any case, the number of Bits used in Predictive mode (CompNbBits) and the CompMins are coded. . The function getNbBound() is a function that returns the number of components of the quantizing bounds, and depends on the object. For instance it returns 4 for 4D positions, 3 for 3D positions, 2 for 2D positions, and 3 for rotations. See8.4Table 84

 and subclause Table 71

. The values CompNbBits and CompMin are stored in the field.aqp AnimationQP structure, and are used for the compensation process as defined in .

Predictive encoding of 4D values is done per component, extending the scheme for 3D values. As for BIFS-Commands and BIFS-Anim, position3D and scale quantizers parameters are used.

8.7.14 ArrayOfValues

8.7.14.1 Syntax

class ArrayOfValues(FieldData field) {

ArrayIValue value[0];

for (int i=1; i < numberOfFields;i++) {

Switch (intraMode) {

case 0:

ArrayPValue value(field);

break;

case 1:

if ((i % intraInterval) == 0) {

bit(1) hasQP;

if (hasQP) {

ArrayQP qp(field);

}

ArrayIValue value(field);

} else {

ArrayPvalue value(field);

}

break;

case 2:

bit (1) isIntra;

if (isIntra) {

bit(1) hasQP;

if (hasQP) {

ArrayQP qp(field);

}

ArrayIValue value;

} else {

ArrayPvalue value;

}

break;

}

}
8.7.14.2 Semantic

The array of values first codes a first intra value, and then, according to the IntraMode, codes Intra or Predictive values. In Predictive-only mode, no more Intra values are coded. In the second mode, an Intra is sent every intraInterval values. In the third mode, an isIntra bit selects between Predictive and Intra mode at each value. In that case, an ArrayQP can be sent for Intra values. If an ArrayQP is sent, the statistics of the arithmetic encoder are reset.

8.7.15 ArrayIValue

8.7.15.1 Syntax

class ArrayIValue(FieldData field) {

switch (field.quantType) {

case 9:
// Normal

int(1) direction

case 10:
// Rotation

int(2) orientation

break;

default:

break;

}

for (j=0;j<getNbComp(field);j++)

int(field.nbBits)
vq[j];

}
8.7.15.2 Semantic

The ArrayIValue represents the quantized intra value of a field. The value is coded following the quantization process described in the quantization section, and according to the type of the field. For normals the direction and orientation values specified in the quantization process are first coded. For rotations only the orientation value is coded. If the bit representing the direction is 0, the normal’s direction is set to 1, if the bit is 1, the normal’s direction is set to –1. The value of the orientation is coded as an unsigned integer using 2 bits. The compressed components vq[i] of the field’s value are then coded as a sequence of unsigned integers using the number of bits specified in the field data structure. The decoding process in intra mode computes the animation values by applying the inverse quantization process.

8.7.16 ArrayPValue

8.7.16.1 Syntax

class ArrayPValue(FieldData field) {

switch (field.quantType) {

case 9:
// Normal

int(1)

inverse

break;

default:

break;

}

for (j=0;j<getNbComp(field);j++) {

int(aacNbBits)
vqDelta[j];

}

}
8.7.16.2 Semantic

The ArrayPValue represents the difference between the previously received quantized value and the current quantized value of a field. The value is coded using the compensation process as described above.

The values are decoded from the adaptive arithmetic coder bitstream with the procedure v_aac = aa_decode(model). The model is updated with the procedure model_update(model, v_aac). For normals the inverse value is decoded through the adaptive arithmetic coder with a uniform, non-updated model. The compensation values vqDelta[i] are then decoded one by one. Let vq(t-1) be the quantized value decoded at the previous frame and v_aac(t) the value decoded by the frame’s Adaptive Arithmetic Decoder at instant t with the field’s models. The value a time t is obtained from the previous value as follows :

vDelta(t) = v_acc(t) + Pmin

vq(t) = AddDelta(vq(t-1), vDelta(t))

v(t) = InvQuant(vq(t))

The field’s models are updated each time a value is decoded through the adaptive arithmetic coder. If the animType is 1 (Position3D) or 2 (Position2D), each component of the field’s value is using its own model and offset PMin[i]. In all other cases the same model and offset PMin[0] is used for all the components.
8.7.17 SFField

8.7.17.1 Syntax

class SFField(FieldData field, NodeData protoNodeData) {

switch (field.fieldType) {

case SFNodeType:

SFNode nValue(field.fieldType, protoNodeData);

break;

case SFBoolType:

SFBool bValue;

break;

case SFColorType:

SFColor cValue(field);

break;

case SFFloatType:

SFFloat fValue(field);

break;

case SFInt32Type:

SFInt32 iValue(field);

break;

case SFRotationType:

SFRotation rValue(field);

break;

case SFStringType:

SFString sValue;

break;

case SFTimeType:

SFTime tValue;

break;

case SFUrlType:

SFUrl uValue;

break;

case SFVec2fType:

SFVec2f v2Value(field);

break;

case SFVec3fType:

SFVec3f v3Value(field);

break;

case SFVec4fType:

SFVec4f v4Value(field);

break;

case SFImageType:

SFImage imageValue(field);

break;

case SFCommandBufferType:

SFCommandBuffer commandValue(field);

break;

case SFScriptType:

SFScript scriptValue(protoNodeData);

break;

 case SFAttrRefType:

 SFAttrRef attrRefValue(field);

 break;

}

}

8.7.17.2 Semantics

Each field is encoded according to its fieldType.

8.7.18 GenericFloat

8.7.18.1 Syntax

class GenericFloat(boolean useEfficientCoding) {

if (!useEfficientCoding) {

float(32) value;

} else {

EfficientFloat
value;

}

}

8.7.18.2 Semantics

If the parameter useEfficientCoding is true, the float is coded using the EfficientFloat scheme. Otherwise, the IEEE 32 bit format for float coding is used.

8.7.19 EfficientFloat

8.7.19.1 Syntax

class EfficientFloat {

unsigned int(4) mantissaLength;

if (mantissaLength != 0) {

int(3) exponentLength;

int(1) mantissaSign;

int(mantissaLength-1) mantissa;

if (exponentLength != 0) {

int(1) exponentSign;

int(exponentLength-1) exponent;

}

}

}

8.7.19.2 Semantics

For floating point values it is possible to use a more economical representation than the standard 32-bit format, as specified in the EfficientFloat structure. This representation separately encodes the size of the exponent (base 2) and mantissa of the number.

If the mantissaLength is 0, the decoded value is 0 and further parameters are not coded.

If the mantissaLength is not 0, the exponentLength, mantissaSign and mantissa are coded. The mantissa sign is 1 when the mantissa is negative, otherwise it is 0.

The mantissa syntax element contains the actual mantissa with the leading 1 removed, hence only (mantissaLength-1) bits are needed to encode it.

If the exponentLength is 0 then exponent is not parsed, and the decoded exponent is set, by default, to 0. Otherwise, the sign is read, with exponentSign=1 used to denote a negative exponent. The leading 1 of the exponent is not coded, so that exponent can be encoded using exponentLength-1 bits.

The actual mantissa and exponent are, respectively, (2 mantissaLength-1 + mantissa) and

(2 exponentLength-1 + exponent), thus in all other cases the decoded value shall be:

[image: image224.wmf])

exponent

2

Sign).(

2.exponent

-

(1

1

-

ngth

mantissaLe

1

ngth

exponentLe

2

).

mantissa

Sign).(2

2.mantissa

-

(1

+

-

+

8.7.20 SFBool

8.7.20.1 Syntax

class SFBool {

bit(1) value;

}

8.7.20.2 Semantics

If value is 1 the decoded boolean is set to TRUE. If value is 0, the decoded boolean is set to FALSE.

8.7.21 SFColor

8.7.21.1 Syntax

class SFColor(FieldData field) {

if (field.isQuantized) {

QuantizedField qvalue(field);

} else {

GenericFloat rValue(field.useEfficientCoding);

GenericFloat gValue(field.useEfficientCoding);

GenericFloat bValue(field.useEfficientCoding);

}

}

8.7.21.2 Semantics

If the field’s isQuantized bit is TRUE, the QuantizedField scheme shall be used. Otherwise each component of the SFColor is coded using the GenericFloat scheme.

8.7.22 SFFloat

8.7.22.1 Syntax

class SFFloat(FieldData field) {

if (field.isQuantized) {

QuantizedField qvalue(field);

} else{

GenericFloat value(field.useEfficientCoding);

}

}

8.7.22.2 Semantics

If the field’s isQuantized bit is TRUE, the QuantizedField scheme shall be used. Otherwise the SFFloat is coded using the GenericFloat scheme.

8.7.23 SFInt32

8.7.23.1 Syntax

class SFInt32(FieldData field) {

if (field.isQuantized) {

QuantizedField qvalue(field);

} else {

int(32) value;

}

}

8.7.23.2 Semantics

If the field’s isQuantized bit is TRUE, the QuantizedField scheme shall be used. Otherwise the SFInt32 is coded as a signed value using 32 bits.

8.7.24 SFRotation

8.7.24.1 Syntax

class SFRotation(FieldData field) {

if (field.isQuantized) {

QuantizedField qvalue(field);

} else {

GenericFloat xAxis(field.useEfficientCoding);

GenericFloat yAxis(field.useEfficientCoding);

GenericFloat zAxis(field.useEfficientCoding);

GenericFloat angle(field.useEfficientCoding);

}

}

8.7.24.2 Semantics

If the field’s isQuantized bit is TRUE, the QuantizedField scheme shall be used. Otherwise each component of the SFRotation is coded indepedently using the GenericFloat scheme.

8.7.25 SFString

8.7.25.1 Syntax

class SFString {

unsigned int(5) lengthBits;

unsigned int(lengthBits) length;

char(8) value[length];

}

8.7.25.2 Semantics

The SFString is coded as an array of characters whose length is first specified.

lengthBits is the number of bits used to encode the string length.

length is the length of the string coded using lengthBits.

All characters are coded using the UTF-8 character encoding (ISO/IEC 10646-1).

8.7.26 SFTime

8.7.26.1 Syntax

class SFTime {

double(64) value;

}

8.7.26.2 Semantics

The SFTime value is coded as a 64-bit double.

8.7.27 SFUrl

8.7.27.1 Syntax

class SFUrl {

bit(1) isOD;

if (isOD) {

bit(10) ODid;

} else {

SFString urlValue;

}

}

8.7.27.2 Semantics

The “od:” URL scheme is used in an url field of a BIFS node to refer to an object descriptor. The integer immediately following the “od:” prefix identifies the ObjectDescriptorID. For example, “od:12” refers to object descriptor number 12.

If the SFUrl refers to an object descriptor, the ObjectDescriptorID is coded as a 10-bit integer. If the SFUrl refers to a segment of a media stream (“od:12#<segmentName>”) and in all other cases the URL is sent as an SFString.

8.7.28 SFVec2f

8.7.28.1 Syntax

class SFVec2f(FieldData field) {

if (field.isQuantized) {

QuantizedField qvalue(field);

} else {

GenericFloat value1;

GenericFloat value2;

}

}

8.7.28.2 Semantics

If the field’s isQuantized bit is TRUE, the QuantizedField scheme shall be used. Otherwise each component of the SFVec2f is coded using the GenericFloat scheme.

8.7.29 SFVec3f

8.7.29.1 Syntax

class SFVec3f(FieldData field) {

if (field.isQuantized) {

QuantizedField qvalue(field);

} else {

GenericFloat value1(field.useEfficientCoding);

GenericFloat value2(field.useEfficientCoding);

GenericFloat value3(field.useEfficientCoding);

}

}

8.7.29.2 Semantics

If the field’s isQuantized bit is TRUE, the QuantizedField scheme shall be used. Otherwise each component of the SFVec3f is coded using the GenericFloat scheme.

8.7.30 SFVec4f

8.7.30.1 Syntax

class SFVec4f(FieldData field) {

if (field.isQuantized)

QuantizedField qvalue(field);

else {

GenericFloat value1(field.useEfficientCoding);

GenericFloat value2(field.useEfficientCoding);

GenericFloat value3(field.useEfficientCoding);

GenericFloat value4(field.useEfficientCoding);

}

}

8.7.30.2 Semantics

An SFVec4f field typically holds of a 4-Dimensional vector that consists of 4 values (x, y, z, w), where (x ,y ,z) are the 3D coordinates of the vector and w is a scaling factor to represent the infinity.

If the field’s isQuantized bit is TRUE, the QuantizedField scheme shall be used. Otherwise each component of the SFVec4f is coded using the GenericFloat scheme.

8.7.31 SFImage

8.7.31.1 Syntax

class SFImage {

unsigned int(12)
width;

unsigned int(12)
height;

bit(2)
numComponents;

bit(8)
pixels[(numComponents+1)*width*height];

}

8.7.31.2 Semantics

The width and height in pixels of the image are coded as 12-bit unsigned integers.

numComponents defines the image type. The following types are permitted:

If the value is ‘00’, then a grey scale image shall be decoded.

If the value is ‘01’, then a grey scale with alpha channel shall be decoded.

If the value is ‘10’, then an RGB image shall be decoded.

If the value is ‘11’, then an RGB image with alpha channel shall be decoded.

The pixels array stores the pixel values in row order from left to right and bottom to top. Each pixel being stored in network byte order. Pixels shall be decoded as unsigned char, 8-bit encoded values for each of its components. Components are coded in the orders of grey, grey alpha, R G B or R G B alpha for the four numComponent image type values 0 through 3 respectively.
8.7.32 SFCommandBuffer

8.7.32.1 Syntax

class SFCommandBuffer {

unsigned int(5) lengthBits;

unsigned int(lengthBits) length;

bit(8) value[length];

}

8.7.32.2 Semantics

The SFCommandBuffer syntax element is coded as an array of bytes whose length is first specified.

lengthBits is the number of bits used to encode the buffer length.

length is the length of the buffer coded using lengthBits.

value is an array of bytes of length length. It shall contain a CommandFrame, padded if necessary to complete the last byte.

8.7.33 QuantizedField

8.7.33.1 Syntax

class QuantizedField(FieldData field) {

switch (field.quantType) {

case 9:

int(1) direction

case 10:

int(2) orientation

default:

break;

}

for (i=0;i<getNbComp(field);i++) {

int(field.nbBits) vq[i];

}

}

8.7.33.2 Semantics

The value is quantized using the quantization process described in subclause 8.3.

For normals, the direction and orientation values specified in the quantization process are first coded. For rotations, only the orientation value is coded.

The compressed components, vq[i], of the field’s value are then coded in sequence as unsigned integers using the number of bits specified in the field data structure.

8.7.34 SFScript

8.7.34.1 Syntax

class SFScript(NodeData protoNodeData) {

bit(1) isListDescription;

if (isListDescription) {

ScriptFieldsListDescription(protoNodeData);

} else {

ScriptFieldsVectorDescripion(protoNodeData);

}

const bit(1) reserved=1;

EncodedScript();

}

8.7.34.2 Semantics

The SFScript class is used to represent a Script node. This can be done as a list description or as a vector description, depending on the value in isListDescription. The script is encoded using the bitstream syntax for EncodedScript, given below. This bitstream is a tree representation of the BNF grammar for ECMAScript (ISO/IEC 16262). Each node determines the parse decision selected in parsing the script, and thus the resulting bitstream can be used to interpret the script directly.

8.7.35 ScriptFieldsListDescription

8.7.35.1 Syntax

class ScriptFieldsListDescription(NodeData protoNodeData) {

bit(1) endFlag; // List description of the fields

while (!EndFlag) {

ScriptField(protoNodeData);

bit(1) endFlag;

}

}

8.7.35.2 Semantics

ScriptFieldsListDescription reads a list description of the fields in the Script node. When endFlag has value 1, the list has ended and no more values are read.
8.7.36 ScriptFieldsVectorDescription

8.7.36.1 Syntax

class ScriptFieldsVectorDescription(NodeData protoNodeData) {

bit(4) fieldBits;
// Number of bits for number of fields

bit(fieldBits)
numFields;
// Number of fields in the script

for (i=0; i<numFields; ++i) {

ScriptField(protoNodeData);

}

}

8.7.36.2 Semantics

ScriptFieldsVectorDescription reads a value numFields, to determine how many fields are in the Script node, and these are read sequentially. The number of bits used to give the number of fields is first read as 4 bits in fieldBits.

8.7.37 ScriptField

8.7.37.1 Syntax

class ScriptField(NodeData protoNodeData) {

bit(2) eventType;

bit(6) fieldType;

String fieldName;

if (protoNodeData != null) {

 bit(1) isedField;

 if (isedField){

 bit(protoNodeData.nALLbits) protoField;

 } else {

 if (eventType == FIELD) {

 bit(1) hasInitialValue;

 if (hasInitialValue){

 FieldData fieldData = MakeField(fieldType);

 Field value(fieldData, protoNodeData);

 }

 }

 }

 } else {

 if (eventType == FIELD) {

 bit(1) hasInitialValue;

 if (hasInitialValue){

 FieldData fieldData = MakeField(fieldType);

 Field value(fieldData, protoNodeData);

 }

 }

 }

}

8.7.37.2 Semantics

The ScriptField contains one field for the Script node. The eventType specifies the type of field, with values 0, 1, and 2 representing fields, eventIns and eventOuts, respectively. The fieldType is given in Table 86. This determines the type of the field. The fieldName gives the name of this field; the name is used to refer to this field from within the script.

When the event is a field, it may have a default value. This presence of this value is indicated by hasInitialValue being 1. In this case, the field value is read using the Field class. In order to be able to use the Field class, a node of type NodeData is created that then has the appropriate field value for each fieldType (the fieldType index can be used to reference field structures of the appropriate type).

Table 86 — Field Types for Script fields and PROTO fields.

	fieldType value
	Field type

	0bx000000
	SFBool

	0bx000001
	SFFloat

	0bx000010
	SFTime

	0bx000011
	SFInt32

	0bx000100
	SFString

	0bx000101
	SFVec3f

	0bx000110
	SFVec2f

	0bx000111
	SFColor

	0bx001000
	SFRotation

	0bx001001
	SFImage

	0bx001010
	SFNode

	0bx100000
	MFBool

	0bx100001
	MFFloat

	0bx100010
	MFTime

	0bx100011
	MFInt32

	0bx100100
	MFString

	0bx100101
	MFVec3f

	0bx100110
	MFVec2f

	0bx100111
	MFColor

	0bx101000
	MFRotation

	0bx101001
	MFImage

	0bx101010
	MFNode

	0bx101011
	SFVec4f

	0bx101100
	MFVec4f

	0bx101101
	SFAttrRefType

	0bx101110
	MFAttrRefType

8.7.38 EncodedScript

8.7.38.1 Syntax

class EncodedScript {

bit(1) hasFunction

while (hasFunction) {

Function function;

bit(1) hasFunction

}

}

8.7.38.2 Semantics

A script is a collection of functions, listed sequantially while hasFunction is TRUE.

8.7.39 Function

8.7.39.1 Syntax

class Function {

Identifier identifier;

Arguments arguments;

StatementBlock statementBlock;

}

8.7.39.2 Semantics

Each function consists of an identifier, a list of arguments, and a statementBlock which contains the script statements executed when the function is called.

8.7.40 Arguments

8.7.40.1 Syntax

class Arguments {

bit(1) hasArgument

while (hasArgument) {

Identifier identifier;

bit(1) hasArgument

}

}

8.7.40.2 Semantics

The argument list is of arbitrary length, and terminates when hasArgument is 0. Each argument consists of one identifier.

8.7.41 StatementBlock

8.7.41.1 Syntax

class StatementBlock {

bit(1) isCompoundStatement

if (isCompoundStatement) {

bit(1) hasStatement

while (hasStatement) {

Statement statement;

bit(1) hasStatement

}

else {

Statement statement;

}

}

}

8.7.41.2 Semantics

A statementBlock consists of either a compoundStatement, which holds several script statements, or a single statement, indicated by the value of isCompoundStatement. When the statementBlock consists of several statements, the hasStatement bit is used to signal either the end of the list or the existance of another statement.

8.7.42 Statement

8.7.42.1 Syntax

class Statement {

bit(3) statementType

switch statementType {

case ifStatementType:

IFStatement ifStatement;

break;

case forStatementType:

FORStatement forStatement;

 break;

case whileStatementType:

WHILEStatement whileStatement;

break;

case returnStatementType:

RETURNStatement returnStatement;

break;

case compoundExpressionType:

CompoundExpression compoundExpression;

break;

case breakStatementType:

case continueStatementType:

break;

case switchStatementType:

SWITCHStatement switchStatement;

break;

}

}

8.7.42.2 Semantics

A Statement may consist of one of the following specific statement types:

ifStatement

forStatement

whileStatement

returnStatement

compoundExpression

breakStatement

continueStatement.

switchStatement.

These statement types are indicated by a value from 0-7, respectively, called statementType.

8.7.43 IFStatement

8.7.43.1 Syntax

class IFStatement {

CompoundExpression compoundExpression;

StatementBlock statementBlock;

bit(1) hasELSEStatement

if (hasELSEStatement) {

StatementBlock statementBlock;

}

}

8.7.43.2 Semantics

An IFStatement is used for conditional execution of a statementBlock. It consists of a CompoundExpression followed by a statementBlock. The statementBlock is interpreted when the CompoundExpression evaluates to a non-zero or non-empty value. The IFStatement has an optional additional statementBlockwhich is included when hasElseStatement is 1. This second, optional compoundStatement is interpreted when the CompoundExpression evaluates to a zero or empty value.

8.7.44 FORStatement

8.7.44.1 Syntax

class FORStatement {

OptionalExpression optionalExpression;

OptionalExpression optionalExpression;

OptionalExpression optionalExpression;

StatementBlock statementBlock;

}

8.7.44.2 Semantics

A FORStatement is used to iterate over values, stopping when a conditional expression fails. The first optionalExpression shall be executed when the statement is interpretted. The second optionalExpression shall then be evaluated, and if it returns a non-zero or non-empty value, the statementBlock shall be executed. The third optionalExpression shall then be executed. After this process shall repeat starting with the execution of the second optionalExpression again, the statementBlock, and the third optionalExpression.

8.7.45 WHILEStatement

8.7.45.1 Syntax

class WHILEStatement {

CompoundExpression compoundExpression;

StatementBlock statementBlock;

}

8.7.45.2 Semantics

The WHILEStatement is used to conditionally execute a statementBlock for so long as the compoundExpression evaluates to a non-zero or non-empty value.

8.7.46 RETURNStatement

8.7.46.1 Syntax

class RETURNStatement {

bit(1) returnValue

if (returnValue) {

CompoundExpression compoundExpression;

}

}

8.7.46.2 Semantics

The RETURNStatement is used to return a value from a function. When a function has no return value, returnValue shall be 0. Otherwise, the returned value shall be the last value evaluated for compoundExpression.

8.7.47 CompoundExpression

8.7.47.1 Syntax

class CompoundExpression {

do {

Expression expression;

bit(1) hasExpression

} while (hasExpression);

}

8.7.47.2 Semantics

A CompoundExpression is a list of expressions, terminated when hasExpression has value 0. The value of the compound expression shall be the value of the last evaluated expression.

8.7.48 SWITCHStatement

8.7.48.1 Syntax

class SWITCHStatement {

CompoundExpression compoundExpression; // the switched value

bit(5) numbits // number of bits for the case value

do {

bit(numbits) caseValue; #a case value

StatementBlock statementBlock; // statements in case

bit(1) hasMoreCases

} while (hasMoreCases);

bit(1) hasDefault;

if (hasDefault) {

StatementBlock statementBlock; // default statements in case

}

}

8.7.48.2 Semantics

A SWITCHStatement is an expression that must evaluate to an integer value. It is followed by pairs of integer values in value stored with numbits bits and StatementBlocks. The values represent the value of a case statement, which are encoded repeatedly until hasMoreCases is 0. An optinal default StatementBlock is then encoded.

8.7.49 optionalExpression

8.7.49.1 Syntax

class optionalExpression {

bit(1) hasCompoundExpression

if (hasCompoundExpression) {

CompoundExpression compoundExpression;

}

}

8.7.49.2 Semantics

An optionalExpression may be an empty expression, containing no executable statements, or a compoundExpression. This is indicated by the value of hasCompoundExpression.

8.7.50 Expression

8.7.50.1 Syntax

class Expression {

bit(6) expressionType

switch expressionType {

case curvedExpressionType:

 // (compoundExpression)

CompoundExpression compoundExpression;

break;

case negativeExpressionType:

// -expression

case notExpressionType:

 // !expression

case onescompExpressionType:

// ~expression

case incrementExpressionType:

 // ++expression

case decrementExpressionType:

 // --expression

case postIncrementExpressionType:

 // expression++

case postDecrementExpressionType:

 // expression--

Expression expression;

break;

case conditionExpressionType:
// expression ? expression : expression

Expression expression;

Expression expression;

Expression expression;

break;

case stringExpressonType:

String string;

break;

case numberExpressionType:

Number number;

break;

case variableExpressionType:

Identifier identifier;

break;

case functionCallExpressionType:

case objectConstructExpressionType:

Identifier identifier;

Params params;

break;

case objectMemberAccessExpressionType:

Expression expression;

Identifier identifier;

break;

case objectMethodCallExpressionType:

Expression expression;

Identifier identifier;

Params params;

break;

case arrayDereferenceExpressionType:

Expression expression;

CompoundExpression compoundExpression;

break;

case booleanExpressionType:

Boolean boolean;

break;

case varExpressionType:

Arguments arguments;

break;

default: // =, +=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=, >>>=,

// ==, !=, <, <=, >, >=, +, -, *, /, %, &&, ||, &, |,

// ^, <<, >>, >>>

Expression expression;

Expression expression;

break;

}

}

8.7.50.2 Semantics

An expression may contain one of a number of possible executed statements, specified by the value in expressionType. These are listed below, according the value of expressionType.

curvedExpressionType=0:

The expression consists of a compoundExpression.

negativeExpressionType=1:

An expression shall be evaluated and the value returned shall be negated.

notExpressionType=2:
An expression shall be evaluated and its returned value shall be logically negated (empty values return non-empty, zero values return non-zero, and vice-versa).

onescompExpressionType=3:
An expression shall be evaluated numerically (string values will yield an undefined result) and the value returned shall be bitwise negated.

incrementExpressionType=4:
An expression shall be evaluated numerically (string values will yield an undefined result) and the value returned shall incremented by 1.

decrementExpressionType=5:
An expression shall be evaluated numerically (string values will yield an undefined result) and the value returned shall be decremented by 1.

postIncrementExpressionType=6:

An expression shall be evaluated numerically (string values will yield an undefined result) and its returned value shall be incremented by 1. The returned value of this expression shall be the value prior to the increment being applied.

postDecrementExpressionType=7:

An expression shall be evaluated numerically (string values will yield an undefined result) and its returned value shall be decremented by 1. The returned value of this expression shall be the value prior to the decrement being applied.

conditionExpressionType=8:

Three expressions shall be evaluated. If the first expression returns a non-zero or non-empty value, then the returned value of this expression shall be the value of the second expression. Otherwise, the returned value of this expression shall be the value of the third expression.

stringExpressonType=9:

The expression contains a string.

numberExpressionType=10:

The expression is a number.

variableExpressionType=11:

The expression is a variable and shall return the value held by the variable determined by identifier.

functionCallExpressionType=12:

An identifier determines which function shall be evaluated. The params shall be passed to the function by value. The returned value of the expression shall be the value returned by the function in its returnStatement.

objectConstructExpressionType=13:

A new object shall be created (using a ‘new’ statement in the script) and the object shall be held in the variable determined by identifier. A list of params shall be passed to any constructors that exist for the object.

objectMemberAccessExpressionType=14:

A member variable of an object shall be accessed and the returned value of the expression shall be the value in this member variable. Normally, the first expression will evaluate to a node in the scene graph (which is accessed through a script variable). This means that the first expression will normally evaluate to an identifier reference. The following identifier will then refer to a field of the node.

objectMethodCallExpressionType=15:

A method of an object shall be evaluated. The first expression shall evaluate to an object. The following identifier shall specify a method of this object. The following params shall be passed to the method. The value of this expression shall be the value returned by the method.

arrayDereferenceExpressionType=16:

The expression shall be an array element reference. The first expression shall evaluate to an array reference. The following compoundExpression shall evaluate to a number that shall then be used to index the array. The returned value of this expression shall be the value held in the referenced array element.

The following binary operands evaluate two expressions and return a value based on a binary operation of these two expressions. The binary operation and value of expressionType is listed below for each binary operation. Unless explicitely stated, a string value for either of the expressions will yield an undefined result.

BinaryOperand(=) = 17:

The first expression shall evaluate to an identifier which shall be assigned the value of the second expression.

BinaryOperand(+=) = 18:

The first expression shall evaluate to an identifier. If the value held by the variable is numerical, the variable value shall be incremented by the value of the second expression, which shall also evaluate to a numerical value. If the variable is a string, then its new value shall be its original value with the second expression (which shall be a string) appended.

BinaryOperand(-=) = 19:

The first expression shall evaluate to an identifier whose value shall be decremented by the value of the second expression.

BinaryOperand(*=) = 20:

The first expression shall evaluate to an identifier whose value shall be set to its current value multiplied by the value of the second expression.

BinaryOperand(/=) = 21:

The first expression shall evaluate to an identifier whose value shall be set to its current value divided by the value of the second expression.

BinaryOperand(%=) = 22:

The first expression shall evaluate to an identifier whose value shall be set to its current value modulo the value of the second expression. The expressions shall both evaluate to integer values.

BinaryOperand(&=) = 23:

The first expression shall evaluate to an identifier whose value shall be set to its current value logically bitwise ANDed with the value of the second expression.

BinaryOperand(|=) = 24:

The first expression shall evaluate to an identifier whose value shall be set to its current value logically bitwise ORed with the value of the second expression.
BinaryOperand(^=) = 25:

The first expression shall evaluate to an identifier whose value shall be set to its current value logically bitwise EXCLUSIVE-ORed with the value of the second expression.
BinaryOperand(<<=) = 26:

The first expression shall evaluate to an identifier whose value shall be set to its current value bitwise shifted to the left a number of bits specified by the second expression.

BinaryOperand(>>=) = 27:

The first expression shall evaluate to an identifier whose value shall be set to its current value bitwise shifted to the right a number of bits specified by the second expression.
BinaryOperand(>>>=) = 28:

The first expression shall evaluate to an identifier whose value shall be set to its current value bitwise shifted to the right (with the least significant bits looped) a number of bits specified by the second expression.

BinaryOperand(==) = 29:

This expression shall return a non-zero value when the first and second expression are identical. Otherwise, the result of this expression shall be zero.

BinaryOperand(!=) = 30:

This expression shall return a non-zero value when the first and second expression are not identical. Otherwise, the result of this expression shall be zero.

BinaryOperand(<) = 31:

This expression shall return a non-zero value when the first expression is numerically or lexicographically less than the second. Otherwise, the result of this expression shall be zero.

BinaryOperand(<=) = 32:

This expression shall return a non-zero value when the first expression is numerically or lexicographically less than or equal to the second. Otherwise, the result of this expression shall be zero.

BinaryOperand(>) = 33:

This expression shall return a non-zero value when the first expression is numerically or lexicographically greater than the second. Otherwise, the result of this expression shall be zero.

BinaryOperan(>=) = 34:

This expression shall return a non-zero value when the first expression is numerically or lexicographically greater than or equal to the second. Otherwise, the result of this expression shall be zero.

BinaryOperand(+) = 35:

This expression shall return the sum of the first and second expressions. If both expressions are strings, then the result shall be the first string concatenated with the second.

BinaryOperand(-) = 36:

This expression shall return the difference of the first and second expressions.

BinaryOperand(*) = 37:

This expression shall return the product of the first and second expressions.

BinaryOperand(/) = 38:

This expression shall returns the quotient of the first and second expressions.

BinaryOperand(%) = 39:

This expression shall return the value of the first expression modulo the second expression.

BinaryOperand(&&) = 40:

This expression shall return the logical AND of the first and second expressions.

BinaryOperand(||) = 41:

This expression shall return the logical OR of the first and second expressions.

BinaryOperand(&) = 42:

This expression shall return the logical bitwise AND of the first and second expressions.

BinaryOperand(|) = 43:

This expression shall return the logical bitwise OR of the first and second expressions.

BinaryOperand(^) = 44:

This expression shall return the logical bitwise XOR of the first and second expressions.

BinaryOperand(<<) = 45:

This expression shall return the value of the first expression shifted to the left by the number of bits specified as the value of the second expression.

BinaryOperand(>>) = 46:

Returns the value of the first expression shifted to the right by the number of bits specified as the value of the second expression.

BinaryOperand(>>>) = 47:

This expression shall return the value of the first expression shifted to the right (with the least significant bit looped to the most significant bit) by the number of bits specified as the value of the second expression.

booleanExpressionType = 48;

This expression is a boolean value of “TRUE” or “FALSE.”

varExpressionType = 49;

This expression hold a ‘var’ expression containing a list of list of variables whose scope is local to the enclosing function. This expression can only appear as part of a top level CompoundExpression.
8.7.51 Params

8.7.51.1 Syntax

class Params {

bit(1) hasParam

while(hasParam) {

Expression expression;

bit(1) hasParam

}

}

8.7.51.2 Semantics

The Params class consists of a (possibly empty) list of expressions. The hasParam bit indicates either the end of the list, or the existance of another expression.

8.7.52 Identifier

8.7.52.1 Syntax

class Identifier {

bit(1) received

if (received) {

bit(num) identifierCode // num is calculated by counting

// number of distinguished identifiers

// received so far

}

else {

String string;

}

}

8.7.52.2 Semantics

An identifier is used to identify a variable. If the identifier has occurred before in the script (or as a field name in the Script node), then an identifierCode value is sent using num bits. This is indicated by the received bit. If the identifier has not occured before in the script (or as a field name in the Script node), then an identifierCode value is sent using num bits. The value of num, that is, the number of bits needed to send the index of the identifier in a list of all previousy occuring identifiers, is variable and is determined by the minimum number of bits needed to specify the length of the list of all previously occuring identifiers.

A Script node may identify the field of a node by its name or by its field index coded in ALL mode. When accessing the field by ID, the identifier syntax used is “_fieldN”, where N is the ALL ID. This allows accessing proto fields in a script without having to encode the scene with the USENAMES flag set.

A Script node may create a new instance of a prototyped node (e.g. instantiate a proto) by using the SFNode constructor with the proto name as an argument, if known, or with the syntax new_node=new SFNode(‘_protoZ’) where Z is the protoID as coded in the BIFS stream.
8.7.53 String

8.7.53.1 Syntax

class String {

bit(8) char

while (char!=0) {

bit(8) char

}

}

8.7.53.2 Semantics

A String type consist of a null-terminated list of 8 bit characters. All characters are coded using the UTF-8 character encoding.
8.7.54 Number

8.7.54.1 Syntax

class Number {

bit(1) isInteger

if (isInteger) {

bit(5) numbits // number of bits the integer is represented

bit(numbits) value // integer value

}

else {

bit(4) floatChar // 0-9, ., E,-, END_SYMBOL

while (floatChar!=END_SYMBOL) {

bit(4) floatChar

}

}

}

8.7.54.2 Semantics
A number shall be represented as an integer, indicated by isInteger, or as a list of 4 bit characters, representing (in order) the characters 0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9, . , E,- , END-SYMBOL. The END-SYMBOL value can be any of 13, 14, or 15, and is used to signal the end of the float value list. The list of characters shall result in a human readable float value in scientific notation.

8.7.55 Boolean

8.7.55.1 Syntax

class Boolean {

bit(1) value

}

8.7.55.2 Semantics

A Boolean value is represented by a one-bit value.

8.7.56 ROUTEs

8.7.56.1 Syntax

class ROUTEs() {

bit(1) ListDescription;

if (ListDescription) {

ListROUTEs lroutes();

} else {

VectorROUTEs vroutes();

}

}

8.7.56.2 Semantics

ROUTEs may be encoded with a list (ListROUTEs) or vector (VectorROUTEs) description.

8.7.57 ListROUTEs

8.7.57.1 Syntax

class ListROUTEs() {

do {

ROUTE route();

bit(1) moreROUTEs;

}

while (moreROUTEs);

}

8.7.57.2 Semantics

The ROUTEs are coded as a list, with the moreROUTEs flag used to indicate the end of the list (when set to false).

8.7.58 VectorROUTEs

8.7.58.1 Syntax

class VectorROUTEs() {

int(5) nBits;

int(nBits) length;

ROUTE route[length]();

}

8.7.58.2 Semantics

The ROUTEs are coded as a vector whose dimension, length, is first specified.

8.7.59 ROUTE

8.7.59.1 Syntax

class ROUTE() {

bit(1) isUpdateable;

if (isUpdateable) {

bit(BIFSConfiguration.routeIDbits) routeID;

if (USENAMES) {

String routeName;

}

}

bit(BIFSConfiguration.nodeIDbits) outNodeID;

NodeData nodeOUT = GetNodeFromID(outNodeID);

int(nodeOUT.nOUTbits) outFieldRef;

bit(BIFSConfiguration.nodeIDbits) inNodeID;

NodeData nodeIN = GetNodeFromID(inNodeID);

int(nodeIN.nINbits) inFieldRef;

}

8.7.59.2 Semantics

This is the basic syntax element used to represent a ROUTE. If isUpdateable is TRUE (‘1’) then a routeID is sent to enable further reference to this route. Further, if the global value of USENAMES is set, a string name, used by MPEG-J to reference the ROUTE, is also sent.

The ROUTE description is then sent. The nodeID of the target node is coded, followed by the target field’s outID. The nodeID of the source node is then coded, followed by the source field’s inID.
8.7.60 SFAttrRef
Syntax
class SFAttrRef {

 bit(BIFSConfiguration.nodeIDbits) nodeID;

 NodeData node = GetNodeFromID(nodeID);

 Int(node.nDEFbits) defID;

8.7.61 }
8.7.61.1 Semantics
The SFAttrRef iclass identifies a DEF codable field of a node in the scene.
8.8 BIFS-Anim

8.8.1 Overview

The BIFS-Anim session has two parts: the AnimationMask and the AnimationFrames. The AnimationMask specifies the nodes and fields to be animated. It is sent in BIFS configuration, in the object descriptor for the BIFS elementary stream. The animation frames are sent in a separate BIFS stream. When parsing the BIFS-Anim stream, the node structure and related functions as described in node coding tables in electronic attachment are known at the receiving terminal. The decoding data structure AnimationMask (see 8.2.5) is constructed when the AnimationMask syntax is read, and further used in the decoding process of the BIFS-Anim frames.

AnimationFrames contain update information for thevalues of the animated fields described in the AnimationMask. They are the access units of the BIFS-Anim stream. An AnimationFrame can send information in intra or in predictive mode. In intra mode, the values are quantized and coded directly. In predictive mode, the difference between the quantized value of the current and the last transmitted value of the field are coded. The encoding is performed using an adaptative arithmetic coder described in subclause 8.11.

The use of the adaptive arithmetic coder is as follows:

At the beginning of each predictive frame, the adaptive arithmetic coder is reset. At the end of each frame, it is flushed.

Each animated field has its own set of models. At each intra frame, if the stream has been declared in random access mode (see 8.5.2), the models are reset to the uniform statistics. If the stream is not in random access mode, the models are not reset unless the decoding structures (AnimQP) are modified.

8.8.2 AnimationFrame

8.8.2.1 Syntax

class AnimationFrame() {

AnimationFrameHeader
header(BIFSConfiguration.animMask);

AnimationFrameData data(BIFSConfiguration.animMask);

}
8.8.2.2 Semantics

The AnimationFrame is the access unit of the BIFS-Anim stream. It contains the AnimationFrameHeader, which specifies timing, and specifies which nodes are animated in the list of animated nodes, and the AnimationFrameData, which contains the data for all nodes being animated.

8.8.3 AnimationFrameHeader

8.8.3.1 Syntax

class AnimationFrameHeader(AnimationMask mask) {

bit(23)* next;

if (next==0) {

bit(32) AnimationStartCode;

}

bit(1) mask.isIntra;

bit(1) mask.isActive[mask.numNodes];

if (isIntra) {

bit(1) isFrameRate;

if (isFrameRate)

FrameRate rate;

bit(1) isTimeCode;

if (isTimeCode) {

unsigned int(18) timeCode;

}

}

bit(1) hasSkipFrames;

if (hasSkipFrames) {

SkipFrames skip;

}

}

8.8.3.2 Semantics

In the AnimationFrameHeader, a start code may be sent at each intra or predictive frame to enable resynchronization. The first 23 bits are read ahead, and stored as the integer next.

If next is 0 (in other words, the first 23 bits if the AnimationFrame are 0), the first 32 bits of the AnimationFrame shall be read and interpreted as a start code that precedes the AnimationFrame.

The start codes for FBA and Mesh2D are defined in ISO/IEC 14496-2. For generic BIFS-Anim, either no start-code is used or the generic BIFS-Anim start code is used 0xC7 .

If the boolean isIntra is TRUE, the current animation frame contains intra-coded values, otherwise it is a predictive frame.

The array of booleans isActive specifies which nodes shall be animated for this frame. isActive shall contain one boolean for each node in the AnimationMask. The boolean is set to TRUE if the node is to be animated; FALSE otherwise.

In intra mode, some additional timing information is also specified. The timing information obeys the syntax of the Facial Animation specification in ISO/IEC 14496-2. Finally, it is possible to skip a number of AnimationFrames by using the FrameSkip syntax specified in ISO/IEC 14496-2.

8.8.4 FrameRate

8.8.4.1 Syntax

class FrameRate {

unsigned int(8) frameRate;

unsigned int(4) seconds;

bit(1) frequencyOffset;

}

8.8.4.2 Semantics

frame_rate is an 8-bit unsigned integer indicating the reference frame rate of the sequence.

seconds is a 4-bit unsigned integer indicating the fractional reference frame rate. The frame rate is computed as follows:

frame rate = (frame_rate + seconds/16).

frequency_offset is a 1-bit flag which when set to ‘1’ indicates that the frame rate uses the NTSC frequency offset of 1000/1001. This bit would typically be set when frame_rate = 24, 30 or 60, in which case the resulting frame rate would be 23.97, 29.94 or 59.97 respectively. When set to ‘0’ no frequency offset is present, i.e. if (frequency_offset ==1), frame rate = (1000/1001) * (frame_rate + seconds/16).

8.8.5 SkipFrame

8.8.5.1 Syntax

class SkipFrame {

int nFrame = 0;

do {

bit(4) number_of_frames_to_skip;

nFrame = number_of_frames_to_skip + nFrame;

} while (number_of_frames_to_skip == 0b1111);

}

8.8.5.2 Semantics

number_of_frames_to_skip is a 4-bit unsigned integer indicating the number of frames skipped. If the number_of_frames_to_skip is equal to 15 (pattern “1111”) then another 4-bit word follows allowing a skip of up to 29 frames (pattern “11111110”) to be specified. If the 8-bits pattern equals “11111111”, then another 4-bits word shall follow and so on, and the number of frames skipped is incremented by 30. Each 4-bit pattern of ‘1111’ increments the total number of frames to skip with 15.

8.8.6 AnimationFrameData

8.8.6.1 Syntax

class AnimationFrameData (AnimationMask mask) {

int i;

for (i=0; i<mask.numNodes; i++) {

if (mask.isActive[i]) {

NodeData node = mask.animNode[i]

switch (node.nodeType) {

case FaceType:

case BodyType:

fba_object_plane_data();

break;

case IndexedFaceSet2DType:

MeshObjectPlaneData();

break;

default

int j;

for(j=0; j<node.numDYNfields; j++) {

if (node.isAnimField[j])

AnimationField AField(node.field[node.dyn2all[j]],mask.isIntra);

}

}

}

}

}

8.8.6.2 Semantics

The AnimationFrameData corresponds to the field data for the nodes being animated. In the case of an IndexedFaceSet2D, a Face, or a Body node pointed to by the AnimationMask, the syntax used is that defined ISO/IEC 14496-2 for animation frames and not the generic BIFS-Anim syntax as defined in 8.8.7.

fba_object_plane_data() is defined in 6.2.10.1, ISO/IEC 14496-2 .

MeshObjectPlaneData() is defined in 6.2.9.1, ISO/IEC 14496-2 .

In other cases, for each field declared as an animated field is the AnimationMask, the AnimationField is sent.

BIFS Anim streams shall not contain a combination of generic BIFS-Anim, FBA stream or 2Dmesh.
In predictive mode, at the beginning of the AnimationFrameData, an adaptive arithmetic coder session is initiated by resetting the adaptive arithmetic coder in the way defined by the procedure decoder_reset() in 8.11. Then, the animated values are sent using this adaptive arithmetic coder, using and updating their own models.

8.8.7 AnimationField

8.8.7.1 Syntax

class AnimationField(FieldData field, boolean isIntra) {

AnimFieldQP aqp = field.aqp;

if (isIntra) {

bit(1) hasQP;

if(hasQP) {

AnimQP QP(aqp);

}

int i;

for (i=0; i<aqp.numElements; i++) {

AnimIValue ivalue(field);

}

} else {

int i;

for (i=0; i<aqp.numElements; i++) {

AnimPValue pvalue(field);

}

}

}

8.8.7.2 Semantics

In an AnimationField, if in intra mode, a new animation quantization parameter value may be sent. The intra frame follows.

In intra mode, if BIFSConfiguration.randomAccess is TRUE , the field’s predictive models shall then be reset to be uniform models as defined by the procedure model_reset(PNbBits) in 8.11. If BIFSConfiguration.randomAccess is FALSE, the field’s models are reset only if a new AnimQP is received.

· If randomAccess is set to TRUE, then the InitialAnimQP shall be used until the next intra frame.

· If randomAccess is set to FALSE, then the AnimQP that was valid at the previous intra frame shall be used. In this case, no random access is possible ato this particular frame.

The value is then sent: in intra mode, an AnimIValue is expected, in predictive mode an AnimPValue is expected.

8.8.8 AnimQP

8.8.8.1 Syntax

class AnimQP(AnimFieldQP aqp) {

bit (1) IMinMax ;

if (IMinMax) {

 aqp.useDefault=FALSE;

switch(aqp.animType) {

case 4:
// Color

case 8:
// BoundFloats

bit(1)
aqp.useDefault

case 1:
// Position 3D

case 2:
// Position 2D

case 15:
// Position 4D

case 11:
// Size 3D

case 12:
// Size 2D

case 7:
// Floats

if (!aqp.useDefault) {

for (i=0;i<getNbBounds(aqp.animType);i++) {

bit(1)

useEfficientCoding

GenericFloat
aqp.Imin[i](useEfficientCoding);

}

for (i=0;i<getNbBounds(aqp.animType);i++)

bit(1)

useEfficientCoding

GenericFloat
aqp.Imax[i](useEfficientCoding);

}

break;

case 13:
// Integers

int(32)

aqp.IminInt[0];

break;

}

bit (1) hasINbBits;

if (hasINbBits)

unsigned int(5)

aqp.INbBits;

bit (1) PMinMax ;

if (PMinMax) {

for (i=0;i<getNbBounds(aqp.animType);i++) {

int(INbBits+1) vq

aqp.Pmin[i] = vq-2^aqp.INbBits;

}

}

bit (1)hasPNbBits;

if (hasPNbBits) {

unsigned int(4)
aqp.PNbBits;

}

}

8.8.8.2 Semantics

The AnimQP specifies the quantization parameters that shall be used until the next intra frame is received. AnimQP is identical to InitialAnimQP (subclause 8.5.7) with the exception that each quantization parameter may or may not be sent.

If BIFSConfiguration.randomAccess is TRUE and if the parameter is not coded, then the parameter defined in the InitialAnimQP in the AnimationMask is used by default.

If BIFSConfiguration.randomAccess is FALSE and if the parameter is not coded, then the parameter defined in the latest AnimQP (or InitialAnimQP if this parameter was never modified) is used.

8.8.9 AnimIValue

8.8.9.1 Syntax

class AnimIValue(FieldData field) {

switch (field.animType) {

case 9:
// Normal

int(1)

direction

case 10:
// Rotation

int(2)

orientation

break;

default:

break;

}

for (j=0;j<getNbComp(field);j++) {

int(field.nbBits)
vq[j];

}

}

8.8.9.2 Semantics

The AnimIValue represents the quantized intra value of a field. The value is coded according to the quantization process described in 8.3.3.

For normals the direction and orientation values specified in the quantization process are first coded. For rotations only the orientation value is coded. If the bit representing the direction is 0, the normal’s direction is set to 1, if the bit is 1, the normal’s direction is set to –1. The value of the orientation is coded as an unsigned integer using 2 bits.

The compressed components vq[i] of the field’s value are then coded as a sequence of unsigned integers using the number of bits specified in the field data structure.

The decoding process in intra mode computes the animation values by applying the inverse quantization process.

8.8.10 AnimPValue

8.8.10.1 Syntax

class AnimPValue(FieldData field) {

switch (field.animType) {

case 9:
// Normal

int(1)

inverse

break;

default:

break;

}

for (j=0;j<getNbComp(field);j++) {

int(aacNbBits)
vqDelta[j];

}

}

8.8.10.2 Semantics

The AnimPValue represents the difference between the previously received quantized value and the current quantized value of a field. The value is coded using the compensation process AddDelta described in 8.4.

The values are decoded from the adaptive arithmetic coder bitstream with the procedure
[image: image225.wmf]aac

v

=aa_decode(model) defined in 8.11. The model is updated with the procedure model_update(model, [image: image226.wmf]aac

v

).
For normals the inverse value is decoded through the adaptive arithmetic coder with a uniform, non-updated model. If the bit is 0, then inverse is set to 1, the bit it is 1, inverse is set to –1.

The compensation values vqDelta[i] are then decoded in sequence. Let
[image: image227.wmf])

1

(

-

t

v

q

 be the quantized value decoded at the previous frame and
[image: image228.wmf])

(

t

v

aac

be the value decoded by the frame’s adaptive arithmetic decoder at instant t with the field’s models. The value a time t is obtained from the previous value as follows:

[image: image229.wmf](

)

)

(

InvQuant

)

(

))

(

),

1

(

(

AddDelta

)

(

)

(

)

(

t

v

t

v

t

v

t

v

t

v

PMin

t

v

t

v

q

q

q

aac

=

-

=

+

=

d

d

The field’s models are updated each time a value is decoded through the adaptive arithmetic coder.

If the animType is 1 (Position3D) or 2 (Position2D), each component of the field’s value is using its own model and offset PMin[i]. In all other cases the same model and offset PMin[0] is used for all the components.

aacNbBits is the variable number of bits needed for the adaptive arithemtic coder to decode the symbol (see 8.11).

8.9 Interpolator compression

8.9.1 Overview

The interpolator compression is a tool to efficiently compress the interpolator nodes in BIFS. The decoder structure of the interpolator compression is shown in Figure 46. The interpolator decoder consists of Header Decoder, Key Decoder, KeyValue Decoder and Interpolator Synthesizer. The header information for key and keyValue are decoded in the header decoder and are used in Key Decoder and KeyValue Decoder. The Key Decoder and KeyValue Decoder receive the arithmetic coded bitstream and restore the key and keyValue data of the interpolator. The interpolator synthesizer restores the keys and keyValues that has been excluded in the bitstream.

[image: image230.emf]Encoded

Bitstream

Key Decoder

KeyValueDecoder

Key&KeyValueHeader Decoder

Interpolator

Synthesizer

Decoded

Interpolator

Encoded

Bitstream

Key Decoder

KeyValueDecoder

Key&KeyValueHeader Decoder

Interpolator

Synthesizer

Decoded

Interpolator

Encoded

Bitstream

Key Decoder

KeyValueDecoder

Key&KeyValueHeader Decoder

Interpolator

Synthesizer

Decoded

Interpolator

Figure 048

\IF >= 1 "A."
 — General Structure of Interpolator Decoder
8.9.2 Key decoding

8.9.2.1 KeyHeader
8.9.2.1.1 Syntax

class KeyHeader {

int i;

unsigned int(5) nKeyQBit;

unsigned int(5) nNumKeyCodingBit;

unsigned int(nNumKeyCodingBit) nNumberOfKey;

unsigned int(4) nKeyDigit;

bit(1) bIsLinearKeySubRegion;

if(bIsLinearKeySubRegion == 1)

LinearKey lKey(nKeyDigit);

bit(1) bRangeFlag;

if(bRangeFlag == 1)

KeyMinMax keyMinMax(nKeyDigit);

unsigned int(5) nBitSize;

unsigned int(2) nKDPCMOrder;

for(i = 0; i < nKDPCMOrder + 1; i++) {

bit(1) nQIntraKeySign[[i]];

if(i == 0 && nQIntraKeySign[i] == 1)

continue;

unsigned int(nBitSize) nQIntraKey[[i]];

}

bit(1) bShiftFlag;

if(bShiftFlag == 1) {

bit(1) nKeyShiftSign;

unsigned int(nBitSize) nKeyShift;

}

unsigned int(3) nDNDOrder;

if(nDNDOrder == 7) {

bit(1) bNoDND;

if(bNoDND == 1)

nDNDOrder = -1;

}

int nMaxQBit = nBitSize;

for(i = 0; i < nDNDOrder; i++) {

bit(1) nKeyMaxSign[[i]];

unsigned int(nMaxQBit) nKeyMax[[i]];

nMaxQBit = (int)(log10(abs(nKeyMax[i]))/log10(2))+1;

if(nMaxQBit+1 < nBitSize)

nMaxQBit += 1;

else

nMaxQBit = nBitSize;

}

int bSignedAACFlag;

int nKeyCodingBitQBit = (int)(log10(nKeyQBit)/log10(2))+1;

unsigned int(nKeyCodingBitQBit) nKeyCodingBit;

if(nDNDOrder != -1 && nDNDOrder != 0) {

bit(1) bKeyInvertDownFlag;

if(bKeyInvertDownFlag == 1) {

unsigned int(nKeyCodingBit) nKeyInvertDown;

bSignedAACFlag = 0;

} else {

bSignedAACFlag = 1;

}

} else {

bSignedAACFlag = 0;

}

}

8.9.2.1.2 Semantics
The key header data are the information needed to decode the key data. The main information in the key header are the number of keys, the quantization bit, the intra key data, the DND header and the actual bits used for decoding.

nKeyQBit is the quantization bit that is used in the inverse quantization to restore the float values. nNumKeyCodingBit indicates the bit size of nNumberOfKey, which indicates the number of key data. nKeyDigit indicates the maximum significant digit in the original key data and can be used for rounding off the decoded values.

When the information on linear key sub-regions is included in the header, bIsLinearKeySubRegion flag is set to 1. In this case, the keys included in certain sub-region within the whole range of keys can be calculated using the decoded header information following the bIsLinearKeySubRegion flag.

bRangeFlag indicates whether the range of key data is from 0 to 1 or not. If the range is not 0 to 1, the minimum value and the maximum value are decoded from the KeyMinMax class. KeyMinMax class reconstructs the minimum value and the maximum value for inverse quantization. Each value can be separated into the mantissa and the exponent.

nBitSize is the bit size of nQIntraKey, nKeyShift and is the initial bit size of nKeyMax.

nQIntraKey is the magnitude of the first quantized intra data. It is combined together with the nQIntraKeySign, which indicates the sign of nQIntraKey. It is used as a base for restoring the rest of the quanitzed key data. For all the sign bits in the interpolator compression, the value 0 denotes a positive sign and 1 denotes a negative sign.

nKDPCMOrder is the order of DPCM minus 1. The range of the order may be from 1 to 3. The number of the quantized intra data is the same as the order of DPCM.

nKeyShift, together with the sign bit nKeyShiftSign, is the integer number that indicates the amount of shift in the key data decoder. These two values are decoded if the bShiftFlag is set to true.

nDNDOrder is the order of DND (Divide-and-divide). The DND is described in the key data decoder (see subclause 8.9.2.6.3). If the value of nDNDOrder is 7, then bNoDND is decoded. This boolean value indicates whether inverse DND will be processed or not. nKeyMax is the maximum value or the minimum value used during each successive inverse DND process. nKeyCodingBit is the bits used for coding key data. bSignedAACFlag indicates which decoding method is used for AAC decoding. If the value is 0, the unsigned AAC decoding is performed. Otherwise, the signed AAC decoding is performed.

bKeyInvertDownFlag is the boolean value indicating whether nKeyInvertDown is used or not. nKeyInvertDown is the integer value that makes all quantized key data above it to be inverted to negative values starting from –1 and below. If nKeyInvertDown is -1, then inverting is not performed.

8.9.2.2 LinearKey
8.9.2.2.1 Syntax
class LinearKey (int nKeyDigit) {

unsigned int(5) nNumLinearKeyCodingBit;

unsigned int(nNumLinearKeyCodingBit) nNumberOfLinearKey
;

KeyMinMax kMinMax(nKeyDigit);

}

8.9.2.2.2 Semantics
nNumLinearKeyCodingBit : This value indicates the number of bits needed to code the number of keys that are linearly predictable.

nNumberOfLinearKey : This value indicates the number of keys that are linearly predictable.

8.9.2.3 KeyMinMax
8.9.2.3.1 Syntax
class KeyMinMax (int nKeyDigit) {

bit(1) bMinKeyDigitSame;

if(bMinKeyDigitSame == 0)

unsigned int(4) nMinKeyDigit;

else

nMinKeyDigit = nKeyDigit;

if(nMinKeyDigit != 0) {

if(nMinKeyDigit < 8) {

int count = (int)(log10(10^nMinKeyDigit-1)/log10(2)) + 1;

bit(1) nMinKeyMantissaSign;

unsigned int(count) nMinKeyMantissa;

bit(1) nMinKeyExponentSign;

unsigned int(6) nMinKeyExponent;

} else

float(32) fKeyMin;

}

bit(1) bMaxKeyDigitSame;

if(bMaxKeyDigitSame == 0)

unsigned int(4) nMaxKeyDigit;

else

nMaxKeyDigit = nKeyDigit;

if(nMaxKeyDigit != 0) {

if(nMaxKeyDigit < 8) {

int count = (int)(log10(10^nMaxKeyDigit-1)/log10(2)) + 1;

bit(1) nMaxKeyMantissaSign;

unsigned int(count) nMaxKeyMantissa;

bit(1) bSameExponent;

if(bSameExponent == 0) {

bit(1) nMaxKeyExponentSign;

unsigned int(6) nMaxKeyExponent;

}

else

nMaxKeyExponent = nMinKeyExponent;

} else

float(32) fKeyMax;

}

}

8.9.2.3.2 Semantics
bMinKeyDigitSame : This flag indicates if the maximum significant digit(nKeyDigit) of the entire keys and the significant digit of min key are the same
nMinKeyDigit : This value indicates the significant digit of the min key
nMinKeyMantissaSign : This value indicates a sign of nMinKeyMantissa.

nMinKeyMantissa : This value indicates the mantissa of the min key
nMinKeyExponentSign : This value indicates a sign of nMinKeyExponent.

nMinKeyExponent : This value indicates the exponent of the min key
fKeyMin : This value indicates the value of the min key
bMaxKeyDigitSame : This flag indicates if the maximum significant digit(nKeyDigit) of the entire keys and the significant digit of max key are the same
nMaxkeyDigit : This value indicates the significant digit of the max key
nMaxKeyMantissaSign : This value indicates a sign of nMaxKeyMantissa.

nMaxKeyMantissa : This value indicates the mantissa of the max key
bSameExponent : This flag indicates if the exponent of the max key is the same as nMinKeyExponent.
nMaxKeyExponentSign : This value indicates a sign of nMaxKeyExponent.

nMaxKeyExponent: This value indicates the exponent of the max key
fKeyMax: This value indicates the max key
8.9.2.4 Key
8.9.2.4.1 Syntax
class Key (KeyHeader kHeader) {

int nQKey[kHeader.nNumberOfKey];

int i;

int nNumberOfRemainingKey;

if(kHeader.bIsLinearKeySubRegion == 1)

nNumberOfRemainingKey = kHeader.nNumberOfKey – kHeader.lKey.nNumberOfLinearKey;

else

nNumberOfRemainingKey = kHeader.nNumberOfKey;

for(i = kHeader.nKDPCMOrder+1; i < nNumberOfRemainingKey; i++) {

if(kHeader.bSignedAACFlag == 0)

decodeUnsignedAAC(nQKey[i], kHeader.nKeyCodingBit, keyContext);

else

decodeSignedAAC(nQKey[i], kHeader.nKeyCodingBit+1, keySignContext, keyContext);

}

}

8.9.2.4.2 Semantics

nQKey: This array stores the quantized key data that are decoded from bitstream. The keyContext is the context for reading the magnitudes of nQKey. The keySignContext is the context for reading the signs of nQKey.
decodeUnsignedAAC: This function performs the unsigned decoding of adaptive arithmetic coding with a given context.

decodeSignedAAC: This function performs the signed decoding of adaptive arithmetic coding with a given context.

8.9.2.5 KeySelectionFlag
8.9.2.5.1 Syntax
class KeySelectionFlag(KeyHeader kHeader, int bPreserveKey) {

int i;

int nNumOfKeyValue = 0;

if(bPreserveKey == 1) {

for(i=0; i<kHeader.nNumberOfKey; i++) {

qf_decode(&keyFlag[i], keyFlagContext);

if(keyFlag[i] == 1)

nNumOfKeyValue++;

}

} else

nNumOfKeyValue = kHeader.nNumberOfKey;

}

8.9.2.5.2 Semantics
keyFlag: This boolean array indicates whether the keyValue of the i-th key is coded or not.

nNumOfKeyValue: This integer value indicates the number of keyValues to be decoded.

8.9.2.6 Decoding Process

8.9.2.6.1 Overview

[image: image231.emf]Compressed

Bitstream

Inverse

DND

Decoded

Key Data

Key

Entropy

Decoder

Inverse

DPCM

Inverse

Quantizer

nKeyQBit / nNumberOfKey / nKeyDigit /nKDPCMOrder

nDNDOrder / nKeyCodingBit / …

Inverse

Fold

Linear Key

Synthesizer

Key Decoder

Inverse

Shift

Key Header

i

k

ˆ

Figure 049

\IF >= 1 "A."
 — Block diagram of key decoder for interpolator compression

Figure 47 shows the block diagram of the key field decoder for interpolator compression. Key data are float values between the given range(-(~ +(). In the key header information, nNumberOfKey indicates the number of key data. The decoder receives the encoded bitstream that was generated by the encoder. There are two parts to decode the key data. Those are key header decoder and key data decoder.

8.9.2.6.2 Key Header Decoding

When the information on linear key sub-regions is included, the equation for decoding keys in the sub-region is as follows.

[image: image232.wmf])

1

...

0

(

)

1

(

*

)

(

-

=

-

-

+

=

inearKey

nNumberOfL

i

inearKey

nNumberOfL

i

fKeyMin

fKeyMax

fKeyMin

Key

i

fKeyMin and fKeyMax are decoded from the encoded bitstream in two different ways. The first one is that these values are directly decoded in the type of 32 bit float if the key digits (nMinKeyDigit, nMaxKeyDigit in KeyMinMax class) are equal to or more than 8. The other one is that these values are decoded into their mantissa and exponent float if the key digits are less than 8. In this case, these values can be calculated using following equation.

[image: image233.wmf]onent

nMinKeyExp

nentSign

MinKeyExpo

tissa

nMinKeyMan

issaSign

MinKeyMant

fKeyMin

*

10

*

=

[image: image234.wmf]onent

nMaxKeyExp

nentSign

MaxKeyExpo

tissa

nMaxKeyMan

issaSign

MaxKeyMant

fKeyMax

*

10

*

=

In this equation, MinKeyMantissaSign has the value of 1 when nMinKeyMantissaSign (in KeyMinMax class) is set to 0 and MinKeyMantissaSign has the value of -1 when nMinKeyMantissaSign is 1. The same rule is also applied to MinKeyExponentSign, MaxKeyMantissaSign, and MaxKeyExponentSign for nMinKeyExponentSign, nMaxKeyMantissaSign and nMaxKeyExponentSign.

8.9.2.6.3 Key Data Decoding

The entropy decoder decodes the quantized key data and passes the data to the key data decoder. It reconstructs the differentiated key data and performs inverse DPCM, inverse Fold and inverse Quantization to generate the final key data.

The decoder for compressed key data uses two types of entropy decoding method, depending on the value of bSignedAACFlag. If the quantized data are signed data (i.e. bSignedAACFlag==1), then decodeSignedAAC() function is used. Otherwise, if the quantized data are unsigned data (i.e. bSignedAACFlag==0), then decodeUnsignedAAC() function is used (see subclause 8.9.6).

The following function describes the decoding process of key data.
void decodeKey(int* nQIntraKey, int* nQKey, int nNumberOfRemainingKey, int nKeyQBit)

{

add(nQKey, nQIntraKey);

// add nQIntraKey array to nQKey array

// Inverse DND

if(nDNDOrder > 0) {

if(nKeyInvertDown != -1) {

for(k = 0; k < nNumberOfRemainingKey; k++)

invert-down(nQKey[k], nKeyInvertDown);

}

for(i = nDNDOrder; i > 0; i--) {

if(nKeyMax[i-1] >= 0) {

if(i == 1) {

for(k = 0; k < nNumberOfRemainingKey; k++)

inverse-divide(nQKey[k], nKeyMax[i-1]);

}

else {

for(k = 0; k < nNumberOfRemainingKey; k++)

inverse-divide-down(nQKey[k], nKeyMax[i-1]);

}

} else {

for(k = 0; k < nNumberOfRemainingKey; k++)

inverse-divide-up(nQKey[k], nKeyMax[i-1]);

}

}

}

//Inverse Fold

if(nDNDOrder != -1) {

for(k = 0; k < nNumberOfRemainingKey; k++)

inverse-fold(nQKey[k])

}

for(k = 0; k < nNumberOfRemainingKey; k++)

inverse-shift(nQKey[k], nKeyShift)
//Inverse Shift

for(i = 0; i < nKDPCMOrder; i++)
//Inverse DPCM

inverse-dpcm(nQKey, nNumberOfRemainingKey);

//Inverse Quantization

inverse-quantize(nQKey, nNumberOfRemaingKey, nKeyQBit);

}

When the key data decoder receives the quantized key data from the entropy decoder, inverse DND is performed, followed by inverse Fold, inverse Shift, inverse DPCM and inverse quantization.

If the order of DND is 0, then inverse DND is bypassed and inverse Fold is performed next.

If the order of DND is -1, then inverse DND and inverse Fold are bypassed and inverse Shift is performed next, using the following equation.

inverse-shift(v) = v + nKeyShift

If the order of DND is greater than 0, then nKeyInvertDown is considered first. If nKeyInvertDown is not -1, then all quantized key data above nKeyInvertDown are inverted to negative values starting from –1 and below, using the following equation.

	invert-down(v) =
	v
	(if v (nKeyInvertDown)

	
	nKeyInvertDown – v
	(if v > nKeyInvertDown)

After considering nKeyInvertDown, the processes of inverse-divide-down or inverse-divide-up are performed, depending on the value of nKeyMax for each DND order. If the value is greater than or equal to 0, then inverse-divide-down is performed using the following equation.

	
	v
	(if v (0)

	inverse-divide-down(v) =
	(nKeyMaxi+1)+ (v-1) / 2
	(if v < 0, v mod 2 (0)

	
	v / 2
	(if v < 0, v mod 2 = 0)

However, if nKeyMax is less than 0, then inverse-divide-up is performed using the following equation.

	
	v
	(if v (0)

	inverse-divide-up(v) =
	(nKeyMaxi -1) - (v-1) / 2
	(if v < 0, v mod 2 (0)

	
	v / 2

	(if v < 0, v mod 2 = 0)

The above process (inverse-divide-down or inverse-divide-up) is performed as many as the order of DND. At the last stage of inverse DND, if the value of the last nKeyMax is greater than or equal to 0, then inverse-divide is performed using the following equation.

	inverse-divide(v) =
	v
	(if v (0)

	
	v+(nKeyMax0 +1)
	(if v < 0)

After the inverse DND, if the order of DND is not –1, inverse Fold is performed using the following equation.

	
	(v+1) / (-2)
	(if v mod 2 (0)

	inverse-fold(v) =
	v / 2
	(if v mod 2 = 0)

	
	0
	(if v = 0)

After inverse Fold, inverse Shift is performed as described above.

After the above process, inverse DPCM is performed using the following equation.

v(i+1) = v(i) + delta(i)

(i: index of data, v: integer array, delta: difference value)

After inverse DPCM, the inverse quantization is performed. The inverse quantization is performed using the following equation so that the quantized key data (v) are inverse quantized.

[image: image235.wmf](

)

fKeyMin

fKeyMax

v

fKeyMin

v

quantize

inverse

nKeyQBit

-

´

-

+

=

-

)

1

2

(

)

(

fKeyMin and fKeyMax are the minimum and maximum floating point numbers in the original key data. nKeyQBit is the quantization bit size for inverse quantizationand v is the quantized value to be inverse quantized.

When the information on linear key sub-ranges is included in the header, the Linear Key Synthesizer in Figure 47. will collect all the keys from the sub-ranges and the data from the Key Data Decoder to restore the final key data. Finally the keys are sorted in the order of time.
8.9.3 Coordinate Interpolator Decoding

8.9.3.1 CompressedCoordinateInterpolator
8.9.3.1.1 Syntax
class CompressedCoordinateInterpolator {

KeyHeader kHeader;

CoordIKeyValueHeader coordIKVHeader;

qf_start();

aligned(8) Key k(kHeader);

CoordIKeyValue coordIKeyValue(coordIKVHeader, kHeader.nNumberOfKey);

}

8.9.3.1.2 Semantics
This is a top class for reading the compressed bitstream of coordinate interpolator. KeyHeader and Key are the classes for reading key information from the bitstream, which corresponds to key field data in conventional CoordinateInterpolator node. CoordIKeyValueHeader and CoordIKeyValue are the classes for reading keyValue information corresponding to keyValue field data in conventional CoordinateInterpolator node.

The function qf_start() is used for initializing arithmetic decoder before reading AAC encoded part of the bitstream (see subclause 7.13.10.1 of ISO/IEC 14496-2:2004).

8.9.3.2 CoordIKeyValueHeader
8.9.3.2.1 Syntax
class CoordIKeyValueHeader {

bit(1) bTranspose;

unsigned int(5) nKVQBit;

unsigned int(5) nCoordQBit;

unsigned int(nCoordQBit) nNumberOfCoord;

unsigned int(4) nKVDigit;

KeyValueMinMax kVMinMax (nKVDigit);

unsigned int(nKVQBit) nXQMinOfMin;

unsigned int(nKVQBit) nXQMinOfMax;

unsigned int(nKVQBit) nYQMinOfMin;

unsigned int(nKVQBit) nYQMinOfMax;

unsigned int(nKVQBit) nZQMinOfMin;

unsigned int(nKVQBit) nZQMinOfMax;

unsigned int(nKVQBit) nXQMaxOfMin;

unsigned int(nKVQBit) nXQMaxOfMax;

unsigned int(nKVQBit) nYQMaxOfMin;

unsigned int(nKVQBit) nYQMaxOfMax;

unsigned int(nKVQBit) nZQMaxOfMin;

unsigned int(nKVQBit) nZQMaxOfMax;

}

8.9.3.2.2 Semantics
The data of keyValue header are decoded after the key header data. The main information in the keyValue header are the number of vertices, the quantization parameter for keyValue and minimum and maximum values for quantization.

bTranspose is the flag for transpose mode or vertex mode. If the value is 1, the transpose mode is selected. Otherwise, the vertex mode is selected. nKVQBit is the quantization bit that is used in the inverse quantization to restore the float values. nCoordQBit indicates the bit size used for nNumberOfCoord, which indicates the number of vertices. nKVDigit is used after the inverse quantization and this indicates the maximum significant digit for the keyValue data. KeyValueMinMax class reconstructs the minimum values and the maximum range for inverse quantization. Each value can be separated into the mantissa and the exponent. KeyValueMinMax class is described in the subclause 8.9.5.3. The remaining header information are the maximum and the minimum values among the maximum and the minimum quantized values of each component of keyValue. For example, nXQMinOfMax indicate the minimum value among the maximum quantized x component values in each vertex. These are necessary for decoding the keyValue data.

8.9.3.3 CoordIKeyValue
8.9.3.3.1 Syntax
class CoordIKeyValue (CoordIKeyValueHeader coordIKVHeader, int nNumberOfKey) {

int j, c;

if(coordIKVHeader.bTranspose == 1) {

 int temp = nNumberOfKey;

 nNumberOfKey = coordIKVHeader.nNumberOfCoord;

coordIKVHeader.nNumberOfCoord = temp;

}

int nKVACodingBitQBit = (int)(log10(abs(coordIKVHeader.nKVQBit))/log10(2))+1;

int nDPCMMode[coordIKVHeader.nNumberOfCoord][3];

unsigned int bSelFlag[coordIKVHeader.nNumberOfCoord][3] = 1;

CoordIDPCMMode coordIDPCMMode(coordIKVHeader);

for(j = 0; j < coordIKVHeader.nNumberOfCoord; j++) {

for(c = 0; c < 3; c++) {

if(c == 0) {

if(coordIKVHeader.nXQMaxOfmin <= coordIKVHeader.nXQMinOfmax) {

qf_decode(&bSelFlag[j][c], selectionFlagContext);

}

}

else if(c == 1) {

if(coordIKVHeader.nYQMaxOfmin <= coordIKVHeader.nYQMinOfmax) {

qf_decode(&bSelFlag[j][c], selectionFlagContext);

}

}

else if(c == 2) {

if(coordIKVHeader.nZQMaxOfmin <= coordIKVHeader.nZQMinOfmax) {

qf_decode(&bSelFlag[j][c], selectionFlagContext);

}

}

if(bSelFlag[j][c] == 1) {

if(c == 0)

decodeUnsignedAAC(&nKVACodingBit[j][c], nKVACodingBitQBit, aqpXContext);

else if(c == 1)

decodeUnsignedAAC(&nKVACodingBit[j][c], nKVACodingBitQBit, aqpYContext);

else if(c == 2)

decodeUnsignedAAC(&nKVACodingBit[j][c], nKVACodingBitQBit, aqpZContext);

if(j > 0) {

if(nDPCMMode[j][c] == 2 || nDPCMMode[j][c] == 3) {

int nQBitOfRef = (int)(log10(abs(j-1))/log10(2))+1;

decodeUnsignedAAC(&nRefVertex[j][c], nQBitOfRef, refContext);

}

}

if(nKVACodingBit[j][c] != 0) {

decodeSignedAAC(&nQMin[j][c], coordIKVHeader.nKVQBit+1,

qMinSignContext, qMinContext);

decodeSignedAAC(&nQMax[j][c], coordIKVHeader.nKVQBit+1,

qMaxSignContext, qMaxContext);

}

} else

decodeSignedAAC(&nQMin[j][c], coordIKVHeader.nKVQBit+1,

qMinSignContext, qMinContext);

CoordIKeyValueDic coordIKeyValueDic(bSelFlag[j][c],

nKVACodingBit[j][c], nNumberOfKey, c);

}

}

}

8.9.3.3.2 Semantics
nDPCMMode: This integer array indicates the DPCM mode for each component (x, y, z) of each vertex. The value may be 1 (temporal), 2 (spatial) or 3 (spatiotemporal).

bSelFlag: This boolean array indicates the selection flag for each component of each vertex. Only the component of a vertex with this flag set to true are coded using dictionary coder. The selectionFlagContext is the context for reading the values of bSelFlag.
nKVACodingBit: This integer array indicates the actual number of bits necessary for coding each component of each vertex. The aqpXContext is the context for reading the values of nKVACodingBit.
nRefVertex: This integer array indicates the index of reference vertex for each vertex. The refContext is the context for reading the values of nRefVertex.
nQMin: This integer array indicates the minimum quantized value of each component of each vertex. The qMinContext is the context for reading the values of nQMin. The qMinSignContext is the context for reading the signs of nQMin.
nQMax: This integer array indicates the maximum quantized value of each component of each vertex. The qMaxContext is the context for reading the values of nQMax. The qMaxSignContext is the context for reading the signs of nQMax.
8.9.3.4 CoordIDPCMMode

8.9.3.4.1 Syntax
class CoordIDPCMMode (CoordIKeyValueHeader coordIKVHeader) {

int i, s, k;

unsigned int bIndexDPCMMode[coordIKVHeader.nNumberOfCoord] = 0;

int nNumberOfSymbol = 0;

for(i = 0; i < 27; i++) {

qf_decode(&bAddressOfDPCMMode[i], dpcmModeDicAddressContext);

if(bAddressOfDPCMMode[i] == 1)

nNumberOfSymbol++;

}

for(s = 0; s < nNumberOfSymbol; s++) {

for(k = 1; k < coordIKVHeader.nNumberOfCoord; k++) {

if(bIndexDPCMMode[k] == 0) {

qf_decode(&bDPCMIndex, dpcmModeDicIndexContext);

if(bDPCMIndex == 1)

bIndexDPCMMode[k] = 1;

}

}

}

}

8.9.3.4.2 Semantics
bAddressOfDPCMMode: This boolean array indicates the usage of each DPCM dictionary symbol, which consists of DPCM mode for each component, in the DPCM dictionary table. There are three types of DPCM modes (T, S, and T+S) and three components in a vertex. Therefore, the combination of them results in 27 dictionary symbols, as shown in Table 87 — The DPCM dictionary table. The dpcmModeDicAddressContext is the context for reading the values of bAddressOfDPCMMode.

Table 0\IF >= 1 "A."

SEQ Table
87
 — The DPCM dictionary table
	DPCM Mode
	Dictionary symbol
	DPCM Mode
	Dictionary symbol

	0
	(T, T, T)
	14
	(S, S, T+S)

	1
	(T, T, S)
	15
	(S, T+S, T)

	2
	(T, T, T+S)
	16
	(S, T+S, S)

	3
	(T, S, T)
	17
	(S, T+S, T+S)

	4
	(T, S, S)
	18
	(T+S, T, T)

	5
	(T, S, T+S)
	19
	(T+S, T, S)

	6
	(T, T+S, T)
	20
	(T+S, T, T+S)

	7
	(T, T+S, S)
	21
	(T+S, S, T)

	8
	(T, T+S, T+S)
	22
	(T+S, S, S)

	9
	(S, T, T)
	23
	(T+S, S, T+S)

	10
	(S, T, S)
	24
	(T+S, T+S, T)

	11
	(S, T, T+S)
	25
	(T+S, T+S, S)

	12
	(S, S, T)
	26
	(T+S, T+S, T+S)

	13
	(S, S, S)
	
	

bDPCMIndex: This boolean value indicates which DPCM dictionary symbol is used for each vertex. The dpcmModeDicIndexContext is the context for reading the values of bDPCMIndex.
8.9.3.5 CoordIKeyValueDic

8.9.3.5.1 Syntax
class CoordIKeyValueDic (unsigned int bSelFlag, unsigned int nKVCodingBit, int nNumberOfKey, int c) {

if(bSelFlag == 1 && nKVCodingBit != 0) {

qf_decode(&nDicModeSelect, dicModeSelectionContext);

if(nDicModeSelect == 1)

CoordIIncrementalMode coordIIncrementalMode(nKVCodingBit, nNumberOfKey);

else

CoordIOccurrenceMode coordIOccurrenceMode(nKVCodingBit,
nNumberOfKey, c);

}

}

8.9.3.5.2 Semantics
nDicModeSelect: This boolean value indicates which mode is used for dictionary coding. The value of 1 indicates the incremental mode and 0 indicates the occurrence mode.

8.9.3.6 CoordIIncrementalMode

8.9.3.6.1 Syntax
class CoordIIncrementalMode (unsigned int nKVCodingBit, int nNumberOfKey) {

int i, s, k;

int nSizeOfAddress = (2^(nKVCodingBit+1))-1;

unsigned int bAddrIndex[nNumberOfKey] = 0;

int nNumberOfSymbol = 0;

for(i = 0; i < nSizeOfAddress; i++) {

qf_decode(&bAddress[i], dicAddressContext);

if(bAddress[i] == 1) {

nNumberOfSymbol++;

}

}

for(s = 0; s < nNumberOfSymbol; s++) {

qf_decode(&nTrueOne, dicOneContext);

for(k = 0; k < nNumberOfKey; k++) {

if(bIndexOfAddr[k] == 0) {

qf_decode(&bAddrIndex, dicIndexContext);

if(bAddrIndex == nTrueOne) {

bAddrIndex[k] = 1;

}

}

}

}

}

8.9.3.6.2 Semantics
bAddress: This boolean array indicates the usage of each incremental dictionary symbol, which represents the quantized keyValue. The number of symbols in the incremental dictionary table is the 2 ^ (nKVCodingBit+1) - 1. An example of incremental dictionary table is shown in Table 88 — An example of incremental dictionary table (nKVCodingBit = 2). The dicAddressContext is the context for reading the values of bAddress.

Table 0\IF >= 1 "A."

SEQ Table
88
 — An example of incremental dictionary table (nKVCodingBit = 2)

	Incremental Mode
	Dictionary Symbol

	0
	0

	1
	1

	2
	-1

	3
	2

	4
	-2

	5
	3

	6
	-3

nTrueOne: This boolean value indicates if 1 is used as the true value in the position index. If nTrueOne is 0, then value 0 in the position index is interpreted as true.

bAddrIndex: This boolean value indicates which incremental dictionary symbol is used for each component of each vertex. The dicIndexContext is the context for reading the values of bAddrIndex.
8.9.3.7 CoordIOccurrenceMode

8.9.3.7.1 Syntax
class CoordIOccurrenceMode (unsigned int nKVCodingBit, int nNumberOfKey, int c) {

int i, k;

unsigned int bIndexOfDic[nNumberOfKey] = 0;

for(i = 0; i < nNumberOfKey; i++) {

if(bIndexOfDic[i] == 0) {

bIndexOfDic[nNumberOfKey] = 1;

if(c == 0)

decodeSignedQuasiAAC(&nQKV[i], nKVCodingBit+1,

kvSignContext, kvXContext);

else if(c == 1)

decodeSignedQuasiAAC(&nQKV[i], nKVCodingBit+1,

kvSignContext, kvYContext);

else if(c == 2)

decodeSignedQuasiAAC(&nQKV[i], nKVCodingBit+1,

kvSignContext, kvZContext);

qf_decode(&bSoleKV, dicSoleKVContext);

if(bSoleKV == 0) {

qf_decode(&nTrueOne, dicOneContext);

for(k = i+1; k < nNumberOfKey; k++) {

if(bIndexOfDic[k] == 0) {

int bDicIndex;

qf_decode(&bDicIndex, dicIndexContext);

if(bDicIndex == nTrueOne)

bIndexOfDic[k] = 1;

}

}

}

}

}

}

8.9.3.7.2 Semantics
nQKV: This integer array contains all of the occurrence dictionary symbols, which are the quantized keyValues. The kvXContext, kvYContext and kvZContext are the contexts for reading the values of nQKV. The kvSignContext is the context for reading the signs of nQKV.
bSoleKV: This boolean value indicates whether the symbol occurs only one time. If so, bSoleKV is 1. The dicSoleKVContext is the context for reading the value of bSoleKV.
bDicIndex: This boolean value indicates which occurrence dictionary symbol is used for each component of each vertex. The dicIndexContext is the context for reading the values of bDicIndex.
8.9.3.8 Decoding Process
8.9.3.8.1 Overview
[image: image236.emf]Compressed

Bitstream

Inverse

DPCM

Dictionary

Decoder

Inverse

Quantizer

i

k

ˆ

j i

V

,

ˆ

Key

Decoder

nKeyQBit

nNumberOfKey

nKeyDigit

nKDPCMOrder

nDNDOrder

nKeyCodingBit

…

bTranspose

nKVQBit

nNumberOfCoord

nKVDigit

…

Header

Decoded

Coordinate

Interpolator

Key

KeyValue

Entropy

Decoder

Entropy

Decoder

j i

S

,



j i

V

,



j i

I

,



j i

V

,

~

Linear Key

Synthesizer

Figure 050

\IF >= 1 "A."
 — Decoder for compressed coordinate interpolator
Figure 48 shows the block diagram of the decoder for compressed coordinate interpolator. It consists of the decoders for Key, Key Header, KeyValue Header and KeyValue. Decoding process of Key data is described in subclause 8.9.2.6. In the following subclause, the decoding process of the KeyValue is described.

The keyValue data are float values in the structure of N(M matrix, where N is the number of keys and M is the number of vertices. In Figure 48, keys are indexed with i and vertices are indexed with j. The matrix structure of keyValue in the coordinate interpolator is shown in Table 89 — Matrix structure of keyValue in coordinate interpolator.

Table 0\IF >= 1 "A."

SEQ Table
89
 — Matrix structure of keyValue in coordinate interpolator

	
	1
	2
	...i
	M

	1
	x(1,1), y(1,1), z(1,1)
	x(1,2), y(1,2), z(1,2)
	...
	x(1,M), y(1,M), z(1,M)

	2
	x(2,1), y(2,1), z(2,1)
	x(2,2), y(2,2), z(2,2)
	...
	x(2,M), y(2,M), z(2,M)

	...j
	...
	...
	...x(i,j), y(i,j), z(i,j)
	...

	N
	x(N,1), y(N,1), z(N,1)
	x(N,2), y(N,2), z(N,2)
	...
	x(N,M), y(N,M), z(N,M)

8.9.3.8.2 Key Value Decoder
In this subclause, the decoding process of KeyValue for coordinate interpolator is described. It is comprised of the following steps.

· Entropy Decoding

· Dictionary Decoding

· Inverse DPCM

· Inverse Quantization

8.9.3.8.2.1 Entropy Decoder

The entropy decoder retrieves [image: image237.wmf]j

i

S

,

)

 and [image: image238.wmf]j

i

I

,

)

 from the bitstream and passes these values into the dictionary decoder.

[image: image239.wmf]j

i

S

,

)

 is the dictionary symbol. [image: image240.wmf]j

i

I

,

)

is the position index. The flow of the entropy decoder is shown in Figure 49.

[image: image241.emf]j = 0, 1, 2, …, M-1

c = 0, 1, 2

nDPCMModedecoding

bSelFlagdecoding

nKVACodingBitdecoding

nRefVertex decoding

nQMin decoding

nQMax decoding

nDicModeSelectdecoding

nDicModeSelect = 1?

Yes No

j i

S

,



j i

S

,



j i

I

,



j i

I

,



Incremental mode

Dictionary decoding

Occurrence mode

Dictionary decoding

Figure 051

\IF >= 1 "A."
 — Flowchart of entropy decoding

In the entropy decoding process, DPCM modes are decoded first.

In the next process, several arrays are decoded from the bitstream, which are bSelFlag, nKVACodingBit, nQMin, nQMax. bSelFlag array has default value of 1 and nKVACodingBit has default value of 0. If bSelFlag value remains 1, then the other arrays (nKVACodingBit, nQMin, nQMax) may be read. However, if the value of bSelFlag is changed to 0, the entropy decoder only decodes nQMin array. After decoding these arrays, the entropy decoder decodes nDicModeSelect which is the flag of dictionary mode. If the flag is 1, Incremental mode is selected. Otherwise, Occurrence mode is selected.

The bitstream structure of each component of each vertex to be decoded is as follows.

[image: image242.emf]..

nDicModeSelect

nQKV bSoleKV

nTrueOne

Position index

..

..

X

nQKV bSoleKV

nTrueOne

Position index

nDicModeSelect

bAddressIndex

nTrueOne

Position index

.. ..

..

Y

bAddressIndex

nTrueOne

Position index

nDicModeSelect

nQKV bSoleKV

nTrueOne

Position index

..

..

Z

nQKV bSoleKV

nTrueOne

Position index

0

nDicModeSelect

bAddressIndex

nTrueOne

Position index

.. ..

..

X

bAddressIndex

nTrueOne

Position index

nDicModeSelect

bAddressIndex

nTrueOne

Position index

..

..

..

Y

bAddressIndex

nTrueOne

Position index

nDicModeSelect

nQKV bSoleKV

nTrueOne

Position index

..

..

Z

nQKV bSoleKV

nTrueOne

Position index

M-1

..

(=0)

(=1)

(=0)

(=1)

(=1)

(=0)

Figure 052

\IF >= 1 "A."
 — An example of the bitstream structure of each component of each vertex for compressed coordinate interpolator.

According to nDicModeSelect value, there are two possible types of bitstream. If the nDicModeSelect is 0, the bitstream structure of the occurrence mode is used. Otherwise, the bitstream structure of the incremental mode is used. Figure 50 shows an example of the bitstream structure for compressed coordinate interpolator.

8.9.3.8.2.2 Dictionary Decoder

After the above stage, dictionary decoder is performed. There are two types of dictionary decoder: Incremental dictionary decoder and Occurrence dictionary decoder. For the DPCM mode decoding, only the incremental dictionary decoder is used. And for the keyValue decoding, either of the dictionary decoder can be used.

In case of keyValue decoding, the dictionary decoder is only performed for each component of each vertex with the quantization selection flag value (bSelFlag) of 1.

The dictionary decoder receives the dictionary symbols ([image: image243.wmf]j

i

S

,

)

) and position indexes ([image: image244.wmf]j

i

I

,

)

) as the input and generates the differentiated keyValues as the output. In case of occurrence mode, the dictionary is decoded in the order of occurrence of symbols for each component of each vertex. When in incremental mode, the dictionary is decoded in the incremental order of symbols for each component of each vertex. The dictionary decoder also uses the position index for each symbol in the dictionary. The output of the dictionary decoder is the differentiated keyValue.

The following example shows the method for decoding differentiated keyValue in case of occurrence mode.

[image: image245.emf]Entropy Decoded

KeyValue

3

0 1 0 0 0 1 0 1 0 0 0

Dictionary symbol

Position index

1

st

step

7

2

nd

step

3

rd

step

Data array

Dictionary symbol

3

7

- 4

Input

0

bSoleKV

0

0

3

0 1 0 0 0 1 0 1 0 0 0

Dictionary symbol

Position index

1

st

step

7

2

nd

step

3

rd

step

Empty

Data array

Dictionary symbol

3

7

- 4

Input

0

0

1 0 1 0 1 0 0

-4

1 1 1

Entropy Decoded

KeyValue

3 7 3 7

-4

7 3

–4

3 7

–4 -4

x x x x x x x x x x x x

3

x

3

x x x

3

x

3

x x x

3

7

3

7

x

7

3 x 3

7

x x

Data array

Final

Data array

Figure 053

\IF >= 1 "A."
 — An example of occurrence mode decoding

In Figure 51, the dictionary table receives the symbols (3, 7, -4) in the order of their occurence. For each symbol in the dictionary table, the position indices are received as (0 1 0 0 0 1 0 1 0 0 0), (1 0 1 0 1 0 0) and (1 1 1). In the occurrence mode, the first step is to retrieve the first symbol [3] and finds out the positions where the symbol occurs. The positions will be found by the value of 1 in the position index . Therefore, the intermediate result after retrieving the position index for symbol [3] is (3 x 3 x x x 3 x 3 x x x). Then, the dictionary decoder proceeds with the next symbol [7]. When retrieving the position index for [7], the positions that are found for the first symbol are not considered. Therefore, the position index for [7] is (1 0 1 0 1 0 0), instead of (0 1 0 1 0 0 0 1 0 0) and the intermediate result after this is (3 7 3 7 x 7 3 x 3 7 x x). Finally, the position index for the final symbol [-4] is (1 1 1) and the result of the dictionary decoder is generated as (3 7 3 7 -4 7 3 -4 3 7 –4 -4).

However, position indices for a symbol does not exist if bSoleKV is true, because this indicates that the dictionary symbol occurs only once.

The following example shows the method for decoding differentiated keyValue in case of incremental mode.

[image: image246.emf]- 1

1 0 1 0 0 0 1 0 1 0 0 0

Dictionary symbol

Position index

1

st

step

2

2

nd

step

- 3

3

rd

step

Entropy Decoded

KeyValue

Input

Dictionary

symbol

0

0

1

1

0

0

1

bAddress

0

1

- 1

2

- 2

3

- 3

- 1

1 0 1 0 0 0 1 0 1 0 0 0

Dictionary symbol

Position index

1

st

step

2

2

nd

step

- 3

3

rd

step

Entropy Decoded

KeyValue

Dictionary

symbol

0

0

1

1

0

0

1

0

1

- 1

2

- 2

3

- 3

-1

–3

–1

–3

2

–3

-1 2 -1

–3

2 2

0 0 1 0 1 0 1 1

1 1 1 1

x x x x x x x x x x x x

-1

x

–1

x x x

-1

x

-1

x x x

-1 x –1 x

2

x -1

2

-1 x

2 2

Data array

Empty

Data array

Data array

Final

Data array

Figure 054

\IF >= 1 "A."
 — An example of incremental mode decoding

In case of incremental mode, the flags for each symbol in the dictionary are retrieved. These flags indicates if the corresponding dictionary symbol is used. The order of dictionary symbol is the incremental order of the absolute values and positive value preceeding the negative value (i.e. 0, 1, -1, 2, -2, 3, -3 and so on). The size of incremental dictionary table is 2(nKVCodingBit+1)-1, where nKVCodingBit is the quantization bits retrieved from nKVACodingBit array. If the symbol flags are (0 0 1 1 0 0 1), then the symbols used in this dictionay are -1, 2 and -3. These symbols will have the corresponding position indices as follows: (1 0 1 0 0 0 1 0 1 0 0 0), (0 0 1 0 1 0 1 1) and (1 1 1 1) correspondingly.

Starting from the first symbol [-1], it’s position indices (1 0 1 0 0 0 1 0 1 0 0 0) are used to achieve the intermediate result as (-1 x -1 x x x -1 x -1 x x x). Then the second symbol [2] are filled into the empty slots according to it’s position indices (0 0 1 0 1 0 1 1). Thus, the intermediate result after the second symbol is filled becomes (-1 x -1 x 2 x -1 2 -1 x 2 2). Finally, the last symbol [-3] is filled to the empty slots, using (1 1 1 1) and the final result of the dictionary is generated as (-1 -3 -1 -3 2 -3 -1 2 -1 -3 2 2).

The DPCM mode data are decoded by incremental dictionary decoder as described above. However, the dictionary symbols are the combination of DPCM mode for each component in a vertex. Therefore, the size of the dictionary table is fixed to 27.

[image: image247.emf]Entropy Decoded

KeyValue

x x x x x x

0 1 0 1 0 0

Dictionary symbol Position index

1

st

step

2

nd

step

(T S T+S): 5

3

rd

step

4 1

5

1 4

5

Data array

Dictionary

symbol

(T S S) (T T S) (T S T+S) (T T S) (T S S) (T S T+S)

Final array

Input

0

1

2

3

4

5

…

26

(T T T)

0 1 2 3 4 5

0

(T T S)

1

(T T T+S)

0

(T S T)

0

1

(T S S)

(T S T+S)

1

…

…

(T+S T+S T+S)

0

(T S S): 4

(T T S) : 1

1 0 1 0

1 1

flag

x

1

x

1

x x

4

1 x 1

4

x

Figure 055

\IF >= 1 "A."
 — An example of DPCM mode decoding

8.9.3.8.2.3 Inverse DPCM

After the above stage, the next decoding process is inverse DPCM depending on the DPCM modes and the reference vertices. There are three ways to perform inverse DPCM. Those are Inverse Temporal(T) DPCM, Inverse Spatial(S) DPCM and Inverse Spatiotemporal(T+S) DPCM. Let [image: image248.wmf]j

i

V

,

~

 be the quantized keyValue data of i-th key and j-th vertex. Let [image: image249.wmf]j

i

V

,

(

 be the difference value of i-th key and j-th vertex in the keyValue. The followings are the equations for each type of inverse DPCM.

Inverse T. DPCM: [image: image250.wmf]=

j

i

V

,

~

[image: image251.wmf]j

i

j

i

V

V

,

1

,

~

-

+

(

Inverse S. DPCM: [image: image252.wmf]=

j

i

V

,

~

[image: image253.wmf]Ref

,

,

~

i

j

i

V

V

+

(

Inverse T+S. DPCM: [image: image254.wmf]=

j

i

V

,

~

[image: image255.wmf])

~

~

(

~

Ref

,

1

Ref

,

j

,

1

,

-

-

-

+

+

i

i

i

j

i

V

V

V

V

(

Ref is the index of a reference vertex. During inverse DPCM process, inverse circular quantization is performed for the current reconstructed keyValue. The method of inverse circular quantization can be found in subclause 8.9.5.6.3.

8.9.3.8.2.4 Inverse Quantization

After inverse DPCM, inverse quantization is performed. If the quantization selection flag is 0, then the corresponding component of the vertex has only one quantized value (QMin). Also, if the quantization selection flag value is not 0 and the nKVCodingBit value is 0, then the decoded keyValue is set to 0. In this case, 0 is assigned to the corresponding component of the vertex.

The inverse quantization is performed using the following equation so that the quantized keyValue (v) are inverse quantized.

[image: image256.wmf]fMax

V

X

fMin

V

nKVQBits

x

j

i

x

j

i

*

)

1

2

(

~

_

ˆ

,

,

,

,

-

+

=

[image: image257.wmf]fMax

V

Y

fMin

V

nKVQBits

y

j

i

y

j

i

*

)

1

2

(

~

_

ˆ

,

,

,

,

-

+

=

[image: image258.wmf]fMax

V

Z

fMin

V

nKVQBits

z

j

i

z

j

i

*

)

1

2

(

~

_

ˆ

,

,

,

,

-

+

=

fMin is the minimum value and fMax is the maximum range of the original keyValue and nKVQBits is the quantization bit size for inverse quantization.

After inverse quantization, if the current mode is transpose mode, the matrix generated after inverse quantization is the diagonally transposed matrix of the original keyValue matrix. Therefore, if transpose mode is true, then the matrix must be diagonally transposed again in order to obtain the final matrix of keyValue. For example, given the original keyValue matrix as shown in Table 89 — Matrix structure of keyValue in coordinate interpolator, if the transpose mode is true, then the result matrix after the inverse quantization is shown in Table 90 — Diagonally transposed keyValue matrix.

Table 0\IF >= 1 "A."

SEQ Table
90
 — Diagonally transposed keyValue matrix

	
	1
	2
	...j
	N

	1
	x(1,1), y(1,1), z(1,1)
	x(2,1), y(2,1), z(2,1)
	...
	x(N,1), y(N,1), z(N,1)

	2
	x(1,2), y(1,2), z(1,2)
	x(2,2), y(2,2), z(2,2)
	...
	x(N,2), y(N,2), z(N,2)

	...i
	...
	...
	...x(j,i), y(j,i), z(j,i)
	...

	M
	x(1,M), y(1,M), z(1,M)
	x(2,M), y(2,M), z(2,M)
	...
	x(N,M), y(N,M), z(N,M)

8.9.4 Orientation Interpolator Decoding

8.9.4.1 CompressedOrientationInterpolator
8.9.4.1.1 Syntax
class CompressedOrientationInterpolator {

KeyHeader
kHeader;

OriIKeyValueHeader oriIKVHeader;

qf_start();

aligned(8) KeySelectionFlag ksFlag(kHeader, oriIKVHeader.bPreserveKey);

Key k(kHeader);

if(oriIKVHeader.nKVDPCMOrder == 0)
//1st order DPCM

OriIDPCMKeyValue oriIDPCMKeyValue(oriIKVHeader.oriIDPCMKVHeader, ksFlag.nNumberOfKeyValue-1);

else
//2nd order DPCM

OriIDPCMKeyValue oriIDPCMKeyValue(oriIKVHeader.oriIDPCMKVHeader, ksFlag.nNumberOfKeyValue-2);

}

8.9.4.1.2 Semantics
This is a top class for reading the compressed bitstream of orientation interpolator. KeyHeader, KeySelectionFlag, and Key are the classes for reading key information from the bitstream, which corresponds to key field data in conventional orientation interpolator. OriIKeyValueHeader and OriIDPCMKeyValue are the classes for reading keyValue information corresponding to keyValue field data in conventional orientation interpolator.

The function qf_start() is used for initializing arithmetic decoder before reading encoded part of the bitstream with AAC(Adaptive Arithmetic Coding) (see subclause 7.13.10.1 of ISO/IEC 14496-2:2004)

8.9.4.2 OriIKeyValueHeader
8.9.4.2.1 Syntax
class OriIKeyValueHeader () {

bit(1) bPreserveKey;

unsigned int(5) nKVQBit;

bit(1) nKVDPCMOrder;

OriIDPCMKeyValueHeader oriIDPCMKVHeader(nKVQBit, nKVDPCMOrder);

}

8.9.4.2.2 Semantics
bPreserveKey: This flag indicates if the current decoding mode is key preserving orpath preserving mode. If the flag is true, then the current decoding mode is key preserving mode.
nKVQBit: This value indicates the quantization bit size of the keyValue data.

nKVDPCMOrder: This value indicates the order of inverse DPCM that is used in keyValue decoding. nKVDPCMOrder=0 indicates the 1st order inverse DPCM and nKVDPCMOrder=1 indicates the 2nd order inverse DPCM.
8.9.4.3 OriDPCMKeyValueHeader
8.9.4.3.1 Syntax
class OriIDPCMKeyValueHeader (int nKVQBit, unsigned int nKVDPCMOrder) {

unsigned int(nKVQBit-1) firstQKV_S;

bit(1) nFirstXSign;

unsigned int(nKVQBit-1) firstQKV_X;

bit(1) nFirstYSign;

unsigned int(nKVQBit-1) firstQKV_Y;

bit(1) nFirstZSign;

unsigned int(nKVQBit-1) firstQKV_Z;

if (nKVDPCMOrder==1) {
//2nd order DPCM

bit(1) nSecondXSign;

unsigned int(nKVQBit-1) secondQKV_X;

bit(1) nSecondYSign;

unsigned int(nKVQBit-1) secondQKV_Y;

bit(1) nSecondZSign;

unsigned int(nKVQBit-1) secondQKV_Z;

bit(1) bIsMoreTwoKVs;

}

if (nKVDPCMOrder==0 || bIsMoreTwoKVs==1) {

bit(1) x_keyvalue_flag;

OriIKeyValueCodingBit oriIKVCodingBit_X(x_keyvalue_flag, nKVQBit);

bit(1) y_keyvalue_flag;

OriIKeyValueCodingBit oriIKVCodingBit_Y(y_keyvalue_flag, nKVQBit);

bit(1) z_keyvalue_flag;

OriIKeyValueCodingBit oriIKVCodingBit_Z(z_keyvalue_flag, nKVQBit);

}

}

8.9.4.3.2 Semantics
firstQKV_S, firstQKV_X, firstQKV_Y, firstQKV_Z: These values indicate the first value of each component (s, x, y, z) of quantized keyValue in quaternion form.
nFirstXSign, nFirstYSign, nFirstZSign: These values indicate the sign of the first value of three components (x, y, z) of quantized keyValue.

secondQKV_X, secondQKV_Y, secondQKV_Z: These values indicate the second value of three component (x, y, z) of quantized keyValue in quaternion form.
nSecondXSign, nSecondYSign, nSecondZSign: These values indicate the sign of the second value of three components (x, y, z) of quantized keyValue.

bIsMoreTwoKVs: This flag indicates if there are more than two keyValues to be decoded, in case of 2nd order inverse DPCM.

x_keyvalue_flag, y_keyvalue_flag, z_keyvalue_flag: These flags indicate, for three components (x, y, z), if all of the quantized values are the same.
8.9.4.4 OriIKeyValueCodingBit
8.9.4.4.1 Syntax
class OriIKeyValueCodingBit (unsigned int flag_bit, int nKVQBit) {

int count = (int)(log10(nKVQBit)/log10(2)) + 1;

if(flag_bit == 0) {

unsigned int(count) nKVCodingBit;

if(nKVCodingBit == 1)

unsigned int(nKVCodingBit) nAllKeyValue;

else {

bit(1) nSign;

unsigned int(nKVCodingBit-1) nAllKeyValue;

}

} else {

bit(1) bIsUnaryAAC;

if(bIsUnaryAAC != 1)

unsigned int(count) nKVCodingBit;

}

}

8.9.4.4.2 Semantics
nKVCodingBit: This value indicates the actual number of bits used for coding components x, y and z, of all quaternion except intra keyValue (firstQKV_S, firstQKV_X, firstQKV_Y, firstQKV_Z and secondQKV_X, secondQKV_Y, secondQKV_Z in OriIDPCMKeyValueHeader class).

nAllKeyValue: This value indicates a quantized value of each component of keyValue for all the keys when its flag_bit is set to 0.
nSign: This value indicates the sign of nAllKeyValue.

bIsUnaryAAC: This flag indicates which adaptive arithmetic decoding method is used for the quantized values of each of the three components (x, y and z). If true, then unary AAC is used. Otherwise, binary AAC is used.

8.9.4.5 OriIDPCMKeyValue
8.9.4.5.1 Syntax
class OriIDPCMKeyValue(OriIDPCMKeyValueHeader kvHeader, int nNumKV) {

int i;

if(kvHeader.x_keyvalue_flag != 0) {

if(kvHeader.oriIKVCodingBit_X.bIsUnaryAAC == 1)

for(i = 0;i < nNumKV;i++)

decodeUnaryAAC(&DeltaKeyValue[i].x, kVXSignContext, kVXUnaryContext);

else

for(i = 0;i < nNumKV;i++)

decodeSignedAAC(&DeltaKeyValue[i].x, kvHeader.oriIKVCodingBit_X.nKVCodingBit, kVXSignContext, kVXContext);

}

if(kvHeader.y_keyvalue_flag != 0) {

if(kvHeader.oriIKVCodingBit_Y.bIsUnaryAAC == 1)

for(i = 0;i < nNumKV;i++)

decodeUnaryAAC(&DeltaKeyValue[i].y, kVYSignContext, kVYUnaryContext);

else

for(i = 0;i < nNumKV;i++)

decodeSignedAAC(&DeltaKeyValue[i].y, kvHeader.oriIKVCodingBit_Y.nKVCodingBit, kVYSignContext, kVYContext);

}

if(kvHeader.z_keyvalue_flag != 0) {

if(kvHeader.oriIKVCodingBit_Z.bIsUnaryAAC == 1)

for(i = 0;i < nNumKV;i++)

decodeUnaryAAC(&DeltaKeyValue[i].z, kVZSignContext, kVZUnaryContext);

else

for(i = 0;i < nNumKV;i++)

decodeSignedAAC(&DeltaKeyValue[i].z, kvHeader.oriIKVCodingBit_Z.nKVCodingBit, kVZSignContext, kVZContext);

}

}

8.9.4.5.2 Semantics
DeltaKeyValue: This array stores the quantized values related to three components (x, y, z) of key Value in quaternion form. It is arithmetic decoded from the bitstream by the function decodeUnaryAAC or decodeSignedAAC. The decoding process of these functions is explained in detail in subclause 8.9.6.

kVXSignContext, kVYSignContext, kVZSignContext: These are the contexts that are used for decoding the signs of three components of DeltaKeyValue in the function decodeUnaryAAC or decodeSignedAAC.

kVXUnaryContext, kVYUnaryContext, kVZUnaryContext: These are the contexts that are used for decoding the value of three components of DeltaKeyValue in the function decodeUnaryAAC.

kVXContext, kVYContext, kVZContext: These are the contexts that are used for decoding the value of three components of DeltaKeyValue in the function decodeSignedAAC.

8.9.4.6 Decoding Process
[image: image259.png]Compressed
hinary bit stream

Key
Entropy Key Linear Key

| Decoder ! Decoder " Synihesizer };

i

K QB “bPreservekey, nKVQBit

T | ANomberomey “AKVDPCMOder knyFlagarrsy

8 | MsLinearKeySubRegion “FirstQKY, SerondQRV i

S | NumberOfLinearKey “keyvabe_fag, nKV CodingBit 1

@ | rarifEndkey “nAllKey b, blsUnaryAAC

KewValue 1% order inverse DPCM

204 order inverse DPCM| <

e :ééxfl

Z

e
Frpy : verse Queeron
™ Decoder ¥ Cixeular P Quantizer [2®] Multiplier
ol I :
i ¢ i 9 1

Z

Tothe
Interpolator
Synthesizer

Figure 056

\IF >= 1 "A."
 — Decoder structure for compressed orientation interpolator

Figure 54 shows the block diagram of the decoder structure of the compressed orientation interpolator. It is comprised of 3 parts.

· Header (for Keys and keyValues) decoder

· Key decoder

· keyValue decoder.

Decoding process of key header and key data is described in subclause 8.9.2.6. In the following subclauses, the decoding process of keyValue header and keyValue for orientation interpolator is described.

8.9.4.6.1 KeyValue Header decoder

8.9.4.6.1.1 Key preserving and path preserving mode

In the keyValue header information, there is a bPreserveKey flag(in OriIKeyValueHeader class), which indicates if the current decoding is key preserving mode or path preserving mode. The key preserving mode is for the case where a random access may be required for the data in interpolator node of the BIFS Scene using BIFS commands (replace, delete, insert, etc.). In this case, the keys in the interpolator node are preserved. However, the number of keyValues may be reduced and the remaining points are indicated by keyFlag array (in KeySelectionFlag class). For example, given an interpolator curve as shown in Figure 55, and when 4 points have been selected, the key selection flag array (keyFlag array in KeySelectionFlag class) will have the values as shown in Table 91 — Values of key selection flag array after Key Selection process. Therefore, in case of key preserving mode, decoded key selection flag array is used to find out the existence of keyValue for each key. If the keyValue of a key is missing, then it can be restored through spherical linear interpolation of the existing neighbor keyValues.

[image: image260]
Figure 057

\IF >= 1 "A."
 — Key Selection process in Interpolator

Table 0\IF >= 1 "A."

SEQ Table
91
 — Values of key selection flag array after Key Selection process

	Original Points
	P0
	P1
	P2
	P3
	P4
	P5
	P6
	P7
	P8

	Key selection Flag
	1
	0
	0
	1
	0
	0
	1
	0
	1

The animation path preserving mode is for the case where interpolator node is only used for describing the interpolation of the path of an animation and random access is not necessary. In this case, it is allowed to remove some keys and corresponding keyValues in the interpolator node within a given error range for more efficient compression and the keyFlag array will not exist in the encoded bitstream.
8.9.4.6.1.2 Decoding of Intra keyValues

In the keyValue header information, there are first and second quantized keyValues in quaternion form according to the order of inverse DPCM and several flags that are needed to decode the remaining keyValues.

The first and second quantized keyValues are reconstructed using inverse quantization and quaternion multiplication. Then, they are converted into angular displacement from quaternion.

If the order of inverse DPCM is 1(e.g. nKVDPCMOrder is set to 0), only the first quantized keyValue is contained in the keyValue header information. If the quaternion of first inverse quantized keyValue is [image: image261.wmf]T

q

q

q

q

Q

)

ˆ

,

ˆ

,

ˆ

,

ˆ

(

ˆ

3

,

0

2

,

0

1

,

0

0

,

0

0

=

, the first inverse quantized keyValue will be

[image: image262.wmf])

1

2

_

*

*

4

tan(

ˆ

)

1

2

_

*

*

4

tan(

ˆ

)

1

2

_

*

*

4

tan(

ˆ

)

1

2

_

*

4

tan(

ˆ

1

3

,

0

1

2

,

0

1

1

,

0

1

0

,

0

÷

÷

ø

ö

ç

ç

è

æ

-

=

÷

÷

ø

ö

ç

ç

è

æ

-

=

÷

÷

ø

ö

ç

ç

è

æ

-

=

÷

÷

ø

ö

ç

ç

è

æ

-

=

-

-

-

-

nKVQBit

nKVQBit

nKVQBit

nKVQBit

Z

firstQKV

zSign

q

Y

firstQKV

ySign

q

X

firstQKV

xSign

q

S

firstQKV

q

p

p

p

p

In these equations, xSign has the value 1 when nFirstXSign (in OriIDPCMKeyValueHeader class) is 1. Otherwise it will have the value -1. The same applies to ySign with nFirstYSign and zSign with nFirstZSign.

Finally, this reconstructed quaternion is converted into angular displacement to be used in orientation interpolator. The reconstructed angular displacement from the keyValue can be represented with a 4-dimensional vector as [image: image263.wmf]T

i

i

i

i

z

y

x

)

ˆ

,

ˆ

,

ˆ

,

ˆ

(

q

, where i represents the current key, [image: image264.wmf])

ˆ

,

ˆ

,

ˆ

(

i

i

i

z

y

x

 represents the vector of the rotation axis, and [image: image265.wmf]i

q

ˆ

 represents the rotation angle to the counter-clockwise direction. Therefore, this reconstructed quaternion is converted into angular displacement in the Interpolator Synthesizer, using following equations.

[image: image266.wmf]2

*

)

ˆ

arccos(

ˆ

)

2

ˆ

sin(

1

*

ˆ

ˆ

)

2

ˆ

sin(

1

*

ˆ

ˆ

)

2

ˆ

sin(

1

*

ˆ

ˆ

0

,

0

0

0

3

,

0

0

0

2

,

0

0

0

1

,

0

0

q

q

z

q

y

q

x

=

=

=

=

q

q

q

q

………………. Eq. 1
If the order of inverse DPCM is 2 (e.g. nKVDPCMOrder is 1), the first and second quantized keyValues are contained in the keyValue header information. In this case, the first keyValue is reconstructed with the same rule described above. For reconstructing the second keyValue, a slightly different rule is applied, because only the three components (secondQKV_X, secondQKV_Y, secondQKV_Z) of second quantized keyValue are transmitted through the encoded bitstream and also these components are not intra keyValue but differentiated keyValue([image: image267.wmf])

~

,

~

,

~

(

~

3

,

1

2

,

1

1

,

1

1

q

q

q

Q

=

) from first keyValue. If the quaternion of second differentiated and inverse quantized keyValue is [image: image268.wmf]T

q

q

q

q

Q

)

ˆ

~

,

ˆ

~

,

ˆ

~

,

ˆ

~

(

ˆ

~

3

,

1

2

,

1

1

,

1

0

,

1

1

=

, it will have

[image: image269.wmf])

1

2

_

*

*

4

tan(

ˆ

~

)

1

2

_

*

*

4

tan(

ˆ

~

)

1

2

_

*

*

4

tan(

ˆ

~

)

ˆ

~

ˆ

~

ˆ

~

(

1

ˆ

~

1

3

,

1

1

2

,

1

1

1

,

1

2

3

,

1

2

2

,

1

2

1

,

1

0

,

1

÷

÷

ø

ö

ç

ç

è

æ

-

=

÷

÷

ø

ö

ç

ç

è

æ

-

=

÷

÷

ø

ö

ç

ç

è

æ

-

=

+

+

-

=

-

-

-

nKVQBit

nKVQBit

nKVQBit

Z

QKV

second

ZSign

second

q

Y

QKV

second

YSign

second

q

X

QKV

second

Sign

secondX

q

q

q

q

q

p

p

p

In these equations, secondXSign has the value 1 when nSecondXSign (in OriIDPCMKeyValueHeader class) is 1. Otherwise it will have the value -1. The same applies to secondYSign with nSecondYSign and secondZSign with nSecondZSign.

And if the reconstructed quaternion of second keyValue is [image: image270.wmf]T

q

q

q

q

Q

)

ˆ

,

ˆ

,

ˆ

,

ˆ

(

ˆ

3

,

1

2

,

1

1

,

1

0

,

1

1

=

, [image: image271.wmf]1

ˆ

Q

 will be calculated by the quaternion multiplication between [image: image272.wmf]1

ˆ

~

Q

 and [image: image273.wmf]0

ˆ

Q

. Therefore, the equation is

[image: image274.wmf]0

1

1

ˆ

ˆ

~

ˆ

Q

Q

Q

=

This reconstructed quaternion is also converted into angular displacement in the Interpolator Synthesizer, using Eq. 1.

8.9.4.6.2 keyValue decoder
8.9.4.6.2.1 Entropy Decoder

After reading the header information and key data, the keyValue data ([image: image275.wmf])

,

,

(

3

,

2

,

1

,

i

i

i

i

q

q

q

Q

=

) in the encoded bitstream are passed to the entropy decoder (adaptive arithmetic decoder), if the keyvalue_flag (x_keyvalue_flag, y_keyvalue_flag and z_keyvalue_flag in OriIDPCMKeyValueHeader class) is set to 1. Otherwise, if the keyvalue_flag is set to 0, it means that all the remaining quantized and differentiated values of each component of every keyValues (except first and second keyValue according to the order of inverse DPCM) have the same values respectively that are represented by nAllKeyValues (in OriIKeyValueCodingBit class). Therefore, there is no keyValue data in the encoded bitstream that are passed to the entropy decoder.

If [image: image276.wmf])

].

[

,

].

[

,

].

[

(

)

,

,

(

3

,

2

,

1

,

z

i

lue

DeltaKeyVa

y

i

lue

DeltaKeyVa

x

i

lue

DeltaKeyVa

q

q

q

Q

i

i

i

i

=

=

(

(

(

(

, is defined as the output of the entropy decoder, then it is decoded by the following function.

[image: image277.wmf])

3

,...,

0

2

,...,

0

(

)

1

_

_

(

),

(

:

)

(

_

)

0

_

_

(

,

llKeyValue

ngBit_Z.nA

oriIKVCodi

)

1

_

_

(

),

(

:

)

(

_

)

0

_

_

(

,

llKeyValue

ngBit_Y.nA

oriIKVCodi

)

1

_

_

(

),

(

:

)

(

_

)

0

_

_

(

,

llKeyValue

ngBit_X.nA

oriIKVCodi

3

,

3

,

3

,

2

,

2

,

2

,

1

,

1

,

1

,

-

=

-

=

î

í

ì

==

=

·

==

=

î

í

ì

==

=

·

==

=

î

í

ì

==

=

·

==

=

eyValue

nNumberOfK

i

or

eyValue

nNumberOfK

i

flag

keyvalue

z

if

q

f

q

Decoder

Entropy

flag

keyvalue

z

if

q

flag

keyvalue

y

if

q

f

q

Decoder

Entropy

flag

keyvalue

y

if

q

flag

keyvalue

x

if

q

f

q

Decoder

Entropy

flag

keyvalue

x

if

q

i

i

i

i

i

i

i

i

i

(

(

(

(

(

(

The function of entropy decoder to be used here is described in subclause 8.9.6. The parameter i goes up to nNumberOfKeyValue-2 in the case of 1st order inverse DPCM (nKVDPCMOrder=0) and goes up to nNumberOfKeyValue-3 in the case of 2nd order inverse DPCM (nKVDPCMOrder=1). The order of each component of quaternion within the bitstream is shown in Figure 56
[image: image278.png]G NumberQfkey Value - 2(or 3,1 j

Bo2|%2 T2z | -+ | Tnnumberofkey vatue—20r 3),2 B

W3\ D3| | TuimberofizyValue2(or3)3

Figure 058

\IF >= 1 "A."
 — The order of keyValue data in the bitstream

If bIsUnaryAAC (in OriIKeyValueCodingBit class) is set to 1, the keyValue data in the encoded bitstream passes the UnaryAAC decoder. Otherwise SignedAAC decoder. (see subclause 8.9.6)

After arithmetic decoding of keyValue, the output (DeltaKeyValue array in OriIDPCMKeyValue class) of arithmetic decoder is sent to Inverse circular DPCM or inverse Quantizer as shown in Figure 54. depending on the order of inverse DPCM.

8.9.4.6.2.2 1st Order Inverse DPCM

If the order of inverse DPCM is 1 (nKVDPCMOrder=0), the output of the arithmetic decoder is sent to Inverse Quantizer bypassing Inverse circular DPCM. If the output of arithmetic decoder is [image: image279.wmf])

].

[

,

].

[

,

].

[

(

)

,

,

(

3

,

2

,

1

,

z

i

lue

DeltaKeyVa

y

i

lue

DeltaKeyVa

x

i

lue

DeltaKeyVa

q

q

q

Q

i

i

i

i

=

=

(

(

(

(

and the quaternions of differentiated and inverse quantized keyValues are [image: image280.wmf]T

i

i

i

i

i

q

q

q

q

Q

)

ˆ

~

,

ˆ

~

,

ˆ

~

,

ˆ

~

(

ˆ

~

3

,

2

,

1

,

0

,

=

, then [image: image281.wmf]i

Q

ˆ

~

 will have

[image: image282.wmf])

3

,

2

,

1

,

1

,...,

1

(

)

1

2

*

)

sgn(

*

4

tan(

ˆ

~

)

ˆ

~

ˆ

~

ˆ

~

(

1

ˆ

~

1

,

2

3

,

2

2

,

2

1

,

0

,

=

-

=

÷

÷

ø

ö

ç

ç

è

æ

-

=

+

+

-

=

-

j

eyValue

nNumberOfK

i

q

q

q

q

q

q

q

nKVQBit

j

-1,

i

j

-1,

i

j

i

i

i

i

i

(

(

p

And if the reconstructed quaternions of these keyValues are [image: image283.wmf]T

i

i

i

i

i

q

q

q

q

Q

)

ˆ

,

ˆ

,

ˆ

,

ˆ

(

ˆ

3

,

2

,

1

,

0

,

=

, [image: image284.wmf]i

Q

ˆ

 will be calculated by the quaternion multiplication between [image: image285.wmf]i

Q

ˆ

~

 and previously reconstructed quaternion in the Quaternion Multiplier in Figure 54. Therefore, the equation is

[image: image286.wmf])

1

,...,

1

(

ˆ

ˆ

~

ˆ

1

-

=

=

-

eyValue

nNumberOfK

i

Q

Q

Q

i

i

i

These reconstructed quaternions are also converted into angular displacements in the Interpolator Synthesizer, using Eq. 1
8.9.4.6.2.3 2nd Order Inverse DPCM

If the order of inverse DPCM is 2 (nKVDPCMOrder=1), the output of the arithmetic decoder is sent to Inverse circular DPCM in Figure 54. If the output of arithmetic decoder is [image: image287.wmf])

].

[

,

].

[

,

].

[

(

)

,

,

(

3

,

2

,

1

,

z

i

lue

DeltaKeyVa

y

i

lue

DeltaKeyVa

x

i

lue

DeltaKeyVa

q

q

q

Q

i

i

i

i

=

=

(

(

(

(

and the output of this inverse circular DPCM is [image: image288.wmf])

~

,

~

,

~

(

~

3

,

2

,

1

,

i

i

i

i

q

q

q

Q

=

, then [image: image289.wmf]i

Q

~

 will have

[image: image290.wmf])

3

,

2

,

1

,

1

,...,

2

(

)

~

,

(

~

:

)

(

,

1

,

2

,

=

-

=

=

·

-

-

j

eyValue

nNumberOfK

i

q

q

f

q

ICDPCM

j

i

j

i

j

i

(

The following is the C++ style syntactic description of function ICDPCM(inverse circular DPCM)

ICDPCM(int* curIDPCMKeyValue, int deltaKeyValue, int prevICDPCMKeyValue)

{

int circularDelta;

int tempIDPCMKeyValue;

prevICDPCMKeyValue += ((1 << (nKVQBit-1))-1);

if(deltaKeyValue >= 0.0)

circularDelta = deltaKeyValue - ((1 << nKVQBit)-1);

else

circularDelta = deltaKeyValue + ((1 << nKVQBit)-1);

tempIDPCMKeyValue = circularDelta + prevICDPCMKeyValue;

if((tempIDPCMKeyValue >= 0.0) && (tempIDPCMKeyValue < ((1 << nKVQBit)-1)))

*curIDPCMKeyValue = tempIDPCMKeyValue;

else

*curIDPCMKeyValue = deltaKeyValue + prevICDPCMKeyValue;

*curIDPCMKeyValue -= ((1 << (nKVQBit-1))-1);

}

The inverse circular DPCM chooses the value within quantization range between the value of deltaKeyValue and complement of deltaKeyValue (circularDelta).

The quaternions of differentiated and inverse quantized keyValues [image: image291.wmf]T

i

i

i

i

i

q

q

q

q

Q

)

ˆ

~

,

ˆ

~

,

ˆ

~

,

ˆ

~

(

ˆ

~

3

,

2

,

1

,

0

,

=

can be calculated from the output of this inverse circular DPCM [image: image292.wmf])

~

,

~

,

~

(

~

3

,

2

,

1

,

i

i

i

i

q

q

q

Q

=

. [image: image293.wmf]i

Q

ˆ

~

 will have

[image: image294.wmf])

3

,

2

,

1

,

1

,...,

2

(

)

1

2

~

*

)

~

sgn(

*

4

tan(

ˆ

~

)

ˆ

~

ˆ

~

ˆ

~

(

1

ˆ

~

1

,

2

3

,

2

2

,

2

1

,

0

,

=

-

=

÷

÷

ø

ö

ç

ç

è

æ

-

=

+

+

-

=

-

j

eyValue

nNumberOfK

i

q

q

q

q

q

q

q

nKVQBit

j

i,

j

i,

j

i

i

i

i

i

p

If the reconstructed quaternions of these keyValues are [image: image295.wmf]T

i

i

i

i

i

q

q

q

q

Q

)

ˆ

,

ˆ

,

ˆ

,

ˆ

(

ˆ

3

,

2

,

1

,

0

,

=

, then [image: image296.wmf]i

Q

ˆ

 will be calculated by the quaternion multiplication between [image: image297.wmf]i

Q

ˆ

~

 and previously reconstructed quaternion in the Quaternion Multiplier in Figure 54. Therefore, the equation is

[image: image298.wmf])

1

,...,

2

(

ˆ

ˆ

~

ˆ

1

-

=

=

-

eyValue

nNumberOfK

i

Q

Q

Q

i

i

i

These reconstructed quaternions are also converted into angular displacements in the Interpolator Synthesizer, using Eq. 1
8.9.5 Position Interpolator Decoding

8.9.5.1 CompressedPositionInterpolator
8.9.5.1.1 Syntax
class CompressedPositionInterpolator {

KeyHeader kHeader;

PosIKeyValueHeader posIKVHeader;

qf_start();

aligned(8) KeySelectionFlag ksFlag(kHeader, posIKVHeader.bPreserveKey);

Key k(kHeader);

PosIKeyValue posIKV(posIKVHeader, ksFlags.nNumberOfKeyValue);

}

8.9.5.1.2 Semantics
This is a top class for reading the compressed bitstream of position interpolator. It consists of KeyHeader, PosIKeyValueHeader, KeySelectionFlag, Key and PosIKeyValue. KeyHeader and PosIKeyValueHeader contain the header information to decode Key and PosIKeyValue. KeySelectionFlag has the flags, which indicate, for each key, if the corresponding keyValue is included in the PosIKeyValue. Finally, Key and PosIKeyValue class read the key and keyValue data respectively for position interpolator from the bitstream.

The function qf_start() is used for initializing arithmetic decoder before reading AAC encoded part of the bitstream (see subclause 7.13.10.1 of ISO/IEC 14496-2:2004).
8.9.5.2 PosIKeyValueHeader
8.9.5.2.1 Syntax
class PosIKeyValueHeader() {

bit(1) bPreserveKey;

unsigned int(5) nKVQBit;

bit(1) x_keyvalue_flag;

bit(1) y_keyvalue_flag;

bit(1) z_keyvalue_flag;

unsigned int(4) nKVDigit;

int nBits = (int)(log10(nKVQBit)/log10(2)) + 1;

if(x_keyvalue_flag == 1) {

bit(1) nKVDPCMOrder_X;

bit(1) bIsUnaryAAC_X;

if(bIsUnaryAAC_X != 1) {

unsigned int(nBits) nKVCodingBit_X;

unsigned int(1) nStartIndex_X;

}

}

if(y_keyvalue_flag == 1) {

bit(1) nKVDPCMOrder_Y;

bit(1) bIsUnaryAAC_Y;

if(bIsUnaryAAC_Y != 1) {

unsigned int(nBits) nKVCodingBit_Y;

unsigned int(1) nStartIndex_Y;

}

}

if(z_keyvalue_flag == 1) {

bit(1) nKVDPCMOrder_Z;

bit(1) bIsUnaryAAC_Z;

if(bIsUnaryAAC_Z != 1) {

unsigned int(nBits) nKVCodingBit_Z;

unsigned int(1) nStartIndex_Z;

}

}

if (bIsUnaryAAC_X != 1)

if((nStartIndex_X == 1) && (x_keyvalue_flag == 1))

unsigned int(nKVQBit) firstKV_X;

if (bIsUnaryAAC_Y != 1)

if((nStartIndex_Y == 1) && (y_keyvalue_flag == 1))

unsigned int(nKVQBit) firstKV_Y;

if (bIsUnaryAAC_Z != 1)

if((nStartIndex_Z == 1) && (z_keyvalue_flag == 1))

unsigned int(nKVQBit) firstKV_Z;

KeyValueMinMax kvMinMax(nKVDigit);

}

8.9.5.2.2 Semantics
bPreserveKey indicates if the current mode is key preserving mode or not.

nKVQBit indicates the quantization bit size of the keyValue data.

x_keyvalue_flag, y_keyvalue_flag and z_keyvalue_flag indicate, for three components (x, y, z), if all of the quantized values are the same.
nKVDigit indicates the maximum significant digit of keyValue.

nKVDPCMOrder_X, nKVDPCMOrder_Y and nKVDPCMOrder_Z indicate the order of DPCM used for each keyValue component. The flags are set to 0 if 1st order DPCM is used, and 1 if 2nd order DPCM is used.

bIsUnaryAAC_X, bIsUnaryAAC_Y, bIsUnaryAAC_Z indicate if unary AAC is used for decoding the key value data components, x, y and z, respectively.

nKVCodingBit_X, nKVCodingBit_Y and nKVCodingBit_Z indicate the actual number of bits used for coding each keyValue component.

nStartIndex_X, nStartIndex_Y and nStartIndex_Z indicate the start index of each key value component to be decoded using entropy decoder.

firstKV_X, firstKV_Y and firstKV_Z indicate the x, y and z of first quantized keyValues.
8.9.5.3 KeyValueMinMax
8.9.5.3.1 Syntax
class KeyValueMinMax(int nKeyValueDigit) {

bit(1) bUse32Float;

if(bUse32Float == 0) {

bit(2) nWhichAxis;

bit(1) bAllSameMantissaDigitFlag;

if(bAllSameMantissaDigitFlag == 0) {

unsigned int(4) nMantissaDigit_X;

unsigned int(4) nMantissaDigit_Y;

unsigned int(4) nMantissaDigit_Z;

} else {

bit(1) bSameKVDigitFlag;

if(bSameKVDigitFlag == 0)

unsigned int(4) nMantissaDigit_X;

else

nMantissaDigit_X = nKeyValueDigit;

nMantissaDigit_Y = nMantissaDigit_X;

nMantissaDigit_Z = nMantissaDigit_X;

}

bit(1) bMaxDigitFlag;

if(bMaxDigitFlag == 1)

unsigned int(4) nMantissaDigit_M;

else {

switch(nWhichAxis){

case 0:

nMantissaDigit_M = nMantissaDigit_X;

break;

case 1:

nMantissaDigit_M = nMantissaDigit_Y;

break;

case 2:

nMantissaDigit_M = nMantissaDigit_Z;

break;

}

}

unsigned int(6) nExponentBits;

nExponentBits = (int)(log10(nExponentBits)/log10(2)) + 1;

bit(1) bAllSameExponentSign;

if(bAllSameExponentSign == 1)

bit(1) nExponentSign;

FloatingPointNumber fpnMin_X(nMantissaDigit_X, nExponentBits, bAllSameExponentSign, nExponentSign);

FloatingPointNumber fpnMin_Y(nMantissaDigit_Y, nExponentBits, bAllSameExponentSign, nExponentSign);

FloatingPointNumber fpnMin_Z(nMantissaDigit_Z, nExponentBits, bAllSameExponentSign, nExponentSign);

FloatingPointNumber fpnMax(nMantissaDigit_M, nExponentBits, bAllSameExponentSign, nExponentSign);

} else {

float(32) fMin_X;

float(32) fMin_Y;

float(32) fMin_Z;

float(32) fMax;

}

}

8.9.5.3.2 Semantics
KeyValueMinMax classs retrieves the minimum and the maximum value, which are used for normalization of keyValue.

bUse32Float indicates if 32-bit float is used or not for storing the minimum and the maximum value. If bUse32Float is 0, then FloatingPointNumber, the floating-point number represented in a decimal system, is used.

nWhichAxis indicates the component that has the maximum range.

	nWhichAxis
	component

	0
	x

	1
	y

	2
	z

bAllSameMantissaDigitFlag indicates if the mantissa digit of the minimum value of x, y and z are the same.

bSameKVDigitFlag indicates if all of the mantissa digit are the same as nKVDigit.

nMantissaDigit_X, nMantissaDigit_Y and nMantissaDigit_Z indicate the mantissa digit of the minimum value of x, y and z, respectively.

bMaxDigitFlag indicates if the digit of the mantissa of maximum value is different from the digit of the mantissa of minimum values. If so, the digit of the mantissa of maximum range is read from the bitstream.

nMantissaDigit_M indicates the mantissa digit of the maximum value.

nExponentBits indicates the number of bits needed to code the exponent value.

bAllSameExponentSign indicates if the sign of exponents of x, y and z are the same.

nExponentSign indicates the sign of exponents when bAllSameExponentSign is true.

fpnMin_X, fpnMin_Y, fpnMin_Z and fpnMax indicate the floating-point number in decimal system. These values are decoded as described in FloatingPointNumber. Then each decoded value is assigned to fMin_X, fMin_Y, fMin_Z and fMax respectively.

fMin_X, fMin_Y and fMin_Z indicate the minimum values of each axis.

If bUse32Float is set to ‘0’, then fMax indicates the maximum value of the component, which has the maximum range. Otherwise, fMax indicates the maximum range.

fMin_X, fMin_Y, fMin_Z and fMax are used for inverse normalization.

8.9.5.4 FloatingPointNumber
8.9.5.4.1 Syntax
class FloatingPointNumber(unsigned int nDigit, unsigned int nExponentBits, unsigned int bAllSameExponentSign, int nSameExponentSign) {

if(nDigit != 0) {

bit(1) nSign;

int nBits = (int)(log10(10^nDigit - 1)/log10(2)) + 1;

unsigned int(nBits) nMantissa;

unsigned int(nExpoentBits) nExponent;

if(bAllSameExponentSign == 0)

bit(1) nExponentSign;

else

nExponentSign = nSameExponentSign;

}

}

8.9.5.4.2 Semantics
FloatingpointNumber is used to represent a floating-point number in decimal system. The floating-point number is decoded as follows.

If nDigit is zero, the floating-point number is 0.0.

If nDigit is not zero, the floating-point number is

[image: image299.wmf](

)

nExponent

ign

nExponentS

nMantissa

nSign

*

10

/

*

nSign indicates the sign of the following value.

nMantissa indicates the mantissa value of FloatingPointNumber in a decimal system.

nExponent indicates the exponent value of FloatingPointNumber in a decimal system.

nExponentSign indicates the sign of the exponent of FloatingPointNumber in a decimal system.
8.9.5.5 PosIKeyValue
8.9.5.5.1 Syntax
class PosIKeyValue (PosIKeyValueHeader kVHeader, int nNumberOfKeyValue) {

if(kVHeader.x_keyvalue_flag == 1) {

if(kVHeader.bIsUnaryAAC_X == 1)

for(i=0; i<nNumberOfKeyValue; i++)

decodeUnaryAAC(&keyValue_X[i], kVXSignContext, kVXUContext);

else

decodeSQAAC(keyValue_X, kVHeader.nKVCodingBit_X, kVXSignContext, kVXMaxValueContext, kVXFoundContext, kVXNotFoundContext, nNumberOfKeyValue, kVHeader.nStartIndex_X);

}

if(kVHeader.y_keyvalue_flag == 1) {

if(kVHeader.bIsUnaryAAC_Y == 1) {

for(i= 0; i<nNumberOfKeyValue; i++)

decodeUnaryAAC(&keyValue_Y[i], kVYSignContext, kVYUContext);

else

decodeSQAAC(keyValue_Y, kVHeader.nKVCodingBit_Y, kVYSignContext, kVYMaxValueContext, kVYFoundContext, kVYNotFoundContext, nNumberOfKeyValue, kVHeader.nStartIndex_Y);

}

if(kVHeader.z_keyvalue_flag == 1) {

if(kVHeader.bIsUnaryAAC_Z == 1)

for(i= 0; i<nNumberOfKeyValue; i++)

decodeUnaryAAC(&keyValue_Z[i], kVZSignContext, kVZUContext);

else

decodeSQAAC(keyValue_Z, kVHeader.nKVCodingBit_Z, kVZSignContext, kVZMaxValueContext, kVZFoundContext, kVZNotFoundContext, nNumberOfKeyValue, kVHeader.nStartIndex_Z);

}

}

8.9.5.5.2 Semantics
keyValue_X, keyValue_Y and keyValue_Z indicate the array of each component of keyValue in position interpolator. If bIsUnaryAAC_X is set to 0 and nStartIndex_X is set to 1, then keyValue_X[0] is filled with the value firstKV_X in PosIKeyValueHeader class. Otherwise, keyValue_X[0] is decoded from bitstream using arithmetic decoder. In the same way, keyValue_Y[0] and keyValue_Z[0] are determined. It is arithmetic decoded from the bitstream by the function decodeUnaryAAC or decodeSQAAC (see subclause 8.9.6).

The context model kVXSignContext, kVYSignContext and kVZSignContext are used for entropy decoding the sign of keyValue_X, keyValue_Y and keyValue_Z and these contexts are passed to the function decodeUnaryAAC or decodeSQAAC. MaxValueContext, FoundContext and NotFoundContext are for entropy decoding the absolute value of keyValue (e.g., kVXMaxValueContext, kVXFoundContext and kVXNotFoundContext are used for decoding keyValue_X) and are passed to the function decodeSQAAC. The context model kVXUContext, kVYUContext and kVZUContext are used for decoding keyValue_X, keyValue_Y and keyValue_Z and passed to the function decodeUnaryAAC.

8.9.5.6 Decoding Process

8.9.5.6.1 Overview

[image: image300.emf]Compressed

Bitstream

Inverse

Quantizer

Inverse

Circular

DPCM

Inverse

Normalizer

i

k

ˆ

i

P

ˆ

Key

Decoder

nKeyQBit

nNumberOfKey

bIsLinearKeySubRegion

nNumberOfLinearKey

fKeyMin/fKeyMax

…

bPreserveKey

nKVQBit

keyvalue_flag

nKVCodingBit

bIsUnaryAAC

…

Header

To the

Interpolator

Synthesizer

Key

KeyValue

Entropy

Decoder

Entropy

Decoder

i

P

~

i

P



i

P

ˆ

~

Linear Key

Synthesizer

i

P

Figure 059

\IF >= 1 "A."
 — Decoder structure for compressed position interpolator

The decoder structure of compressed position interpolator is shown in Figure 57. It consists of the decoders for Key, Header and KeyValue. Decoding process of Key data is described in subclause 8.9.2.6. In the following subclauses, the decoding process of KeyValue for position interpolator is described. It is comprised of the following steps.

· Entropy Decoding

· Inverse Circular DPCM

· Inverse Quantization

· Inverse Normalization

· Interpolator synthesizing
8.9.5.6.2 Entropy Decoder
After reading the header information and key data, the keyValue data([image: image301.wmf])

,

,

(

,

,

,

z

i

y

i

x

i

i

p

p

p

P

=

) in the encoded bitstream are passed to the entropy decoder (adaptive arithmetic decoder), if the keyvalue_flag (x_keyvalue_flag, y_keyvalue_flag and z_keyvalue_flag in PosIKeyValueHeader class) is set to 1. Otherwise, if the keyvalue_flag is set to 0, it means that all quantized values of each component of every keyValues have the same values respectively that are represented by fMin_X, fMin_Y, fMin_Z (in KeyValueMinMax class). Therefore, there is no keyValue data in the encoded bitstream that are passed to the entropy decoder.
If [image: image302.wmf]])

[

_

],

[

_

],

[

_

(

)

,

,

(

,

,

,

i

Z

keyValue

i

Y

keyValue

i

X

keyValue

p

p

p

P

z

i

y

i

x

i

i

=

=

(

(

(

(

 is defined as the output of the entropy decoder, then it is decoded by the following function.

[image: image303.wmf]ï

ï

î

ï

ï

í

ì

==

-

=

=

·

==

-

=

=

ï

ï

î

ï

ï

í

ì

==

-

=

=

·

==

-

=

=

ï

ï

î

ï

ï

í

ì

==

-

=

=

·

==

-

=

=

)

1

_

_

,

1

,...,

_

(

)

(

:

)

(

_

)

0

_

_

,

1

,...,

0

(

_

ˆ

)

1

_

_

,

1

,...,

_

(

)

(

:

)

(

_

)

0

_

_

,

1

,...,

0

(

_

ˆ

)

1

_

_

,

1

,...,

_

(

)

(

:

)

(

_

)

0

_

_

,

1

,...,

0

(

_

ˆ

,

,

,

,

,

,

,

,

,

flag

keyvalue

z

if

eyValue

nNumberOfK

Z

x

nStartInde

i

P

f

P

Decoder

Entropy

flag

keyvalue

z

if

eyValue

nNumberOfK

i

Z

fMin

P

flag

keyvalue

y

if

eyValue

nNumberOfK

Y

x

nStartInde

i

P

f

P

Decoder

Entropy

flag

keyvalue

y

if

eyValue

nNumberOfK

i

Y

fMin

P

flag

keyvalue

x

if

eyValue

nNumberOfK

X

x

nStartInde

i

P

f

P

Decoder

Entropy

flag

keyvalue

x

if

eyValue

nNumberOfK

i

X

fMin

P

z

i

z

i

z

i

y

i

y

i

y

i

x

i

x

i

x

i

(

(

(

The order of bitstream read by entropy decoder is shown in Figure 58.
[image: image304.emf].... x eyValue nNumberOfK

p

, 1



x X x nStartInde

p

, _

x X x nStartInde

p

, 1 _



.... x eyValue nNumberOfK

p

, 1



x X x nStartInde

p

, _

x X x nStartInde

p

, 1 _



....

y eyValue nNumberOfK

p

, 1



y Y x nStartInde

p

, _

y Y x nStartInde

p

, 1 _



....

y eyValue nNumberOfK

p

, 1



y Y x nStartInde

p

, _

y Y x nStartInde

p

, 1 _



....

z eyValue nNumberOfK

p

, 1



z Z x nStartInde

p

, _

z Z x nStartInde

p

, 1 _



....

z eyValue nNumberOfK

p

, 1



z Z x nStartInde

p

, _

z Z x nStartInde

p

, 1 _



Figure 060

\IF >= 1 "A."
 — The decoding order of keyValue data in entropy decoder

The decoder for compressed position interpolator uses two types of entropy decoding method. One is unary AAC and the other is SQ (Successive Quantization) AAC. If the AAC flag for a component (i.e., bIsUnaryAAC_X, bIsUnaryAAC_Y and bIsUnaryAAC_Z) is true, then unary AAC is used. Otherwise, SQ AAC is used. (see subclause 8.9.6)

8.9.5.6.3 Inverse Circular DPCM
The entropy decoding is followed by inverse circular DPCM. Depending on a DPCM flag (nKVDPCMOrder_X, nKVDPCMOrder_Y and nKVDPCMOrder_Z in PosIHeader class), 1st DPCM or 2nd DPCM is performed. Each formula is as follows.

· Inverse 1st-order circular DPCM function

[image: image305.wmf])

,...,

_

(

)

,

(

~

:

)

(

1

_

)

,...,

_

(

)

,

(

~

:

)

(

1

_

)

,...,

_

(

)

,

(

~

:

)

(

1

_

,

1

,

,

,

1

,

,

,

1

,

,

eyValue

nNumberOfK

Z

x

nStartInde

i

P

P

f

P

stOrder

ICDPCM

eyValue

nNumberOfK

Y

x

nStartInde

i

P

P

f

P

stOrder

ICDPCM

eyValue

nNumberOfK

X

x

nStartInde

i

P

P

f

P

stOrder

ICDPCM

z

i

z

i

z

i

y

i

y

i

y

i

x

i

x

i

x

i

=

=

·

=

=

·

=

=

·

-

-

-

(

(

(

(

(

(

The following is the C++ style syntactic description of the function ICDPCM_1stOrder.

ICDPCM_1stOrder(int* curIDPCMKeyValue, int deltaKeyValue, int prevKeyValue) {

int nCircularValue;

if(deltaKeyValue >= 0)

nCircularValue = deltaKeyValue – (2^nKeyValueQBits – 1);

else

nCircularValue = deltaKeyValue + (2^nKeyValueQBits – 1);

*curIDPCMKeyValue = deltaKeyValue + prevKeyValue;

if(*curIDPCMKeyValue < 0)

* curIDPCMKeyValue = prevKeyValue + nCircualrValue;

else if(*curIDPCMKeyValue > (2^nKeyValueQBits – 1))

* curIDPCMKeyValue = prevKeyValue + nCircualrValue;

}

· Inverse 2nd-order circular DPCM function

[image: image306.wmf])

,...,

_

(

)

,

,

(

~

:

)

(

2

_

)

,...,

_

(

)

,

,

(

~

:

)

(

2

_

)

,...,

_

(

)

,

,

(

~

:

)

(

2

_

,

2

,

1

,

,

,

2

,

1

,

,

,

2

,

1

,

,

eyValue

nNumberOfK

Z

x

nStartInde

i

P

P

P

f

P

ndOrder

ICDPCM

eyValue

nNumberOfK

Y

x

nStartInde

i

P

P

P

f

P

ndOrder

ICDPCM

eyValue

nNumberOfK

X

x

nStartInde

i

P

P

P

f

P

ndOrder

ICDPCM

z

i

z

i

z

i

z

i

y

i

y

i

y

i

y

i

x

i

x

i

x

i

x

i

=

=

·

=

=

·

=

=

·

-

-

-

-

-

-

(

(

(

(

(

(

(

(

(

The 2nd-order circular DPCM does not allow the decoded values to exceed the quantization range

The following is the C++ style syntactic description of the function ICDPCM_2ndOrder

ICDPCM_2ndOrder(int* curIDPCMKeyValue, int deltaKeyValue, int prevKeyValue, int prevPrevKeyValue) {

int nPredictiveValue, nCircularValue;

nPredictiveValue = prevKeyValue – prevPrevKeyValue + prevKeyValue;

if(nPredictiveValue > (2^nKeyValueQBits – 1))

*curIDPCMKeyValue = (2^nKeyValueQBits – 1) - deltaKeyValue;

else if(nPredictiveValue < 0)

*curIDPCMKeyValue = deltaKeyValue;

else

*curIDPCMKeyValue = deltaKeyValue + nPredictiveValue;

if(*curIDPCMKeyValue >= 0)

nCircularValue = *curIDPCMKeyValue – (nMax + 1);

else

nCircularValue = *curIDPCMKeyValue + (nMax + 1);

if((*curIDPCMKeyValue < 0) || (*curIDPCMKeyValue > (2^nKeyValueQBits – 1)))

* curIDPCMKeyValue = nCircularValue;

}

Both of ICDPCM_1stOrder and ICDPCM_2ndOrder includes inverse circular quantization routine. Inverse circular quantization chooses the value within quantization range.
8.9.5.6.4 Inverse Quantization
The ouput from the inverse circular DPCM will go through inverse quantization and inverse normalization.

Inverse quantizaion is performed as follows.

[image: image307.wmf])

,

,

,

..

(

)

1

2

(

~

ˆ

~

,

,

z

y

x

j

eyValue

nNumberOfK

x

nStartInde

i

P

P

Bits

nKeyValueQ

j

i

j

i

=

=

-

=

8.9.5.6.5 Inverse Normalization
The next step is the inverse normalization routine as follows.

If bUse32Float is set to ‘0’, then fMax indicates the maximum value of the component, which has the maximum range. Otherwise, fMax indicates the maximum range.
[image: image308.wmf]fMax

Range

else

nwhichAxis

if

Z

fMin

fMax

Range

nwhichAxis

if

Y

fMin

fMax

Range

nwhichAxis

if

X

fMin

fMax

Range

Float

bUse

if

x

ma

x

ma

x

ma

x

ma

=

ï

î

ï

í

ì

=

-

=

=

-

=

=

-

=

==

2

,

_

1

,

_

0

,

_

)

0

32

(

The process of inverse normalization with Rangemax is as follows.
[image: image309.wmf])

..

(

_

*

ˆ

~

ˆ

_

*

ˆ

~

ˆ

_

*

ˆ

~

ˆ

,

,

,

,

,

,

eyValue

nNumberOfK

x

nStartInde

i

Z

fMin

Range

P

P

Y

fMin

Range

P

P

X

fMin

Range

P

P

x

ma

z

i

z

i

x

ma

y

i

y

i

x

ma

x

i

x

i

=

+

=

+

=

+

=

8.9.5.6.6 Interpolator Synthesizer
In case of key preserving mode, keyFlag described in KeySelectionFlag class is used for determining the existence of each keyValue. The absent keyValues are restored by interpolating the existing neighbor keyValues. Key preserving mode and path preserving mode are explained in detail in subclause 8.9.4.6.1.1.

8.9.6 Adaptive Arithmetic Coding

In this subclause, the adaptive arithmetic coders used in interpolator compression are described, using the C++ style syntactic description. qf_decode() is the function which reads one bit from bitstream and is described in the subclause 7.13.10.2 of ISO/IEC 14496-2: 2004.

8.9.6.1 decodeSignedAAC
This function decodes a signed value from adaptive arithmetic coded bitstream using the contexts for signs and values.

void decodeSignedAAC(int *nDecodedValue, int qstep, QState *signContext, QState *valueContext) {

int b;

b = qstep - 2;

int msb = 0;

do {

qf_decode(&msb, &valueContext[b]);

msb = msb << b;

b--;

} while (msb == 0 && b >=0);

int sgn = 0;

int rest = 0;

if(msb != 0) {

qf_decode(&sgn, signContext);

while (b >= 0) {

int temp = 0;

qf_decode(&temp, &valueContext[b]);

rest |= (temp << b);

b--;

}

}

if(sgn)

*nDecodedValue = -(msb+rest);

else

*nDecodedValue = (msb+rest);

}

8.9.6.2 decodeUnsignedAAC
This function decodes a unsigned value from adaptive arithmetic coded bitstream using the context for values.

void decodeUnsignedAAC(int *nDecodedValue, int qstep, QState *valueContext) {

int b;

b = qstep - 1;

int msb = 0;

do {

qf_decode(&msb, &valueContext[b]);

msb = msb << b;

b--;

} while (msb == 0 && b >= 0);

int rest = 0;

if(msb != 0) {

while (b >= 0) {

int temp = 0;

qf_decode(&temp, &valueContext[b]);

rest |= (temp << b);

b--;

}

}

*nDecodedValue = (msb + rest);

}

8.9.6.3 decodeUnaryAAC
Unary AAC reads 0’s from the bitstream until it encounters 1. Then the number of 0’s determines the magnitude of the decoded value. After reading 1, the decoder reads one more bit which determines the sign of the decoded value.

void decodeUnaryAAC(int* nDecodedValue, QState* signContext, QState* valueContext)

{

int nBits = -1;

bit bBit;

do {

qf_decode(&bBit, valueContext);

nBits++;

} while(bBit == 0);

if(nBits != 0) {

qf_decode(&bBit, signContext);

if(bBit == 0)

* nDecodedValue = nBits;

else

* nDecodedValue = -nBits;

}

else

* nDecodedValue = 0;

}

8.9.6.4 decodeSQAAC
SQ (Successive Quantization) AAC determines the value of each symbol by successively refining the range of quantization. The steps for decoding the values are as follows.

0) Decode the maximum value

1) Decode the sign value of all the symbols

2) The boundary of each symbol is initialized to [0, max].

3) Repeat the following until the range of every symbol is 0 (i.e. the upper bound == the lower bound).
3.1) For each symbol with positive range
3.1.1) Read one bit.

3.1.2) If 0 is read, it means that the symbol is in the lower half of its range. In this case, the value of the upper bound is changed to middle value – 1

3.1.3) If 1 is read, it means that the symbol is in the upper half of its range. In this case, the value of the lower bound is changed to the middle value.

3.2) If there is only one symbol with maximum value as the upper bound, it means that the corresponding symbol is the maximum value. In this case, the value of lower bound is changed to the maximum value. This is performed only once during the whole SQ process.

There are 4 contexts used in SQ AAC. maxValueContext is used for the maximum value and the signContext is used for the sign of the symbols. foundContext and notFoundContext is used for symbols. For each symbol, notFoundContext is used until the first ‘1’ is read. And after that, foundContext is used.

void decodeSQAAC(int* anDecodedValues, int qstep, QState* signContext, QState* maxValueContext, QState* foundContext, QState* notFoundContext, int keynum, int start) {

int range_mid[keynum], range_min[keynum], range_max[keynum], sign[keynum];

bool found[keynum];

int max_val = 0;

int max_count = 1;

bool all_level_done = false;

int max_index = -1;

bit bBit;

for (int j=qstep; j>=0; j--) {

qf_decode(&bBit, &maxValueContext);

max_val = (max_val << 1) + bBit;

}

for(int i=start; i<keynum; i++) {

range_min[i] = 0;

range_max[i] = max_val;

found[i] = false;

qf_decode(&bBit, &signContext);

if (bBit)

sign[i] = -1;

else

sign[i] = 1;

}

while (!all_level_done) {

all_level_done = true;

max_index = -1;

for(i=start; i<keynum; i++) {

if (range_max[i] != range_min[i]) {

all_level_done = false;

range_mid[i] = (int)((range_max[i] - range_min[i])/2) + 1 + range_min[i];

if (found[i])

qf_decode(&bBit, &foundContext);

else

qf_decode(&bBit, ¬FoundContext);

if (bit) {

if (max_count == 1 && range_max[i] == max_val) {

if (max_index == -1)

max_index = i;

else

max_index = keynum;

}

range_min[i] = range_mid[i];

found[i] = true;

}

else

range_max[i] = range_mid[i]-1;

}

}

if (max_index >= 0 && max_index < keynum) {

range_min[max_index] = max_val;

max_count = 0;

}

}

for(i=start; i<keynum; i++)

anDecodedValues[i] = range_max[i] * sign[i];

}

8.9.6.5 decodeSignedQuasiAAC
This function decodes a signed value from adaptive arithmetic coded bitstream using the contexts for signs and values. The difference from decodeSignedAAC is using zero context for data following the sign bit.

void decodeSignedQuasiAAC(int *nDecodedValue, int qstep, QState *signContext, QState *valueContext)

{

int b = qstep - 2;

int msb = 0;

do {

qf_decode(&msb, &valueContext[b]);

msb = msb << b;

b--;

} while (msb == 0 && b >= 0);

int sgn = 0;

int rest = 0;

if(msb != 0) {

qf_decode(&sgn, signContext);

while (b >= 0) {

int temp = 0;

qf_decode(&temp, zeroContext);

rest |= (temp << b);

b--;

}

}

if(sgn)

*nDecodedValue = -(msb+rest);

else

*nDecodedValue = (msb+rest);

}

8.10 Definition of bodySceneGraph nodes

8.10.1 Introduction

This Annex includes the normative definitions of the nodes used in the bodySceneGraph field of the BDP node (see 7.2.2.20).

8.10.2 Detailed Semantics

The VRML working group on Humanoid Animation (H-Anim) is working on a standard specification of bodies. The bodySceneGraph syntax is strongly based on ISO/IEC 14772-1:1997/Amd.1.

The H-Anim specification contains 3 types of Nodes, among other nodes: Joint node describes the skeleton hierarchy of the body, Segment node describes the surface information of the body, HumanoidInfo node includes information about the model.

8.10.3 Overview
The human body consists of a number of segments (such as the forearm, hand and foot) which are connected to each other by joints (such as the elbow, wrist and ankle). In order for a decoder to animate a humanoid, it needs to obtain access to the joints and alter the joint angles.

Each segment of the body will typically be defined by children nodes of type IndexedFaceSet, and an application may need to alter the locations of the vertices in that mesh. The application may also need to obtain information about which vertices should be treated as a group for the purpose of deformation.

The bodySceneGraph field of a BDP node contains a set of Joint nodes that are arranged to form a hierarchy. Each Joint node can contain other Joint nodes, and may also contain a Segment node which describes the body part associated with that joint. Each Segment can also have a number of Site nodes, which define locations relative to the segment. Sites nodes can be used for attaching clothing and jewelry, and can be used as end-effectors for inverse kinematics applications. They can also be used to define eyepoints and viewpoint locations.

Each Segment node can have a number of Displacer nodes, which specify which vertices within the segment correspond to particular feature or configuration of vertices. The bodySceneGraph node also contains a single Humanoid node which stores human-readable data about the humanoid such as author and copyright information. That node also stores references to all the Joint, Segment and Site nodes, and serves as a "wrapper" for the humanoid. In addition, it provides a top-level Transform for positioning the humanoid in its environment.

Keyframe animation sequences can be stored in the same file, with the outputs of various interpolator nodes being ROUTEd to the joints of the body. Alternatively, the file may include Script nodes which access the joints directly. In addition, applications can obtain references to the individual joints and segments from the Humanoid node. Such applications will typically animate the humanoid by setting the joint rotations through BAPs.

8.10.4 The Nodes

In order to simplify the creation of humanoids, several new node types are introduced. Each node is defined by a PROTO. The basic implementation of all the nodes is very straightforward, yet each provides enough flexibility to allow more advanced techniques to be used.

8.10.4.1 The Joint Node

Each joint in the body is represented by a Joint node. The implementation for a Joint is a Transform node, which is used to define the relationship of each body segment to its immediate parent.

The Joint node is also used to store other joint-specific information. In particular, a joint name is provided so that applications can identify each Joint node at runtime.

In addition, the Joint node may contain hints for inverse-kinematics systems that wish to control the H-Anim figure. These hints include the upper and lower joint limits, the orientation of the joint limits, and a stiffness/resistance value. Note that these limits are not enforced by any mechanism within the scene graph of the humanoid, and are provided for information purposes only. Use of this information and enforcement of the joint limits is up to the application.

The Joint PROTO looks like follows:

PROTO Joint [

 exposedField SFString name ""

 exposedField SFVec3f center 0 0 0

 exposedField SFRotation rotation 0 0 1 0

 exposedField SFVec3f scale 1 1 1

 exposedField SFRotation scaleOrientation 0 0 1 0

 exposedField SFVec3f translation 0 0 0

 exposedField MFFloat ulimit []

 exposedField MFFloat llimit []

 exposedField SFRotation limitOrientation 0 0 1 0

 exposedField MFFloat stiffness [1 1 1]

 exposedField MFNode children []

]
NOTE - Most of the fields correspond to those of the Transform node. This is because the typical implementation of the Joint PROTO will be:

{

 Transform {

 translation IS translation

 rotation IS rotation

 scale IS scale

 scaleOrientation IS scaleOrientation

 center IS center

 children IS children

 }

}
The center exposedField gives the position of the Joint's center of rotation, relative to the root of the overall humanoid body description. Note that the center field is not intended to receive events. The locations of the joint centers are available by reading the center fields of the Joint nodes.

Since the locations of the joint centers are all in the same coordinate frame, the length of any segment can be determined by simply subtracting the locations of the joint centers. The exception will be segments at the ends of the fingers and toes, for which the Site locations within the Segment must be used (see the description of Sites below for details).

The ulimit and llimit fields of the Joint PROTO specify the upper and lower joint rotation limits. Both fields are three-element MFFloats containing separate values for the X, Y and Z rotation limits. The ulimit field stores the upper (i.e. maximum) values for rotation around the X, Y and Z axes. The llimit field stores the lower (i.e. minimum) values for rotation around those axes. Note that the default values for each of these fields is [], which means that the joint is assumed to be unconstrained.

The limitOrientation exposedField gives the orientation of the coordinate frame in which the ulimit and llimit values are to be interpreted. The limitOrientation describes the orientation of a local coordinate frame, relative to the Joint center position described by the center exposedField.

The stiffness exposedField, if present, contains values ranging between 0.0 and 1.0 which give the inverse kinematics system hints about the "willingness" of a joint to move a particular degree of freedom. For example, a Joint node's stiffness can be used in an arm joint chain to give preference to moving the left wrist and left elbow over moving the left shoulder, or it can be used within a single Joint node with multiple degrees of freedom to give preference to individual degrees of freedom. The larger the stiffness value, the more the joint will resist movement.

Each Joint should have a DEF name that matches the name field for that Joint, but with a distinguishing prefix in front of it. Only a single humanoid is contained within a Body node, the prefix should be "hanim_..." (for Humanoid Animation). For example, the left shoulder would have a DEF name of "hanim_l_shoulder".

The DEF name is used for static routing, which would typically connect the BAPs to segments, and define segment names for bodyDefTables. In addition, optionally, it may be used to connect OrientationInterpolators in the humanoid file to the joints.

It will occasionally be useful for the person creating a humanoid to be able to add additional joints to the body. The body remains humanoid in form, and is still generally expected to have the basic joints described later in this document. However, they may be thought of as a minimal set to which extensions may be added (such as a prehensile tail). See the section on Non-standard Joints and Segments. If necessary, some of the joints (such as the many vertebrae) may be omitted.

Each body segment is stored in a Segment node. The Segment node will typically be implemented as a Group node containing one or more Shapes or perhaps Transform nodes that position the body part within its coordinate system (see Annex, for details). The use of LOD nodes is recommended if the geometry of the Segment is complex.

PROTO Segment [

 exposedField SFString name ""

 exposedField SFVec3f centerOfMass 0 0 0

 exposedField SFVec3f momentsOfInertia 1 1 1

 exposedField SFFloat mass 0

 exposedField MFNode children []

 exposedField SFNode coord NULL

 exposedField MFNode displacers []

 eventIn MFNode addChildren

 eventIn MFNode removeChildren

]

This will typically be implemented as follows:

{

 Group {

 children IS children

 addChildren IS addChildren

 removeChildren IS removeChildren

 }

}

The fields except name are optional.

The mass is the total mass of the segment, and the centerOfMass is the location within the segment of its center of mass.

If bodyDefTables need to be used, the Segment node contains one IndexedFaceSet child that shall be used for these tables. The indices of vertices in the IndexedFaceSet node should correspond to the indices in bodyDefTable node.

8.10.4.2 The Humanoid Node

The Humanoid node is used to store human-readable data such as author and copyright information, as well as to store references to the joints, segments and views and to serve as a container for the entire humanoid. It also provides a convenient way of moving the humanoid through its environment.

PROTO Humanoid [

 exposedField SFString name ""

 exposedField MFString info []

 exposedField SFString version "1.1"

 exposedField MFNode joints []

 exposedField MFNode segments []

 exposedField MFNode sites []

 exposedField MFNode viewpoints []

 exposedField MFNode humanoidBody []

 exposedField SFVec3f center 0 0 0

 exposedField SFRotation rotation 0 0 1 0

 exposedField SFVec3f scale 1 1 1

 exposedField SFRotation scaleOrientation 0 0 1 0

 exposedField SFVec3f translation 0 0 0

]
The Humanoid node is typically implemented as follows:

{

 Transform {

 center IS center

 rotation IS rotation

 scale IS scale

 scaleOrientation IS scaleOrientation

 translation IS translation

 children [

 Group {

 children IS viewpoints

 }

 Group {

 children IS humanoidBody

 }

]

 }

}
The Humanoid node can be used to position the humanoid in space. Note that the HumanoidRoot Joint is typically used to handle animations within the local coordinate system of the humanoid, such as jumping or walking. For example, while walking, the overall movement of the body (such as a swagger) would affect the HumanoidRoot Joint, while the average linear velocity through the scene would affect the Humanoid node.

The humanoidBody field contains the HumanoidRoot node. The version field stores the version of this specification that the Humanoid file conforms to. Value of ‘1.1’ is excepted.

The info field consists of an array of strings, each of which is of the form "tag=value". The following tags are defined:

authorName

authorEmail

copyright

creationDate

usageRestrictions

humanoidVersion

age

gender (typically "male" or "female")

height

weight
Additional tag=value pairs can be included as needed.

The HumanoidVersion tag refers to the version of the humanoid being used, in order to track revisions to the data. It is not the same as the version field of the Humanoid node, which refers to the version of the H-Anim specification which was used when building the humanoid.

The joints field contains references (i.e. USEs) of each of the Joint nodes in the body. Each of the referenced joints should be a Joint node. The order in which they are listed is irrelevant, since the names of the joints are stored in the joints themselves. Similarly, the segments field contains references to each of the Segment nodes of the body, the viewpoints field contains references to the Viewpoint nodes in the file, and the sites field contains references to the Site nodes in the file.

8.10.4.3 Modeling the Humanoid

Humanoid should be modeled in a standing position, facing in the +Z direction with +Y up and +X to the humanoid's left. The origin (0, 0, 0) should be located at ground level, between the humanoid's feet.

The feet should be flat on the ground, spaced apart about the same distance as the width of the hips. The bottom of the feet should be at Y=0. The arms should be straight and parallel to the sides of the body with the palms of the hands facing inwards towards the thighs. The hands should be flat, with the axes of joints "1" through "3" of the fingers being parallel to the Y axis and the axis of the thumb being angled up at 45 degrees towards the +Z direction. Note that the coordinate system for each joint in the thumb is still oriented to align with that of the overall humanoid.

Movement of the "0" joints of the fingers is typically quite limited, and the rigidity of those articulations varies from finger to finger. Further details about the placement, orientation and movement of the "0" joints can be obtained from any anatomy reference text.

The humanoid should be built with actual human size ranges in mind. All dimensions are in meters. A typical human is roughly 1.75 meters tall.

The default position of the humanoid is defined in ISO/IEC 14496-2:2004.

In this position, all the joint angles should be zero. In other words, all the rotation fields in all the Joint nodes should be left at their default value of (0 0 1 0). In addition, the translation fields should be left at their default value of (0 0 0) and the scale factors should be left at their default value of (1 1 1). The only field which should have a non-default value is center, which is used to specify the point around which the joint (and its attached children and body segment if any) will rotate. Sending the default values for translation, rotation and scaling to all the Joints in the body must return the body to the neutral position described above.The center field of each joint should be placed so that the joints rotate in the same way that they would on a real human body.

It is suggested, but not required, that all of the body segments should be built in place. That is, they should require no translation, rotation, or scaling to be connected with their neighbors. For example, the hand should be built so that it's in the correct position in relation to the forearm. The forearm should be built so that it's in the correct position in relation to the upper arm, and so on. All the body's coordinates will share a common origin, which is that of the humanoid itself. If this proves difficult for an authoring tool to implement, it is acceptable to use a Transform node inside each Segment, or even several Transforms, in order to position the geometry for that segment correctly.

Note that the coordinate system for each Joint is oriented to align with that of the overall humanoid.

8.10.4.3.1 The Joint Hierarchy

The body is typically built as a series of nested Joints, each of which may have a Segment associated with it. For example:

...

DEF hanim_l_shoulder Joint { name "l_shoulder"

 center 0.167 1.36 -0.0518

 children [

 DEF hanim_l_elbow Joint { name "l_elbow"

 center 0.196 1.07 -0.0518

 children [

 DEF hanim_l_wrist Joint { name "l_wrist"

 center 0.213 0.811 -0.0338

 children [

 DEF hanim_l_hand Segment { name "l_hand"

 ...

 }

]

 }

 DEF hanim_l_forearm Segment { name "l_forearm"

 ...

 }

]

 }

 DEF hanim_l_upperArm Segment { name "l_upperArm"

 ...

 }

]

}

8.10.4.3.2 The Body

The names of the Joint nodes for the body are listed in the following list:

l_hip, l_knee, l_ankle, l_subtalar, l_midtarsal, l_metatarsal

r_hip, r_knee, r_ankle, r_subtalar, r_midtarsal, r_metatarsal

vl5, vl4, vl3, vl2, vl1,

vt12, vt11, vt10, vt9, vt8, vt7, vt6, vt5, vt4, vt3, vt2, vt1

vc7, vc6, vc5, vc4, vc3, vc2, vc1

l_sternoclavicular, l_acromioclavicular, l_shoulder, l_elbow, l_wrist

r_sternoclavicular, r_acromioclavicular, r_shoulder, r_elbow, r_wrist

HumanoidRoot, sacroiliac (pelvis), skullbase

The vl5 and sacroiliac Joints are children of the HumanoidRoot. The HumanoidRoot is stored in the humanoidBody field of the Humanoid node, but all other Joints are descended from either vl5 or sacroiliac. If those Joints are missing, lower-level Joints can be children of the HumanoidRoot.

8.10.4.3.3 The Hands

The hands Joint nodes, if present, should use the following naming convention:

l_pinky0, l_pinky1, l_pinky2, l_pinky3,

l_ring0, l_ring1, l_ring2, l_ring3

l_middle0, l_middle1, l_middle2, l_middle3

l_index0, l_index1, l_index2, l_index3

l_thumb1, l_thumb2, l_thumb3

r_pinky0, r_pinky1, r_pinky2, r_pinky3

r_ring0, r_ring1, r_ring2, r_ring3

r_middle0, r_middle1, r_middle2, r_middle3

r_index0, r_index1, r_index2, r_index3

r_thumb1, r_thumb2, r_thumb3

8.10.4.3.4 Hierarchy

The complete hierarchy is as follows, with the segment names listed beside the Joints to which they're attached:

HumanoidRoot : sacrum

 sacroiliac : pelvis

 | l_hip : l_thigh

 | l_knee : l_calf

 | l_ankle : l_hindfoot

 | l_subtalar : l_midproximal

 | l_midtarsal : l_middistal

 | l_metatarsal : l_forefoot

 | r_hip : r_thigh

 | r_knee : r_calf

 | r_ankle : r_hindfoot

 | r_subtalar : r_midproximal

 | r_midtarsal : r_middistal

 | r_metatarsal : r_forefoot

 vl5 : l5

 vl4 : l4

 vl3 : l3

 vl2 : l2

 vl1 : l1

 vt12 : t12

 vt11 : t11

 vt10 : t10

 vt9 : t9

 vt8 : t8

 vt7 : t7

 vt6 : t6

 vt5 : t5

 vt4 : t4

 vt3 : t3

 vt2 : t2

 vt1 : t1

 vc7 : c7

 | vc6 : c6

 | vc5 : c5

 | vc4 : c4

 | vc3 : c3

 | vc2 : c2

 | vc1 : c1

 | skullbase : skull

 | l_eyelid_joint : l_eyelid

 | r_eyelid_joint : r_eyelid

 | l_eyeball_joint : l_eyeball

 | r_eyeball_joint : r_eyeball

 | l_eyebrow_joint : l_eyebrow

 | r_eyebrow_joint : r_eyebrow

 | temporomandibular : jaw

 l_sternoclavicular : l_clavicle

 | l_acromioclavicular : l_scapula

 | l_shoulder : l_upperarm

 | l_elbow : l_forearm

 | l_wrist : l_hand

 | l_thumb1 : l_thumb_metacarpal

 | l_thumb2 : l_thumb_proximal

 | l_thumb3 : l_thumb_distal

 | l_index0 : l_index_metacarpal

 | l_index1 : l_index_proximal

 | l_index2 : l_index_middle

 | l_index3 : l_index_distal

 | l_middle0 : l_middle_metacarpal

 | l_middle1 : l_middle_proximal

 | l_middle2 : l_middle_middle

 | l_middle3 : l_middle_distal

 | l_ring0 : l_ring_metacarpal

 | l_ring1 : l_ring_proximal

 | l_ring2 l_ring_middle

 | l_ring3 : l_ring_distal

 | l_pinky0 : l_pinky_metacarpal

 | l_pinky1 : l_pinky_proximal

 | l_pinky2 : l_pinky_middle

 | l_pinky3 : l_pinky_distal

 r_sternoclavicular : r_clavicle

 r_acromioclavicular : r_scapula

 r_shoulder : r_upperarm

 r_elbow : r_forearm

 r_wrist : r_hand

 r_thumb1 : r_thumb_metacarpal

 r_thumb2 : r_thumb_proximal

 r_thumb3 : r_thumb_distal

 r_index0 : r_index_metacarpal

 r_index1 : r_index_proximal

 r_index2 : r_index_middle

 r_index3 : r_index_distal

 r_middle0 : r_middle_metacarpal

 r_middle1 : r_middle_proximal

 r_middle2 : r_middle_middle

 r_middle3 : r_middle_distal

 r_ring0 : r_ring_metacarpal

 r_ring1 : r_ring_proximal

 r_ring2 : r_ring_middle

 r_ring3 : r_ring_distal

 r_pinky0 : r_pinky_metacarpal

 r_pinky1 : r_pinky_proximal

 r_pinky2 : r_pinky_middle

 r_pinky3 : r_pinky_distal

Depending on your fonts, the number '1' and the letter 'l' may look similar. This is particularly true for the lumbar vertebrae and their corresponding joints (e.g. vl5 and l5). The letter 'l' is for Lumbar, the letter 't' is for Thorasic, and the letter 'c' is for Cervical.

The term "proximal" means "the nearer" segment, and "distal" means "the farther" segment.

Both the sacroiliac and the vl5 vertebrae are top-level Joints, and are stored in the bodyDefinition field of the Humanoid node.

The l_sternoclavicular and r_sternoclavicular Joints are children of vt1, and siblings of vc7.

The skullbase Joint is technically the "atlanto-occipital" Joint.

The left and right metatarsals are technically the left and right "tarsometatarsal" joints.

A Joint node may contain 1-3 BAPs. The following table presents the joints, and associated BAPs and segment names.

Table 92 — BAPs in the Joint node

	JOINT NODE
	ASSOCIATED BAPs
	ATTACHED SEGMENT

	sacroiliac
	sacroiliac_tilt, sacroiliac_torsion, sacroiliac_roll
	Pelvis

	l_hip
	l_hip_flexion, l_hip_abduct, l_hip_twisting
	l_thigh

	r_hip
	r_hip_flexion, r_hip_abduct, r_hip_twisting
	r_thigh

	l_knee
	l_knee_flexion, l_knee_twisting
	l_calf

	r_knee
	r_knee_flexion, r_knee_twisting
	r_calf

	l_ankle
	l_ankle_flexion, l_ankle_twisting
	l_hindfoot

	r_ankle
	r_ankle_flexion, r_ankle_twisting
	r_hindfoot

	l_subtalar
	l_subtalar_flexion
	l_midproximal

	r_subtalar
	r_subtalar_flexion
	r_midproximal

	l_midtarsal
	l_midtarsal_flexion
	l_middistal

	r_midtarsal
	r_midtarsal_flexion
	r_middistal

	l_metatarsal
	l_metatarsal_flexion
	l_forefoot

	r_metatarsal
	r_metatarsal_flexion
	r_forefoot

	vl5
	vl5roll, vl5torsion, vl5tilt
	l5

	vl4
	vl4roll, vl4torsion, vl4tilt
	l4

	vl3
	vl3roll, vl3torsion, vl3tilt
	l3

	vl2
	vl2roll, vl2torsion, vl2tilt
	l2

	vl1
	vl1roll, vl1torsion, vl1tilt
	l1

	vt12
	vt12roll, vt12torsion, vt12tilt
	t12

	vt11
	vt11roll, vt11torsion, vt11tilt
	t11

	vt10
	vt10roll, vt10torsion, vt10tilt
	t10

	vt9
	vt9roll, vt9torsion, vt9tilt
	t9

	vt8
	vt8roll, vt8torsion, vt8tilt
	t8

	vt7
	vt7roll, vt7torsion, vt7tilt
	t7

	vt6
	vt6roll, vt6torsion, vt6tilt
	t6

	vt5
	vt5roll, vt5torsion, vt5tilt
	t5

	vt4
	vt4roll, vt4torsion, vt4tilt
	t4

	vt3
	vt3roll, vt3torsion, vt3tilt
	t3

	vt2
	vt2roll, vt2torsion, vt2tilt
	t2

	vt1
	vt1roll, vt1torsion, vt1tilt
	t1

	vc7
	vc7roll, vc7torsion, vc7tilt
	c7

	vc6
	vc6roll, vc6torsion, vc6tilt
	c6

	vc5
	vc5roll, vc5torsion, vc5tilt
	c5

	vc4
	vc4roll, vc4torsion, vc4tilt
	c4

	vc3
	vc3roll, vc3torsion, vc3tilt
	c3

	vc2
	vc2roll, vc2torsion, vc2tilt
	c2

	vc1
	vc1roll, vc1torsion, vc1tilt
	c1

	Skullbase
	skullbase_roll, skullbase_torsion, skullbase_tilt
	skull

	l_sternoclavicular
	l_sternoclavicular_abduct, l_sternoclavicular_rotate
	l_clavicle

	l_acromioclavicular
	l_acromioclavicular_abduct, l_acromioclavicular_rotate
	l_scapula

	l_shoulder
	l_shoulder_flexion, l_shoulder_abduct,l_shoulder_twisting
	l_upperarm

	l_elbow
	l_elbow_flexion, l_elbow_twisting
	l_forearm

	r_sternoclavicular
	r_sternoclavicular_abduct, r_sternoclavicular_rotate
	r_clavicle

	r_acromioclavicular
	r_acromioclavicular_abduct, r_acromioclavicular_rotate
	r_scapula

	r_shoulder
	r_shoulder_flexion, r_shoulder_abduct, r_shoulder_twisting
	r_upperarm

	r_elbow
	r_elbow_flexion, r_elbow_twisting
	r_forearm

	r_wrist
	r_wrist_flexion, r_wrist_pivot, r_wrist_twisting
	r_wrist

	r_thumb1
	r_thumb1_flexion, r_thumb1_pivot, r_thumb1_twisting
	r_thumb_metacarpal

	r_thumb2
	r_thumb2_flexion
	r_thumb_proximal

	r_thumb3
	r_thumb3_flexion
	r_thumb_distal

	r_index0
	r_index0_flexion
	r_index_metacarpal

	r_index1
	r_index1_flexion, r_index1_pivot, r_index1_twisting
	r_index_proximal

	r_index2
	r_index2_flexion
	r_index_middle

	r_index3
	r_index3_flexion
	r_index_distal

	r_middle0
	r_middle0_flexion
	r_middle_metacarpal

	r_middle1
	r_middle1_flexion, r_middle1_pivot, r_middle1_twisting
	r_middle_proximal

	r_middle2
	r_middle2_flexion
	r_middle_middle

	r_middle3
	r_middle3_flexion
	r_middle_distal

	r_ring0
	r_ring0_flexion
	r_ring_metacarpal

	r_ring1
	r_ring1_flexion, r_ring1_pivot, r_ring1_twisting
	r_ring_proximal

	r_ring2
	r_ring2_flexion
	r_ring_middle

	r_ring3
	r_ring3_flexion
	r_ring_distal

	r_pinky0
	r_pinky0_flexion
	r_pinky_metacarpal

	r_pinky1
	r_pinky1_flexion, r_pinky1_pivot, r_pinky1_twisting
	r_pinky_proximal

	r_pinky2
	r_pinky2_flexion
	r_pinky_middle

	r_pinky3
	r_pinky3_flexion
	r_pinky_distal

	l_wrist
	l_wrist_flexion, l_wrist_pivot, l_wrist_twisting
	l_wrist

	l_thumb1
	l_thumb1_flexion, l_thumb1_pivot, l_thumb1_twisting
	l_thumb_metacarpal

	l_thumb2
	l_thumb2_flexion
	l_thumb_proximal

	l_thumb3
	l_thumb3_flexion
	l_thumb_distal

	l_index0
	l_index0_flexion
	l_index_metacarpal

	l_index1
	l_index1_flexion, l_index1_pivot, l_index1_twisting
	l_index_proximal

	l_index2
	l_index2_flexion
	l_index_middle

	l_index3
	l_index3_flexion
	l_index_distal

	l_middle0
	l_middle0_flexion
	l_middle_metacarpal

	l_middle1
	l_middle1_flexion, l_middle1_pivot, l_middle1_twisting
	l_middle_proximal

	l_middle2
	l_middle2_flexion
	l_middle_middle

	l_middle3
	l_middle3_flexion
	l_middle_distal

	l_ring0
	l_ring0_flexion
	l_ring_metacarpal

	l_ring1
	l_ring1_flexion, l_ring1_pivot, l_ring1_twisting
	l_ring_proximal

	l_ring2
	l_ring2_flexion
	l_ring_middle

	l_ring3
	l_ring3_flexion
	l_ring_distal

	l_pinky0
	l_pinky0_flexion
	l_pinky_metacarpal

	l_pinky1
	l_pinky1_abduct, l_pinky1_flexion
	l_pinky_proximal

	l_pinky2
	l_pinky2_flexion
	l_pinky_middle

	l_pinky3
	l_pinky3_flexion
	l_pinky_distal

Note that the body can be defined by a subset of Joint nodes.

Many Joints may be omitted, such as most of the vertebrae, the midtarsal, and the acromioclavicular. The spinal Joints that belong to first spine groups are the ones that should be given priority if a full spine is not implemented.

Note that VRML H-Anim syntax permits having multiple humanoids in the same file. However, for the files used for BDPs, it is required that the BodySceneGraph node contains only one humanoid.

8.10.4.3.5 Other Nodes

Other nodes, such as non-standard joints, viewpoint nodes, displacement nodes, can be defined. These nodes are ignored for the purposes of body animation from FBA elementary stream, but could be updated using BIFS stream.

8.11 Adaptive Arithmetic Decoder for BIFS-Anim

The following procedures, in C code, describe the adaptive arithmetic decoder used in a BIFS-Anim session. The model is specified through the array int* cumul_freq[]. The decoded symbol is returned through its index in the model.

First, the following integers are defined :

static long bottom=0, q1=2^14, q2=2^15, q3=3*2^14, top=2^16-1;

The decoder is initialized to start decoding an arithmetic coded bitstream by calling the following procedure.

static long low, high, code_value, bit, length, sacindex, cum, zerorun=0;

void decoder_reset()

{

int i;

zerorun = 0; /* clear consecutive zero's counter */

code_value = 0;

low = 0;

high = top;

for (i = 1; i <= 16; i++) { //16 bits are read ahead

bit_out_psc_layer();

code_value = 2 * code_value + bit;

}

used_bits = 0;

}

In the BIFS-Anim decoding process, a symbol is decoded using a model specified through the array cumul_freq[] and by calling the following procedure.

static long low, high, code_value, bit, length, sacindex, cum, zerorun=0;

int aa_decode(int cumul_freq[])

{

length = high - low + 1;

cum = (-1 + (code_value - low + 1) * cumul_freq[0]) / length;

for (sacindex = 1; cumul_freq[sacindex] > cum; sacindex++);

high = low - 1 + (length * cumul_freq[sacindex-1]) / cumul_freq[0];

low += (length * cumul_freq[sacindex]) / cumul_freq[0];

for (; ;) {

if (high < q2) ;

else if (low >= q2) {

code_value -= q2;

low -= q2;

high -= q2;

}

else if (low >= q1 && high < q3) {

code_value -= q1;

low -= q1;

high -= q1;

}

else {

break;

}

low *= 2;

high = 2*high + 1;

bit_out_psc_layer();

code_value = 2*code_value + bit;

used_bits++;

}

return (sacindex-1);

}

void bit_out_psc_layer()

{

bit = getbits(1);

if (zerorun > 22) {

if (!bit) {

// Error condition… long zero runs shouldn’t occur

} else {

 bit = getbits(1); // removed startCode prevsition bit

 used_bits++;

 zerorun = !bit; // if 0, start counting again at zerorun = 1

}

else { // not close to hitting a fake startCode

if (!bit) {

++zerorun;

} else {

zerorun = 0;

}

}

}

The model is specified in the array cumul_freq[]. It is reset with the following procedure. The value of nbBits shall always be 14 or less.

void model_reset(int nbBits)

{

int nbValues = (1<<nbBits)+1;

int* cumul_freq = (int*) malloc(sizeof(int)*nbValues);

int i;

for (i=1;i<=nbValues;i++) {

cumul_freq[i] = nbValues-i;

}

The model is updated when the value symbol is read with the following procedure.

void update_model(int cumul_freq[], int symbol) {

if (cumul_freq[0] == q1) { //The model is rescaled to avoid overflow

int cum = 0;

for(int i=nb_of_symbols-1; i>=0; i--) {

cum += (cumul_freq[i]-cumul_freq[i+1]+1)/2;

cumul_freq[i] = cum;

}

cumul_freq[nb_of_symbols] = 0;

}

while(symbol>0)

cumul_freq[symbol--] ++;

}
Note: The getbits() routine may hit the end of the input buffer when bit_out_psc_layer() is called, because this routine reads several bits ahead. This condition should be ignored during the decoding of input streams.

Because the Arithmetic encoder reads a few bits ahead, it may read bits that are not part of the BIFS-Anim stream. The following procedure is used to rewind the bitstream the appropriate amount.

void adjustBits() {

 int bitin = used_bits%8;

 if (bitin <= 5) {

 rewind(3); /* rewind the input 3 bytes and read a few bits forward */

 getbits(bitin + 2);

 } else {

 rewind(2); /* rewind the input 2 bytes and read a few bits forward */

 getbits(bitin - 6);

 }

}

8.12 Informative : Adaptive Arithmetic Encoder for BIFS-Anim

The following procedures, in C code, describe the adaptative arithmetic encoder used in a BIFS-Anim session. The model is specified through the array int* cumul_freq[]. A symbol to be encoded is passed to the encode() routine, which modifies the model appropriately using the update() function.

First, the following integers are defined :

static long bottom=0, q1=2^14, q2=2^15, q3=3*2^14, top=2^16-1;

The encoder is initialized to start encoding an arithmetic coded bitstream by calling the following procedure:

static long low, high, usedbit, length, zerorun=0;

void encoder_reset() {

 low
= 0;

 high
= top;

 length
= 0;

 zerorun
= 0;

 usedbits
= 0;

}

In the BIFS-Anim encoding process, a symbol is encoded using a model specified through the array cumul_freq[] and by calling the following procedure.

Void aa_encode(int index, int cumul_freq[]) {

 length = high - low + 1;

 high = low - 1 + (length * cumul_freq[index]) / cumul_freq[0];

 low += (length * cumul_freq[index+1]) / cumul_freq[0];

 bitcount = 0;

 for (; ;) {

 if (high < q2) {

 bit_opp_bits(false);

 }

 else if (low >= q2) {

 bit_opp_bits(true);

 low -= q2;

 high -= q2;

 }

 else if (low >= q1 && high < q3) {

 opposite_bits++;

 low -= q1;

 high -= q1;

 }

 else break;

 low *= 2;

 high = 2*high+1;

 }

}

void bit_opp_bits(int bit) {

 bit_in_psc_layer(bit);

 while(opposite_bits > 0){

 bit_in_psc_layer(1-bit);

 opposite_bits--;

 }

}

void bit_in_psc_layer(int bit) {

 if(zerorun == 22) {

 write_bit(1); /* marker to eliminate 23 bit 0 runs */

 bitcount++;

 zerorun=0;

 }

 write_bit(bit); /* write a bit into the bit stream */

 bitcount++;

 if(!bit) {

 zerorun++;

 } else {

 zerorun = 0;

 }

}
The model is reset with the procedure model_reset() given in Appendix G. The model is updated when the value symbol is written with the update_model() procedure in Appendix G.
When the stream is to be flushed, the following routine is used.

void flush() {

 bitcount=0;

 opposite_bits++;

 if (low < q1) {

 bit_opp_bits(false);

 } else {

 bit_opp_bits(true);

 }

 reset();

}

8.13 View Dependent Object Scalability

8.13.1 Introduction

Coding of View-Dependent Scalability (VDS) parameters for texture can provide for efficient incremental decoding of 3D images (e.g. 2D texture mapped onto a 3D mesh such as terrain). Corresponding tools from the Visual and Systems parts of this specification (ISO/IEC 14496-2 and ISO/IEC 14496-1, respectively) are used in conjunction with downstream and upstream channels of a receiving terminal. The combined capabilities provide the means for a sending terminal to react to a stream of viewpoint information received from a receiving terminal. The sending terminal transmits a series of coded textures optimized for the viewing conditions, which can be applied to the rendering of, textured 3D meshes by the receiving terminal. Each encoded view-dependent texture (initial texture and incremental updates) typically corresponds to a specific 3D view in the user’s viewpoint that is first transmitted from the receiving terminal.

A Systems tool transmits 3D viewpoint parameters in the upstream channel back to the sending terminal. The encoder's response is a frequency-selective, view-dependent update of DCT coefficients for the 2D texture (based upon view-dependent projection of the 2D texture in 3D) back to the receiving terminal, via the downstream channel, for decoding by a Visual DCT tool at the receiving terminal. This bilateral communication supports interactive server-based refinement of texture for low-bandwidth transmissions to a receiving terminal that renders the texture in 3D for a user controlling the viewpoint movement. A gain in texture transmission efficiency is traded for longer closed-loop latency in the rendering of the textures in 3D. The receiving terminal coordinates inbound texture updates with local 3D renderings, accounting for network delays so that texture cached in the terminal matches each rendered 3D view.

A method to obtain an optimal coding of 3D data is to take into account the viewing position in order to transmit only the most visible information. This approach reduces greatly the transmission delay, in comparison to transmitting all scene texture that might be viewable in 3D from the sending terminal’s database server to the receiving terminal. At a given time, only the most important information is sent, depending on object geometry and viewpoint displacement. This technique allows the data to be streamed across a network, given that a upstream channel is available for sending the new viewing conditions to the remote database. This principle is applied to the texture data to be mapped on a 3D grid mesh. The mesh is first downloaded into the memory of the receiving terminal using the appropriate BIFS node, and then the DCT coefficients of the texture image are updated by taking into account the viewing parameters, i.e. the field of view, the distance and the direction to the viewpoint.

8.13.2 Bitstream Syntax

This subclause details the bitstream syntax for the upstream data and details the rules that govern the way in which higher level syntactic elements may be combined together to generate a compliant bitstream that can be decoded correctly by the receiving terminal.

8.13.3.1 specifies the bitstream syntax for a View Dependent Object which initializes the session at the upstream data decoder. 8.13.3.2 specifies the View Dependent Object Layer and contains the viewpoint information that is to be communicated back to the texture data encoder in the sending terminal.

8.13.2.1 View Dependent Object

class ViewDependentObject {

unsigned int (32) View_dep_object_start_code;

unsigned int (16) Field_of_View;

bit (1) Marker_bit;

unsigned int (16) Xsize_of_rendering_window;

bit (1) Marker_bit;

unsigned int (16) Ysize_of_rendering_window

bit (1) Marker_bit;

unsigned int (32)* NextStartCode;

while (NextStartCode == view_dep_object_layer_start_code){

ViewDependentObjectLayer vdol;

unsigned int (32)* NextStartCode;

}
}

class ViewDependentObjectLayer() {

unsigned int (32) View_dep_object_layer_start_code;

unsigned int (16) Xpos1 ;

bit (1) Marker_bit;

unsigned int (16) Xpos2;

bit (1) Marker_bit;

unsigned int (16) Ypos1;

bit (1)Marker_bit;

unsigned int (16) Ypos2;

bit (1) Marker_bit;

unsigned int (16) Zpos1;

bit (1) Marker_bit;

unsigned int (16) Zpos2;

bit (1) Marker_bit;

unsigned int (16) Xaim1;

bit (1) Marker_bit;

unsigned int (16) Xaim2;

bit (1) Marker_bit;

unsigned int (16) Yaim1;

bit (1) Marker_bit;

unsigned int (16) Yaim2;

bit (1) Marker_bit;

unsigned int (16) Zaim1;

bit (1) Marker_bit;

unsigned int (16) Zaim2;
}

8.13.3 Bitstream Semantics

8.13.3.1 View Dependent Object

view_dep_object_start_code: The view_dep_object_start_code is the string ‘000001BF’ in hexadecimal. It initiates a view dependent object session.

field_of_view: This is a 16-bit unsigned integer that specifies the field of view.

marker bit: This is a one bit field, set to ‘1’, to prevent start code emulation within the bitstream.
xsize_of_rendering_window: This is a 16-bit unsigned integer that specifies the horizontal size of the rendering window.

ysize_of_rendering_window: This is a 16-bit unsigned integer that specifies the vertical size of the rendering window.

8.13.3.2 View Dependent Object Layer

view_dep_object_layer_start_code: The view_dep_object_layer_start_code is the bit string ‘000001BE’ in hexadecimal. It initiates a view dependent object layer.

xpos1: This is a 16-bit codeword which forms the lower 16 bits of the 32-bit integer xpos. The integer xpos is to be computed as follows: xpos = xpos1 + (xpos2 << 16). The quantities xpos, ypos, zpos describe the 3D coordinates of the viewer's position.

xpos2: This is a 16-bit codeword which forms the upper 16-bit word of the 32-bit integer xpos.

ypos1: This is a 16-bit codeword which forms the lower 16-bit word of the 32-bit integer ypos. The integer ypos can be computed as follows: ypos = ypos1 + (ypos2 << 16).

ypos2: This is a 16-bit codeword which forms the upper 16bit word of the 32-bit integer xpos.

zpos1: This is a 16-bit codeword which forms the lower 16 bits of the 32-bit integer xpos. The integer zpos can be computed as follows: zpos = zpos1 + (zpos2 << 16).

zpos2: This is a 16-bit codeword which forms the upper 16 bits of the 32-bit integer xpos.

xaim1 – This is a 16-bit codeword which forms the lower 16 bits of the 32-bit integer xaim. The integer xaim can be computed as follows: xaim = xaim1 + (xaim2 << 16). The quantities xaim, yaim, zaim describe the 3D position of the aim point.

xaim2: This is a 16-bit codeword which forms the upper 16 bits of the 32-bit integer xaim.

yaim1: This is a 16-bit codeword which forms the lower 16 bits of the 32-bit integer yaim. The integer yaim can be computed as follows: yaim = yaim1 + (yaim2 << 16).

yaim2: This is a 16-bit codeword which forms the upper 16 bits of the 32-bit integer yaim.

zaim1: This is a 16-bit codeword which forms the lower 16 bits of the 32-bit integer zaim. The integer zaim can be computed as follows: zaim = zaim1 + (zaim2 << 16).

zaim2: This is a 16-bit codeword which forms the upper 16 bits of the 32-bit integer zaim.
8.14 Scene Partitioning

8.14.1 Overview

In 3D streaming applications, a server often holds a compressed binary representation of the whole scene data. At the time a client connects, it receives a coarse version of the environment that suits more or less its actual location and requested precision. For the rest of the navigation, refinement data will be sent according to the observer trajectory within the scene.

At this stage, two scenarios are possible. The first one is called server-driven scenario; in this case, the server is assumed to be able to cope with the necessary computations for deciding exactly what refinements the client needs. Usually, the client has already sent his position and some hints of what he already has in his cache. According to this information, the server extracts a subset of the compressed binary representation, using some kind of MPEG-21 gBSD file.

The second possible scenario is the so-called client-based one. In this case, it is the client task to compute and request the necessary refinement data. In a perfect world, the server would have enough capability to constantly remain in server-driven mode. But in practical applications, when the number of clients grows, often reaching several thousands of terminals, the server can not cope anymore and has to cast to the most effective clients the task of identifying the needed refinements.

Another important thing to note, also raised after our practical implementations, is that this becomes general rule when dealing with peer-to-peer applications, i.e. when terminals can arbitrarily be considered as servers as well.

While the client-driven mode reduces the amount of information to send to the server (namely the hints on the cache content), one noticeable difference is that the client does not know exactly what could or should be sent in function of his position and orientation. What was known on the server side in the server-driven mode is unknown by the client in the client-driven mode.

The schema is based on an extensible syntax, such as the AFX backchannel. The purpose of this framework is to be able to any space partitioning conception, including the most general ones, as well as the most specific. The partitioning types considered so far are:

1) BSP: this had already been proposed at the Fairfax meeting, but the activity had not followed up at that time by lack of support and efficient design of the node. However, the technology itself has proved to be useful for adaptive transmission and rendering of large scenes, and applies to the most arbitrary scenes, independently on the tools used to compress the objects.

2) Cells / Portals: another widely used representation for selective transmission / rendering of large interior scenes is the Cell / Portal paradigm. This representation is a graph in which the nodes figure the various rooms in the building and the edges denote the possible visibility from one room to another.

3) PVS (Potentially Visible Sets): also very widely used for exterior scenes, the purpose of PVS is the same as Cells and Portals with the difference that areas are not related to other visible areas but instead linked to the set of objects that are visible from this area.

4) WaveletSubdivisionSurfaces: this is a specific partitioning design, suited to the accommodation of geometric wavelet coefficients. This is based on bounding volumes that are strongly dependent on the shape of the base mesh.

5) FootPrints: this is the specific design that was originally demonstrated and that showed significant gain in both bandwidth and reconstruction time.

Generic tools, such as BSP, Cells and Portals and PVS are supposed to handle portions of scenes independently of the encoding scheme. This can be used for VRML scenes, or with objects for which the partitioning does not have to have finer granularity than the object itself, namely because its encoding does not provide multiresolution.

8.14.2 Node interface

PROTO SpacePartition [#%NDT=SFWorldNode,SF3DNode %COD=N

eventIn MF3DNode addChildren

eventIn MF3DNode removeChildren

exposedField MF3DNode children []

exposedField SFUrl
 SPStream
NULL

]{}

8.14.2.1 Semantics and functionality

children: this is the target node. The partitioning information may apply to the children nodes and to its descent.

SPStream: this is the stream containing the Scene Partitioning information.

NOTE
The partitioning nodes obey the following criteria:
· Each partitioning node is attached to a rendered node;

· The partitioning node influences the descent of the rendered node it is attached to;

· The partitioning nodes combine themselves according to the hierarchy of the scene graph;

Figure 61 shows an example illustrating these points.

[image: image310]
Figure 61 — example of organization of space partitioning nodes within a scene graph
In this example, one can see various space partitioning nodes (the SPs) occurring at various depth in the scene hierarchy. The type of each SP node is suited to the type of the object it is linked to. For example IndexedFaceSets representing the Earth and the Boat are partitioned using BSP and PVS. The museum, which is an interior subscene, is partitioned with Cells and Portals. The statue inside the museum, represented by WaveletSubdivisionSurfaces, is partitioned with the according declination of the node. Each SP node is dependent on every other SP node upper in the hierarchy. For instance the rendering of the statue is subject to adaptation lead by SP4, but is constrained by the visibility induced by SP3 and SP1, that are linked to parent nodes.
8.14.3 Scene Partitioning stream definition

8.14.3.1 SpacePartitionDecoderConfig

8.14.3.1.1 Syntax

class SpacePartitionDecoderConfig {

int (8) DSItag;

int (8) type;

switch(type) {

0: BSPDecoderConfig;

1: CellPortalDecoderConfig;

2: PVSDecoderConfig;

3: SPFootprintDecoderConfig;

4: WaveletDecoderConfig;

)

}

8.14.3.1.2 Semantics

DSItag: Space Partition tag (0x0C)

type: space partition type

8.14.3.2 BSPDecoderConfig

8.14.3.2.1 Syntax

class BSPDecoderConfig {

int(6) indexNbBits;

int(6) coefNbBits;

int(6) objCountNbBits;

int(1) is3D;

}

8.14.3.2.2 Semantics

indexNbBits: number of bits used to encode BSP plane IDs

coefNbBits: number of bits used to encode BSP plane coefficients

objCountNbBits: number of bits used to encode the number of objects

is3D: identifier of the 2D (value 0) or 3D (value 1).
8.14.3.3 CellPortalDecoderConfig

8.14.3.3.1 Syntax

class CellPortalDecoderConfig {

int(6) cellCountNbBits;

int(6) totalCountNbBits;

int(6) cellGeomNbBits;

int(1) is3D;

}

8.14.3.3.2 Semantics

cellCountNbBits: number of bits used to encode number of cells in the stream

totalCountNbBits: number of bits used to encode total number of cells as well as cell IDs

cellGeomNbBits: number of bits used to encode cell geometry parameters

is3D: identifier of the 2D (value 0) or 3D (value 1).

8.14.3.4 PVSDecoderConfig

8.14.3.4.1 Syntax

class PVSDecoderConfig {

int(6) cellCountNbBits;

int(6) objCountNbBits;

 int(6) pvsGeomNbBits;

}

8.14.3.4.2 Semantics

cellCountNbBits: number of bits used to encode the total number of cells

objCountNbBits: number of bits used to encode the total number of objects

8.14.3.5 SPFootprintDecoderConfig

8.14.3.5.1 Syntax

class SPFootprintDecoderConfig {

int(8) type;

unsigned int(5) rootChildrenRadiusNbBits;

unsigned int(5) nbChildrenNbBits;

unsigned int(5) nbSubTreesNbBits;

float(32) acquisitionPrecision;

float(32) minMetricError;

float(32) maxMetricErrorEncodingFunction;

unsigned int(16) nbRootChildren;

unsigned int(5) indexNbBits;

unsigned int(5) nbNodesInSubTreeNbBits;

unsigned int(5) nbNodesOnFirstLevelOfSubTreeNbBits;

unsigned int(5) nbSubTreesChildrenNbBits;

unsigned int(5) nbNodesOnLastLevelNbBits;

unsigned int(5) networkType;

switch(networkType) {

0: // no additional information;

1: int(5) subTreeSizeNbBits;

 Int(5) geometryNodesSizeNbBits;

}

8.14.3.5.2 Semantics

type: type of the description structure

rootChildrenRadiusNbBits: number of bits used to decode the radius of the children (i.e. the bounding sphere)

nbChildrenNbBits: number of bits used to decode the number of hierarchical description node's children

nbSubTreesNbBits: number of bits used to decode number of sub-trees in a packet.

acquisitionPrecision: precision used during data acquisition.

minMetricError: smallest metric error that is greater than 0.

maxMetricErrorEncodingFunction: maximum metric error used in the encoding function.

nbRootChildren: number of children nodes for current node.

indexNbBits: number of bits used to decode description node indices.

nbNodesInSubTreeNbBits: number of bits to used to decode the number of sub-tree nodes.

nbNodesOnFirstLevelOfSubTreeNbBits: number of bits used to decode the number of nodes included in the first level sub-tree.

NbSubTreesChildrenNbBits: number of bits used to decode the number of current sub-tree childrens.

nbNodesOnLastLevelNbBits: number of bits used to decode the number of nodes in the sub-tree first level.

networkType: communication type.

Type 0: client - server

Type 1: P2P

-subTreeSizeNbBits: number of bits used to decode the sub-tree size.

-geometryNodeSizeNbBits: number of bits used to decode the geometry size.

8.14.3.6 WaveletDecoderConfig

8.14.3.6.1 Syntax

class WaveletDecoderConfig {

int(6) unitCountNbBits;

int(6) faceCountNbBits;

int(6) geomNbBits;

}

8.14.3.6.2 SpacePartitionNodeMessage

class SpacePartitionNodeMessage {

 switch(SpacePartitionDecoderConfig.type) {

 0: BSPNodeMessage;

 1: CellPortalNodeMessage;

 2: PVSNodeMessage;

 3: FootprintMessage;

 4: WaveletMessage;

 }

}

8.14.3.7 BSPNodeMessage
8.14.3.7.1 Overview

	BSP Message

NbUnits
BSPUnit

BSPUnit

NbUnits : number of BSP Units defined below

	BSP Unit

Header
Front
Overlap
Back

with:

	Header

nIndex
nIndexParent
A
b
c
d
nIndexFront
nIndexOverlap
nIndexBack

	Front

nFrontObjCount
nFrontObjID

nFrontObjID

	Overlap

nOverlapObjCount
nOverlapObjID

nOverlapObjID

	Back

nBackObjCount
nBackObjID

nBackObjID

8.14.3.7.2 Syntax

class BSPNodeMessage {

 unsigned int(8) NbUnits;

 for (i=0; i<NbUnits; i++) {

int(BSPDecoderConfig.indexNbBits) nIndex;

int(BSPDecoderConfig.indexNbBits) nParentIndex;

float(BSPDecoderConfig.coefNbBits) a;

float(BSPDecoderConfig.coefNbBits) b;

if (BSPDecoderConfig.is3D) {

float(BSPDecoderConfig.coefNbBits) c;

}

float(BSPDecoderConfig.coefNbBits) d;

int(BSPDecoderConfig.indexNbBits) nIndexFront;

int(BSPDecoderConfig.indexNbBits) nIndexOverlap;

int(BSPDecoderConfig.indexNbBits) nIndexBack;

int(BSPDecoderConfig.objCountNbBits) nFrontObjCount ;

for (j=0 ; j<nFrontObjCount ; j++) {

int(BSPDecoderConfig.indexNbBits) nFrontObjID;

}

int(BSPDecoderConfig.objCountNbBits) nOverlapObjCount ;

for (k=0 ; k<nOverlapObjCount ; k++) {

int(BSPDecoderConfig.indexNbBits) nOverlapObjID;

}

int(BSPDecoderConfig.objCountNbBits) nBackObjCount ;

for (k=0 ; k<nBackObjCount ; k++) {

int(BSPDecoderConfig.indexNbBits) nBackObjID;

}

 }

}

8.14.3.7.3 Semantics

NbUnits: number of nodes in the BSP tree

nIndex: node ID

nParentIndex: parent node ID (-1 if none)

a: plane coefficient, following equation ax+by+cz+d=0
b: plane coefficient, following equation ax+by+cz+d=0
c: plane coefficient, following equation ax+by+cz+d=0
d: plane coefficient, following equation ax+by+cz+d=0
nIndexFront: front child node ID (-1 if none)

nIndexOverlap: overlap child node ID (-1 if none)

nIndexBack: back child node ID (-1 if none)

nFrontObjCount: number of objects front-side of the plane

nFrontObjID: front-side object ID

nOverlapObjCount: number of objects overlaping the plane

nOverlapObjID: overlaping object ID

nBackObjCount: number of objects back-side of the plane

nBackObjID: back-side object ID

8.14.3.8 Stream specific to cell&portals

8.14.3.8.1 Overview

	Cell&Portal Message

cellCount
totalCount
Cell

Cell

cellCount: number of cells in stream

totalCount: total number of cells

	Cell

cellID
CellGeometry
cellArray

	CellGeometry

centerX
centerY
centerZ
dX
dY
dZ

8.14.3.8.2 Syntax

class CellPortalNodeMessage {

 unsigned int(CellPortalDecoderConfig.cellCountNbBits) cellCount;

 unsigned int(CellPortalDecoderConfig.totalCountNbBits) totalCount;

 for (i=0; i<cellCount; i++) {

int(CellPortalDecoderConfig.totalCountNbBits) cellID;

int(CellPortalDecoderConfig.cellGeomNbBits) centerX;

int(CellPortalDecoderConfig.cellGeomNbBits) centerY;

if (CellPortalDecoderConfig.is3D)

{

int(CellPortalDecoderConfig.cellGeomNbBits) centerZ;

}

int(CellPortalDecoderConfig.cellGeomNbBits) dX;

int(CellPortalDecoderConfig.cellGeomNbBits) dY;

if (CellPortalDecoderConfig.is3D)

{

int(CellPortalDecoderConfig.cellGeomNbBits) dZ;

}

for (i=0; i<totalCount; i++)

unsigned int cellArray;

 }

}

8.14.3.8.3 Semantics

cellCount: number of cells in stream

totalCount: total number of cells

cellID: cell ID

centerX: cell Bounding Box position in X

centerY: cell Bounding Box position in Y

centerZ: cell Bounding Box position in Z

dX: cell Bounding Box size in X

dY: cell Bounding Box size in Y

dZ: cell Bounding Box size in Z

PortalID: portal ID, inside cellule

cellArray: array giving list of visible cells from cell i

8.14.3.9 Stream specific to PVS

8.14.3.9.1 Overview

	PVS Message

cellCount
objCount
PVSGrid
Cell
Cell

Cell

cellCount: total number of cells

objCount: total number of objects

PVSGrid: grid partition parameters (optional)

	PVSGrid

zmin
zmax
xmin
xmax
ymin
ymax
dx
Dy

	Cell

CellID
pvsArray

8.14.3.9.2 Syntax

class PVSNodeMessage {

 unsigned int(PVSDecoderConfig.cellCountNbBits) cellCount;

 unsigned int(PVSDecoderConfig.objCountNbBits) objCount;

 bool(1) bRegular;

 if (bRegular) {

 float(PVSDecoderConfig.pvsGeomNbBits) zmin;

 float(PVSDecoderConfig.pvsGeomNbBits) zmax;

 float(PVSDecoderConfig.pvsGeomNbBits) xmin;

 float(PVSDecoderConfig.pvsGeomNbBits) xmax;

 float(PVSDecoderConfig.pvsGeomNbBits) ymin;

 float(PVSDecoderConfig.pvsGeomNbBits) ymax;

 float(PVSDecoderConfig.pvsGeomNbBits) dx;

 float(PVSDecoderConfig.pvsGeomNbBits) dy;

 } else {

 PVSMesh;

 }

 for (i=0; i<nbCellCount; i++) {

 unsigned int(PVSDecoderConfig.cellCountNbBits) nCellID ;

 for (j=0; j<totalCount; j++)

unsigned int pvsArray;

 }

 }

}

8.14.3.9.3 Semantics

cellCount: total number of cells

objCount: total number of objects

bRegular: partition based on a regular grid (1) or based on indexedfaceset (0)

zmin: minimum in Z

zmax: maximum in Z

xmin: grid minimum in X

xmax: grid maximum in Y

ymin: grid minimum in Y

ymax: grid maximum in Y

dx: grid step in X

dy: grid step in Y

nCellID: cell ID

pvsArray: array giving list of visible objects from cell i

PVSMesh: this is the mesh describing the cells in the non-regular case.

8.14.3.10 PVSMesh

8.13.3.2.1 Syntax

class PVSMesh {

unsigned int(32) NbVertices;

unsigned int(32) NbFaces;

for (int i=0; i< NbVertices; i++) {

int(32)VArray[i];

for (int i=0; i< NbFaces; i++) {

int(32) FArray[i];

}

}

8.14.3.10.2 Semantics

NbVertices: this is the number of vertices in the mesh.

NbFaces: this is the number of faces in the mesh.

VArray: this is the array of points of the mesh. It has to be interpreted in the same way as the Coordinates field of an indexedFaceSet.

FArray: this is the array of facets of the mesh. It has to be interpreted in the same way as the CoordIndex field of an indexedFaceSet.

8.14.3.11 HierarchicalDescriptionPacket

8.14.3.11.1 Syntax

class HierarchicalDescriptionPacket {

unsigned int(HierarchicalDescriptionDecoderConfig.nbSubTreesNbBits) nbSubTrees;

for (i= 0; i < nbSubTrees; i++) {

HierarchicalDescriptionSubTree subTree;

}

}
8.14.3.11.2 Semantics

nbSubTrees: number of hierarchical description sub-trees that are embedded in this packet.

The HierachicalDescriptionSubTree is the base class used only with description trees.

class HierarchicalDescriptionSubTree {

switch(SPFootprintDecoderConfig.type) {

0: FPHDescSubTree;

1: // to be defined

}

}

8.14.3.12 FPHDDescSubTree

8.14.3.12.1 Syntax

The FPHDDescSubTree is the specific class used only with description trees.

class FPHDescSubTree extends HierarchicalDescriptionSubTree {

unsigned int(SPFootprintDecoderConfig.nbNodesInSubTreeNbBits) nbNodesInSubTree;

unsigned int(SPFootprintDecoderConfig.nbNodesOnFirstLevelOfSubTreeNbBits) nbNodesOnFirstLevelOfSubTree;

unsigned int(SPFootprintDecoderConfig.indexNbBits) indexParentFirstNodeInSubTree;

unsigned int(SPFootprintDecoderConfig.indexNbBits) indexFirstNodeInSubTree;

int(SPFootprintDecoderConfig.nbSubTreesChildrenNbBits) nbSubTreesChildren

for (i= 0; i < nbSubTreesChildren; i++) {

int(SPFootprintDecoderConfig.nbSubTreesNbBits) indexSubTreeChild

int(SPFootprintDecoderConfig.nbNodesOnLastLevelNbBits) nbNodesOnLastLevel

switch (SPFootprintDecoderConfig.networkType) {

0: // no additionnal informations

1: int(SPFootprintDecoderConfig.subTreeSizeNbBits) subTreeChildSize

}

for (i= 0; i < nbNodesInSubTree; i++) {

SPFootprintNodeMessage node;

}

 }

}

8.14.3.12.2 Semantics

nbNodesInSubTree: number of nodes in the sub-tree.

nbNodesOnFirstLevelOfSubTree: number of nodes in the sub-tree first level.

indexParentFirstNodeInSubTree: father node index.

indexFirstNodeInSubTree: index of first node in the sub-tree.

nbSubTreesChildren: number of sub-tree children.

indexSubTreeChild: sub-tree child index.

nbNodesOnLastLevel: number of nodes in the sub-tree first level.

subTreeChildSize: size of current sub-tree.

8.14.3.13 SPFootprintNodeMessage

8.14.3.13.1 Syntax

class SPFootprintNodeMessage {

unsigned int(SPFootprintDecoderConfig.nbChildrenNbBits) nbChildren;

if (nbChildren > 0) {

unsigned int(8) encodedMetricError;

}

int(1) isFirstLevel;//this is a temporary non-parsable variable

if (isFirstLevel) {

float(32) gcX;

float(32) gcY;

float(32) gcZ;

unsigned int(SPFootprintDecoderConfig.rootChildrenRadiusNbBits) radius;

}

else {

unsigned int(5) nbBitsDelta;

int(1) isDeltaXNeg;

unsigned int(nbBitsDelta) deltaX;

int(1) isDeltaYNeg;

unsigned int(nbBitsDelta) deltaY;

int(1) isDeltaYNeg;

unsigned int(nbBitsDelta) deltaZ;

int(1) isDeltaRadiusNeg;

unsigned int(nbBitsDelta) deltaRadius;

}

}

8.14.3.13.2 Semantics

nbChildren: number of children nodes.

encodedMetricError: metric error of the node.

isFirstLevel: if true, node is assigned to root node.

gcX, gcY, gcZ: node gravity centre coordinates.

Radius: node radius.

nbBitsDelta: number of bits used to decode deltaX, deltaY, deltaZ and deltaRadius.

isDeltaXNeg: specifies whether deltaX is negative.

deltaX: used to determine child x sphere coordinate (i.e the difference between father node gravity centre X coordinate and current node gravity centre X coordinate).

deltaY and deltaZ: are the equivalents of deltaX but for the y and z coordinate respectively.

deltaRadius: used to determine the child sphere radius.

8.14.3.14 FPHDescSubTreeMessage

8.14.3.14.1 Syntax

class FPHDescSubTreeMessage extends HierarchicalDescriptionSubTree {

switch(SPFootprintDecoderConfig.networkType) {

0: // pas d'information supplémentaire

1: int(8) geometryNodeSize

}

}

8.14.3.14.2 Semantics

geometryNodeSize: size of the geometric node.

8.14.3.15 WaveletNodeMessage

8.14.3.15.1 Overview

	Wavelet Message

unitCount
faceCount
WssUnit
WssUnit
…
WssUnit

unitCount: total number of units

faceCount: total number of faces
	WssUnit

WssUnitID
WssUnitVolume
wssArray

	WssUnitVolume

centerX
centerY
centerZ
dX
dY
dZ

8.14.3.15.2 Syntax

class WaveletNodeMessage {

 unsigned int(WaveletDecoderConfig.unitCountNbBits) unitCount;

 unsigned int(WaveletDecoderConfig.faceCountNbBits) faceCount;

 for (i=0; i<unitCount; i++) {

 unsigned int(WaveletDecoderConfig.unitCountNbBits) nUnitID ;

 float(WaveletDecoderConfig.geomNbBits) centerX;

 float(WaveletDecoderConfig.geomNbBits) centerY;

 float(WaveletDecoderConfig.geomNbBits) centerZ;

 float(WaveletDecoderConfig.geomNbBits) dX;

 float(WaveletDecoderConfig.geomNbBits) dY;

 float(WaveletDecoderConfig.geomNbBits) dZ;

 for (i=0; i<objCount; i++)

unsigned int wssArray;

 }

}

8.14.3.15.3 Semantics

unitCount: number of units in stream

faceCount: total number of faces

nUnitID: unit ID

centerX: unit bounding box position in X

centerY: unit bounding box position in Y

centerZ: unit bounding box position in Z

dX: unit bounding box size in X

dY: unit bounding box size in Y

dZ: unit bounding box size in Z

wssArray: array giving list of visible objects from unit i

8.14.4 Space Partitioning Decoding

The Scene Partitioning nodes of Subclause 8.14.2 are the result of the following decoding process.

8.14.4.1 BSP

The decoded object is a hierarchical tree defined as follows:

· The list of the indexed nodes in the tree are defined by the loop over NbUnits.

· The index of each node is given by the field nIndex.

· The children of a node are defined by the indices nIndexFront, nIndexBack and nIndexOverlap.

· The whole descent of a node represented by its nIndexFront geometrically positioned in the direction of the normal to the plane defined by a, b, c and d.

· The whole descent of a node represented by its nIndexBack geometrically positioned in the opposite direction of the normal to the plane defined by a, b, c and d.

· The whole descent of a node represented by its nIndexOverlap intersect the plane defined by a, b, c and d.

· The orientation of this normal is given by vector (a, b, c).

8.14.4.2 Cells and Portals

The decoded object is an ordered set of lists of visible cells. The i-th list of integer represents the indices of the cells visible from cell i. This list is obtained as follows:

· The number of cells in the list is given by cellCount.

· The cells are defined by their centre and their size in x, y and z dimensions.

· The centre is defined by the point (centerX, centerY) in case of 2D partitioning, and centerX, centerY,
centerZ) otherwise.

· The sizes in x, y and z dimensions respectively are given by dx, dy and dz.

· The visible cells are given by the content of cellArray.

8.14.4.3 PVS

The decoded object is an ordered set of lists of visible cells. The i-th list of integer represents the indices of the cells visible from cell i. In the case of regular grid (bRegular field has value 1), this list is obtained as follows:

· Each grid is defined by zmin, zmax, ymin, ymax, xmin, xmax, dx and dy.

· For each grid, its nbCellCount associated visible cells are given by nCellID.

In the case of irregular grid, this list is obtained the same way but the grid is defined as the facets of the mesh read in PVSMesh.

8.14.4.4 Footprints

The HierarchicalDescriptionPacket describes the scene partitioning specific to FootPrint-based coding.

The decoded object is a set of trees whose nodes represent the bounding spheres of portions of geometry. This tree is defined as follows:

· Each passed subTree is a tree that corresponds to a footprint in the coarse Footprint-based representation.

· Each tree is non-ambiguially defined by the semantics of the parsed fields.

8.14.4.5 Wavelets

The decoded object is a set of indexed bounding boxes.

· Each box is associated to a volume defined by centerx, centery, centerz, dx, dy and dz.

· Each box is associated to a list of facets parsed in wssarray.

9 The Extensible MPEG-4 Textual Format

9.1 Introduction

The XMT framework consists of two levels of textual syntax and semantics: the XMT-A format and the XMT-Ω format, which we will abbreviate by A and Ω, respectively, and use them interchangeably where there is no confusion.

The XMT-A is an XML-based version of MPEG-4 content, which contains a subset of the X3D. Also contained in XMT-A is an MPEG-4 extension to the X3D to represent MPEG-4 specific features. The XMT-A provides a straightforward, one-to-one mapping between the textual and binary formats.

The XMT-Ω is a high-level abstraction of MPEG-4 features designed based on the W3C SMIL. The XMT provides a default mapping from Ω to A, for there is no deterministic mapping between the two, and it also provides content authors with an escape mechanism from Ω to A.

In addition an XMT-C (Common) section contains the definition of elements and attributes that may be used within either XMT-A or XMT-Ω.

9.2 XMT-A Format

9.2.1 Introduction

This section contains the XMT-A format definition that has the goals of representing binary constructs in a textual format, providing an informational one-to-one deterministic mapping to binary coding.

9.2.2 XMT-A Document structure

An XMT-A document has a single optional <Header> element followed by a single <Body> element. The <Header> element contains zero or more <meta> elements and also contains the MPEG-4 specific element for the <InitialObjectDescriptor>.

9.2.2.1 Identifiers and forward references within a document instance

An XMT-A document instance is comprised of a set of elements to represent MPEG-4 systems streams as a textual format. In the textual format the order of the elements in the document is not necessarily the same order as the corresponding binary constructs in the streams. There is however an understood mapping see subclause 9.2.13 for more details.

So elements in the document are timed using a <par> element with a begin attribute to specify the time. These <par> elements may also be nested, and the timing of the nested <par> elements is relative to its parent (as in fact are the top level <par>s because they can be considered to be nested in the topmost implicit par that comprises the body of the document that begins at 0s). To create the binary streams the elements are sorted in temporal order maintaining the document order of any elements that are for the same time. Since the elements may be out of order the question is are forward references allowed of identifiers that are mapped to binary streams.

The answer is that forward references within the document are permitted. However within a single stream, if as the elements are sorted in time then any forward references that remain must not be in violation of the MPEG-4 Systems specification if forward references are not permitted for that stream. I.e. if the temporal sorting does not eliminate forward references and this causes an illegal stream due to unknown Ids, because of the forward references, then some alternate representation should be sought. And across streams forward references in the document are also permitted if the coding leads to valid MPEG-4 system streams.

9.2.3 XMT-A Representation of Nodes

9.2.3.1 Overview

This section provides a description of the XMT-A textual representation of MPEG-4 nodes.

9.2.3.2 XMT-A node elements

9.2.3.2.1 MPEG-4 node/field to XMT-A element/attribute mapping algorithm

The following algorithm is used to convert MPEG-4 nodes and fields to XMT-A elements and attributes.

Each node is converted to an XMT-A element, with its name preserved.

For each field of a node

If the field type is a node, i.e., the field can contain one or more children nodes, then the field is converted to an XMT-A element, with the element name identical to the field name. This element will appear as the child element.

If the field type is non-node and is a plain Field or an exposedField, then the field is made into an attribute of the element, preserving its name. (Fields with eventIn and eventOut types are omitted as they are not encoded and these cannot usefully be attributes of the element.)

An exception to the above rule for node/non-node field conversion is for the <Conditional> node, where the buffer field, although a non-node field, is converted to an element so that it can contain one or more BIFS command elements in this XML representation. Another exception is for the <Storage> node, where the storageList field, although a non-node field, is converted to an element so that it contains one or more <store> elements in this XML representation.
A field without a default value is optional. Fields with MPEG-4 default binary values are given default XML attributes with the same values.

When numerical multiple value fields are to be encoded using predictiveMFField coding, the node shall have a sequence of <PredictiveField> elements as children, one for each encoded field.
9.2.3.2.2 Common attributes and elements

Optional DEF and USE attributes are present on all XMT-A node elements. XMT-A adds the following optional common attributes:

binaryID for deterministic binary encoding,

DEF to code id as name,

9.2.3.2.3 Element and attribute type classifications

Node elements and field attribute types will be classified according to MPEG-4 system node types.

9.2.3.3 Schema and XMT-A examples

Given the algorithm described above, MPEG-4 nodes can easily be converted into XMT-A. This section provides some examples to illustrate the representation. The full set of nodes from clause 7 can be converted this way. The Schema for XMT-A, containing the full set of nodes, can be found in an external annex to this document in a file named xmt-a.xsd.

The following example shows the MPEG-4 node Material converted to the XMT-A element <Material>. The Material node has no fields that are nodes and so all its fields have become attributes and DEF/USE is included as a predefined attribute group. The IS subelement is used when the node is part of a PROTO declaration.

<element name="Material">
<complexType>
<sequence>
<element ref="xmta:IS" minOccurs="0" />

</sequence>
<attribute name="ambientIntensity" type="xmta:SFFloat" use="optional" default="0.2" />

<attribute name="diffuseColor" type="xmta:SFColor" use="optional" default="0.8 0.8 0.8" />

<attribute name="emissiveColor" type="xmta:SFColor" use="optional" default="0 0 0" />

<attribute name="shininess" type="xmta:SFFloat" use="optional" default="0.2" />

<attribute name="specularColor" type="xmta:SFColor" use="optional" default="0 0 0" />

<attribute name="transparency" type="xmta:SFFloat" use="optional" default="0" />

<attributeGroup ref="xmta:DefUseGroup" />

</complexType>
</element>
The DefUseGroup defines the attributes DEF, USE and binaryID. DEF is a string that contains a symbolic ID. USE is a string that refers to a node that has the matching symbolic ID. The type of the element with the USE attribute shall match the type of the element having the matching DEF symbolic ID. The attribute binaryID is an integer defining the binary nodeID to be used when encoding the scene in BIFS.

Some examples of use of the above definition are:

<Material ambientIntensity="0.6" emissiveColor=”1.0 0.1 0.78”/>

<Material DEF=”ABlue” emissiveColor=”0.0 0.1 0.88”/>

<Material USE=”ABlue”/>

The following example shows the MPEG-4 node OrderedGroup converted to the XMT-A element <OrderedGroup>. The OrderedGroup node has the children fields that is of type multiple nodes and so that field is converted to an element whilst its other field (order) has become an attribute.

<element name="OrderedGroup">
<complexType>
<all>
<element ref="xmta:IS" minOccurs="0" />

<element name="children" minOccurs="0" form="qualified">
<complexType>
<group ref="xmta:SF3DNodesType" minOccurs="0" maxOccurs="unbounded" />

</complexType>
</element>
</all>
<attribute name="order" type="xmta:MFFloat" use="optional" />

<attributeGroup ref="xmta:DefUseGroup" />

</complexType>
</element>
An example of its use (the Shapes are incomplete for simplicity) is:

<OrderedGroup order=”1.2 6.5”>

 <children>

 <Shape>…<Shape/>

 <Shape>…<Shape/>

 </children>

</OrderedGroup>

9.2.4 XMT-A Routing

9.2.4.1 <ROUTE>

9.2.4.1.1 Description

The <ROUTE> element is the XMT-A representation of the ROUTE. The optional id attribute names the ROUTE and allows the ROUTE to be deleted or replaced at a later time by referring to it via the atRoute attribute of BIFS Commands.

<element name="ROUTE">

 <complexType>

 <attribute name="DEF" type="ID" use="optional"/>

 <attribute name="binaryID" type="int" use="optional"/>

 <attribute name="fromNode" type="IDREF" use="required"/>

 <attribute name="fromField" type="xmta:fieldName" use="required"/>

 <attribute name="toNode" type="IDREF" use="required"/>

 <attribute name="toField" type="xmta:fieldName" use="required"/>

 </complexType>

</element>

<ROUTE>s can be placed inside the <Scene> element before the closing </Scene>. <ROUTE>s cannot be included inside other elements of the scene.

9.2.5 PROTOs in XMT-A

9.2.5.1 PROTO Declaration

The <ProtoDeclare> element is the equivalent of the PROTO Declaration defined in 8.7.2.2

<ProtoDeclare name=”” protoID="">

 <field …/> // as many as needed

 …// then nested ProtoDeclare(s)
 …// then nodes
 …// then ROUTEs
</ProtoDeclare>

9.2.5.2 PROTO Instance

<ProtoInstance name=””>
 <fieldValue …/> // as many as needed

</ProtoInstance>

9.2.5.3 field

The element <field>, subelement of <ProtoDeclare>, allows the definition of the PROTO declaration interface, as defined in subclause 8.7.2.3.

<field name=”” type=”” vrml97hint=”” [typedvalue]=””>

 <InterfaceCodingParameters quantCategory=”” animCategory=”” nbBits=””

position3Dmin=”” position3Dmax=””

position2Dmin=”” position2Dmax=””

drawOrderMin=”” drawOrderMax=””

colorMin=”” colorMax=””

textureCoordinateMin=”” textureCoordinateMax=””

angleMin=”” angleMax=””

scaleMin=”” scaleMax=””

keyMin=”” keyMax=””

sizeMin=”” sizeMax=”"

 />
 …// SFNode or MFNode default value here

</field>

Name is the name of the field, type is an enumerated value from Table 94, vrml97hint is an enumerated value from Table 93. If the field has a default value which is neither a node or a set of nodes, the value is specified as an attribute. The name of the attribute is specific to the type of the field, as shown in Table 95. This type-specific attribute name allows efficient type-checking of the default value with XML Schema.

The InterfaceCodingParameters element allows the specification of the BIFS element of the same name described in subclause 8.7.2.7.

Table 93 — vrml97hint values

	scope of the field
	vrml97hint value

	eventIn
	eventIn

	eventOut
	eventOut

	field
	field

	exposedField
	exposedField

Table 94 — type values

	field type
	type value

	SFBool
	Boolean

	MFBool
	Booleans

	SFColor
	Color

	MFColor
	Colors

	SFFloat
	Float

	MFFloat
	Floats

	SFImage
	Image

	MFImage
	Images

	SFInt32
	Integer

	MFInt32
	Integers

	SFNode
	Node

	MFNode
	Nodes

	SFRotation
	Rotation

	MFRotation
	Rotations

	SFString
	String

	MFString
	Strings

	SFTime
	Time

	MFTime
	Time

	SFVec2f
	Vector2

	MFVec2f
	Vector2Array

	SFVec3f
	Vector3

	MFVec3f
	Vector3Array

Table 95 — typeToAttributeName correspondance

	type of field
	name of value attribute

	SFBool
	booleanValue

	MFBool
	booleanArrayValue

	SFColor
	colorValue

	MFColor
	colorArrayValue

	SFFloat
	floatValue

	MFFloat
	floatArrayValue

	SFImage
	imageValue

	MFImage
	imageArrayValue

	SFInt32
	integerValue

	MFInt32
	integerArrayValue

	SFNode
	nodeValue

	MFNode
	nodeArrayValue

	SFRotation
	rotationValue

	MFRotation
	rotationArrayValue

	SFString
	stringValue

	MFString
	stringArrayValue

	SFTime
	timeValue

	MFTime
	timeArrayValue

	SFVec2f
	vector2Value

	MFVec2f
	vector2ArrayValue

	SFVec3f
	vector3Value

	MFVec3f
	vector3ArrayValue

9.2.5.4 fieldValue

The element <fieldValue>, subelement of <ProtoInstance> allows the definition of the PROTO instance interface.

<fieldValue name=”” [typedvalue]=””>
 …// SFNode or MFNode value here

</fieldValue>

Name is the name of the field, type is an enumerated value from Table 94, vrml97hint is an enumerated value from Table 93. If the field has a default value which is neither a node or a set of nodes, the value is specified as an attribute. The name of the attribute is specific to the type of the field, as shown in Table 95. This type-specific attribute name allows efficient type-checking of the value with XML Schema.

9.2.5.5 IS

Inside a PROTO declaration, any value can be ISed to one of the fields in the PROTO interface. This IS link is specified with an <IS> element, which can only appear inside <ProtoDeclare>, but may appear in any node, <field> and <fieldValue> element. The <IS> element is a wrapper for one or more IS links. Each IS link is specified through a <connect> element:

<IS>
 <connect nodeField=”” protoField=””/> // as many as needed

</IS>

nodeField refers to the name of the field of the parent node element. protoField refers to the name of the field of one of the parent proto declaration interface which should be connected to nodeField. A node field can be connected to many proto fields. A proto field can be connected to many node fields.

9.2.5.6 Example of PROTO in XMT-A

<ProtoDeclare name="P0" protoID="0">

 <field name="field0" type="Vector2" vrml97Hint="field" vector2Value="0.0 0.0"/>

 <Transform2D>

 <IS>

 <connect nodeField="translation" protoField="field0"/>

 </IS>

 <children>

 <Shape>

 <geometry>

 <Rectangle size="0.2 0.2"/>

 </geometry>

 </Shape>

 </children>

 </Transform2D>

</ProtoDeclare>

<ProtoInstance name="P0">

 <fieldValue name="field0" vector2Value="0.0 -0.6"/>

</ProtoInstance>

9.2.6 XMT-A Timing

The XMT-A uses one of the SMIL time containers, the <par> element, to group multiple commands.

9.2.6.1 <par>

The XMT-A allows only the “begin” attribute on the <par> element to specify the execution (begin) time of commands. Moreover <par> elements can also contain other <par> elements and for the nested <par> elements their begin time is relative to the parent time container. There is an implied top level <par begin=”0.0”>. The <par> elements need not appear ordered in time, indeed nesting of <par> elements will often preclude this. Begin times shall be >= 0.0 seconds. The attribute begin has an SFTime type to maintain uniformity with other time fields, in MPEG-4 node elements such as <TimeSensor> and <MovieTexture>, within the scene.

The <par> element may contain

<par>

BIFS Commands

BIFS Anim

Object Descriptor Commands

IPMP Messages

OCI Events

MPEG-J Stream Headers

For a given BIFS stream, all BIFS commands, to be executed at a given time will be coded into a single CommandFrame (and hence a single AU) in the order the commands appear in the document.

All OD commands, for a given OD stream, to be executed at a given time will be coded into a single AU in the order the commands appear in the document.

All IPMP messages, for a given IPMP elementary stream, to be executed at a given time will be coded into a single AU in the order the messages appear in the document.

All OCI Events messages, for a given OCI elementary stream, to be executed at a given time will be coded into a single AU in the order the events appear in the document.

<par begin=“” atES_ID=””>
 <!-- Any number of commands/messages/events and/or <par> elements -->
</par>

The atES_ID attribute indicates the destination of the commands and descriptors which are children of the par element. It specifies a symbol which is the ID of the elementary stream into which the commands and descriptors should be encoded. In the case of conflicting atES_ID values, the attribute closest to the command or descriptor takes precedence.

9.2.7 XMT-A Representation of BIFS Commands
9.2.7.1 Overview

This section provides a detailed description of the XMT-A encoding of the MPEG-4 BIFS commands. Commands in BIFS are timed using <par> element construct.

There are three basic BIFS commands in XMT-A: <Insert>, <Delete>, <Replace>. The MPEG-4 ReplaceScene binary command is captured in XMT-A with <Replace> <Scene>… </Scene></Replace>. <Insert>, <Delete> and <Replace> commands can be used on nodes, values in multiple value fields, or routes. In addition <Replace> can act on a whole multiple value field. <Replace> <Scene> replaces the entire scene – both nodes and routes.
9.2.7.2 <Insert>

Insert command provides for node, Indexed value and Route insertion. For Insert atField defaults to value ‘children’ and position defaults to value ‘END’ making it easy to add a Node to a group.

<Insert atES_ID=”” atNode="" atRoute=””
 atField="children" position="BEGIN | END | n" value=””>
 <!-- Nodes (including sub-trees) may go here and/or Routes-->
</Insert>

The atES_ID attribute indicates the destination of the command. It specifies a symbol which is the ID of the elementary stream into which the command should be encoded. In the case of conflicting atES_ID values, the attribute closest to the command or descriptor takes precedence.

Whenever multiple nodes are inserted, the default for each position is END. If the position attribute contains more values than there are nodes or values to be inserted, then the extra position values are ignored. If the position attribute is not present or contains not enough values, the remaining nodes are inserted at END by default.
9.2.7.2.1 Insert Node

This is the Insert Node version of the Insert command. When atField=”children” (defaulted if attribute not present) the command will be encoded as BIFS Update for Insert Node by nodeID. When atField is any other MFNode field then it will be encoded as BIFS Update for Insert by IndexedValue.

<Insert atNode="" atField="children" position="BEGIN | END | n">
 <!-- Node (tree) goes here -->
</Insert>

The following are examples of Insert used to insert a node
Inserts a new sub-tree at the END of a group
<Insert atNode="MyGroup">
 <Group>
 <children>...</children>
 </Group>
</Insert>

the following is equivalent to above example (atField="children" is default)
<Insert atNode="MyGroup" atField="children">
 <Group>
 <children>...</children>
 </Group>
</Insert>

Inserts a new shape at the END of a group (geometry and appearance content omitted for clarity)

<Insert atNode="MyGroup">
 <Shape>
 <geometry>...</geometry>
 <appearance><Appearance DEF="MyShapeStyle">...</appearance>
 </Shape>
</Insert>

Inserts 2 new shapes, one at BEGIN and other at the END of a group
<Insert atNode="MyGroup" position="BEGIN, END">
 <Shape DEF="MyRect">
 <geometry>...</geometry>
 <appearance>...</appearance>
 </Shape>
 <Shape USE="MyRect"/>
</Insert>

9.2.7.2.2 Insert Indexed Value

This is the InsertIndexedValue version of Insert for simple non-Node fields
<Insert atNode="" atField="" position="BEGIN | END | n" value=””/>
The following are examples of Insert used to insert simple field values (non-Node values)
Inserts a new colorIndex value 6 at the END of the colorIndex field

<Insert atNode="MyIndexedLineSet2D" atField="colorIndex" value="6" />

Inserts new colorIndex values 3,3,5,4,2 at positions 2,7,BEGIN, END and 4. Note that position 7 is the new position after the first value has been inserted at position 2 etc. Inserts are done in the order listed The following command will be encoded as 5 BIFS Update commands for IndexedValue field insertion)
<Insert atNode="MyIndexedLineSet2D" atField="colorIndex"
 position="2 7 BEGIN END 4"
 value="3 3 5 4 2" />

9.2.7.2.3 Insert Route

This is InsertRoute version of Insert

<Insert>
 <ROUTE fromNode="" fromField="" toNode="" toField=""/>
</Insert>

The following are examples of Insert used to insert a Route

Inserts a ROUTE without an ID
<Insert>
 <ROUTE fromNode="WhiteRect" fromField="emissiveColor"
 toNode="ACircle" toField="emissiveColor"/>
</Insert>
Inserts a ROUTE with an ID

 <Insert>
 <ROUTE DEF="myROUTE" fromNode="WhiteRect" fromField="emissiveColor"
 toNode="ACircle" toField="emissiveColor"/>
 </Insert>

9.2.7.3 <Delete>

Delete command provides for node, Indexed value and Route deletion. For Delete atField defaults to value ‘children’ but position has no default.

<Delete atES_ID=”” atRoute=”” atNode=""
 atField="children" position="BEGIN | END | n"/>

Attributes atNode and atRoute are exclusive.

The atES_ID attribute indicates the destination of the command. It specifies a symbol which is the ID of the elementary stream into which the command should be encoded. In the case of conflicting atES_ID values, the attribute closest to the command or descriptor takes precedence.

9.2.7.3.1 Delete Node

This is the Delete Node version of the Delete command.
<Delete atNode=””/>

The following is an example of Delete used to delete a node
Deletes a DEF’d node
<Delete atNode="MyIndexedLineSet2D"/>

9.2.7.3.2 Delete Indexed Value

This is the DeleteIndexedValue version of Delete for Nodes and simple non-Node fields
<Delete atNode="" atField="" position="BEGIN | END | n"/>

The following are examples of Delete used to delete both simple field values (non-Node values) and Nodes
Delete colorIndex value at the END of the colorIndex field

<Delete atNode="MyIndexedLineSet2D" atField="colorIndex" position=”END”/>
Deletes colorIndex values at positions 2,7,BEGIN, END and 4. Note that position 7 is the new position after the first value has been deleted at position 2 etc. Deletes are done in the order listed.

<Delete atNode="MyIndexedLineSet2D" atField="colorIndex"
 position="2 7 BEGIN END 4"/>
Deletes 2 colors (nodes), one at pos 7 and one at the END of the color field.

<Delete atNode="MyIndexedLineSet2D" atField="color" position="7 END"/>
9.2.7.3.3 Delete Route

This is the Delete Route version of Delete
<Delete atRoute=””/>

The following are examples of Delete used to delete Routes
Deletes a named Route

<Delete atRoute=”BlueRoute”/>

9.2.7.4 <Replace>

Replace command provides for node, field, Indexed value, Route and Scene replacement. For Replace neither atField nor position have default values.

<Replace atES_ID=”” atRoute=”” atNode=""
 atField="children" position="BEGIN | END | n" value=””>
 <!-- Nodes (including sub-trees) may go here and/or Routes -->
</Replace>

Attributes atNode and atRoute are exclusive.

The atES_ID attribute indicates the destination of the command. It specifies a symbol which is the ID of the elementary stream into which the command should be encoded. In the case of conflicting atES_ID values, the attribute closest to the command or descriptor takes precedence.

Whenever multiple nodes are replaced, the default for each position is END. If the position attribute contains more values than there are nodes or values replaced, then the extra position values are ignored. If the position attribute is not present or contains not enough values, the remaining nodes or values are replaced at END by default.

9.2.7.4.1 Replace Node

This is the Replace Node version of the Replace command.
<Replace atNode=”” />

The following are examples of Replace used to replace a node

Replaces existing MyGroup node with new sub-tree

<Replace atNode="MyGroup">
 <Group>
 <children>...</children>
 </Group>
</Replace>

Replaces existing shape MyRect node with new one MyCircle

<Replace atNode="MyRect">
 <Shape DEF="MyCircle">
 <geometry>...</geometry>
 <appearance><Appearance DEF="MyShapeStyle">...</appearance>
 </Shape>
</Replace>

Note: Unlike Insert it makes no sense to allow multiple specification of Nodes here as they would all replace the same target.

9.2.7.4.2 Replace Field

This is the Replace Field version of the Replace command. When position attribute is not specified the entire field is to be replaced.
<Replace atNode=”” atField=” value=””>
 <!—A Node may go here -->
</Replace>

The following are examples of Replace used to replace a node

Replaces colorIndex (replace entire MF field)

<Replace atNode="MyIndexedLineSet2D" atField="colorIndex"
 value= "6 5 6 7 7 2 1" />

 Replaces emissiveColor field (replace SF field)

<Replace atNode="MyMaterial" atField="emissiveColor"
 value= "1.0 0.5 0.2" />

Replaces color field (replace SF field or type SFNode)

<Replace atNode="MyIndexedFaceSet" atField="color">
 <Color color="1.0 0.5 0.9 0.8 0.5 0.1 0.5 0.5 0.5"
</Replace>
When the field is the buffer field of a conditional node, the value attribute is not specified and the new set of commands is indicated in the children of the Replace command.
Note: Specifying multiple field positions makes no sense (similar comment at end of Replace Node above)
9.2.7.4.3 Replace Indexed Value

This is the Replace Indexed Value version of the Replace command. Position attribute is specified and hence an indexed value replacement in an MFField is replaced.
<Replace atNode=”” atField=” position="BEGIN | END | n" value=””/>
 <!-- Nodes may go here -->
</Replace>

The following are examples of Replace used to replace an indexed value

Replaces colorIndex value at the END of the colorIndex field to 6

<Replace atNode="MyIndexedLineSet2D" atField="colorIndex" position=”END”
 value=”6” />

Replaces colorIndex values 3,3,5,4,2 at positions 2,7,BEGIN, END and 4. Replaces are done in the order listed.

<Replace atNode="MyIndexedLineSet2D" atField="colorIndex"
 position=”2 7 BEGIN END 4"
 value=”3 3 5 4 2” />

This is still a replace indexed value (encodes to 5 IndexedValue BIFS Replace commands) even if the field had five elements and this is replacing them all. To specify a complete field replacement the position should be omitted and then a single BIFS Replace Field command would be encoded.

<Replace atNode="MyIndexedLineSet2D" atField="colorIndex"
 position=”0 1 2 3 4"
 value=”3 3 5 4 2” />

Replaces existing node in MySwitch choice field at position 5 with new one

<Replace atNode="MySwitch" atField=”choice” position=”5”>
 <Shape>
 <geometry><Circle radius=”100”/></geometry>
 <appearance>...</appearance>
 </Shape>
</Replace>

Replaces existing node in MyGroup choice field at position 3 and 7 with new ones

<Replace atNode="MyGroup" atField=”children” position=”3, 7”>
 <Shape>
 <geometry><Circle radius=”10”/></geometry>
 <appearance>...</appearance>
 </Shape>
 <Shape>
 <geometry><Rectangle width=”10” heihgt=”70”/></geometry>
 <appearance>...</appearance>
 </Shape>
</Replace>

9.2.7.4.4 Replace Route

This is the Replace Route version of the Replace command.
<Replace atRoute=””>
 <ROUTE fromNode="" fromField="" toNode="" toField=""/>
</Replace>

The following are examples of Replace used to replace an indexed value

Replaces existing route ‘ColorRoute” with a new route fromNode/Field to Node/Field.

 <Replace atRoute=”ColorRoute”>
 <ROUTE fromNode="WhiteRect" fromField="emissiveColor"
 toNode="ACircle" toField="emissiveColor"/>
 </Replace>

9.2.7.4.5 Replace Scene

This is the Replace Scene version of the Replace command.
<Replace>
 <Scene useNames=”true|false”>
 <!-- Nodes followed by -->

 <!-- ROUTEs go here -->
 </Scene>
</Replace>

The following are examples of Replace used to replace a scene

Replaces Scene.

<Replace>
 <Scene>
 <Group>
 <children>
 <Shape DEF="MyRect">
 <geometry>...</geometry>
 <appearance>...</appearance>
 </Shape>
 <Shape USE="MyRect"/>
 </children>
 </Group>
 <ROUTE DEF="MatColorRoute"
 fromNode="Mat1" fromField="emissiveColor"
 toNode="Mat2" toField=emissiveCOlor" />
 <ROUTE fromNode="LineProp1" fromField="lineColor"
 toNode="LineProp2" toField=lineColor" />
 </Scene>
</Replace>

ROUTES may appear only appear after nodes in a list immediately before the closing </Scene>. When encoded to MPEG-4 the ROUTES shall be included in the ReplaceScene in the order they appear in the document.

Note that MPEG-4 requires the top-level node to be Group, OrderedGroup, Layer2D or Layer3D. The author should ensure that the outermost node in a replace scene conforms to this requirement.
Extended Replace
This is the Extended Replace version of the Replace command.
<Replace atNode=”” atField=” position="BEGIN | END | n" value=”” atIndexNode=”” atIndexField=”” fromNode=”” fromField=”” atChildField=””>
 <!-- Nodes or BIFS commands may go here -->
</Replace>
If position is specified, this is an indexed replacement and the atIndexNode and atIndexField attributes shall not be present.

If atIndexNode and atIndexField are specified, this is an indexed replacement and the position attribute shall not be present. The index is the value of the atIndexField field of the atIndexNode node, as specified in 8.6.13.
It is an error to specify only one of atIndexNode and atIndexField. It is an error to specify an indexed replacement on an SFField.

If fromField and fromNode are specified, the replaced value is not declared but instead copied from the indicated node field. It is an error to specify only one of fromNode and fromField. It is an error to specify both fromNode/fromField and an explicit replacement value (either indicated in the value attribute or in the children of the command).

If atChildField is specified, the replacement occurs on the atChildField of the target field. The atChildField attribute can only be used in the following case:

· The command is a non-indexed field replacement, and the target field indicated by atField is of type SFNode.
· The command is an indexed field replacement, and the target field indicated by atField is of type MFNode.
If atIndexNode and atIndexField are specified, this is an indexed replacement and the position attribute shall not be present. The index is the value of the atIndexField field of the atIndexNode node, as specified in 8.6.13. It is an error to specify only one of atIndexNode and atIndexField.

9.2.7.4.6 Replace from external data source
This is the Replace from external data source version of the Replace command.
<Replace atNode=”” atField=” position="BEGIN | END | n" fromExternalAddress=””>

If the replaced field is of type SFField, the position attribute shall not be specified. If the replaced field is of type MFField, the position attribute shall be specified.

The fromExternalAddress field indicates the source of the data to be evaluated during the replacement.

9.2.7.4.7 Replace to external data source
This is the Replace to external data source version of the Replace command.
<Replace atNode=”” atField=” position="BEGIN | END | n" toExternalAddress=””>

If the replaced field is of type SFField, the position attribute shall not be specified. If the replaced field is of type MFField, the position attribute shall be specified.

The toExternalAddress field indicates the destination of the data to be written during the replacement.
9.2.8 XMT-A Representation of Object Descriptors

9.2.8.1 Overview

Object descriptor is an MPEG-4 concept described in the Systems specification. The purpose of the object descriptors is to identify and describe elementary streams and to associate them appropriately to an audio-visual scene description. Object descriptors serve to gain access to ISO/IEC 14496 content.

An object descriptor is a collection of one or more elementary stream descriptors that provide the configuration and other information for the streams that relate to either an audio-visual object or a scene description. Object descriptors are themselves conveyed in elementary streams. Each object descriptor is assigned an identifier (object descriptor ID), which is unique within a defined name scope. This identifier is used to associate audio-visual objects in the scene description with a particular object descriptor, and thus the elementary streams related to that particular object.

Elementary stream descriptors include information about the source of the stream data, in the form of a unique numeric identifier (the elementary stream ID) or a URL pointing to a remote source for the stream. Elementary stream descriptors also include information about the encoding format, configuration information for the decoding process and the sync layer packetization, as well as quality of service requirements for the transmission of the stream and intellectual property identification. Dependencies between streams can also be signaled within the elementary stream descriptors. This functionality may be used, for example, in scalable audio or visual object representations to indicate the logical dependency of a stream containing enhancement information, to a stream containing the base information. It can also be used to describe alternative representations for the same content (e.g. the same speech content in various languages).

To convert MPEG-4 descriptors to an XML representation the following guidelines were followed. The descriptor is first converted to an element with the same name. Then for simple fields (e.g bit(5), bit(8) etc) these are converted to attributes taking the value of the simple field, unless they are part of an if construct. In the latter case the field is converted to an attribute of an element having the name of the if condition flag. For arrays of descriptors e.g ES_Descriptor esDescr[1..255], these have been converted to an element having the name as the array and containing descriptors of the given type.

9.2.8.2 <Object Descriptor>

<ObjectDescriptor
 objectDescriptorID=””
 binaryID=””>
 <URL URLstring=“”>
 <Descr>
 <esDescr>...</esDescr>
 <ociDescr>...</ociDescr>
 <ipmpDescrPtr>...</ipmpDescrPtr>
 </Descr>
 <extDescr>...</extDescr>
</ObjectDescriptor>

9.2.8.2.1 Description

The <ObjectDescriptor> element is the XMT-A representation of the ObjectDescriptor as described in subclause 7.2.6.3, ISO/IEC 14496-1.

The XMT-A Schema allows either the <URL> element or the <Descr> element and corresponds to the if (URL_Flag) construct. The <URL> element contains the URLstring and if present the descriptor will be binary encoded with the URL_Flag field bit set to 1 and the URLlength attribute set to the length of the URLstring. If the <Descr> element is present then URL_Flag field bit will be encoded as 0.

If the form of the url attribute in the media element is url=”"od:MyOdIdentifier"”, ie. the url starts with od: or od:// then the url shall be coded as an Odid otherwise it shall be coded as a string (urlValue). The form as above assumes the SF/MFString representation. The part after od: or od:// is in fact the objectDescriptorID (its id) of an Object Descriptor.

Example:

<AudioSource url="od://PanelAudio"/>

<ObjectDescriptor objectDescriptorID="PanelAudio">
 . . .
</ObjectDescriptor>

9.2.8.3 <InitialObjectDescriptor>

<InitialObjectDescriptor
 objectDescriptorID=””
 binaryID=””>
 <URL URLstring=“”/>
 <Profiles
 ODProfileLevelIndication=”None”
 sceneProfileLevelIndication=”Simple2D_L1”
 audioProfileLevelIndication=”Unspecified”
 visualProfileLevelIndication=”254”
 graphicsProfileLevelIndication=”254”

 includeInlineProfileLevelFlag=”true|false”/>

 <Descr>
 <esDescr>...</esDescr>
 <ociDescr>...</ociDescr>
 <ipmpDescrPtr>...</ipmpDescrPtr>
 </Descr>
 <extDescr>...</extDescr>
</InitialObjectDescriptor>

9.2.8.3.1 Description

The <InitialObjectDescriptor> element is the XMT-A representation of the InitialObjectDescriptor as described in subclause 7.2.6.4, ISO/IEC 14496-1.

The InitialObjectDescriptor is a variation of the ObjectDescriptor specified in the previous subclause that allows to signal profile and level information for the content referred by it. It shall be used to gain initial access to ISO/IEC 14496 content.

The XMT-A Schema allows either the <URL> element or the <ProfDescr> element and corresponds to the if (URL_Flag) construct. The <URL> element contains the URLstring and if present the descriptor will be binary encoded with the URL_Flag field bit set to 1 and the URLlength attribute set to the length of the URLstring. If the <ProfDescr> element is present then URL_Flag field bit will be encoded as 0.

The attributes ODProfileLevelIndication, sceneProfileLevelIndication, audioProfileLevelIndication, visualProfileLevelIndication and graphicsProfileLevelIndication take either a numeric value from 0 to 255 inclusive or a string corresponding to the enumerated values as follows:

	ODProfileLevelIndication

	Unspecified
	254

	None
	255

	sceneProfileLevelIndication

	Simple2D_L1
	1

	Simple2D_L2
	2

	Basic2D_L1
	3

	Core2D_L1
	4

	Core2D_L2
	5

	Main2D_L1
	6

	Main2D_L2
	7

	Main2D_L3
	8

	Advanced2D_L1
	9

	Advanced2D_L1
	10

	Advanced2D_L3
	11

	Unspecified
	254

	None
	255

	audioProfileLevelIndication

	Main_L1
	1

	Main_L2
	2

	Main_L3
	3

	Main_L4
	4

	Scalable_L1
	5

	Scalable_L2
	6

	Scalable_L3
	7

	Scalable_L4
	8

	Speech_L1
	9

	Speech_L2
	10

	Synthesis_L1
	11

	Synthesis_L2
	12

	Synthesis_L3
	13

	High_Quality_Audio_L1
	14

	High_Quality_Audio_L2
	15

	High_Quality_Audio_L3
	16

	High_Quality_Audio_L4
	17

	High_Quality_Audio_L5
	18

	High_Quality_Audio_L6
	19

	High_Quality_Audio_L7
	20

	High_Quality_Audio_L8
	21

	Low_Delay_Audio_L1
	22

	Low_Delay_Audio_L2
	23

	Low_Delay_Audio_L3
	24

	Low_Delay_Audio_L4
	25

	Low_Delay_Audio_L5
	26

	Low_Delay_Audio_L6
	27

	Low_Delay_Audio_L7
	28

	Low_Delay_Audio_L8
	29

	Natural_Audio_L1
	30

	Natural_Audio_L2
	31

	Natural_Audio_L3
	32

	Natural_Audio_L4
	33

	Mobile_Audio_Internetworking_L1
	34

	Mobile_Audio_Internetworking_L2
	35

	Mobile_Audio_Internetworking_L3
	36

	Mobile_Audio_Internetworking_L4
	37

	Mobile_Audio_Internetworking_L5
	38

	Mobile_Audio_Internetworking_L6
	39

	Unspecified
	254

	None
	255

	VisualProfileLevelIndication

	Simple_L3
	1

	Simple_L2
	2

	Simple_L1
	3

	Simple_Scalable_L2
	4

	Simple_Scalable_L1
	5

	Core_L2
	6

	Core_L1
	7

	Main_L4
	8

	Main_L3
	9

	Main_L2
	10

	N-Bit_L2
	11

	Hybrid_L2
	12

	Hybrid_L1
	13

	Basic_Animated_Texture_L2
	14

	Basic_Animated_Texture_L1
	15

	Scalable_Texture_L3
	16

	Scalable_Texture_L2
	17

	Scalable_Texture_L1
	18

	Simple_Face_Animation_L2
	19

	Simple_Face_Animation_L1
	20

	Simple_FBA_L2
	21

	Simple_FBA_L1
	22

	Basic_Animated_Texture_L2
	23

	Basic_Animated_Texture_L1
	24

	Hybrid_Profile_L2
	25

	Hybrid_Profile_L1
	26

	Advanced_Real_Time_Simple_L4
	27

	Advanced_Real_Time_Simple_L3
	28

	Advanced_Real_Time_Simple_L2
	29

	Advanced_Real_Time_Simple_L1
	30

	Core_Scalable_L3
	31

	Core_Scalable_L2
	32

	Core_Scalable_L1
	33

	Advanced_Coding_Efficiency_L4
	34

	Advanced_Coding_Efficiency_L3
	35

	Advanced_Coding_Efficiency_L2
	36

	Advanced_Coding_Efficiency_L1
	37

	Advance_Core_Profile_L2
	38

	Advance_Core_Profile_L1
	39

	Advanced_Scalable_Texture_L3
	40

	Advanced_Scalable_Texture_L2
	41

	Advanced_Scalable_Texture_L1
	42

	Unspecified
	254

	None
	255

	GraphicsProfileLevelIndication

	Simple2D_L1
	1

	Simple_2D_Text_L1
	2

	Simple_2D_Text_L2
	3

	Core_2D_L1
	4

	Core_2D_L2
	5

	Advanced_2D_L1
	6

	Advanced_2D_L2
	7

	Unspecified
	254

	None
	255

9.2.8.4 <ES_Descriptor>

<ES_Descriptor
 ES_ID=””
 binaryID=””
 streamPriority=””
 dependsOn_ES_ID=””
 OCR_ES_ID=””>
 <URL URLstring=""/>
 <StreamSource>...</StreamSource>
 <decConfigDescr>...</decConfigDescr>
 <slConfigDescr>...</slConfigDescr>
 <ipiPtr>...</ipiPtr>
 <ipIDS>...</ipIDS>
 <ipmpDescrPtr>...</ipmpDescrPtr>
 <langDescr>...</langDescr>
 <qosDescr>...</qosDescr>
 <regDescr>...</regDescr>
 <extDescr>...</extDescr>
</ES_Descriptor>

9.2.8.4.1 Description

The <ES_Descriptor> element is the XMT-A representation of the ES_Descriptor as described in subclause 7.2.6.5, ISO/IEC 14496-1. In addition a <StreamSource> element is included to identify the source media to be used for the stream. See 9.2.12 for further information on associating source data with elementary streams.

The <URL> element contains the URLstring and if present the descriptor will be binary encoded with the URL_Flag bit set to 1 and the URLlength attribute set to the length of the URLstring.

The <streamDependence> contains the attribute dependsOn_ES_ID and if the element is present then the binary encoding will have the streamDependenceFlag field bit set to 1 with the value of the dependsOn_ES_ID coded.

The <OCRstream> contains the attribute OCR_ES_ID and if the element is present then the binary encoding will have the OCRstreamFlag field bit set to 1 with the value of the OCR_ES_ID coded.

9.2.8.5 <DecoderConfigDescriptor>

<DecoderConfigDescriptor
 objectTypeIndication=”0”
 streamType=””
 upstream=”false”
 bufferSizeDB=”0”
 maxBitrate=”0”
 avgBitrate=”0”>
 <decSpecificInfo>...</decSpecificInfo>
 <profileLevelIndicationIndexDescr>...</profileLevelIndicationIndexDescr>
</DecoderConfigDescriptor>

9.2.8.5.1 Description

The <DecoderConfigDescriptor> element is the XMT-A representation of the DecoderConfigDescriptor as described in subclause 7.2.6.6, ISO/IEC 14496-1.

The attribute objectTypeIndication can take either a numeric value from 0 to 255 inclusive or a string corresponding to the enumerated values as follows:

	objectTypeIndication

	MPEG4Systems1
	1

	MPEG4Systems2
	2

	MPEG4Visual
	32

	MPEG4Audio
	64

	MPEG2VisualSimple
	96

	MPEG2VisualMain
	97

	MPEG2VisualSNR
	98

	MPEG2VisualSpatial
	99

	MPEG2VisualHigh
	100

	MPEG2Visual422
	101

	MPEG2AudioMain
	102

	MPEG2AudioLowComplexity
	103

	MPEG2AudioScaleableSamplingRate
	104

	MPEG2AudioPart3
	105

	MPEG1Visual
	106

	MPEG1Audio
	107

	JPEG
	108

	Unspecified
	255

The attribute streamType can take either a numeric value from 0 to 63 inclusive or a string corresponding to the enumerated values as follows:

	streamType

	ObjectDescriptor
	1

	ClockReference
	2

	SceneDescription
	3

	Visual
	4

	Audio
	5

	MPEG7
	6

	IPMP
	7

	OCI
	8

	MPEGJ
	9

The attributes bufferSizeDB, maxBitrate and avgBitrate may directly specify values or allow values to be automatically supplied when set to the value “auto”. In the latter case the XMT-A shall determine appropriate values based on the media for that Elementary stream.

9.2.8.6 Decoder Specific Info

The decoder specific information constitutes an opaque container with information for a specific media decoder. In most cases the decoder specific info for a media stream can automatically be created as part of the encoding process, or may already exist in the correct format as a header information with the media data or as a separate entity.

In addition to a the explicit forms of DecoderSpecificInfo below, for example <BIFSConfig>, the following form is a generic DecoderSpecificInfo element that allows all other decoder specific info descriptors, including custom user private forms, to be encoded.

9.2.8.6.1 <DecoderSpecificInfo>

<DecoderSpecificInfo
 type=”auto” | “xml”
 src=””>
 <param name=”” value=””>
 <param name=”” value=””>
 …
<DecoderSpecificInfo/>

9.2.8.6.1.1 Description

The <DecoderSpecificInfo> element is the XMT-A representation of a generic form of DecoderSpecificInfo as described in subclause 7.2.6.7, ISO/IEC 14496-1.
The attribute type=”” allows either the DecoderSpecificInfo to be automatically generated by the XMT-A encoding tool(s) type=”auto”, or allows values to be given via xml, type=”xml”, in one of two ways using src=”” or param name/value pairs.. Using src=”” allows an external source containing information for the DecoderSpecificInfo to be identified. Using a list of name value pairs allows individual values to be given. If both src and name/value pairs are given the name/value pair will override any equivalent value that can be obtained from the src.

In order to allow the specification and easy interchange of binary data, the following two standard name/value pairs are defined:

name = “hexBytes”, value is a list of hexadecimal byte value, e.g. “56;7A;0;25"

name = “bytes”, value is a list of mixed decimal and hexadecimal byte values, e.g. “25; 0x56; 7; 0xA”. Where all hexadeximal bytes must be prefixed with 0x.
In general it is expected that type=”auto” will most commonly be specified and so no further standardized set of name/value pairs has been defined.

As an example, for a media stream that conveys a Jpeg image the required DecoderSpecificInfo is the JPEGDecoderConfig as described in subclause 7.2.6.7.1, ISO/IEC 14496-1. XMT-A will create the required info when a <DecoderSpecificInfo type=”auto”/> element is placed within the <DecoderConfigDescriptor> <decSpecificInfo> element. The objectTypeIndication therein and streamType will guide the XMT-A to generate the correct DecoderSpecificInfo.

9.2.8.6.2 <BIFSConfig> and <BIFSv2Config>

<BIFSConfig
 nodeIDbits=“10”
 routeIDbits=“10”>
 <commandStream
 pixelMetric=”true|false” >
 <size
 pixelWidth=“0”
 pixelHeight=“0” />
 </commandStream>
 <AnimationMask
 randomAccess=“true|false”>
 ...
 </AnimationMask>
</BIFSConfig>

<BIFSv2Config
 use3DmeshCoding=”false|true”
 usePredictiveMFField=“false|true”
 nodeIDbits=“10”
 routeIDbits=“10”
 protoIDbits=“10”>
 <commandStream
 pixelMetric=”true|false” >
 <size
 pixelWidth=“0”
 pixelHeight=“0” />
 </commandStream>
 <AnimationMask
 randomAccess=“true|false”>
 ...
 </AnimationMask>
</BIFSv2Config>

9.2.8.6.2.1 Description

The <BIFSConfig> and <BIFSv2Config> elements are the XMT-A representation of the BIFSConfig and BIFSv2Config as described in 8.5.

The attributes nodeIDbits, routeIDbits and protoIDbits may either be explicitly coded, in which case the number of bits specified must be used to encode the respective IDs, or any of these attributes may be given the value “auto”. In the case “auto” is specified the XMT-A tool shall determine the number of bits that is sufficient to accommodate the number of IDs required and set the attribute value accordingly.

The <BIFSConfig> and <BIFSv2Config> elements can contain either a <commandStream> or an <AnimationMask>.

The <commandStream> contains the attribute pixelMetric and if the element is present then the binary encoding will have the isCommandStream field bit set to 1. The <size> contains the attributes pixelWidth and pixelHeight and if the element is present then the binary encoding will have the hasSize field bit set to 1.

The <AnimationMask> described a BIFS-Anim stream that animates the scene. The “randomAccess” attribute is false by default.

9.2.8.6.3 OCI Decoder Configuration

This is the decoder specific info for OCI streams.

<DecoderSpecificInfo>
 <param name=”versionLabel” value=”1” />
</DecoderSpecificInfo>

9.2.8.6.3.1 Description

This is the XMT-A representation of the OCIDecoderConfiguration as described in subclause 7.2.4.2.4, ISO/IEC 14496-1. The name/value pair may be either be explicitly coded as above or the OCI Decoder Configuration will also be created if type=”auto” is specified instead.

9.2.8.6.4 <AFXConfigType>

<complexType name="AFXConfigType">

<choice>

<element name="A3DMCDecoderSpecific"/>

<element name="CoordInterpCompDecoderSpecific"/>

<element name="OriInterpCompDecoderSpecific"/>

<element name="PosInterpCompDecoderSpecific"/>

<element ref="xmta:MeshGridDecoderSpecific"/>

<element ref="xmta:WMDecoderSpecific"/>

<element name="OctreeImageDecoderSpecific"/>

<element name="BBADecoderSpecific"/>

<element name="PointTextureCompDecoderSpecific"/>

</choice>

</complexType>

9.2.8.6.4.1 Description

AFXConfigType is the decoder specific information which is needed to decode 3DMC, Interpolator Compression, and MPEG-4 AFX related bitsreams in the BitWrapper node.

9.2.8.7 <SLConfigDescriptor>

<SLConfigDescriptor>
 <predefined value=“0”>
 <custom
 useAccessUnitStartFlag=“true | false”
 useAccessUnitEndFlag=“true | false”
 useRandomAccessPointFlag=“true | false”
 hasRandomAccessUnitsOnlyFlag=“true | false”
 usePaddingFlag=“true | false”
 useIdleFlag=“true | false”
 timeStampResolution=“”
 OCRResolution=“”
 timeStampLength=“”
 OCRLength=“”
 AU_Length=“”
 instantBitrateLength=“”
 degradationPriorityLength=“”
 AU_seqNumLength=“”
 packetSeqNumLength=“16”>

 <duration timescale=“0”
 accessUnitDuration=“0”
 compositionUnitDuration=“0”/>

 <noUseTimeStamps startDecodingTimeStamp=“0”
 startCompositionTimeStamp=“0”/>

 </custom>

</SLConfigDescriptor>

9.2.8.7.1 Description

The <SLConfigDescriptor> element is the XMT-A representation of the SLConfigDescriptor as described in subclause 7.3.2.3, ISO/IEC 14496-1.

9.2.8.8 <ContentIdentificationDescriptor>

<ContentIdentificationDescriptor
 protectedContent=“false”>
 <contentType contentType=””/>
 <contentIdentifier
 contentIdentifierType=””
 contentIdentifier=””/>
</ContentIdentificationDescriptor>

9.2.8.8.1 Description

The < ContentIdentificationDescriptor > element is the XMT-A representation of the ContentIdentificationDescriptor as described in subclause 7.2.6.10, ISO/IEC 14496-1.

The <contentType> contains the attribute contentType and if the element is present then the binary encoding will have the contentTypeFlag field bit set to 1.

The <contentIdentifier> contains the attributes contentIdentifierType and contentIdentifier, and if the element is present then the binary encoding will have the contentIdentifierFlag field bit set to 1.

The attribute contentType can take either a numeric value from 0 to 255 inclusive or a string corresponding to the enumerated values as follows:

	ContentType

	Audio-visual
	0

	Book
	1

	Serial
	2

	Text
	3

	Item
	4

	Contribution
	4

	SheetMusic
	5

	SoundRecording
	6

	MusicVideo
	6

	StillPicture
	7

	MusicalWork
	8

	Others
	255

The attribute contentIdentifierType can take either a numeric value from 0 to 255 inclusive or a string corresponding to the enumerated values as follows:

	contentIdentifierType

	ISAN
	0

	ISBN
	1

	ISSN
	2

	SICI
	3

	BICI
	4

	ISMN
	5

	ISRC
	6

	ISWC-T
	7

	ISWC-L
	8

	SPIFF
	9

	DOI
	10

9.2.8.9 <SupplementaryContentIndentificationDescriptor>

<SupplementaryContentIdentification
 languageCode=“”
 supplContentIdentiferTitle = ""
 supplContentIdentiferValue = ""/>

9.2.8.9.1 Description

The <SupplementaryContentIdentification> element is the XMT-A representation of the SupplementaryContentIdentification as described in subclause 7.2.6.11, ISO/IEC 14496-1.

The languageCode attribute is a three character language code according to specification ISO 639-2:1998.

The supplContentIdentifierTitle attribute is a string (when encoded to binary the required descriptor field supplContentIdentifierTitleLength will be automatically derived from the attribute’s string length).

The supplContentIdentifierValue attribute is a string (when encoded to binary the required descriptor field supplContentIdentifierValueLength will be automatically derived from the attribute’s string length).

9.2.8.10 <IPI_DescrPointer>

<IPI_DescrPointer IPI_ES_Id=“”/>

9.2.8.10.1 Description

The <IPI_DescrPointer> element is the XMT-A representation of the IPI_DescrPointer as described in Subclause 7.2.6.12, ISO/IEC 14496-1.

The attribute IPI_ES_ID is an IDREF to the ES_ID of the elementary stream whose ES_Descriptor contains the IP Information valid for this elementary stream.

9.2.8.11 <IPMP_DescriptorPointer>

<IPMP_DescriptorPointer IPMP_DescriptorID=“”/>

9.2.8.11.1 Description

The <IPMP_DescriptorPointer> element is the XMT-A representation of the IPMP_DescriptorPointer as described in subclause 7.2.6.13, ISO/IEC 14496-1.

The attribute IPMP_DescriptorID is an IDREF to the IPMP_Descriptor.

9.2.8.12 <IPMP_Descriptor>

<IPMP_Descriptor
 IPMP_DescriptorID=“0”
 binaryID=””>
 <IPMPS_URL URLString=””/>
 <IPMPS_data type=”” IPMP_data=””/>
</IPMP_Descriptor>

9.2.8.12.1 Description

The intellectual property management and protection (IPMP) framework for ISO/IEC 14496 content consists of a normative interface that permits an ISO/IEC 14496 terminal to host one or more IPMP Systems. The IPMP interface consists of IPMP elementary streams and IPMP descriptors. IPMP descriptors may also be carried as part of an object descriptor stream.
The IPMP System itself is a non-normative component that provides intellectual property management and protection functions for the terminal. The IPMP System uses the information carried by the IPMP elementary streams and descriptors to make protected ISO/IEC 14496 content available to the terminal. An application may choose not to use an IPMP System, thereby offering no management and protection features.

The <IPMP_Descriptor> element is the XMT-A representation of the IPMP_Descriptor as described in subclause 2.6.14, ISO/IEC 14496-1.

The <IPMPS_URL> element contains the attribute URLString, and if the element is present then the binary encoding will have the IPMPS_Type field set to 0.

The <IPMPS_data> element contains the attributes type and IPMP_data, and if the element is present then the binary encoding will have the IPMPS_Type field set to the value of the type attribute.

9.2.8.13 <QoS_Descriptor>

<QoS_Descriptor>

<predefined value=“1”>

 <qualifiers>...</qualifiers>
 </QoS_Descriptor>

9.2.8.13.1 Description

The QoS descriptor conveys the requirements that the elementary stream has on the transport channel and a description of the traffic that this elementary stream will generate.

The <QoS_Descriptor> element is the XMT-A representation of the QoS_Descriptor as described in subclause 7.2.6.15, ISO/IEC 14496-1.

The <predefined> element contains the attribute value, and if the element is present then the binary encoding will have the predefined field set to the value if the value attribute. This value can be from 1 to 255 inclusive.

The <qualifiers> element contains a list of custom QoS Qualifiers if a predefined is not used. If the element is present then the binary encoding will automatically have the predefined field set 0.

9.2.8.13.2 QoS Qualifiers

<QoSMaxDelay value=“0”/>

<QoSPrefMaxDelay value=“0”/>

<QoSLossProb value=“0”/>

<QoSMaxGapLoss value=“0”/>

<QoSMaxAUSize value=“0”/>

<QoSAvgAUSize value=“0”/>

<QoSMaxAURate value=“0”/>

The QoS Qualifier elements above are the XMT-A representations of the QoS_Qualifiers as described in subclause 7.2.6.15.3, ISO/IEC 14496-1.

<QoSCustom tag=”” customData=“0”/>

The QoS Qualifier elements QoSCustom is the XMT-A representation of a QoS_Qualifier as described in subclause 7.2.6.15.3, ISO/IEC 14496-1 where the tag can be set to values to create user private qualifiers.

<QoSRebufferingRatio value=“0”/>

The QoS Qualifier element above is the XMT-A representations of the QoS_Qualifier REBUFFERING_RATIO as described in subclause 7.2.6.15, ISO/IEC 14496-1.

9.2.8.14 <ExtensionDescriptor>

<ExtensionDescriptor tag=”” customData=””/>

9.2.8.14.1 Description

This is a general purpose element to define a custom extension descriptor.

The <ExtensionDescriptor> element is the XMT-A representation of the ExtensionDescriptor as described in subclause 7.2.6.16, ISO/IEC 14496-1.

9.2.8.15 <RegistrationDescriptor>

<RegistrationDescriptor
 formatIdentifier=””
 additionalIdentificationInfo=””/>

9.2.8.15.1 Description

The registration descriptor provides a method to uniquely and unambiguously identify formats of private data streams.

The <RegistrationDescriptor> element is the XMT-A representation of the RegistrationDescriptor as described in subclause 7.2.6.17, ISO/IEC 14496-1.

9.2.8.16 Object Content Information Descriptors

Object content information (OCI) descriptors convey descriptive information about audio-visual objects. The main content descriptors are: content classification descriptors, keyword descriptors, rating descriptors, language descriptors, textual descriptors, and descriptors about the creation of the content. OCI descriptors can be included directly in the related object descriptor or elementary stream descriptor or, if it is time variant, it may be carried in an elementary stream by itself.

9.2.8.16.1 <ContentClassificationDescriptor>

<ContentClassificationDescriptor
 classificationEntity=””
 classificationTable=“”
 classificationData=“”/>

9.2.8.16.1.1 Description

The <ContentClassificationDescriptor> element is the XMT-A representation of the ContentClassificationDescriptor as described in subclause 7.2.6.18.3, ISO/IEC 14496-1.
9.2.8.16.2 <KeyWordDescriptor>

<KeyWordDescriptor
 languageCode=“”
 isUTF8=”true|false”
 <keyWord value=””/>
</KeyWordDescriptor>

9.2.8.16.2.1 Description

The <KeyWordDescriptor> element is the XMT-A representation of the KeyWordDescriptor as described in subclause 7.2.6.18.4, ISO/IEC 14496-1.

The descriptor can contain either 0 to 255 keywords. When the isUTF8 boolean is set true the keywords are coded as UTF8 and the isUTF8_string field in the binary coding is set to 1; otherwise the UTF16 coding is used. For each keyword the keyWordLength field will be binary coded automatically according to the encoded string length. Also the keyWordCount field will be binary coded automatically according to the number of keywords present.

9.2.8.16.3 <RatingDescriptor>

<RatingDescriptor
 ratingEntity=“”
 ratingCriteria=“”
 ratingInfo=””/>

9.2.8.16.3.1 Description

The <RatingDescriptor> element is the XMT-A representation of the RatingDescriptor as described in subclause 7.2.6.18.5, ISO/IEC 14496-1.
9.2.8.16.4 <LanguageDescriptor>

<LanguageDescriptor languageCode = “”/>

9.2.8.16.4.1 Description

The <LanguageDescriptor> element is the XMT-A representation of the LanguageDescriptor as described in subclause 7.2.6.18.6, ISO/IEC 14496-1.
9.2.8.16.5 <ShortTextualDescriptor>

<ShortTextualDescriptor
 languageCode=””
 isUTF8=”true|false”>
 <event name=”” text=””/>
</ShortTextualDescriptor>

9.2.8.16.5.1 Description

The <ShortTextualDescriptor> element is the XMT-A representation of the ShortTextualDescriptor as described in Subclause 7.2.6.18.7, ISO/IEC 14496-1.

The descriptor contains an event name/text pair. When the isUTF8 boolean is set true eventName (from name attrubute) and eventText (from text attribute) are coded as UTF8 and the isUTF8_string field in the binary coding is set to 1; otherwise the UTF16 coding is used. The nameLength and textLength fields will be binary coded automatically according to the encoded string lengths.

9.2.8.16.6 <ExpandedTextualDescriptor>

<ExpandedTextualDescriptor
 languageCode=””
 isUTF8=”true|false”
 nonItemText = “”>
 <item description=“” text=””/>
</ExpandedTextualDescriptor>

9.2.8.16.6.1 Description

The <ExpandedTextualDescriptor> element is the XMT-A representation of the ExpandedTextualDescriptor as described in subclause 7.2.6.18.8, ISO/IEC 14496-1.

The descriptor can contain either 0 to 255 items. When the isUTF8 boolean is set true the UTF8 coding is used and the isUTF8_string field in the binary coding is set to 1; otherwise the UTF16 coding is used. For each itemDescription and itemText the itemDescriptionLength and itemLength fields will be binary coded automatically according to the encoded string lengths. Also the itemCount field will be binary coded automatically according to the number of items present. The nonItemText is also coded according to isUTF8 coding and the nonItemTextLength and textLength fields are binary coded automatically according to the respective content lengths.

9.2.8.16.7 <ContentCreatorNameDescriptor>

<ContentCreatorNameDescriptor>
 <Creator
 languageCode=“”
 isUTF8=”true|false”
 name=“”/>
</ContentCreatorNameDescriptor>

9.2.8.16.7.1 Description

The <ContentCreatorNameDescriptor> element is the XMT-A representation of the ContentCreatorNameDescriptor as described in subclause 7.2.6.18.9, ISO/IEC 14496-1.

The descriptor can contain either 0 to 255 Creator elements. When the isUTF8 boolean is set true the name, in the contentCreatorName field, is coded as UTF8 and the isUTF8_string field in the binary coding is set to 1; otherwise the UTF16 coding is used. For each name the contentCreatorLength field will be binary coded automatically according to the encoded string length. Also the contentCreatorCount field will be binary coded automatically according to the number of creators present.

9.2.8.16.8 <ContentCreationDateDescriptor>

<ContentCreationDateDescriptor contentCreationDate=“”/>

9.2.8.16.8.1 Description

The <ContentCreatorNameDescriptor> element is the XMT-A representation of the ContentCreatorNameDescriptor as described in subclause 7.2.6.18.10, ISO/IEC 14496-1.

9.2.8.16.9 <OCICreatorNameDescriptor>

<OCICreatorNameDescriptor>
 <Creator
 languageCode=“”
 isUTF8=”true|false”
 name=“”/>
</OCICreatorNameDescriptor>

9.2.8.16.9.1 Description

The <OCICreatorNameDescriptor> element is the XMT-A representation of the OCICreatorNameDescriptor as described in subclause 7.2.6.18.11, ISO/IEC 14496-1.

The descriptor can contain either 0 to 255 Creator elements. When the isUTF8 boolean is set true the name, in the OCICreatorName field, is coded as UTF8 and the isUTF8_string field in the binary coding is set to 1; otherwise the UTF16 coding is used. For each name the OCICreatorLength field will be binary coded automatically according to the encoded string length. Also the OCICreatorCount field will be binary coded automatically according to the number of creators present.

9.2.8.16.10 <OCICreationDateDescriptor>

<OCICreationDateDescriptor OCICreationDate=“”/>

9.2.8.16.10.1 Description

The <OCICreationDateDescriptor> element is the XMT-A representation of the OCICreationDateDescriptor as described in subclause 7.2.6.18.12, ISO/IEC 14496-1.

9.2.8.16.11 <SMPTECameraPositionDescriptor>

<SMPTECameraPositionDescriptor
 cameraID=“”>
 <parameter id=“” value=””/>
</SMPTECameraPositionDescriptor>

9.2.8.16.11.1 Description

The <SMPTECameraPositionDescriptor> element is the XMT-A representation of the SMPTECameraPositionDescriptor as described in subclause 7.2.6.18.13, ISO/IEC 14496-1.

The descriptor can contain either 0 to 255 parameter elements. For each parameter an id (parameterID field) and parameter value (parameter field) will be binary coded automatically from the attributes. The parameterCount field will be binary coded automatically according to the number of parameters present.

9.2.8.17 <ExtensionProfileLevelDescriptor>

<ExtensionProfileLevelDescriptor
 profileLevelIndicationIndex=””
 ODProfileLevelIndication=””
 sceneProfileLevelIndication=””
 audioProfileLevelIndication=””
 visualProfileLevelIndication=””
 graphicsProfileLevelIndication=””
 MPEGJProfileLevelIndication=””/>

9.2.8.17.1 Description

The <ExtensionProfileLevelDescriptor> element is the XMT-A representation of the ExtensionProfileLevelDescriptor as described in subclause 7.2.6.19, ISO/IEC 14496-1.

For the attributes ODProfileLevelIndication, sceneProfileLevelIndication, audioProfileLevelIndication, visualProfileLevelIndication and graphicsProfileLevelIndication see 9.2.8.3.1.

The attribute MPEGJProfileLevelIndication takes either a numeric value from 0 to 255 inclusive or a string corresponding to the enumerated values as follows:

	MPEGJProfileLevelIndication

	Personal_L1
	1

	Main_L1
	2

	Unspecified
	254

	None
	255

9.2.8.18 <SegmentDescriptor>

<SegmentDescriptor start=””

 duration=””

 segmentName=””

/>

9.2.8.19 Object Descriptor Commands

The following describes the object descriptor commands:
9.2.8.19.1 <ObjectDescriptorUpdate>

<ObjectDescriptorUpdate atES_ID=””>

 <OD>...</OD>
</ObjectDescriptorUpdate>

9.2.8.19.1.1 Description

The <ObjectDescriptorUpdate> element is the XMT-A representation of the ObjectDescriptorUpdate as described in subclause 7.2.5.5.2, ISO/IEC 14496-1.

9.2.8.19.2 <ObjectDescriptorRemove>

<ObjectDescriptorRemove objectDescriptorId=“”/>

9.2.8.19.2.1 Description

The <ObjectDescriptorRemove> element is the XMT-A representation of the ObjectDescriptorRemove as described in subclause 7.2.5.5.3, ISO/IEC 14496-1.

9.2.8.19.3 <ObjectDescriptorExecute>
<ObjectDescriptorExecute objectDescriptorId=””/>

9.2.8.19.3.1 Description

The < ObjectDescriptorExecute > element is the XMT-A representation of the ES_DescriptorUpdate as described in subclause 7.2.5.5.8, ISO/IEC 14496-1.

9.2.8.19.4 <ES_DescriptorUpdate>

<ES_DescriptorUpdate atES_ID=”” objectDescriptorId=“”>
 <esDescr>...</esDecsr>
</ES_DescriptorUpdate>

9.2.8.19.4.1 Description

The <ES_DescriptorUpdate> element is the XMT-A representation of the ES_DescriptorUpdate as described in subclause 7.2.5.5.4, ISO/IEC 14496-1.

9.2.8.19.5 <ES_DescriptorRemove>

<ES_DescriptorRemove atES_ID=”” objectDescriptorId=“”/>

9.2.8.19.5.1 Description

The <ES_DescriptorRemove> element is the XMT-A representation of the ES_DescriptorRemove as described in subclause 7.2.5.5.5, ISO/IEC 14496-1.

9.2.8.19.6 <IPMP_DescriptorUpdate>

<IPMP_DescriptorUpdate atES_ID=””>
 <ipmpDescr>...</ipmpDecsr>
</IPMP_DescriptorUpdate>

9.2.8.19.6.1 Description

The <IPMP_DescriptorUpdate> element is the XMT-A representation of the IPMP_DescriptorUpdate as described in subclause 7.2.5.5.6, ISO/IEC 14496-1.

9.2.8.19.7 <IPMP_DescriptorRemove>

<IPMP_DescriptorRemove atES_ID=”” IPMP_DescriptorID=””/>

9.2.8.19.7.1 Description

The <IPMP_DescriptorRemove> element is the XMT-A representation of the IPMP_DescriptorRemove as described in subclause 7.2.5.5.7, ISO/IEC 14496-1.

9.2.9 XMT-A IPMP Streams

An IPMP stream is an elementary stream that passes time-varying information to one or more IPMP Systems. This is accomplished by periodically sending a sequence of IPMP messages along with the content at a period determined by the IPMP system.

<IPMP_Message atES_ID=””>
 <IPMPS_URL URLString=””/>
 <IPMPS_data type=”” IPMP_data=””/>
</IPMP_Message>

9.2.9.1 Description

The <IPMP_Message> element is the XMT-A representation of the IPMP_Message as described in subclause 7.2.3.2.5, ISO/IEC 14496-1.

9.2.10 XMT-A OCI Streams

An OCI stream is an elementary stream that conveys time-varying object content information organized in a sequence of small, synchronized entities called OCI events that contain a set of OCI descriptors.

<OCI_Event atES_ID=””
 eventID=””
 absoluteTimeFlag=“true|false”
 startingTime=””
 duration=“”>
 <OCIDescr>...</OCIDescr>
</OCI_Event>

9.2.10.1 Description

The <OCI_Event> element is the XMT-A representation of the OCI_Event as described in subclause 7.2.4.2.5, ISO/IEC 14496-1.

9.2.11 XMT-A MPEG-J Streams

An MPEG-J stream is an elementary stream that conveys the Java class files for and MPEG-4 MPEGlet. The source attribute references an external class, object, packaged file or other resource that comprises an MPEGlet or resources that can be loaded by the MPEGlet.

<JavaStreamHeader atES_ID=””
 url=””
 version=”0”
 isClassFlag=“true|false”
 isPackaged=“true|false”
 compressionScheme=””
 <classID ID=“”>
 <reqClassID><classID ID=“”>...</reqClassID>
</JavaStreamHeader>

9.2.11.1 Description

The <JavaStreamHeader> element is the XMT-A representation of the JavaStreamHeader as described in subclause 10.3.3.2.

The url attribute is a uriReference to a class or ZIP package etc that form the body of the access unit that the JavaStreamHeader prefaces. When the XMT-A encoder creates the access unit it will do so from the binary encoding of the stream header followed by the content of the url.
9.2.12 XMT-A Elementary Stream Data

Visual, audio, and MPEG-7 elementary stream data are referenced and associated with the Elementary Stream Descriptors using the <StreamSource> element. The <StreamSource> element is contained within the Elementary Stream Descriptor element.

Some elementary streams, such as BIFS and OD have textual representations with XMT-A that is used to create the streams via an encoding process. Other media sources, such as video and audio, have no textual representation of the media itself. However a variety of video or audio sources etc can be referenced and these sources do not necessarily have to be in the final target format for the stream. Conversion (transcoding or encoding) from source to target formats may be supported by the XMT-A authoring tool; basic support requires only that a tool can handle media in the correct target format. Transcoding and encoding externally referenced media etc is optional and may be authoring tool and platform dependent.

For elementary streams that are represented textually within the XMT-A document a <StreamSource> may still be used within the <ESDescriptor> to supply <EncodingHints>, for example for BIFS. For this case the url attribute would be omitted.

9.2.12.1 <StreamSource>

<StreamSource
 url=“”>
 <EncodingHints>...</EncodingHints>
</StreamSource>

url refers to the external source for the media data. Whether it be pre-encoded or requires encoding. The <EncodingHints> allow the source and/or target formats to be described so that when encoding is required the author can control various parameters of the encoding process where supported by the encoder.

<EncodingHints> cannot override any explicit values provided in <DecoderConfigDescriptor> including those in any <DecoderSpecificInfo> specified therein. An encoder shall ensure that the encoded stream source complies with the objectTypeIndication, streamType, bufferSizeDB etc. Some parameters however may be set to “auto”, eg bufferSizeDB, maxBitrate etc. The values used for these auto fields, when the descriptors are binary coded, will then be based on the results of the encoding process according to the <EncodingHints>. The entire <DecoderSpecificInfo> may also be automatically coded when specified using type=”auto”. Using auto allows XMT-A to encode any generate the necessary decoder configuration parameters without the author needing to explicitly provide these values.

9.2.12.2 Object Descriptor Streams

Object Descriptor commands are coded as timed elements and associated to a particular Elementary Stream Descriptor using the atES_ID attribute in the various commands.

By default atES_ID will take on the value of the ID of the first Elementary Stream Descriptor, in document order, contained in the Initial Object Descriptor that contains a DecoderConfigDescriptor of stream type ObjectDescriptorStream. Hence for MPEG-4 content with a single ODStream the atES_ID will default as expected and minimize explicit coding. Any addtional ODStreams would require the commands to be explicitly coded for respective atES_ID to which the command should be associated.

9.2.12.3 Clock Reference Streams

No <StreamSource> is required. A Clock Reference stream is defined using the SLConfigDescriptor in the ElementaryStreamDescriptor that contains a DecoderConfigDescriptor of stream type CleockReferenceStream.

9.2.12.4 Scene Description Streams

BIFS commands are coded as timed elements and associated to a particular Elementary Stream Descriptor using the atES_ID attribute in the various commands .

By default atES_ID will take on the value of the ID of the first Elementary Stream Descriptor, in document order, contained in the Initial Object Descriptor that that contains a DecoderConfigDescriptor of stream type SceneDescriptionStream. Hence for MPEG-4 content with a single BIFS Stream the atES_ID will default as expected and minimize explicit coding. Any additional BIFS Streams, e.g. if there were a scaleable BIFS representation, would require the commands to be explicitly coded for the respective atES_ID to which the command should be associated.

9.2.12.5 IPMP Streams

<StreamSource> will refer to IPMP media data and an Elementary Stream Descriptor of type IPMPStream.

Alternatively IPMP message can be coded as timed elements and associated to a particular Elementary Stream Descriptor using the atES_ID attribute in the <IPMPMessage>.

9.2.12.6 Visual Streams

<StreamSource> will refer to a visual media and an Elementary Stream Descriptor that contains a DecoderConfigDescriptor of stream type VisualStream.

9.2.12.7 Audio Streams

<StreamSource> will refer to an audio media and an Elementary Stream Descriptor that contains a DecoderConfigDescriptor of stream type AudioStream.

9.2.12.8 MPEG-7 Streams

<StreamSource> will refer to MPEG-7 media data and an Elementary Stream Descriptor that contains a DecoderConfigDescriptor of stream type MPEG7Stream.

9.2.12.9 IPMP Streams

IPMP messages are coded as timed elements and associated to a particular Elementary Stream Descriptor, that contains a DecoderConfigDescriptor of stream type IPMPStream, using the atES_ID attribute in the <IPMPMessage>.

9.2.12.10 OCI Streams

OCI events are coded as timed elements and associated to a particular Elementary Stream Descriptor, that contains a DecoderConfigDescriptor of stream type ObjectContentInfoStream, using the atES_ID attribute in the <OCIEvent>.

9.2.12.11 MPEG-J Streams

MPEG-J streams are coded as timed elements, using the <JavaStreamHeader> element, and associated to a particular Elementary Stream Descriptor, that contains a DecoderConfigDescriptor of stream type MPEGJStream, using the atES_ID attribute in the <JavaStreamHeader>.

9.2.13 XMT-A Deterministic mapping

In encoding XMT-A into binary some features may be encoded differently producing alternate binary representations that are all legally valid. In part to allow the author control where needed over mapping, and in part to allow a deterministic mapping for conformance the following ‘devices’ allow us to achieve this.

Elements are to be maintained in document order, unless they are elements timed by a <par> element in which case they should be sorted into temporal order while maintaining the document order of any elements occurring at the same time. For independently coded streams this temporal sorting can be done on a per stream basis.

Following the sorting in step 1 any elements now are to be encoded in temporal order with any nested complex elements occurring at any given time to be encoded strictly in the order that they appear in the XMT document being converted to mp4. This is to ensure:

Elements to be coded at the same time in a single AU will thus be in the same order.

Multiple commands, or updates of fields will hence be in the same order.

Scene elements will then be in the same order under groups.

For attributes we cannot expect an XML parser to maintain the list of attributes in document order. So for this case, where it is needed, there are encoding hints on how to map attributes. For example, in BIFS this is needed as there are options for list or vector codings etc; whereas for the OD framework the fields are coded in a predetermined order as so it is not required. However, multi-value single attributes must preserve the order of the multiple values in the coding.

Elements are identified in the XMT by an id (a name). The name is convenient for the XMT as references can be made back to a human readable, meaningful name. These ids must often be coded into NodeIDs or ObjectDescriptor IDs etc. Normally the XMT authoring tool can create binary numeric IDs for all the names and ensure their uniqueness. To ensure a given conversion to a specific binary value the binaryID attribute has been added to elements whose names must be converted to binary. The authoring tool must respect the binary conversion wherever it is so explicitly given.

Some elements such as BIFS <Insert> can insert field values defined by attributes plus it can contain <ROUTE> commands to insert routes. For any elements such as these the command(s) contained in the attributes must be coded before any child elements.

Multiple commands, specified by a multi-value single attribute must be coded in the order that the multiple values occur.

Conditional SFCommandBuffer fields shall be coded using smallest possible number of padding bits (no extra bytes at the end). Also the length field shall be specified using the smallest number of bits that can accommodate the length, i.e minimize lengthBits.

9.2.14 XMT-A Animation

9.2.14.1 Overview

BIFS-Anim is a binary format used in MPEG-4 systems to transmit animation of objects in a scene. Each animated node is referred by its DEF identifier and one or many of its fields may be animated. BIFS-Anim is a key frame technique that specifies the value of each animated field frame by frame, at a defined frame rate. For better compression, each field value is quantized and adaptively arithmetic encoded.

[image: image311.wmf]

Quantizer Q

I

Arithmetic

Encoder

(P

-

 frames only)

Z

-

1

vq(t)

)

(

t

e

vq(t

-

1)

v(t)

+

-

Figure 62 — BIFS Anim encoding process. Z-1 stands for one frame delay. The value v(t) at frame t is quantized with Quantizer QI and the difference ((t) with the previous quantized value vq(t-1) at frame t-1 is adaptively arithmetic encoded.
Two kinds of frames are available: Intra and Predictive frames. I-frames contain raw quantized field values vq(t), and P-frames contain arithmetically encoded difference field values ((t)=vq(t)-vq(t-1).

A BIFS-Anim frame can animate values in different nodes, i.e. each frame will specify the nodes that it animates, and will then animate all the fields of the specified nodes. As BIFS-Anim is a key-frame based system, a frame can be only I or P, consequently all field values in an animated node must be I or P coded, and each field of a given node is animated at the same frame rate.
This textual format is designed to allow authors to specify what can be encoded in a bitstream. It allows specification of every encoding hint possible in BIFS-Anim.

There are two top level elements used in BIFS-Anim. The first is <AnimationMask>, which appears inside a <BIFSConfig> element and contains initializing information. The second is an <AnimationFrame> element, which must appear inside of a <par> element and holds the animation frame data.

9.2.14.2 <AnimationMask>

<AnimationMask

 randomAccess = “true|false”>
 <ElementaryMask id=“”>

 </ElementaryMask>

 …

 <ElementaryMask ….> … </ElementaryMask>

</AnimationMask>

9.2.14.2.1 Description

The <AnimationMask> element is the XMT-A representation of the AnimationMask as described in subclause 8.5.4.

The randomAccess attribute is described in the BIFSConfig and BIFSv2Config as described in subclauses 8.5.2 and 8.5.3.

The <AnimationMask> tag holds a collection of one or more <ElementaryMask> tags.

9.2.14.3 <ElementaryMask>
<ElementaryMask atNode=“”>

 <InitialFieldsMask> … </InitialFieldsMask>

 <InitialFieldsMask> … </InitialFieldsMask>

 …

 <InitialFieldsMask> … </InitialFieldsMask>

</ElementaryMask>

9.2.14.3.1 Description

The <ElementaryMask> element is the XMT-A representation of the ElementaryMask as described in subclause 8.5.5.

The <ElementaryMask> tag holds a collection of <InitialFieldsMask> tags.

The atNode attribute holds the ID of the animated node.

9.2.14.4 <InitialFieldsMask>

<InitialFieldsMask

 id=””

isTotal=”true|false”

indexList = “…”

// optional

>

 <InitialAnimQP .. />

</InitialFieldsMask>

9.2.14.4.1 Description

The <InitialFieldsMask> element is the XMT-A representation of the InitialFieldsMask as described in subclause 8.5.6.

An <InitialFieldsMask> element shall contain exactly one <InitialAnimQP/> tag.

The id attribute shall hold the name of the field to be animated. The attributes isTotal and indexList concern only MFFields. The isTotal attribute shall be false by default. If isTotal is set to true, the indexList attribute shall be ignored. The indexList attribute holds a list of index value.

9.2.14.5 <initialAnimQP>

<InitialAnimQP

type = “1..13”

useDefault = “true|false”

// optional
useLowerBoundEfficientCoding = “…”
// optional
useUpperBoundEfficientCoding = “…”

// optional
lowerBound = “…”

upperBound = “…”

IminInt = “…”

// optional, used only for type=13

InbBits = ”…”

Pmin = “…”

PnbBits = “…” />

9.2.14.5.1 Description
The <InitialAnimQP> element is the XMT-A representation of the InitialAnimQP as described in subclause 8.5.7.

The userLowerBoundEfficientCoding and userUpperBoundEfficientCoding are a comma, separated array of Boolean values with length that’s equal to the getNbBounds() for the animated field. The default values for these fields is false.

An example of its use :

<AnimationMask>

<ElementaryMask id = “COLOR0”>

<InitialFieldsMask id=”color”

indexList = “1 3 10”> <!--this MFField has more than 10 values-->

<InitialAnimQP

type = “4”

lowerBound = “0 0 0”

upperBound = “1 1 1”

useUpperBoundEfficientFloat = “true true true”

useLowerBoundEfficientFloat = “true true true”

InbBits = “8”

PnbBits = “9”

Pmin = “-256 –256 -256”/>

</InitialFieldsMask>

</ElementaryMask>

<ElementaryMask id = “TX1”>
<!-- a transform node -->

<InitialFieldsMask id = “translation”>
<!-- an SFVec3f -->

<InitialAnimQP

type = “1”

lowerBound = “-10.0 -10.0 -10.0”

upperBound = “10.0 5.0 5.0”

useUpperBoundEfficientFloat = “true true true”

useLowerBoundEfficientFloat = “true true true”

InbBits = “8”

PnbBits = “9”

Pmin = “-256 –256 -256”/>

</ InitialFieldsMask>

</ ElementaryMask>

</AnimationMask>

9.2.14.6 <AnimationFrame>

<AnimationFrame atES_ID=””

animationStartCode = “”

 // optional
isIntra = “true|false”

TimeCode = “”

// optional
SkipFrames = “”

// optional
>

<FrameRate .. />

// optional
<AnimationFrameData> .. </AnimationFrameData>

…

<AnimationFrameData> .. </AnimationFrameData>

</AnimationFrame>

9.2.14.6.1 Description
The <AnimationFrame> element is the XMT-A representation of the AnimationFrame as described in subclause 8.8. It also contains the data skipFrames.

The skipFrames attribute holds an integer specifying the number of frames to skip.

The <AnimationFrame> element holds a collection of zero or more <AnimationFrameData> elements.

The atES_ID attribute indicates the destination of the AnimationFrame. It specifies a symbol which is the ID of the elementary stream into which the AnimationFrame should be encoded. In the case of conflicting atES_ID values in parent par elements, this attribute takes precedence.
9.2.14.7 <FrameRate>

<FrameRate

frameRate = “[0..255]”

seconds = “[0..15]”

frequencyOffset = “[0..1]”

/>

9.2.14.7.1 Description
The <FrameRate> element is the XMT-A representation of the FrameRate as described in subclause 8.8.
9.2.14.8 <AnimationFrameData>

<AnimationFrameData
maskID = “”

// optional in place of id

atNode = “”>

// optional in place of maskID
<AnimationField> … </AnimationField>

…

<AnimationField> … </AnimationField>

</AnimationFrameData>

9.2.14.8.1 Description
The <AnimationFrameData> element is the XMT-A representation of the functionality of the AnimationFrameData as described in subclause 8.8. However, in XMT-A, each <AnimationFrameData> describes data for just one animated node, where as in subclause 8.8, a mechanism is described to specify all the animated nodes at one.

An <AnimationFrameData> defines a node which is to be animated within a particular <AnimationFrame>.

The maskID or atNode attributes can optionally be used to specify animated node, but one must be specified. The nodes defined in the <ElementaryMask> element shall be referenced in masked using their order (starting with index 1). The animated nodes may alternatively be referenced using their DEF name.

The <AnimationFrameData> contains a sequence of zero or more <AnimationField> elements.
9.2.14.9 <AnimationField>

<AnimationField
maskID = “”

// optional in place of id
id = “”

// optional in place of maskID
values = “”>

<animQP …./>

// optional
</ AnimationField>
9.2.14.9.1 Description
The <AnimationField> element is the XMT-A representation of the functionality of the AnimationField as described in subclause 8.8.
Inside an <AnimationFrameData>, all the fields specified in the <InitialFieldsMask> will be animated. For fields that don’t need to be animated at the time of the current <AnimationFrame>, the previous value will have to be encoded. Thus all the animated fields don’t have to be specified, but the missing ones will be encoded with their previous values.

The id attribute is the name of the animated field. As the case for <AnimationFrameData>, fields may be identified in the maskID attribute using their order (starting with index 1) in the list of animated field of the current node.

An optional <animQP> element can be specified, but only for animationFrames set as Intra Frames.

Example:

<par begin=”10.0s”>

<animationFrame isIntra = “true”>

<AnimationFrameData id = “TX1”>

<AnimationField maskID = “1” values = “ 1.0 2.0 3.3”> # SFVec3f

<animQP …/>

</ AnimationField>

</ AnimationFrameData>

</animationFrame>

</par>

<par begin=”10.5s”>

<animationFrame isIntra = “false”>

<AnimationFrameData maskID = “1”> # this is node COLOR0

<AnimationField
maskID = “1”

values = “ 1.0 1.0 0.9 0.5 0.5 0.5 0.0 0.0 1.0”> # MFColor

</ AnimationField>

</ AnimationFrameData>

<AnimationFrameData maskID=”2”> # this is node TX1

 <AnimationField

maskID = “1”

values = “1.1 2.1 3.4”>

 </ AnimationField>

</ AnimationFrameData>

</animationFrame>

</par>

At time 10.0, only one of the nodes will be animated, but two nodes will be animated at time 10.5.

At time 10.5 we animate an MFField with 3 animated Indices. All the values of the animated indices are required.

9.2.14.10 <AnimQP>

<AnimQP

type = “1..13”

useDefault = “true|false”

// optional
useLowerBoundEfficientCoding = “true|false”

// optional
useUpperBoundEfficientCoding = “true|false”

// optional

lowerBound = “”

// optional
upperBound = “”

// optional
IminInt = “”

// optional

InbBits = ””

// optional
Pmin = “”

// optional
PnbBits = “”

// optional

/>

9.2.14.10.1 Description
The <AnimQP> element is the XMT-A representation of the functionality of the AnimQP as described in subclause 8.8.
9.2.14.10.2 FBA Animation

Face and Body animation parameters shall be placed in separate XML files. These files shall be referenced in the relevant ES_Descriptors with StreamSource elements.

9.2.15 Predictive MF Coding

The XMT-A <Predictive> element allows representation of advanced coding of multiple value fields.

9.2.15.1 <Predictive>

<Predictive>

<PredictiveMFField name=””>...</PredictiveMFField >

<PredictiveMFField name=””>...</PredictiveMFField>

...

</Predictive>

9.2.15.1.1 Description

The <Predictive> element is a container for the <PredictiveMFField> element, which can appear once for each numerical MFField in the node.
9.2.15.2 <PredictiveMFField>

<PredictiveMFField name=””>

<ArrayHeader>...</ArrayHeader>

<ArrayOfValues>...</ArrayOfValues>

</PredictiveMFField >

9.2.15.2.1 Description

The < PredictiveMFField> element is the XMT-A representation of the PredictiveMFField as described in subclause 8.7.10. The name attribute specifies the name of the field whose values are represented. The <ArrayHeader>, and <ArrayOfValues> elements are described below.

9.2.15.3 <ArrayHeader>

<ArrayHeader NbBits = “0..31” IntraMode = “0..2”>

<InitialArrayQP/>

</ArrayHeader>

9.2.15.3.1.1 Description

The <ArrayHeader> element is the XMT-A representation of the ArrayHeader as described in subclause 8.7.11. There is no need to specify a numberOfFields values as in the binary sequence, since it can be deduced from the field values. It contains an <InitialArrayQP> which holds the initial quantization parameters for the encoding.

9.2.15.4 <InitialArrayQP>
<InitialArrayQP

NbBits = “0..31” intraInterval=”” // coded only if IntraMode==1

CompNbBits = “0..31”

vq= “” Pmin=”” />

// arrays of length getNbComp()

9.2.15.4.1 Description

The <InitialArrayQP> element is the XMT-A representation of the InitialArrayQP as described in subclause 8.7.13. The NbBits and intraInterval values shall appear only when the IntraMode of the enclosing <ArrayHeader> has value 1. The vq and Pmin values hold arrays of length getNbComp(), which is the number of components for the field that is being encoded.

9.2.15.5 <ArrayOfValues>

<ArrayOfValues IPPolicy = “” arrayQPFlag=””>

 <ArrayQP/>

// optional ArrayQPs

 <ArrayQP/> . . .

 <ArrayQP/>

<ArrayOfValues/>

9.2.15.5.1 Description

The <ArrayOfValues> element is the XMT-A representation of some of the functionality in ArrayOfValues, as described in subclause 8.7.14. However, in XMT-A, the field values are not stored in this element; they are stored in the field element just as if predictive coding were not sured. The <ArrayOfValues> element is used to specify Intra and Predictive frames when the IntraMode of the <ArrayHeader> has value 2. This element is also used to specify when new Quantization parameters are sent in the stream using an <ArrayQP>

The IPPolicy attribute holds an integer array with values corresponding to the indices of the Intra frames in the stream. The arrayQPFlag is a numerical array with length equal to the number of Intra frames in the encoding. It specifies which Intra frames carry new quantization parameters.Note that the number of Intraframes can be depenedent on the value of IPPolicy (when IntraMode is 2), or it may depend on the intraInterval in the <InitialArrayQP>, when the IntraMode is 1. If IntraMode is 0, both the IPPolicy and arrayQPFlag attributes shall be ignored.

For each value of arrayQPFlag that is 1, there shall be a corresponding <ArrayQP> element that conveys a new set of quantization parameters for the encoding.

9.2.15.6 <ArrayQP>
<ArrayQP

NbBits = “0..31” intraInterval=”” // coded only if IntraMode==1

CompNbBits = “0..31”

vq= “” Pmin=”” />

// optional arrays

9.2.15.6.1 Description

The <ArrayQP> element is the XMT-A representation of the ArrayQP as described in subclause 8.7.13. The NbBits and intraInterval values shall appear only when the IntraMode of the enclosing <ArrayHeader> has value 1. The vq and Pmin values are optional arrays that hold arrays of length getNbComp(), which is the number of components for the field that is being encoded. The difference between the <ArrayQP> and <InitialArrayQP> is that the latter requires specification of CompNbBits, vq, and Pmin.

Example :

<ScalarInterpolator

key=”0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0”

keyValue=”0 0.12 0.23 0.34 0.45 0.56 0.67 0.78 0.89 0.90 1.00”>

 <Predictive>

 <PredictiveMFField name=”key”>

 <ArrayHeader NbBits=4 IntraMode=0>

 <InitialArrayQP CompNbBits=10 vq=”0” Pmin=”0”>

 </ArrayHeader>

 </PredictiveMFField>

 <PredictiveMFField name=”keyValue”>

 <ArrayHeader NbBits=4 IntraMode=2>

 <InitialArrayQP CompNbBits=10 vq=”0” Pmin=”0”>

 </ArrayHeader>

 <ArrayOfValues IPPolicy=”0 4 10” arrayQPFlag=”1,0”>

 <ArrayQP CompNbBits=14>

 </ArrayOfValues>

 </PredictiveMFField>

 </Predictive>

</ScalarInterpolator>

9.2.16 XMT-A Carriage of node compressed information

9.2.16.1 Overview

A node may have a dedicated node compression scheme. This compressed representation may be carried in the BIFS stream or in a separate stream. The functionality of BitWrapper node is to encode a node data and transmit such an encoded bitstream through a scene description stream (BIFS stream) or a separate stream.

During the authoring stage, if an author wants to encode a node data and transmit it using the BitWrapper node, the author should have abilities to control encoding parameters for generating an encoded bitstream. The following textual format is designed to allow authors to specify what node can be encoded and how its encoding parameters can be controlled in generating an encoded bitstream.
9.2.16.2 <BitWrapper>
<complexType name="BitWrapperType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

<element name="node" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SFWorldNodeType" minOccurs="0" />

</complexType>

</element>

<element ref="xmta:BitWrapperEncodingParameter"/>

</all>

<attribute name="type" type="xmta:SFInt32" use="optional" default="0"/>

<attribute name="url" type="xmta:MFUrl" use="optional"/>

<attribute name="buffer" type="xmta:SFString" use="optional" default=""""/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="BitWrapper" type="xmta:BitWrapperType"/>

<element name="BitWrapperEncodingParameter">

<complexType>

<choice>

<element name="CoordinateInterpolatorEncodingParameter" minOccurs="0" maxOccurs="1">

<complexType>

<attribute name="keyQBits" type="xmta:numOfKeyQBits" use="optional" default="8"/>

<attribute name="keyValueQBits" type="xmta:numOfKeyValueQBits" use="optional" default="16"/>

<attribute name="transpose" type="xmta:transposeType" use="optional" default=""ON""/>

<attribute name="linearKeycoder" type="xmta:linearKeycoderType" use="optional" default=""LINEAR""/>

 </complexType>

</element>

<element name="IndexedFaceSetEncodingParameter" minOccurs="0" maxOccurs="1">

<complexType>

<attribute name="coordQBits" type="xmta:numOfCoordQBits" use="optional" default="10"/>

<attribute name="normalQBits" type="xmta:numOfNormalQBits" use="optional" default="9"/>

<attribute name="colorQBits" type="xmta:numOfColorQBits" use="optional" default="6"/>

<attribute name="texCoordQBits" type="xmta:numOftexCoordQBits" use="optional" default="10"/>

<attribute name="coordPredMode" type="xmta:coordPredType" use="optional" default="2"/>

<attribute name="normalPredMode" type="xmta:normalPredType" use="optional" default="0"/>

<attribute name="colorPredMode" type="xmta:colorPredType" use="optional" default="0"/>

<attribute name="texCoordPredMode" type="xmta:texCoordPredType" use="optional" default="0"/>

<attribute name="errorResilience" type="xmta:errorResilienceType" use="optional" default=""OFF""/>

<attribute name="bitsPerPacket" type="xmta:SFInt32" use="optional" default="180"/>

<attribute name="boundaryPrediction" type="xmta:boundaryPredictionType" use="optional" default="0"/>

</complexType>

</element>

<element name="OrientationInterpolatorEncodingParameter" minOccurs="0" maxOccurs="1">

<complexType>

<attribute name="keyQBits" type="xmta:numOfKeyQBits" use="optional" default="8"/>

<attribute name="keyValueQBits" type="xmta:numOfKeyValueQBits" use="optional" default="16"/>

<attribute name="preservingMode" type="xmta:preservingType" use="optional" default=""KEY""/>

<attribute name="dpcmMode" type="xmta:orientationDpcmType" use="optional" default="0"/>

<attribute name="aacMode_X" type="xmta:aacType" use="optional" default=""BINARY""/>

<attribute name="aacMode_Y" type="xmta:aacType" use="optional" default=""BINARY""/>

<attribute name="aacMode_Z" type="xmta:aacType" use="optional" default=""BINARY""/>

<attribute name="linearKeycoder" type="xmta:linearKeycoderType" use="optional" default=""LINEAR""/>

</complexType>

</element>

<element name="PositionInterpolatorEncodingParameter" minOccurs="0" maxOccurs="1">

<complexType>

<attribute name="keyQBits" type="xmta:numOfKeyQBits" use="optional" default="8"/>

<attribute name="keyValueQBits" type="xmta:numOfKeyValueQBits" use="optional" default="16"/>

<attribute name="preservingMode" type="xmta:preservingType" use="optional" default=""KEY""/>

<attribute name="dpcmMode_X" type="xmta:positionDpcmType" use="optional" default="0"/>

<attribute name="dpcmMode_Y" type="xmta:positionDpcmType" use="optional" default="0"/>

<attribute name="dpcmMode_Z" type="xmta:positionDpcmType" use="optional" default="0"/>

<attribute name="aacMode_X" type="xmta:aacType" use="optional" default=""BINARY""/>

<attribute name="aacMode_Y" type="xmta:aacType" use="optional" default=""BINARY""/>

<attribute name="aacMode_Z" type="xmta:aacType" use="optional" default=""BINARY""/>

<attribute name="linearKeycoder" type="xmta:linearKeycoderType" use="optional"

default=""LINEAR""/>

<attribute name="intra_X" type="xmta:intraType" use="optional" default="0"/>

<attribute name="intra_Y" type="xmta:intraType" use="optional" default="0"/>

<attribute name="intra_Z" type="xmta:intraType" use="optional" default="0"/>

</complexType>

</element>

<element name="MeshGridEncodingParameter" minOccurs="0" maxOccurs="1">

<complexType>

<attribute name="nLevels" type="xmta:dim3u32" use="optional" />

<attribute name="nSlices" type="xmta:dim3u32" use="optional" />

<attribute name="sizeROI" type="xmta:dim3u32" use="optional" />

<attribute name="modeROI" type="xmta:modeROIType" use="optional" default=""uniformDensity""/>

<attribute name="groupROI" type="xmta:dim3u32" use="optional" default="1 1 1"/>

<attribute name="hasConnectivityInfo" type="xmta:boolean" use="optional" />

<attribute name="hasRefineInfo" type="xmta:boolean" use="optional" />

<attribute name="hasRepositionInfo" type="xmta:boolean" use="optional" />

<attribute name="hasGridInfo" type="xmta:boolean" use="optional" />

<attribute name="meshType" type="xmta:meshType" use="optional" />

<attribute name="sameBorderOrientation" type="xmta:boolean" use="optional" />

<attribute name="uniformSplit" type="xmta:boolean" use="optional" />

<attribute name="offsetAmplitude" type="xmta:bit32" use="optional" />

<attribute name="cyclicMode" type="xmta:cyclicModeType" use="optional" />

<attribute name="fullRefine" type="xmta:boolean" use="optional" />

<attribute name="nRefineBits" type="xmta:bit5" use="optional" default="0"/>

<attribute name="filterType" type="xmta:filterType" use="optional" />

<attribute name="nQuantBits" type="xmta:bit5" use="required"/>

<attribute name="gridCR" type="xmta:bit32" use="optional" default="1"/>

<attribute name="maxError" type="xmta:SFFloat" use="optional" default="0"/>

</complexType>

</element>

<element name="WaveletSubdivisionSurfaceEncodingParameter" minOccurs="0" maxOccurs="1">

<complexType>

<attribute name="NbBpSC" type="xmta:bit5" use="optional" default="8"/>

<attribute name="NbBPX" type="xmta:bit5" use="optional" default="14"/>

<attribute name="NbBPY" type="xmta: bit5" use="optional" default="14"/>

<attribute name="NbBPZ" type="xmta:bit5" use="optional" default="14"/>

<attribute name="Wtype" type="xmta:bit2" use="optional" default="0"/>

<attribute name="lift" type="xmta:bit1" use="optional" default="0"/>

<attribute name="isInLocalCoordinates" type="xmta:bit1" use="optional" default="0"/>

<attribute name="LengthNbBits" type="xmta:bit4" use="optional" default="15"/>

<attribute name="isPartial" type="xmta:bit1" use="optional" default="0"/>

<attribute name="NumberOfLevels" type="xmta:bit5" use="optional" default="4"/>

</complexType>

</element>

<element name="PointTextureEncodingParameter" minOccurs="0" maxOccurs="1">

<complexType>

<attribute name="codingPercent" type="xmta:codingPercentType" use="optional" default="100"/>

</complexType>

</element>

</choice>

</complexType>

</element>
9.2.16.2.1 Description

The <BitWrapper> element is the XMT-A representation of the BitWrapper node as described in subclause 7.2.2.23. It also contains the XMT-A representation of the encoding parameters that can be used in generating the encoded bitstream of a specified node data defined in node element.

The CoordinateInterpolatorEncodingParameter element contains the encoding parameters used for encoding CoordinateInterpolator node data, in the case that node element contains CoordinateInterpolator node.

The IndexedFaceSetEncodingParameter element contains the encoding parameters used for enconding IndexedFaceSet node data using 3D Mesh Coding (3DMC), in the case that node element contains IndexedFaceSet node.

The OrientationInterpolatorEncodingParameter element contains the encoding parameters used for encoding OrientationInterpolator node data, in the case that node element contains OrientationInterpolator node.

The PositionInterpolatorEncodingParameter element contains the encoding parameters used for encoding PositionInterpolator node data, in the case that node element contains PositionInterpolator node.

The PointTextureEncodingParameter element contains the encoding parameter used for encoding PointTexture node data, in the case that node element contains PointTexture node.

The MeshGridEncodingParameter element contains the encoding parameter used for encoding MeshGrid node data, in the case that node element contains MeshGrid node.

The WaveletSubdivisionSurfaceEncodingParameter element contains the encoding parameter used for encoding WaveletSubdivisionSurface node data, in the case that node element contains WaveletSubdivisionSurface node.

These respective encoding parameter elements should be exclusively used when the encoding is performed. Because the node element should contain one type of node data to be encoded at a time and should not contain more types at once.

When authors use the XMT-A representation of the BitWrapper element in order to transmit an encoded bitstream, there are two types of usage. One is to use the encoding parameter element and the other is not to use it. When using encoding parameters, authors can encode the original data (uncompressed one) that are contained in the node element of BitWrapper element. On the other hand, without using them, authors can directly specify the file name (or object descriptor ID) of an encoded bitstream in url or buffer attribute of BitWrapper element in the case that authors already have an encoded bitstream.

The attributes in each encoding parameter element are described in the following clauses.

9.2.16.3 <numOfKeyQBits>
<simpleType name="numOfKeyQBits">

<restriction base="int">

<minInclusive value="0"/>

<maxInclusive value="31"/>

</restriction>

</simpleType>

9.2.16.3.1 Description

The numOfKeyQBits indicates the quantization bit size of the key data. It is an integer type. The minimum value of numOfKeyQBits is 0 and the maximum is 31.

9.2.16.4 <numOfKeyValueQBits>

<simpleType name="numOfKeyValueQBits">

<restriction base="int">

<minInclusive value="0"/>

<maxInclusive value="31"/>

</restriction>

</simpleType>

9.2.16.4.1 Description

The numOfKeyValueQBits indicates the quantization bit size of the keyValue data. It is an integer type. The minimum value of numOfKeyValueQBits is 0 and the maximum is 31.

9.2.16.5 <transposeType>

<simpleType name="transposeType">

<restriction base="string">

<enumeration value=""ON""/>

<enumeration value=""OFF""/>

</restriction>

</simpleType>

9.2.16.5.1 Description

The transposeType is the flag for transpose mode or vertex mode. If the value is set to ON, the transpose mode is used. Otherwise, the vertex mode is used.
9.2.16.6 <linearKeycoderType>

<simpleType name="linearKeycoderType">

<restriction base="string">

<enumeration value=""LINEAR""/>

<enumeration value=""NOLINEAR""/>

</restriction>

</simpleType>

9.2.16.6.1 Description

The linearKeycoderType is a string type. It indicates if the linear key coder is used or not.

9.2.16.7 <numOfCoordQBits>

<simpleType name="numOfCoordQBits">

<restriction base="int">

<minInclusive value="1"/>

<maxInclusive value="24"/>

</restriction>

</simpleType>

9.2.16.7.1 Description

The numOfCoordQBits indicates the quantization step used for geometry. The minimum value of numOfCoordQBits is 1 and the maximum is 24.

9.2.16.8 <numOfNormalQBits>

<simpleType name="numOfNormalQBits">

<restriction base="int">

<minInclusive value="3"/>

<maxInclusive value="31"/>

</restriction>

</simpleType>

9.2.16.8.1 Description

The numOfNormalQBits indicates the quantization step used for normals. The minimum value of numOfNormalQBits is 3 and the maximum is 31.

9.2.16.9 <numOfColorQBits>

<simpleType name="numOfColorQBits">

<restriction base="int">

<minInclusive value="1"/>

<maxInclusive value="16"/>

</restriction>

</simpleType>

9.2.16.9.1 Description

The numOfColorQBits indicates the quantization step used for colors. The minimum value of numOfColorQBits is 1 and the maximum is 16.

9.2.16.10 <numOfTexCoordQBits>

<simpleType name="numOftexCoordQBits">

<restriction base="int">

<minInclusive value="1"/>

<maxInclusive value="16"/>

</restriction>

</simpleType>

9.2.16.10.1 Description

The numOftexCoordQBits indicates the quantization step used for texture coordinates. The minimum value of NumOftexCoordQBits is 1 and the maximum is 16.

9.2.16.11 <coordPredType>

<simpleType name="coordPredType">

<restriction base="int">

<enumeration value="0"/>

<enumeration value="2"/>

</restriction>

</simpleType>

9.2.16.11.1 Description

The coordPredType is the type of prediction used to reconstruct the vertex coordinates of the mesh. The value is set to 0 if the no_prediction is used and 2 if the parallelogram_prediction is used.

9.2.16.12 <normalPredType>

<simpleType name="normalPredType">

<restriction base="int">

<enumeration value="0"/>

<enumeration value="1"/>

<enumeration value="2"/>

</restriction>

</simpleType>

9.2.16.12.1 Description

The normalPredType indicates how normal values are predicted. The value is set to 0 if the no_prediction is used and 1 if the tree_prediction is used, and 2 if the parallelogram_prediction is used.

9.2.16.13 <colorPredType>

<simpleType name="colorPredType">

<restriction base="int">

<enumeration value="0"/>

<enumeration value="1"/>

<enumeration value="2"/>

</restriction>

</simpleType>

9.2.16.13.1 Description

The colorPredType indicates how colors are predicted. The value is set to 0 if the no_prediction is used, 1 if the tree_prediction is used and 2 if the parallelogram_prediction is used.

9.2.16.14 <texCoordPredType>

<simpleType name="texCoordPredType">

<restriction base="int">

<enumeration value="0"/>

<enumeration value="2"/>

</restriction>

</simpleType>
9.2.16.14.1 Description

The texCoordPredType indicates how colors are predicted. The value is set to 0 if the no_prediction is used and 2 if the parallelogram_prediction is used.
9.2.16.15 <errorResilienceType>

<simpleType name="errorResilienceType">

<restriction base="string">

<enumeration value=""ON""/>

<enumeration value=""OFF""/>

</restriction>

</simpleType>

9.2.16.15.1 Description

The errorResilienceType indicates the usage of error resilient mode. The value is set to OFF if the error resilience is not used and ON if the error resilience is used. Only if the value is set to ON, both boundaryPredictionType and bitsPerPacket shall be avaliable.
9.2.16.16 <bitsPerPacket>

The Syntax of bitsPerPacket is the same as the type of SFInt32 in the xmt-a schema .

9.2.16.16.1 Description

The bitsPerPacket indicates packet size for error resilient bitstream. This value determines the size of each partition in error resilient mode. The type of bitsPerPacket is SFInt32 .The default value is 360.

9.2.16.17 <boundaryPredictionType>

<simpleType name="boundaryPredictionType">

<restriction base="int">

<enumeration value="0"/>

<enumeration value="1"/>

</restriction>

</simpleType>
9.2.16.17.1 Description

The boundaryPredictionType indicates the type of boundary prediction. If the value is 0, the restricted prediction shall be used and if the value is 1, the extended prediction shall be used.

9.2.16.18 <preservingType>

<simpleType name="preservingType">

<restriction base="string">

<enumeration value=""KEY""/>

<enumeration value=""PATH""/>

</restriction>

</simpleType>

9.2.16.18.1 Description

The preservingType is a string type. It indicates if the current mode is key preserving mode or path preserving mode.
9.2.16.19 <orientationDpcmType>

<simpleType name="orientationDpcmType">

<restriction base="int">

<enumeration value="0"/>

<enumeration value="1"/>

<enumeration value="2"/>

</restriction>

</simpleType>

9.2.16.19.1 Description

The orientationDpcmType indicates the order of DPCM used for each keyValue component(X, Y, Z, Theta) in OrientationInterpolator node. It is an integer type. The flags are set to 0 if 1st order DPCM is used, and 1 if 2nd order DPCM is used, and 2 if the orientation interpolator encoder automatically determines the order of DPCM.

9.2.16.20 <aacType>

<simpleType name="aacType">

<restriction base="string">

<enumeration value=""BINARY""/>

<enumeration value=""UNARY""/>

</restriction>

</simpleType>

9.2.16.20.1 Description

The aacType is a string type. It indicates if the current mode is BinaryAAC mode or UnaryAAC mode for each keyValue component(X, Y, Z, (Theta – OrientationInterpolator)).
9.2.16.21 <positionDpcmType>

<simpleType name="positionDpcmType”>

<restriction base="int">

<enumeration value="0"/>

<enumeration value="1"/>

<enumeration value="2"/>

</restriction>

</simpleType>

9.2.16.21.1 Description

The positionDpcmType indicates the order of DPCM used for each keyValue component(X, Y, Z). It is an integer type. The flags are set to 0 if 1st order DPCM is used, and 1 if 2nd order DPCM is used, and 2 if SAD is used. SAD is an abbreviated word for summary of absolute difference. When sum1 is the sum of 1st order DPCM and sum2 is the sum of 2nd order DPCM, SAD is the method of selecting the minimum value of both sum1 and sum2 and determining the DPCM method having the minimum value.
9.2.16.22 <intraType>

<simpleType name="intraType">

<restriction base="int">

<enumeration value="0"/>

<enumeration value="1"/>

</restriction>

</simpleType>

9.2.16.22.1 Description

The intraType is used for a Position Interpolator Compression. It indicates if intra coding mode is used or not for each keyValue component(X,Y,Z).

9.2.16.23 <dim3u32>

<simpleType name="dim3u32">

<restriction>

<simpleType>

<list itemType="unsignedInt"/>

</simpleType>

<length value="3"/>

</restriction>

</simpleType>

9.2.16.23.1 Description

The dim3u32 is an array of 3 unsigned integers.

9.2.16.24 <modeROIType>

<simpleType name="modeROIType">

<restriction base="string">

<enumeration value=""uniformDensity""/>

<enumeration value=""uniformSize""/>

</restriction>

</simpleType>

9.2.16.24.1 Description

The modeROIType is a string type used for MeshGrid to specify the region of interest (ROI) mode. If uniformDensity mode, at each resolution level of the MeshGrid model the size of the ROI is adapted to have quasi the same amount of information within each ROI. If uniformSize mode, the size of the ROIs is kept the same resolution level as each resolution level of the model.
9.2.16.25 <meshType>

<simpleType name="meshType">

<restriction base="string">

<enumeration value=""GENERIC_MESH""/>

<enumeration value=""TRI_MESH""/>

<enumeration value=""QUAD_MESH""/>

<enumeration value=""HEXA_MESH""/>

</restriction>

</simpleType>

9.2.16.25.1 Description

The meshType is a string type used for MeshGrid to specify the type of mesh to encode. If GENERIC_MESH, the mesh may consist at the same time of triangles, quadrilaterals, pentagons, hexagons and heptagons. Otherwise if TRI_MESH, QUAD_MESH or HEXA_MESH the mesh is homogeneous and consists only of one type of polygon. The meaning of the values is described in more detail in ISO/IEC 14496-16:2004.

9.2.16.26 <cyclicModeType>

<simpleType name="cyclicModeType">

<restriction base="string">

<enumeration value=""CYCLIC_NONE""/>

<enumeration value=""CYCLIC_U""/>

<enumeration value=""CYCLIC_V""/>

<enumeration value=""CYCLIC_UV""/>

<enumeration value=""CYCLIC_W""/>

<enumeration value=""CYCLIC_UW""/>

<enumeration value=""CYCLIC_VW""/>

</restriction>

</simpleType>

9.2.16.26.1 Description

The cyclicModeType is a string type used for MeshGrid to specify the cyclic behaviour of the mesh. The value is set to CYCLIC_NONE if the mesh is not cyclic and to one of the other 6 values when the mesh is cyclic. The meaning of the values is described in more detail in ISO/IEC 14496-16:2004.

9.2.16.27 <filterType>

<simpleType name="filterType">

<restriction base="string">

<enumeration value=""SHORT_FILTER""/>

<enumeration value=""SMOOTH_FILTER""/>

</restriction>

</simpleType>

9.2.16.27.1 Description

The filterType is a string type used for MeshGrid to specify the type of filter coefficients used in the wavelet transform of the reference-grid coordinates. The meaning of the values is described in ISO/IEC 14496-16:2004.

9.2.16.28 <BitWrapperEncodingHints>

<element name="BitWrapperEncodingHints">

<complexType>

<choice>

<element name="BitWrapper3DMCEncodingHints">

<complexType>

<sequence>

<element name="sourceFormat">

<complexType>

<sequence>

<element ref="xmta:param" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</complexType>

</element>

<element name="targetFormat">

<complexType>

<sequence>

<element ref="xmta:param" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</complexType>

</element>

</sequence>

</complexType>

</element>

<element name="BitWrapperICEncodingHints">

<complexType>

<sequence>

<element name="sourceFormat">

<complexType>

<sequence>

<element ref="xmta:param" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</complexType>

</element>

<element name="targetFormat">

<complexType>

<sequence>

<element ref="xmta:param" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</complexType>

</element>

</sequence>

</complexType>

</element>

<element name="BitWrapperOctreeImageEncodingHints">

<complexType>

<sequence>

<element name="sourceFormat">

<complexType>

<sequence>

<element ref="xmta:param" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</complexType>

</element>

<element name="targetFormat">

<complexType>

<sequence>

<element ref="xmta:param" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</complexType>

</element>

</sequence>

</complexType>

</element>

<element name="BitWrapperMeshGridEncodingHints">

<complexType>

<sequence>

<element name="sourceFormat">

<complexType>

<sequence>

<element ref="xmta:param" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</complexType>

</element>

<element name="targetFormat">

<complexType>

<sequence>

<element ref="xmta:param" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</complexType>

</element>

</sequence>

</complexType>

</element>

<element name="OthersEncodingHints">

<complexType>

<sequence>

<element name="sourceFormat">

<complexType>

<sequence>

<element ref="xmta:param" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</complexType>

</element>

<element name="targetFormat">

<complexType>

<sequence>

<element ref="xmta:param" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</complexType>

</element>

</sequence>

</complexType>

</element>

<element name="BitWrapperPointTextureEncodingHints">

<complexType>

<sequence>

<element name="sourceFormat">

<complexType>

<sequence>

<element ref="xmta:param" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</complexType>

</element>

<element name="targetFormat">

<complexType>

<sequence>

<element ref="xmta:param" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</complexType>

</element>

</sequence>

</complexType>

</element>

<element name="BitWrapperWaveletSubdivisionSurfaceEncodingHints">

<complexType>

<sequence>

<element name="sourceFormat">

<complexType>

<sequence>

<element ref="xmta:param" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</complexType>

</element>

<element name="targetFormat">

<complexType>

<sequence>

<element ref="xmta:param" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</complexType>

</element>

</sequence>

</complexType>

</element>

</choice>

</complexType>

</element>

9.2.16.28.1 Description

The <BitWrapperEncodingHints> element is used for specifying the stream filename and the stream format of an encoded bitstream that is transmitted as a separate bitstream using the BitWrapper element. The stream formats that can be transmitted by BitWrapper element are specified in this document and ISO/IEC 14496-16:2004.
9.3 XMT-Ω Format

The goal of the XMT- Ω format is to provide ease of use, facilitate content interchange and to be interoperable with the Synchronized Multimedia Integration Language (SMIL) 2.0, for which the specification was developed by the W3C SYMM WG.

The XMT-Ω format describes audio-visual objects and their relationships at a higher level than XMT-A. Here content requirements are expressed in terms of an author’s intent rather than by coding explicit node and route connections. This permits an authoring tool to offer constructs at this higher level and to exchange them at this level with other authoring tools. An authoring tool would compile the XMT-Ω format into MPEG-4 content by mapping the constructs into BIFS, OD, media streams, etc. together with any appropriate media compression and/or media conversions that may be required. Media sources expressed in XMT-Ω can be of a variety of formats native to the machine where the authoring tool is executing, and it is the responsibility of the tool, during the compilation phase, to convert the media to suitable formats, bit-rates, and so on.

In this high-level format, there is not necessarily only one mapping to MPEG-4 for each construct. MPEG-4 nodes and routes are very powerful tools and there can be more than one way to represent XMT-Ω constructs. Also, as MPEG-4 nodes can be ‘wired’ together with routes in many combinations, it is often difficult to reverse-engineer an author’s intent from a collection nodes and routes. Faced with a presentation containing many nodes and routes, the re-authoring and maintenance of content can be challenging as the high-level view of that presentation must be inferred. The XMT-Ω, however, provides such a high-level view with high-level authoring constructs and thus facilitates content exchange, rapid content re-purposing or re-authoring and maintenance of content.

Recognizing though that some authors may wish to access low-level nodes/routes, this format allows the embedding of the XMT-A textual node and route definitions within an identified low-level nodes section. Interoperation between the two levels are also permitted.

9.3.1 XMT-Ω re-using SMIL

To capture content authors intentions at a high-level, the SMIL (Synchronized Multimedia Integration Language) is used as a basis for the abstraction of the XMT-Ω content representation. The version of SMIL upon which XMT-Ω is based on is the SMIL 2.0 specification, (the follow-on to SMIL 1.0), that was developed by the W3C SYMM working group. For brevity, rather than constantly refer to SMIL 2.0 any references will be made simply as “SMIL” in the remainder of this document where there is no ambiguity.

SMIL is an XML-based language that allows authors to write interactive multimedia presentations. The main strengths of SMIL are that its constructs are self-describing, it is based on XML which provides an excellent format for interchange of data among different applications, it is relatively easy to author, and it is a language familiar to HTML users. It is also extensible so that new objects or metadata can easily be inserted in the representation.
The XMT-Ω format provides a new set of elements that expresses the high-level view of MPEG-4, while re-using a subset of modules defined by SMIL where the semantics are compatible. XMT-Ω is not specifically designed as a playback format, and is intended to be preprocessed to SMIL, WEB3D (VRML), or compiled to an MPEG-4 representation via appropriate translation software.

9.3.1.1 Re-using SMIL Modules

The SMIL language is composed of a number of functional areas that have been broken down into a finer granularity using modules. These modules, comprising XML element and attributes, and attribute values, can then be combined and brought together in other host languages such as XMT-Ω. XMT-Ω is referred to as a host language since it integrates, or hosts, the modules within a larger set of XML representation.

SMIL provides guidelines and requirements for integration of the modules it defines into a host language. XMT-Ω, unless explicitly stated otherwise, will follow these guidelines and requirements and adhere to the semantics of the modules as well as their syntax. SMIL is a language that has been designed and that implementations follow. XMT-Ω, however, already has MPEG-4 as an implementation and is using this language to represent it, albeit at a high-level. Hence XMT-Ω must be mapped (compiled) into MPEG-4 and certain behaviors specified by SMIL may be difficult, or overly complicated, to maintain the semantics for all cases. This document will highlight such areas as necessary. In all cases it is the authoring tool’s responsibility to maintain correct semantics during the mapping. All the power of the MPEG-4 representation, including Scripts and MPEG-J, may be used by the authoring tool to achieve satisfactory mappings. An authoring tool will of course limit the use of MPEG-4 tools to those supported by the MPEG-4 profile and level for which the presentation is being created. Mapping for the semantics are both static and dynamic in nature. Static mappings capture the semantics for deterministic behavior that can be fully evaluated during the mapping. Dynamic mappings require runtime support of MPEG-4 player mechanisms and, for example, may be utilized to support non-deterministic behavior such as is involved in unpredictable user interactions.

Subsequent sections of this document will cover XMT-Ω and its use of SMIL modules in more detail. The following is a brief overview of the functional areas of SMIL and their re-use in XMT-Ω :

Animation.
XMT-Ω will incorporate the SMIL Animation modules. These modules support dynamic updating, i.e. animation of attributes. SMIL semantics require the authored value as well as the animated value of an attribute to be available. MPEG-4 routes overwrite fields making such semantics the authoring tool’s responsibility to maintain.

Content Control.
Allows content choice and selection based on test attributes. May be mapped to MPEG-4 constructs such as alternate streams, for example selection based on language. Also may be used to select alternate content at compile time.

Layout
XMT-Ω will not incorporate SMIL Layout modules. Layout will however be defined that is consistent with the hierarchical tree structured spatial layout and groupings intrinsic to MPEG-4.

Linking.
XMT-Ω will not incorporate SMIL Linking modules. However support for linking that can be mapped to the Anchor node will be defined.

Media
XMT-Ω incorporates SMIL media modules plus it extends this set to include MPEG-4 specific media.

Metainformation
XMT-Ω incorporates SMIL metainformation modules. In addition XMT-Ω supports MPEG-7 meta representations.

Timing and Synchronization
SMIL contains extensive, comprehensive timing modules. XMT-Ω incorporates most of these modules.

Time Manipulations
XMT-Ω incorporates SMIL Time Manipulations module which permits time transformations.

Transitions
SMIL supports high-level transitions with effects defined by SMPTE as well as effects defined by SMIL . XMT-Ω incorporates some of these transition modules.

9.3.2 XMT-Ω Animation

SMIL Animation feature comprises two modules; BasicAnimation and SplineAnimation. XMT-Ω will include the features of both modules.

All the XMT-Ω Timing and Synchronization module attributes are supported to control the timelines of the elements of these Animation modules. As XMT-Ω incorporates the BasicTimeContainer module from Timing and Synchronization the fill attribute is also supported on all Animation elements.

Attributes of xMedia elements and their child elements, attribute of Media Augmentation elements, and attributes of the Media Group may all be animated.

9.3.2.1 BasicAnimation

BasicAnimation includes the <animate>, <set>, <animateMotion> and <animateColor> elements that provide the means to specify animated behavior.

9.3.2.1.1 <animate>

The <animate> element provides a means to animate an attribute over a list of values or using from, to and by.

<animate
 id = ID
 attributeName = <attributeName>
 attributeType = “XML” | “auto”
 targetElement = IDREF
 values = <list>
 calcMode = “discrete | linear | paced”
 accumulate = “sum | none”
 additive = “sum | replace”
 from = <value>
 to = <value>
 by = <value>
/>

id is an XML identifier.

attributeName is the name of the attribute on which the animation is enacted.

attributeType is for compatibility purposes with SMIL only.

targetElement is the identifier of the element containing the attribute to be animated.

values is a semicolon-separated list of one or more legal values with which to animate the attribute.

calcMode specifies the interpolation mode for the animation.

accumulate controls whether the animation is cumulative and each iteration builds upon the last iteration, or whether iterations simply repeat the same set of values.

additive controls whether the effect of the animation adds to any other animations that may currently be active on the attribute, or whether the animation value simply overrides any other lower priority animations. (See SMIL specification for priority determination).

from specifies a legal starting value for the animation if values is not specified.

end specifies a legal ending value for the animation if values is not specified.

by specifies a legal relative offset value for the animation if values is not specified.

9.3.2.1.2 <set>

The <set> element provides a means to set an attribute to a specific value for a period of time.

<set
 id = ID
 attributeName = <attributeName>
 attributeType = “XML” | “auto”
 targetElement = IDREF
 to = <value>
/>

The attributes of the <set> element are a subset of those in the <animate> element. See <animate> element for more information.

9.3.2.1.3 <animateMotion>

The <animateMotion> element provides a means to animate an element along a path using a list of values or using from, to and by. <animateMotion> has the same attributes as animate except that the attributeName and attributeType for the target attribute are not required. <animateMotion> acts upon predefined attributes of only certain elements.

If the targetElement is <transformation> or <group> the attribute acted upon is translation.

<animateMotion
 as per <animate> without attributeName and attributeType, but plus…
 origin = “default”
/>

9.3.2.1.4 <animateColor>

The <animateColor> element provides a means to animate a color attribute using a list of values or using from, to and by.

<animateColor
 as per <animate>…
/>

9.3.2.2 SplineAnimation

The SplineAnimation module adds the following attributes to BasicAnimation.

<animate
 as per BasicAnimation plus…
 calcMode = “spline”
 keyTimes = <list>
 keySplines = <list>
/>

The value spline is added to the supported values for calcMode. keyTimes is a semicolon-separated list of time values used to control the pacing of the animation. keySplines is a set of Bezier control points defining a cubic Bezier function, associated with the keyTimes list, that controls interval pacing.

Refer to the SMIL specification for a complete description of the SplineAnimation module. The module is incorporated into XMT-Ω in full conformance with that specification.

DragAnimation

The DragAnimation module is unique for XMT and defines interactive animation based on input sensor dragging. DragAnimation elements can be used with visual Xmedia elements. A visual element, when the input sensor is held down over it, can be the source of drag animation. DragAnimation for 2D xMedia elements can be plane or disc oriented allowing planar or rotational drag effects. For 3D the drag animation can be plane, cylinder or sphere allowing planar, rotational and cylindrical, or spherical drag effects.

Timing attributes determine when the begin, end, duration etc of the period during which dragging is enabled. During that period dragging can be effected using the pointing device.

Attributes listed below for the various drag animation elements have semantics that are defined in the respective nodes to which the drag animations will be mapped. Autooffset is common to all drag animations and allows the offset to automatically be set to the last output value when the pointing device button is released. Subseqeunt dragging then takes place from there. By default autooffset is true.

9.3.2.2.1 <dragPlane>

<dragPlane
 maxPosition = <value>
 minPosition = <value>
 autoffset = “true | false”
 offset = <value>
/>

maxPosition specifies the maxPosition and has default value of “-1 -1”

minPosition specifies the minPosition and has default value of “0 0”

offset specifies the offset and has a default value of “0 0” for 2D contexts and “0 0 0” in 3D contexts.

9.3.2.2.2 <dragDisc>

<dragDisc
 maxAngle = <angle>
 minAngle = <angle>
 autoffset = “true | false”
 offset = <angle>
/>

maxAngle specifies the maxAngle and has default value of “–1.0rad”.

minAngle specifies the minAngle and has default value of “0”.

offset specifies the offset and has a default value of “0”.

9.3.2.2.3 <dragCylinder>

<dragCylinder
 diskAngle = <angle>
 maxAngle = <angle>
 minAngle = <angle>
 autoffset = “true | false”
 offset = <angle>
/>

diskAngle specifies the diskAngle and has default value of “0.262rad”.

maxAngle specifies the maxAngle and has default value of “–1.0rad”.

minAngle specifies the minAngle and has default value of “0”.

offset specifies the offset and has a default value of “0”.

9.3.2.2.4 <dragSphere>

<dragSphere
 autoffset = “true | false”
 offset = <angle axis>
/>

offset specifies the offset and has a default value of “0rad 0 1 0”

Mapping Animation to MPEG-4

XMT-Ω will incorporate the SMIL Animation modules however authoring tools will be made responsible to ensure SMIL Animation semantics are preserved.

Animation features can be mapped to MPEG-4 using various means. TimeSensors, Interpolators and Routes provide mechanisms to do value/keyTime animations. BIFS updates for replace field can be used for <set> and may alos be used for animation if the updates are frequent enough. BIFS Anim may also be used where appropriate. As long as the Animation semantics are maintained an authoring tool implementation is free to choose any appropriate MPEG-4 function(s) to fit the need. It would however be expected to choose a particular mapping to fit the MPEG-4 ”tools” according to a given MPEG-4 profile and level. More complex mappings may be achieved with MPEG-4 player functions that can do run-time computation and decisions, such as MPEG-J and Scripts.

The various drag animations can be mapped to DiscSensor, CylinderSensor, PlaneSensor, PlaneSensor2D and SphereSensor.

Unlike SMIL players, MPEG-4 players do not maintain both a base value and a dynamic presentation value for attributes (fields). MPEG-4 supports only field replacement, whether done by Routes, by BIFS command, or by animation streams. To preserve SMIL Animation semantics the XMT authoring tool will be required to manage and track the attributes state such that the semantics can be honored. However non-deterministic behavior, such as from user driven events, will make this task more difficult and may require the authoring tool to create more complex MPEG-4 constructs to manage this.

The following aspects of a SMIL Animation will require attention by the authoring tool:

When a field is updated in MPEG-4 the prior value is not retained. When the effect of the animation ends the default behavior in SMIL is to revert back to the authored value. To achieve compatible behavior the authoring tool must add, for example additional BIFS commands, to ensure this happens. To do this the authoring tool must be aware of the authored value and may simulate the playback of the authored presentation so that it can insert a field replacement to put the value back to the authored value. For non-deterministic behavior this may include MPEG-4 Conditional nodes, MPEG-J, or Script nodes to do this that can be activated/run by the player from an appropriate trigger.

Where the XMT authoring environment can predict the former value then the authoring tool should honor SMIL semantics. What degree of complexity the authoring tool uses to map such behavior onto MPEG-4 is left to implementation. Where however such semantics cannot be preserved then the authoring tool should warn the author. In the latter case the tool should also suggest a change in the fill attribute value of the animation element. By changing to fill=”freeze” this will allow the final value from the animation to be kept until the media ends.

To achieve SMIL Animation compatibility the effect of certain attributes such as accumulate, additive, by, to, and certain calcModes e.g. spline and paced may be computed at compile time. Such computed results would then be used to generate say a series of timed BIFS commands, or a set of interpolator values for example that produce the desired effect. The degree of approximation in such computations is authoring tool implementation dependent. Depending on the target MPEG-4 player complexity it is conceivable that Scripts or MPEG-J could be used as an alternative so that computations could be done at playback time.

In MPEG-4 the result of multiple routes being fired simultaneously into a given field – fan-in – is undefined. If there are multiple animation elements acting simultaneously on an attribute (field) the authoring tool may not be able to generate an MPEG-4 presentation that combines them and maintains SMIL Animation semantics. If the resultant animation is predictable at authoring time or the authoring tool can manage whatever uncertainty remains at run-time then the animation may be converted to MPEG-4 to allow predictable behavior. If the authoring tool cannot provide a predictable outcome then a warning to the author should be generated.

Some MPEG-4 nodes do not allow some or all of their fields to be updated e.g. Box and FontStyle. Also Box and Rectangle are very similar nodes but for Box, the size field cannot be updated, whereas for Rectangle node the size field can be updated. To update a Box the whole geometry node would need replacing to change it’s size, whereas for Rectangle just the size field itself can be replaced. An XMT authoring tool must mange this mapping variability to MPEG-4 as XMT-Ω presents a consistent interface allowing both those size attributes to be animated even though there are underlying differences. For the animation element <set> the attribute size can be mapped to a single Field and Node replacement for Rectangle and Box respectively. <animate> can also be mapped the same way, with an appropriate rate of updates to achieve the animation effect. For Rectangle however there is also the choice of using an Interpolator in the scene to animate its size field. If an authoring tool cannot map an animation using the available MPEG-4 tools for the target profile and level then a warning to the author should be generated.

XMT-Ω Content Control

SMIL Animation feature comprises four modules; BasicContentControl, CustomTestAttributes, PrefetchControl and SkipContentControl. XMT-Ω will include the features of all four modules.

9.3.2.3 BasicContentControl

SMIL provides a <switch> element and test attributes that permit content selection to be made from a set of alternative elements. Only the first acceptable element is chosen.

9.3.2.3.1 System test attributes

XMT-Ω incorporates the set of system test attributes as listed in the SMIL specification. For example systemBitrate and systemLanguage are test attributes defined by SMIL.

9.3.2.3.2 TermCap test attributes

XMT-Ω adds a set of test attributes that are to be mapped to the TermCap node, subclause 7.2.2.125. The values of the attributes are integers as defined in subclause 7.2.2.125.2. The attributes apply to xMedia objects where the mapping to MPEG will place the media objects under a switch connected to a TermCap node with the capability and its value set according to the termCap test attribute and its value.

termCapFrameRate

termCapColorDepth

termCapScreenSize

termCapGraphicsHardware

termCapAudioOutputFormat

termCapMaxAudioSamplingRate

termCapSpatialAudioCapability

termCapCPULoad

termCapMemoryLoad

The following table lists the above termCap test attributes. Either the numeric value or the string value (case sensitive) may be used.

	termCapAttr
	val
	XMLstring value
	Semantics

	termCapFrameRate
	0
	unknown
	Unknown or can't determine

	
	1
	0-5fps
	Less than 5fps

	
	2
	5-10fps
	5-10fps

	
	3
	10-20fps
	10-20fps

	
	4
	20-40fps
	20-40fps

	
	5
	+40fps
	More than4 0fps

	termCapColorDepth
	0
	unknown
	Unknown or can't determine

	
	1
	1bpp
	1bit/pixel

	
	2
	grayscale
	Grayscale

	
	3
	3-12bppColor
	Color, 3-12bits per pixel

	
	4
	12-24bppColor
	Color, 12-24bits per pixel

	
	5
	+24bppColor
	Color, more than24bits per pixel

	termCapScreenSize
	0
	unknown
	Unknown or can't determine

	
	1
	0-200lines
	Less than 200lines

	
	2
	200-400lines
	200-400lines

	
	3
	400-800lines
	400-800lines

	
	4
	800-1600lines
	800-1600lines

	
	5
	+1600lines
	1600 or more lines

	termCapGraphicsHardware
	0
	unknown
	Unknown or can't determine

	
	1
	noAcceleration
	No acceleration

	
	2
	matrix
	Matrix multiplication

	
	3
	matrixTexture0-1M
	Matrix multiplication + texture mapping (less than 1M memory)

	
	4
	matrixTexture1-4M
	Matrix multiplication + texture mapping (less than 4M memory)

	
	5
	matrixTexture+4M
	Matrix multiplication + texture mapping (more than 4M memory)

	termCapAudioOutputFormat
	0
	unknown
	Unknown or can't determine

	
	1
	mono
	Mono

	
	2
	stereoSpeakers
	Stereo speakers

	
	3
	stereoHeadphones
	Stereo headphones

	
	4
	fiveChannelSurround
	five-channel surround

	
	5
	+fiveSpeakers
	More than five speakers

	termCapMaxAudioSamplingRate
	0
	unknown
	Unknownorcan'tdetermine

	
	1
	0-16000Hz
	Less than 16000Hz

	
	2
	16000-32000Hz
	16000-32000Hz

	
	3
	32000-44100Hz
	32000-44100Hz

	
	4
	44100-48000Hz
	44100-48000Hz

	
	5
	+48000Hz
	48000Hz or more

	termCapSpatialAudioCapability
	0
	unknown
	Unknown or can't determine

	
	1
	noSpatialAudio
	No spatial audio

	
	2
	panningOnly
	Panning only

	
	3
	azimuthOnly
	Azimuth only

	
	4
	full3DSpatialAudio
	Full 3-D spatial audio

	termCapCPULoad
	0
	unknown
	Unknown or can't determine

	
	1
	0-20%
	Less than 20% loaded

	
	2
	20-40%
	20-40% loaded

	
	3
	40-60%
	40-60% loaded

	
	4
	60-80%
	60-80% loaded

	
	5
	80-100%
	80-100% loaded

	TermCapMemoryLoad
	0
	unknown
	Unknown or can't determine

	
	1
	0-100KB
	Less than 100KB free

	
	2
	100-500KB
	100KB-500KB free

	
	3
	500KB-2MB
	500KB-2MB free

	
	4
	2-8MB
	2MB-8MB free

	
	5
	8-32MB
	8MB-32MB free

	
	6
	32-200MB
	32MB-200MB free

	
	7
	+200MB
	More than 200MB free

The following elements support the use of termCap test attribute.

rectangle, circle, text, string, subtitles, points, lines, polygons, curve, img, video, audio, audioClip, box, cone, cylinder, sphere, mesh, group, applicationWindow, inline, xmtaMedia and useMacro

The <use> element is also supported if it is based on the above elements.
9.3.2.3.3 <switch>

The <switch> element is as per SMIL specification.

<switch>
 a list of alternate elements to select from according to test attributes…
</switch>

The following are a couple of examples to illustrate it’s usage. For more information, and more examples, see the SMIL specification.

Selection between audio tracks in different languages.

<switch>
 <audio src=”audio-english” systemLanguage=”en”/>
 <audio src=”audio-francais” systemLanguage=”fr”/>
 <audio src=”audio-dutch” systemLanguage=”nl”/>
</switch>

Selection between audio tracks of various qualities suitable for different bit-rates.

<switch>
 <audio src=”audio-goodquality” systemBitRate=”44100”/>
 <audio src=”audio-mediumquality” systemBitRate=”22000”/>
 <audio src=”audio”/>
</switch>

CustomTestAttributes

XMT-Ω incorporates the custom test attributes as defined by the SMIL specification. Custom test attributes allow authors to define their own test attributes.

9.3.2.3.4 <customAttributes>

The <customAttributes> element is as per SMIL specification. The element may be present in the document header, <head> section, and contains the definition of available custom test attributes.

9.3.2.3.5 <customTest>

The <customTest> element is as per SMIL specification. The element defines each custom test attribute.

<customTest
 id = ID
 title = <string value>
 defaultState = “true | false”
 override = “allowed | not-allowed | uid-only”
 uid = uri-reference
/>

id is an XML identifier.

title is a user defined label for the test attribute.

defaultState is the initial value for named custom test variable that may be overridden.

override allows the author to block overriding the value or limit the means by which overriding can be done

uid identifies a persistent store for the value of the custom test variable.

PrefetchControl

XMT-Ω incorporates the PrefetchControl module as defined by the SMIL specification. The <prefetch> element allows authors to influence the scheduling of media, primarily to allow the media to be presented quickly in interactive presentations with non-deterministic start times based on events.

9.3.2.3.6 <prefetch>

The <prefetch> element is as per SMIL specification.

<prefetch
 id = ID
 mediaSize = <bytes-value | percent-value>
 mediaTime = <clock-value | percent-value>
 bandwidth = <bitrate-value | percent-value>
/>

id is an XML identifier.

mediaSize specifies how much of the media to prefetch as a function of its size.

mediaTime specifies how much of the media to prefetch as a function of its duration.

bandwidth specifies how much of the network bandwidth to utilize when prefetching.

9.3.2.4 SkipContentControl

XMT-Ω incorporates the SkipContentControl module as defined by SMIL, and the elements containing the skip-content attribute are also as defined by SMIL.

9.3.2.5 Mapping Content Control to MPEG-4

Alternate content can be defined using SMIL Content control module.

Certain content, such as alternate languages can be selectable at run-time via MPEG-4 alternate streams identified with language descriptors.

Otherwise selections can be pre-compiled so that language specific MPEG-4 can be output.

Such run-time versus compile-time selection should be under control of the author during a publish stage that would compile the textual format into the required BIFS, OD and media streams etc.

Content control may also be expressed for ratings, bandwidth etc.

9.3.3 XMT-Ω Layout

XMT-Ω contains layout features that are based on the SMIL Layout features. For XMT-Ω Layout there are no SMIL modules incorporated. The Schema for XMT-Ω Layout is unique to XMT, but it is syntactically similar to SMIL Layout.

9.3.3.1.1 <layout>

The <layout> element is similar to that of the SMIL specification.

<layout
 type = “xmt/xmt-basic-layout”
 metrics = “pixel | meter”
/>

type is a string specifying the layout type. The only current valid value “xmt/xmt-basic-layout”.

metrics is a string specifying the metrics used for media dimensions, position etc as per MPEG-4. The valid values are “pixel”, which is the default, or “meter”.

A single, optional <layout> element can be placed into the <head> of the document. When not present the default layout is as if a <layout> had been defined with a default topLayout.

9.3.3.1.2 <topLayout>

The <topLayout> element is similar to that of the SMIL specification. A single topLayout element may be present in the <layout>.

<topLayout
 backgroundColor = <color value>
 height = <value>
 width = <value>
 enableSubtitles = <”true | false”>
/>

backgroundColor is a color value for the background of the topLayout. By default the color is “black” .
height is a string specifying the presentation preferred height in pixels. The attribute contains an optional value such as “480” that defines the height in pixels

width is a string specifying the presentation preferred width in pixels. The attribute contains an optional value such as “640” that defines the width in pixels.

Only if both a width and a height are specified will the preferred size flag in MPEG-4 systems decoder specific information descriptor be set true, otherwise it will be set false.

enableSubtitles is a boolean that controls whether any <subtitles> text is visible or not. This attribute may be animated and by default its value is true.

A <topLayout> may contain zero or more <regions> as defined below. The <topLayout> defines the screen for MPEG-4, see subclauses 7.1.1.2.2 to 7.1.1.2.4. The center point of the <topLayout> is the origin and is MPEG-4 point 0,0 for 2D.

xMedia objects, or <group>s that have no region attribute are placed in the <topLayout> and positioned according to the origin. The <group>, and the xMedia’s <transformation> sub-element, can be used to position the media within the <topLayout> where the translation, rotation attributes position the objects just as the Transform/Transfrom2D nodes position the objects in MPEG-4.

9.3.3.1.3 <region>

The <region> element is a similar concept to that of the SMIL specification except that positioning of regions is based on center coordinates with a single attribute size containing both width and height. Having a single center and since size attribute facilitates animation of the regions to allow their positions and size to be changed (animated).

Multiple regions may be defined within the <topLayout>. Regions can be defined with regions to allow a hierarchical layout.

A media element, or <group> may be associated to a particular region by using the region attribute in the media, or <group>. The region is identified by its id or by its regionName. The optional regionName does not need to be unique and hence may be used in conjunction with content control module and alternate layouts to name multiple alternate regions the same. If there are alternate regions with the same name there must only be one that is finally selected by the content control, otherwise the layout is ambiguous.

xMedia objects and <group>s placed into the region are positioned off the center of the region where the translation, rotation attributes position the objects just as the Transform/Transfrom2D nodes position the objects in MPEG-4.

z-index is used to control the layerering of mutiple regions that are inside a single region or topLayout. If no z-index is specified then those regions have a highest order and will be on top. Regions having an identical z-index (and all those that where z-index is not specified are considered identical to each other) are layered in document order with the each new region being layered on top of the prior one in the document order.

<region
 id
 = ID
 backgroundColor = <color value>
 regionName = <string>
 translation
 = <value>
 size
 = <value>
 z-index = <value>
 soundLevel = <value>
/>

id is an XML identifier.

translation is the coordinates for the center of the region .

size is the width and height of the region.

z-index is used to resolve the layering of overlapping regions in the same region or in a topLayout.

soundLevel is used to set the volume of audio elements placed into the region as per SMIL AudioLayout module.

9.3.3.2 Mapping Layout to MPEG-4

layout: metrics goes to BIFS config.

topLayout: width and height go to BIFS config. backgroundColor maps to MPEG-4 Background:skycolor or Background2D:backColor depending on whether the content is 2D or 3D. topLayout maps to a Layer2D node or OrderedGroup node for 2D content; or a Layer3D node or Group node for 3D content.

region: maps to layer2D or layer3D node

9.3.4 XMT-Ω Linking

XMT-Ω defines a single linking element <a> that is similar to the use of the same element in SMIL and HTML. In XMT-Ω this would be mapped to an MPEG-4 Anchor node to another MPEG-4 presentation.

9.3.4.1 <a>

<a
 id = ID
 href = <uri-reference>
/>

id is an XML identifier.
href is a uri-reference to another valid mpeg-4 presentation.
The <a> linking element can contain one or more xMedia elements, <group> elements, xmtaMedia elements or <use> elements referring to any of the preceding types. The <a> element can be nested such that, for example, a <group> contained several child xMedia element can have an <a> element surrounding the group while an xMedia element(s) in the group also has an <a> element. If a media contained by more than one <a> element it is the one that is closest above the media in the scene hierarchy that will be activated when the media is clicked.

The following is an example where, if either of the two media elements circle or rectangle are clicked, the current presentation will end and the new presentation will be started.

 <circle radius=”25” .../>
 <rectangle size=”100”.../>

9.3.4.2 Mapping Linking to MPEG-4

Linking provides a high-level representation of the Anchor node which will be used in the mapping to MPEG-4.

9.3.5 XMT-Ω Extensible Media (xMedia) Objects

Although SMIL provides a useful abstraction for media objects in the Media Object Module, SMIL is more about multimedia player composition rather than multimedia object composition as MPEG-4 is about. For instance, SMIL would render text and let the text player concern itself about font, style, colors etc., whereas MPEG-4 text object includes font, style, alignment, and colors and as such is intimately aware of such detail. A combination of HTML+SMIL would include these text attributes but again HTML has its own media content model.

MPEG-4 also contains 2D elements similar to those that are described in SVG (Scalable Vector Graphics), for example Rectangle and Circle. SVG in fact uses modules from SMIL; content selection and animation. The animation module was jointly developed between SMIL and SVG.

The XMT-Ω format will abstract media objects to include behavior in a manner comparable to SMIL Animation, e.g. <set attributeName=”myRect.color” begin=”click” to =”#ff00ee”>. This example would map in MPEG-4 to a TouchSensor on the object that had a route that, via a valuator, set the color of a Rectangle object, named myRect, to the color #ff00ee.

The XMT- Ω syntax and semantics have been designed around extensible media (xMedia) objects. The XMT- Ω defines a set of xMedia elements as basic building blocks for multimedia objects. An xMedia object is defined by an element, such as , or <rectangle>, which abstracts geometry, with media specific attributes and timing attributes. Elements and attributes defined in the XMT-Ω namespace contains a subset of what is defined in SMIL.

Spatial properties of an xMedia element can be further defined by a set of common child elements: <transformation>, <material>, <outline>, <chromakey>, <texture>, <light>, and <hotspots>.
Behavior that are associated with an xMedia element can be defined by a set of animation elements (see the animation section). Events that are associated with an xMedia element (e.g. a mouse click) can be expressed using timing attributes as in SMIL (see the timing section).

An xMedia element also abstracts BIFS, OD commands, media streams, etc.
9.3.5.1 Generic xMedia object

The following defines a generic 2D/3D xMedia object. For media object specific attributes, such as rectangle’s size or circle’s radius, see the individual xMedia object definitions below. Timing attributes are defined in the timing section.

 <xMediaObject %media_specific_attributes
 %timing_attributes

 <transformation
 center = ”cx cy cz”
 rotation = ”angle ax ay az”
 scale = ”sx sy sz”
 scaleOrientation = ”angle ox oy oz”
 translation = ”x y z”
 visibility = ”true | false”
 order = numeric_value
 billboard = true | false
 billboardAxis = “bx by bz”
 />
 <material
 ambientIntensity =”i”
 diffuseColor = color
 color = color
 shininess = “s”
 specularColor = color
 transparency = “alpha”
 filled=”true | false”
 >

 <outline
 color=”#00ff00”
 width=”2”
 style=”dash-dot”
 />

 </material>
 <chromakey
 isKeyed = ”true | false”
 isRGB = “true | false”
 keyColor = “rgb | yuv”
 lowThreshold = “l”
 highTHreshold = “h”
 transparency = “alpha”
 />
 <texture
 src = image | video
 <encodingHints> Hints to encode source </encodingHints>
 repeatS = “true | false”
 repeatT = “true | false”
 center = “x y”
 rotation = “angle”
 scale = “x y”
 translation = “x y”
 />
 <light
 ambientIntensity = “i”
 color = color
 direction = “x y z”
 intensity = “i”
 on = “true | false”
 />
 <hotspots>
 %media_elements
 </hotspots>
</mediaObject>

Spatial properties of an xMedia object can be defined by its child elements, such as the transformation, material, outline, chromakey, texture, light elements. Behavior of an xMedia object upon user interactions are defined by the hotspots elements.

SMIL attributes erase and sensitivity are supported in XMT, for compatibility, but only for the SMIL default values of whenDone and opaque respectively.

9.3.5.1.1 <transformation>

 <transformation
 center = ”cx cy cz”
 rotation = ”angle ax ay az”
 scale = ”sx sy sz”
 scaleOrientation = ”angle ox oy oz”
 translation = ”x y z”
 visibility = ”true | false”
 order = numeric_value
 billboard = true | false
 billboardAxis = “bx by bz”
 />
A <transformation> element allows the object to be positioned, scaled etc (mapped to a Transform or Transform2D node). See subclauses 7.2.2.131 and 7.2.2.132 for definition. The center, rotation, scale, scaleOrientation and translation attributes are mapped to their MPEG-4 node counterparts (Note: rotation attribute maps to rotationAngle field for Transform2D node). Z-coordinates and axis for rotation and scale are only for 3D nodes.

The object can be shown and hidden (MPEG-4 object is mapped under an MPEG-4 switch node for this purpose) using a visibility attribute (familiar to DHTML authors).

Order (See subclause 7.2.2.90.2 OrderedGroup) is used to explicitly control the rendering order of the 2D media object within a <group> element or in the default group. The default group is the group that is used to map the region, or topLayout. Once one media object in a group has an order value all other objects will have a default order value of 0.0 if not explicitly defined. Order field is used primarily to control the rendering order of 2D media objects, since they have no z-index. For 3D objects, having a z-index, the order field is used only for the case of co-planar surfaces to determine which surface to render first. For 2D media objects without an order, or for objects of the same order value, the media objects will be rendered according to their temporal occurrence where later items are rendered on top. Items occurring at the same time will be rendered in the order they appear in the XMT document (document order).

Billboard and billboardAxis are for 3D media objects only and define media object to be a billboard type as if a child of a Billboard node. See subclause 7.2.2.21 where billboardAxis is the axisOfRotation.

9.3.5.1.2 <material>

 <material
 ambientIntensity =”i”
 diffuseColor = color
 color = color
 shininess = “s”
 specularColor = color
 transparency = “alpha”
 filled=”true | false”
 />

A <material> element specifies the material for a visual media. This is mapped either to a Material or Material2D node depending on whether the media object is a 3D or 2D type respectively - see subclauses 7.2.2.79 and 7.2.2.80 for definition. The color is mapped to emissiveColor, all other attributes are mapped to their MPEG-4 node counterparts. AmbientIntensity, diffuseColor, shininess and specularColor only for 3D media objects; filled attribute is only for 2D media objects. The <material> can contain an <outline> which is only for 2D media objects.

9.3.5.1.2.1 <outline>

 <outline
 color=”#00ff00”
 width=”2”
 style=”dash-dot”
 />
The <outline> element contains the style (dotted, dashed, etc.), the thickness and color of a line that is drawn around the periphery of a 2D media object. This is mapped to LineProperties node - see subclause 7.2.2.75 for definition.

9.3.5.1.3 <chromakey>

 <chromakey
 isKeyed = ”true | false”
 isRGB = “true | false”
 keyColor = “rgb | yuv”
 lowThreshold = “l”
 highThreshold = “h”
 transparency = “alpha”
 />
The <chromakey> element applies only to or <video>. This defines a chroma key color for shaped image/video extraction. This is mapped to the MaterialKey node - see subclause 7.2.2.81 for definition.

9.3.5.1.4 <texture>

 <texture
 src = image | video
 repeatS = “true | false”
 repeatT = “true | false”
 center = “x y”
 rotation = “angle”
 scale = “x y”
 translation = “x y”
 />
The <texture> element allows any 3D or 2D visual media object, except and <video>, to be textured. This is mapped either to an ImageTexture or a MovieTexture node, along with a TextureTransform node depending on whether the src is an image or a video - see subclauses 7.2.2.65, 7.2.2.86 and 7.2.2.131 for definitions. The repeatS and repeatT attributes are mapped to the ImageTexture or MovieTexture node. Center, rotation, scale and translation are mapped to the TextureTransform node.

9.3.5.1.5 <light>

 <light
 ambientIntensity = “i”
 color = color
 direction = “x y z”
 intensity = “i”
 on = “true | false”
 />
The <light> element is valid only for 3D media objects. This is mapped to a DirectionalLight - see subclause 7.2.2.48 for definition

9.3.5.1.6 <hotspots>

The <hotspots> element allows media elements, such as circle, rectangle etc or a <group> of objects to be used as hotspot links. The <hotspots> element allows these media elements to be added to any other media elements and designated as a hotspot. An <a> linking tag, see the linking section, or other animation element, see the animation section, would be associated with the hotspot media element to make it active. By nesting the hotspot media elements this way they will track the media object they are the hotspot for if the media object moves or is scaled etc. (The hotspots media elements are attached under the Transform/Transform2D that is mapped by the <transformation> element).

In MPEG-4, any shape can have a TouchSensor attached and can therefore be used as a hotspot. Both 2D and 3D shapes can be used and so a wider range of shapes is available for use in the same way that area can be used. In addition, the MPEG-4 shapes can be made translucent and partially visible; visible as translucent outlines etc. If the shapes use (share) the same appearance, then control of hotspot visibility can easily be provided in a presentation. It may be advantageous, at the authoring level, to identify shapes used as a Hotspot’s. Note also the shapes can be timed and provide changing active buttons over time.

As the <hotspots> element contains xMedia objects, whose syntax permits the use of a region, it would create problems and makes no sense if the region attribute on an xMedia hotspot object specified a different region that the group it belonged to. To ensure this cannot happen the region attribute of an xMedia object will be ignored when it is contained in a <hotspots> element.

An object used as a hotspot, although is a media element, cannot contain further hotspots itself.

The media objects used as hotspots are translated according to the 0,0(,0) origin of the media object containing the hotspots and are transformed along with any transformation(s) that act upon that media object.

Media elements in the hotspots can also be enclosed by <anchor> element to allow hotspots to link to other content.

9.3.5.2 <rectangle>

<rectangle size=”width height”/>

The <rectangle> element is the XMT-Ω representation of a rectangular media object.

9.3.5.2.1 Element content

NOTE: All 2D attributes of the <material> element are applicable. Also, the transparency attribute of the <material> element is meaningful only if the object is filled, i.e., only if the filled attribute of the <material> element is specified. An unfilled object can be defined by specifying the <outline> element (see section on The <outline> element) and the filled attribute to be false. A filled object with an outline can be defined by specifying both the filled attribute to be true and using the <outline> element.

9.3.5.3 <circle>

<circle radius=”radius”/>

The <circle> element defines the circular media object.

NOTE: See subsection on the Element content of The <rectangle> element.

9.3.5.4 <text>

<text src = ““ >
</text>

This is a text element that is directly compatible with SMIL media object <text>.

Note: as the src attribute is a URI a text string can be coded directly in the text element using a data uri of the form such as <text src=”data:text/plain,this is some text”>

9.3.5.5 <string>

<string textLines=”"A first line of text";
 "A second line etc if needed and so on"” >
 <fontStyle .../>
</string>

This maps to an MPEG-4 text node and provides a mechanism to include text strings directly rather than via an src.

See subclause 7.2.2.61 for definition of fontStyle which is equivalent to the MPEG-4 node

<fontStyle
 family = ““Helvetica Bold”; “SERIF | SANS | TYPEWRITER””
 horizontal = “true | false”
 justify = “BEGIN | FIRST | MIDDLE | END; BEGIN | FIRST | MIDDLE | END”
 language = “”
 leftToRight = “true | false”
 size = 24.0
 spacing = 1.0
 style = “PLAIN | BOLD | ITALIC | BOLDITALIC”
 topToBottom = “true | false”
/>

9.3.5.6 <subtitles>

Subtitles are text that are used for accessibility on audio streams. Under player client selection sub-titles may be enabled or disabled and are available as a separate object from text for this purpose. An attribute in <topLayout> called enableSubtitles is available to be animated for this purpose.

Like the <text> element the <subtitles> contains a <fontStyle>. The <fontStyle> may be directly here or a <use> that references a <fontstyle> in the <defs>. The latter case allows more than one <subtitles> text block to share the same font style.

<subtitles textLines=”"A first line of subtitles";
 "A second line if wanted etc."” >
 <fontStyle .../>
</subtitles>

9.3.5.7

 <encodingHints> Hints to encode source </encodingHints>

The element is directly compatible with SMIL media object . The element is an imageTexture mapped onto a Bitmap geometry.

Note: is always mapped to Bitmap node. For other mappings an image can be textured onto a rectangle, or other visual media objects, using the <texture> element.

The <material>, <outline> and <texture> elements are not valid.

9.3.5.7.1 JPEG image sequence

For a sequence of images, when they are coded as JPEGs, it is possible to map into MPEG-4 the images to individual ObjectDescriptors or into the same ObjectDescriptor with one JPEG as a single timed Access Unit. The exact mapping to MPEG-4 is not dictated by XMT-Ω however <deliveryHints> may be used on each to specify it is part of a common elementary stream. This is accomplished by using <param> with the name “ImageSequence” to denote the images are part of a common sequence were the sequence is identified using an identification in the value

<param name=”ImageSequence” value=”A unique stream identification”/>

For example:

<seq>

 <deliveryHints>
 <param name=”ImageSequence” value=”slideShow1”/>
 </deliveryHints>

 <deliveryHints>
 <param name=”ImageSequence” value=”slideShow1”/>
 </deliveryHints>

 <deliveryHints>
 <param name=”ImageSequence” value=”slideShow1”/>
 </deliveryHints>

</seq>

In the above example the first two image sources were JPEG and the latter image source was a BMP. This will be re-coded as a JPEG during the mapping to MPEG-4 so that the <deliveryHints> for the image sequence can be honored.

9.3.5.7.2 Images as a PixelTexture

Although many images will be mapped to MPEG-4 as ImageTextures with an Elementary Stream conveying the pixels it is possible to map an image to a PixelTexture. For small images for use as icons, cursors etc mapping as a PixelTexture eliminates the need for an elementary stream for the image, plus mapping to PixelTexture allows non-rectangular transparent images to be created. To specify that an should be encoded as a PixelTexture the following <encodingHints> are to be used.

In the <targetFormat> specify <param> with a name of ”PixelTexture” and one value from the following =”mono”, ”monoAlpha”, “color” or “colorAlpha”.

9.3.5.8 <video>

<video src =”“ >
 <encodingHints> Hints to encode source </encodingHints>
</video>

The <video> element is directly compatible with SMIL media object <video>. The <video> element is a movieTexture mapped onto a Bitmap geometry.

Note: <video> is always mapped to Bitmap node. For other mappings a video can be textured onto a rectangle, or other visual media objects, using the <texture> element.

The <material>, <outline> and <texture> elements are not valid.

9.3.5.9 <points>

<points
 color = “rgb; rgb; rgb”
 coord = “x y z; x y z; x y z”
/>

See subclauses 7.2.2.98 PointSet and 7.2.2.99 PointSet2D for definition of the attributes which are equivalent to the MPEG-4 node fields. The color attribute is an array of colors one for each coordinate in the coord attribute. The coord attribute has either “x y” pairs or “x y z” triplets depending on whether the element is used as a 2D media element or 3D element. As per MPEG-4 Systems if no color is specified then the color used for the points will be as specified by the <material>.

9.3.5.10 <lines>

<lines
 color = “rgb; rgb; rgb”
 coord = “x y z; x y z; x y z”
 colorIndex = “”
 colorPerVertex = “true | false”
 coordIndex = “”
/>

See subclauses 7.2.2.68 IndexedLineSet and 7.2.2.69 IndexedLineSet2D for definition of the attributes which are equivalent to the MPEG-4 node fields. The coord attribute has either “x y” pairs or “x y z” triplets depending on whether the element is used as a 2D media element or 3D element. As per MPEG-4 Systems if no color is specified then the color used for the lines will be as specified by the <material>.

9.3.5.11 <polygons>

<polygons
 coord = “x y; x y; x y”
 coordIndex = “”
 color = “rgb; rgb; rgb”
 colorIndex = “”
 colorPerVertex = “true | false”
 texCoord = “x y; x y; x y”
 texCoordIndex = “”
/>

See subclause 7.2.2.67 IndexedFaceSet2D MPEG-4 node fields. The coord attribute has “x y” pairs as the element is used as a 2D media element. As per MPEG-4 Systems if no color is specified then the color used for the polygons will be as specified by the <material>.

<material> 2D attributes filled, color and alpha and <outline> apply.

9.3.5.12 <curve>

<curve
 points = “x y; x y; x y”
 fineness =
 type =
/>

See subclause 7.2.2.43 Curve2D for definition of the attributes which are equivalent to the MPEG-4 node fields.

9.3.5.13 <audio>

<audio src = “”>
 <sound.../>
 <encodingHints> Hints to encode source </encodingHints>
</audio>

The <audio> element is directly compatible with SMIL media object <audio>.

For compatibility with SMIL the volume of the audio may be controlled through the soundLevel attribute of the region into which the audio is placed.

Alternatively a <sound> element may be used to control the sound intensity, location etc. When a <sound> element is used the soundLevel attribute of the region is ignored for that <audio> element.

The <sound> element is as follows

<sound
 location = “x y z”
 intensity = value
 spatialize = “true | false”
 direction = “x y z”
 maxBack = “value”
 maxFront = “value”
 minBack = “value”
 minFront = “value”
 priority = “value”
/>
where location (with x and y values), intensity and spatialize are valid for use in 2D contexts, all attributes being valid for use in 3D contexts.

Where <sound> is not used, intensity is set through the soundLevel attribute in the region, otherwise it is as if a default <sound> were present with default values for the other attributes. The default values being the same as the Sound or Sound2D node defaults dependent upon context.

9.3.5.14 <audioClip>

<audioClip src = “”>
 <sound.../>
 <encodingHints> Hints to encode source </encodingHints>
</audioClip>

See subclause 7.2.2.10 AudioClip. Note that the MPEG-4 fields relating to timing are managed now via the XMT timing attributes.

The volume of the audioClip is either controlled through the soundLevel attribute of the region into which the audioClip is placed or via a <sound> child element, see <audio> element above for <sound> definition.

9.3.5.15 <box>

<box size=“width height depth”/>

The <box> element defines a box media object.

NOTE: All attributes of the <material> and <transformation> element applies. The <texture> element applies while <outline> does not.

9.3.5.16 <cone>

<cone radius=”r”
 height=”h”
 hasSide=“true|false”
 hasBase=”true|false”/>

The <cone> element defines a 3D conical media object. This is mapped to the Cone node - see subclause 7.2.2.37 for definition. The attribute radius maps to field bottomRadius; hasSide and hasBase map to side and bottom respectively.

NOTE: See the subsection Element content of The <box> element.

9.3.5.17 <cylinder>

<cylinder radius=”r”
 height=”h”
 hasSide=”true|false”
 hasBase=“true|false”
 hasTop =”true|false”/>

The <cylinder> element defines a cylinder media object. This is mapped to the Cylinder node – see subclause 7.2.2.44 for definition. The attributes hasSide, hasBase and hasTop map to side, bottom and top respectively.

NOTE: See the subsection Element content of The <box> element.

9.3.5.18 <sphere>

<sphere radius=”r”/>

The <sphere> element defines a spherical media object. This is mapped to the Sphere node - see subclause 7.2.2.118 for definition.

NOTE: See the subsection Element content of The <box> element.

9.3.5.19 <mesh>

<mesh
 coord = “x y z; x y z; x y z”
 coordIndex = “”
 color = “rgb; rgb; rgb”
 colorIndex = “”
 colorPerVertex = “true | false”
 normal = “x y z; x y z; x y z”
 normalIndex = “”
 normalPerVertex = “true | false”
 texCoord = “x y; x y; x y”
 texCoordIndex = “”
 creaseAngle = “0.0”
 ccw = “true | false”
 convex = “true | false”
 solid = “true | false”
/>

See subclause 7.2.2.66 IndexedFaceSet MPEG-4 node fields. The coord attribute has “x y z” triplets as the element is used as a 3D media element.

9.3.5.20 <inline>

<inline src = “”>
</inline>

See subclause 7.2.2.70 Inline. Allows a complete MPEG-4 presentation to be included (in-lined) in the scene.

9.3.5.21 <applicationWndow>

<applicationWindow %timing_attributes
 src = “”
 description = “”
 parameter = ””
 size = ”w h”
/>

An applicationWindow media object. This is mapped to the ApplicationWindow node - see subclause 7.2.2.7 for definition.

9.3.5.22 <delay>

<delay %timing_attributes/>

A delay (null media object). This object contains no sub-elements.

9.3.6 SMIL media object modules in XMT-Ω

The SMIL Media Object modules for MediaClipping, MediaClipMarkers and MediaDescription are incorporated into XMT-Ω.

9.3.6.1 MediaClipping

This module is fully incorporated. Using clipBegin and clipEnd attributes a sub-clip of a continuous media object can be defined as offsets from the start of the media that identify the beginning and end of a sub-clip.

9.3.6.2 MediaClipMarkers

This module is fully incorporated. This module defines clips using named time points rather than using clock values as used by clipBegin and clipEnd. Named time points can be mapped to MPEG-4 Segment Descriptor.

9.3.6.3 MediaDescription

This module is fully incorporated. This module contains attributes to provide a brief description of the content (abstract) the author, copyright and a title.

9.3.7 XMT-Ω Media Augmentation objects

The following objects act like media objects in that they are part of scene graph hierarchy. The objects act to augment the media objects.

9.3.7.1 <fog>

<fog %timing_attributes
 color = “”
 fogType = “LINEAR | EXPONENTIAL”
 visibilityRange = ””
/>

The <fog> element is a media augmentation object. This is mapped to the Fog node – see subclause 7.2.2.60 for definition.

9.3.7.2 <pointLight>

<pointLight
 ambientIntensity = “i”
 attenuation = “a0 a1 a2”
 color = color
 intensity = “i”
 location = “x y z”
 radius = “r”
 on = “true | false”
/>
The <pointLight> element is a media augmentation object. This is mapped to the PointLight node - see subclause 7.2.2.97 for definition.

9.3.7.3 <spotLight>

<spotLight
 ambientIntensity = “i”
 attenuation = “a0 a1 a2”
 beamWidth = angle
 color = color
 cutOffAngle = angle
 direction = “x y z”
 intensity = “i”
 location = “x y z”
 radius = “r”
 on = “true | false”
/>
The <spotLight> element is a media augmentation object. This is mapped to the SpotLight node - see subclause 7.2.2.120 for definition.

9.3.7.4 <backdrop>

<backdrop color=”” src = “”>
 <encodingHints> Hints to encode source </encodingHints>
</backdrop>

The <backdrop> element is a media augmentation object. This is mapped to the Background2D node - see sublclause 7.2.2.18 for definition.

A <backdrop> will either bind to the entire scene or to a <group> when the <backdrop> is a child element of a <group> and the <group> has a size. See subclause 9.3.9.1 for more detail.

9.3.7.5 <background>

<background
 skyColor=””
 skyAngle=””
 groundColor=””
 groundAngle=””
 backSrc = “”
 bottomSrc = “”
 frontSrc = “”
 leftSrc = “”
 rightSrc = “”
 topSrc = “”
 <encodingHints> Hints to encode source </encodingHints>
</background>

The <background> element is a media augmentation object. This is mapped to the Background node - see sublclause 7.2.2.17 for definition.

One or more <encodingHints> elements can be used to supply encoding hints for the image sources. There are a maximum of six images for the back, bottom, front, left, right and top. An encoding hint applies to the respective image(s) by supplying a name/value pair in the <targetFormat> element of the <EncodingHints> such as <param name=”src” value=”front”> which means that the encoding hints refer to the frontSrc image. The encoding hints will apply to more than one image if more that one name/value pair with name=”src” is used within a single encoding hints target format.

A <background> will either bind to the entire scene or to a <group> when the <background> is a child element of a <group> and the <group> has a size. See subclause 9.3.9.1 for more detail.

9.3.8 XMT-Ω Media Group object

The <group> object acts like a media object. It groups other media and media augmentation objects together such that they can be manipulated as a single larger composite media object within the scene graph hierarchy.

9.3.8.1 <group>

Objects can be grouped and positioned through the group construct as defined in this section. This allows a group of objects to manipulated as a whole, e.g. moved together, scaled or made visibility.

 <group %timing_attributes
 id =””
 center = ”cx cy cz”
 rotation = ”angle ax ay az”
 scale = ”sx sy sz”
 scaleOrientation = ”angle ox oy oz”
 translation = ”x y z”
 visibility = ”true | false”
 order = numeric_value
 billboard = true | false
 billboardAxis = “bx by bz”
 size = ”w h”
 backgroundColor=””
 collide = “true | false”
 />

The <group> element has most of its attributes in common with <transformation> as defined in the media elements. The <group> acts like a <par> time container.

The size, background color and collide attributes are unique to <group>.

The size and background attributes may used to limit the rendering dimensions of the group and to provide a backgroundColor within those dimensions. The backgroundColor attribute is ignored when the size attribute is not present. A size of “-1.0 -1.0” will size the group to the dimensions of its parent; have one specified size and the other as dimension as –1 will cause the dimension that is –1 to be sized to its parent. The parent being either a <group> that is above this one in the hierarchy or if there are none then to the region or layout into which it is placed.

The collide attribute may be used in a 3D context and will cause collision detection amongst the children when set true. A collide event will be raised the group when a collision is detected.

Objects are rendered within the <group> according to the same rules as defined for the media objects <transformation> element.

<group id=”myGroup” begin=”0s”>
 <rectangle size=”10 10” begin=”2s” dur=”5s”/>
 <circle radius=”30” dur=”12s”/>
</group>
In the above example the circle appears first at t=0s. At t=2s the rectangle is added and appears on top of the circle. It is removed 5s later and the circle remains visible for a further 7s when the group ends after its children end at 12s.

<group id=”myGroup” begin=”0s”>
 <rectangle size=”50 50” dur=”5s”/>
 <circle radius=”30” dur=”12s”/>
</group>

In the above example the rectangle and circle both start at t=”0s”. The circle will now appear on top as the media objects in this case are rendered in document order.

Rendering order can however be different if order attribute is specified. In the following example the circle begins at the same time as the rectangle but the rectangle will be rendered on top as it has a greater order value than the circle.

<group id=”myGroup” begin=”0s”>
 <rectangle size=”10 10” dur=”5s”>
 <transformation order=”2.0”/>
 </rectangle>
 <circle radius=”30” dur=”12s”>
 <transformation order=”1.0”/>
 </circle>
</group>

A <group> can also be nested within another <group> to create any desired hierarchy. The order attribute in the <group> controls its rendering order within its parent.

The <group> element collects elements together as a group so that the set of objects can be acted upon as a whole using the attributes of the <group>. For example the complete group can be translated or scaled. The <group> element also supports the region attribute, like the xMedia objects, so that the group of objects placed in a given region. As the <group> element can contain xMedia objects, that may also have a region attribute, it would create problems if the region attribute on a child xMedia object specified a different region that the group it belonged to. To ensure this cannot happen the region attribute of an xMedia object will be ignored when its parent is a group element and the region will be determined solely by the region attribute on the <group> element.

If a <group> has a size attribute specified, if the size field is animated (<set> or <animate>), or if a <backdrop> or <background> is present as a child element of <group> then the <group> shall be mapped to a Layer2D or Layer3D as appropriate, or the mapping shall behave as if this were the case. For example in a very basic profile the Layer nodes may not be there, then the XMT-O can simulate the required mapping using nodes that are available or alert the author if an adequate mapping cannot be achieved. This mapping specification, to behave as if the <group> is mapped to Layer2D/3D, is principally to ensure that the <backdrop> or <background> will bind to the <group> and not to the entire scene. A <background> or <backdrop> that is not a child element of a <group> will form the background to the entire scene.

9.3.9 XMT-Ω custom XMT-A Media objects

The following construct defines a custom media object using XMT-A nodes, descriptor commands etc. The construct allows complicated custom media objects and behavior to be specified and also allows for XMT-A capabilities to be incorporated that have no equivalent representation in XMT-Ω.

9.3.9.1 <xmtaMedia>

<xmtaMedia %simple_timing_attributes region=““
 id=““ type=“2D | 3D | Audio“ hasOD=“true | false“>
 <nodes>
 <Group> or <OrderedGroup>
 <children>
 Visual, or Audio nodes etc
 </children>
 </Group> or </OrderedGroup>
 <ROUTE../>
 <ROUTE../>
 </nodes>
 <cmds>
 Zero or more <par> BIFS, OD, ES, IPMP commands etc and StreamSources
 </cmds>
</xmtaMedia>

An <xmtaMedia> element defines a custom media object. Attributes include support for simple timing support and region which allows the object to be placed in the optionally designated layout region. Simple timing is BasicInline Timing module as per SMIL, i.e. begin, end and dur with simple offset timing only where the intrinsic duration of an xmtaMedia element is 0s. The type attribute specifies whether the media is of type 2D, 3D or audio. This information allows XMT-Ω to create the necessary framework within which to place the media object. The hasOD attribute indicates whether there are OD commands contained in the xmtMedia that would require an OD stream to be defined in the InitialObjectDescriptor.

To control the custom media’s position, its visibility etc the <xmtaMedia> element should be placed within an XMT-Ω <group> element. A duration must be specified for the media as its duration cannot necessarily be determined by the nodes and cmds.

The custom media definition is in two parts:

The first part, contained in the <nodes> element is an XMT-A <Group> or <OrderedGroup> node that may contain any valid XMT-A nodes as well as any ROUTEs needed to connect the nodes.

The second part, the optional <cmds> element, contains any necessary XMT-A Object Descriptor Framework elements to support or augment the nodes, as well as any BIFS commands to update the nodes. All BIFS commands, except for Replace Scene may be used. All OD Framework commands may be used and streams may be defined for MPEG-J, OCI, IPMP. The <par> element may be used to time the commands as defined by XMT-A. The time defined by the <par> element will be offset by the overall begin time of the <xmtMedia> object.
9.3.10 XMT-Ω MetaInformation

XMT-Ω incorporates the SMIL MetaInformation module as defined by SMIL.

<metadata>

The <metadata> element is as per SMIL specification.

<metadata>
 hosts RDF elements
</metadata>

The metadata element hosts RDF metadata as per the Resource Description Framework (RDF), see the SMIL specification for further information.

9.3.10.1.1 <meta>

The <meta> element is as per SMIL specification. The element specifies a single property/value pair in the name and content attributes, respectively.

<meta
 id = ID
 name = <value>
 content = <value>
/>

id is an XML identifier.

name is the name of a property

content is the value of that named property

9.3.10.2 Mapping MetaInformation to MPEG-4

MetaInformation can be retained in the XMT document instance. MetaInformation can also be encoded as OCI.

9.3.11 XMT-Ω Structure

XMT-Ω defines a document structure that is similar, but not identical, to the SMIL structure. XMT-Ω has added a <defs> element into the <head>, much like SVG, to allow definitions for later re-use within the presentation.

9.3.11.1 <XMT-O>

<XMT-O> can contain a single <head> and <body> in that order.

9.3.11.2 <head>

The XMT-Ω can contain <meta>, <customAttributes>, <metadata>, <layout>, <transition>, <defs> and <macros>

9.3.11.3 <body>

And then there is the content itself. A key feature of the content is the high-level constructs for the audio-visual objects. These constructs not only describe the objects but also include behavior.

Like SMIL the <body> element has the timing semantics of a <seq> timing container.

9.3.12 XMT-Ω DEFS

XMT- Ω provides a means to define commonly used elements for a document.

9.3.12.1 <defs>

The XMT-Ω <head> can contain a <defs> element. Elements within the <defs> section can be as follows:

xMedia elements

xMedia augmentation elements

<group>

<xmtaMedia>

<material>, <chromakey>, <texture>, <light> sub-elements from xMedia elements

<outline> (from <material>)

<fontStyle> element (from <text>)

The id of an element allows and element, and any contained elements, to be referenced in the <body>.

<defs>
 <fontStyle id=”myBold” family=”SERIF” size=”24” style=”BOLD”/>

 <rectangle id=”bigRect” size=”200 300”>
 <material id=”myRed” color=”#FF0000” filled=”true”/>
 </rectangle>
 <circle id=”smallCirc” radius=”1”>
 <use xlink:href=”#myRed”/>
 </rectangle>
 <material id=”myWhite” color=”white” filled=”true”/>
</defs>
<body>
 <string textLines=”"My line of text"”>
 <use xlink:href=”#myBold”/>
 </string>

 <use xlink:href=”#bigRect”/>
 <circle radius=”50”>
 <use xlink:href=”#myWhite”/>
 </circle>

 <circle radius=”20”>
 <transformation translation=”10 10”/>
 <use xlink:href=”#myRed”/>
 </circle>

 <use xlink:href=”#smallCirc”/>
</body>

Elements within the <defs> section can also contain animation elements such as <set>, <animate> and <animateColor>. This would normally be used to provide materials whose colors pulsated, small spinning objects that can be re-used etc. The timeline for the animation elements is the document instance timeline that begins at t=0s. So for example setting a color in a material to red at 20s would do so at t=20s and would have the effect of turning all objects red that used the material. No timing is allowed on any other elements, except for the XMT-A <par> timing in an xmtaMedia object which is also relative to the document instance timeline that begins at t=0s, like the animation.

Only discrete xMedia elements are supported in the <defs> section; i.e. no continuous media such as video or audio.

The region attribute is not supported for elements in the <defs> section, the respective <use> will later define the region for that instance (as well as timing etc).

9.3.12.2 <use>

The <use> elements can only substitute in positions where the element(s) would occur if defined directly rather than via the <use>. A <use> can also occur in the <defs> section as part of a larger set of elements making a defined entity. but not as an element immediately under the <defs>, i.e an entity being defined can be created from a combination of original elements as well as other entities defined in the <defs> section.

When a <use> substitutes for an xMedia object it can have attributes that are supported by the xMedia object. These include timing attributes and region.

No child elements are permitted in the<use>; a <use> is identical to its definition. To size and position a <use> when it is an xMedia type the <use> may be placed under a <group> and the translation, scale, center attributes etc of the <group>

9.3.12.3 Mapping DEFS to MPEG-4

Elements in the <defs> section and the <use> maps to the MPEG-4 DEF and USE attributes.

9.3.13 XMT-Ω MACROS

XMT-Ω provides a means to define custom objects with virtual attributes and optional virtual values for these attributes. This facility provides the author a means to define a (complex) object and create many similar instances, say only varying only by a single virtual attribute value. Each high level object, or macro, can have many elements forming the object and the macro provides a mechanism to define virtual attributes by whch the object may be manipulated rather than using the actual attributes of the media objects that comprise the macro. This not only provides a level of abstraction but allows a one to many relationship between the virtual attribute and the actual attributes to which it refers. Abstract virtual values may be defined for each virtual attribute that allow the attribute to be manipulated using values that are more appropriate to the abstraction level.

9.3.13.1 <macros>

The XMT-Ω <head> can contain a <macros> element. Within the <macros> section individual <macro> objects can be defined:

9.3.13.2 <macro>

The XMT-Ω <macro> allows an object to be defined along with virtual attributes that are aliases for one or more actual attributes in the object itself. Such attributes can also have virtual values defined along with the corresponding actual values that the actual attributes in the object need to be set to.

Each <macro> can contain one or more <attrib> elements that define virtual attributes, followed by a single media <group> element that contains xMedia objects etc., as can normally be contained in a <group>. Timing and region attributes that could normally be present on a <group> element are not permitted when used in this <macro> context and are ignored if present. <use> elements are however permitted within the <group> to be part of the macro. Animation elements may be present to animate attributes within the <group> content.

Each virtual attribute, as defined by <attrib>, contains a <targets> element that lists the actual attributes of the elements contained within the <group> that are to be set when the virtual attribute value is set. <targets> contains a list of one or more <target> elements that identify an element and the attribute therein that is to be set. Each <target> can be identified by an id that allows it to be referenced for the creation of virtual values. Each <attrib> can contain zero or more virtual values following the <targets> list. If the actual attribute types are not identical then the virtual attribute can only be manipulated using virtual values and hence in this case at least one virtual value should be defined. Each virtual value element <value> contains a name attribute so as to create a named value. This named value can be used with the virtual attribute to set the virtual attribute value. A <value> contains a list of <put> elements that defines values to be set to each of the <target> attributes. A virtual value can be derived from another using a base=”” attribute. In this case the <put> values override those listed from the virtual value upon which the derived value is based.

This is a very simple example defining a button in a 2D context. One virtual attribute is created called ‘faceColor’ and this is defined as being two actual target attributes in the object. In this case the value types are the same (both color) although they do not have to be. Then some (optional) abstract values are defined, one of which uses an already defined value as a base and makes a delta to it (brightpink is based off murkypink). Another virtual atribute ‘dropShadow’ shows a virtual attribute that is comprised of actual attributes whose types are not the same.

<macro name=”button”>

 <attrib name=”faceColor”>

 <targets>

 <target id=”f1” targetElement=”mat1”

 attributeName=”color”/>

 <target id=”f2” targetElement=”mat2”

 attributeName=”color”/>

 </targets>

 <value name=”murkypink”>

 <put target=”f1” value=”#ff8800”/>

 <put target=”f2” value=”#f55800”/>

 </value>

 <value name=”brightpink” base=”murkypink”>

 <put target=”f2” value=”#ff0000”/>

 </value>

 <value name=”muddyblue”>

 <put target=”f1” value=”#ff88ff”>

 <put target=”f2” value=”#5677ef”/>

 </value>

 </attrib>

 <attrib name=”dropShadow”>

 <targets>

 <target id=”f11” targetElement=”matd”

 attributeName=”color”/>

 <target id=”f12” targetElement=”t2dshadow”

 attributeName=”translation”/>

 </targets>

 <value name=”bottomRightDark”>

 <put target=”f11” value=”#020202”/>

 <put target=”f12” value=”4 -4”/>

 </value>

 <value name=”topLeftLight”>

 <put target=”f11” value=”#404040”>

 <put target=”f12” value=”-5 5”/>

 </value>

 </attrib>

 <group>

Here is the actual xMedia shapes as already defined by XMT-Ω

that form the actual object and has material elements with ids

mat1 and mat2, etc. that are referred to above.

 </group>

</macro>
9.3.13.3 <useMacro>

To use a <macro> it can be instantiated using <useMacro> and the virtual attributes can be given values. Where the values are base types e.g. color, and all actual attributes are of the same type, any base type value from XMT- Ω can be used to instantiate it, in this case the color #00ff00. The virtual attribute can then be animated in the normal way using <set> and <animate>. And for animation too base type values can be used if the actual attributes are of the same type, and if not only virtual values. For example

<useMacro xlink:href=”#button” faceColor=”#00ff00”>

 <set begin=”5s” attributeName=”faceColor” to=”murkypink”/>

 <animate begin=”25s” attributeName=”faceColor” to=”#0000ff” dur=”20s”/>

 <set begin=”30s” attributeName=”dropShadow” to=”topLeftLight”/>

</useMacro>
Where the virtual attributes are a mix of many types the only values supported will be the virtual values, which will list the complete set of actual values to set in the actual attributes to make that virtual value.

All the common attributes that can be used on an xMedia element are present for <useMacro>. These attributes include timing, region etc.

A <useMacro> may be used anywhere a <group> can be used (the <macro> content being formed using <group>). <useMacro>s can also be present in the <defs> section.

9.3.14 XMT-Ω Timing and Synchronization

XMT- Ω Objects are timed using the SMIL Timing and Synchronization modules. We’ll use the terms SMIL timing and XMT- Ω timing (or simply XMT timing) interchangeably in the rest of this document and distinguish them when necessary. The syntax and semantics of timing elements and attributes are as per SMIL specification unless otherwise specified.

SMIL Timing (and thus XMT- Ω timing) defines elements and attributes to coordinate and synchronize the presentation of media objects over time. Three synchronization elements, called as time containers, support timing by grouping their contained children into coordinated timelines:

The <seq> element plays the child elements one after another in sequence.

The <excl> element plays one child at a time, but does not impose any order.

The <par> element plays child elements as a group (allowing “parallel” playback).

XMT- Ω Timing attributes specify element’s timing behavior (as per SMIL specification). The essential timing attributes are are :

begin: specifies the begin time of an element in a variety of ways, ranging from simple clock times to an event (e.g. a mouse-click) occurrence.

dur: specifies the duration of an element.

end: specifies the end time of an element in a variety of ways as in the begin time.

min: specifies the minimum active duration of an element.

max: specifies the maximum active duration of an element.

An example:

<par begin=”0s” dur=”15s”>
 <rectangle . . . />

 <seq>
 <text. . . />
 <circle. . . />
 </seq>
</par>
In this example, <par> and <seq> are used to denote required timing and they will be mapped to BIFS updates at the required times along with OD and media streams as required by the xMedia objects.

The XMT-Ω also supports the following timing attributes:

repeatDur, repeatCount: specifies how long, and how often the element is to repeat.

fill: specifies how an element can be extended (e.g. by freezing the final state) to fill gaps in a presentation.

endsync: controls the active duration of the par and excl containers with respect to the active duration(s) of child element(s). It allows the time container to “co-end,” or end together, with selected child element(s).

restart, restartDefault: controls restart behavior of an element

syncBehavior, syncBehaviorDefault: defines the runtime synchronization behavior for an element.

SyncMaster: if set to true, this forces other elements in the time container to synchronize their playback to this element.

SMIL Timing and Synchronization support is broken down into a number of semantically related elements, attributes and attribute values. XMT- Ω, in re-using the SMIL Timing and Synchronization modules, support most of the SMIL timing constructs, including time containers, sync-arcs, event based timing, stream dependencies, etc. The XMT- Ω also fully incorporates SMIL Time Manipulations module. The XMT-Ω supports the FlexTime model in MPEG-4 by reusing the SMIL timing modules with two additional XMT-Ω specific attributes, namely flexBehavior, flexBehaviorDefault.

As is the case with SMIL, not all XMT-Ω elements may specify their timing behavior using timing attributes. Those XMT-Ω elements that support timing attributes are: All xMedia elements, all animation elements, time container elements, and the group element.

9.3.14.1 SMIL Timing and Synchronization Modules in XMT- Ω

9.3.14.1.1 AccessKeyTiming

Fully incorporated: InputSensor node can be used to provide the necessary keyboard input function.

9.3.14.1.2 BasicInlineTiming

Fully incorporated but for restricted use of indefinte: dur attribute with all allowed values, and begin and end attributes with simple offset values.

Note that the “indefinite”, while supported for dur attribute as the duration can be terminated by an event such as click, supporting this value for begin and end attributes Is not currently feasible for XMT and MPEG-4 as there is no defined external interface in MPEG-4 terminals to trigger the begin or end. SMIL, being a W3C standard, would support using the DOM to trigger the elements begin or end and hence in SMIL indefinite begin or end value is feasible.

9.3.14.1.3 BasicTimeContainers

Fully incorporated: par and seq elements, and fill, endsync attributes on them. The fill attribute on a time container describes its display behavior, and endsync describes its end conditions.

An example:

<par endsync=”first”>
 <video src=”intro.mpg” dur=”media”/>
 <audio src=”intro.au” dur=”media”/>
</par>

In this example the par time container ends when any of the child elements ends its intrinsic media duration dur=”media.” The endsync attribute on a time container may also be “all,” “last,” or id-value to end the time container when all the child elements end, when the last one that has been activated ends, or when the child element specified by the id-value ends, respectively.

9.3.14.1.4 EventTiming

Fully incorporated: begin and end with event values. In addition to 2D interactive behavior, XMT- Ω also supports user interaction with 3D objects. These behaviors are specified in a manner similar to SMIL. An event source is routed to its event sink by using the timing attributes begin or end. As an example, the code fragment below shows that a circle appears when an object with an identifier m1 is clicked. The mouse click event associated with the “m1” object is routed to cause the circle to appear.

Example:
<circle radius=”20” begin=”m1.click”>

 <material color=”red”/>

</circle>

Note: Begin and end times activated by user interaction, i.e. not defined at compile time, cannot be easily supported for media streams at the current level of MPEG-4. It requires the proposed MediaControl node. Support may be possible however for objects composed entirely from BIFS (such as circle, rectangle, etc.) using conditional nodes that can be activated at run-time via user interaction.

Note: In general the main time-line must be defined at compile-time as the scheduling of transmission cannot be managed interactively at run-time given today’s MPEG-4. This situation is in changing as amendments being worked on will bring new functionalities. OD execution semantics may facilitate client-side data requests for transmission. The proposed MediaControl node and/or ServerCommands will also alleviate the situation and allow much more dynamic stream control during playback.

9.3.14.1.4.1 XMT events

In addition to supporting basic events like mouse click, mouse up, mouse down, mouse over and mouse out, XMT allows users to specify other behaviors beyond SMIL for interacting with MPEG-4 objects in both 2D and 3D spaces. These behaviors are specified as suffix to the identifier of an object, such as “M1.mousedrag”, “M1.click”, etc, with the exception of collision. The collide suffix will be associated with a collision group, instead of with an object.

Table 96 — XMT supported behaviors and suffixes

	Behavior/Event
	XMT defined event symbols
	SMIL defined event symbols

	Mouse click
	click
	activateEvent

	Mouse up
	mouseup
	

	Mouse down
	mousedown
	inBoundsEvent

	Mouse out
	mouseout
	outOfBoundsEvent

	Mouse over
	mouseover
	

	Detecting visibility of an object
	viewable
	

	Detecting proximity of an object
	near
	

	Detecting collision of objects
	collide
	

	Observed begin of object
	
	beginEvent

	Observed end of object
	
	endEvent

	Object has begun a repeat cycle
	
	repeatEvent

The table above lists the XMT behavior and their corresponding suffixes. XMT has defined unique event symbols to support events not defined in SMIL, but also supports some of the event symbols defined by the SMIL language. In some cases there are two symbols for the same event, for example click and activateEvent. An authoring tool should support both and treat them as synonyms. Click is potentially more readable but activateEvent is more interoperable with the SMIL language. Dependent on how the authored content is to be used an author can choose to use either.

Suffixes such as click, mouseup, mousedown, mouseout, mouseover, mousedrag and rotate are associated with the identifiers of both 2D and 3D objects. Collide applies to 3D objects.

To detect the collision of 3D media objects with other 3D media objects the objects are placed within a <group> that has the collide attribute set to true. The sample XMT fragment below shows that the audio starts playing when the two objects with identifiers s1 and b1 collide.
 <head>
 <layout metrics=”pixel”>
 <topLayout width=”640” height=”480”/>
 </layout>
 </head>
 <body>
 <group id=”CG1” collide=”true”>

 <sphere id=”s1” radius=”50”>
 <transformation translation=”10 10 10”/>

 </sphere>

 <box id=”b1” size=”10 10 10”>

 <transformation translation=”-10 10 10”>
 <animateMotion to=”10 10 10” dur=”5s”/>
 </transformation>

 </box>
 </group>

 <audio src=”myaudio.wav” begin=”CG1.collide”/>

 </body>
Additional constraints on an object’s behavior/ event can be specified via escape to the XMT-A construct. For instance, we may want to specify the region within which an object can be dragged, or perhaps we want to specify the time duration during which certain events may occur, with the exception of collision event. This can be achieved by using the escape mechanism described below.

9.3.14.1.5 ExclTimeContainers

Partially incorporated: excl time container and fill, endsync attributes on it. <excl> supports only one stream playing according to selection. Certain mappings may be possible where such content is played under an MPEG-4 switch node where the switch selection is by user interaction.

An example:

<par>

 <video id=“vid” …/>

 <excl>

 <par begin=”englishBtn.click”>

 <audio begin=vid.begin src=”english.wav” />

 </par>

 <par begin=”frenchBtn.click”>

 <audio begin=vid.begin
 src=”french.wav” />

 </par>

 <par begin=”koreanBtn.click”>

 <audio begin=vid.begin
 src=”korean.wav” />

 </par>

 </excl>

</par>

In this example, multiple languages are available for a video. Only one language is played at a time with the most recent selection replacing the previous language choice, if any. The three par elements are children of the excl contained and so at most only one can play at any given time. The audio child in each par is defined to begin when the video begins. Each audio can be active (or heard) only when its parent time container is active; which begins with a click on a button media object somewhere. This means that when the par begins, the audio will start playing at some point in the middle of the audio clip in sync with the video. I.e. the audio’s actual computed begin time is coincident with the start of the video, but it cannot play (become active and be heard) until its parent is active, begun by a click, and so the actual observed start is some point into the audio as if it began playing when the video began. So the language track for the video can be switched and stay in sync with the video.

Note that the priorityClass element to control the pausing behavior of children of the excl will not be incorporated by XMT. The child elements of an excl will be considered to be peers with the default peers behavior “stop.”

9.3.14.1.6 FillDefault

Fully incorporated: the fillDefault attribute defines the default value for the display behavior for an element when its active duration ends. The element may be frozen at the final state, or it may no longer be

presented (i.e., its effect is removed from the presentation).

9.3.14.1.7 MediaMarkerTiming

Fully incorporated: begin and end with media marker values allow elements to begin and end based upon media markers contained in the source content.

Example:

<audio begin=”longvideo.marker(#video1)” … />
The audio will begin at the time of the named marker #video1 in the longvideo element. This allows synchronization between streaming media segments and other elements using named markers. The named markers can map to proposed SegmentDescriptors in MPEG-4.

9.3.14.1.8 MinMaxTiming

Fully incorporatd: min and max attributes provide the author with a way to control the lower and upper bound of the element’s active play duration.

Example:

<video end=”foo.click” min=”5s” max=”20s” … />
The video will end when foo is clicked, but it will play at least for 5 seconds (even if foo is clicked earlier) but no more than 20 seconds (i.e., the video will end at 20 seconds even if foo is not clicked.

9.3.14.1.9 MultiArcTiming

Fully incorporated: the begin and end attributes may have multiple semicolon-separated values.

Example:

<par>
 <video begin=”5s; foo.end; foo.click” …/>
 </par>
The video will begin 5 seconds after the par begins, when “foo” ends, or when “foo” is clicked, whichever happens first.

9.3.14.1.10 RepeatTiming

Fully incorporated: repeatDur, repeatCount attritutes to allow repeating an element for a given duration or number of iterations.

Example:

<audio src=”sound.wav” dur=”2.5s” repeatDur=”7s” …/>
The audio will play for a total of 7 seconds. It will play fully two times, followed by a fractional part (.5) of the 2 seconds.

9.3.14.1.11 RepeatValueTiming

Fully incorporated: begin and end with repeat values to allow elements to begin and end in response to repeat events with a specific iteration value.

An Example:

<audio begin=”foo.repeat(3)” … />
Audio begins when the foo element repeats the third time.

9.3.14.1.12 RestartDefault

Fully incorporated: restartDefault attribute for specifying default restart semantics.

9.3.14.1.13 RestartTiming

Fully incorporated: restart attribute for controlling the begin behavior of an element that has previously begun.

Example:

<audio begin=”foo.click” dur=”3s” restart=”whenNotActive” … />

This example will begin repeating the audio clip and play for 3 seconds when “foo” is clicked but restart will be triggered only if the click occurs when this element is not active. The restart attribute value can also be “always,” or “never,” as per SMIL specification.

9.3.14.1.14 SyncBehavior

Partially incorporated: syncBehavior attribute specifies the runtime synchronization behavior. Note that syncTolerance is not incorporated by XMT.

Example:

<par>
 <text … />
 <par id=”speech” syncBehavior=”canSlip” >
 <video syncBehavior=”locked”… />
 <audio syncBehavior=”locked”…/>
 </par>
</par>

The audio and video elements are defined with hard or “locked” sync to maintain lip sync, but the “speech” par time container is allowed to slip. If either the video or audio must pause due to delivery problems, the entire “speech” par will pause, to keep the entire timeline in sync. However the rest of the document, including the animation element will continue to play normally.

SMIL runtime synchronization behavior syncBehavior=”canSlip | locked” would map to independent MPEG-4 OCRs and MPEG-4 streams using a common OCR respectively. The syncTolerance attribute will not be supported by XMT.

9.3.14.1.15 SyncBehaviorDefault

Partially incorporated: syncBehaviorDefault attribute to specify default synchronization behavior for elements and all descendents. The syncToleranceDefault will not be supported.

9.3.14.1.16 SyncbaseTiming

Fully incorporated: begin and end with syncbase values to allow elements to begin and end relative to each other.

Example:

<par>
 <video id=vid …. />

</par>

The img will begin and end at the same time as the video.

9.3.14.1.17 SyncMaster

Partially incorporated: syncMaster attribute to specify the synchronization master for a timeline.

SMIL syncMaster may be used in MPEG-4 to define the stream that supplies the OCR reference.

9.3.15 XMT-Ω Time Manipulations

9.3.15.1 SMIL TimeManipulations Module

Fully incorporated : accelerate, decelerate, autoReverse, and speed attributes to allow time manipulations.

Example:

<seq speed=”2.0”>
 <video dur=”10s” …/>
 <video dur=”10s” …/>
</seq>
In this example the entire contents of the sequence will play twice as fast. Each video child will play at twice the normal rate, and so will only last for 5 seconds.

Example:

 <animateMotion dur=”8s” accelerate=”.25” decelerate=”.25” … />

A motion path will accelerate up from a standstill over the first 2 seconds, run at a faster than normal rate for 4 seconds, and then decelerate smoothly to a stop during the last 2 seconds. This makes the motion animation look more realistic.

9.3.15.2 FlexTime Support

MPEG-4 FlexTime model is fully supported by the XMT-Ω timing model by extending the SMIL timing behavior with flexBehavior and flexBehaviorDefault attributes. The flexBehavior attribute specifies preferred modes of stretching or shrinking of the playback duration of an element in order to satisfy synchronization requirements to compensate for unpredictable delays in a delivery system, utilizing some amount of flexibility given by the author. Note, that whereas stretching or shrinking the duration of continuous media, e.g. for video, implies respectively slowing down or speeding up playback, for discrete media such as a still image, shrinking or stretching is merely adjusting the rendering period to be shorter or longer.

As such the flexBehavior attribute specifies whether (and if so how) the corresponding element can remain in a flexible synchronization relationship to the parent time container. The flexBehavior works in conjunction with the min and max attributes, where the min and max values provide lower and upper bounds on the active duration as specified in the SMIL timing model. The flextime support in XMT allows the “flexed” element to adjust its playback speed according to the preferred modes of stretching or shrinking, while allowing the length of the active playback duration to be anywhere between the min and max.

We will call an element “flexed” if it specifies the flexBehavior attribute with non-default values, where default values are stretch/shrink mode=”normal” indicating that no stretching or shrinking is to be done.

Note that the flextime support does not guarantee synchronization. Flexibility on a flexed element is bounded by the min and max, and thus any delay or wait needs to be timed within the limits. For instance, if a network congestion delay occurs on a flexed media element, its rendering can wait using the min/max flexibility provided that the rest of the synchronization requirements can still be met. But if there is a delay beyond an allowable limit, synchronization will simply be broken. For guaranteed synchronization, syncBehavior attribute can be used, which describes for each element whether it must remain in a hard sync relationship to the parent time container. But syncBehavior does not alter the active duration of an element as flexBehavior does. It delays the parent time container begin time until it is ready to proceed.

9.3.15.2.1 The flexBehavior attribute

The flexBehavior attribute allows authors to specify preferred ways to stretch (slow down) or shrink (speed up) the active duration of an element and its descendents to satisfy synchronization requirements.

The default value of flexBehavior is “default” which means that the value is specified by flexBehaviorDefault. If flexBehaviorDefault is not specifed it defaults to the value of “inherit; inherit”. A document that defines neither of these attributes will have flexBehavior=”normal ; normal” behavior for all timed elements.

flexBehavior::= stretchBehaviorValueList “;” shrinkBehaviorValueList | “default”

A semicolon separated pair of two lists, the first is the stretchBehaviorValue list and the second is the shrinkBehaviorValueList.

stretchBehaviorValueList ::= stretchBehaviorValue (“,” stretchBehaviorValueList)?

A comma separated list of stretchBehaviorValues in preferred order.

shrinkBehaviorValueList ::= shrinkBehaviorValue (“,” shrinkBehaviorValueList)?

A comma separated list of shrinkBehaviorValues in preferred order.

stretchBehaviorValue ::= “hold” | “linear” | “repeat” |”normal”

“hold” will hold on the last frame, or freeze the element in order to increase the active duration, “linear” will slow down the duration linearly (e.g., reducing the video frame rate), “repeat” will repeat the element duration to increase its active duration, and “normal” signals XMT that there is no flexBehavior extension to the SMIL based XMT timing behavior.

shrinkBehaviorValue ::= “stop” | “linear” | “normal”

“stop” will stop the element’s active duration in order to speed it up, “linear” will speed up the active duration, linearly (e.g., increasing the video frame rate), “normal” signals XMT that there is no flexBehavior extension to the SMIL based XMT timing behavior.

Example:

<par>

 <audio …/>

 <video min=”5s” max=”10s” flexBehavior=”linear, hold; linear, stop” …/>

</par>
In this example, the video can slow down or speed up to increase or decrease the active duration if synchronization requirements cannot otherwise be met. It can slow down preferably by linearly adjusting the frame rate, or if linear stretching is difficult, it can freeze the last frame and hold on to it to increase the active duration. Similarly, it can reduce the active duration by linearly adjusting the frame rate, but if linear speed up is not possible, it can stop when necessary.

Flexed elements can map to MPEG-4 using TemporalGroup and TemporalTransform nodes.

Consider a slightly more complicated example:

<seq begin=”0s” flexBehavior=”linear, hold; linear, stop” min=”14s” max=”18s”…>

 <par …/>

 <audio dur=”10s” min=”8s” max=”15s”…./>

 <video dur=”10s” min=”8s” max=”15s” …./>

 </par>

</seq>
In this example, when all is well, the img begins when the seq time container begins, displays for 6 seconds, and the par container begins and immediately audio and video will begin and play for 10 seconds, after which the par container ends and so does the seq container. The total active duration of the seq container is then 6+ 10=16 seconds which is within the bounds of min and max on the container, and hence everything is fine.

But suppose that the seq container begins at the specified time at zero second, but the img is delayed by 2 seconds, i.e., it arrives 2 seconds after the seq container begins. Note that in this example the specified begin times of the img and the seq container coincide, i.e., the timeline of the img’s active duration starts running as the seq container becomes active. The player has two choices at this point.

One is to display the img for as close to “optimal” (as specified in dur) duration 6 seconds after its arrival (making its active duration to 8 seconds) and continue with the rest. This is possible since there still is a chance (by looking ahead to the par container) to complete the par container in 10 seconds and thus finish the outermost seq container in its max duration, 18 seconds. Alternatively, it can compensate for the 2 second delay as much as it can up-front, by cutting the playback duration of the img, in this case to 4 seconds after its arrival (making its active duration to 6 seconds), and continue with the par container as if there was no delay assuming that the audio and video are there in time.

Note that a player can make either choice, whether to compensate for a delay as early as possible or to as late as possible. Suppose our player decides to choose the latter approach to compensate for a delay as soon as it can. But to make a point let’s further suppose that the audio arrives in time but the video is late. At this point the player has to take yet another adaptive action. There are two things the player has to do: to hold onto the audio in the (decoder) buffer and wait for the video to arrive so the audio and the video can begin together in sync. Assuming that the amount of audio buffer has been set to its maximum requirement, the player will decided how long it can wait for the arrival of the video by respecting the following constraints:

the max duration to which the active duration of the img can be stretched,

the min duration of the video, and

the max duration of the seq container.

In our example, the img can be stretched to as long as the max 12 seconds. But if the img is stretched to display for 12 seconds, and since the seq container specifies its max duration to be 18 seconds, this leaves only 6 seconds for the par container, and this violates the min constraints specified for the audio and video, min=”8s.”

Clearly, the constraints should be solved consistently. One solution is: to stretch the img’s active duration to 10 seconds, allowing the video to arrive as late as 10 seconds into the seq container begin time, holding onto the audio while waiting. There are three cases we need to consider depending on when the late video arrives:

it arrives before the max wait time: adjust the video audio active duration accordingly and speed up the playback according to the flexBehavior values,

it arrives at exactly the max wait time, the video/audio active duration becomes the min duration and speed up the playback accordingly.

the wait time expires: at this point synchronization is broken. The audio will play for the min duration at 10 seconds and the par container will end when audio’s active duration ends. The flextime model behaves as if the video node starts at that time, but the player will not render the video and will discard the stream if it arrives later.

9.3.15.2.2 The flexBehaviorDefault attribute

The flexBehaviorDefault attribute specifies default flexBehavior behavior for elements and all descendents.

Example:

<par flexBehaviorDefault=”normal; normal” …/>

By setting the flexBehaviorDefault to be “normal; normal” the author can specify that the default flexBehavior behavior on the par and its descendants is no stretching/shrinking (unless otherwise specified).

Example:

<par flexBehaviorDefault=”linear, repeat, hold; linear, stop” …/>

In this example, the par container and all its descendents, unless otherwise specified, will be flexed according to the preferred stretch/shrink modes as specified.

Like fillDefault the flexBehaviorDefault also supports the value “inherit” so that stretchBehaviorList and shrinkBehaviorList are inherited. Eg flexBehaviorDefault=”inherit; linear, stop” will inherit stretchBehaviorList with new shrinkBehaviorList defined and flexBehaviorDefault=”inherit; inherit” will inherit both sets of lists etc. The default value of flexBehaviorDefault is “inherit; inherit”

9.3.16 XMT-Ω Transitions

SMIL Transitions feature comprises three modules; BasicTransitions, InlineTransitions and TransitionModifiers. XMT-Ω will include the features of all BasicTransitions and InlineTransitions modules only.

9.3.16.1 BasicTransitions

9.3.16.1.1 <transition>

The <transition> element is as per SMIL specification. The element defines a single transition class.

<transition
 id = ID
 type = <value>
 subtype = <value>
 startProgress = <value>
 endProgress = <value>
 direction = ”forward” | ”reverse”
 fadecolor = <color value>
/>

id is an XML identifier.

type is a type, or family, of transition

subtype is the subtype of transition within the family

startProgress is the amount of progress through the transition at which to begin execution, specified as a number between 0.0 and 1.0

endProgress is the amount of progress through the transition at which to end execution, specified as a number between 0.0 and 1.0

direction is the direction in which the transition will run

fadecolor if the type of the transition is “fade” with subtype “fadeToColor” or “fadeFromColor” then this attribute specifies the starting or ending color of the fade.

9.3.16.1.2 <param>

The <param> element is as per SMIL specification. The element supports an authoring tool to define its own custom transitions by providing a generic mechanism to supply parameters to the transition to control the effects.

<param
 id = ID
 name = <value>
 value = <value>
/>

id is an XML identifier.

name is the name of a parameter that controls an aspect of the transition effect

value is the value to supply to that named parameter

9.3.16.1.3 Applying transitions to media elements

The transIn and transOut attributes are incorporated as per SMIL specification. A media with a transition specify transIn will occur at the beginning of a media elements active duration whereas with transOut it will occur at the end.

9.3.16.2 InlineTransitions

9.3.16.2.1 <transitionFilter>

The <transitionFilter> element is as per SMIL specification. The element animates the progress of a filter behavior (transition).

<transitionFilter
 id = ID
 type = <value>
 subtype = <value>
 mode = ”in” | “out”
 fadecolor = <color value>
 from = <value>
 to = <value>
 by = <value>
 values = <list>
 calcMode = “discrete | linear | paced”
 targetElement = IDREF
/>

id is an XML identifier.

type is a type, or family, of transition

subtype is the subtype of transition within the family

fadecolor if the type of the transition is “fade” with subtype “fadeToColor” or “fadeFromColor” then this attribute specifies the starting or ending color of the fade.

from is the amount of progress through the transition at which to begin execution, specified as a number between 0.0 and 1.0

to is the amount of progress through the transition at which to end execution, specified as a number between 0.0 and 1.0

by is a relative offset value for the amount of progress of the transition

values is a semicolon-separated list of one or more legal values specifying the progress of the transition.

calcMode specifies the interpolation mode for the progress of the transition.

targetElement is the identifier of the element containing the attribute to be animated.

9.3.16.3 Mapping Transitions to MPEG-4

Fade transitions can be mapped using transparency and color animation.

Slide and push wipes are mapped by animating the position of the object(s).

Other effects can be achieved by animating with texture Transformations, Layer2D/3D, MatteTexture etc., potentially even in combinations.

XMT-Ω Tool considerations

MPEG-4 authoring format includes notation to allow hints for compression or other format conversions where needed. For example video compression may define compression parameters that allow frame rate and/or quality hints to be specified by the author for various bandwidths. This allows, for example, frame rate to be preferred over quality or vice versa. Video may also be converted to scalable layers. Images may not only be compressed but hints could be given to crop them to reduce size as appropriate.

Such authoring could result in either run-time or compile-time alternatives as also discussed in Content Control above. Such selection of mappings during compilation (encoding to MPEG-4) may be done with interactive prompts during the compilation phase, or may be based on project settings, and in conjunction with test attributes whose values can be specified in the <head> of the document.

9.3.17 XMT-Ω Examples

This section contains examples of the proposed high-level format and a mapping into MPEG-4 nodes.

9.3.17.1 Circle with finite duration color animation on mouse press

The following example shows a Circle whose color changes over a 2s duration beginning when the mouse button is pressed down.

Using the XMT-Ω format the circle is simply defined and is given an animate section that describes a linear interpolation using three color values that starts on a mouseDown event and has duration of 2s.

<circle id=”myCircle” radius=”20”
 <transformation
 visibility=”true”
 translation=”24 50”/>
 <material color=”#ee0000” filled=”true”>
 <animateColor attributeName=”color” dur=”2s”
 begin=”myCircle.click”
 values=”#ee0000; #ffcc45; #ffffff” keyTimes=”0; 0.3; 1”
 calcMode=”linear” />
 </material>
</circle>
Using a VRML-like syntax the MPEG-4 nodes to map the XMT-Ω format description above could be done as follows. First there is a switch (MPEG-4 Switch as apposed to SMIL <switch>) so the entire object can be hidden or shown (visibility=true attribute above). The Circle is the basic pattern of Shape containing appearance and geometry, where geometry is a Circle and appearance contains a Material2D describing the color. The Circle (Shape) is set under a Transform2D to position it. To sense mouse activity we need a touchSensor and to define the duration of the color change we need a TimeSensor. Then there is a ColorInterpolator for the color changing. To make the behavior work we must route the TouchSensor to the TimeSensor, to start the TimeSensor when the mouse is pressed. Then we route the fractional output of the TimeSensor to the input of the ColorInterpolator; and finally the output of the ColorInterpolator to the emissiveColor field of the Circles Material2D. Not forgetting of course to DEF the requisite nodes so we can setup the routes.
Switch {
 whichchoice 0
 choice [
 Transform2D {
 translation 24 50
 children [
 Shape {
 appearance Appearance {
 material DEF CircleMat Material2D {
 emissiveColor 0.93 0.0 0.0
 filled TRUE
 }
 }
 geometry Circle {
 radius 20
 }
 }

 DEF Touch TouchSensor {}
 DEF Timer TimeSensor {
 cycleInterval 2
 }
 DEF Coloring ColorInterpolator {
 key [0.0 0.3 1.0]
 keyValue [0.93 0.0 0.0,
 1.0 0.93 0.27,
 1.0 1.0 1.0]
 }
]
 }
]
 }

Route Touch.touchTime to Timer.startTime
Route Timer.fraction_changed to Coloring.set_fraction
Route Coloring.value_Changed to CircleMat.emissiveColor

9.3.17.2 An example to show BIFS, OD and media stream mapping

<seq begin=”20s” dur=”10s”>

</seq>

The above example shows a segment of a presentation that begins at 20s and has three images in shown one after the other. The first image starts at t=20s and lasts for the specified duration of 5s. At t=25s the second starts and lasts for 2s. The third and final image starts at t=27s and has its duration controlled by the overall <seq> time container that specifies the sequence lasts for 10s. As the first and second images consume 7s of the 10s there are 3s left for the third image.

This is mapped to the following MPEG-4 BIFS, OD and media streams. The mapping shows the sequence of commands but the detail of the nodes contained in the BIFS has been omitted for clarity.

t=20s
OD Update for Image1 media stream
t=20s
Media data for Image1
t=20s
BIFS Command to insert nodes for Image1
t=25s
OD Delete for Image1 media stream and OD Update for Image2 media stream
t=25s
Media data for Image2
t=25s
BIFS Command to delete nodes for Image1 and insert nodes for Image2
t=27s
OD Delete for Image2 media stream and OD Update for Image3 media stream
t=27s
Media data for Image3
t=27s
BIFS Command to delete nodes for Image2 and insert nodes for Image3
t=30s
BIFS Command to delete nodes for Image3
t=30s
OD Delete for Image3 media stream

Note that the timing above assumes instantaneous delivery and that timing would require modification by an MPEG-4 server to assure that media data transmission times are allowed for.

9.3.18 XMT-Ω Data Types

9.3.18.1 Basic data types

Atrributes may be single values, a list of single values or a list of lists. A single value for example is a float, or a single compound datatype for example color, which is three floats, and translation which is two or three floats for 2D and 3D contexts respectively. A list is set of single values, where each value is separated by a semi-colon from the subsequent value. A list of lists is a set of lists, where each list is separated by a colon from the subsequent list.

Color

An XMT-Ω color value can be specified in one of the following forms

As a list of three floating point values each in the range 0.0 to 1.0, e.g. “1.0 0.5 0.75”. This is the same format as used in XMT-A

In the #RRGGBB hex-style form as is commonly used in html pages to specify color e.g. “#FF80C0”

As one of the standard color names from either the list of HTML colors defined by the W3C or from the set as defined by the XConsortium that includes the extended set of HTML colors used by the popular web browsers e.g. “red”, “peachpuff”, “LightGoldenRod”. In XMT-Ω no spaces are allowed in the names and the names are case-insensitive. The complete list of XConsortium defined color names can be found in the /usr/lib/X11/rgb.txt supplied with XWindows. This includes alternate spellings of “grey”, “gray” and colors with numeric suffices from 1 to 4 e.g. “blue1”, plus the complete range of gray from 1 through 100, e.g. “gray67”. Note: In the standard set of HTML colors there are four names that are also defined by XConsortium and the colors are different. For these identically named colors the HTML color value is used; the colors being purple, maroon, green and gray.
9.3.18.1.1 Angles

Angles are specified, by default, in degrees with a positive value resulting in anti-clockwise rotation. The suffix deg for degrees is optional but may be explicitly specified. Angles may also be specified in grad and radians using the suffices grad and rad respectively. The following examples all show a rotation of 90 degrees.

rotation = ”90”

rotation = ”90deg”

rotation = ”1.571rad”

rotation = “100grad”

9.3.18.1.2 Strings

Many attributes are specified as a sequence of characters – a string. For all cases other than those listed below the string can be entered directly as an attribute with no special treatment. However for attributes that may contain more than one string, where each string may contain spaces, each string must be surrounded by ". The attributes where such strings can occur are textLines attribute in <string> and <subtitles>, and family attribute from <fontstyle>. Quotes within a string must be escaped as per the example below.

textLines=”"Line one"”

textLines=”"First line"; "A second line"”

textLines=”"He said, \"A string with an embedded quotes\" that must be escaped."”

9.3.19 XMT-Ω Node coverage

This section tabulates the MPEG-4 nodes and how they are/might be used in mapping from XMT-Ω to MPEG-4. This table is mainly for illustration and give an idea of what’s covered by XMT-Ω. The actual use and mapping are subject to change and implementation variance (XMT-Ω defines intent and allows implementation some choice in handling the ‘compilation into MPEG-4).

	AcousticMaterial
	

	AcousticScene
	

	Anchor
	Used in mapping <a> linking module

	AnimationStream
	May be used by Animation module

	Appearance
	Implicitly created when defining visual media elements

	ApplicationWindow
	Used to map <applicationWindow>

	AudioBuffer
	

	AudioClip
	Used to map <audioClip>

	AudioDelay
	

	AudioFX
	

	AudioMix
	

	AudioSource
	Used when mapping <audio>

	AudioSwitch
	

	Background
	Used to map <backdrop> and <region> or <group> backgroundColor

	Background2D
	Used to map <background> and <region> or <group> backgroundColor

	BAP
	

	BDP
	

	Billboard
	Part of <transformation> and <group>

	Bitmap
	Used to map and <video>

	Body
	

	BodyDefTable
	

	BodySegmentConnectionHint
	

	Box
	Used to map <box>

	Circle
	Used to map <circle>

	Collision
	Part of <group>

	Color
	Use to map <lines>, <polygons>

	ColorInterpolator
	May be used by Animation module

	CompositeTexture2D
	

	CompositeTexture3D
	

	Conditional
	May be used by Animation module

	Cone
	Used to map <cone>

	Coordinate
	Use to map <points>, <lines>, <mesh>

	Coordinate2D
	Use to map <points>, <lines>, <polygons>

	CoordinateInterpolator
	May be used by Animation module

	CoordinateInterpolator2D
	May be used by Animation module

	Curve2D
	Used to map <curve>

	Cylinder
	Used to map <cylinder>

	CylinderSensor
	May be used by Animation module

	DirectiveSound
	

	DiscSensor
	May be used by Animation module

	DirectionalLight
	Used to map <light>

	ElevationGrid
	

	Expression
	

	Extrusion
	

	Face
	

	FaceDefMesh
	

	FaceDefTables
	

	FaceDefTransform
	

	FAP
	

	FDP
	

	FIT
	

	Fog
	Used to map <fog>

	FontStyle
	Used to map font styles for <string>

	Form
	

	Group
	Part of <transformation> and <group>

	Hierarchical3DMesh
	

	ImageTexture
	Used for and <texture>

	IndexedFaceSet
	Used to map <mesh>

	IndexedFaceSet2D
	Used to map <polygons>

	IndexedLineSet
	Used to map <lines>

	IndexedLineSet2D
	Used to map <lines>

	Inline
	Used to map <inline>

	InputSensor
	May be used for keyboard input (accessKey timing)

	Layer2D
	Used to map <region> and <group> when used with size attribute

	Layer3D
	Used to map <region> and <group> when used with size attribute

	Layout
	

	LineProperties
	Used to map <outline>

	ListeningPoint
	

	LOD
	

	Material
	Used to map <material>

	Material2D
	Used to map <material>

	MaterialKey
	Used to map <chromakey>

	MatteTexture
	May be used for mapping of some transition effects

	MediaBuffer
	May be used to map <prefetch>

	MediaControl
	May be used for time manipulations and interactively played media

	MediaSensor
	May be used for MediaClipMarker module mapping

	MovieTexture
	Used for <video> and <texture>

	NavigationInfo
	

	Normal
	Used to map <mesh>

	NormalInterpolator
	May be used by Animation module

	OrderedGroup
	Part of <transformation> and <group>

	OrientationInterpolator
	May be used by Animation module

	PerceptualParameters
	

	PixelTexture
	May be used to map

	PlaneSensor
	May be used by Animation module

	PlaneSensor2D
	May be used by Animation module

	PointLight
	Used to map <pointLight>

	PointSet
	Used to map <points>

	PointSet2D
	Used to map <points>

	PositionInterpolator
	May be used by Animation module

	PositionInterpolator2D
	May be used by Animation module

	Proto
	

	ProximitySensor
	May be used by Animation module (event source for animation)

	ProximitySensor2D
	May be used by Animation module (event source for animation)

	QuantizationParameter
	May be used to achieve higher compression for mapping

	Rectangle
	Used to map <rectangle>

	ScalarInterpolator
	May be used by Animation module

	Script
	May be used by Animation module for complex animations

	Shape
	Implicitly created when defining visual media elements

	Sound
	Used to map <audio>

	Sound2D
	Used to map <audio>

	Sphere
	Used to map <sphere>

	SphereSensor
	May be used by Animation module

	SpotLight
	Used to map <spotLight>

	Switch
	Part of <transformation> and <group> (used to map visibily attribute.) Also for <excl>

	TermCap
	My be used for some Content Control module functionality mapping

	Text
	Used to map <text>, <string> and <subtitles>

	TemporalGroup
	Used to map time containers and flexible time manipulations

	TemporalTransform
	Used to map time manipuations and flexible time manipulations

	TextureCoordinate
	Used to map <polygons> and <mesh>

	TextureTransform
	Used to map <texture>

	TimeSensor
	May be used by Animation module (event source for animation). And for timing

	TouchSensor
	May be used by Animation module (event source for animation)

	Transform
	Part of <transformation> and <group>

	Transform2D
	Part of <transformation> and <group>

	Valuator
	May be used by Animation module

	ViewPoint
	

	Viseme
	

	VisibilitySensor
	May be used by Animation module (event source for animation)

	WorldInfo
	Maps small part of RDF

9.4 XMT-C Modules

9.4.1 MPEG-7

The MPEG-7 standard, also known as "Multimedia Content Description Interface", aims at providing standardized core technologies allowing description of audiovisual data content in multimedia environments.

In order to achieve this broad goal, MPEG-7 standardizes:

Descriptors (D): representations of Features, that define the syntax and the semantics of each feature representation,

Description Schemes (DS), that specify the structure and semantics of the relationships between their components, which may be both Ds and DSs,

A Description Definition Language (DDL), to allow the creation of new DSs and, possibly, Ds and to allows the extension and modification of existing DSs,

System tools, to support multiplexing of description, synchronization issues, transmission mechanisms, file format, etc.

The following example illustrates the use of MPEG-7 descriptions within XMT. The example has been simplified for readability by removing necessary namespace qualifiers.

 <seq begin=20s dur=10s>

<StructuredAnnotation>

<Who>Fernado Morientes</Who>

<When>Spain Sweden soccer match</When>

<TextAnnotation xml:lang=’en-us’>

This was the first goal of this match.

</TextAnnotation>

</StructuredAnnotation>

<Creation>

<Creator>

<role>presenter</role>

<Individual>

<GivenName>Ana</GivenName>

<LastName>Blanco</LastName>

</Individual>

</Creator>

</Creation>

<Histogram HistogramNormFactor="1000">

<HistogramValues>400 100 200 150 150 </HistogramValues>

</Histogram>

</seq>

9.4.2 XMT-C Encoding, Delivery and Publication hints

One of the most important functionalities that XMT should provide is giving a way of communication between the authoring entities and the bitstream generation entities. Since MPEG-4 scene will be composed of various media, number of encoders and bitstream generation tools will be involved to produce final bitstream. Therefore, bitstream generation entities including media encoders should be fully under the control of the authoring entities to generate the presentation as they wishes. Encoding Hints and Bitstream Generation Hints in this document will provide a way for the authoring entities to give their intent to the bitstream generation entities.

9.4.2.1 <EncodingHints>

Encoding hints are composed of sourceFormat and targetFormat. sourceFormat will contain the information about the raw media should be encoded by the media encoders. The targetFormat will hint the attributes about the bitstream generated by the media encoders.

<EncodingHints>
 <sourceFormat>
 <param name=”” value=””/>
 <param name=”” value=””/>
 . . .
 </sourceFormat>
 <targetFormat>
 <param name=”” value=””/>
 <param name=”” value=””/>
 . . .
 </targetFormat>
<EncodingHints />
9.4.2.1.1 <sourceFormat>

The following common <param> name value pairs have been predefined to promote interchangeability of encoding hints. Other name value pairs may be used as required to qualify aspects of source format.

name=”mimeType”

used to assist identification of media type for the source media. The value is the mimeType e.g value=”video/h263”

name=”colorFormat”

used to specify color format of the visual media. The value is the colorFormat e.g value=”YUV422”. Other values are YUV420, YUV411, YUV9, YUV12, RGB24, RGB16, RGB32 etc

name=”size”

used to specify the size of a visual source media, eg, value=”w, h” where w,h is the width and height of the visual media.

name=”length”

used to specify the length in time of a continuous source media, eg, value=”10000.89ms”. Units may be expressed in ms (milliseconds) or s (seconds)

name=”cropSize”

used to select a rectangular section from a visual media stream, e.g a video or image. The value is area to include as the target media value=”x, y, w, h” where x,y is a point relative to the top left corner of the visual media with a width and height. This may be used to crop a video during encoding. If no cropSize is specified the entire source visual is used.

name=”cropLength”

used to specify a sub-section of a continuous source media, eg, value=”1000ms, 2000.5ms”. Units may be expressed in ms (milliseconds) or s (seconds) and are the beginning and end of the sub-section. If no cropLength is specified the entire source visual is used.

9.4.2.1.2 <targetFormat>

The following common <param> name value pairs have been predefined to promote interchangeability of encoding hints. Other name value pairs may be used as required to qualify aspects of target format.

name=”size”

used to specify the size of the target visual media, eg, value=”w, h” where w,h is the width and height of the visual media.

name=”rateControl”

used to specify if rate control is used for the encoding process, eg. for video. value=”off” or “on”. Instead of “on” a particular form of rate control method can be specified if multiple mechanisms are supported, e.g. “TM5”.

name=”avgBitrate”

used to specify target average bit rate from the encoding process.

name=”maxBitrate”

used to specify target maximum bit rate from the encoding process.

name=”maxAUSize”

used to specify target maximum access unit size for the encoding process.

9.4.2.1.3 <BIFSEncodingHints>

The <BIFSEncodingHints> hints are provided principally to control the encoding process for BIFS to ensure that there can be a deterministic mapping for conformance purposes. In order to perform conformance tests for XMT-A the support of the <BIFSEncodingHints> is required and the encoding hint must be used by the encoding process wherever the BIFS provides a coding choice.

<BIFSEncodingHints
 SFNodeCoding =”auto|mask|list”
 MFListCoding =”auto|list|vector”
 SFScriptCoding =”auto|list|vector”
 ROUTESCoding =”auto|list|vector”
/>

9.4.2.2 <DeliveryHints>

Delivery hints are to provide XMT with information that can be used to control or influence delivery of the MPEG-4 streams. Delivery hints are name value pairs in <param> element.

The following common <param> name value pairs have been predefined to promote interchangeability of encoding hints. Other name value pairs may be used as required to qualify aspects of source format.

name=”carouselRate”

used to specify the rate of carousel insertions into BIFS and OD streams to provide random access points for multicast

name=”carouselPercent”

used to specify the percent of total bandwidth to be used for carousel.

name=”maxPacketSize”

maximum packet size for delivery (transport).

name=”totalBandwidth”

total bandwidth of transport.

9.4.2.2.1 M4Mux

XML Schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

<xs:simpleType name="bit1">

<xs:restriction base="xs:unsignedByte">

<xs:maxInclusive value="1"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="bit3">

<xs:restriction base="xs:unsignedByte">

<xs:maxInclusive value="7"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="bit4">

<xs:restriction base="xs:unsignedByte">

<xs:maxInclusive value="15"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="bit5">

<xs:restriction base="xs:unsignedByte">

<xs:maxInclusive value="31"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="bit8">

<xs:restriction base="xs:unsignedByte"/>

</xs:simpleType>

<xs:simpleType name="bit24">

<xs:restriction base="xs:unsignedInt">

<xs:maxInclusive value="16777215"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="bit16">

<xs:restriction base="xs:unsignedShort"/>

</xs:simpleType>

<xs:simpleType name="bit32">

<xs:restriction base="xs:unsignedInt"/>

</xs:simpleType>

<xs:annotation>

<xs:documentation>
 **

 *

*

 * Declaration of the M4Mux descriptors
 *

 *

*

 **

</xs:documentation>

</xs:annotation>

<xs:complexType name="M4MUXDescriptorType">

<xs:complexContent>

<xs:extension base="MandatoryM4MUXDescriptorType">

<xs:all>

<xs:element ref="M4muxTimingDescriptor" minOccurs="0"/>

<xs:element ref="M4muxChannelDescriptor" minOccurs="0"/>

<xs:element ref="M4muxBufferSizeDescriptor" minOccurs="0"/>

<xs:element ref="M4muxCodeTableDescriptor" minOccurs="0"/>

</xs:all>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="MandatoryM4MUXDescriptorType">

<xs:all>

<xs:element ref="M4muxIdentDescriptor" minOccurs="0"/>

</xs:all>

</xs:complexType>

<xs:element name="M4muxChannelDescriptor">

<xs:complexType>

 <xs:sequence>

<xs:element ref="FMCMuxChannel" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="version_number" type="bit5" use="required"/>

<xs:attribute name="current_next_indicator" type="bit1" use="required"/>

</xs:complexType>

</xs:element>

<xs:element name="FMCMuxChannel">

<xs:complexType>

<xs:attribute name="ES_ID" type="bit16" use="required"/>

<xs:attribute name="M4MuxChannel" type="bit8" use="required"/>

</xs:complexType>

</xs:element>

<xs:element name="M4muxTimingDescriptor">

<xs:complexType>

<xs:attribute name="FCR_ES_ID" type="bit16" use="required"/>

<xs:attribute name="FCRResolution" type="bit32" use="required"/>

<xs:attribute name="FCRLength" use="required">

<xs:simpleType>

<xs:restriction base="bit8">

<xs:maxInclusive value="64"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="FMXRateLength" use="required">

<xs:simpleType>

<xs:restriction base="bit8">

<xs:maxInclusive value="32"/>

<xs:minInclusive value="1"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:complexType>

</xs:element>

<xs:element name="M4muxBufferSizeDescriptor">

<xs:complexType>

<xs:all>

<xs:element ref="DefaultM4MuxBufferDescriptor"/>

<xs:element ref="M4MuxBufferDescriptor"/>

</xs:all>

</xs:complexType>

</xs:element>

<xs:element name="DefaultM4MuxBufferDescriptor">

<xs:complexType>

<xs:attribute name="FB_DefaultBufferSize" type="bit24" use="required"/>

</xs:complexType>

</xs:element>

<xs:element name="M4MuxBufferDescriptor">

<xs:complexType>

<xs:sequence>

<xs:element name="BufMuxChannel" maxOccurs="unbounded">

<xs:complexType>

<xs:attribute name="M4MuxChannel" type="bit8" use="required"/>

<xs:attribute name="FB_BufferSize" type="bit24" use="required"/>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="M4muxIdentDescriptor">

<xs:complexType>

<xs:attribute name="MuxID" type="bit8" use="required"/>

<xs:attribute name="MuxType" use="required">

<xs:simpleType>

<xs:restriction base="xs:NMTOKEN">

<xs:enumeration value="0"/>

<xs:enumeration value="1"/>

<xs:enumeration value="8"/>

<xs:enumeration value="9"/>

<xs:enumeration value="10"/>

<xs:enumeration value="11"/>

<xs:enumeration value="12"/>

<xs:enumeration value="13"/>

<xs:enumeration value="14"/>

<xs:enumeration value="15"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="Muxmanagement" use="required">

<xs:simpleType>

<xs:restriction base="xs:NMTOKEN">

<xs:enumeration value="0"/>

<xs:enumeration value="1"/>

<xs:enumeration value="8"/>

<xs:enumeration value="9"/>

<xs:enumeration value="10"/>

<xs:enumeration value="11"/>

<xs:enumeration value="12"/>

<xs:enumeration value="13"/>

<xs:enumeration value="14"/>

<xs:enumeration value="15"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:complexType>

</xs:element>

<xs:element name="M4muxCodeTableDescriptor">

<xs:complexType>

<xs:sequence>

<xs:element ref="substructure" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="MuxCode" type="bit4" use="required"/>

<xs:attribute name="version" type="bit4" use="required"/>

<xs:attribute name="substructureCount" type="bit8" use="required"/>

</xs:complexType>

</xs:element>

<xs:element name="substructure">

<xs:complexType>

<xs:sequence>

<xs:element ref="slot" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="slotCount" type="bit5" use="required"/>

<xs:attribute name="repetitionCount" type="bit3" use="required"/>

</xs:complexType>

</xs:element>

<xs:element name="slot">

<xs:complexType>

<xs:attribute name="M4MuxChannel" type="bit8" use="required"/>

<xs:attribute name="numberOfBytes" type="bit8" use="required"/>

</xs:complexType>

</xs:element>

<xs:element name="M4MUXTable">

<xs:complexType>

<xs:sequence>

<xs:element name="M4MUXDescriptor" type="M4MUXDescriptorType" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>
</xs:schema>
[image: image312.png]-
| MandatoryMAMUXDescriptorType |

MAMUXDescriptorType &

|, DefaultMaMuxBufferD...

|, MAMuxBUfferDescriptorg-(=—5+- BufMuxChannel |

!
b i o

1= 1=

MamuxBufferSizeDesc. B

| MamuxCodeTableDes.

Example of instance

<?xml version="1.0"?>
<!—M4MUX sample Instance -->
<M4MUXTable xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="XMT_m4mux_schema.xsd">

<M4MUXDescriptor>

<M4muxIdentDescriptor MuxID="1" MuxType="0" Muxmanagement="0"/>

<M4muxTimingDescriptor FCR_ES_ID="36" FCRResolution="90000" FCRLength="16" FMXRateLength="8"/>

<M4muxChannelDescriptor version_number="1" current_next_indicator="1">

<FMCMuxChannel ES_ID="2" FlexMuxChannel="10"/>

<!-- ES 2 in channel 10 -->

<FMCMuxChannel ES_ID="3" FlexMuxChannel="12"/>

<!-- ES 3 in channel 12 -->

</M4muxChannelDescriptor>

<M4muxBufferSizeDescriptor>

<DefaultFlexMuxBufferDescriptor FB_DefaultBufferSize="36000"/>

<FlexMuxBufferDescriptor>

<BufMuxChannel FlexMuxChannel="10" FB_BufferSize="40000"/>

<!-- Buffer associated with channel 10 -->

<BufMuxChannel FlexMuxChannel="12" FB_BufferSize="50000"/>

</FlexMuxBufferDescriptor>

</M4muxBufferSizeDescriptor>

<M4muxCodeTableDescriptor MuxCode="2" version="3" substructureCount="2">

<!--Number of sub-structures

-->

<substructure slotCount="3" repetitionCount="1">

<!-- Number of slots
-->

<slot flexMuxChannel="1" numberOfBytes="18"/>

<slot flexMuxChannel="4" numberOfBytes="12"/>

<slot flexMuxChannel="5" numberOfBytes="13"/>

</substructure>

<substructure slotCount="2" repetitionCount="0">

<slot flexMuxChannel="10" numberOfBytes="18"/>

<slot flexMuxChannel="12" numberOfBytes="12"/>

</substructure>

</M4muxCodeTableDescriptor>

</M4MUXDescriptor>

<!--another m4mux-->

<M4MUXDescriptor>

<M4muxIdentDescriptor MuxID="2" MuxType="0" Muxmanagement="0"/>

<M4muxTimingDescriptor FCR_ES_ID="36" FCRResolution="90000" FCRLength="16" FMXRateLength="8"/>

<!--...-->

</M4MUXDescriptor>
</M4MUXTable>
9.4.2.3 <PublicationHints>

Publication hints provide a mechanism to convert a generic authoring time placeholder for a stream into a specific reference for the media once it is deployed. When creating an mp4 file most streams will probably be referenced directly by Object Descriptor IDs with descriptors as necessary in the file. However if URLs are used then publication hint can be used to replace a generic placeholder by an actual url reference for when the content is created (encoded).

<PublicationHints>
 <param name=”__pubhint1__”
 value=”rtsp://www.somewhere.com/apath/bpath”>

</PublicationHints>

In the above example the string “__pubhint1__” will be replaced by “rtsp://www.somewhere.com/apath/bpath” where it occurs in URI references.

9.4.3 XMT-C <authoring> Element

The <authoring> element provides a means to identify, at authoring time, additional information to facilitate authoring and exchange of information between authors and authoring tools. Authoring elements are defined for the following purposes:

specifying sets of elements to allow the grouping of objects into semantically coherent sets; these sets may be orthogonal to scene hierarchy.

adding properties to objects: these properties can be defined by the author

The <authoring> element contains one or more of the <metaSet> and <metaProperty> elements. The <authoring> element can be placed in any XMT element.

<authoring id=””
 scope=”local” | “subtree”
/>

The scope attribute allows the semantics to be restricted to the element where the <authoring> is defined (local) or the element plus all its children. Using such rules an element may have inherited metaProperty’s etc as well as ones that are defined inside that element. If an element would thus have multiple metaProperty’s with the same name the one that is defined closest to the element (the closest in scope) shall be is regarded as the correct value.

9.4.3.1 Specifying a <metaSet> of elements

<metaSet id=”” description=”” set=”” />

This element defines a set. The description is intended to be used to identify the purpose of the set. All elements belonging to this set will use the attribute set=”” to refer to their membership in one or more sets.

All XMT-A elements can contain the set=”” attribute. The attribute may contain a list of ids when the element belongs to more than one set. Sets can be made up of any elements including nodes, and/or object descriptors etc. The <metaSet> element itself also contains the set attribute and hence sets of sets can be created.

A set is whatever an author and/or authoring tool deem relevant. Hence the definition of a set is up to the author and/or authoring tool alone. Certain sets may have meaning to a specific authoring tool and/or author. When files are exchanged from one authoring tool to another authoring tool, if the latter does not provide the same ‘higher-level’ support for the set(s) they should, in any case, be preserved by that tool. Hence if the file is edited again using the former tool the set will still be there (its relevance may have been altered however; e.g. if the set was a set of all red shapes and a new one was added by the latter tool the set would not have been updated to reflect that fact if the latter tool did not understand the higher meaning or the author did not ‘manually’ update the set – assuming the latter tool provided such a facility).

The following example shows a set defined by the author of related colors. An authoring tool may allow the author to vary the intensity or all related colors by the same amount. The example includes the second element belonging to two sets, the related colors set and also the thick Lines set.

<metaSet id=”relatedColors” description=”Colors of related objects” />

<Shape>
...
 <Material2D set=”relatedColors” ...
<Shape DEF=”SecondShape”>
...
 <Material2D set=”relatedColors, thickLines” ...

9.4.3.2 Specifying a <metaProperty>

<metaProperty id=”” name=”” value=”” />

A metaProperty is an additional author and/or authoring tool defined property for any element. The element for which the extra property is being defined will contain this element.

The example shows a PositionInterpolator where two additional authoring properties have been defined

<PositionInterpolator ...>
 <authoring>
 <metaProperty name=”movement” value=”spiral”/>
 <metaProperty name=”direction” value=”clockwise”/>
 </authoring>
</PositionInterpolator>

9.5 XMT Schemas

The current schemas for XMT can be found in the separate electronic attachment to this document.

There are three parts to the XMT schema: XMT-A, XMT-O and XMT-C. The respective schemas can be found in the zip file in folders that are likewise named.

9.6 Informative: XMT/X3D Compatibility

The current schemas for XMT can be found in the separate electronic attachment to this document: The XMT-A representation follows the same rules as the compromise form of X3D and hence is compatible with it. MPEG-4 adds to this representation some extra attributes and elements for deterministic binary encoding and to augment authoring. However, these extra attributes and elements are optional.

An X3D document would go directly into a <Scene> element. MPEG-4 consists of a <Header> and a <Body> which contains the <Replace><Scene> BIFS command. This is because MPEG-4 can carry many media streams and can dynamically update the BIFS, and thus the MPEG-4 <Scene> element holds the MPEG-4 representation of all the BIFS, commands, OD framework etc. inside the <Replace> command.

The table below compares X3D and MPEG-4 representation to illustrate the high degree of compatibility and the small amount of change to go from X3D to MPEG-4 or vice versa (within the subset of elements that is contained in both standards of course).

	X3D
	XMT-A

	<Header>

 <meta>

 </meta>

</Header>

<Scene>

 <!-- The scene contents -->

</Scene>

	<Header>

 <meta>

 </meta>

 <InitialObjectDescriptor/>

</Header>

<Body>

 <Replace>
 <Scene>

 <!-- The scene contents -->

 </Scene>

 </Replace>

</Body>

To fully convert the document from X3D to XMT-A, or vice versa, the outer <X3D> or <XMT-A> element with schema namespace reference will need to be altered accordingly,

Note: X3D <Scene> does not need to have a <Group> at the top level, while MPEG-4 requires a top-level node such as <Group>, <OrderedGroup>, <Layer2D> or <Layer3D> as the root of the scene graph. If the X3D scene does not have a single <Group> as the root it will be also be necessary to add this when converting to XMT-A. Note that X3D image, video and audio sources are referred directly by urls. While MPEG-4 can express the urls in an identical manner it is more likely that a conversion would create ObjectDescriptors for these media types and replace the source url references by ObjectDescriptor Ids.

Note: X3D allows commas as white space, using them as visual separators. XMT does not allow the use of commas as white space.

9.7 Informative: The usage of XMT-A BitWrapper element in authoring side
There are 4 cases using XMT-A representation of BitWrapper node. As described in subclause 7.2.2.23.2, the functionality of BitWrapper node is to encode data for the node field and to transmit an encoded bitstream through a scene description stream (BIFS stream) or a separate stream. The url field carries the out-band (=separate) bitstream and the buffer field carries the in-band bitstream such as BIFS bitstream.
For each scenario (in-band and out-band), authors can use the encoding parameters for encoding the original data that is contained in the node field of the BitWrapper node. Alternatively the author simply directly specifies the file name (or object descriptor ID) of an encoded bitstream in url or buffer field of the BitWrapper node if he already has an encoded bitstream.
Here, it will show how authors can create XMT-A format files (XMT), which contains BitWrapper element in order to carry an encoded bitstream in each case and generate mp4 files from XMT-A format files.

9.7.1 Example: Using BitWrapper and pre-encoded bitstream

One can create the XMT input file that has BitWrapper node and pre-encoded bitstream in it. From this input file, one also can generate a mp4 file. The whole processes are explained in the following figure.
[image: image313.emf]XMT2BIFS

style sheet

XMT2MUX

style sheet

XMT Parser

(XMTRef)

XMT input file

BIFS Encoder

MP4

Encoder

.mp4 output file

. bifs /.od

XMT-A

schema

•

BitWrapper node

•

Encodingparameters

•

BitWrapperEncodingHints

•

AFXConfig

Contain the meta description for

compressed 3D graphics data

1

4

2

3

.scene(.txt)

.

.mux (.scr)

Figure 63 — XMT to mp4: Using BitWrapper and pre-encoded bitstream

The XMT parser takes a XMT file as an input and produces two output files with the help of XMT-A schema description and two XMT style sheets (XMT2BIFS, XMT2MUX) in the number 1(XMTParser) of the figure. Those two output files (.scene and .mux) can be used as input files of BIFS encoder and MP4 encoder respectively in the number 2(BIFS Encoder) and 3(MP4 Encoder). Finally, MP4 encoder produces a mp4 file with the additional input files from BIFS encoder (.bifs and .od) in the number 4(.mp4 output file).

The following two examples show how the above processes are applied in real situation with the MPEG-4 reference software.

9.7.1.1 In-band scenario: Using pre-encoded bitstream
One can create a text file and a script file (Both are IM1 textual format) that carry encoded in-band bitstream. The encoded bitstream is already made and provided to authors. Therefore, one does not need to have original data in the node field and its encoding parameters in BitWrapper node. In this case, the name of file given by the buffer field indicates the pre-encoded bitstream.

In “ICOriBufferWithoutEP.xmt”,

<Header>

<InitialObjectDescriptor objectDescriptorID="1" binaryID="1" >

 …

<Descr>

<esDescr>

<ES_Descriptor ES_ID="xyz1" binaryID="301">

<decConfigDescr >

<DecoderConfigDescriptor
streamType="3" objectTypeIndication="2" bufferSizeDB="500000">

<decSpecificInfo>

<BIFSv2Config nodeIDbits="10" routeIDbits="10" PROTOIDbits="10">

</BIFSv2Config>

</decSpecificInfo>

</DecoderConfigDescriptor>

</decConfigDescr>

<slConfigDescr>

<SLConfigDescriptor>

<custom useAccessUnitStartFlag="TRUE" useAccessUnitEndFlag="TRUE"

timeStampResolution="100" timeStampLength="14" />

</SLConfigDescriptor>

</slConfigDescr>

<StreamSource url="ICOriBufferWithoutEP.bif"> </StreamSource>

</ES_Descriptor>

</esDescr>

</Descr>

</InitialObjectDescriptor>

</Header>

<Body>

<Replace>

<Scene>

<Group>

<children>

…

<Transform translation="0 -2.373 -7.635" DEF="ROT">

<children>

<Shape>

<appearance> … </appearance>

<geometry DEF="MY_BOX">

<Box size="30.0 10.0 30.0"></Box>

</geometry>

</Shape>

<BitWrapper type="0" buffer="sample.aac">

<node>

<OrientationInterpolator DEF="Camera01-ROT-INTERP"> </OrientationInterpolator>

</node>

</BitWrapper>

</children>

</Transform>

<TimeSensor cycleInterval="6.0" loop="TRUE" DEF="TimeSource"> </TimeSensor>

</children>

</Group>

<ROUTE fromNode="TimeSource" fromField="fraction_changed" toNode="Camera01-ROT-INTERP"

toField="set_fraction"> </ROUTE>

<ROUTE fromNode="Camera01-ROT-INTERP" fromField="value_changed" toNode="ROT"

toField="rotation"> </ROUTE>

</Scene>

</Replace>
</Body>

The above xmt file is taken by the XMT parser and the following two files(.scene file and .mux file) are produced by the XMT parser with the help of XMT-A schema description and two XMT style sheets(XMT2BIFS, XMT2MUX).
In “ICOriBufferWithoutEP.scene”
…

BitWrapper {

node DEF Camera01-ROT-INTERP OrientationInterpolator { }

type 0

buffer "sample.aac"

}

…
In “ICOriBufferWithoutEP.mux”

InitialObjectDescriptor {

…

esDescr [

ES_Descriptor {

ES_ID 301

decConfigDescr DecoderConfigDescriptor{

objectTypeIndication 2

streamType 3

bufferSizeDB 500000

decSpecificInfo BIFSv2Config {

PROTOIDbits 10

nodeIDbits 10

routeIDbits 10

}

}

slConfigDescr SLConfigDescriptor{

useAccessUnitStartFlag TRUE

useAccessUnitEndFlag TRUE

timeStampResolution 100

timeStampLength 14

}

muxInfo MuxInfo {

fileName

"ICOriBufferWithoutEP.bif"

streamFormat
BIFS

}

}

]

}

9.7.1.2 Out-band scenario: Using pre-encoded bitstream
One can create a text file and a script file (Both are IM1 textual format) that carry encoded out-band bitstream. The encoded bitstream is already made and provided to an author. Therefore, one does not need to have original data in the node field and its encoding parameters in BitWrapper node. In this case, the name of the file given by the parameter value of <sourceFormat> element in <BitWrapperEncodingHints> element indicates the pre-encoded bitstream.

In “ICOriUrlWithoutEP.xmt”,

<Header>

<InitialObjectDescriptor objectDescriptorID="1" binaryID="1" >

…

<Descr>

<esDescr>

<ES_Descriptor ES_ID="xyz" binaryID="201">

<decConfigDescr >

<DecoderConfigDescriptor
streamType="1"
objectTypeIndication="2"

bufferSizeDB="10000000">

</DecoderConfigDescriptor>

</decConfigDescr>

<slConfigDescr>

<SLConfigDescriptor>

<custom
useAccessUnitStartFlag="TRUE" useAccessUnitEndFlag="TRUE"

timeStampResolution="100" timeStampLength="14" />

</SLConfigDescriptor>

</slConfigDescr>

<StreamSource url="ICOriUrlWithoutEP.od"> </StreamSource>

</ES_Descriptor>

</esDescr>

<esDescr>

<ES_Descriptor ES_ID="xyz1" binaryID="301">

<decConfigDescr >

<DecoderConfigDescriptor
streamType="3" objectTypeIndication="2" bufferSizeDB="500000">

<decSpecificInfo>

<BIFSv2Config nodeIDbits="10" routeIDbits="10" PROTOIDbits="10"> </BIFSv2Config>

</decSpecificInfo>

</DecoderConfigDescriptor>

</decConfigDescr>

<slConfigDescr>

<SLConfigDescriptor>

<custom
useAccessUnitStartFlag="TRUE" useAccessUnitEndFlag="TRUE"

timeStampResolution="100" timeStampLength="14" />

</SLConfigDescriptor>

</slConfigDescr>

<StreamSource url="ICOriUrlWithoutEP.bif"> </StreamSource>

</ES_Descriptor>

</esDescr>

</Descr>

</InitialObjectDescriptor>

</Header>

<Body>

<Replace>

<Scene>

<Group>

<children>

…

<Transform translation="0 -2.373 -7.635" DEF="ROT">

<children>

<Shape>

<appearance> … </appearance>

<geometry DEF="MY_BOX">

<Box size="30.0 10.0 30.0"></Box>

</geometry>

</Shape>

<BitWrapper type="0" url="12">

<node>

<OrientationInterpolator DEF="Camera01-ROT-INTERP"> </OrientationInterpolator>

</node>

</BitWrapper>

</children>

</Transform>

<TimeSensor cycleInterval="6.0" loop="TRUE" DEF="TimeSource"> </TimeSensor>

</children>

</Group>

<ROUTE fromNode="TimeSource" fromField="fraction_changed" toNode="Camera01-ROT-INTERP"

toField="set_fraction"> </ROUTE>

<ROUTE fromNode="Camera01-ROT-INTERP" fromField="value_changed" toNode="ROT"

toField="rotation"> </ROUTE>

</Scene>

</Replace>

<ObjectDescriptorUpdate>

<OD>

<ObjectDescriptor objectDescriptorID="12" binaryID="12">

<Descr>

<esDescr>

<ES_Descriptor ES_ID="PI" binaryID="211">

<decConfigDescr >

<DecoderConfigDescriptor streamType="3" objectTypeIndication="5"

bufferSizeDB="50000">

<decSpecificInfo>

<AFXConfig>

<OriInterpCompDecoderSpecific> </OriInterpCompDecoderSpecific>

</AFXConfig>

</decSpecificInfo>

</DecoderConfigDescriptor>

</decConfigDescr>

<slConfigDescr>

<SLConfigDescriptor>

<custom timeStampResolution="100" />

</SLConfigDescriptor>

</slConfigDescr>

<StreamSource>

<BitWrapperEncodingHints>

<BitWrapperICEncodingHints>

<sourceFormat>

<param value="sample.aac"> </param>

</sourceFormat>

</BitWrapperICEncodingHints>

</BitWrapperEncodingHints>

</StreamSource>

</ES_Descriptor>

</esDescr>

</Descr>

</ObjectDescriptor>

</OD>

</ObjectDescriptorUpdate>

</Body>

The above xmt file is taken by the XMT parser and the following two files(.scene file and .mux file) are produced by the XMT parser with the help of XMT-A schema description and two XMT style sheets(XMT2BIFS, XMT2MUX).
In “ICOriUrlWithoutEP.scene”,

…

BitWrapper {

node DEF Camera01-ROT-INTERP OrientationInterpolator { }

type 0

url 12

}

…

UPDATE OD [

ObjectDescriptor {

objectDescriptorID 12

muxScript ICOriUrlWithoutEP.mux

}

]
In “ICOriUrlWithoutEP.mux”,

InitialObjectDescriptor {

objectDescriptorID 1

…

esDescr [

ES_Descriptor {

ES_ID 201

decConfigDescr DecoderConfigDescriptor{…}

slConfigDescr SLConfigDescriptor{…}

muxInfo MuxInfo {

fileName "ICOriUrlWithoutEP.od"

streamFormat BIFS

}

}

]

esDescr [

ES_Descriptor {

ES_ID 301

decConfigDescr DecoderConfigDescriptor{…}

slConfigDescr SLConfigDescriptor{…}

muxInfo MuxInfo {

fileName "ICOriUrlWithoutEP.bif"

streamFormat BIFS

}

}

]

}

ObjectDescriptor {

objectDescriptorID 12

esDescr [

ES_Descriptor {

ES_ID 211

decConfigDescr DecoderConfigDescriptor{

…

decSpecificInfo AFXConfig {

afxext OriInterpCompDecoderSpecific { }

}

}

slConfigDescr SLConfigDescriptor{…}

muxInfo MuxInfo {

fileName "sample.aac"

streamFormat InterpolatorCompression

}

}

]

}

9.7.2 Example: Using BitWrapper, original data(uncompressed) and its encoding parameters
One can create the XMT input file that has BitWrapper node, original data (not pre-encoded one) and its encoding parameters in it. From this input file, one also can generate a mp4 file. The processes are explained in the following figure.
[image: image314.jpg]Modified.musx (59

0]

anp4 output fle

‘When the encoding parameters exist in BitWrapper,
Itshould he regarded to generate encoded
Bitstream from the original data in it

Contain the meta description for
compressed 3D graphics data

« BitWrapper mode
+ Encodingparameters

« BitWrapperEncoding Hints
+ AFXConfig

Figure 64 — From XMT to mp4: Using BitWrapper, original data and its encoding parameters

From the figure, a XMT parser takes a XMT file as an input and produces two output files with the help of XMT-A schema description file and two XMT style sheets (XMT2BIFS, XMT2MUX) in the XMTParser (circle 1). However, the two output files (.scene and .mux) cannot be used as input files of BIFS encoder and MP4 encoder directly, because the XMT parser just converts the description from XMT to IM1 textual format and does not encode the original data with the provided encoding parameters in the BitWrapper node. Therefore, we need to have some means to encode the original data of node field in the BitWrapper node with encoding parameters. It is called AFX encoder (circle 2) and is located between the XMT parser and the BIFS encoder, the MP4 encoder. The BitWrapper node currently supports to encode node data related to AFX tools (14496-16:2003), three interpolators (Coordinate, Orientation and Position) and 3DMC.

The AFX encoder reads the original data of node field, the type of node, its encoding parameters in the BitWrapper node and the name to be used as a name of encoded bitstream (The name is given by buffer field in in-band scenario and by parameter value of <sourceFormat> element in out-band scenario). Then, it produces an encoded bitstream and recreates modified output files (.scene and .mux). Modified .scene file contains the encoded bitstream instead of containing original data and its encoding parameters in the BitWrapper node in the AFX Encoder. The remaining processes are the same as the previous case in the subclause 9.7.1.

The following two examples show how the above processes are applied in real situation.

9.7.2.1 In-band scenario: Using encoding parameter
One can create a text file and a script file (Both are IM1 textual format) that carry encoded in-band bitstream. The encoded bitstream can be made by encoding the original data which are contained in the node field of BitWrapper node and stored in the encoded bitstream file. The name to store the encoded bitstream is given by the buffer field in BitWrapper node. In the encoding, the encoding parameters that are specified in xmt file should be used by authors.
In “ICOriBufferWithEP.xmt”,

<Header>

<InitialObjectDescriptor objectDescriptorID="1" binaryID="1" >

…

<Descr>

<esDescr>

<ES_Descriptor ES_ID="xyz1" binaryID="301">

<decConfigDescr >

<DecoderConfigDescriptor streamType="3" objectTypeIndication="2" bufferSizeDB="500000">

<decSpecificInfo>

<BIFSv2Config nodeIDbits="10" routeIDbits="10" PROTOIDbits="10"> </BIFSv2Config>

</decSpecificInfo>

</DecoderConfigDescriptor>

</decConfigDescr>

<slConfigDescr>

<SLConfigDescriptor>

<custom
useAccessUnitStartFlag="TRUE" useAccessUnitEndFlag="TRUE"

timeStampResolution="100" timeStampLength="14" />

</SLConfigDescriptor>

</slConfigDescr>

<StreamSource url="ICOriBufferWithEP.bif"> </StreamSource>

</ES_Descriptor>

</esDescr>

</Descr>

</InitialObjectDescriptor>

</Header>

<Body>

<Replace>

<Scene>

<Group>

<children>

…

<Transform translation="0 -2.373 -7.635" DEF="ROT">

<children>

<Shape>

<appearance> … </appearance>

<geometry DEF="MY_BOX">

<Box size="30.0 10.0 30.0"></Box>

</geometry>

</Shape>

<BitWrapper type="0" buffer="sample.aac">

<node>

<OrientationInterpolator
DEF="Camera01-ROT-INTERP"

key="0.0 0.2 0.4 0.6 0.8 1.0"

keyValue="0.0 0.0 1.0 0.0, 0.0 0.0 1.0 3.14, 0.0 0.0 1.0 6.28, 1.0 0.0 1.0 0.0, 1.0 0.0

 1.0 3.14, 1.0 0.0 1.0 6.28">

</OrientationInterpolator>

</node>

<OrientationInterpolatorEncodingParameter
keyQBits="10" keyValueQBits="14"

dpcmMode="0">

</OrientationInterpolatorEncodingParameter>

</BitWrapper>

</children>

</Transform>

<TimeSensor cycleInterval="6.0" loop="TRUE" DEF="TimeSource"> </TimeSensor>

</children>

</Group>

<ROUTE fromNode="TimeSource" fromField="fraction_changed" toNode="Camera01-ROT-INTERP"

toField="set_fraction"> </ROUTE>

<ROUTE fromNode="Camera01-ROT-INTERP" fromField="value_changed" toNode="ROT"

toField="rotation"> </ROUTE>

</Scene>

</Replace>
</Body>

The above xmt file is taken by the XMT parser and the following two files(.scene file and .mux file) are produced by the XMT parser with the help of XMT-A schema description and two XMT style sheets(XMT2BIFS, XMT2MUX).
In “ICOriBufferWithEP.scene”,

…

BitWrapper {

node DEF Camera01-ROT-INTERP OrientationInterpolator {

key [0.0 0.2 0.4 0.6 0.8 1.0]

keyValue [0.0 0.0 1.0 0.0, 0.0 0.0 1.0 3.14, 0.0 0.0 1.0 6.28, 1.0 0.0 1.0 0.0, 1.0 0.0 1.0 3.14, 1.0 0.0 1.0 6.28]

}

OrientationInterpolatorEncodingParameter {

keyQBits
10

keyValueQBits
14

dpcmMode
0

}

type 0

buffer "sample.aac"

}

…

In “ICOriBufferWithEP.mux”,

InitialObjectDescriptor {

objectDescriptorID 1

…

esDescr [

ES_Descriptor {

ES_ID 301

decConfigDescr DecoderConfigDescriptor{…}

slConfigDescr SLConfigDescriptor{…}

muxInfo MuxInfo {

fileName "ICOriBufferWithEP.bif"

streamFormat BIFS

}

}

]

}
As shown above, this “.scene” file could not be directly used as an input to BIFS encoder because it contains uncompressed original data in the node field. Therefore, the AFX encoder encodes the node data in the node field with the given encoding parameters and stores it in the given file name in the buffer field.
And the expected outputs of AFX encoder would be like this;

In “ICOriBufferWithEP_Modified.scene”

…

BitWrapper {

node DEF Camera01-ROT-INTERP OrientationInterpolator { }

type 0

buffer "sample.aac"

}
In “ICOriBufferWithEP_Modified.mux”,
InitialObjectDescriptor {

objectDescriptorID 1

…

esDescr [

ES_Descriptor {

ES_ID 301

decConfigDescr DecoderConfigDescriptor{…}

slConfigDescr SLConfigDescriptor{…}

muxInfo MuxInfo {

fileName "ICOriBufferWithEP_modified.bif"

streamFormat BIFS

}

}

]

}
9.7.2.2 Out-band scenario: Using encoding parameter
One can create a text file and a script file (Both are IM1 textual format) that carry encoded out-band bitstream. The encoded bitstream can be made by encoding the original data which are included in the node field of BitWrapper node and stored in the encoded bitstream file. The name to store the encoded bitstream is given by the parameter value of <sourceFormat> element in <BitWrapperEncodingHints> element. In the encoding, the encoding parameters that are specified in xmt file by an author should be used.
In “ICOriUrlWithEP.xmt”,

<Header>

<InitialObjectDescriptor objectDescriptorID="1" binaryID="1" >

…

<Descr>

<esDescr>

<ES_Descriptor ES_ID="xyz" binaryID="201">

<decConfigDescr >

<DecoderConfigDescriptor streamType="1" objectTypeIndication="2" bufferSizeDB="10000000">

</DecoderConfigDescriptor>

</decConfigDescr>

<slConfigDescr>

<SLConfigDescriptor>

<custom
useAccessUnitStartFlag="TRUE" useAccessUnitEndFlag="TRUE"

timeStampResolution="100" timeStampLength="14" />

</SLConfigDescriptor>

</slConfigDescr>

<StreamSource url="ICOriUrlWithEP.od"> </StreamSource>

</ES_Descriptor>

</esDescr>

<esDescr>

<ES_Descriptor ES_ID="xyz1" binaryID="301">

<decConfigDescr >

<DecoderConfigDescriptor streamType="3" objectTypeIndication="2" bufferSizeDB="500000">

<decSpecificInfo>

<BIFSv2Config nodeIDbits="10" routeIDbits="10" PROTOIDbits="10">

</BIFSv2Config>

</decSpecificInfo>

</DecoderConfigDescriptor>

</decConfigDescr>

<slConfigDescr>

<SLConfigDescriptor>

<custom
useAccessUnitStartFlag="TRUE" useAccessUnitEndFlag="TRUE"

timeStampResolution="100" timeStampLength="14" />

</SLConfigDescriptor>

</slConfigDescr>

<StreamSource url="ICOriUrlWithEP.bif"> </StreamSource>

</ES_Descriptor>

</esDescr>

</Descr>

</InitialObjectDescriptor>
</Header>

<Body>

<Replace>

<Scene>

<Group>

<children>

…

<Transform translation="0 -2.373 -7.635" DEF="ROT">

<children>

<Shape>

<appearance> … </appearance>

<geometry DEF="MY_BOX">

<Box size="30.0 10.0 30.0"></Box>

</geometry>

</Shape>

<BitWrapper type="0" url="12">

<node>

<OrientationInterpolator DEF="Camera01-ROT-INTERP"

key="0.0 0.2 0.4 0.6 0.8 1.0"

keyValue="0.0 0.0 1.0 0.0, 0.0 0.0 1.0 3.14, 0.0 0.0 1.0 6.28, 1.0 0.0 1.0 0.0, 1.0 0.0

 1.0 3.14, 1.0 0.0 1.0 6.28">

</OrientationInterpolator>

</node>

<OrientationInterpolatorEncodingParameter
keyQBits="10"
keyValueQBits="14"

dpcmMode="0">

</OrientationInterpolatorEncodingParameter>

</BitWrapper>

</children>

</Transform>

<TimeSensor cycleInterval="6.0" loop="TRUE" DEF="TimeSource"> </TimeSensor>

</children>

</Group>

<ROUTE fromNode="TimeSource" fromField="fraction_changed" toNode="Camera01-ROT-INTERP"

toField="set_fraction"> </ROUTE>

<ROUTE fromNode="Camera01-ROT-INTERP" fromField="value_changed" toNode="ROT"

toField="rotation"> </ROUTE>

</Scene>

</Replace>

<ObjectDescriptorUpdate>

<OD>

<ObjectDescriptor objectDescriptorID="12" binaryID="12">

<Descr>

<esDescr>

<ES_Descriptor ES_ID="PI" binaryID="211">

<decConfigDescr >

<DecoderConfigDescriptor streamType="3" objectTypeIndication="5"

bufferSizeDB="50000">

<decSpecificInfo>

<AFXConfig>

<OriInterpCompDecoderSpecific> </OriInterpCompDecoderSpecific>

</AFXConfig>

</decSpecificInfo>

</DecoderConfigDescriptor>

</decConfigDescr>

<slConfigDescr>

<SLConfigDescriptor>

<custom timeStampResolution="100" />

</SLConfigDescriptor>

</slConfigDescr>

<StreamSource>

<BitWrapperEncodingHints>

<BitWrapperICEncodingHints>

<sourceFormat>

<param value="sample.aac"> </param>

</sourceFormat>

</BitWrapperICEncodingHints>

</BitWrapperEncodingHints>

</StreamSource>

</ES_Descriptor>

</esDescr>

</Descr>

</ObjectDescriptor>

</OD>

</ObjectDescriptorUpdate>
</Body>
The above xmt file is taken by the XMT parser and the following two files(.scene file and .mux file) are produced by the XMT parser with the help of XMT-A schema description and two XMT style sheets(XMT2BIFS, XMT2MUX)
In “ICOriUrlWithEP.scene”

…

BitWrapper {

node DEF Camera01-ROT-INTERP OrientationInterpolator {

key [0.0 0.2 0.4 0.6 0.8 1.0]

keyValue [0.0 0.0 1.0 0.0, 0.0 0.0 1.0 3.14, 0.0 0.0 1.0 6.28, 1.0 0.0 1.0 0.0, 1.0 0.0 1.0 3.14, 1.0 0.0 1.0 6.28]

}

OrientationInterpolatorEncodingParameter {

keyQBits
10

keyValueQBits
14

dpcmMode
0

}

type 0

url 12

}

…

UPDATE OD [

ObjectDescriptor {

objectDescriptorID 12

muxScript ICOriUrlWithEP.mux

}

]

In “ICOriUrlWithEP.mux”,

…

InitialObjectDescriptor {

objectDescriptorID 1

…

esDescr [

ES_Descriptor {

ES_ID 201

decConfigDescr DecoderConfigDescriptor{…}

slConfigDescr SLConfigDescriptor{…}

muxInfo MuxInfo {

fileName "ICOriUrlWithEP.od"

streamFormat BIFS

}

}

]

esDescr [

ES_Descriptor {

ES_ID 301

decConfigDescr DecoderConfigDescriptor{…}

slConfigDescr SLConfigDescriptor{…}

muxInfo MuxInfo {

fileName "ICOriUrlWithEP.bif"

streamFormat BIFS

}

}

]

}

ObjectDescriptor {

objectDescriptorID 12

esDescr [

ES_Descriptor {

ES_ID 211

decConfigDescr DecoderConfigDescriptor{

…

decSpecificInfo AFXConfig {

afxext OriInterpCompDecoderSpecific { }

}

}

slConfigDescr SLConfigDescriptor{…}

muxInfo MuxInfo {

fileName "sample.aac"

streamFormat InterpolatorCompression

}

}

]

}
As shown above, this “.scene” file could not be directly used as an input to BIFS encoder because it contains uncompressed original data in the node field. Therefore, the AFX encoder encodes the node data in the node field with the given encoding parameters and stores it in the given file name in the <sourceFormat> element in <BitWrapperEncodingHints> element.

And the expected outputs of AFX encoder would be like this;

In “ICOriUrlWithEP_Modified.scene”,
“

…

BitWrapper {

node DEF Camera01-ROT-INTERP OrientationInterpolator { }

type 0

url 12

}

…

UPDATE OD [

ObjectDescriptor {

objectDescriptorID 12

muxScript ICOriUrlWithEP_Modified.mux

}

]

”
In “ICOriUrlWithEP_Modified.mux”,
…

InitialObjectDescriptor {

objectDescriptorID 1

…

esDescr [

ES_Descriptor {

ES_ID 201

decConfigDescr DecoderConfigDescriptor{…}

slConfigDescr SLConfigDescriptor{…}

muxInfo MuxInfo {

fileName “ICOriUrlWithEP_modified.od”

streamFormat BIFS

}

}

]

esDescr [

ES_Descriptor {

ES_ID 301

decConfigDescr DecoderConfigDescriptor{…}

slConfigDescr SLConfigDescriptor{…}

muxInfo MuxInfo {

fileName “ICOriUrlWithEP_modified.bif”

streamFormat BIFS

}

}

]

}

ObjectDescriptor {

objectDescriptorID 12

esDescr [

 ES_Descriptor {

ES_ID 211

decConfigDescr DecoderConfigDescriptor{

…

decSpecificInfo AFXConfig {

afxext OriInterpCompDecoderSpecific { }

}

}

slConfigDescr SLConfigDescriptor{

…

}

muxInfo MuxInfo {

fileName "sample.aac"

streamFormat InterpolatorCompression

}

}

]

}
10 MPEG-J

10.1 Architecture

10.1.1 Parametric versus Programmatic System

10.1.1.1 Overview of a Parametric MPEG-4 System

Figure 62 shows an example of the basic MPEG-4 player, a parametric system. MPEG-4 coded data from storage/network goes through a DMIF and a demultiplex layer. In the demultiplex layer, M4Mux packets pass through the Sync Layer resulting in unformatted SL-PDUs of each media type (coded audio, video, speech or facial animation streams) which are then buffered in the respective decoder buffers and are offered to the corresponding media decoders. Also, the SL-PDUs corresponding to scene description representation are input to the BIFS decoder, the output of which goes to the Scene Graph. The output of the media decoders as well as Scene Graph feeds the Compositor and the Renderer, which may respond to (very basic) user interaction such as mouse clicks etc. The output of Compositor and Renderer is the scene for presentation.

[image: image315.wmf]Dec Buffer 2

Comp Buffer 2

D

e

M

u

x

Channel

Back

Channel

DMIF

 Compositor

and Renderer

 BIFS Dec

 Scene Graph

Dec Buffer 1

Dec Buffer n

Comp Buffer 1

Comp Buffer n

Media Dec 1

Media Dec 2

Media Dec n

Legend

control

data

Figure 65 — An MPEG-4 Player
10.1.2 The MPEG-J System

The MPEG-J is a programmatic system, which specifies interfaces for interoperation of an MPEG-4 media player with Java code. By combining MPEG-4 media and safe executable code, content creators may embed complex control mechanisms with their media data to intelligently manage the operation of the audio-visual session. Java byte code is delivered to the MPEG-4 terminal as a separate elementary stream. There, it will be directed to the MPEG-J run time environment, which includes a Java Virtual Machine, from where the MPEG-J program will have access to the various components of the MPEG-4 player. Figure 63 shows an example of the components of the MPEG-J operating environment.

[image: image316.wmf]MPEG-J App

java

….

java.io

.

.

java.lang

MPEG-J APIs

Java

Virtual

Machine

MPEG -J

Execution

Engine

Engine

Presentation

Application

Engine

Figure 66 — MPEG-J Software architecture

The software architecture of MPEG-J takes into consideration the resources available on the underlying platform. The architecture involves the isolation of distinct components, the design of interface that reflects them, and the characterization of interactions between components. Such components include:

Execution and Presentation Resources: It is assumed that the decoding and presenting resources are limited. This component abstracts access to information on such static and dynamic resources in the player. It abstracts notification during changes in such resources. Further, it provides for some minimal control of the same.

Decoders: This component abstracts the media decoders used to decode the received media streams. The programmatic control and their manipulation to add extra functionality is also abstracted by this component.

Network Resources: Since the device receives media streams, this component abstracts the control of such streams. It also abstracts the media pipeline, which transports and presents the stream.

Scene Graph: An MPEG-4 session has a Scene Graph which spatially and temporally represents audio visual objects This component abstracts access and control of the scene graph.

The MPEG-J APIs specified in this document are the interfaces that reflect the above said components. A block diagram of the MPEG-J player controlling an MPEG-4 player environment is shown in Figure 64. The lower half of this drawing depicts the parametric MPEG-4 player of Figure 62 and is also referred to as the Presentation Engine. The upper half of Figure 64 illustrates this the MPEG-J system controlling the Presentation Engine is also referred to as the Application Engine.. The APIs shown in Figure 64 will be specified later in this document.

[image: image317.wmf]D

E

M

U

X

MPEG-J

Application

Buffer

Scene Graph

Manager

Resource

Manager

I/O

Devices

Network

Manager

Class

Loader

DMIF

Scene

Graph

BIFS

Decoder

Decoding

Buffers 1

..n

Media

Decoders 1

..n

Composition

Buffers 1

..n

Compositor

and Renderer

Version 1

player

NW API

SG API

RM API

Legend

Interface

Control

data

Back

Channel

Channel

MD API

Figure 67 — Architecture of an MPEG-J enabled MPEG-4 System
10.2 MPEG-J Session

The MPEG-J session need not be started till it is clear that MPEG-J application programs will be received and are to be executed. This can be recognized by the presence of one of more of MPEG-J Elementary streams.

10.2.1 Walkthrough of an MPEG-J Session Start-up

The MPEG-J session is initiated when the MPEG-4 player receives an MPEG-J Object Descriptor. The player takes the following steps:

It opens the MPEG-J elementary stream via a DMIF channel. The MPEG-J Elementary stream is a SL packetized stream, similar to all other MPEG-4 streams.

It delivers the Access Units to the class loader, which loads the classes.

The MPEG-J "decoder" receives the arriving Access Units (it "decodes" them). There can be more than one class with an entry point within one MPEG-J stream. Each time such a class containing an entry-point is received (a "run" method) execution will start there as a new thread.

10.2.2 Local and Remote MPEG-J Applications

MPEG-J applications that use the MPEG-J APIs to control the underlying MPEG-4 player can either be local or remote. In the case of a remote application that is received in the MPEG-J Elementary Stream, it must implement the MPEGlet interface. The lifecycle and the security model of such an application (MPEGlet) are described in the next two sections. However, this does not apply to local applications.

10.2.3 MPEG-J Elementary Stream, Object Descriptor, and the Name Scope

10.2.3.1 MPEG-J Elementary Stream

The MPEG-J data comprising of class files or object data is streamed to the MPEG-J terminal as an MPEG-J Elementary Stream. The class files and all the associated data in such a stream can be optionally packaged together. Further, the class files in the stream (irrespective of whether it is packaged or not, can be compressed. The stream type of such an elementary stream is uniquely defined in Table 5 streamType Values, ISO/IEC 14496-1.

10.2.3.2 MPEG-J Object Descriptor

 The MPEG-J elementary stream and the application programs (MPEGlets) derive their scope and properties from its Object Descriptor, which in turn is scoped by the initOD or the updateOD of the scene.

10.2.3.3 The Name Scope of an MPEG-J Stream

The Name Scope of the MPEGlets in an MPEG-J Stream is derived from the Object Descriptor of that MPEG-J Elementary Stream. Similar to the node identifiers in the scene graph, all the identifiers used by an MPEGlet in an Elementary Stream are interpreted within the name scope of that Elementary Stream and its Object Descriptor. Therefore, all the rules that restrict the name scope of an inline scene apply to the MPEG-J session also.

The name scope of an MPEGlet is determined by the managers it receives from the MpegjTerminal. The MPEGlet must pass a reference to itself in the constructor of the MpegjTerminal to identify the name scope used by the managers. A local application may use the zero-argument constructor of the MpegjTerminal to imply that the managers should use the root name scope.

10.2.4 Life Cycle of an MPEGlet

The life cycle of an MPEGlet is very similar to that of an applet. The MPEGlet interface has init(), run(), stop(), and destroy() methods. When an MPEGlet is received in the bitstream, it is loaded after the Start-Loading Time Stamp and before the Load-By Time Stamp as described in subclause 10.3.2. At the time instant specified by the Load-By Time Stamp, the init() method of the MPEGlet is executed. This is where all the initializations for the MPEGlet are typically done. After initializing the MPEGlet, the run method is called as a separate thread. Similar to a Java applet, the stop() and destroy() methods are specified in the MPEGlet interface. If the MPEG-J player receives another MPEGlet in the bit​stream, it is initialized and started as a different thread.

10.2.5 Security Model of an MPEGlet

The security model of an MPEGlet is very similar to that of an applet. However, the security manager implemented on the player can add or relax the security restrictions. By default all the security restrictions that apply to applets apply to the MPEGlets too. These default security restrictions of an MPEGlet are:

MPEGlets cannot load libraries or define native methods.

MPEGlets can use only their own Java code, MPEG-J APIs, and the Java APIs the underlying platform pro​vides.

An MPEGlet cannot normally read or write files on the host that is executing it.

An MPEGlet cannot start any program on the host that is executing it.

An MPEGlet cannot read certain system properties except through the Terminal Capability APIs

10.3 Delivery of MPEG-J Data

The MPEG-J application programs are delivered to the MPEG-4 player as MPEG-4 elementary streams defined in this document. The MPEG-J data could be classes, serialized objects, or any associated data (in the case of packaged form). Serialized objects and other auxiliary data are expected to accompany classes that have knowledge about handling those objects.

10.3.1 Issues in Delivery of Byte Code

The MPEG-J data (classes or objects) must be delivered in a timely fashion to the player. A header is used along with the class files or objects (serialized) to ensure this. This header, which is called the Java Stream Header, is attached to each class file or object data before it is passed on to the Sync Layer. After packetization, any “time aware” transport mechanism, like M4Mux, RTP, and even MPEG2 transport stream, can be used to transport the data to the client side.

10.3.1.1 Packet Loss

Packet loss in the case of Java byte code streaming will be a problem for the execution of the programs. The possible options for dealing with data loss are:

Retransmission of the entire class at regular intervals in the absence of a back channel. This would also help to facilitate random access points in the case of media. However, this may not be possible when there are a large number of cli​ents or when the class (or object) is huge, making retransmission prohibitive.

When a back channel is present this loss can be signaled to the server and the lost packet can be retransmitted. There are a number of error resilient schemes, with built-in redundancy, available to recover from a partial loss of data. For e.g., schemes like forward error correction can be used. However, currently none of these schemes are mandated in an MPEG-J stream.

Packet Loss is not handled at the MPEG-J layer. It is assumed that the underlying transport layer is reliable enough to ensure that there is no packet loss.

10.3.1.2 Security

To ensure the safety of the client, the byte code needs to be authentic. There are a number of security schemes that can be used to ensure the authenticity of the byte code. Any of these schemes can be accommodated in an IPMP Descriptor or an IPMP stream.

10.3.1.3 Compression

The Java byte code can be optionally compressed for bandwidth efficiency using the Zip compression mechanism. Files can be both compressed and uncompressed using the java.util.zip package. The underlying compression technique in Zip is ZLIB.
)
10.3.1.4 Class Dependency

If a given class depends on other classes, the classes that it depends on have to be loaded before the dependent class can be loaded. Similarly before an object can be instantiated, the class of which it is an instance must be loaded first. One way of doing this would be using a packaging scheme e.g. JAR to package all the interdependent class files together. However, this may not always be the optimal solution, especially in lossy transport channels as a single packet loss could result in a loss of the entire package. As an alternative a simple class-dependency mechanism is provided in the Java Stream header below. In this mechanism all the dependent classes of a particular class are listed in the header of that class file. It is required that those classes need to be loaded before this class can be loaded.

Two time stamps will be used in the next subsection, one signaling a time after which a particular class can be loaded (also called Start-Loading Time Stamp), and the second signaling the time by which the class is required to be loaded (Load-By Time Stamp). The Start-Loading Time Stamp of a class that depends on a number of other classes has to be later than the Load-By Time Stamps of all the classes it depends on. These two timestamps together aid in ensuring that the dependencies between classes are met.

10.3.2 Semantics of Time Stamps in MPEG-J

The Decoding Time Stamp (DTS) and Composition Time Stamp (CTS) defined in the SL header in the Sync Layer will be used for the timely delivery of the MPEG-J Elementary Stream. The semantics of these timestamps for the MPEG-J Elementary Stream is defined in this section.

Start-Loading Time Stamp: This is used to signal the time instant at which the process of loading a class can be started. This time stamp is essential to avoid name space and resource conflicts. This timestamp also ensures that the resources for loading the class would be available at the terminal. In addition, this time stamp allows the terminal to receive classes ahead of the time at which they need to be loaded. This is carried in the SL Header as the Decoding Time stamp (DTS).

Each class is loaded by calling the loadClass(className) method of the class loader, where className is the name of the class. The name of class does not include the .class suffix.

Load-By Time Stamp: This time stamp is used to signal the time instant by which a class should be loaded at the MPEG-J terminal. If the received class implements the MPEGlet interface, it will also be initialized at this instant of time (by executing the init() method). After initialization, the MPEGlet would be run (by executing the run() method) as a separate thread at this time instant. This time stamp is carried in the SL Header as the Composition Time Stamp (CTS).

The above two time stamps define a window in time between which a given class shall be loaded. As described in the previous section this window helps in resolving the class dependencies between classes. When the window between these two timestamps are made large enough the problems due to non-uniform loading times on different client terminals can be avoided. Again, if the channel is lossy, this window can be made large enough to allow re-transmissions, if possible. With this mechanism the order in which the classes need to be loaded can be different from the order in which the classes arrive on the terminal.

10.3.3 Streaming Header

10.3.3.1 Description

Each class or a packaged set constitutes a separate Access Unit.

The payload can be classes (compressed or uncompressed) or instances as serialized objects.

Classes are identified by an ID (unique to the session). This ID can be used to identify classes when it is received multiple times. The ID of a class is also used to identify all its instances in the case of serialized objects. Java class names are used as IDs. Since these are variable length strings, the length of the string is also included in the header. The combination of the Class ID and its length (16 bits) are padded till the next 32 bit boundary. When multiple classes are packaged together, the name of the packaged file is used as the ID. There is a list of required classes, whose Load-By time need to precede the Start-Loading time of a class that requires it. A 13-bit number is used to specify the number of classes that are required before loading/instantiating the class/object data. Each required class is specified by its Class IDs and its length. In the packaged case, the list of required classes specify the classes in the archive that have to be loaded. Those files in the archive that are not listed as required classes need not be loaded by the terminal by the DTS or Load-By time.

10.3.3.2 JavaStreamHeader

10.3.3.2.1 Syntax

aligned(32) class JavaStreamHeader {

bit(2) version;

bit(1) isClassFlag;

bit(13) numReqClasses;

bit(1) isPackaged ;

bit(3) compressionScheme;

bit(12) reserved;

JavaClassID classID;

JavaClassID reqClassID[numReqClasses];

}
10.3.3.2.2 Semantics

version - Version number. This is currently 00.

isClassFlag – If set to 1, the payload represents a class. If set to zero, the payload does not represent a class, but instead represents content accessible to the MPEGlet as a ClassLoader resource. This content can be a java object or any other data that is useful to the MPEGlet. The MPEGlet may obtain a URL to access the content by calling the getResource() method of the ClassLoader with the JavaClassID as the parameter. In addition, if isClassFlag is set to 1 but isPackaged indicates a package, the Zip archive may contain content that does not represent class data. Such data shall be accessible by calling getResource() of the ClassLoader with the element name as the parameter.

numReqClasses - Number of classes that are required before loading this class (or before instantiation, in case of objects).

isPackaged – If set to 0, this indicates a single class file and not a package. 1 indicates that multiple class files are packaged together using Zip.

compressionScheme - To specify the type of compression scheme used (000 for objects, when no compression is used, 001 when the contents are compressed using Zip, 010-111 reserved for future use by ISO).

reserved – Bits reserved by ISO for future use. These bits should be 0xFFF.

classID – Information to identify this class or package. The definition of its type JavaClassID is defined in the next subsection.

reqClassID[n] – Information to identify the n required classes.

10.3.3.3 JavaClassID

10.3.3.3.1 Syntax

aligned(32) class JavaClassID {

bit(16) length;

bit(8 * length) ID;

}

10.3.3.3.2 Semantics

length - Number of bytes for the ID.

ID - Variable length string that identifies the class. The string is padded, so that the length of the combination of ID length field and the ID is multiple of 32 bits.

10.4 MPEG-J API List

10.4.1 Packages for MPEG-J from MPEG
Packages are a means to organize the implementation of APIs. The MPEG-J APIs are organized as the following packages:

org.iso.mpeg.mpegj.mpegj

org.iso.mpeg.mpegj.scene
org.iso.mpeg.mpegj.resource

org.iso.mpeg.mpegj.network
org.iso.mpeg.mpegj.decoder

Table 97 — Categories of APIs

	No
	API Category and main classes/interfaces
	Explanation

	1.
	Scene
Scene Graph

	Means by which MPEG-J applications access and manipulate the scene graph

	2.
	Resource

ResourceManager

CapabilityManager
	Centralized facility for managing system resources

Access to the static and dynamic capabilities of the terminal.

	3.
	Media Decoders

MPDecoder
	Access and control to the decoders used to decode the audio-visual objects.

	4.
	Network

NetworkManager
	Access and control of the network components of the MPEG-4 player.

	5.
	Section Filtering and Service Information
	MPEG-2 Stream specific APIs defined in Part 9 of DAVIC 1.4.1 specification. This covers Section Filtering, Service Information, Resource Notification, and MPEG Component APIs.

10.4.2 MPEG-J API (org.iso.mpeg.mpegj)

The MPEG-J Terminal class provides the information about the managers that are implemented in the terminal. Each MPEGlet or application instantiates a new MpegjTerminal once it is loaded. This has methods to gain access to all the managers, viz., SceneManager, ResourceManager, and the NetworkManager.

Although an MPEG-J Terminal is instantiated by each MPEGlet, it should not be interpreted as creating a new terminal for each MPEGlet. A MPEG-J Terminal implementation gives the appropriate managers to the MPEGlet. The terminal, along with the managers, controls the environment (for e.g. the name scope) of the MPEGlet.

The ObjectDescriptor, the ESDescriptor, and the DecoderConfigDescriptor interfaces are also part of the org.iso.mpeg.mpeg.mpegj package. These interfaces provide access and abstraction to the above descriptors. Information about nodes, elementary streams, their types, and the decoder information can be obtained used these APIs.

10.4.3 Scene API

The SceneGraph API provides a mechanism by which MPEG-J applications access and manipulate the scene used for composition by the BIFS player. It is a low-level interface, allowing the MPEG-J application to monitor events in the scene, and modify the scene tree in a programmatic way. Nodes may also be created and manipulated, but only the fields of nodes that have been instanced with DEF are accessible to the MPEG-J application

This API has been designed to serve as the lowest layer of the MPEG-J scene graph manager. A terminal designer would only need to implement this package to have MPEG-J bindings to the native scene. Other class libraries could be specified entirely in Java to allow higher-level access to and control of the scene. Those libraries could be supplied as packages that run above this org.iso.mpeg.mpegj.scene package, allowing their selection to be determined based on a profile or level or could sent to the terminal in the bit stream.

10.4.3.1 Events

Events in the BIFS scene graph are identified by the two interface classes EventIn and EventOut. The EventOutListener class can monitor them.

10.4.3.1.1 EventIn

The EventIn interface class contains an interface class definition for each node type defined in MPEG-4 systems. These definitions enumerate all of the exposedField and eventIn field types in the node, in the order they are defined in this document.

10.4.3.1.2 EventOut
Likewise, the EventOut interface class contains an interface class definition for each node type defined in MPEG-4 systems. These definitions enumerate all of the exposedField and eventOut field types in the node, in the order they are defined in this document.

10.4.3.1.3 EventOutListener

The Scene Graph APIs also provide an EventOutListener interface, which can be used by the scene graph manager to identify a field value change when an eventOut is triggered.

10.4.3.2 Field Values

The scene graph APIs provide an interface for tagging objects that can return a field value. Similar to VRML, two general field types are supported. SFField is used for single value fields and MFField is used for multiple value fields. The supported SFField types are extended directly from the FieldValue interface, while the Multiple field types are extended through the MFFieldValue interface.

10.4.3.3 Scene Management

The following interfaces are used to facilitate programmatic control over the MPEG-4 terminal’s native scene.

10.4.3.3.1 SceneManager

The SceneManager interface is the interface that allows access to the native scene. It contains methods for adding and removing a SceneListener. In order to access the BIFS scene graph, the SceneManager requires an instance of the scene, which it obtains through notification on a SceneListener instance. This method is the only normative way for an MPEG-J application to obtain a scene instance.

10.4.3.3.2 SceneListener

The SceneListener contains a notify method which can be called by the SceneManager when the BIFS scene has changed. The notify() method contains arguments to indicate the nature of the change, and an updated Scene instance. Currently three states can be passed through the scene listener. They indicate that the scene is ready, it has been replaced, or it has been removed.

10.4.3.3.2.1 Scene

The Scene interface acts as a proxy for the BIFS scene. It contains a getNode() method, which returns a Node proxy for the desired node in the scene. If the requested node does not exist it throws a BadParameterException, and if the scene is no longer valid it throws an InvalidSceneException.

10.4.3.3.2.2 Node

The Node interface acts as a proxy for a BIFS node in the scene graph. As previously mentioned, only nodes that have been instanced by a DEF identifier are available to the MPEG-J application. Three methods are available in the Node proxy for monitoring output events. The getEventOut() method reads the current value of an eventOut or exposedField of this node. There are also methods for adding and removing an EventOutListener. All three of these methods throw a BadParameterException if they fail. The fourth method contained in the Node interface is the sendEventIn method. This is the only method available to the application for modifying the BIFS scene. It updates the value of the eventIn or exposedField of the node. It is a synchronous call that will not return until the field is updated in the scene. The fifth method contained in the Node interface is the getNodeType() method. This method returns an integer identifying the type of the node (such as Transform). The node type constants are defined in the NodeType interface. All of the methods contained in the Node interface throw an InvalidNodeException if the node is no longer valid (if it has been replaced or deleted).

10.4.3.3.2.3 NodeValue

The NodeValue interface is used to represent the values of SFNode and MFNode fields. There are three types of NodeValue references:

The getNode()method of the Scene interface returns a Node that acts as a proxy for a node in the BIFS scene. This object also implements the NodeValue interface.

The getEventOut() method of the Node interface may return a SFNodeFieldValue. Its getSFNodeValue method returns a NodeValue that acts as a proxy for a child node in the BIFS scene. However, unlike the proxy returned by the Scene’s getNode method, this proxy does not provide any way to access or modify the child node.

The NewNode interface extends NodeValue to support creation of new nodes. This interface has methods that describe the structure of the new node.

Sending an eventIn to a SFNode field (such as the geometry field of a Shape node) replaces a sub-graph of a BIFS scene. The value sent to the eventIn may be any one of the three types of NodeValue references enumerated above. If the value is a proxy for a node or child node, then the SFNode field value becomes a reference to the existing node (equivalent to making a USE reference to the node). If the object implements the NewNode interface, then a new node is created. The node type and DEF identifier of the new node are determined by calling the getNodeType()and getNodeID()methods (the node is not given a DEF identifier if the getNodeID()method returns zero). If the DEF identifier is already in use within the scene, then a BadParameterException shall be thrown. Each field and exposedField of the node shall be initialized to the value returned by calling getField()with the appropriate field defID (or the field’s default value if null is returned). This algorithm is applied recursively in the case that the field or exposedField is a SFNode or MFNode. The recursion may form a directed acyclic graph if the same object is returned more than once.

10.4.3.4 Scene Controller Architecture

Scene controllers are called at every frame by the application. Therefore, the scene controller scenario is included inside the rendering loop scenario (see Figure 65, using Unified Modeling Language notation). An application developer can implement application-specific logic by extending the SceneControllerListener interface and registering this component with the Renderer. Using scene controller pattern, an application can create its specific, run-time, dynamic behavior. This enables more optimized applications with guaranteed behavior on any terminals

[image: image318.emf]Application

SceneController

Application

developer

Rendering loop

Scene

develops

uses

«include»

uses

Figure 68 — Scene Controller use-cases.

Note: In Figure 65, Application stands for a terminal's MPEG-4 player.

10.4.3.4.1 SceneController – static view

Figure 66 shows the relationships between the objects used in a rendering loop.

· SceneControllerManager interface can be implemented by a Compositor object. This interface enables SceneControllerListener to be registered with the Renderer.

· SceneControllerListener interface defines two methods any SceneControllerListener (or scene controller for short) must implement.

· Renderer is an object that holds the Scene and enable access to other media used in the scene

· Scene contains a scene graph that is traversed at each rendering frame

· Canvas is an object that defines a rectangular area on the screen where painting operations will be displayed

Note:

Renderer, Canvas and Scene are generic terms for the description of the scene controller pattern. An implementation may use completely different names.

In MPEG-4, Scene object may be replaced by Compositor object because VRML/BIFS scene graph typically retains information (such as for bindable nodes) that might be useful for scene controllers. This is implementation dependent and doesn't change the structure and the behavior of the scene controller pattern.

[image: image319.emf]Renderer

Scene

Canvas

«interface»

SceneControllerManager

{abstract}

+ addSceneControllerListener(SceneControllerListener) : void

+ removeSceneControllerListener(SceneControllerListener) : void

«interface»

SceneControllerListener

{abstract}

+ init(Scene) : void

+ preRender(Scene) : void

+ postRender(Scene) : void

+ dispose() : void

0..1 *

0..1

0..1

Figure 69 — Class diagram for SceneControllerFigure

10.4.3.4.2 SceneController ‑ dynamic view

Referring to Figure 67, when a SceneControllerListener is registered to the compositor, SceneControllerListener.init() method is called to make sure its resources are correctly initialized.

At each rendering frame, the SceneControllerListener.preRender() method is called. Then, the scene is rendered. Finally, SceneControllerListener.postRender() is called.

SceneControllerListener.render() is used to control the objects to be displayed at this frame. SceneControllerListener.postRender() might be used for 2D layering, compositing effects, special effects, and so on once the scene is rendered.

SceneControllerListener.dispose() is used to clean up resources allocated with init().

[image: image320.emf]destruction

during rendering

intialization

�

Canvas

�

A_SceneControllerListener

�

: SceneControllerListener

�

Renderer

�

A SceneControllerListener is called at

�

application initialization (when the application

�

is first loaded) and at each frame.

�

- init() and dispose() are called only once.

�

- display() is called at every frame.

init

*init

[for each rendering frame]: display

*preRender

render scene

*postRender

dispose

Figure 70 — Scene controller sequence.

10.4.4 Resource API

Program execution may be contingent upon the terminal configuration and its capabilities. An MPEG-J program may need to be aware of its environment, so that it is able to adapt its own execution and the execution of the various components, as they may be configured and running in the MPEG-4 terminal. The APIs in the org.iso.mpeg.mpegj.resource package can be used to monitor the system resources, to listen to exceptional conditions through the event mechanism, and handle such eventualities. The resource package helps the MPEG-4 session to adapt itself to varying terminal resources. The main components of the resource package are the Resource Manager and the event model, capability manager to monitor dynamic and static capabilities of the terminal and the terminal profile manager.

10.4.4.1 Resource Manager

The resource manager API is used for regulation of performance. This provides a centralized facility for managing resources. It is a collection of a number of classes and interfaces summarized as follows.
	Interfaces
	Classes
	Interfaces

	
	Renderer
	

	
	ResourceManager
	

	MPDecoderEventGenerator
	MPDecoderMediaEvents
	MPDecoderMediaListener

	MPRendererEventGenerator
	MPRendererMediaEvents
	MPRendererMediaListener

10.4.4.1.1 Overview of the Event Model

For each decoder the Resource Manager would have an instantiation of a class that implements MPDecoder or a sub-interface. These decoder instantiations generate the different defined events for different conditions in the terminal. The resource manager implementation can handle events if necessary in addition to the event handlers in the application (the order of which is left to the implementation). The MPEG-J application can receive the Event handlers as byte code in the bit stream. The Renderer optionally provides notification of exceptional conditions (during rendering) and notification of frame completion when an application registers with it for this.

Apart from implicitly specifying the above event model the Resource Manager interface also provides access to the capability manager, decoders and their priorities. Given a node in the scene graph, this interface provides access to the decoder associated with that node (through its OD and ESID). It also facilitates setting and getting decoder priorities. It also enables changing a decoder associated with a node.

10.4.4.2 Capability Manager

The Terminal Capability API is responsible for providing access to dynamic and static terminal resources. The separation between static and dynamic terminal capabilities has been reflected in the API (the StaticCapability and the DynamicCapability interfaces). Because applications need to be notified when terminal capabilities change, an additional interface named TerminalObserver has been defined. The CapabilityManager class implements all these interfaces. This CapabilityManager handles the terminal capabilities. It is responsible to register/deregister and get/set capabilities. This design solution allows developers to dynamically handle an unlimited number of capabilities without the burden of managing them directly.

In order for the audio-visual session to respond gracefully to these situations, MPEG-J provides mechanisms for an MPEG-J session object to catch dynamic changes to terminal information and modify its behavior. Upon initialization, an MPEG-J session object may subscribe with the CapabilityManager object to receive notification of changes to dynamic terminal information that is important to that particular audio-visual session. If such information does change during an audio-visual session, the CapabilityManager will notify the MPEG-J session of the change through standardized interfaces. Then the MPEG-J session may respond in the manner prescribed by the content creator. For example, consider an MPEG-J scene representing an MPEG-4 video sequence of a newscaster and a background news clip coded as separate video objects. The content creator might want to freeze the news clip whenever the actual display frame rate is too slow, rather than sacrificing the quality of the newscaster in the foreground. The content creator can specify this behavior programmatically within the media by subscribing to notifications of frame-rate changes from the terminal. Then, when frame rate drops significantly due, for example, to limited CPU capacity, the media object can dynamically adapt and not continually decode the news clip and further degrade the presentation performance.

On some platforms and scenarios, it may be impossible for the terminal to guarantee the constant availability of all of its resources. For example:

A wireless multimedia unit may encounter widely varying communication capacities, including intermittent connections.

A general-purpose computer may experience varying load factors as other processes run on the system.

Audio-visual sessions with content generated at multiple sources may cause resource contention on the terminal.

Due to the large and increasing number of terminal capabilities all the capability that a terminal support is not defined. The Capability class is used to handle terminal capability in a generic way. Each terminal capability is mapped to a subclass of Capability and then managed by the CapabilityManager class. In this way the CapabilityManager class is able to handle a variable number/type of capabilities without the need to modify/extend it hence to modify the applications that use the CapabilityManager class.

Capability values are not mapped to a specific type such as String but they are handled as generic Java Objects. Through the Java Reflection API (java.lang.reflect) every type (possibly added at runtime and not at compile time) can be handled. This facility allows developers to use real types instead of flat types while maintaining the Capability class generic.

10.4.4.3 Terminal Profile Manager

The purpose of the Profile API is to provide a facility that allows applications to find out what is the profile/level supported by the terminal where the application runs. Once an application knows the terminal profile/level it can decide how to behave and what capabilities can operate in the terminal environment. The TerminalProfileManager class allows applications to query the terminal profiles.

10.4.5 Decoder API

The Decoder API facilitates basic control of all the installed decoders in an MPEG session. The decoder associated with a specific node can be queried through the Resource Manager interface. The MPDecoder is an interface that abstracts the most generic decoder.

The MPDecoder APIs allow starting, stopping, pausing, and resuming a decoder. It also facilitates attaching and detaching streams from a decoder using the ESDescriptor. The Descriptor of the currently attached stream can also be obtained.

The decoder attached to a specific node and ESID can be changed with another decoder of the same type. The Resource Manager facilitates getting a list of available decoders of a specific type and also changing one decoder for another, provided they are of the same type.

10.4.6 Net API

The Network APIs intend to allow the control of the network component of the MPEG-4 player. Through these APIs Java applications can interact with network entities. Due to level of abstraction provided by the MPEG-J Network APIs (and, in turn provided by the DMIF interface), the applications can be unaware of the details of the network connections being used (LAN, WAN, Broadcast, local disks, etc.,) to access to a service.

MPEG-J network APIs do not allow full arbitrary usage of the DMIF and Sync Layers to avoid architectural inconsistencies and duplication of tools.

The functionality provided by the current API can be split into two major groups:

Network query. The ability to perform requests to the network module in order to get statistical information about the DMIF resources used by the MPEG-4 player has been recognised as an important feature.

Channels control. A simple channel control mechanism is also provided. Using this feature an MPEG-J application can temporarily disable or enable existing Elementary Stream channels without any negative influence on the rest of the player. This feature fits with one of the general requirements of MPEG-J: the capability to allow graceful degradation under limited or time varying resources.

10.4.7 Section Filter and Service Information APIs

This subclause refers to APIs normatively in the DAVIC 1.4.1 Part 9, specification. These APIs are Section Filtering, Service Information, Resource Notification, and MPEG Component APIs, which are further described in this section. A compliant MPEG-J Terminal apart from implementing the APIs defined in this document shall also implement the APIs referred normatively in this section.

10.4.7.1 The Service Information (SI) API

This API (org.davic.net.dvb.si) allows inter-operable applications to access service information data from MPEG-2 streams. One example of such applications would be electronic program guides. This API is a relatively high level API allowing applications to access information from the SI tables in a clean and efficient way. The specification of this API is defined by ETSI DI/ MTA-01074, entitled Application Programming Interface (API) for DAVIC Service Information.

10.4.7.2 The MPEG-2 Section Filter API

The objective of this API (org.davic.mpeg.sections) is to provide a general mechanism allowing access to data held in MPEG-2 private sections. This provides a mechanism for inter-operable access to data, which is too specialized to be supported by the high level DVB-SI API or which is not actually related to service information. The definition of the MPEG-2 section filter API is in Annex E of DAVIC 1.4 Part 9 specification. The API definition does not specify the lengths of the section filtering patterns. For those methods which do not specify an offset, the length of the section filtering pattern arrays shall be 8 with their mapping on to the section header as described in the last section of Annex E. For those methods, which include an offset, the length of the section filtering pattern arrays shall be 7. The API definition does not specify the efficiency or effectiveness of the section filtering process. If filtering is happening with filters set beyond the 10th byte of the total section, filtering throughputs must be supported as in DAVIC part 10, section 115.3 with the restriction that support for filtered throughputs of more than 2 Mbits/second is not mandatory.
10.4.7.3 The Resource Notification API

The section filter API uses a resource notification API in the org.davic.resources package. This API provides a standard mechanism for applications to register interest in scarce resources and to be notified of changes in those resources or removal of those resources by the environment. The description of this API is in Annex F of DAVIC 1.4 Part 9: 1998 Information Representation.

10.4.7.4 The MPEG Component API

Various MPEG related APIs use an MPEG component API in the org.davic.mpeg.sections package. This API provides a standard way of referring to standard MPEG features. The definition of the MPEG component API is in Annex G of DAVIC 1.4 Part 9 specification.

10.4.8 Detailed API Listing

The normative detailed API listing can be found in the electronic annex:

The HTML files (javadocs) of all the APIs defined in this document along with the necessary images in gif format.

It also contains the integrated API document (javadocs) of all the html files. This contains the API specification of all the APIs defined in this document.

10.5 Informative: Starting the Java Virtual Machine

The objective of this section is to describe the issues involved in deciding when a Java Virtual Machine (JVM) is required to be started, in cases where it is started by the terminal. Typically, invoking or starting a Java Virtual Machine can be time consuming.

The JVM needs to be started only when there is an OD with an MPEG-J Elementary Stream. If starting the JVM is delayed till such time, it obviates the need for starting a JVM in an MPEG-J terminal when there is no MPEG-J ES. By changing the time at which the OD corresponding to the MPEG-J ES is received the terminal, the time at which the JVM is started can be controlled. By sending the OD sufficiently ahead it can be ensured that terminals of varying compute resources can still start the JVM by the required time.

It is not necessary to start the MPEG-J session until it is clear that MPEG-J application programs will be received and are to be executed. When an MPEG-J stream is received right in the beginning the JVM is instantiated and the MPEG-J "decoder" is set up along with all the other Elementary Stream decoders that are essential for that MPEG-4 session. The MPEG-4 Player is started only after this is done. This could result in some delay.

If the OD of MPEG-J elementary streams received by the terminal later than the ODs of the other elementary streams, the terminal could start the MPEG-4 session while the MPEG-J decoder will be setup only after the reception of the OD of MPEG-J ES. However, there is no implicit relationship in the time instants between when an MPEG-J ES is received and its corresponding Object Descriptor.

10.6 Informative: Examples of MPEG-J API usage

This section includes code snippets on the usage of the different categories of MPEG-J APIs. The purpose of this section is, however, not to show typical applications. The scope of this section is to enable a user to quickly get started on using MPEG-J APIs.

10.6.1 Scene APIs :

Examples in this subclause show how to use the scene APIs. Given below is an example that shows how an MPEGlet can access, modify, and create nodes in the scene.

import org.iso.mpeg.mpegj.resourceManager.*;

import org.iso.mpeg.mpegj.scene.*;

import org.iso.mpeg.mpegj.*;

import org.iso.mpeg.mpegj.net.*;

public class Scene_Example implements MPEGlet

{

MpegjTerminal mpegjTerminal;

Scene m_scene;

MySceneListener m_sceneListener;

MyTranslate m_translate;

MyEventOutListener m_eventoutListener;

MyNodeCreator m_nodeCreater;

 // other declarations

public void init()

{

 mpegjTerminal = new MpegjTerminal(MPEGlet);

 // all the initialization goes here for net and resource

 //managers

//getting a reference to the Scene object from the //MpegjTerminal object

 try {

m_scene = m_sceneListener.getScene(mpegjTerminal);

 }catch(MPEGJException mpegj_exp) { }

 catch (InterruptedException ie) { }

}

public void run() {

//to access and modify a field in the BIFS scene

try {

m_translate.translate(m_scene);

}catch(MPEGJException mpegj_exp) { }

 //to receive notifications of changes to the scene

try {

m_eventoutListener.register(m_scene);

}catch(MPEGJException mpegj_exp) { }

// creating and adding a new node (in this case, a Box node) to //the Scene

try {

m_modeCreator.createBox(m_scene);

}catch(MPEGJException mpegj_exp) { }

 }

public void stop(){}

public void destroy(){}

}

10.6.1.1 MySceneListener

The Scene object is the sole entry point for accessing and modifying the BIFS scene. This example shows how to get a reference to the Scene object from the MpegjTerminal object.

import org.iso.mpeg.mpegj.*;

import org.iso.mpeg.mpegj.scene.*;

/**

Gets the scene from the MpegjTerminal.

 */

public class MySceneListener implements SceneListener {

private Scene m_scene;

/**

Waits for and returns the scene associated with the given MpegjTerminal.

@param terminal the MpegjTerminal containing the scene

@return the scene

@exception MPEGJException if an MPEG-J failure occurs

@exception InterruptedException if interrupted while waiting for the scene

 */

public synchronized Scene getScene(MpegjTerminal terminal)

throws MPEGJException, InterruptedException {

SceneManager mgr = terminal.getSceneManager();

mgr.addSceneListener(this);

while (m_scene == null) {

wait();

}

return m_scene;

}

/**

Called back by the SceneManager to provide the scene.

 */

public synchronized void notify(int what, Scene scene) {

if (what == SceneListener.Message.SCENE_READY) {

m_scene = scene;

notify();

}

}

}
10.6.1.2 MyTranslate

This example shows how to access and modify a field in the BIFS scene. Firstly, the value of the translation field of a Transform2D node is printed out. Secondly, the example modifies the translation field by sending a new value to its eventIn. Note that a reference to the Transform2D node was obtained by calling the scene.getNode() method with a parameter of 1, which must correspond to the DEF ID of the Transform2D node in the scene.

import org.iso.mpeg.mpegj.*;

import org.iso.mpeg.mpegj.scene.*;

/**

Translates the translation field of a DEF 1 Transform2D node.

 */

public class MyTranslate {

/**

Translates the translation field of node 1.

@param scene the scene

@exception MPEGJException if an MPEG-J failure occurs

 */

public void translate(Scene scene) throws MPEGJException {

Node node = scene.getNode(1);

// Check that the node is a Transform2D.

if (node.getNodeType() != NodeType.Transform2D) {

System.err.println("Node 1 is not a Transform2D!");

return;

}

// Get the current translation and print it.

int outID = EventOut.Transform2D.translation;

SFVec2fFieldValue translationEventOut =

(SFVec2fFieldValue) node.getEventOut(outID);

float[] translation = translationEventOut.getSFVec2fValue();

System.out.println("Node 1 translation is " +

translation[0] + "," + translation[1]);

// Calculate a new translation.

final float[] newTranslation = {

translation[0] + 2,

translation[1] + 2

};

// Set the new translation via the eventIn.

int inID = EventIn.Transform2D.translation;

SFVec2fFieldValue translationEventIn =

new SFVec2fFieldValue() {

public float[] getSFVec2fValue() {

return newTranslation;

}

};

node.sendEventIn(inID, translationEventIn);

}

}

10.6.1.3 MyEventOutListener

This example shows how to receive notifications of changes to the scene. The MyEventOutListener object registers as a listener of the fraction_changed field of a TimeSensor node. When the field value changes, the notify() method of the MyEventOutListener object is called with the new value.

import org.iso.mpeg.mpegj.*;

import org.iso.mpeg.mpegj.scene.*;

/**

Listens to the fraction_changed field of a DEF 2 TimeSensor.

 */

public class MyEventOutListener implements EventOutListener {

/**

Registers as a listener on the fraction_changed field.

@param scene the scene

@exception MPEGJException if an MPEG-J failure occurs

 */

public void register(Scene scene) throws MPEGJException {

Node node = scene.getNode(2);

// Check that the node is a TimeSensor.

if (node.getNodeType() != NodeType.TimeSensor) {

System.err.println("Node 2 is not a TimeSensor!");

return;

}

// Add ourselves as a listener.

node.addEventOutListener(EventOut.TimeSensor.fraction_changed, this);

}

/**

Called back when the fraction_changed field changes.

@param outID the eventOut identifier

@param newValue the new value of the field

 */

public void notify(int outID, FieldValue newValue) {

float fractionChanged = ((SFFloatFieldValue) newValue).getSFFloatValue();

System.out.println("fraction_changed=" + fractionChanged);

}

}

10.6.1.4 MyNodeCreator

This example demonstrates how a new node (in this case, a Box node) can be created and added to the scene. This is achieved by setting the value of a SFNode field with an object implementing the NewNode interface. This example uses a utility class called MyNewNode that implements the NewNode interface. The MyNewNode class exposes the attributes of the Box node including its node type, DEF ID and field values (in particular, the size field). The value of the size field is represented using another utility class called MySFVec3f that implements the SFVec3fFieldValue interface. Once the MyNewNode object has been created, it can be added to the scene by sending it as an eventIn to the geometry field of a Shape node.

import org.iso.mpeg.mpegj.*;

import org.iso.mpeg.mpegj.scene.*;

import java.util.Hashtable;

/**

Sets the geometry of a DEF 3 Shape node to a Box node with size 2,3,4.

Uses two extra utility classes: MySFNode and MySFVec3f.

 */

public class MyNodeCreator {

public void createBox(Scene scene) throws MPEGJException {

Node shapeNode = scene.getNode(3);

// Create the representation of the Box node.

MyNewNode box = new MyNewNode(NodeType.Box, 0);

// Add the size field to the representation.

box.setField(Field.Box.size, new MySFVec3f(2, 3, 4));

// Send the Box node as an eventIn to the geometry field.

shapeNode.sendEventIn(EventIn.Shape.geometry, box);

}

}

/**

Utility class to represent a new node.

 */

class MyNewNode implements SFNodeFieldValue, NewNode {

int m_type;

int m_id;

Hashtable m_fields = new Hashtable();

NodeValue m_value;

MyNewNode(NodeValue value) {

m_value = value;

}

MyNewNode(int type, int id) {

m_type = type;

m_id = id;

m_value = this;

}

void setField(int defID, FieldValue value) {

m_fields.put(new Integer(defID), value);

}

public NodeValue getSFNodeValue() {

return m_value;

}

public int getNodeType() {

return m_type;

}

public int getNodeID() {

return m_id;

}

public FieldValue getField(int defID) {

return (FieldValue) m_fields.get(new Integer(defID));

}

}

/**

Utility class to represent an SFVec3f.

 */

class MySFVec3f implements SFVec3fFieldValue {

float[] m_value;

MySFVec3f(float x, float y, float z) {

m_value = new float[] { x, y, z };

}

public float[] getSFVec3fValue() {

return m_value;

}

}

10.6.2 Resource and Decoder APIs

Examples in this section show how the ResourceManager and Decoder APIs can be used to monitor resources and adapt to time varying resource conditions.

import org.iso.mpeg.mpegj.resourceManager.*;

import org.iso.mpeg.mpegj.decoder.*;

import org.iso.mpeg.mpegj.scene.*;

import org.iso.mpeg.mpegj.*;

import org.iso.mpeg.mpegj.net.*;

public class RM_Example implements MPEGlet

{

MpegjTerminal mpegjTerminal;

private ResourceManager resourceManager;

RendererEventHandler renderer_EH;

DecoderEventHandler decoder_EH;

// other declarations

Node m_node;

Renderer m_renderer;

java.util.Vector m_decoders;

public void RM_Example() {

m_decoders = new java.util.Vector(3, 3);

}

public void init()

{

 // intialize the mpegjterminal

 mpegjTerminal = new MpegjTerminal(MPEGlet);

 // other initializations go here

// get resource manager from the mpegjterminal

try

{

resourceManager = mpegjTerminal.getResourceManager();

}catch(MPEGJException ex){ }

 // create event handlers for renderer and decoders

renderer_EH = new EventHandler();

decoder_EH = new EventHandler();

 // getting the renderer from the Resource Manager

try {

m_renderer = resourceManager.getRenderer();

} catch(RendererNotFoundException rnfe) { }

 // to add event listener to the Renderer

if(m_renderer != null)

m_renderer.addMPRendererMediaListener(renderer_EH);

 // to get the required decoder from the resource manager

try {

MPdecoderImp dec1 =

resourceManager.getDecoder(m_node);

// registering the decoder as listener to the events

dec1.addMPDecoderMediaListener(decoder_EH);

} catch(DecoderNotFoundException dnfe) { }

 catch (BadNodeException bne) { }

// to change a decoder associated with a node

// get a decoder from the available decoders list

MPdecoder decoder = resourceManager.getAvailableDecoder(

decoder_type);

try {

resourceManager.changeDecoder(node, decoder)

}catch (DecoderNotFoundException dnfe) { }

catch(BadNodeException bne) { }

 // to stop a decoder and restarting again

 decoder.stop();

 decoder.start();

// to retrieve all capabilities (static, dynamic, profile) of // the terminal

 try {

 CapabilityManager cm =

resourceManager.getCapabilityManager();

 }catch (CapabilityManagerNotFoundException cmnfe) { }

 // other code goes here

}

public void stop(){}

public void destroy(){}

}

10.6.2.1 Listener class for Decoder Events :

import org.iso.mpeg.mpegj.resourceManager.*;

import org.iso.mpeg.mpegj.decoder.*;

public class DecoderEventHandler implements MPDecoderMediaListener{

 public void mPDecoderMediaHandler(MPDecoderMediaEvents event) {

MPDecoderImp dec = ((MPDecoderImp)event.getSource());

int condition = event.getCondition();

System.out.println("Event in Decoder with condition "+ condition);

// we can stop the decoder and restart it again

dec.stop();

// can change the decoder if we want

// restart it again

dec.start();

}

public DecoderEventHandler() {

super();

}

}

10.6.2.2 Listener class for Renderer Events

import org.iso.mpeg.mpegj.resourceManager.*;

 public class RendererEventHandler implements MPRendererMediaListener{

 public void mPCompositeMediaHandler(MPRendererMediaEvents event){

 System.out.println("Renderer Event with condition "+event.getCondition());

 // other code goes here

 }

 public RendererEventHandler() {

super();

 }

}

10.6.3 Net APIs

This section illlustrates how to use the Net APIs through a simple example which enables and disables channels.

import org.iso.mpeg.mpegj.resourceManager.*;

import org.iso.mpeg.mpegj.scene.*;

import org.iso.mpeg.mpegj.*;

import org.iso.mpeg.mpegj.net.*;

public class Net_Example implements MPEGlet

{

MpegjTerminal mpegjTerminal;

private NetworkManager netManager;

ChannelController cc;

public void Net_Example() {

}

public void init()

{

 mpegjTerminal = new MpegjTerminal(MPEGlet);

try

{

netManager = mpegjTerminal.getNetworkManager();

} catch(NetworkManagerNotFoundException ex){ }

catch(MPEGJException ex){ }

// to get the channel controller used to enable/ disable //the channels

cc = netManager.getChannelController();

// to enable a channel

cc.enable(serviceSessionID, channelID);

// to disable a channel

cc.disable(serviceSessionID, channelID);

}

public void stop(){}

public void destroy(){}

}

10.6.4 Section Filtering APIs

This shows a simple example of how the section information can be extracted from the MPEG-2 Transort Stream.

import org.iso.mpeg.mpegj.*;

import java.lang.Boolean;

public class SI_SF_Example implements MPEGlet

{

 MpegjTerminal mpegjTerminal;

 SimpleSectionFilter ssFilter;

 SectionFilterListener sfListener;

 int milliSecs;

 // Class public methods

 public SI_SF_Example() {

 // intialize the mpegjterminal

 mpegjTerminal = new MpegjTerminal(this);

 // other initializations go here

 ssFilter = new SimpleSectionFilter();

 sfListener = new SectionFilterListener();

 // Specify an object to be notified of events relating to this SectionFilter object.

 ssFilter.addSectionFilterListener(sfListener);

 //Set the time-out for this section filter

 ssFilter.setTimeOut(milliSecs);

 // create mask and value parameters

 byte[] posValue = new byte[12];

 byte[] posMask = new byte[12];

 for (int i=0; i<12; i++)

 { posValue[i] = 0;

 posMask[i] = 0;

 }

 posMask[0] = (byte)0xFF; // only check first byte

 posValue[0] = (byte)0; // table_id PAT

 //sets the SectionFilter object as filtering only for sections matching a specific PID and

 //table_id, and where contents of the section match the specified filter pattern.

 ssFilter.startFilter

 (0 // index, the number of this section filter

 , 100 // id, uniquely identifying this filter action

 , ssFilter // the listener to receive the events indicating a new section has arrived

 , 0 // PID, in the case of the PAT 0

 , posMask // mask, which bits to check

 , posValue // value, the value checked bits should have

 , null
// neg masking not done, always call this function in SommitSectionFilter, other startfilter methods are incorrect.

 , null

);

Section m_section = ssFilter.getSection()

try {

byte[] m_data = m_section.getData();

} catch (NoDataAvailableException ndae) { }

 // sections matching this SectionFilter object will stop.

ssFilter.stopFiltering();

 }

 public void init() {}

 public void stop(){}

 public void destroy(){}

}

Annex A
(normative)

Curve-based animators

A.1 Overview

An animated object follows an animation path over a period of time. The path is defined in the local coordinate system of the animated object. At frame t (or at time t), the object is at position[image: image321.wmf]3

)

(

Â

Î

t

v

 and has orientation represented by a unit quaternion[image: image322.wmf]4

)

(

Â

Î

t

q

 . A keyframe animation is specified by pairs[image: image323.wmf])

,

,

(

i

i

i

t

q

v

, where [image: image324.wmf]i

t

 is called a keyframe, [image: image325.wmf]i

v

 is the key value i.e. the position the object must be at time[image: image326.wmf]i

t

 and [image: image327.wmf]i

q

 the object’s orientation at time[image: image328.wmf]i

t

. An animation is completely specified by

[image: image329.wmf]î

í

ì

=

=

=

=

)

(

))

(

(

)

(

)

(

))

(

(

)

(

t

f

t

f

t

t

f

t

f

t

o

o

Q

Q

q

C

C

v

Eq. 2 – Animation model.

where [image: image330.wmf])

(

u

C

 is the animation path with parameter [image: image331.wmf]u

, [image: image332.wmf])

(

u

Q

 the orientation path, and[image: image333.wmf])

(

t

f

 is the timeline. The animation path is often a succession of curves of different characteristics that join at key values. Let [image: image334.wmf])

(

t

i

C

 be the characteristic of curve segment i and [image: image335.wmf])

(

t

i

Q

 its orientation.

In the simplest case, like with VRML and BIFS interpolators nodes (PositionInterpolator, ScalarInterpolator, and so on), the content creator specifies[image: image336.wmf])

,

,

(

i

i

i

t

q

v

. The animation is piecewise linear with

[image: image337.wmf](

)

ë

û

ï

ï

ï

î

ï

ï

ï

í

ì

W

=

W

W

+

W

W

-

=

-

=

-

-

-

+

=

=

=

=

-

-

+

+

cos

and

sin

sin

sin

)

1

sin(

)

(

)

1

*

and

)

(

)

(

)

(

)

(

)

(

1

1

1

1

i

i

i

i

i

i

i

i

i

i

i

u

u

u

n

t

i

t

t

t

t

t

t

t

t

Id

t

f

q

q

q

q

Q

v

v

v

C

C

Eq. 3 – Piecewise linear animation model in VRML and BIFS.

with [image: image338.wmf]n

 the number of keyframes. The equation for [image: image339.wmf])

(

u

Q

is known as spherical linear interpolator or slerp.

Often, it is needed to have more control over the timeline to create more realistic effects or even special effects. The animation framework proposes different types of timelines and path characteristics. Even if this specification was developed independently, we aligned it for convenience with similar concepts found in SMIL and SVG recommendations. However, this specification extends animation concepts in 1/2/3D with more flexibility for specifying animation paths and timelines.

Animation support in BIFS is borrowed from VRML 2.0 specification. It can be done in two ways:

1. using piecewise linear interpolators

2. programmatically using VRMLScript (in Script node) or Java language (via EAI, MPEG-J, or JSI in Script node)

While the second way is the most flexible, it requires usage of external interfaces and interpreted languages that imply a relative performance slow down. The first way is built in the browser and allows faster performance. The model is as follows: a timer (a TimeSensor node) generates clock ticks over a normalized timeline; a clock tick is in [0, 1] where 1 corresponds to the duration of the animation. Each clock tick is sent to an interpolator node (PositionInterpolator, ColorInterpolator, and so on) that generates a value that can be sent to any field of the same type, hence producing animation. An interpolator node specifies piecewise linear segments against time (Figure A.1 —).

[image: image340.emf]TimeSensor

Interpolator

A node

fraction_changed

set_fraction

value_changed

<a field>

Figure 1\IF >= 1 "A."
A.

SEQ Figure
1
 — Animation in VRML/BIFS. A timer sends events to an interpolator that generates values that can be sent to anode.

The overview on NURBS curves and surfaces (subclause ISO/IEC 14496-16 subclause 4.3.2) reveals the key concepts used in this specification. These curves are used in path and velocity curve definitions as well as for orientation interpolation. Here, a review of orientation is made followed by the Animator nodes.

A.2 Animating object orientation

VRML and BIFS proposed the OrientationInteprolator node that interpolates [image: image341.wmf])

,

(

)

,

(

q

=

n

angle

axis

pairs between key frames, where [image: image342.wmf]3

Â

Î

n

is a unit vector and [image: image343.wmf]]

,

[

p

p

-

Î

q

the angle around the axis. Between two frames, the shortest path on the unit sphere is computed, which can be translated by applying spherical linear interpolation in quaternion space.

First let’s review quaternion mathematics and then a technique for C2 interpolation in quaternion space is exposed.

The quaternion [image: image344.wmf])

,

,

,

(

d

c

b

a

 is a point on the unit sphere [image: image345.wmf]3

S

 in 4-space and is short-hand for [image: image346.wmf]k

j

i

d

c

b

a

+

+

+

 with

[image: image347.wmf]1

2

2

2

-

=

=

=

=

ijk

k

j

i

.

A quaternion [image: image348.wmf])

,

,

,

(

d

c

b

a

is often expressed as a scalar component and a vector component [image: image349.wmf](

)

n

,

s

 with [image: image350.wmf]a

s

=

and [image: image351.wmf])

,

,

(

d

c

b

=

n

. Using previous notation, the multiplication of two quaternions is

[image: image352.wmf])

,

*

(

)

,

)(

,

(

2

1

1

2

2

1

2

1

2

1

2

2

1

1

n

n

n

n

n

n

n

n

´

+

+

×

-

=

s

s

s

s

s

s

A unit quaternion satisfies[image: image353.wmf]1

2

2

2

2

=

+

+

+

d

c

b

a

.

A point [image: image354.wmf]3

Â

Î

p

is rotated by a unit quaternion[image: image355.wmf](

)

n

,

s

to the point[image: image356.wmf](

)

)

,

)(

,

0

(

,

n

p

n

s

s

-

, which is a quaternion with a scalar part of 0, so it can be interpreted as a 3-space point.

In particular the unit quaternion [image: image357.wmf])

2

sin

,

2

(cos

q

q

n

represents the orientation of an object where the object in its canonical orientation has been rotated by [image: image358.wmf]q

radians about the axis[image: image359.wmf]n

.

Mathematically, an orientation can be represented by either of two antipodal quaternions (by flipping[image: image360.wmf]n

). For motion control, only one quaternion is appropriate: the quaternion with smaller angular gap on [image: image361.wmf]3

S

to the previous quaternion i.e. if[image: image362.wmf]0

2

1

<

q

q

, then use[image: image363.wmf]2

2

q

q

-

=

¢

. This makes the orientation path always perform the shortest rotation between the orientation key frames.

Spherical linear interpolation (also called slerping technique) is equivalent to linear interpolation between two key orientations and, as for linear interpolation, produces jerky, sharply changing motion across the keys. This is particularly important for camera flythrough where sharp changes in angular acceleration have to be avoided.

What is needed is a higher order method with C2 continuity. Many methods have been proposed in the literature but leads to no closed form algebraic solution and, when based on slerping, generate nonrational curves, may become expensive to calculate, and may not provide C2 continuity.

The technique proposed by Johnstone and Williams produces very good results in practice and obeys derivative continuity requirements. It uses an invertible rational mapping [image: image364.wmf]M

between[image: image365.wmf]3

S

and[image: image366.wmf]4

Â

.

The transformation [image: image367.wmf]1

-

M

from [image: image368.wmf]4

3

Â

®

S

is

[image: image369.wmf]ï

ï

î

ï

ï

í

ì

¢

-

=

¢

=

¢

=

¢

=

-

=

¢

s

s

w

s

c

z

s

b

y

s

a

x

s

sqrt

s

/

)

1

(

/

/

/

))

1

(

*

2

(

let

and the transformation [image: image370.wmf]M

from[image: image371.wmf]3

4

S

®

Â

is

[image: image372.wmf](

)

ï

ï

î

ï

ï

í

ì

=

=

=

-

+

+

=

+

+

+

=

d

zw

c

d

yw

b

d

xw

a

d

w

z

y

x

s

w

z

y

x

d

2

2

2

let

2

2

2

2

2

2

2

2

The method is as follows:

1. Apply [image: image373.wmf]1

-

M

 to key quaternions [image: image374.wmf])

,

,

,

(

c

b

a

s

to obtain their resulting values in [image: image375.wmf]4

Â

 [image: image376.wmf])

,

,

,

w

z

y

x

2. Interpolate the resulting 4-vectors using any spline (in this specification we use natural cubic B-splines).

3. Convert the desired point to [image: image377.wmf]3

S

 using[image: image378.wmf]M

.

However, if your animation passes close to the pole (1, 0, 0, 0), numerical instability will happen in[image: image379.wmf]1

-

M

. Johnstone define “too close to the pole” if the angle between the control quaternions and (1, 0, 0, 0) is smaller than 30 degrees. His solution is to multiply all control quaternions by a quaternion [image: image380.wmf]f

q

 that is not within 30 degrees of any other control quaternion and use [image: image381.wmf]f

q

 to rotate all quaternions to a “safe” region. After interpolation, the resulting quaternion is multiplied by[image: image382.wmf]1

-

f

q

. This can be done in a preprocessing step i.e. before the animation starts.

Annex B
(normative)

Procedural textures algorithms

B.1 Overview

The processes underlying the creation of the textures include the generation of a fractal ‘plasma’ field, subdivision of the texture into cells, spatial distortion of the texture, selection of colors to apply to the texture, and control of how the colors vary within a cell. The five cell types supported are shown in Figure 31.

B.2 Fractal Plasma Calculation

The plasma is a two-dimensional array with the same dimensions as the final texture ([image: image383.wmf]height

width

´

). It contains a single value per element ([image: image384.wmf]]

1

,

0

[

],

1

,

0

[

],

5

.

0

,

5

.

0

[

)

,

(

-

Î

"

-

Î

"

-

Î

h

j

w

i

j

i

P

) that varies over the plasma in a manner reminiscent of hills and valleys. The generation of the plasma is controlled by a seed for a pseudo-random number generator (subclause B.4) and by a roughness parameter that controls how widely spaced the peaks and troughs will be (Figure B.1 —).

	[image: image385.jpg]

(a)
	[image: image386.jpg]

(b)
	[image: image387.jpg]

(c)

Figure 2\IF >= 1 "B."
B.

SEQ Figure
1
 — The effects of the roughness parameter: (a) 3, (b) 5, (c) 8.

The plasma array (P) is calculated as follows:

plasma(width, height, roughness, seed)

{

srandom(seed);

L = width * height;

P[0, 0] = 0;

w = width;

h = height;

rmult = 1;

while (w > h)

{

step = w / 2;

p1 = 0;

while (p1 < width)

{

v = random() - 0.5;

if (step < roughness)

{

rmult *= 0.5;

v = v * mult + (P[p1, 0] + P[(p1 + w) % width, 0]) / 2;

}

P[p1 + step, 0] = v;

p1 += w;

}

w = w / 2;

}

while (h > w)

{

step = h / 2;

p1 = 0;

while (p1 < height)

{

v = random() - 0.5;

if (step < roughness)

{

rmult *= 0.5;

v = v * rmult + (P[0, p1] + I[0, (p1 + h) % height]) / 2;

}

P[0, p1 + step] = v;

p1 += h;

}

h = h / 2;

}

// here, w==h

while (w > 1)

{

step = w / 2;

if (step < roughness)

rmult *= 0.5;

for (y = 0; y < height; y += w)

{

for (x = 0; x < width; x += w)

{

x1 = x;

x2 = (x + w) % width;

x3 = x + step;

y1 = y;

y2 = (y + w) % height;

y3 = y + step;

v1 = random() - 0.5;

v2 = random() - 0.5;

v3 = random() - 0.5;

if (step < roughness)

{

v1 = v1 * rmult + (P[x1, y1] + P[x2, y1]) / 2;

v2 = v2 * rmult + (P[x1, y1] + P[x1, y2]) / 2;

v3 = v3 * rmult +

 (P[x1, y1] + P[x2, y1] + P[x1, y2] + P[x2, y2]) / 4;

}

P[x3, y1] = v1;

P[x1, y3] = v2;

P[x3, y3] = v3;

}

}

w = w / 2;

}

offset & scale so all values lie between -0.5 and +0.5;

}

B.3 Warping

Warping is achieved using a user specified 2D curve and is used to produce large-scale variations in the texture, such as a gradual shift from bottom to top, or ripple effects. The curve itself is either a collection of straight-line segments, or a smooth Hermite spline. An example of the effects of warping is shown in Figure B.2 —.

	[image: image388.jpg]

	[image: image389.jpg]

	[image: image390.jpg]

	[image: image391.png]

(a)
	[image: image392.png]

(b)
	[image: image393.png]

(c)

Figure 2\IF >= 1 "B."
B.

SEQ Figure
2
 — The effect of warping: (a) linear x wrap, (b) smooth x warp, (c) linear a & b warp.

remap(v, WarpMap[], smooth)

{

n = WarpMap number of elements;

if (n == 0)

return 0.5;

if (n == 1)

return WarpMap[0].y;

if (smooth)
 // Hermite spline interpolation

{

MinDx = 0.001;

if (f < WarpMap[0].x) // Extrapolate before first knot

{

dy = WarpMap[1].y - WarpMap[0].y;

dx = WarpMap[1].y - WarpMap[0].x;

if (dx < MinDx) dx = MinDx;

f = WarpMap[0].y - (WarpMap[0].x - f) * dy / dx;

return f;

}

if (f > WarpMap[n-1].x) // Extrapolate after last knot

{

dy = WarpMap[n - 1].y - WarpMap[n - 2].y;

dx = WarpMap[n - 1].x - WarpMap[n - 2].x;

if (dx < MinDx) dx = MinDx;

f = WarpMap[n - 1].y + (f - WarpMap[n - 1].x) * dy / dx;

return f;

}

for (i = 0; i < n-1; i++)
// Find knot interval

{

if (f >= WarpMap[i].x && f <= WarpMap[i + 1].x && WarpMap[i].x != WarpMap[i + 1].x)

{

dx1 = (WarpMap.x[i + 1] - WarpMap.x[i]);

f = (f - WarpMap.x[i]) / dx1;

y1 = WarpMap.y[i];

y2 = WarpMap.y[i + 1];

if (i > 1)

{

y0 = WarpMap.y[i - 1];

dx0 = WarpMap.x[i] - WarpMap.x[i - 1];

}

else

{

y0 = y1 - (y2 - y1);

dx0 = dx1;

}

if (i < n - 2)

{

y3 = WarpMap.y[i + 2];

dx2 = WarpMap.x[i + 2] - WarpMap.x[i + 1];

}

else

{

y3 = y2 + (y2 - y1);

dx2 = dx1;

}

if (dx0 < MinDx) dx0 = MinDx;

if (dx2 < MinDx) dx2 = MinDx;

m0 = (y1 - y0) * dx1 / dx0;

m1 = (y2 - y1) * dx1 / dx1;

m2 = (y3 - y2) * dx1 / dx2;

m0 = (m0 + m1) * 0.5;

m2 = (m2 + m1) * 0.5;

f2 = f * f; // f^2

f3 = f * f2; // f^3

// Create a Hermite spline

y = y1 * (2 * f3 – 3 * f2 + 1);

y += y2 * (-2 * f3 + 3 * f2);

y += m0 * (f3 – 2 * f2 + f);

y += m2 * (f3 - f2);

return y;

}

}

}

else
// Linear interpolation

{

if (f < WarpMap[0].x)
// Extrapolate before first knot

return WarpMap[0].y;

if (f > WarpMap[n - 1].x)
// Extrapolate after knot

return WarpMap[n-1].y;

for (i = 0; i < n - 1; i++)
// Find knot interval

{

if (f >= WarpMap[i].x && f <= WarpMap[i + 1].x &&

 WarpMap[i].x != WarpMap[i + 1].x)

{

f = (f - WarpMap[i].x) / (WarpMap[i + 1].x - WarpMap[i].x);

return WarpMap[i].y + f * (WarpMap[i + 1].y - WarpMap[i].y);

}

}

return WarpMap[n-1].y;

}

}

B.4 Pseudo-random Number Generator

The pseudo-random number generator used for the plasma generation is based on the fast 32-bit linear congruential generator.

static unsigned int seed = 826374438;

srandom(s) // seed the pseudo-random number generator

{

ci = (unsigned int)(s * 0xFFFF);

// Run through three cycles to remove obvious visual artifacts

// that occur when input is too closely related to output

ci = ci * 1664525 + 1013904223;

ci = ci * 1664525 + 1013904223;

ci = ci * 1664525 + 1013904223;

union { unsigned int Int; float Float; } IEEEFloatMaker;

IEEEFloatMaker.Int = (ci & 0x7FFFFF) | 0x3F800000;

seed = IEEEFloatMaker.Float - 1.0;

}

random() // return random value in [-0.5, 0.5)

{

seed = seed * 1664525 + 1013904223;

union { unsigned int Int; float Float; } IEEEFloatMaker;

// Or in 23 bits of mantissa, now [1.0, 2.0)

IEEEFloatMaker.Int = (seed & 0x7FFFFF) | 0x3F800000;

// Return [-0.5, 0.5)

return(IEEEFloatMaker.Float - 1.5);

}

nonrandom(a, b) // return a repeatable, coordinate based, “random” value

{

srandom(a);

srandom(b + random());

return(random());

}

Annex C
(informative)

Text Processing in BIFS

In order to allow for support of all languages, full Unicode character set and rich formatting capabilities at a reasonable implementation cost, MPEG-4 employs distributed system design architecture to separate the functional implementation of the language script support services between the MPEG-4 encoder and decoder. An encoder will be responsible for support of the application specific rich text formatting, Unicode language scripts processing and separation of the input character strings into the ‘runs’ of text.

NOTE: A ‘run’ of text is normally a maximum of one line in length and consists of a text string formatted in a single font at a particular size, in a single direction, in a particular script and a particular language system.

A MPEG-4 encoder should parse and tag different runs of text and should encode them in clusters that represent a single sentence or a paragraph, e.g. using Layout node, while each run of text should be encoded separately using Text nodes with the corresponding FontStyle or XFontStyle node. An example of complex text and its separation in the multiple text runs is presented below:

[image: image400.png]The word “IIBEThI” means flowers in Russian and it is *9929” in Arabic.

In the presented example there are three types of run boundary, indicated by the small red letters:

a) Change of font (bold to plain, plain to italic, italic to plain).

b) Change of script, language system and direction. Any one of these changes is sufficient to require the start of a new run. In many multilingual texts, a change of script might also occasion a change in font, but for this example it is presumed that this is a multiscript font with both Latin, Cyrillic and Arabic support.

c) End of line (the end of the line may also be a change of font, script, language system and direction).

An MPEG-4 terminal should be responsible for the implementation of the text layout services based on individually encoded text runs. These services should be supported by the font rendering subsystem, including advanced font rendering capabilities such as glyph substitution and positioning. Final layout of the text will be done based on the fields of the FontStyle, XFontStyle, Text and Layout nodes and the rules imposed by a specific language script (in case when a text run is presented in a language that imposes additional requirements).

The illustration of the proposed solution is presented on the following figure.

[image: image394]Composition of the text presented in this example can be implemented in a single Layout node with ten Text nodes defined as children referring to five different FontStyle nodes. Original composition point of the text line should be defined either directly or by the parent node, the text will be positioned using font rendering information taking into account font metrics, requested text size and style. Individual text runs encoded in Text nodes, will be processed using font, direction, spacing and language rules defined by the corresponding FontStyle or XFontStyle node and the placement of the text run and final composition of the text line will be done based on the direction and justification rules defined in the Layout node.

Annex D
(informative)

Patent statements

The International Organization for Standardization and the International Electrotechnical Commission (IEC) draw attention to the fact that it is claimed that compliance with this part of ISO/IEC 14496 may involve the use of patents.

ISO and IEC take no position concerning the evidence, validity and scope of these patent rights.

The holders of these patent rights have assured the ISO and IEC that they are willing to negotiate licences under reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect, the statements of the holders of these patents right are registered with ISO and IEC. Information may be obtained from the companies listed below.

Attention is drawn to the possibility that some of the elements of this part of ISO/IEC 14496 may be the subject of patent rights other than those identified in this annex. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

	Organisation

	AGFA Monotype

	Microsoft Corporation

Annex E
(normative)
SEQ aaa \h

SEQ table \r0\h

SEQ figure \r0\h
Predefined Prototype Nodes

This annex describes BIFS nodes represented through the ExternProto mechanism as described in section 8.7.2.4. The URN following their declaration shall be used to identify the proto. For example, the following declaration indicates the node SomeNode is an extern prototype node which shall have “org:test:somenode” indicated in its location field:

EXTERNPROTO SomeNode [

exposedField
MFVec3f
someProperty

[]

]"org:test:somenode"
The location field for node complying with this annex of ISO/IEC 14496-11 shall use the form "org:mpeg:XXX", where XXX is the name of the prototype node.

E.1 AugmentationRegion

E.1.1 Node Interface

EXTERNPROTO AugmentationRegion [

exposedField
MFString

source

[]

exposedField
MFVec3f
region

[]

exposedField
SFNode

arContent NULL

exposedField
SFBool

enabled

FALSE

exposedField
MFVec3f
translation

[]

exposedField
MFRotation
rotation

[]

exposedField
SFVec3f

scale

1 1 1

eventOut
SFBool

onTranslationChanged

eventOut
SFBool

onRotationChanged

eventOut
SFBool

onScaleChanged

eventOut
SFBool

onARProviderChanged

eventOut
SFInt32

onError

] "org:mpeg:AugmentationRegion”

E.1.2 Functionality and Semantics

The AugmentationRegion prototype provides the parameters of a static or animated 2D or 3D region related to a natural media. A virtual object can be composed with the natural media and contained inside the region.

The exposed field source specifies the media source where the augmentation will be realized. The source media could be 2D or 3D

The exposed field region specifies a 2D or 3D shape by means of x, y, z array of points relative to the source coordinate system. The points are described in order along the contour. Note that when used with 2D source media, the z component of 3D vector is discarded.

The exposed field arProvider specifies the URI where the virtual object is available.

The exposed field enabled specifies whether the augmentation is performed. When it is set to FALSE, the augmentation region should not be displayed.

The exposed field translation specifies the translation of the region. The valid values are the ones that are enabled by the onTranslationChanged mask. Note that when used with 2D source media, the z component of 3D vector is discarded.

The exposed field rotation specifies the rotation of the region. The valid values are the ones that are enabled by the onRotationChanged mask. Note that when used with 2D source media, the z component of 3D vector is discarded.

The exposed field scale specifies the scale of the region. The valid values are the ones that are enabled by the onScaleChanged mask. Note that when used with 2D source media, the z component of 3D vector is discarded.

The event out onTranslationChanged is set each time the translation of the region is to be performed.

The event out onRotationChanged is set each time the rotation of the region is to be performed.
The event out onScaleChanged is set each time the scale of the region is to be performed.

 The event out onARProviderChanged is set each time the AR provider is changed.

The event out onError is set when an error occurs in the augmentation process. Currently the following error codes are defined:

· 0 - No error.

· 1 – the URL for arProvider is not providing a valid virtual object.

· 2 - Unspecified error.
E.2 SimpleAugmentationRegion

E.2.1 Node interface
EXTERNPROTO SimpleAugmentationRegion [

exposedField
SFString

label

"ar_default"

exposedField
SFNode

arContent
NULL

exposedField
MFVec2f
region

[]

exposedField
SFNode arContent NULL

exposedField MFTime
activationStartTimes
[]

exposedField MFTime
activationEndTimes
[]

exposedField MFVec2f
translation

[]

exposedField
SFBool

enabled

FALSE

eventIn SFTime

mediaTime
] "org:mpeg:SimpleAugmentationRegion"

E.2.2 XSD Description
E.2.3 Functionality and Semantics
The SimpleAugmentationRegion node provides a simple way to describe the size and translation of augmented region, controlling the display of a BIFS node. The region can have different sizes and translations in time.
label specifies the label of the augmented region. The label can be displayed along with the augmented region itself.

arContent indicates the node that shall be displayed on the augmented region, centered at the location of the active translation and clipped to the active region. When the region is not active, the arContent shall not be displayed.
region specifies an array of 2D vectors. Each pair of values represents the width and the height of the augmented region at a given media time (e.g. the values are not interpolated during the activation time).

translation specifies an array of 2D vectors. Each pair of values represents the 2D coordinates of the augmented region at a given media time (e.g. the values are not interpolated during the activation time).

activationStartTimes is an array of time values relative to the mediaCurrentTime in order for the proto to know when the augmented region is active. The length of the activationStartTimes array must be the same as the length of the region array and translation array fields, as the augmented region has a size and a translation at a given time.

activationEndTimes stores an array of time values relative to the mediaCurrentTime. Each value in activationStartTimes array has an associated value in activationEndTimes array (array length shall be the same). This value controls how long the augmented region will be active.

Note:

· an activationEndTimes value cannot be smaller than its corresponding value in activationStartTimes.

· the next value of activationStartTimes must be greater than the current activationEndTimes value.

enabled indicates if the augmented region is active or not. While not activated the region should not be displayed.

mediaTime input event indicates the current media time for the AR region. Typicaly, an augmented region instance is linked to the media time of the target stream through a MediaSensor node, in order to compare the activation/deactivation media times of the proto with the current media time. When the activation condition is satisfied the corresponding region is augmented, if active.

Note: activationEndTimes is an optional field. If not specified, the augmented region is active one frame. The functionality of activationStartTimes remains the same.

E.3 CameraCallibration

E.3.1 Node Interface
EXTERNPROTO CameraCalibration [

exposedField MFString
source

[]

exposedField SFBool

enabled

FALSE

exposedField SFTime
startTime

0

exposedField SFTime
timeBetweenSnapshots 4

exposedField SFInt32
snapshotCount

6

exposedField SFVec2f
boardSize

8 5

eventOut
 SFInt32

onStatus
] "org:mpeg:CameraCalibration"

E.3.2 Functionality and Semantics

This node computes the intrinsic parameters of the camera and stores them for later usage. It requires usage of a physical chessboard, whose numbers of rows and columns are given in the node.

The exposed field source specifies the URL for the camera for which the calibration is performed.

The exposed field enabled specifies whether the calibration algorithm is executed.

The exposed field startTime specifies at which scene time the calibration algorithm should start running.

The exposed field timeBetweenSnapshots specifies the time between each taken snapshot in seconds.

The exposed field snapshotCount specifies the number of snapshots that will be taken during the calibration procedure.

The exposed field boardSize specifies the number of cross points on the chessboard that is used for calibration.

The eventOut field onStatus outputs the current status of the calibration process as defined below

· 1: a snapshot was taken

· 2: calibration was succesful

· -1: calibration was unsuccesful
E.4 CollaborationNode

E.4.1 Node Interface
EXTERNPROTO CollaborationNode [

eventIn

SFBool

triggerIn

exposedField SFBool

enabled
TRUE

exposedField MFString
url

[]

exposedField SFString
message
“”

exposedField SFString
connectionType
“”

exposedField SFBool

bidirectional

TRUE

eventOut
 SFBool

triggerOut
] "org:mpeg:CollaborationNode"

E.4.2 Functionality and Semantics

The CollaborationNode allows a scene to initiate the exchange collaborative messages with a Collaborative Server through the Collaboration Agent. Messages are exchanged under the control of and in response to collaborative events (both asynchronous and synchronous), be they generated from within the scene or from the server. On the one hand, at the scene level, events can be generated by the actual scene description, user interaction, scripts, collaborative server messages … On the other hand, the collaboration server generates events according to messages received from other collaborative agents of the same scenes or according to collaborative application logic.

The CollaborationNode is processed either when triggerIn or triggerOut receives a TRUE event, if and only of enabled is TRUE. When the CollaborationNode is processed, the messages are sent to the server(s) indicated by the specified url. The message field contains the message that is transmitted to the url defined. The syntax and semantics of the message string are application specific and not specified.

The connectionType field provides information about the channel established between the collaborative server and scene (like UDP or TCP, for instance). The bidirectional field is TRUE for bidirectional communication and FALSE otherwise.

NOTE: In order that bi-directional collaboration information may be correctly routed between the corresponding components of a collaborative scene, a new elementary stream type should be specified allowing precise identification of this new and distinct type of information.
E.5 Support for Maps

MAPS are supported in BIFS by four PROTOs: Map, MapOverlay, MapMarker and MapPlayer. As for other elements in the scene, the node interface and the functionality and semantics are normative.

E.5.1 Map

E.5.1.1 Node Interface

EXTERNPROTO Map [
exposedField SFString
name

""

exposedField SFVec2f
mapTranslation
0.0 0.0

exposedField SFVec2f
mapGPSCenter
0.0 0.0

exposedField MFNode
overlays

[]

exposedField MFString
mode

["ROADMAP"]
exposedField MFString
provider

["ANY"]
exposedField SFVec2f
mapSize

768 768
exposedField SFFloat

mapWidth

0

exposedField SFInt32

zoomLevel

0

eventIn
MFNode

addOverlays
eventIn
MFNode

removeOverlays
eventIn
SFVec2f

translate
eventIn
SFBool

zoomIn
eventIn
SFBool

zoomOut
]"org:mpeg:Map"

E.5.1.2 Functionality and semantics
The Map node provides map display capabilities to a scene. The node detects pointer device dragging and enables the dragging of the map image. The dragging operation changes the mapGPSCenter corresponding to the drag operation and translates all the associated Map items along with the image as a single unit.

The name field of the map specifies a unique name of the MAP instance. As multiple MAP instances can coexist in the same scene, this field allows the identification of a specific MAP node by name.

mapTranslation specifies a (x,y) translation in the local coordinate system of the Map image instance. mapTranslation does not modify the Map GPS center position or any other GPS related value.

addOverlays specifies one or more MapOverlay nodes that shall be added to the Map overlays field. The MapOverlay instances are inserted after the already existing ones.

removeOverlays specifies one or more MapOverlay nodes that shall be removed from the Map overlays field. If a MapOverlay instance is not found, its removal fails silently. Removing a MapOverlay implies the deletion of all the MapMarkers already attached to the indicated MapOverlay instance.

translate specifies a translation that is to be applied to the Map image. The values are represented in the local coordinate system of the Map node. The event also modifies the mapGPSCenter field.

mapGPSCenter specifies the GPS position (latitude, longitude) of the Map center.

zoomIn increases the zoomLevel of the Map by one.

zoomOut decreases the zoomLevel of the Map by one.

mapSize specifies the width and the height of the map image.

zoomLevel represents the resolution of the current view. The minimal value of zoom level is 0, while the maximal value is defined by the map provider depending on its capabilities. Zoom level 0 encompasses the entire earth. Each succeeding zoom level doubles the precision in both horizontal and vertical dimensions.

mapWidth represents the length in meters on the longitude axis of the desired visible map. The client calculates the maximum zoom level that contains the desired map and sets that value in the zoomLevel field. If mapWidth is set to 0, then the zoomLevel is used.

provider specifies the desired map provider to be used. The provider field is a multi-value field enabling designers to specify fallback map providers in the case the desired one is not supported by the client. The “ANY“ choice allows the client to select its provider.

mode specifies the type of map that is to be displayed. The possible values are: “SATELLITE“, “PLANE“ , “ROADMAP“ and “TERRAIN“. Satellite mode should display map images that are practically shot from a vertical viewpoint, usually by a satellite. Plane mode should display map images that are taken by an angle close to 45°, usually shoot by an airplane. Map should display images that are vector drawings of streets, buildings and other similar features. Terrain mode should display images that represent physical relief map image, showing terrain and vegetation.

If multiple values are specified in the map field, then the resulting image should be a combination of all desired modes as long as they are supported by the map provider. If a certain combination is not supported, then the map view falls back to the closest supported one.

Note:

The map “image” is made up by a 3x3 matrix of tile images. These should be automatically computed once the mapSize and the mapGPSCenter are set.

E.5.2 MapMarker
E.5.2.1 Node Interface

EXTERNPROTO MapMarker [

exposedField
SFString
name

""

exposedField
SFVec3f
position

0 0 0

exposedField
SFRotation
rotation

0 0 1 0

exposedField
SFBool

clickable

TRUE

exposedField
SFBool

visible

TRUE

exposedField
SFBool

enabled

TRUE

exposedField
MFNode
markerShape

[]

exposedField
MFString
keywords

[]

eventIn
SFBool

doClick
eventIn
SFVec2f

setPlayerGPS
eventIn
SFVec2f

setMapGPSCenter
eventIn
SFInt32

setMapZoomLevel
eventOut
SFBool

onClick
eventOut
SFBool

onPlayerAround
eventOut
SFBool

onPlayerLeft
]"org:mpeg:MapMarker"

E.5.2.2 Functionality and semantics

The MapMarker proto allows creating marker instances that may be used to represent additional information placed on the Map at a specified GPS position. In order for a MapMarker to be overlaid on the map a MapOverlay instance is needed. The visual representation of a MapMarker can be any 2D or 3D object (e.g.: an image, a video, a sphere, a complex 3D graphical object, etc).

name specifies a unique name of the MapMarker instance. It helps identifying a specific MapMarker instance for further actions.

visible indicates if the MapMarker node is visible on the map, or not. A MapMarker is considered to be visible when its corresponding appearance node is displayed over the Map image instance.

clickable specifies if the MapMarker node is clickable. A clickable MapMarker instance generates a TRUE Boolean output event, “onClick”, when tapped.

enabled specifies if the MapMarker is enabled. An enabled MapMarker generates two Boolean output events always TRUE (onPlayerAround, onPlayerLeft) each time the player enters/exits the area covered by the MapMarker. This area is a circle centered in the MapMarker GPS position with a specified radius.

position is a 3D vector that specifies the GPS location of the MapMarker and the radius of the circle the MapMarker is active on as follows: first value of the vector is the latitude, the second is the longitude and the third is the radius which can also be ignored and set to 0 if the MapMarker should not have an active zone.

rotation specifies an arbitrary rotation of the marker. The first three values specify a normalized rotation axis vector about which the rotation takes place whilst the forth value specifies the amount of right-handed rotation about that axis in radians.

The keywords field specifies a semantic description of the specific MapOverlay node (e.g. "restaurant", "museum", etc.).
markerShape is a list of nodes representing the visual appearance of the current MapMarker instance that should be overlaid on the Map image if its visible field is TRUE.

doClick input event simulates a click action on the MapMarker visual representation.

setPlayerGPS is a 2D vector eventIn representing the current GPS location of the player, the latitude respectively the longitude. The player GPS position should be used to compute the distance between the MapMarker and the player. Based on the computed distance onPlayerAround and onPlayerLeft output events are triggered whenever the distance conditions are fulfilled.

setMapZoomLevel represents the current zoom level of the Map. The zoom level of the Map is needed to compute the (x, y) coordinates of the MapMarker in the local coordinate system of the Map instance.

setMapGPSCenter is a 2D vector input event specifying the GPS position of the Map center. Beside the zoomLevel (described above), the GPS center of the Map is also required in order to compute the location of the MapMarker in the current coordinate system of the Map instance.

Note:

Each MapMarker has to be attached to a MapOverlay. There has to be at least one MapOverlay attached to the Map instance in order to be able to add and eventually display MapMarkers on the Map.

E.5.3 MapOverlay
E.5.3.1 Node Interface

EXTERNPROTO MapOverlay [

exposedField
SFString
name

""

exposedField
SFBool

visible

TRUE

exposedField
SFBool

enabled
TRUE

exposedField
SFBool

clickable
TRUE

exposedField
MFNode

children
[]

exposedField
MFString
keywords
[]

eventIn
MFNode

addOverlayItems

eventIn
MFNode

removeOverlayItems
]"org:mpeg:MapOverlay"

E.5.3.2 Functionality and Semantics

A MapOverlay node acts like a container for any number of items of the same type (MapMarkers) that should be added to the Map. It also provides an easy way of executing a specified action on all the items it contains at a time, as indicated below.

name specifies a unique name of the Overlay instance that may be used to identify a specific overlay item for further actions.

visible specifies if the MapOverlay instance is visible on the Map. This field is used to display/hide all the items (MapMarker instances) of the current MapOverlay instance at a time.

enabled specifies if all the MapMarkers of the current overlay are enabled or not. An enabled MapMarker will output an event each time the player enters/exits the area “covered” by it. This value can be set using the MapMarker position field. Review the semantics of the MapMarker PROTO.

clickable specifies if all the MapMarkers of a given MapOverlay are clickable or not. A clickable MapMarker can be tapped by the user. When tapped, “onClick” output event is triggered by the corresponding MapMarker instance. Review the semantics of the MapMarker PROTO.

children is a list of MapMarker instances. The list contains all the items that have been already added to the current MapOverlay instance.

The keywords field specifies a semantic description of the specific MapOverlay node (e.g. "restaurant", "museum", etc.).

addOverlayItems is an input event which can receive one or multiple MapMarker instances to be added to the MapOverlay children field. If the children field is not empty the specified MapMarker instances are inserted after the ones that already exist.

removeOverlayItems is an input event that removes the specified MapMarker instances from its children field. If a MapMarker instance is not found among the children of the MapOverlay, the removal of the unknown MapMarker instance fails silently.

Note:

Visible, clickable and enabled fields may give wrong information about the corresponding MapMarker fields. If, for example, the visible field of the MapOverlay has been used to set all the MapMarkers visible but in the meantime one or more MapMarkers have been individually set invisible (using their own visible field) then the MapOverlay visible field (which is still TRUE) will give false information that all the MapMarkers are still visible. The same rule applies to clickable and enabled fields. Writing a new value to any of these fields will set the new value to all the MapMarker instances no matter their previous value of the specified field. Therefore the user should be careful only when reading any of these fields.

addOverlayItems and removeOverlayItems are input events of type MFNode but adding or removing a single MapMarker instance at a time should be also valid.

E.5.4 MapPlayer
E.5.4.1 Node Interface

EXTERNPROTO MapPlayer [

exposedField
SFString

name

""
exposedField
SFVec2f

position

0 0

exposedField
SFBool

visible

TRUE
exposedField
MFNode

playerShape

[]
eventIn
SFInt32

setMapZoomLevel
eventIn
SFVec2f

setMapGPSCenter
]”org:mpeg:MapPlayer”

E.5.4.2 Functionality and semantics
The MapPlayer proto allows creating a visual representation of the player on the Map. The player location on the Map is represented by the real GPS position of the device. Each location change (GPS position) of the device should also affect the player location on the Map. The visual representation of a MapPlayer can be any 2D/3D object (e.g.: an image, a video, a sphere, a complex 3D graphical object, etc).

name specifies a unique name of the MapPlayer instance. It helps identifying a specific MapPlayer instance for further actions. The name may be useful in a multiplayer application. A standalone application should not have more than one MapPlayer instance.

position is a 2D vector that specifies the GPS location of the MapPlayer.

The visible field specifies if the MapPlayer node is visible on the map or not. A MapPlayer is considered to be visible when its corresponding appearance node is displayed over the Map image instance.

playerShape is a list of nodes representing the visual appearance of the MapPlayer instance that should be overlaid on the Map. The playerShape should be displayed on the Map only when “visible” is TRUE.

setMapZoomLevel represents the current zoom level of the Map. The zoom level of the Map is needed to compute the (x, y) coordinates of the MapPlayer in the local coordinate system of the Map instance.

setMapGPSCenter is a 2D vector input event specifying the GPS position of the Map center. Beside the zoomLevel (described above), the GPS center of the Map is also required in order to compute the location of the MapPlayer in the current coordinate system of the Map instance.

Note:
The MapPlayer logic should automatically compute the player translation in the local coordinate system of the Map instance whenever the GPS location of the device changes. The recommended way of adding a MapPlayer instance to a Map is using a dedicated MapOverlay. The MapPlayer is nothing else but a special marker that has a slightly different behavior than an ordinary MapMarker.

E.6 ReferenceSignal

E.6.1 Node Interface

EXTERNPROTO ReferenceSignal [

exposedField
MFString
source

[]

exposedField
MFString
referenceResources
[]

exposedField
SFBool

enabled

FALSE

exposedFiedl
MFVec2f

detectionRegion
[]

exposedField
MFString

detectionHints

[]

eventOut
MFInt32

onInputDetected

eventOut
SFInt32

onError
] "org:mpeg:ReferenceSignal"
10.6.5 Functionality and semantics

The ReferenceSignal prototype provides signal detection capabilities in a scene.

source specifies the media source or signal on which the detection happens.

referenceResources specifies the resource that needs to be detected by analyzing the the source field. The resource can be a media of any supported type or a sensor signal, such as MPEG-V sensor types.
enabled specifies whether the detection algorithm should be running or not.
detectionRegion specifies a 2D region for searching Reference Signal by means of x, y array of points relative to the source coordinate system. This restricts searching area for the detection algorithm in order to reduce processing burden.

detectionHints is used to describe some features of the resource that is to be detected. This is used by the detection algorithm in order to optimize the detection process. Examples of detection hints are keywords such as "textured image", "image with edges".

The event out onInputDetected is set each time the detection algorithm is executed. It consists in a list specifying a detection mask for each media in the referenceResources field. Value 0 for the mask means that the resource was not detected. Value 1 means that the resource was detected.

The event out onError is set when an error occurs in the detection algorithm. Currently the following error codes are defined:

· 0 - No error.

· 1 - Unspecified error.

E.7 ReferenceSignalLocation

E.7.1 Node Interface

EXTERNPROTO ReferenceSignalLocation [

exposedField
MFString
source

[]

exposedFieldMFString
referenceResources
[]

exposedField
SFBool

enabled

FALSE

exposedField
MFVec2f
detectionRegion
[]

exposedField
MFString
detectionHints

[]

exposedField
MFVec3f
translation

[]

exposedField
MFRotation

rotation

[]

eventOut
MFInt32

onInputDetected

eventOut
MFInt32

onTranslationChanged

eventOut
MFInt32

onRotationChanged

eventOut
SFInt32

onError
] "org:mpeg:ReferenceSignalLocation"
E.7.2 Functionality and semantics

The ReferenceSignalLocation prototype provides signal detection capabilities in a scene and computes the registration matrix of the signal (e.g. 3D geometric transformation for an image).

source specifies the media source or signal on which the detection will happen.

referenceResources specifies the resource that needs to be detected by analyzing the the source field. The resource can be a media of any supported type or a sensor signal, such as MPEG-V sensor types.
enabled specifies whether the detection algorithm should be running or not.
detectionRegion specifies a 2D region for searching Reference Signal by means of x, y array of points relative to the source coordinate system. This restricts searching area for the detection algorithm in order to reduce processing burden.

detectionHints is used to describe some features of the resource that is to be detected. This is used by the detection algorithm in order to optimize the detection process. Examples of detection hints are keywords such as "textured image", "image with edges".

translation specifies the 3D translation of the detected media/signal. The valid values are the ones that are enabled by the onTranslationChanged mask.

rotation specifies the 3D rotation of the detected media/signal. The valid values are the ones that are enabled by the onRotationChanged mask.

The event out onInputDetected is set each time the detection algorithm is executed. It consists in a list specifying a detection mask for each media in the referenceResources field. Value 0 for the mask means that the resource was not detected. Value 1 means that the resource was detected.

The event out onTranslationChanged is set each time the registration algorithm is executed and a translation of the referenceResources is detected. The event is an array specifying if the translation has changed for each media/signals from referenceResources. Value 0 for the mask means that the resource was not detected. Value 1 means that the resource was detected.
The event out onRotationChanged is set each time the registration algorithm is executed and a rotation of the referenceResources is detected. The event is an array specifying if the rotation has changed for each media/signals from referenceResources. Value 0 for the mask means that the resource was not detected. Value 1 means that the resource was detected.

The event out onError is set when an error occurs in the detection algorithm. Currently the following error codes are defined:

· 0 - No error.

· 1 - Camera calibration matrix is not present for the current camera.

· 2 - Unspecified error.

E.8 OutputActuator
E.8.1 Node Interface
EXTERNPROTO OutputActuator [

eventIn SFBool

activate
exposedField
SFBool

enabled
TRUE

exposedField
MFString
url

[]
//Any number of eventIn may then follow in an actuator:

eventIn
 eventType
eventName
]"org:mpeg: OutputActuator"
E.8.2 Functionality and Semantics
OutputActuator is used to communicate between the scene and the MPEG-V actuator. How to map these commands to the physical device is out of the scope of this standard. It should be noted that the device interprets the command and produces the effect immediately when the command is received.

The url field specifies the device to be controlled.

An OutputActuator can receive variable number of events that in turn generate device data frames (DDFs) that are sent to the actuator. The number of input received depends on the underlying device identified in url. Each eventIn corresponds to one field in the DDF and has the same type (cf Annex F).
DDFs are generated when an eventIn is received only the enabled field is TRUE.
When activate eventIn is received, the DDF is assembled and sent to the device using the latest values received on each of the eventIn fields corresponding.

When declaring an OutputActuator in a BIFS scene, the eventIn fields shall be placed in their order of appearance in the associated DDF, after all other fields are declared. The activate eventIn shall be declared first in the extern proto declaration.

Annex F
(normative)
SEQ aaa \h

SEQ table \r0\h

SEQ figure \r0\h
Usage of MPEG-V with OutputActuator and InputSensor

F.1 Overview

This annex describes usage of actuators and input sensors using conformant ISO/IEC 23005-5 Data formats for interaction devices (MPEG-V Part 5).

MPEG-V provides architecture and specifies associated information representations to enable the representation of the context and to ensure interoperability between virtual worlds. When used with BIFS, MPEG-V specifies the interaction between the virtual world and the real world by implementing support for accessing different input/output devices, e.g. sensors, actuators, vision and rendering, robotics. There are several ways of connecting a scene with sensors and actuators: a first possibility is to use the InputSensor and OutputActuator nodes; another possibility is based on dedicate nodes in the scene graph that maps directly the sensor/actuator (e.g. the CameraSensor PROTO).
F.2 Usage of InputSensor and BIFS Nodes
The InputSensor node is used to receive the MPEG-V sensor data in a scene or to transmit data to MPEG-V actuators from the scene. It should be noted that the data is pushed in the scene and it is applied immediately when received. Figure 1 represents the architecture for accessing MPEG-V sensor data in BIFS scenes.
	
[image: image395]

	Figure 1 — Diagram of the architecture for accessing MPEG-V sensor data

As specified in ISO/IEC 14496-11, in order to add new devices for the InputSensor node it is necessary to define:

· The content of the Device Data Frame (DDF) definition: this sets the order and type of the data coming from the device and then mandates the content of the InputSensor buffer.

· deviceName string which will designate the new device.

· Optional devSpecInfo of UIConfig

F.2.1 Orientation Sensor
The definition of MPEG-V Orientation Sensor DDF is the following:

MPEGVOrientationSensorType [

SFVec3F angles

]

The angles are specified as Euler angles as defined in ISO/IEC 23005-5. The deviceName is “MPEG-V:siv: OrientationSensorType”. The UIConfig.devSpecInfo contains one 32 bit integer specifying the desired refresh frame-rate for the sensor.

F.2.2 Position Sensor
The definition of MPEG-V Position Sensor DDF is the following:

MPEGVPositionSensorType [

SFVec3F position

]

The position is specified in meters. The deviceName is “MPEG-V:siv: PositionSensorType”. The UIConfig.devSpecInfo contains one 32 bit integer specifying the desired refresh frame-rate for the sensor.

F.2.3 Acceleration Sensor
The definition of MPEG-V Acceleration Sensor DDF is the following:

MPEGVAccelerationSensorType [

SFVec3F acceleration

]

The deviceName is “MPEG-V:siv: AccelerationSensorType”. The UIConfig.devSpecInfo contains one 32 bit integer specifying the desired refresh frame-rate for the sensor.

F.2.4 AngularVelocity Sensor
The definition of MPEG-V Angular Velocity Sensor DDF is the following:
MPEGVAngularVelocitySensorType [

SFVec3F AngularVelocity

]

The deviceName is “MPEG-V:siv: AngularVelocitySensorType”. The UIConfig.devSpecInfo contains one 32 bit integer specifying the desired refresh frame-rate for the sensor.

F.2.5 Global Position System Sensor
The definition of MPEG-V Global Position System Sensor DDF is the following:

MPEGVGPSSensorType [

SFVec2F location

]

The deviceName is “MPEG-V:siv:GPSSensorType”. The UIConfig.devSpecInfo contains one 32 bit integer specifying the desired refresh frame-rate for the sensor.
F.2.6 Altitude Sensor
The definition of MPEG-V Altitude Sensor DDF is the following:

MPEGVAltitudeSensorType [

SFFloat altitude

]

The deviceName is “MPEG-V:siv:AltitudeSensorType”. The UIConfig.devSpecInfo contains one 32 bit integer specifying the desired refresh frame-rate for the sensor.
F.2.7 Geomagnetic Sensor
The definition of MPEG-V Geomagnetic Sensor DDF is the following:
MPEGVGeomagneticSensorType [

SFVec3F geomagnetic

]

The deviceName is “MPEG-V:siv: GeomagneticSensorType”. The UIConfig.devSpecInfo contains one 32 bit integer specifying the desired refresh frame-rate for the sensor.

F.3 Usage of OutputActuator and BIFS Nodes
The OutputActuator proto is used to transmit data to MPEG-V actuators from the scene. It should be noted that the data produced by the scene is applied immediately when received by the actuators. Figure 4 represents the architecture for commanding MPEG-V actuators from the BIFS scenes.

[image: image396]
Figure 4 — Diagram of the architecture for commanding MPEG-V actuators
In order to add new devices the same mechanism is used as for InputSensor therefore it is necessary to define:

· The content of the Device Data Frame (DDF) definition: this sets the order and type of the data sent to the device and then mandates the content of the OutputActuator buffer.

· deviceName string which will designate the new device.

· Optional devSpecInfo of UIConfig

F.3.1 Light Actuator

The definition of MPEG-V Light Actuator DDF is the following:

MPEGVLightActuatorType [

SFFloat intensity

SFColor color

]

The deviceName is “MPEG-V:siv:LightActuatorType”. The light actuator will keep its current state (intensity and color) as long as a new command is not initiated.
F.3.2 Vibration Actuator

The definition of MPEG-V Vibration Actuator DDF is the following:

MPEGVVibrationActuatorType [

SFFloat intensity

]

The deviceName is “MPEG-V:siv:VibrationActuatorType”. The vibration actuator will keep its current state (intensity) as long as a new command is not initiated.
F.3.3 Tactile Actuator

The definition of MPEG-V Tactile Actuator DDF is the following:

MPEGVTactileActuatorType [

MFFloat intensity

]

The deviceName is “MPEG-V:siv:TactileActuatorType”. The tactile actuator will keep its current state (intensity) as long as a new command is not initiated.

F.3.4 Flash Actuator

The definition of MPEG-V Flash Actuator DDF is the following:

MPEGVFlashActuatorType[

SFFloat intensity

SFColor color

SFFloat frequency

]

The deviceName is “MPEG-V:siv:FlashActuatorType”. The flash actuator will keep its current state (intensity, color, and frequency) as long as a new command is not initiated.

F.3.5 Heating Actuator

The definition of MPEG-V Heating Actuator DDF is the following:

MPEGVHeatingActuatorType[

SFFloat intensity

]

The deviceName is “MPEG-V:siv:HeatingActuatorType”. The heating actuator will keep its current state (intensity) as long as a new command is not initiated.

F.3.6 Cooling Actuator

The definition of MPEG-V Cooling Actuator DDF is the following:

MPEGVCoolingActuatorType[

SFFloat intensity

]

The deviceName is “MPEG-V:siv:CoolingActuatorType”. The cooling actuator will keep its current state (intensity) as long as a new command is not initiated.

F.3.7 Wind Actuator

The definition of MPEG-V Wind Actuator DDF is the following:

MPEGVWindActuatorType[

SFFloat intensity

]

The deviceName is “MPEG-V:siv:WindActuatorType”. The wind actuator will keep its current state (intensity) as long as a new command is not initiated.

F.3.8 Sprayer Actuator

The definition of MPEG-V Sprayer Actuator DDF is the following:

MPEGVSprayerActuatorType[

SFFloat intensity

SFInt32 sprayingType

]

The deviceName is “MPEG-V:siv:SprayerActuatorType”. The sprayer actuator will keep its current state (sprayingType and intensity) as long as a new command is not initiated.

F.3.9 Scent Actuator

The definition of MPEG-V Scent Actuator DDF is the following:

MPEGVScentActuatorType[

SFFloat intensity

SFInt32 scent

]

The deviceName is “MPEG-V:siv:ScentActuatorType”. The scent actuator will keep its current state (scent and intensity) as long as a new command is not initiated.

F.3.10 Fog Actuator

The definition of MPEG-V Fog Actuator DDF is the following:

MPEGVFogActuatorType[

SFFloat intensity

]

The deviceName is “MPEG-V:siv:FogActuatorType”. The fog actuator will keep its current state (intensity) as long as a new command is not initiated.

F.3.11 Rigid Body Motion Actuator

The definition of MPEG-V Rigid Body Motion Actuator DDF is the following:

MPEGVRigidBodyMotionActuatorType[

MFVec3f direction

MFVec3f speed

MFVec3f acceleration

MFVec3f angle

MFVec3f angleSpeed

MFVec3f angleAcceleration

]

The deviceName is “MPEG-V:siv:RigidBodyMotionActuatorType”. The rigid body motion actuator will keep its current state (direction, speed, acceleration, angle, angleSpeed, and angleAcceleration) as long as a new command is not initiated. Each multi-valued field contains 3D values for X, Y, and Z component. The following table shows the mapping between the fields of DDF and the fields of MPEG-V:siv:RigidBodyMotionActuatorType.

Mapping between DDF and MPEG-V Rigid Body Motion Actuator Type

	MPEGVRigidBodyMotionActuatorType
	MPEG-V:siv:RigidBodyMotionActuatorType

	direction[0]
	directionX of MoveTowardType

	direction[1]
	directionY of MoveTowardType

	direction[2]
	directionZ of MoveTowardType

	speed[0]
	speedX of MoveTowardType

	speed[1]
	speedY of MoveTowardType

	speed[2]
	speedZ of MoveTowardType

	acceleration[0]
	accelerationX of MoveTowardType

	acceleration[1]
	accelerationY of MoveTowardType

	acceleration[2]
	accelerationZ of MoveTowardType

	angle[0]
	pitchAngle of InclineType

	angle[1]
	yawAngle of InclineType

	angle[2]
	rollAngle of InclineType

	angleSpeed[0]
	pitchSpeed of InclineType

	angleSpeed[1]
	yawSpeed of InclineType

	angleSpeed[2]
	rollSpeed of InclineType

	angleAcceleration[0]
	pitchAcceleration of InclineType

	angleAcceleration[1]
	yawAcceleration of InclineType

	angleAcceleration[2]
	rollAcceleration of InclineType

F.3.12 Kinesthetic Actuator

The definition of MPEG-V Kinesthetic Actuator DDF is the following:

MPEGVKinetheticActuatorType[

MFVec3f position

MFVec3f orientation

MFVec3f force

MFVec3f torque

]

The deviceName is “MPEG-V:siv:KinestheticActuatorType”. The kinesthetic actuator will keep its current state (position, orientation, force, and torque) as long as a new command is not initiated. Each multi-valued field contains 3D values for X, Y, and Z component.
Bibliography

[1] Jérôme Daniel, "Spatial Sound Encoding Including Near Field Effect: Introducing Distance Coding Filters and a Viable, New Ambisonic Format", AES 23rd International Conference, Copenhagen, 2003

[2] Michael A. Gerzon, "Ambisonics in Multichannel Broadcasting and Video", J. Audio Eng. Soc. Vol. 33, 1983 October 8-12
scene

globe

desk

person

audiovisual

presentation

2D background

furniture

voice

sprite

� EMBED Word.Picture.8 ���

t

Animation values

0.2

0.4

0.8

1

Animator 1

fromTo 0.2 0.4

Animator 2

fromTo 0.8 1

� EMBED Equation.3 ���

A

1000 units

Advanced Width

(0,0)

Bounding box

MPEG-SMR

Editor

MPEG-SMR

File

(XML)

MPEG4 Authoring

Application

MP4

File

(binary)

MPEG4 File

(binary)

Music

XML

File

(XML)

MEI

File

(XML)

Finale

File

(binary)

to distribution…

converters

0

1

2

3

4

5

6

7

8

Earth

Boat

Museum

Plane

Visitor

Statue

 SP1

 SP2

 SP3

 SP4

IndexedFaceSet

IndexedFaceSet

IndexedFaceSet

NURBS

WaveletSubdivision

WaveletSubdivision Partitioning

Cells / Portals

PVS

BSP

�

a, b

a, b

a

a

a

a

a, b

a, b

a

c

�

Video Production�Environment and�Editing tools

Text Input and Composition

RTF Unicode string�and�Unicode script processor

�

Scope of MPEG-4

MPEG-4�Encoder

Separated text runs

Text encoding

MPEG-4�Decoder

BIFS Decoder

OS / Device

Text�Layout�Engine

Font Data

OpenType Font Rendering

�

In this example, text runs are separated and “color coded”. Each run of text will be coded in a separate Text node. Each color code represents a FontStyle or XFontStyle node to be referenced by a corresponding Text node. Therefore, this sentence can be encoded using 10 different Text nodes referring to 5 different FontStyle nodes.

BIFS Player

BIFS Scene

Input

Sensor 1

Input

Sensor 2

Input

Sensor 3

Compositorr

MPEG-V Sensor 2

MPEG-V Sensor 3

Display

MPEG-V Sensor 1

BIFS Player

BIFS Scene

Output

Actuator 1

Output

Actuator 2

Output

Actuator 3

Compositor

MPEG-V Actuator 1

MPEG-V Actuator 2

MPEG-V Actuator 3

Display

�) More information about ZLIB can be found at the ZLIB Home Page � HYPERLINK "" "http://www.gzip.org/zlib/" �http://www.gzip.org/zlib/�. ZLIB is the underlying compression mechanism used by both gzip and zip.

	
	

	
	
	

	
	
	

	
	
	[image: image397.wmf]
	Reference number

ISO/IEC 14496-11:2005(E)
© ISO/IEC 2005

© ISO/IEC 2005

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 (CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

	ii
	© ISO/IEC 2005 – All rights reserved

	
	
	I

[image: image401.png]The word “IIBEThI” means flowers in Russian and it is *9929” in Arabic.

[image: image402.png]

[image: image403.png]

[image: image404.wmf][image: image405.png]

[image: image406.wmf]1

,

1

1

0

-

=

=

å

-

=

k

k

K

ki

N

k

N

i

_1133868534.unknown

_1133868550.unknown

_1133868567.unknown

_1133868575.unknown

_1133868585.unknown

_1134827346.unknown

_1150877678.unknown

_1150878591.unknown

_1162187017.unknown

_1150878307.unknown

_1150877559.unknown

_1133868587.unknown

_1133872265.doc

Dec Buffer 2

Comp Buffer 2

D

e

M

u

x

Channel

Back

Channel

DMIF

 Compositor

 and Renderer

 BIFS Dec

 Scene Graph

Dec Buffer 1

Dec Buffer n

Comp Buffer 1

Comp Buffer n

Media Dec 1

Media Dec 2

Media Dec n

Legend

control

data

_1133872266.doc

MPEG-J App

java….

java.io..

java.lang

Execution

Engine

MPEG-J APIs

Java

Virtual

Machine

MPEG -J

Engine

Presentation

Application

Engine

_1133872268.doc
[image: image1.wmf]NW API

MPEG-J Application

Class

Loader

Buffer

Scene Graph Manager

Resource

Manager

I/O

Devices

Network

Manager

DMIF

Scene

Graph

BIFS

Decoder

D

E

M

U

X

Decoding

Buffers 1..n

Media

Decoders 1..n

Composition

Buffers 1..n

Compositor and Renderer

Version 1 player

�

SG API

RM API

Legend

Interface

Control

data

Back

Channel

Channel

MD API

_1133870143.unknown

_1133868586.unknown

_1133868579.unknown

_1133868581.unknown

_1133868583.unknown

_1133868580.unknown

_1133868577.unknown

_1133868578.unknown

_1133868576.unknown

_1133868571.unknown

_1133868573.unknown

_1133868574.unknown

_1133868572.unknown

_1133868569.unknown

_1133868570.unknown

_1133868568.unknown

_1133868558.unknown

_1133868563.unknown

_1133868565.unknown

_1133868566.unknown

_1133868564.unknown

_1133868560.doc

y (ori=1)

ori=0, dir=+1,vq=[-2,+2]

z (ori=2)

inv=+1, delta=[+1,+2]

x (ori=0)

ori=2, dir=+1,vq=[+2,-1]

_1133868562.unknown

_1133868559.unknown

_1133868554.unknown

_1133868556.unknown

_1133868557.unknown

_1133868555.unknown

_1133868552.unknown

_1133868553.unknown

_1133868551.unknown

_1133868542.unknown

_1133868546.unknown

_1133868548.unknown

_1133868549.unknown

_1133868547.unknown

_1133868544.unknown

_1133868545.unknown

_1133868543.unknown

_1133868538.unknown

_1133868540.unknown

_1133868541.unknown

_1133868539.unknown

_1133868536.unknown

_1133868537.unknown

_1133868535.unknown

_1133864062.unknown

_1133864072.doc
[image: image1.png]

[image: image2.png]

[image: image3.png]

(c)

(b)

(a)

_1133864080.doc

T

0

d1

d2

d

alpha

_1133868532.unknown

_1133868533.unknown

_1133868531.unknown

_1133864076.doc

f

r

e

q

t

i

m

e

low

mid

high

_1133864078.doc

Output

value

Output

value

Output

value

Output

value

Factor

1

+

x

x

x

x



+

+

+

Type cast to

output type

Type cast to

output type

Type cast to

output type

Type cast to

output type

Summing

flag

Factor

2

Factor

3

Factor

4

Offset1

Offset2

Offset3

Offset4

_1133864074.doc

width

_1133864066.unknown

_1133864068.unknown

_1133864069.doc

 s = (x-x0)/Xsize

 t = (y-y0)/Ysize

(x0+Xsize, y0+Ysize)

(s=1.0, t=1.0)

Xsize

Ysize

(x0, y0)

(s=0.0, t=0.0)

_1133864067.unknown

_1133864064.unknown

_1133864065.unknown

_1133864063.unknown

_1133864051.unknown

_1133864057.doc
[image: image1.png]

_1133864060.unknown

_1133864061.unknown

_1133864058.unknown

_1133864054.doc
[image: image1.png]

[image: image2.png]

_1133864055.doc
[image: image1.png]

[image: image2.png]

(1,0,0)

X

Y

Z

(1,1,0)

(0,1,0)

_1133864052.unknown

_1133864045.doc

3D Scene-2

3D Scene-1

2D Scene-1

Pointer to 2D scene

2D

Scene graph

3D

Scene graph

Layers

Scene graph

2D Obj-1

2D Obj- 2

2D Obj-3

3D Obj-4

root

2DLayer

2D Layer-1

3D Obj-5

3D Obj-4

3D Obj-3

3D Obj-2

3D Obj-1

3D Layer-1

3D Layer-2

2D Layer-2

_1133864049.unknown

_1133864050.unknown

_1133864047.doc

-1.0

Figure � SEQ Figure * ARABIC �1�

-AR-1

+AR-1

o

+1.0

_1120898347.unknown

_1133852946.ppt

 XMT

MPEG-4

Representation

(e.g. mp4)

 SMIL

MPEG-7

 SVG

Parse

Compile

SMIL Player

VRML Browser

MPEG-4

 Player

 X3D

_1133864044.doc

OCRstream

BIFS time line

BIFS stream

OCR

OCR

OCR

OCR

OCR

BIFS AU

BIFS AU

CTS

CTS+(t

(t

Media time line

Media stream

CU

CU

CU

CU

CU

CU

CU

CU

CU

CU

CU

CU

CU

CU

CU

CU

0

0

_1133852944.doc

 multiplexed

downstream control / data

 multiplexed

upstream control / data

audiovisual

presentation

3D objects

2D background

voice

sprite

hypothetical viewer

projection

video

compositor

plane

audio

compositor

scene

coordinate

system

x

y

z

user events

audiovisual objects

speaker

display

user input

_1081323701

_1104215420.unknown

_1118587388.doc
[image: image1.png]

_1081235103.unknown

