
INTERNATIONAL ORGANISATION FOR STANDARDISATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11 MPEG2013/N13924
October 2013, Geneva, Switzerland
	Source
	Video

	Status
	Working Draft

	Title
	Working Draft 2 for Video Coding for Browsers (VCB)

	Editors
	Mohamad Raad, Harald Alvestrand, Lazar Bivolarsky

Contents

60
Introduction

1
Scope
6
2
Definitions
6
2.1
AC transform coefficient:
6
2.2
Altref frame:
6
2.3
Backward prediction:
6
2.4
Bidirectional inter decoded picture:
6
2.5
Bidirectional prediction:
6
2.6
Bitstream:
6
2.7
Bitstream order:
6
2.8
Bit string:
6
2.9
Block:
6
2.10
Block scan:
7
2.11
Byte:
7
2.12
Byte alignment:
7
2.13
Chroma:
7
2.14
Component:
7
2.15
Coded Picture buffer:
7
2.16
DC coefficient:
7
2.17
Decode processing:
7
2.18
Decoded picture:
7
2.19
Decoded picture buffer:
7
2.20
Decoder:
7
2.21
Decoding order:
7
2.22
Decoding process:
7
2.23
Dequantization:
7
2.24
Display order:
8
2.25
Encoder:
8
2.26
Encoding presentation:
8
2.27
Encoding process
8
2.28
Flag
8
2.29
Forbidden
8
2.30
Forward prediction
8
2.31
Forward inter decoded picture
8
2.32
Frame (Picture)
8
2.33
Golden frame
8
2.34
Inter coding
8
2.35
Interframe
8
2.36
Inter prediction
8
2.37
Intra coding
8
2.38
Intra decoded picture
8
2.39
Intra prediction
8
2.40
Inverse transform
9
2.41
Key frame
9
2.42
Layer
9
2.43
Level
9
2.44
Luma
9
2.45
Macroblock
9
2.46
Macroblock address
9
2.47
Macroblock line
9
2.48
Macroblock position
9
2.49
Motion vector
9
2.50
Non-reference picture
9
2.51
Output order
9
2.52
Output processing
9
2.53
Output reorder delay
9
2.54
Parse
10
2.55
Partitioning
10
2.56
Picture reordering
10
2.57
Prediction
10
2.58
Prediction process
10
2.59
Prediction value
10
2.60
Profile
10
2.61
Quantized coefficient
10
2.62
Quantization parameter
10
2.63
Random access point
10
2.64
Random access
10
2.65
Raster scan
10
2.66
Reference index
10
2.67
Reference picture
10
2.68
Reserved
10
2.69
Residual
11
2.70
Run
11
2.71
Sample
11
2.72
Sample value
11
2.73
Sequence
11
2.74
Skipped macroblock
11
2.75
Source
11
2.76
Start code
11
2.77
Stuffing bits
11
2.78
Syntax element
11
2.79
Transform coefficient
11
2.80
Variable length coding
11
2.81
Width height ratio
11
2.82
X-profile decoder
11
3
Symbols and abbreviated terms
12
4
Conventions
12
4.1.1
Arithmetic operators
12
4.1.2
Logical operators
12
4.1.3
Relational operators
13
4.1.4
Bitwise operators
13
4.1.5
Assignment
13
4.1.6
Mathematical functions
14
4.2
Method of describing the bitstream syntax
14
4.3
Functions
17
4.3.1
byte_aligned()
17
4.3.2
next_bits(n)
17
4.3.3
byte_aligned_next_bits(n)
17
4.3.4
read_bits(n)
17
4.3.5
read_bool(d, prob)
17
4.3.6
read_literal (d, n)
17
4.4
Descriptors
17
4.4.1
Bool(p) or B(p)
17
4.4.2
Flag or F
18
4.4.3
Lit(n) or L(n)
18
4.4.4
P(8)
18
4.4.5
P(7)
18
4.4.6
F? X
18
4.4.7
F? X:Y
18
4.4.8
B(p)? X or B(p)? X:Y
18
4.4.9
T
18
4.5
Bitstream syntax
19
4.6
Uncompressed Data Chunk
19
4.7
Frame Header
20
4.8
Macroblock Data
30
5
Bitstream semantics and decoding process
33
5.1
Boolean Decoder
33
5.2
Structure of coded video data
36
5.2.1
Uncompressed Data Chunk
36
5.2.2
Frame Header
37
5.3
Decoding process
43
5.3.1
Segment-Based Feature Adjustments
43
5.3.2
Key Frame Macroblock Prediction Records
43
5.3.3
Intraframe Prediction
51
5.3.4
DCT Coefficient Decoding
60
5.3.5
Token Probabilities
62
5.3.6
DCT and WHT Inversion and Macroblock Reconstruction
79
5.3.7
Loop Filter
84
5.3.8
Interframe Macroblock Prediction
93
5.3.9
Mode and Motion Vector Contexts
95
5.3.10
Interframe Prediction
108
Annex A Encoder Description
114
A.1
Summary
114
A.2
Prediction
119
A.2.1.1
Intraframe prediction
119
A.2.1.2
Interframe prediction
121
A.3
Transforms
124
A.3.1.1
The Discrete Cosine Transform
124
A.3.1.2
The Walsh-Hadamard Transform
125
A.4
Quantization
127
A.4.1
Coding the Transformed Coefficients
127
A.5
Loop Filter
129
A.5.1
Simple filter
129
A.5.2
Normal filter
129
A.6
Entropy Coder
130
A.6.1
Bit Representation of the Entropy Encoder
130
A.7
Segments and Slices
131
A.8
Prediction
131
A.8.1
Intraframe prediction
131
A.8.2
Interframe prediction
133
A.8.2.1
Motion Vectors
134
A.8.2.2
Interpolation and Filtering
135
A.8.2.3
Transforms
135
A.8.2.4
Quantization
137
A.8.2.5
Coding the Transformed Coefficients
138
A.8.2.6
Loop Filter
139
A.8.2.7
Entropy Coder
140
A.8.3
Segments and Slices
141
Annex B Reference Software
143
B.1
VCB Encode Parameter Guide
143
B.2
The Basics
143
B.3
Encode Quality vs. Speed
143
B.4
Rate Control
144
B.4.1
VBR, CBR and CQ Mode
144
B.5
One-Pass vs. Two-Pass
146
B.5.1
Additional 2-Pass Rate Control Parameters
146
B.6
KEY Frame Spacing
147
B.7
The Alternate (or Constructed) Reference Frame
147
B.8
Multi-threaded Encode and Decode
148
B.9
Temporal and Spatial Resampling
148
B.10
Video Conferencing
149
B.11
Miscellaneous
149
B.12
Sample Command Lines
150
B.12.1
2-Pass Best Quality VBR Encoding
150
B.12.2
2-Pass Faster VBR Encoding
150
B.12.3
2-Pass VBR Encoding for Smooth Playback on Low-end Hardware
150
B.12.4
2-Pass CBR Encoding for Limited-bandwidth Streaming
150
B.12.5
2-Pass VBR Encoding for Noisy / Low-quality Input Source
150
B.12.6
1-Pass Good Quality VBR Encoding
151
B.12.7
1-Pass Fast VBR Encoding
151
B.12.8
Real-time CBR Encoding and Streaming
151
B.13
vpxenc Parameter Summary
151
B.13.1
Usage:
151
B.13.2
Options:
151
B.13.3
Encoder Global Options:
152
B.13.4
Rate Control Options:
152
B.13.5
Two-pass Rate Control Options:
152
B.13.6
KEYframe Placement Options:
152
B.13.7
Other VCB-Specific Options:
152
B.14
Data Structures
153
15
Reference Decoder Source Code
164
15.1
LICENSE file
164
15.2
bit_ops.h
165
15.3
bool_decoder.h
165
15.4
dequant_data.h
168
15.5
dixie.c
170
15.6
dixie.h
181
15.7
dixie_loopfilter.c
186
15.8
dixie_loopfilter.h
195
15.9
idct_add.c
196
15.10
idct_add.h
199
15.11
mem.h
199
15.12
modemv.c
200
15.13
modemv.h
212
15.14
modemv_data.h
213
15.15
predict.c
218
15.16
predict.h
243
15.17
tokens.c
243
15.18
tokens.h
251
15.19
vp8_prob_data.h
252
15.20
vpx_codec_internal.h
260
15.21
vpx_decoder.h
269
15.22
vpx_decoder_compat.h
275
15.23
vpx_image.c
287
15.24
vpx_image.h
293
15.25
vpx_integer.h
298

0
Introduction
This clause does not form an integral part of this International Standard.
1 Scope
This document describes the normative part of the Video Coding for Browsers (VCB) codec (i.e. the decoder). This document includes an informative annex (Annex A) describing a conforming encoder. This document also includes an informative annex (Annex B) describing the reference software for this specification. This Specification deals with the coding of progressive video sequences represented in the 4:2:0 YUV sampling domain.
2 Definitions

For the purposes of this International Standard, the following definitions apply:

2.1 AC transform coefficient:
Any transform coefficient whose frequency index is non-zero in at least one dimension :
2.2 Altref frame:
Another prediction frame that can be used as an alternative frame to the most recent prediction frame and golden frame
2.3 Backward prediction:
Predict current picture by using future pictures in the display order as reference pictures
2.4 Bidirectional inter decoded picture:
Decoded pictures using bidirectional prediction in inter prediction
2.5 Bidirectional prediction:
The process of predicting the current picture by the past reference pictures and future reference pictures in the display order
2.6 Bitstream:

A sequence of bits that forms the representation of coded pictures and associated data forming one or more coded video sequences
2.7 Bitstream order:

Order in the bitstream where the encoded frames are located in decoding order
2.8 Bit string:

Ordered string with limited number of bits. The left most bit is the most significant bit (MSB), the right most bit is the least significant bit (LSB).
2.9 Block:

An M(N array of samples or transform coefficients (M columns and N rows)
2.10 Block scan:

Specified serial ordering of quantized coefficients
2.11 Byte:

A sequence of 8 bits, written and read with the most significant bit on the left and the least significant bit on the right. When represented in a sequence of data bits, the most significant bit of a byte is first
2.12 Byte alignment:
A position in a bitstream is byte-aligned when the position is an integer multiple of 8 bits from the position of the first bit in the bitstream, and a bit or byte or syntax element is said to be byte-aligned when the position at which it appears in a bitstream is byte-aligned
2.13 Chroma:
An adjective specifying that a sample array or single sample is representing one of the two colour difference signals related to the primary colours. The symbols used for a chroma array or sample are Cb and Cr. NOTE 3 –The term chroma is used rather than the term chrominance in order to avoid the implication of the use of linear light transfer characteristics that is often associated with the term chrominance
2.14 Component:

An array or single sample from one of the three arrays (luma and two chroma) that compose a picture in 4:2:0 colour format or the array or a single sample of the array that compose a picture in monochrome format
2.15 Coded Picture buffer:

A first-in first-out buffer containing decoding units in decoding order specified.
2.16 DC coefficient:
A transform coefficient whose frequency indexes are zero in both dimensions
2.17 Decode processing:

The process specified in this Specification that reads a bitstream and derives decoded pictures from it
2.18 Decoded picture:

A decoded picture is derived by decoding a coded picture
2.19 Decoded picture buffer:

A buffer holding decoded pictures for reference, output reordering and output timing
2.20 Decoder:
An embodiment of the decoding process
2.21 Decoding order:
The order in which syntax elements are processed by the decoding process.
2.22 Decoding process:
The process specified in this Specification that reads a bitstream and derives decoded pictures from it.
2.23 Dequantization:
The process in which transform coefficients are obtained after scaling the quantized coefficients
2.24 Display order:
The order of displaying decoded pictures
2.25 Encoder:
The realization of the encoding process
2.26 Encoding presentation:
The representation after the encoding process

2.27 Encoding process

The process that generates the bitstream conforms to the description in the current part.

2.28 Flag

A variable that can take one of the two possible values 0 and 1.

2.29 Forbidden

Define some special syntax elements, which should not exist in the bitstream which conforms to the syntax defined in this part. The reason for forbidden is to avoid the pseudo initial code in the bitstream.

2.30 Forward prediction

The process of predicting the current picture by the past reference pictures in the display order.

2.31 Forward inter decoded picture

Decoded pictures using only forward prediction in inter prediction.

2.32 Frame (Picture)
The representation of video signals in the spacespatial domain, Composedcomposed of one luma sample matrix (Y) and two chroma sample matrices (Cb and Cr).

2.33 Golden frame

A prediction frame that can be used as an alternative to the most recent prediction frame.

2.34 Inter coding

Coding one macroblock or picture using inter prediction.
2.35 Interframe

A frame encoded with reference to prior frames up to and including the most recent key frame.
2.36 Inter prediction

A prediction derived in a manner that is dependent on data elements (e.g. sample values or motion vectors) of reference pictures other than the current decoded picture.
2.37 Intra coding

Coding one macroblock or picture using intra prediction.

2.38 Intra decoded picture

The decoded picture using only intra prediction only. If the I frame uses field coding, the first field can only use intra prediction.

2.39 Intra prediction

A prediction derived in a manner that is dependent on data elements (e.g. sample values or motion vectors) of reference pictures other than the current decoded picture (or field)
2.40 Inverse transform

A part of the decoding process by which a set of transform coefficients are converted into spatial-domain values
2.41 Key frame

A frame that is decoded without reference to any other frame in a sequence.

2.42 Layer

A part of a structured bitstream.

2.43 Level

A defined set of constraints on the values that may be taken by the syntax elements and syntax element parameters of this Specification. The same set of levels is defined for all profiles, with most aspects of the definition of each level being in common across different profiles. Individual implementations may, within specified constraints.
2.44 Luma

An adjective specifying that a sample array or single sample is representing the monochrome signal related to the primary colours.
2.45 Macroblock

Includes a 16(16 luma sample value block and its corresponding chroma sample value blocks.

2.46 Macroblock address

Starting from the upper left macroblock and numbering according to the order of raster scan, with an initial number 0.

2.47 Macroblock line

Consecutive macroblocks within the same vertical position that start from the left coded picture boundary to the right. The height of one macroblock line is 16 samples.

2.48 Macroblock position

The two-dimensional coordinates of one macroblock in a picture denoted by (x,y).The coordinate of the top left macroblock (x,y) is equal to (0,0); x is incremented by 1 for each macroblock column from left to right; y is incremented by 1 for each macroblock row from top to bottom.

2.49 Motion vector

A two-dimensional vector used for inter prediction that provides an offset from the coordinates in the decoded picture to the coordinates in a reference picture.
2.50 Non-reference picture

A picture not used for inter prediction of subsequent pictures in the decoding process
2.51 Output order

The order of outputting decoded pictures, which is the same as the display order.

2.52 Output processing

The process of deriving the output frame or field from the decoded picture.

2.53 Output reorder delay

The delay between the beginning of decoding one frame in the bitstream and the output of the decoded picture, which is caused by the difference between the display order and the decoding order.

2.54 Parse

The procedure of getting the syntax element from the bitstream.

2.55 Partitioning

The process of dividing a set into subsets such that each element in the set belong to only one of the subsets.

2.56 Picture reordering

The process of reordering the decoded pictures if the decoding order is different from the output order.

2.57 Prediction

An embodiment of the prediction process.
2.58 Prediction process

The use of a predictor to provide an estimate of the data element (e.g. sample value or motion vector) currently being decoded.
2.59 Prediction value

The value, which is the combination of the previously decoded sample values or data elements, used in the decoding process of subsequent data elements.

2.60 Profile

A specified subset of the syntax of this Specification. It is intended that this Specification will have a single profile.

2.61 Quantized coefficient

Transform coefficients before dequantization.

2.62 Quantization parameter

A variable used by the decoding process for scaling of transform coefficient levels.
2.63 Random access point

The point which can be accessed randomly in the bit-stream.

2.64 Random access

The act of starting the decoding process for a bitstream at a point other than the beginning of the stream.
2.65 Raster scan

A mapping of a rectangular two-dimensional pattern to a one-dimensional pattern such that the first entries in the one-dimensional pattern are from the first top row of the two-dimensional pattern scanned from left to right, followed similarly by the second, third, etc., rows of the pattern (going down) each scanned from left to right. Each raster row is scanned in the left to right order.

2.66 Reference index

The order indication of the reference frame in the frame buffer in the decoding process.

2.67 Reference picture

Picture for inter prediction of subsequent pictures in the decoding process.

2.68 Reserved

The term reserved, when used in the clauses specifying some values of a particular syntax element, are for future use by ISO/IEC. These values shall not be used in bitstreams conforming to this version of this Specification, but may be used in future extensions of this Specification byISO/IEC.
2.69 Residual

The decoded difference between a prediction of a sample or data element and its decoded value.
2.70 Run

A number of data elements of the same value in the decoding process. On one hand, it means the number of zero coefficients before a non-zero coefficient in the block scan; on the other hand, it means the number of skipped macroblocks.

2.71 Sample

The basic elements that compose the picture.

2.72 Sample value

The amplitude value of a sample.

2.73 Sequence

The highest level syntax structure of coding bitstream, including one or several consecutive coded pictures.

2.74 Skipped macroblock

Macroblock without other encoding data except for the indicator “skipped”.

2.75 Source

The term describing the raw video clips or some of their attributes before the encoding process.
2.76 Start code

A 32-bit codeword which is unique in the whole bitstream. Start code has a lot of usages, one of which is to identify the start point of the syntax structure in the bitstream.

2.77 Stuffing bits

The bit string which is inserted into bit-stream during encoding process and should be aborted during the decoding process.

2.78 Syntax element

The analysis result of the data unit in the bitstream.

2.79 Transform coefficient

A scalar quantity, considered to be in a frequency domain, that is associated with a particular one-dimensional or two-dimensional frequency index in an inverse transform part of the decoding process.
2.80 Variable length coding

A reversible entropy coding process, which distributes short codewords to the high-frequency symbols and distributes long codewords to the low-frequency symbols.

Note: These values should not exist in the bitstream which conforms to the syntax defined in this part.

Note: the symbol representing luma is Y.

2.81 Width height ratio

The ratio of the horizontal distance between columns to the vertical distance between rows of the luma samples in one frame.

Shown as h (v, where h is the horizontal width and v is the vertical height.

2.82 X-profile decoder

The decoder which is able to decode the bitstream which satisfies the specifications of a certain profile.

3 Symbols and abbreviated terms

CBR: Constant Bit Rate

LSB: Least Significant Bit

MB: Macroblock

MSB: Most Significant Bit

VBR: Variable Bit Rate

VLC: Variable Length Coding
4 Conventions

The mathematical operators and their precedence rules used to describe this Specification are similar to those used in the C programming language. However, operators of integer divisions with truncation and of rounding are specifically defined. If not specifically explained, numbering and counting begin from zero.

4.1.1 Arithmetic operators

+

Addition

–

Subtraction (as a binary operator) or negation (as a unary prefix operator)

×

Multiplication

ab

Exponential operation. a is raised to power of b. also it can represent superscript.

/
Integer division with truncation of the result toward zero. For example, 7/4 and –7/–4 are truncated to 1 and –7/4 and 7/–4 are truncated to –1.

[image: image2.wmf]b

a

Division in mathematical equations where no truncation or rounding is intended

[image: image3.wmf]å

=

b

a

i

i

f

)

(

The summation of the f (i) with i taking integral values from a up to, b (including b)
a % b

Remainder from division of a by b. both a and b are positive integers

4.1.2 Logical operators

a && b

Logical AND operation between a and b

a || b

Logical OR operation between a and b

!

Logical NOT operation

4.1.3 Relational operators

>

Greater than

>=
Greater than or equal to

<

Less than

<=

Less than or equal to

==
Equal to

!=
Not equal to

4.1.4 Bitwise operators

&

AND operation

|
OR operation

~
Negation operation

a >> bShift a in 2’s complement binary integer representation format to the right by b bit positions. This operator is only defined with b, a positive integer

a << bShift a in 2’s complement binary integer representation format to the left by b bit positions. This operator is only defined with b, a positive integer

4.1.5 Assignment

=

Assignment operator

++
Increment, x++ is equivalent to x = x + 1. When this operator is used for an array index, the variable value is obtained before the auto increment operation

--
Decrement, i.e. x– – is equivalent to x = x - 1. When this operator is used for an array indexthe variable value is obtained before the auto decrement operation

+=

Addition assignment operator, for example x += 3 corresponds to

x = x + 3, x += (-3) is equivalent to x = x + (-3)

-=

Subtraction assignment operator，for example x -= 3 corresponds to

x = x - 3, x -= (-3) is equivalent to x = x - (-3)

4.1.6 Mathematical functions

Abs(x) =[image: image4.wmf];0

;0

xx

xx

>=

ì

í

-<

î

 (3-1)
Ceil(x)
takes the smallest integer not smaller than x (3-2)

Clip1(x) = Clip3(0, 255, x)
 (3-3)

Clip3(a,b,c) =
[image: image5.wmf];

;

;else

aca

bcb

c

<

ì

ï

>

í

ï

î

 QUOTE

 (3-4)

Floor(x)
takes the biggest integer not bigger than x
 (3-5)

Log2(x)
logarithm number of x with base 2
 (3-6)

Log10(x)
logarithm number of x with base 10 (3-7)

Median(x,y,z) = x + y + z – Min(x, Min(y, z)) – Max(x, Max(y, z)) (3-8)

Min(x, y) = [image: image7.wmf];

;

xxy

yxy

<=

ì

í

>

î

 (3-9)

Max(x, y) = [image: image8.wmf];

;

xxy

yxy

>=

ì

í

<

î

 (3-10)

Round(x) = Sign(x) (Floor(Abs(x) + 0.5)

 (3-11)

Sign(x) = [image: image9.wmf]î

í

ì

<

-

>=

0

1

0

1

x

x

 (3-12)

4.2 Method of describing the bitstream syntax
The description style of the syntax is similar to C programming language. Syntax elements in the bitstream are represented in bold type. Each syntax element is described by its name (all lower case letters with underscore characters) and one or two descriptors for its method of coded representation. The decoding process behaves according to the value of the syntax element and to the values of previously decoded syntax elements. When a value of a syntax element is used in the syntax tables or the text, it appears in regular (i.e. not bold) type.

In some cases the syntax tables may use the values of other variables derived from syntax elements values. Such variables appear in the syntax tables, or text, named by a mixture of lower case and upper case letter and without any underscore characters. Variables starting with an upper case letter are derived for the decoding of the current syntax structure and all depending on syntax structures. Variables starting with an upper case letter may be used in the decoding process for later syntax structures mentioning the originating syntax structure of the variable. Variables starting with a lower case letter are only used within the subclause from which they are derived.

The association of values and names is specified in the text. In some cases, “mnemonic” names for syntax element values or variable values are used interchangeably with their numerical values. The names are constructed from one or more groups of letters separated by an underscore character. Each group starts with an upper case letter and may contain more upper case letters.

Hexadecimal notation, indicated by prefixing the hexadecimal number by “0x”, may be used when the number of bits is an integer multiple of 4. For example, “0x1a” represents a bit-string “0001 1010”.

A value equal to 0 represents a FALSE condition in a test statement. The value TRUE is represented by any other value other than zero.

An example of pseudo bitstream description syntax is shown below. When a syntax element appears, this means that a data element is read from the bitstream.
	
	type

	/* A statement can be a syntax element with associated descriptor or can be an expression used to specify its existence, type, and value, as in the following examples */
	

	syntax_element
	ue(v)

	conditioning statement
	

	
	

	/* A group of statements enclosed in brackets is a compound statement and is treated functionally as a single statement. */
	

	{
	

	
Statement
	

	
Statement
	

	
…
	

	}
	

	
	

	/* A “while” structure specifies that the statement is to be evaluated repeatedly while the condition remains true. */
	

	while (condition)
	

	
Statement
	

	
	

	/* A “do … while” structure executes the statement once, and then tests the condition. It repeatedly evaluates the statement while the condition remains true. */
	

	Do
	

	
Statement
	

	while (condition)
	

	
	

	/* An “if … else” structure tests the condition first. If it is true, the primary statement is evaluated. Otherwise, the alternative statement is evaluated. If the alternative statement is unnecessary to be evaluated, the “else” and corresponding alternative statement can be omitted. */
	

	if (condition)
	

	
primary statement
	

	Else
	

	
alternative statement
	

	
	

	/* A “for” structure evaluates the initial statement at the beginning then tests the condition. If it is true, the primary and subsequent statements are evaluated until the condition becomes false. */
	

	for (initial statement; condition; subsequent statement)
	

	
primary statement
	

Parse and decoding process are described using text and C-like pseudo language.

4.3 Functions

Functions used for syntax description are explained in this section. It is assumed that the decoder has a bitstream position indicator. This bitstream position indicator locates the position of the bit that is going to be read right next. A function consists of its name and a sequence of parameters inside of parentheses. A function may not have any parameters.

4.3.1 byte_aligned()

The function byte_aligned () returns TRUE if the current position is on a byte boundary. Otherwise, it returns FALSE.

4.3.2 next_bits(n)

The function returns the next n bits from the bitstream, MSB first. The current bitstream position indicator is not changed. If the remaining number of bits to be read are less than n, then it returns 0.

4.3.3 byte_aligned_next_bits(n)

If the current position of the bitstream is not byte aligned, returns n bits beginning from the next byte aligned position, MSB first. The current bitstream position indicator is not changed. If the current position of the bitstream is byte aligned, returns n bits from the current position, MSB first. The current bitstream position is not changed. If the remaining number of bits to be read is less than n, then returns 0.

4.3.4 read_bits(n)

This function returns n bits of the bitstream from the current position, MSB first. The bitstream position indicator advances n bits. If n is equal to 0, then returns 0. And the bitstream position indicator does not move.

4.3.5 read_bool(d, prob)

Returns a Boolean value by implementing the entropy decoder described in section ‎5.1.1. The parameter d is the current state of the entropy decoder. The parameter prob is the current probability of the next bit being 0.

4.3.6 read_literal (d, n)

Returns an unsigned number representing n bits. The parameter d is a pointer to the entropy decoder state (which maintains access points to the bitstream).
4.4 Descriptors

The descriptors below represent different syntax elements.

4.4.1 Bool(p) or B(p)
Bool with probability p/256 of being 0. Return value of read_bool(d, p) .

4.4.2 Flag or F

A one-bit flag (same thing as a B(128) or an L(1)). Return value of read_bool(d, 128).

4.4.3 Lit(n) or L(n)

Unsigned n-bit number encoded as n flags (a "literal").The bits are read from high to low order. Return value of read_literal(d, n).

4.4.4 P(8)

An 8-bit probability. No different from an L(8).)..
4.4.5 P(7)

A 7-bit specification of an 8-bit probability. Coded as an L(7) number “x”; the resulting 8-bit probability is x ? x << 1 : 1.

4.4.6 F? X

A flag that, if true, is followed by a piece of data X.

4.4.7 F? X:Y

A flag that, if true, is followed by X and, if false, is followed by Y. Also used to express a value where Y is an implicit default (not encoded in the data stream), as in F? P(8):255, which expresses an optional probability: If the flag is true, the probability is specified as an 8-bit literal, while if the flag is false, the probability defaults to 255.

4.4.8 B(p)? X or B(p)? X:Y

Variants of the above using a BooleanBooleanB indicator whose probability is not necessarily 128.

4.4.9 T

Tree-encoded value from a small alphabet.
Used to represent an

Used toan alphabet as the leaves of a small binary tree. The (non-leaf) nodes of the tree have associated probabilities p and correspond to calls to read_bool(d, p). AA zerorepresents choosing the left branch below the node and a onerepresents choosing the right branch.

Thus, every value (leaf) whose tree depth is x is decoded after exactly x calls to read_bool(d, p). A tree representing an encoding of an alphabet of n possible values always contains n-1 non-leaf nodes, regardless of its shape.

The trees used by VCB are chosen to (on average) minimize the number of calls to read_bool (see section ‎4.4.1 and section ‎5.1.1 which describe the entropy decoder).
4.5 Bitstream syntax
This section presents the bitstream syntax in a tabular form. The meaning of each of the syntax elements is presented in Section ‎5.
4.6 Uncompressed Data Chunk

Table ‎4‑1The Frame Tag uncompressed data chunk

	Frame Tag
	 Type

	 frame_type
	L(1)

	 version_number
	L(3)

	 show_frame_flag /* indicates whether the current frame is meant to be displayed or not.*/
	L(1)

	size_first_data_partition /* determines the size of the first partition (control partition), excluding the uncompressed data chunk.*/
	L(19)

	 if (frame_type == 0) { /*A key frame*/
	

	 start_code /* a constant 3-byte pattern having value 0x9d012a */
	 L(24)

	 horizontal_size_code
	 L(16)

	 vertical_size_code
	 L(16)

	}
	

The latter part of the uncompressed chunk (after the start_code) can be parsed as follows:
Table ‎4‑2 horizontal_size_code

	horizontal_size_code
	Type

	width
	L(14)

	horizontal_scale
	L(2)

Table ‎4‑3 vertical_size_code

	vertical_size_code
	Type

	height
	L(14)

	vertical_scale
	L(2)

4.7 Frame Header

Table ‎4‑4 The Frame Header field

	 Frame Header
	 Type

	 if (key_frame) {
	

	 color_space /* defines the YUV color space of the sequence.*/
	 L(1)

	 clamping_type /* specifies if the decoder is required to clamp the reconstructed pixel values.*/
	 L(1)

	 }
	

	 segmentation_enabled /* enables the segmentation feature for the current frame.*/
	 L(1)

	 if (segmentation_enabled)
	

	 update_segmentation()
	

	 filter_type /* determines whether the normal or the simple loop filter is used.*/
	 L(1)

	 loop_filter_level /* controls the deblocking filter.*/
	 L(6)

	 sharpness_level /* controls the deblocking filter.*/
	 L(3)

	 mb_lf_adjustments()
	

	 log2_nbr_of_dct_partitions /* determines the number of separate partitions containing the DCT coefficients of the macroblocks.*/
	 L(2)

	 quant_indices()
	

	 if (key_frame)
	

	refresh_entropy_probs /* determines whether updated token probabilities are used only for this frame or until further update*/
	 L(1)

	 else {
	

	refresh_golden_frame /* determines if the current decoded frame refreshes the golden frame. */
	 L(1)

	refresh_alternate_frame /* determines if the current decoded frame refreshes the alternate reference frame */
	 L(1)

	 if (!refresh_golden_frame)
	

	 copy_buffer_to_golden /* determines if the golden reference is replaced by another reference.*/
	 L(2)

	 if (!refresh_alternate_frame)
	

	 copy_buffer_to_alternate /* determines if the alternate reference is replaced by another reference */
	 L(2)

	 sign_bias_golden /* controls the sign of motion vectors when the golden frame is referenced */
	 L(1)

	 sign_bias_alternate /* controls the sign of motion vectors when the alternate frame is referenced */
	 L(1)

	 refresh_entropy_probs
	 L(1)

	 refresh_last /* determines if the current decoded frame refreshes the last frame reference buffer */
	 L(1)

	 }
	

	 token_prob_update()
	

	 mb_no_skip_coeff /* enables or disables the skipping of macroblocks containing no non-zero coefficients */
	 L(1)

	 if (mb_no_skip_coeff)
	

	 prob_skip_false /* indicates the probability that the macroblock is not skipped (flag indicating skipped macroblock is false)*/
	 L(8)

	 if (!key_frame) {
	

	 prob_intra /* indicates the probability of an intra macroblock */
	 L(8)

	 prob_last /* indicates the probability that the last reference frame is used for inter-prediction */
	 L(8)

	 prob_gf /* indicates the probability that the golden reference frame is used for inter-prediction */
	 L(8)

	 intra_16x16_prob_update_flag /* indicates if the branch probabilities used in the decoding of the luma intra-prediction mode are updated */
	 L(1)

	 If (intra_16x16_prob_update_flag) {
	

	 for (i = 0; i < 4; i++)
	

	 intra_16x16_prob /* indicates the branch probabilities of the luma intra-prediction mode decoding tree */
	 L(8)

	 }
	

	 intra_chroma prob_update_flag /* indicates if the branch probabilities used in the decoding of the chroma intra-prediction mode are updated */
	 L(1)

	 if (intra_chroma_prob_update_flag) {
	

	 for (i = 0; i < 3; i++)
	

	 intra_chroma_prob /* indicates the branch probabilities of the chroma intra-prediction mode decoding tree */
	 L(8)

	 }
	

	 mv_prob_update()
	

	 }
	

Table ‎4‑5 update_segmentation process

	 update_segmentation()
	 Type

	 update_mb_segmentation_map /* determines if the MB segmentation map is updated in the current frame */
	 L(1)

	 update_segment_feature_data /* indicates if the segment feature data is updated in the current frame */
	 L(1)

	 if (update_segment_feature_data) {
	

	 segment_feature_mode /* indicates the feature data update mode, 0 for delta and 1 for the absolute value */
	 L(1)

	 for (i = 0; i < 4; i++) {
	

	 quantizer_update /* indicates if the quantizer value is updated for the i^(th) segment */
	 L(1)

	 if (quantizer_update) {
	

	 quantizer_update_value /* indicates the update value for the segment quantizer */
	 L(7)

	 quantizer_update_sign /* indicates the update sign for the segment quantizer */
	 L(1)

	 }
	

	 }
	

	 for (i = 0; i < 4; i++) {
	

	 loop_filter_update /* indicates if the loop filter level value is updated for the i^(th) segment.*/
	 L(1)

	 if (loop_filter_update) {
	

	 lf_update_value /* indicates the update value for the loop filter level */
	 L(6)

	 lf_update_sign /* indicates the update sign for the loop filter level */
	 L(1)

	 }
	

	 }
	

	 }
	

	 if (update_mb_segmentation_map) {
	

	 for (i = 0; i < 3; i++) {
	

	 segment_prob_update /* indicates whether the branch probabilities used to decode the segment_id in the MB header are decoded from the stream or use the default value of 255*/
	 L(1)

	 if (segment_prob_update)
	

	 segment_prob /* indicates the branch probabilities of the segment_id decoding tree */
	 L(8)

	 }
	

	 }
	

Table ‎4‑6 mb_lf_adjustment process

	 mb_lf_adjustments()
	 Type

	 loop_filter_adj_enable /* indicates if the MB-level loop filter adjustment (based on the used reference frame and coding mode) is on for the current frame.*/
	 L(1)

	 if (loop_filter_adj_enable) {
	

	 mode_ref_lf_delta_update /* indicates if the delta values used in an adjustment are updated in the current frame */
	 L(1)

	 if (mode_ref_lf_delta_update) {
	

	 for (i = 0; i < 4; i++) {
	

	 ref_frame_delta_update_flag /* indicates if the adjustment delta value corresponding to a certain used reference frame is updated */
	 L(1)

	 if (ref_frame_delta_update_flag) {
	

	 delta_magnitude /* is the absolute value of the delta value */
	 L(6)

	 delta_sign /* is the sign of the delta value */
	 L(1)

	 }
	

	 }
	

	 for (i = 0; i < 4; i++) {
	

	 mb_mode_delta_update_flag /* indicates if the adjustment delta value corresponding to a certain MB prediction mode is updated */
	 L(1)

	 if (mb_mode_delta_update_flag) {
	

	 delta_magnitude
	 L(6)

	 delta_sign
	 L(1)

	 }
	

	 }
	

	 }
	

	 }
	

Table ‎4‑7 quant_indices process

	 quant_indices()
	 Type

	 y_ac_qi /* is the dequantization table index used for the luma AC coefficients (and other coefficient groups if no delta value is present)*/
	 L(7)

	 y_dc_delta_present /* indicates if the stream contains a delta value that is added to the baseline index to obtain the luma DC coefficient dequantization index */
	 L(1)

	 if (y_dc_delta_present) {
	

	 y_dc_delta_magnitude /* is the magnitude of the delta value */
	 L(4)

	 y_dc_delta_sign /* is the sign of the delta value */
	 L(1)

	 }
	

	 y2_dc_delta_present /* indicates if the stream contains a delta value that is added to the baseline index to obtain the Y2 block DC coefficient dequantization index */
	 L(1)

	 if (y2_dc_delta_present) {
	

	 y2_dc_delta_magnitude /* the magnitude of the delta value */
	 L(4)

	 y2_dc_delta_sign /* the sign of the delta value */
	 L(1)

	 }
	

	 y2_ac_delta_present /* indicates if the stream contains a delta value that is added to the baseline index to obtain the Y2 block AC coefficient dequantization index */
	 L(1)

	 if (y2_ac_delta_present) {
	

	 y2_ac_delta_magnitude /* the magnitude of the delta value */
	 L(4)

	 y2_ac_delta_sign /* sign of the delta value */
	 L(1)

	 }
	

	 uv_dc_delta_present /* indicates if the stream contains a delta valuethat is added to the baseline index to obtain the chroma DC coefficient dequantization index */
	 L(1)

	 if (uv_dc_delta_present) {
	

	 uv_dc_delta_magnitude /* the magnitude of the delta value */
	 L(4)

	 uv_dc_delta_sign /* sign of the delta value */
	 L(1)

	 }
	

	 uv_ac_delta_present /* indicates if the stream contains a delta value that is added to the baseline index to obtain the chroma AC coefficient dequantization index */
	 L(1)

	 if (uv_ac_delta_present) {
	

	 uv_ac_delta_magnitude /* the magnitude of the delta value */
	 L(4)

	 uv_ac_delta_sign /* sign of the delta value */
	 L(1)

	 }
	

Table ‎4‑8 token_prob_update process

	 token_prob_update()
	 Type

	 for (i = 0; i < 4; i++) {
	

	 for (j = 0; j < 8; j++) {
	

	 for (k = 0; k < 3; k++) {
	

	 for (l = 0; l < 11; l++) {
	

	 coeff_prob_update_flag /* indicates if the corresponding branch probability is updated in the current frame.*/
	 L(1)

	 if (coeff_prob_update_flag)
	

	 coeff_prob /* is the new branch probability */
	 L(8)

	 }
	

	 }
	

	 }
	

	 }
	

Table ‎4‑9 mv_prob_update process

	 mv_prob_update()
	 Type

	 for (i = 0; i < 2; i++) {
	

	 for (j = 0; j < 19; j++) {
	

	 mv_prob_update_flag /* indicates if the corresponding MV decoding probability is updated in the current frame.*/
	 L(1)

	 if (mv_prob_update_flag)
	

	 prob /* is the updated probability */
	 L(7)

	 }
	

	 }
	

.

4.8 Macroblock Data

Table ‎4‑10 theMacroblock Data field

	 Macroblock Data
	 Type

	 macroblock_header()
	

	 residual_data()
	

Table ‎4‑11 macroblock_header process

	 macroblock_header()
	 Type

	 if (update_mb_segmentation_map)
	

	 segment_id /* indicates to which segment the macroblock belongs */
	 T

	 if (mb_no_skip_coeff)
	

	 mb_skip_coeff/* indicates whether the macroblock contains any coded coefficients or not.*/
	 B(p)

	 if (!key_frame)
	

	 is_inter_mb /* indicates whether the macroblock is intra- or inter-coded.*/
	 B(p)

	 if (is_inter_mb) {
	

	 mb_ref_frame_sel1/* selects the reference frame to be used; last frame (0), golden/alternate (1)*/
	 B(p)

	 if (mb_ref_frame_sel1)
	

	 mb_ref_frame_sel2 /* selects whether the golden (0) or alternate reference frame (1) is used */
	 B(p)

	 mv_mode /* determines the macroblock motion vector mode.*/
	 T

	 if (mv_mode == SPLITMV) {
	

	 mv_split_mode /* gives the macroblock partitioning specification and determines the number of motion vectors used (numMvs)*/
	 T

	 for (i = 0; i < numMvs; i++) {
	

	 sub_mv_mode /* determines the sub-macroblock motion vector mode for macroblocks coded using the SPLITMV motion vector mode */
	 T

	 if (sub_mv_mode == NEWMV4x4) {
	

	 read_mvcomponent()
	

	 read_mvcomponent()
	

	 }
	

	 }
	

	 } else if (mv_mode == NEWMV) {
	

	 read_mvcomponent()
	

	 read_mvcomponent()
	

	 }
	

	 } else { /* intra mb */
	

	 intra_y_mode /* selects the luminance intra-prediction mode */
	 T

	 if (intra_y_mode == B_PRED) {
	

	 for (i = 0; i < 16; i++)
	

	 intra_b_mode /* selects the sub-macroblock luminance prediction mode for macroblocks coded using B_PRED mode */
	 T

	 }
	

	 intra_uv_mode /* selects the chrominance intra-prediction mode */
	 T

	 }
	

.

Table ‎4‑12 residual_data parsing process
	 residual_data()
	 Type

	 if (!mb_skip_coeff) {
	

	 if ((is_inter_mb && mv_mode != SPLITMV)
	

	 (!is_inter_mb && intra_y_mode != B_PRED))
	

	 residual_block() /* Y2 */
	

	 for (i = 0; i < 24; i++)
	

	 residual_block() /* 16 Y, 4 U, 4 V */
	

	 }
	

Table ‎4‑13 residual_block parsing process

	 residual_block()
	 Type

	 for (i = firstCoeff; i < 16; i++) { /* is 1 for luma blocks of macroblocks containing Y2 subblock; otherwise 0*/
	

	 token/* defines the value of the coefficient, the value range of the coefficient, or the end of block */
	 T

	 if (token == EOB) break;
	

	 if (token_has_extra_bits)
	

	 extra_bits/* determines the value of the coefficient within the value range defined by the token */
	 L(n)

	 if (coefficient != 0)
	

	 sign /* indicates the sign of the coefficient */
	 L(1)

	 }
	

5 Bitstream semantics and decoding process
5.1 Boolean Decoder

Aside from the “uncompressed data chunk” (see ‎5.1.4), the entire VCB bitstream is entropy coded. The entropy encoder is referred to as the “Boolean encoder” in this document; similarly, the entropy decoder is referred to as the “Boolean decoder”.
Both the Boolean encoder and decoder assume 8-bit probabilities, represented by the letter p, where 0 <= p <= 255. Note that the actual probability represented by p is p/256.

NOTE: the reference software uses 8-bit probabilities and the following description is based on the use of 8 bits to represent the probabilities.
NOTE: The Boolean decoder is best explained by describing the Boolean encoder, however, the Boolean encoder does not form a normative part of this specification.
The basic form of the Boolean encoder operates using bit-at-a-time input and output. Aside from the ability to maintain a position in the bitstream and write/read bits, the encoder also needs the ability to add 1 to the bits already output; after writing n bits, adding 1 to the existing output is the same thing as adding pow(2, -n) to x, where x is a number in the range 0 <= x < 1 which has a value represented in Binary form by the stream of bits being encoded (or decoded). The bits (or bytes) in x are written from high to low order, and if b[j] (B[j]) is the j^(th) bit (byte) in the partition, the value x is simply the sum (starting with j = 1) of pow(2, -j) * b[j] or pow(256, -j) * B[j].
Together with the bit position, the encoder must maintain two unsigned 8-bit numbers, which, in this specification are named "bottom" and "range". Writing w for the n bits already written and S = pow(2, - n - 8) for the scale of the current bit position one byte out, the following constraint on all future values v of w is then obtained (including the final value v = x):

	w + (S * bottom) <= v < w + (S * (bottom + range))

Appending bottom to the already-written bits w gives the left endpoint of the interval of possible values, appending bottom + range gives the right endpoint, and range itself (scaled to the current output position) is the length of the interval.

To ensure that the probabilistic encodings are reasonably accurate, the range shall not vary by more than a factor of two (this way it stays within the bounds 128 <= range <= 255).

The Boolean decoder mimics the state of the Boolean encoder. The Boolean decoder maintains, together with an input bit position, two unsigned 8-bit numbers, a range identical to that maintained by the encoder and a value. Decoding one Boolean at a time, the decoder (in effect) tracks the same left interval endpoint as does the encoder and subtracts it from the remaining input. Appending the unread portion of the stream of bits to the 8-bit value gives the difference between the actual value encoded and the known left endpoint.

The decoder is initialized by setting range = 255 and reading the first 16 input bits into value (the current value of x). The decoder maintains range and calculates split in exactly the same way as does the encoder, where split is the change in the range of values that x can take in the case where the decoded Boolean is 1. In the case where the decoded Boolean is 0, split is the new value of range. That is, to decode a Boolean, the decoder compares value to split; if value < split, the Boolean is zero, and range is replaced with split. If value >= split, the Boolean is one, range is replaced with range - split, and value is replaced with value - split.

range is doubled one bit at a time until it is at least 128. The value of x is doubled in parallel, shifting a new input bit into the least significant bit position each time.

Writing Value for value together with the unread input bits and Range for range extended indefinitely on the right by zeros, the condition Value < Range shall be maintained at all times by the decoder. In particular, the bits shifted out of value as it is doubled are always zero.

NOTE: Based on the above, the process for encoding a Boolean value val whose probability of being zero is prob / 256 -- and whose probability of being one is (256 - prob) / 256 -- with 1 <= prob <= 255 is as follows.:
Using an unsigned 16-bit multiply followed by an unsigned right shift, an unsigned 8-bit split value is calculated:

	split = 1 + (((range - 1) * probability)]] >> 8)

split is approximately (prob / 256) * range and lies within the bounds 1 <= split <= range - 1. These bounds ensure the correctness of the decoding procedure.

If the incoming Boolean val to be encoded is false, the left interval endpoint bottom is unchanged and range is reduced, replacing it by split. If the incoming val is true, the left endpoint is moved up to bottom + split, propagating any carry to the already-written value w (this is where it is necessary to add 1 to w), and reduce range to range - split.

Regardless of the value encoded, range has been reduced and now has the bounds 1 <= range <= 254. If range < 128, the encoder doubles it and shifts the high-order bit out of bottom to the output (i.e. to the formed bit stream at the output of the encoder) as it also doubles bottom, repeating this process one bit at a time until 128 <= range <= 255. Once this is completed, the encoder is ready to accept another Boolean, maintaining the constraints described above.
NOTE: different parts of the bitstream are decoded using different entropy decoders which operate in the same way (as described above) but use different entropy tables. These tables are listed in this specification wherever required.
After encoding the last Boolean, the partition is completed by appending bottom to the output stream of bits.

5.2 Structure of coded video data

This section explains the structure of coded bitstream, relationships between layers and processing order.

The uncompressed data chunk at the start of each frame and at the first part of the first data partition contains information pertaining to the frame as a whole. The fields are listed here in their order of occurrence. NOTE: An example of how the frame header can be decoded appears in the reference software file dixie.c.

5.2.1 Uncompressed Data Chunk

The uncompressed data chunk comprises a common (for key frames and interframes) 3-byte frame tag that contains four fields, as follows:
frame_type shall be 0 for key frames, 1 for interframes.

version_number shall have a value of 0 ––– 3, inclusive. Other values are reserved for future use.

show_frame_flag shall be 0 when the current frame is not to be output for display, 1 otherwise.

size_first_data_partition indicates the size of the first data partition in bytes.

The version number setting enables or disables certain features in the bitstream, as follows:
Table ‎5‑1 Version number definition of filters
	Version
	Reconstruction Filter
	Loop Filter

	0
	Bicubic
	Normal

	1
	Bilinear
	Simple

	2
	Bilinear
	None

	3
	None
	None

	4
	Reserved for future use
	

The reference software also adjusts the loop filter based on version number, as per Table ‎5‑1. Version number 1 means a "simple" loop filter shall be used, and version numbers 2 and 3 mean no loop filter. However, the "simple" filter setting in this context has no effect whatsoever on the decoding process, and the "no loop filter" setting only forces the reference encoder to set filter level equal to 0. Neither affects the decoding process. In decoding, the only loop filter settings that matter are those in the frame header.

For key frames, the frame tag is followed by a further 7 bytes of uncompressed data, as shown in Table ‎4‑1. Note that while each frame is encoded as a raster scan of 16x16 macroblocks, the frame dimensions are not necessarily evenly divisible by 16. In this case, write ew = 16 - (width & 15) and eh = 16 - (height & 15) for the excess width and height, respectively. Although they are encoded, the last ew columns and eh rows are not actually part of the image and should be discarded before final output. However, note that these "excess pixels" should be maintained in the internal reconstruction buffer used to predict ensuing frames.

The scaling specifications for each dimension indicated in the horizontal_scale (Table ‎4‑2) and vertical_scale (Table ‎4‑3) shall be interpreted as follows:

Table ‎5‑2 scaling specification for each dimension

	 Value
	Scaling

	 0
	No up-scaling (the most common case).

	 1
	Upscale by 5/4.

	 2
	Upscale by 5/3.

	 3
	Upscale by 2.

NOTE: Up-scaling does not affect the reconstruction buffer, which should be maintained at the encoded resolution. Any reasonable method of up-sampling (including any that may be supported by video hardware in the playback environment) may be used. Since scaling has no effect on decoding, it is not discussed any further.

5.2.2 Frame Header

Table ‎4‑4 lists the elements in the Frame Header field.
5.2.2.1 Color Space and Pixel Type (Key Frames Only)

NOTE: Information in this subsection does not appear in interframes.
In Table ‎4‑4, the color space type bit shall be interpreted as follows:

0 - YUV color space with 4:2:0 sampling.
1 - Reserved for future use.

The pixel value clamping type bit shall be interpreted as follows:

0 - Decoders are required to clamp the reconstructed pixel values to between 0 and 255 (inclusive).

1 - Reconstructed pixel values are guaranteed to be between 0 and 255; no clamping is necessary.

5.2.2.2 Segment-Based Adjustments

This subsection contains probability and value information for implementing segment adaptive adjustments to default decoder behavior. The data in this subsection is used in the decoding of the ensuing per-segment information and applies to the entire frame.

 When segment adaptive adjustments are enabled, each macroblock will be assigned a segment ID. Macroblocks with the same segment ID belong to the same segment and have the same adaptive adjustments over default baseline values for the frame. The adjustments can be quantizer level or loop filter strength.

The context for decoding this feature at the macroblock level is provided by a subsection in the frame header (Table ‎4‑4), which contains:

A segmentation_enabled flag that enables the feature for this frame if set to 1, and disables it if set to 0. The following fields occur if the feature is enabled (see Table ‎4‑5):
One bit indicates if the segment map is updated for the current frame (update_mb_segmentation_map, see Table ‎4‑5).

One bit indicates if the segment feature data items are updated for the current frame (update_segment_feature_data, see Table ‎4‑5).

If (update_segment_feature_data) is 1, the following fields occur:

One bit indicating the mode of segment feature data (segment_feature_mode) which can be absolute-value mode (0) or delta value mode (1).

Segment feature data items are decoded segment by segment for each segment feature. For every data item, a one-bit flag indicates whether the item is 0, or a non-zero value to be decoded (see Table ‎4‑5). If the value is non-zero, then the value is decoded as a magnitude L(n), followed by a one-bit sign (L(1) -- 0 for positive and 1 for negative). The length n can be looked up from a pre-defined length table for all feature data.

If the L(1) flag as noted above is set to 1, the probabilities of the decoding tree for the segment map are decoded from the bitstream. Each probability is decoded with a one-bit flag indicating whether the probability is the default value of 255 (flag is set to 0), or an 8-bit value, L(8), from the bitstream (see segment_prob_update and segment_prob in Table ‎4‑5).

5.2.2.3 Loop Filter Type and Levels

This specification defines two types of loop filters (NOTE: the reasoning is that each type has different computational complexity). The elements filter_type, loop_filter_level, and sharpness_level from Table ‎4‑4 control the selection of the baseline type, strength, and sharpness behavior of the loop filter used for the current frame.

The loop filter level can be adjusted based on a macroblock's prediction mode and reference frame. The per-macroblock adjustment is done through delta values against the default loop filter level for the current frame.

This subsection describes the process captured in Table ‎4‑6. The data in this section is used in the decoding of the ensuing per-macroblock information and applies to the entire frame.

In Table ‎4‑6, the element loop_filter_adj_enable (type L(1)) is a one-bit flag indicating if the macroblock loop filter adjustment is on for the current frame, 0 means that such a feature is not supported in the current frame, and 1 means this feature is enabled for the current frame.

Whether the adjustment is based on a reference frame or encoding mode, the adjustment of the loop filter level is done via a delta value against a baseline loop filter value. The delta values are updated for the current frame if an L(1) bit, mode_ref_lf_delta_update (Table ‎4‑6), takes the value 1. There are two groups of delta values: One group of delta values is for reference frame-based adjustments, and the other group is for mode-based adjustments. The number of delta values in the two groups is MAX_REF_LF_DELTAS (set to 4) and MAX_MODE_LF_DELTAS (also set to 4), respectively. For every value within the two groups, there is a one-bit, element mb_mode_delta_update_flag from Table ‎4‑6 (L(1)) to indicate if the particular value is updated. When one is updated (1), it is transmitted as a six-bit- magnitude L(6) (element delta_magnitude from Table ‎4‑6) followed by a one-bit sign flag that shall be interpreted as 0 for positive and 1 for negative (element delta_sign in Table ‎4‑6).

5.2.2.4 Token Partition and Partition Data Offsets

This specification allows DCT coefficients to be packed into multiple partitions, besides the first partition with header and per-macroblock prediction information, so the decoder can perform parallel decoding in an efficient manner. A two-bit element (log2_nbr_of_dct_partitions from Table ‎4‑4) is used to indicate the number of coefficient data partitions within a compressed frame. The two bits shall be interpreted according to the following table:

Table ‎5‑3 Interpretation of the values of element log2_nbr_of_dct_partitions

	Bit 1
	Bit 0
	Number of Partitions

	0
	0
	1

	0
	1
	2

	1
	0
	4

	1
	1
	8

Offsets are embedded in the bitstream to provide the decoder direct access to token partitions. If the number of data partitions is greater than 1, the size of each partition (except the last) is written in 3 bytes (24 bits). The size of the last partition is the remainder of the data not used by any of the previous partitions.

The partitioned data are consecutive in the bitstream, so the size can also be used to calculate the offset of each partition. The following pseudocode illustrates how the size/offset is defined by the three bytes in the bitstream.

Offset/size = (uint32)(byte0) + ((uint32)(byte1)<<8) + ((uint32)(byte2)<<16);

5.2.2.5 Dequantization Indices

All residue signals are specified via a quantized 4x4 DCT applied to the Y, U, V, or Y2 sub-blocks of a macroblock. Before inverting the transform, each decoded coefficient is multiplied by one of six dequantization factors, the choice of which depends on the plane (Y, chroma = U or V, Y2) and coefficient position (DC = coefficient 0, AC = coefficients 1-15). The six values are specified using 7-bit indices into six corresponding fixed tables.

The first 7-bit index (element y_ac_qi in Table ‎4‑7) gives the dequantization table index for Y-plane AC coefficients. It is always coded and acts as a baseline for the other 5 quantization indices, each of which is represented by a delta from this baseline index. Pseudocode for reading the indices follows:

Table ‎5‑4 Interpreting element yac_qi

	yac_qi = L(7); /* Y ac index always specified */

	ydc_delta = F? delta(): 0; /* Y dc delta specified if flag is true */

	y2dc_delta = F? delta(): 0; /* Y2 dc delta specified if flag is true */

	 y2ac_delta = F? delta(): 0; /* Y2 ac delta specified if flag is true */

	 uvdc_delta = F? delta(): 0; /* chroma dc delta specified if flag is true */

	 uvac_delta = F? delta(): 0; /* chroma ac delta specified if flag is true */

Where delta() is the process to read 5 bits from the bitstream to determine a signed delta value (i.e. elements y_dc_delta_magnitude and y_dc_delta_sign Table ‎4‑7).
5.2.2.6 Refresh Golden Frame and Altref Frame

For key frames, both the golden frame and the altref frame are refreshed by the current reconstructed frame, by default. For non-key frames, two bits are used to indicate whether the two frame buffers are refreshed, using the reconstructed current frame. These are the elements refresh_golden_frame (L(1)) and refresh_alternate_frame (L(1)) in Table ‎4‑4:

Table ‎5‑5 Interpreting element refresh_golden_frame

	Index
	Description

	refresh_golden_frame
	Whether golden frame is refreshed (0 for no, 1 for yes)

	refresh_alternate_frame
	Whether altref frame is refreshed (0 for no, 1 for yes)

When the flag for the golden frame is 0, 2 more bits in the bitstream are used to indicate whether the buffer (and which buffer) is copied to the golden frame, or if no buffer is copied. These bits represent element copy_buffer_to_golden (L(2)) in Table ‎4‑4.
Table ‎5‑6 Interpreting element copy_buffer_to_golden

	Index
	Description

	copy_buffer_to_golden
	0 means no buffer is copied to the golden frame

	
	1 means last_frame is copied to the golden frame

	
	2 means alt_ref_frame is copied to the golden frame

Similarly, when the flag for altref is 0, 2 bits in the bitstream are used to indicate which buffer is copied to the alt reference frame buffer. This is element copy_buffer_to_alternate in Table ‎4‑4:

Table ‎5‑7 Interpreting element copy_buffer_to_alternate

	Index
	Description

	copy_buffer_to_alternate
	0 means no buffer is copied to the altref frame

	
	1 means last_frame is copied to the altref frame

	
	2 means golden_frame is copied to the altref frame

The next two bits in the stream represent elements sign_bias_golden (L(1)) and sign_bias_alternate (L(1)). These values are used to control the sign of the motion vectors when a golden frame or an altref frame is used as the reference frame for a macroblock.

5.2.2.7 Refresh Last Frame Buffer

One bit, element refresh_last (L(1)) from Table ‎4‑4 is used to indicate if the last frame reference buffer is refreshed using the constructed current frame. On a key frame, this bit is overridden, and the last frame buffer is always refreshed.

5.2.2.8 DCT Coefficient Probability Update

This field contains updates to the probability tables used to decode DCT coefficients. For each of the probabilities in the tables, there is an L(1) flag indicating if the probability is updated for the current frame. This is element coeff_prob_update_flag from Table ‎4‑8. If coeff_prob_update_flag is set to 1, there follows an additional 8-bit value representing the new probability value. The latter is element coeff_prob in Table ‎4‑8. These tables are maintained across interframes but are replaced with their defaults at the beginning of every key frame.

5.2.2.9 Remaining Frame Header Data (Non-Key Frame)
The remaining header data for the Non-key frame case is interpreted as follows (the elements are all listed in Table ‎4‑4):
Table ‎5‑8 Interpreting the remaining non-key frame header data

	Index
	Description

	mb_no_skip_coeff (L(1))
	This flag indicates at the frame level if skipping of macroblocks with no non-zero coefficients is enabled. If it is set to 0, then prob_skip_false is not read and mb_skip_coeff is forced to 0 for all macroblocks.

	prob_skip_false (L(8))
	Probability used for decoding a macroblock-level flag, which indicates if a macroblock has any non-zero coefficients. Only read if mb_no_skip_coeff is 1.

	prob_intra (L(8))
	Probability that a macroblock is "intra" predicted (that is, predicted from the already-encoded portions of the current frame), as opposed to "inter" predicted (that is, predicted from the contents of a prior frame).

	prob_last (L(8))
	Probability that an inter-predicted macroblock is predicted from the immediately previous frame, as opposed to the most recent golden frame or altref frame.

	prob_gf (L(8))
	Probability that an inter-predicted macroblock is predicted from the most recent golden frame, as opposed to the altref frame.

	intra_16x16_prob_update_flag (L(1))
	If true, followed by four L(8)s updating the probabilities for the different types of intra-prediction for the Y plane. These are named element intra_16x16_prob in Table ‎4‑4. These probabilities correspond to the four interior nodes of the decoding tree for intra-Y modes in an interframe, that is, the even positions in the ymode_tree array.

	intra_chroma_prob_update_flag (L(1))
	If true, followed by three L(8)s (element intra_chroma_prob in Table ‎4‑4) in updating the probabilities for the different types of intra-prediction for the chroma planes. (NOTE: These probabilities correspond to the even positions in the uv_mode_tree used in the reference software).

	mv_prob_update()
	Motion vector probability update process, shown in Table ‎4‑9. For each of the motion vectors the mv_prob_update_flag (L(1)) element indicates if the probability shall be updated. If mv_prob_update_flag is 1, the element prob (L(7)) shall contain the new probability.

5.2.2.10 Remaining Frame Header Data (Key Frame)

Table ‎5‑9 Interpreting the remaining frame header data

	Index
	Description

	mb_no_skip_coeff (L(1))
	See Table ‎4‑4 for position in the bitstream. This flag indicates at the frame level if skipping of macroblocks with no non-zero coefficients is enabled. If it is set to 0, then prob_skip_false is not read and mb_skip_coeff is forced to 0 for all macroblocks.

	prob_skip_false (L(8))
	Probability used for decoding a macroblock-level flag (mb_skip_coeff), which indicates if a macroblock has any non-zero coefficients. Only read if mb_no_skip_coeff is 1.

After the frame header is processed, all probabilities needed to decode the prediction and residue data are known and will not change until the next frame.

5.3 Decoding process

5.3.1 Segment-Based Feature Adjustments

Every macroblock may optionally override some of the default behaviors of the decoder. Specifically, segment-based adjustments are used to support changing quantizer level and loop filter level for a macroblock. When the segment-based adjustment feature is enabled for a frame, each macroblock within the frame is coded with a segment_id. This effectively segments all the macroblocks in the current frame into a number of different segments. Macroblocks within the same segment behave exactly the same for quantizer and loop filter level adjustments.

If both the segmentation_enabled and update_mb_segmentation_map flags of the frame header have a value of 1, the prediction data for each (intra- or inter-coded) macroblock begins with a specification of segment_id for the current macroblock. It is decoded using the following tree combined with a 3-entry probability table, mb_segment_tree_probs[3]:
Table ‎5‑10 segment_id decoding tree

	const tree_index mb_segment_tree [2 * (4-1)] =

	{

	 2, 4, /* root: "0", "1" subtrees */

	 -0, -1, /* "00" = 0th value, "01" = 1st value */

	 -2, -3 /* "10" = 2nd value, "11" = 3rd value */

	 }

The macroblock's segment_id is used later in the decoding process to look into the segment_feature_data table and determine how the quantizer and loop filter levels are adjusted.

5.3.2 Key Frame Macroblock Prediction Records

 After specifying the features described above, the macroblock prediction record next specifies the prediction mode used for the macroblock.

5.3.2.1 mb_skip_coeff

See Table ‎4‑11 for the position of this flag in the bitstream. This flag is decoded using prob_skip_false if and only if mb_no_skip_coeff is set to 1 (see Sections ‎5.2.2.9). If mb_no_skip_coeff is set to 0, then this value defaults to 0.

5.3.2.2 Luma Modes

The luma MB intra modes are described below as an enumerated type called intra_mbmode. This mode is coded using a code tree named kf_ymode_tree and is represented by the element intra_y_mode in Table ‎4‑11.
Table ‎5‑11 Intra MB modes and tree code structure

	typedef enum

	 {

	 DC_PRED, /* predict DC using row above and column to the left */

	 V_PRED, /* predict rows using row above */

	 H_PRED, /* predict columns using column to the left */

	 TM_PRED, /* propagate second differences a la "True Motion" */

	 B_PRED, /* each Y subblock is independently predicted */

	 num_uv_modes = B_PRED, /* first four modes apply to chroma */

	 num_ymodes /* all modes apply to luma */

	 }

	 intra_mbmode;

	 const tree_index kf_ymode_tree [2 * (num_ymodes - 1)] =

	 {

	 -B_PRED, 2, /* root: B_PRED = "0", "1" subtree */

	 4, 6, /* "1" subtree has 2 descendant subtrees */

	 -DC_PRED, -V_PRED, /* "10" subtree: DC_PRED = "100", V_PRED = "101" */

	 -H_PRED, -TM_PRED /* "11" subtree: H_PRED = "110",TM_PRED = "111" */

	 };

For key frames, the Y mode is decoded using a fixed probability array as follows:

Table ‎5‑12 Intra MB Y mode decoding probabilities

	const Prob kf_ymode_prob [num_ymodes - 1] = { 145, 156, 163, 128};

	Ymode = (intra_mbmode) treed_read(d, kf_ymode_tree, kf_ymode_prob);

In Table ‎5‑12, d is the Boolean decoder being used to read the first data partition.

If the Ymode is B_PRED, it is followed by a (tree-coded) mode for each of the 16 Y subblocks. The 10 subblock modes and their coding tree are as follows:

Table ‎5‑13 Subblock modes and their respective tree code

	typedef enum

	 {

	 B_DC_PRED, /* predict DC using row above and column to the left */

	 B_TM_PRED, /* propagate second differences a la "True Motion" */

	 B_VE_PRED, /* predict rows using row above */

	 B_HE_PRED, /* predict columns using column to the left */

	 B_LD_PRED, /* southwest (left and down) 45 degree diagonal prediction */

	 B_RD_PRED, /* southeast (right and down) "" */

	 B_VR_PRED, /* SSE (vertical right) diagonal prediction */

	 B_VL_PRED, /* SSW (vertical left) "" */

	 B_HD_PRED, /* ESE (horizontal down) "" */

	 B_HU_PRED, /* ENE (horizontal up) "" */

	 num_intra_bmodes

	 }

	 intra_bmode;

	 /* Coding tree for the above, with implied codings as comments */

	 const tree_index bmode_tree [2 * (num_intra_bmodes - 1)] =

	 {

	 -B_DC_PRED, 2, /* B_DC_PRED = "0" */

	 -B_TM_PRED, 4, /* B_TM_PRED = "10" */

	 -B_VE_PRED, 6, /* B_VE_PRED = "110" */

	 8, 12,

	 -B_HE_PRED, 10, /* B_HE_PRED = "11100" */

	 -B_RD_PRED, -B_VR_PRED, /* B_RD_PRED = "111010", B_VR_PRED = "111011" */

	 -B_LD_PRED, 14, /* B_LD_PRED = "111110" */

	 -B_VL_PRED, 16, /* B_VL_PRED = "1111110" */

	 -B_HD_PRED, -B_HU_PRED /* HD = "11111110", HU = "11111111" */

	 };

The first four modes are smaller versions of the similarly named 16x16 modes in Table ‎5‑11 (NOTE: the smaller modes have different numbering). The last six "diagonal" modes only apply to luma subblocks.

5.3.2.3 Subblock Mode Contexts

The coding of subblock modes in key frames uses the modes already coded for the subblocks to the left of and above the subblock to select a probability array for decoding the current subblock mode.

The adjacency relationships between subblocks are based on the normal default raster placement of the subblocks.

The adjacent subblocks need not lie in the current macroblock. The subblocks to the left of the left-edge subblocks 0, 4, 8, and 12 are the right-edge subblocks 3, 7, 11, and 15, respectively, of the (already coded) macroblock immediately to the left. Similarly, the subblocks above the top-edge subblocks 0, 1, 2, and 3 are the bottom-edge subblocks 12, 13, 14, and 15 of the already-coded macroblock immediately above it.

For macroblocks on the top row or left edge of the image, some of the predictors will be non-existent. Such predictors are taken to have had the value B_DC_PRED, which, takes the value 0 in Table ‎5‑13. A simple management scheme for these contexts might maintain a row of above predictors and four left predictors. Before decoding the frame, the entire row is initialized to B_DC_PRED; before decoding each row of macroblocks, the four left predictors are also set to B_DC_PRED. After decoding a macroblock, the bottom four subblock modes are copied into the row predictor (at the current position, which then advances to be above the next macroblock), and the right four subblock modes are copied into the left predictor.

Many macroblocks will be coded using a 16x16 luma prediction mode. For the purpose of predicting ensuing subblock modes (only), such macroblocks derive a subblock mode, constant throughout the macroblock, from the 16x16 luma mode as follows: DC_PRED uses B_DC_PRED, V_PRED uses B_VE_PRED, H_PRED uses B_HE_PRED, and TM_PRED uses B_TM_PRED.

While interframes do use all the intra-coding modes described here and below, the subblock modes in an interframe are coded using a single constant probability array that does not depend on any context. This probability array is given in Table ‎5‑14.
NOTE: The dependence of subblock mode probability on the nearby subblock mode context is most easily handled using a three-dimensional constant array:

	const Prob kf_bmode_prob [num_intra_bmodes] [num_intra_bmodes] [num_intra_bmodes-1];

NOTE: The outer two dimensions of this array are indexed by the already- coded subblock modes above and to the left of the current block, respectively. The inner dimension is a typical tree probability list whose indices correspond to the even indices of the bmode_tree above.The mode for the jth luma subblock is then

	Bmode = (intra_bmode) treed_read(d, bmode_tree, kf_bmode_prob [A] [L]);

Where the 4x4 Y subblock index j varies from 0 to 15 in raster order and A and L are the modes used above and to the left of the jth subblock. The contents of the kf_bmode_prob array are given in Table ‎5‑14.

5.3.2.4 Chroma Modes

The chroma modes are a subset of the Y modes and are coded using the uv_mode_tree:

Table ‎5‑14 code tree for the chroma modes

	const tree_index uv_mode_tree [2 * (num_uv_modes - 1)] =

	 {

	 -DC_PRED, 2, /* root: DC_PRED = "0", "1" subtree */

	 -V_PRED, 4, /* "1" subtree: V_PRED = "10", "11" subtree */

	 -H_PRED, -TM_PRED /* "11" subtree: H_PRED = "110", TM_PRED = "111" */

	 };

As for the Y modes (in a key frame), the chroma modes are coded using a fixed, contextless probability table:

Table ‎5‑15 Probability table for the chroma modes

	const Prob kf_uv_mode_prob [num_uv_modes - 1] = { 142, 114, 183};

	uv_mode = (intra_mbmode) treed_read(d, uv_mode_tree, kf_uv_mode_prob);

5.3.2.5 Subblock Mode Probability Table

The fixed probability table used to decode subblock modes in key frames is given below:

Table ‎5‑16 Probability table used to decoder key frame subblock modes

	const Prob kf_bmode_prob [num_intra_bmodes] [num_intra_bmodes] [num_intra_bmodes-1] =

	 {

	 {

	 { 231, 120, 48, 89, 115, 113, 120, 152, 112},

	 { 152, 179, 64, 126, 170, 118, 46, 70, 95},

	 { 175, 69, 143, 80, 85, 82, 72, 155, 103},

	 { 56, 58, 10, 171, 218, 189, 17, 13, 152},

	 { 144, 71, 10, 38, 171, 213, 144, 34, 26},

	 { 114, 26, 17, 163, 44, 195, 21, 10, 173},

	 { 121, 24, 80, 195, 26, 62, 44, 64, 85},

	 { 170, 46, 55, 19, 136, 160, 33, 206, 71},

	 { 63, 20, 8, 114, 114, 208, 12, 9, 226},

	 { 81, 40, 11, 96, 182, 84, 29, 16, 36}

	 },

	{

	 { 134, 183, 89, 137, 98, 101, 106, 165, 148},

	 { 72, 187, 100, 130, 157, 111, 32, 75, 80},

	 { 66, 102, 167, 99, 74, 62, 40, 234, 128},

	 { 41, 53, 9, 178, 241, 141, 26, 8, 107},

	 { 104, 79, 12, 27, 217, 255, 87, 17, 7},

	 { 74, 43, 26, 146, 73, 166, 49, 23, 157},

	 { 65, 38, 105, 160, 51, 52, 31, 115, 128},

	 { 87, 68, 71, 44, 114, 51, 15, 186, 23},

	 { 47, 41, 14, 110, 182, 183, 21, 17, 194},

	 { 66, 45, 25, 102, 197, 189, 23, 18, 22}

	 },

	 {

	 { 88, 88, 147, 150, 42, 46, 45, 196, 205},

	 { 43, 97, 183, 117, 85, 38, 35, 179, 61},

	 { 39, 53, 200, 87, 26, 21, 43, 232, 171},

	 { 56, 34, 51, 104, 114, 102, 29, 93, 77},

	 { 107, 54, 32, 26, 51, 1, 81, 43, 31},

	 { 39, 28, 85, 171, 58, 165, 90, 98, 64},

	 { 34, 22, 116, 206, 23, 34, 43, 166, 73},

	 { 68, 25, 106, 22, 64, 171, 36, 225, 114},

	 { 34, 19, 21, 102, 132, 188, 16, 76, 124},

	 { 62, 18, 78, 95, 85, 57, 50, 48, 51}

	 },

	 {

	 { 193, 101, 35, 159, 215, 111, 89, 46, 111},

	 { 60, 148, 31, 172, 219, 228, 21, 18, 111},

	 { 112, 113, 77, 85, 179, 255, 38, 120, 114},

	 { 40, 42, 1, 196, 245, 209, 10, 25, 109},

	 { 100, 80, 8, 43, 154, 1, 51, 26, 71},

	 { 88, 43, 29, 140, 166, 213, 37, 43, 154},

	 { 61, 63, 30, 155, 67, 45, 68, 1, 209},

	 { 142, 78, 78, 16, 255, 128, 34, 197, 171},

	 { 41, 40, 5, 102, 211, 183, 4, 1, 221},

	 { 51, 50, 17, 168, 209, 192, 23, 25, 82}

	 },

	 {

	 { 125, 98, 42, 88, 104, 85, 117, 175, 82},

	 { 95, 84, 53, 89, 128, 100, 113, 101, 45},

	 { 75, 79, 123, 47, 51, 128, 81, 171, 1},

	 { 57, 17, 5, 71, 102, 57, 53, 41, 49},

	 { 115, 21, 2, 10, 102, 255, 166, 23, 6},

	 { 38, 33, 13, 121, 57, 73, 26, 1, 85},

	 { 41, 10, 67, 138, 77, 110, 90, 47, 114},

	 { 101, 29, 16, 10, 85, 128, 101, 196, 26},

	 { 57, 18, 10, 102, 102, 213, 34, 20, 43},

	 { 117, 20, 15, 36, 163, 128, 68, 1, 26}

	 },

	{

	 { 138, 31, 36, 171, 27, 166, 38, 44, 229},

	 { 67, 87, 58, 169, 82, 115, 26, 59, 179},

	 { 63, 59, 90, 180, 59, 166, 93, 73, 154},

	 { 40, 40, 21, 116, 143, 209, 34, 39, 175},

	 { 57, 46, 22, 24, 128, 1, 54, 17, 37},

	 { 47, 15, 16, 183, 34, 223, 49, 45, 183},

	 { 46, 17, 33, 183, 6, 98, 15, 32, 183},

	 { 65, 32, 73, 115, 28, 128, 23, 128, 205},

	 { 40, 3, 9, 115, 51, 192, 18, 6, 223},

	 { 87, 37, 9, 115, 59, 77, 64, 21, 47}

	 },

	 {

	 { 104, 55, 44, 218, 9, 54, 53, 130, 226},

	 { 64, 90, 70, 205, 40, 41, 23, 26, 57},

	 { 54, 57, 112, 184, 5, 41, 38, 166, 213},

	 { 30, 34, 26, 133, 152, 116, 10, 32, 134},

	 { 75, 32, 12, 51, 192, 255, 160, 43, 51},

	 { 39, 19, 53, 221, 26, 114, 32, 73, 255},

	 { 31, 9, 65, 234, 2, 15, 1, 118, 73},

	 { 88, 31, 35, 67, 102, 85, 55, 186, 85},

	 { 56, 21, 23, 111, 59, 205, 45, 37, 192},

	 { 55, 38, 70, 124, 73, 102, 1, 34, 98}

	 },

	 {

	 { 102, 61, 71, 37, 34, 53, 31, 243, 192},

	 { 69, 60, 71, 38, 73, 119, 28, 222, 37},

	 { 68, 45, 128, 34, 1, 47, 11, 245, 171},

	 { 62, 17, 19, 70, 146, 85, 55, 62, 70},

	 { 75, 15, 9, 9, 64, 255, 184, 119, 16},

	 { 37, 43, 37, 154, 100, 163, 85, 160, 1},

	 { 63, 9, 92, 136, 28, 64, 32, 201, 85},

	 { 86, 6, 28, 5, 64, 255, 25, 248, 1},

	 { 56, 8, 17, 132, 137, 255, 55, 116, 128},

	 { 58, 15, 20, 82, 135, 57, 26, 121, 40}

	 },

	 {

	 { 164, 50, 31, 137, 154, 133, 25, 35, 218},

	 { 51, 103, 44, 131, 131, 123, 31, 6, 158},

	 { 86, 40, 64, 135, 148, 224, 45, 183, 128},

	 { 22, 26, 17, 131, 240, 154, 14, 1, 209},

	 { 83, 12, 13, 54, 192, 255, 68, 47, 28},

	 { 45, 16, 21, 91, 64, 222, 7, 1, 197},

	 { 56, 21, 39, 155, 60, 138, 23, 102, 213},

	 { 85, 26, 85, 85, 128, 128, 32, 146, 171},

	 { 18, 11, 7, 63, 144, 171, 4, 4, 246},

	 { 35, 27, 10, 146, 174, 171, 12, 26, 128}

	 },

	{

	 { 190, 80, 35, 99, 180, 80, 126, 54, 45},

	 { 85, 126, 47, 87, 176, 51, 41, 20, 32},

	 { 101, 75, 128, 139, 118, 146, 116, 128, 85},

	 { 56, 41, 15, 176, 236, 85, 37, 9, 62},

	 { 146, 36, 19, 30, 171, 255, 97, 27, 20},

	 { 71, 30, 17, 119, 118, 255, 17, 18, 138},

	 { 101, 38, 60, 138, 55, 70, 43, 26, 142},

	 { 138, 45, 61, 62, 219, 1, 81, 188, 64},

	 { 32, 41, 20, 117, 151, 142, 20, 21, 163},

	 { 112, 19, 12, 61, 195, 128, 48, 4, 24}

	 }

	 };

5.3.3 Intraframe Prediction

Intraframe prediction uses already-coded macroblocks within the current frame to approximate the contents of the current macroblock. It applies to intra-coded macroblocks in an interframe and to all macroblocks in a key frame.

Relative to the current macroblock "M", the already-coded macroblocks include all macroblocks above M together with the macroblocks on the same row as, and to the left of, M, though at most four of these macroblocks are actually used: the block "A" directly above M, the blocks immediately to the left and right of A, and the block immediately to the left of M.

Each of the prediction modes uses pixel values whose positions, relative to the current position, are defined by the mode.

The chroma (U and V) and luma (Y) predictions are independent of each other. The relative addressing of pixels applied to macroblocks on the upper row or left column of the frame will sometimes cause pixels outside the visible frame to be referenced. Such out-of-bounds pixels have an assumed value of 129 for pixels to the left of the leftmost column of the visible frame and 127 for pixels above the top row of the visible frame (including the special case of the pixel above and to the left of the top-left pixel in the visible frame).

Exceptions to this (associated to certain modes) will be noted below. The already-coded macroblocks referenced by intra-prediction have been "reconstructed", that is, have been predicted and residue- adjusted, but have not been loop- filtered. While it does process the edges between individual macroblocks and individual subblocks, loop filtering is applied to the frame as a whole, after all of the macroblocks have been reconstructed.

5.3.3.1 mb_skip_coeff

The single bool flag is decoded using prob_skip_false if and only if mb_no_skip_coeff is set to 1. If mb_no_skip_coeff is set to 0, then this value defaults to 0. See Table ‎4‑11 for the position of this flag in the bit stream.
5.3.3.2 Chroma Prediction

Each of the chroma modes treats U and V identically; that is, the U and V prediction values are calculated in parallel, using the same relative addressing and arithmetic in each of the two planes.

The modes extrapolate prediction values using the 8-pixel row "A" lying immediately above the block (that is, the bottom chroma row of the macroblock immediately above the current macroblock) and the 8-pixel column "L" immediately to the left of the block (that is, the rightmost chroma column of the macroblock immediately to the left of the current macroblock).

Vertical prediction (chroma mode V_PRED) fills each 8-pixel row of the 8x8 chroma block with a copy of the "above" row (A). If the current macroblock lies on the top row of the frame, all 8 of the pixel values in A are assigned the value 127.

Similarly, horizontal prediction (H_PRED) fills each 8-pixel column of the 8x8 chroma block with a copy of the "left" column (L). If the current macroblock is in the left column of the frame, all 8 pixel values in L are assigned the value 129.

DC prediction (DC_PRED mode) fills the 8x8 chroma block with a single value. In the generic case of a macroblock lying below the top row and right of the leftmost column of the frame, this value is the average of the 16 (actual) pixels in the (union of the) above row A and left column L.

Otherwise, if the current macroblock lies on the top row of the frame, the average of the 8 pixels in L is used; if it lies in the left column of the frame, the average of the 8 pixels in A is used.

NOTE: the averages used in these exceptional cases are not the same as those that would be arrived at by using the out-of-bounds A and L values defined for V_PRED and H_PRED. In the case of the leftmost macroblock on the top row of the frame, the 8x8 block is filled with the constant value 128.

For DC_PRED, apart from the exceptional case of the top-left macroblock, the average of either 16 or 8 pixel values is used to get a single prediction value that fills the 8x8 block. The rounding is done as follows:
Table ‎5‑17 Obtaining a single predicton value for a chroma subblock

	int sum; /* sum of 8 or 16 pixels at (at least) 16-bit precision */

	 int shf; /* base 2 logarithm of the number of pixels (3 or 4) */

	 Pixel DCvalue = (sum + (1 << (shf-1))) >> shf;

NOTE: Because the summands are all valid pixels, no "clamp" is necessary in the calculation of DCvalue.

The remaining "True Motion" (TM_PRED) chroma mode uses, in addition to the row "A" and column "L", the pixel "P" above and to the left of the chroma block.

The following table gives an example of how TM_PRED works:

Table ‎5‑18 TM_PRED mode predicted pixels

	 P
	 A0
	 A1
	 A2
	 A3
	 A4
	 A5
	 A6
	 A7

	 L0
	 X00
	 X01
	 X02
	 X03
	 X04
	 X05
	 X06
	 X07

	 L1
	 X10
	 X11
	 X12
	 X13
	 X14
	 X15
	 X16
	 X17

	 L2
	 X20
	 X21
	 X22
	 X23
	 X24
	 X25
	 X26
	 X27

	 L3
	 X30
	 X31
	 X32
	 X33
	 X34
	 X35
	 X36
	 X37

	 L4
	 X40
	 X41
	 X42
	 X43
	 X44
	 X45
	 X46
	 X47

	 L5
	 X50
	 X51
	 X52
	 X53
	 X54
	 X55
	 X56
	 X57

	 L6
	 X60
	 X61
	 X62
	 X63
	 X64
	 X65
	 X66
	 X67

	 L7
	 X70
	 X71
	 X72
	 X73
	 X74
	 X75
	 X76
	 X77

Where P, As, and Ls represent reconstructed pixel values from previously coded blocks, and X00 through X77 represent predicted values for the current block. TM_PRED uses the following equation to calculate X_ij:

	X_ij = L_i + A_j - P (i, j=0, 1, 2, 3)

The exact algorithm is as follows:
NOTE: The data type Pixel is an unsigned 8 bit integer.
Table ‎5‑19 TM_PRED pixel prediction algorithm.

	void TMpred(

	 Pixel b[8][8], /* chroma (U or V) prediction block */

	 const Pixel A[8], /* row of already-constructed pixels above block */

	 const Pixel L[8], /* column of "" just to the left of block */

	 const Pixel P /* pixel just to the left of A and above L*/

) {

	 int r = 0; /* row */

	 do {

	 int c = 0; /* column */

	 do {

	 b[r][c] = clamp255(L[r]+ A[c] - P);

	 } while (++c < 8);

	 } while (++r < 8);

	 }

NOTE: that the process could equivalently be described as propagating the vertical differences between pixels in L (starting from P), using the pixels from A to start each column.

Unlike DC_PRED, for macroblocks on the top row or left edge, TM_PRED does use the out-of-bounds values of 127 and 129 (respectively) defined for V_PRED and H_PRED.

5.3.3.3 Luma Prediction

The prediction processes for the first four 16x16 luma modes (DC_PRED, V_PRED, H_PRED, and TM_PRED) are similar to the corresponding chroma prediction processes with the only difference being that a single 16x16 luma block is being predicted instead of two 8x8 chroma blocks.

The row "A" and column "L" in this case contain16 pixels, the DC prediction is calculated using 16 or 32 pixels, and the entire prediction buffer is filled, that is, 16 rows (or columns) containing 16 pixels each.

In the remaining luma mode (B_PRED), each 4x4 Y subblock is independently predicted using one of ten modes (listed, along with their encodings, in Section ‎5.3.2).

Also, unlike the full-macroblock modes already described, some of the subblock modes use prediction pixels above and to the right of the current subblock. Specifically, each 4x4 subblock "B" is predicted using (at most) the 4-pixel column "L" immediately to the left of B and the 8-pixel row "A" immediately above B, consisting of the 4 pixels above B followed by the 4 adjacent pixels above and to the right of B, together with the single pixel "P" immediately to the left of A (and immediately above L).

For the purpose of subblock intra-prediction, the pixels immediately to the left and right of a pixel in a subblock are the same as the pixels immediately to the left and right of the corresponding pixel in the frame buffer "F". Vertical offsets behave similarly: The above row A lies immediately above B in F, and the adjacent pixels in the left column L are separated by a single row in F.

Because entire macroblocks (as opposed to their constituent subblocks) are reconstructed in raster-scan order, for subblocks lying along the right edge (and not along the top row) of the current macroblock, the four "extra" prediction pixels in A above and to the right of B have not yet actually been constructed.

Subblocks 7, 11, and 15 are affected. All three of these subblocks use the same extra pixels as does subblock 3 (at the upper right corner of the macroblock), specifically, the 4 pixels immediately above and to the right of subblock 3. Writing (R,C) for a frame buffer position offset from the upper left corner of the current macroblock by R rows and C columns, the extra pixels for all the right-edge subblocks (3, 7, 11, and 15) are at positions (-1,16), (-1,17), (-1,18), and (-1,19). For the rightmost macroblock in each macroblock row except the top row, the extra pixels shall use the same value as the pixel at position (-1,15), which is the rightmost visible pixel on the line immediately above the macroblock row. For the top macroblock row, all the extra pixels assume a value of 127.

Table ‎5‑20 gives details of the luma prediction algorithm.

Table ‎5‑20 Luma MB prediction algorithm

	/* Result pixels are often averages of two or three predictor pixels. The following subroutines are used to calculate these averages. Because the arguments are valid pixels, no clamping is necessary. An actual implementation would probably use inline functions or macros. */

	 /* Compute weighted average centered at y w/adjacent x, z */

	 Pixel avg3(Pixel x, Pixel y, Pixel z) {

	 return (x + y + y + z + 2) >> 2;}

	 /* Weighted average of 3 adjacent pixels centered at p */

	 Pixel avg3p(const Pixel *p) { return avg3(p[-1], p[0], p[1]);}

	 /* Simple average of x and y */

	 Pixel avg2(Pixel x, Pixel y) { return (x + y + 1) >> 1;}

	 /* Average of p[0] and p[1] may be considered to be a synthetic pixel lying between the two, that is, one half-step past p. */

	 Pixel avg2p(const Pixel *p) { return avg2(p[0], p[1]);}

	 void subblock_intra_predict(

	 Pixel B[4][4], /* Y subblock prediction buffer */

	 const Pixel *A, /* A[0]...A[7] = above row, A[-1] = P */

	 const Pixel *L, /* L[0]...L[3] = left column, L[-1] = P */

	 intra_bmode mode /* enum is in Section 11.2 */

) {

	 Pixel E[9]; /* 9 already-constructed edge pixels */

	 E[0] = L[3]; E[1] = L[2]; E[2] = L[1]; E[3] = L[0];

	 E[4] = A[-1]; /* == L[-1] == P */

	 E[5] = A[0]; E[6] = A[1]; E[7] = A[2]; E[8] = A[3];

	 switch(mode) {

	 /* First four modes are similar to corresponding full-block modes. */

	 case B_DC_PRED:

	 {

	 int v = 4; /* DC sum/avg, 4 is rounding adjustment */

	 int i = 0; do { v += A[i] + L[i];} while (++i < 4);

	 v >>= 3; /* averaging 8 pixels */

	 i = 0; do { /* fill prediction buffer with constant DC value */

	int j = 0; do { B[i][j] = v;} while (++j < 4);

	 } while (++i < 4);

	 break;

	 }

	 case B_TM_PRED: /* just like 16x16 TM_PRED */

	 {

	 int r = 0; do {

	 int c = 0; do {

	 B[r][c] = clamp255(L[r] + A[c] - A[-1]);

	 } while (++c < 4);

	 } while (++r < 4);

	 break;

	 }

	 case B_VE_PRED: /* like 16x16 V_PRED except using averages */

	 {

	 int c = 0; do { /* all 4 rows = smoothed top row */

	 B[0][c] = B[1][c] = B[2][c] = B[3][c] = avg3p(A + c);

	 } while (++c < 4);

	 break;

	 }

	 case B_HE_PRED: /* like 16x16 H_PRED except using averages */

	 {

	 /* Bottom row is exceptional because L[4] does not exist */

	 int v = avg3(L[2], L[3], L[3]);

	 int r = 3; while (1) { /* all 4 columns = smoothed left column */

	 B[r][0] = B[r][1] = B[r][2] = B[r][3] = v;

	 if (--r < 0)

	 break;

	 v = avg3p(L + r); /* upper 3 rows use average 3 pixels */

	 }

	 break;

	 }

	 /* The remaining six "diagonal" modes subdivide the prediction buffer into diagonal lines. All the pixels on each line are assigned the same value; this value is (a smoothed or synthetic version of) an already-constructed predictor value lying on the same line. For clarity, in the comments, we express the positions of these predictor pixels relative to the upper left corner of the destination array B. These modes are unique to subblock prediction and have no full-block analogs. The first two use lines at +/- 45 degrees from horizontal (or, equivalently, vertical), that is, lines whose slopes are +/- 1. */

	 case B_LD_PRED: /* southwest (left and down) step = (-1, 1) or (1,-1) */

	 /* avg3p(A + j) is the "smoothed" pixel at (-1,j) */

	 B[0][0] = avg3p(A + 1);

	 B[0][1] = B[1][0] = avg3p(A + 2);

	 B[0][2] = B[1][1] = B[2][0] = avg3p(A + 3);

	 B[0][3] = B[1][2] = B[2][1] = B[3][0] = avg3p(A + 4);

	 B[1][3] = B[2][2] = B[3][1] = avg3p(A + 5);

	 B[2][3] = B[3][2] = avg3p(A + 6);

	 B[3][3] = avg3(A[6], A[7], A[7]); /* A[8] does not exist */

	 break;

	 case B_RD_PRED: /* southeast (right and down) step = (1,1) or (-1,-1) */

	 B[3][0] = avg3p(E + 1); /* predictor is from (2, -1) */

	 B[3][1] = B[2][0] = avg3p(E + 2); /* (1, -1) */

	 B[3][2] = B[2][1] = B[1][0] = avg3p(E + 3); /* (0, -1) */

	 B[3][3] = B[2][2] = B[1][1] = B[0][0] = avg3p(E + 4); /* (-1, -1) */

	 B[2][3] = B[1][2] = B[0][1] = avg3p(E + 5); /* (-1, 0) */

	 B[1][3] = B[0][2] = avg3p(E + 6); /* (-1, 1) */

	 B[0][3] = avg3p(E + 7); /* (-1, 2) */

	 break;

	 /* The remaining 4 diagonal modes use lines whose slopes are +/- 2 and +/- 1/2. The angles of these lines are roughly +/- 27 degrees from horizontal or vertical. Unlike the 45 degree diagonals, here we often need to "synthesize" predictor pixels midway between two actual predictors using avg2p(p), which we think of as returning the pixel "at" p[1/2]. */

	 case B_VR_PRED: /* SSE (vertical right) step = (2,1) or (-2,-1) */

	 B[3][0] = avg3p(E + 2); /* predictor is from (1, -1) */

	 B[2][0] = avg3p(E + 3); /* (0, -1) */

	 B[3][1] = B[1][0] = avg3p(E + 4); /* (-1, -1) */

	 B[2][1] = B[0][0] = avg2p(E + 4); /* (-1, -1/2) */

	 B[3][2] = B[1][1] = avg3p(E + 5); /* (-1, 0) */

	 B[2][2] = B[0][1] = avg2p(E + 5); /* (-1, 1/2) */

	 B[3][3] = B[1][2] = avg3p(E + 6); /* (-1, 1) */

	 B[2][3] = B[0][2] = avg2p(E + 6); /* (-1, 3/2) */

	B[1][3] = avg3p(E + 7); /* (-1, 2) */

	 B[0][3] = avg2p(E + 7); /* (-1, 5/2) */

	 break;

	 case B_VL_PRED: /* SSW (vertical left) step = (2,-1) or (-2,1) */

	 B[0][0] = avg2p(A); /* predictor is from (-1, 1/2) */

	 B[1][0] = avg3p(A + 1); /* (-1, 1) */

	 B[2][0] = B[0][1] = avg2p(A + 1); /* (-1, 3/2) */

	 B[1][1] = B[3][0] = avg3p(A + 2); /* (-1, 2) */

	 B[2][1] = B[0][2] = avg2p(A + 2); /* (-1, 5/2) */

	 B[3][1] = B[1][2] = avg3p(A + 3); /* (-1, 3) */

	 B[2][2] = B[0][3] = avg2p(A + 3); /* (-1, 7/2) */

	 B[3][2] = B[1][3] = avg3p(A + 4); /* (-1, 4) */

	 /* Last two values do not strictly follow the pattern. */

	 B[2][3] = avg3p(A + 5); /* (-1, 5) [avg2p(A + 4) = (-1,9/2)] */

	 B[3][3] = avg3p(A + 6); /* (-1, 6) [avg3p(A + 5) = (-1,5)] */

	 break;

	 case B_HD_PRED: /* ESE (horizontal down) step =(1,2) or (-1,-2) */

	 B[3][0] = avg2p(E); /* predictor is from (5/2, -1) */

	 B[3][1] = avg3p(E + 1); /* (2, -1) */

	 B[2][0] = B[3][2] = svg2p(E + 1); /* (3/2, -1) */

	 B[2][1] = B[3][3] = avg3p(E + 2); /* (1, -1) */

	 B[2][2] = B[1][0] = avg2p(E + 2); /* (1/2, -1) */

	 B[2][3] = B[1][1] = avg3p(E + 3); /* (0, -1) */

	 B[1][2] = B[0][0] = avg2p(E + 3); /* (-1/2, -1) */

	 B[1][3] = B[0][1] = avg3p(E + 4); /* (-1, -1) */

	 B[0][2] = avg3p(E + 5); /* (-1, 0) */

	 B[0][3] = avg3p(E + 6); /* (-1, 1) */

	 break;

	 case B_HU_PRED: /* ENE (horizontal up) step = (1,-2) or (-1,2) */

	 B[0][0] = avg2p(L); /* predictor is from (1/2, -1) */

	 B[0][1] = avg3p(L + 1); /* (1, -1) */

	 B[0][2] = B[1][0] = avg2p(L + 1); /* (3/2, -1) */

	 B[0][3] = B[1][1] = avg3p(L + 2); /* (2, -1) */

	 B[1][2] = B[2][0] = avg2p(L + 2); /* (5/2, -1) */

	 B[1][3] = B[2][1] = avg3(L[2], L[3], L[3]); /* (3, -1) */

	/* Not possible to follow pattern for much of the bottom row because no (nearby) already-constructed pixels lie on the diagonals in question. */

	 B[2][2] = B[2][3] = B[3][0] = B[3][1] = B[3][2] = B[3][3] = L[3];

	 }

	 }

5.3.4 DCT Coefficient Decoding

The second data partition for a MB consists of an encoding of the quantized DCT (and WHT) coefficients of the residue signal. For each macroblock, the residue is added to the (intra- or inter-generated) prediction buffer to produce the final (except for loop filtering) reconstructed macroblock.

4x4 DCTs and WHTs are applied to the 24 (or 25 with the Y2 subblock) 4x4 subblocks of a macroblock. The ordering of macroblocks within any of the "residue" partitions follows the same raster scan as used in the first "prediction" partition.

For all intra- and inter-prediction modes apart from B_PRED (intra: whose Y subblocks are independently predicted) and SPLITMV (inter), each macroblock's residue begins with the Y2 component of the residue, coded using a WHT. B_PRED and SPLITMV coded macroblocks omit this WHT and specify the 0th DCT coefficient in each of the 16 Y subblocks.

After the optional Y2 block, the residue record continues with 16 DCTs for the Y subblocks, followed by 4 DCTs for the U subblocks, ending with 4 DCTs for the V subblocks.

The DCTs and WHT are tree-coded using a 12-element alphabet whose members are called "tokens". Except for the end-of-block token (which sets the remaining subblock coefficients to zero and is followed by the next block), each token (sometimes augmented with data immediately following the token) specifies the value of the single coefficient at the current (implicit) position and is followed by a token applying to the next (implicit) position.

For all the Y and chroma subblocks, the ordering of the coefficients follows a zig-zag order. DCTs begin at coefficient 1 if Y2 is present, and begin at coefficient 0 if Y2 is absent. The WHT for a Y2 subblock shall always begin at coefficient 0.

5.3.4.1 Macroblock without Non-Zero Coefficient Values

If the flag mb_skip_coeff within macroblock indicates that a macroblock does not have any non-zero coefficients, the decoding process of DCT coefficients is skipped for the macroblock.

5.3.4.2 Coding of Individual Coefficient Values

The coding of coefficient tokens is the same for the DCT and WHT, and for the remainder of this section "DCT" should be taken to mean either DCT or WHT.

All tokens (except end-of-block) specify either a single unsigned value or a range of unsigned values (immediately) followed by probabilistic encoding of the offset of the value from the base of that range.

Non-zero values (of either type) are then followed by a flag indicating the sign of the coded value (negative if 1, positive if 0).

Below are the tokens and decoding tree.

Table ‎5‑21 DCT and WHT coefficient token types and respective tree codes

	typedef enum

	 {

	 DCT_0, /* value 0 */

	 DCT_1, /* 1 */

	 DCT_2, /* 2 */

	 DCT_3, /* 3 */

	 DCT_4, /* 4 */

	 dct_cat1, /* range 5 - 6 (size 2) */

	 dct_cat2, /* 7 - 10 (4) */

	 dct_cat3, /* 11 - 18 (8) */

	 dct_cat4, /* 19 - 34 (16) */

	 dct_cat5, /* 35 - 66 (32) */

	 dct_cat6, /* 67 - 2048 (1982) */

	 dct_eob, /* end of block */

	 num_dct_tokens /* 12 */

	 }

	 dct_token;

	const tree_index coeff_tree [2 * (num_dct_tokens - 1)] =

	 {

	 -dct_eob, 2, /* eob = "0" */

	 -DCT_0, 4, /* 0 = "10" */

	 -DCT_1, 6, 8, 12, /* 1 = "110" */

	 -DCT_2, 10, /* 2 = "11100" */

	 -DCT_3, -DCT_4, /* 3 = "111010", 4 = "111011" */

	 14, 16,

	 -dct_cat1, -dct_cat2, /* cat1 = "111100", cat2 = "111101" */

	 18, 20,

	 -dct_cat3, -dct_cat4, /* cat3 = "1111100", cat4 = "1111101" */

	 -dct_cat5, -dct_cat6 /* cat4 = "1111110", cat4 = "1111111" */

	 };

Most DCT coefficients are decoded using the same tree. However, if the preceding coefficient is a DCT_0, decoding will skip the first branch, since it is not possible for dct_eob to follow a DCT_0.

The tokens dct_cat1 ... dct_cat6 specify ranges of unsigned values, the value within the range is formed by adding an unsigned offset (whose width is 1, 2, 3, 4, 5, or 11 bits, respectively) to the base of the range, using the following algorithm and fixed probability tables.

Table ‎5‑22 Algorithm and probabilities for determining values within a range to decode transform coefficient tokens

	uint DCTextra(bool_decoder *d, const Prob *p)

	 {

	 uint v = 0;

	 do { v += v + read_bool(d, *p);} while (*++p);

	 return v;

	 }

	 const Prob Pcat1[] = { 159, 0};

	 const Prob Pcat2[] = { 165, 145, 0};

	 const Prob Pcat3[] = { 173, 148, 140, 0};

	 const Prob Pcat4[] = { 176, 155, 140, 135, 0};

	 const Prob Pcat5[] = { 180, 157, 141, 134, 130, 0};

	 const Prob Pcat6[] ={ 254, 254, 243, 230, 196, 177, 153, 140, 133, 130, 129, 0};

If v -- the unsigned value decoded using the coefficient tree, possibly augmented by the process above -- is non-zero, its sign is set by simply reading a flag:

	if (read_bool(d, 128))

	 v = -v;

5.3.5 Token Probabilities

Determining the probability for the token tree (unlike that for the "extra bits" described above) uses three pieces of context to index a large probability table, the contents of which may be incrementally modified in the frame header. The full (non-constant) probability table has the following structure:
	Prob coeff_probs [4] [8] [3] [num_dct_tokens-1];

Working from the outside in, the outermost dimension is indexed by the type of plane being decoded:

0 - Y beginning at coefficient 1 (i.e., Y after Y2)

1 - Y2

2 - U or V

3 - Y beginning at coefficient 0 (i.e., Y in the absence of Y2).

The next dimension is selected by the position of the coefficient being decoded. That position, c, steps by ones up to 15, starting from zero for block types 1, 2, or 3 and starting from one for block type 0. The second array index is then

	coeff_bands [c]

Where:

	const int coeff_bands [16] = {0, 1, 2, 3, 6, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7};

is a fixed mapping of position to "band".

The third dimension measures the "local complexity" or extent to which nearby coefficients are non-zero.

For the first coefficient (DC, unless the block type is 0), the (already encoded) blocks within the same plane (Y2, Y, U, or V) above and to the left of the current block are considered. The context index is then the number (0, 1, or 2) of these blocks that had at least one non-zero coefficient in their residue. Specifically for Y2, because macroblocks above and to the left may or may not have a Y2 block, the block above is determined by the most recent macroblock in the same column that has a Y2 block, and the block to the left is determined by the most recent macroblock in the same row that has a Y2 block.

Beyond the first coefficient, the context index is determined by the absolute value of the most recently decoded coefficient (necessarily within the current block) and is 0 if the last coefficient was a zero, 1 if it was plus or minus one, and 2 if its absolute value exceeded one.

NOTE: that the intuitive meaning of this measure changes as coefficients are decoded. For example, prior to the first token, a zero means that the neighbors are empty, suggesting that the current block may also be empty. After the first token, because an end-of- block token must have at least one non-zero value before it, a zero means that a zero has just been decoded and hence guarantees that a non-zero coefficient will appear later in this block. However, the complete context depends also on the coefficient band (and since band 0 is occupied exclusively by position 0).

As with other contexts used by VCB, the "neighboring block" context described here needs a special definition for subblocks lying along the top row or left edge of the frame. These "non-existent" predictors above and to the left of the image are taken to be empty -- that is, taken to contain no non-zero coefficients.

The residue decoding of each macroblock requires, in each of two directions (above and to the left), an aggregate coefficient predictor consisting of a single Y2 predictor, two predictors for each of U and V, and four predictors for Y. In accordance with the scan-ordering of macroblocks, a decoder needs to maintain a single "left" aggregate predictor and a row of "above" aggregate predictors.

Before decoding any residue, these maintained predictors may be cleared, in compliance with the definition of "non-existent" prediction. After each block is decoded, the two predictors referenced by the block are replaced with the (empty or non-empty) state of the block, in preparation for the later decoding of the blocks below and to the right of the block just decoded.

The fourth, and final, dimension of the token probability array is indexed by (half) the position in the token tree structure, as are all tree probability arrays.

The pseudocode below illustrates the decoding process. Note that criteria, functions, etc. delimited with ** are either dependent on decoder architecture or are elaborated on elsewhere in this document.

Table ‎5‑23 Token probability decoding process

	int block[16] = { 0 }; /* current 4x4 block coeffs */

	 int firstCoeff = 0;

	 int plane;

	 int ctx2;

	 int ctx3 = 0; /* the 3rd context referred to in above description */

	 Prob *probTable;

	 int token;

	 int sign;

	 int absValue;

	 int extraBits;

	 bool prevCoeffWasZero = false;

	 bool currentBlockHasCoeffs = false;

	 /* base coeff abs values per each category, elem #0 is DCT_VAL_CATEGORY1, * #1 is DCT_VAL_CATEGORY2, etc. */

	 int categoryBase[6] = { 5, 7, 11, 19, 35, 67 };

	 /* Determine plane to use */

	 if (**current_block_is_Y2_block**) plane = 0;

	 else if (**current_block_is_chroma**) plane = 2;

	 else if (**current_macroblock_has_Y2**) plane = 1;

	 else plane = 3; /* For luma blocks of a "Y2 macroblock" we skip coeff index #0 */

	 if (plane == 1)

	 firstCoeff++;

	 /* Determine whether neighbor 4x4 blocks have coefficients. This is dependent on the plane we are currently decoding; i.e., we check only coefficients from the same plane as the current block. */

	 if (**left_neighbor_block_has_coefficients(plane)**)

	 ctx3++;

	 if (**above_neighbor_block_has_coefficients(plane)**)

	 ctx3++;

	 for(i = firstCoeff; i < 16; ++i)

	 {

	 ctx2 = coeff_bands[i];

	 probTable = coeff_probs[plane][ctx2][ctx3];

	 /* skip first code (dct_eob) if previous token was DCT_0 */

	 if (prevCoeffWasZero)

	 token = treed_read (d, **coeff_tree_without_eob**, probTable);

	 else

	 token = treed_read (d, coeff_tree, probTable);

	if (token == dct_eob)

	 break;

	 if (token != DCT_0)

	 {

	 currentBlockHasCoeffs = true;

	 if (**token_has_extra_bits(token)**)

	 {

	 extraBits = DCTextra(token);

	 absValue =

	 categoryBase[**token_to_cat_index(token)**] +

	 extraBits;

	 }

	 else

	 {

	 absValue = **token_to_abs_value(token)**;

	 }

	 sign = read_bool(d, 128);

	 block[i] = sign ? -absValue : absValue;

	 }

	 else

	 {

	 absValue = 0;

	 }

	 /* Set contexts and stuff for next coeff */

	 if (absValue == 0) ctx3 = 0;

	 else if (absValue == 1) ctx3 = 1;

	 else ctx3 = 2;

	 prevCoeffWasZero = true;

	 }

	 /* Store current block status to decoder internals */

	 block_has_coefficients[currentMb][currentBlock] = currentBlockHasCoeffs;

5.3.5.1 Token Probability Updates

As mentioned above, the token-decoding probabilities may change from frame to frame. After detection of a key frame, they are set to their defaults; this shall occur before decoding the remainder of the header, as both key frames and interframes may adjust these probabilities.

For each position in the coeff_probs array (see Section ‎5.3.5) there occurs a fixed-probability bool indicating whether or not the corresponding probability should be updated. If the bool is true, there follows a P(8) replacing that probability. Note that updates are cumulative; that is, a probability updated on one frame is in effect for all ensuing frames until the next key frame, or until the probability is explicitly updated by another frame.

The algorithm to perform the foregoing follows:

Table ‎5‑24 Token probability updates algorithm

	int i = 0; do {

	 int j = 0; do {

	 int k = 0; do {

	 int t = 0; do {

	 if (read_bool(d, coeff_update_probs [i] [j] [k] [t]))

	 coeff_probs [i] [j] [k] [t] = read_literal(d, 8);

	 } while (++t < num_dct_tokens - 1);

	 } while (++k < 3);

	 } while (++j < 8);

	 } while (++i < 4);

The (constant) update probabilities are as follows:

Table ‎5‑25 Token update probabilities

	 const Prob coeff_update_probs [4] [8] [3] [num_dct_tokens-1] = {

	 {

	 {

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 176, 246, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 223, 241, 252, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 249, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 244, 252, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 234, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 253, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 246, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 239, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 254, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 248, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 251, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 251, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 254, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 254, 253, 255, 254, 255, 255, 255, 255, 255, 255},

	 { 250, 255, 254, 255, 254, 255, 255, 255, 255, 255, 255},

	 { 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 }

	 },

	{

	 {

	 { 217, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 225, 252, 241, 253, 255, 255, 254, 255, 255, 255, 255},

	 { 234, 250, 241, 250, 253, 255, 253, 254, 255, 255, 255}

	 },

	 {

	 { 255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 223, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 238, 253, 254, 254, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 248, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 249, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 253, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 247, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 252, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 253, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 254, 253, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 250, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 }

	 },

	 {

	 {

	 { 186, 251, 250, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 234, 251, 244, 254, 255, 255, 255, 255, 255, 255, 255},

	 { 251, 251, 243, 253, 254, 255, 254, 255, 255, 255, 255}

	 },

	{

	 { 255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 236, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 251, 253, 253, 254, 254, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 }

	 },

	 {

	 {

	 { 248, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 250, 254, 252, 254, 255, 255, 255, 255, 255, 255, 255},

	 { 248, 254, 249, 253, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 246, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 252, 254, 251, 254, 254, 255, 255, 255, 255, 255, 255}

	 },

	{

	 { 255, 254, 252, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 248, 254, 253, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 253, 255, 254, 254, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 251, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 245, 251, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 253, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 251, 253, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 252, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 252, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 249, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 255, 253, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 250, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 }

	 }

	 };

5.3.5.2 Default Token Probability Table

The default token probabilities are as follows:

Table ‎5‑26 Default token probabilities

	const Prob default_coeff_probs [4] [8] [3] [num_dct_tokens - 1] =

	 {

	 {

	 {

	 { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128},

	 { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128},

	 { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128}

	 },

	 {

	 { 253, 136, 254, 255, 228, 219, 128, 128, 128, 128, 128},

	 { 189, 129, 242, 255, 227, 213, 255, 219, 128, 128, 128},

	 { 106, 126, 227, 252, 214, 209, 255, 255, 128, 128, 128}

	 },

	 {

	 { 1, 98, 248, 255, 236, 226, 255, 255, 128, 128, 128},

	 { 181, 133, 238, 254, 221, 234, 255, 154, 128, 128, 128},

	 { 78, 134, 202, 247, 198, 180, 255, 219, 128, 128, 128}

	 },

	 {

	 { 1, 185, 249, 255, 243, 255, 128, 128, 128, 128, 128},

	 { 184, 150, 247, 255, 236, 224, 128, 128, 128, 128, 128},

	 { 77, 110, 216, 255, 236, 230, 128, 128, 128, 128, 128}

	 },

	 {

	 { 1, 101, 251, 255, 241, 255, 128, 128, 128, 128, 128},

	 { 170, 139, 241, 252, 236, 209, 255, 255, 128, 128, 128},

	 { 37, 116, 196, 243, 228, 255, 255, 255, 128, 128, 128}

	 },

	 {

	 { 1, 204, 254, 255, 245, 255, 128, 128, 128, 128, 128},

	 { 207, 160, 250, 255, 238, 128, 128, 128, 128, 128, 128},

	 { 102, 103, 231, 255, 211, 171, 128, 128, 128, 128, 128}

	 },

	 {

	 { 1, 152, 252, 255, 240, 255, 128, 128, 128, 128, 128},

	 { 177, 135, 243, 255, 234, 225, 128, 128, 128, 128, 128},

	 { 80, 129, 211, 255, 194, 224, 128, 128, 128, 128, 128}

	 },

	{

	 { 1, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128},

	 { 246, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128},

	 { 255, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128}

	 }

	 },

	 {

	 {

	 { 198, 35, 237, 223, 193, 187, 162, 160, 145, 155, 62},

	 { 131, 45, 198, 221, 172, 176, 220, 157, 252, 221, 1},

	 { 68, 47, 146, 208, 149, 167, 221, 162, 255, 223, 128}

	 },

	 {

	 { 1, 149, 241, 255, 221, 224, 255, 255, 128, 128, 128},

	 { 184, 141, 234, 253, 222, 220, 255, 199, 128, 128, 128},

	 { 81, 99, 181, 242, 176, 190, 249, 202, 255, 255, 128}

	 },

	 {

	 { 1, 129, 232, 253, 214, 197, 242, 196, 255, 255, 128},

	 { 99, 121, 210, 250, 201, 198, 255, 202, 128, 128, 128},

	 { 23, 91, 163, 242, 170, 187, 247, 210, 255, 255, 128}

	 },

	 {

	 { 1, 200, 246, 255, 234, 255, 128, 128, 128, 128, 128},

	 { 109, 178, 241, 255, 231, 245, 255, 255, 128, 128, 128},

	 { 44, 130, 201, 253, 205, 192, 255, 255, 128, 128, 128}

	 },

	 {

	 { 1, 132, 239, 251, 219, 209, 255, 165, 128, 128, 128},

	 { 94, 136, 225, 251, 218, 190, 255, 255, 128, 128, 128},

	 { 22, 100, 174, 245, 186, 161, 255, 199, 128, 128, 128}

	 },

	 {

	 { 1, 182, 249, 255, 232, 235, 128, 128, 128, 128, 128},

	 { 124, 143, 241, 255, 227, 234, 128, 128, 128, 128, 128},

	 { 35, 77, 181, 251, 193, 211, 255, 205, 128, 128, 128}

	 },

	 {

	 { 1, 157, 247, 255, 236, 231, 255, 255, 128, 128, 128},

	 { 121, 141, 235, 255, 225, 227, 255, 255, 128, 128, 128},

	 { 45, 99, 188, 251, 195, 217, 255, 224, 128, 128, 128}

	 },

	 {

	 { 1, 1, 251, 255, 213, 255, 128, 128, 128, 128, 128},

	 { 203, 1, 248, 255, 255, 128, 128, 128, 128, 128, 128},

	 { 137, 1, 177, 255, 224, 255, 128, 128, 128, 128, 128}

	 }

	 },

	{

	 {

	 { 253, 9, 248, 251, 207, 208, 255, 192, 128, 128, 128},

	 { 175, 13, 224, 243, 193, 185, 249, 198, 255, 255, 128},

	 { 73, 17, 171, 221, 161, 179, 236, 167, 255, 234, 128}

	 },

	 {

	 { 1, 95, 247, 253, 212, 183, 255, 255, 128, 128, 128},

	 { 239, 90, 244, 250, 211, 209, 255, 255, 128, 128, 128},

	 { 155, 77, 195, 248, 188, 195, 255, 255, 128, 128, 128}

	 },

	 {

	 { 1, 24, 239, 251, 218, 219, 255, 205, 128, 128, 128},

	 { 201, 51, 219, 255, 196, 186, 128, 128, 128, 128, 128},

	 { 69, 46, 190, 239, 201, 218, 255, 228, 128, 128, 128}

	 },

	 {

	 { 1, 191, 251, 255, 255, 128, 128, 128, 128, 128, 128},

	 { 223, 165, 249, 255, 213, 255, 128, 128, 128, 128, 128},

	 { 141, 124, 248, 255, 255, 128, 128, 128, 128, 128, 128}

	 },

	 {

	 { 1, 16, 248, 255, 255, 128, 128, 128, 128, 128, 128},

	 { 190, 36, 230, 255, 236, 255, 128, 128, 128, 128, 128},

	 { 149, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128}

	 },

	 {

	 { 1, 226, 255, 128, 128, 128, 128, 128, 128, 128, 128},

	 { 247, 192, 255, 128, 128, 128, 128, 128, 128, 128, 128},

	 { 240, 128, 255, 128, 128, 128, 128, 128, 128, 128, 128}

	 },

	 {

	 { 1, 134, 252, 255, 255, 128, 128, 128, 128, 128, 128},

	 { 213, 62, 250, 255, 255, 128, 128, 128, 128, 128, 128},

	 { 55, 93, 255, 128, 128, 128, 128, 128, 128, 128, 128}

	 },

	 {

	 { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128},

	 { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128},

	 { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128}

	 }

	 },

	 {

	 {

	 { 202, 24, 213, 235, 186, 191, 220, 160, 240, 175, 255},

	 { 126, 38, 182, 232, 169, 184, 228, 174, 255, 187, 128},

	 { 61, 46, 138, 219, 151, 178, 240, 170, 255, 216, 128}

	 },

	{

	 { 1, 112, 230, 250, 199, 191, 247, 159, 255, 255, 128},

	 { 166, 109, 228, 252, 211, 215, 255, 174, 128, 128, 128},

	 { 39, 77, 162, 232, 172, 180, 245, 178, 255, 255, 128}

	 },

	 {

	 { 1, 52, 220, 246, 198, 199, 249, 220, 255, 255, 128},

	 { 124, 74, 191, 243, 183, 193, 250, 221, 255, 255, 128},

	 { 24, 71, 130, 219, 154, 170, 243, 182, 255, 255, 128}

	 },

	 {

	 { 1, 182, 225, 249, 219, 240, 255, 224, 128, 128, 128},

	 { 149, 150, 226, 252, 216, 205, 255, 171, 128, 128, 128},

	 { 28, 108, 170, 242, 183, 194, 254, 223, 255, 255, 128}

	 },

	 {

	 { 1, 81, 230, 252, 204, 203, 255, 192, 128, 128, 128},

	 { 123, 102, 209, 247, 188, 196, 255, 233, 128, 128, 128},

	 { 20, 95, 153, 243, 164, 173, 255, 203, 128, 128, 128}

	 },

	 {

	 { 1, 222, 248, 255, 216, 213, 128, 128, 128, 128, 128},

	 { 168, 175, 246, 252, 235, 205, 255, 255, 128, 128, 128},

	 { 47, 116, 215, 255, 211, 212, 255, 255, 128, 128, 128}

	 },

	 {

	 { 1, 121, 236, 253, 212, 214, 255, 255, 128, 128, 128},

	 { 141, 84, 213, 252, 201, 202, 255, 219, 128, 128, 128},

	 { 42, 80, 160, 240, 162, 185, 255, 205, 128, 128, 128}

	 },

	 {

	 { 1, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128},

	 { 244, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128},

	 { 238, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128}

	 }

	 }

	 };

5.3.6 DCT and WHT Inversion and Macroblock Reconstruction

5.3.6.1 Dequantization

After decoding the DCTs/WHTs as described above, each (quantized) coefficient in each subblock is multiplied by one of six dequantization factors, the choice of factor depends on the plane (Y2, Y, or chroma) and position (DC = coefficient zero, AC = any other coefficient). If the current macroblock has overridden the quantizer level (as described in Section ‎5.3), then the six factors are looked up from two dequantization tables with appropriate scaling and clamping using the single index supplied by the override.

Otherwise, the frame-level dequantization factors (as described inSection ‎5.2.2.5) are used.

The two dequantization tables are as follows:

Table ‎5‑27 Transform coefficient dequantization tables

	static const int dc_qlookup[QINDEX_RANGE] =

	 {

	 4, 5, 6, 7, 8, 9, 10, 10, 11, 12, 13, 14, 15,

	 16, 17, 17, 18, 19, 20, 20, 21, 21, 22, 22, 23, 23,

	 24, 25, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,

	 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 46,

	 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,

	 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,

	 73, 74, 75, 76, 76, 77, 78, 79, 80, 81, 82, 83, 84,

	 85, 86, 87, 88, 89, 91, 93, 95, 96, 98, 100, 101, 102,

	 104, 106, 108, 110, 112, 114, 116, 118, 122, 124, 126, 128, 130,

	 132, 134, 136, 138, 140, 143, 145, 148, 151, 154, 157,

	 };

	static const int ac_qlookup[QINDEX_RANGE] =

	 {

	 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

	 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,

	 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,

	 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,

	 56, 57, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78,

	 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104,

	 106, 108, 110, 112, 114, 116, 119, 122, 125, 128, 131, 134, 137,

	 140, 143, 146, 149, 152, 155, 158, 161, 164, 167, 170, 173, 177,

	 181, 185, 189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229,

	 234, 239, 245, 249, 254, 259, 264, 269, 274, 279, 284,

	 };

Lookup values from the above two tables are directly used in the DC and AC coefficients in Y1, respectively. For Y2 and chroma, values from the above tables undergo either scaling or clamping before the multiplies.

5.3.6.2 Inverse Transforms

If the Y2 residue block exists (i.e., the macroblock luma mode is not SPLITMV or B_PRED), it is inverted first (using the inverse WHT) and the element of the result at row i, column j is used as the 0th coefficient of the Y subblock at position (i, j), that is, the Y subblock whose index is (i * 4) + j. As discussed in Section ‎5.3.4, if the luma mode is B_PRED or SPLITMV, the 0th Y coefficients are part of the residue signal for the subblocks themselves.

In either case, the inverse transforms for the sixteen Y subblocks and eight chroma subblocks are computed next. All 24 of these inversions are independent of each other; their results may (at least conceptually) be stored in 24 separate 4x4 arrays.

NOTE: As is done by the reference decoder, an implementation may wish to represent the prediction and residue buffers as macroblock-sized arrays (that is, a 16x16 Y buffer and two 8x8 chroma buffers). Regarding the inverse DCT implementation given below, this requires an adjustment to the address calculation for the resulting residue pixels.

5.3.6.3 Implementation of the WHT Inversion
 For macroblocks encoded using prediction modes other than B_PRED and SPLITMV, the DC values derived from the DCT transform on the 16 Y blocks are collected to construct a 25th block of a macroblock (16 Y, 4 U, 4 V constitute the 24 blocks). This 25th block is transformed using a Walsh-Hadamard transform (WHT).

The inputs to the inverse WHT (that is, the dequantized coefficients), the intermediate "horizontally detransformed" signal, and the completely detransformed residue signal are all stored as arrays of 16-bit signed integers.

The inverse WHT used is specified using the following C code:

	Table ‎5‑28 Inverse WHT definition

void vp8_short_inv_walsh4x4_c(short *input, short *output)

	 {

	 int i;

	 int a1, b1, c1, d1;

	 int a2, b2, c2, d2;

	 short *ip = input;

	 short *op = output;

	 int temp1, temp2;

	 for(i=0;i<4;i++)

	 {

	 a1 = ip[0] + ip[12];

	 b1 = ip[4] + ip[8];

	 c1 = ip[4] - ip[8];

	 d1 = ip[0] - ip[12];

	 op[0] = a1 + b1;

	 op[4] = c1 + d1;

	 op[8] = a1 - b1;

	 op[12]= d1 - c1;

	 ip++;

	 op++;

	 }

	 ip = output;

	 op = output;

	 for(i=0;i<4;i++)

	 {

	 a1 = ip[0] + ip[3];

	 b1 = ip[1] + ip[2];

	 c1 = ip[1] - ip[2];

	 d1 = ip[0] - ip[3];

	 a2 = a1 + b1;

	 b2 = c1 + d1;

	 c2 = a1 - b1;

	 d2 = d1 - c1;

	op[0] = (a2+3)>>3;

	 op[1] = (b2+3)>>3;

	 op[2] = (c2+3)>>3;

	 op[3] = (d2+3)>>3;

	 ip+=4;

	 op+=4;

	 }

	 }

NOTE: The inverse transforms described here may be implemented differently but shall generate the same output as the transforms described in this document.
It should be noted that a conforming decoder should implement the inverse transform using exactly the same rounding to achieve bit-wise matching output to the output of the process specified by the above C source code.

5.3.6.4 Implementation of the DCT Inversion

All of the DCT inversions are computed in exactly the same way. A classical 2-D inverse discrete cosine transform is used, implemented as two passes of 1-D inverse DCT.

The inverse DCT used takes care of normalization of the standard unitary transform; that is, every dequantized coefficient has roughly double the size of the corresponding unitary coefficient.

The inverse DCT is implementation is as follows:
Table ‎5‑29 IDCT implementation

	/* IDCT implementation */

	 static const int cospi8sqrt2minus1=20091;

	 static const int sinpi8sqrt2 =35468;

	 void short_idct4x4llm_c(short *input, short *output, int pitch)

	 {

	 int i;

	 int a1, b1, c1, d1;

	 short *ip=input;

	 short *op=output;

	 int temp1, temp2;

	 int shortpitch = pitch>>1;

	 for(i=0;i<4;i++)

	 {

	 a1 = ip[0]+ip[8];

	 b1 = ip[0]-ip[8];

	 temp1 = (ip[4] * sinpi8sqrt2)>>16;

	 temp2 = ip[12]+((ip[12] * cospi8sqrt2minus1)>>16);

	 c1 = temp1 - temp2;

	 temp1 = ip[4] + ((ip[4] * cospi8sqrt2minus1)>>16);

	 temp2 = (ip[12] * sinpi8sqrt2)>>16;

	 d1 = temp1 + temp2;

	 op[shortpitch*0] = a1+d1;

	 op[shortpitch*3] = a1-d1;

	 op[shortpitch*1] = b1+c1;

	 op[shortpitch*2] = b1-c1;

	 ip++;

	 op++;

	 }

	 ip = output;

	 op = output;

	 for(i=0;i<4;i++)

	 {

	 a1 = ip[0]+ip[2];

	 b1 = ip[0]-ip[2];

	 temp1 = (ip[1] * sinpi8sqrt2)>>16;

	 temp2 = ip[3]+((ip[3] * cospi8sqrt2minus1)>>16);

	 c1 = temp1 - temp2;

	temp2 = (ip[3] * sinpi8sqrt2)>>16;

	 d1 = temp1 + temp2;

	 op[0] = (a1+d1+4)>>3;

	 op[3] = (a1-d1+4)>>3;

	 op[1] = (b1+c1+4)>>3;

	 op[2] = (b1-c1+4)>>3;

	 ip+=shortpitch;

	 op+=shortpitch;

	 }

	 }

	 temp1 = ip[1] + ((ip[1] * cospi8sqrt2minus1)>>16);

5.3.6.5 Summation of Predictor and Residue

Finally, the prediction and residue signals are summed to form the reconstructed macroblock, which, except for loop filtering (taken up next), completes the decoding process.

The prediction and residue buffers are both arrays of 16-bit signed integers. Each individual (Y, U, and V pixel) result is calculated first as a 32-bit sum of the prediction and residue, and is then saturated to 8-bit unsigned range (using, say, the clamp255 function defined above) before being stored as an 8-bit unsigned pixel value.

A mode where the encoding of a bitstream guarantees all reconstructed pixel values between 0 and 255 is also supported; compliant bitstreams of such requirements have the clamp_type bit in the frame header set to 1. In such a case, the clamp255 function is no longer required.

The summation process is the same, regardless of the (intra or inter) mode of prediction in effect for the macroblock.

5.3.7 Loop Filter

Loop filtering is the last stage of frame reconstruction and the next-to-last stage of the decoding process. The loop filter is applied to the entire frame after the summation of predictor and residue signals, as described in Section ‎5.3.6.

The purpose of the loop filter is to eliminate (or at least reduce) visually objectionable artifacts associated with the semi- independence of the coding of macroblocks and their constituent subblocks.

The loop filter is "integral" to decoding, in that the results of loop filtering are used in the prediction of subsequent frames. Consequently, a functional decoder implementation shall perform loop filtering exactly as described here. This is distinct from any postprocessing that may be applied only to the image immediately before display; such postprocessing is entirely at the option of the implementor (and/or user) and has no effect on decoding per se.

The baseline frame-level parameters controlling the loop filter are defined in the frame header along with a mechanism for adjustment based on a macroblock's prediction mode and/or reference frame. The first is a flag (filter_type) selecting the type of filter (normal or simple); the other two are numbers (loop_filter_level and sharpness_level) that adjust the strength or sensitivity of the filter; loop_filter_level may also be overridden on a per-macroblock basis using segmentation.

Loop filtering shall be skipped entirely if loop_filter_level at either the frame header level or macroblock override level is 0.

5.3.7.1 Filter Geometry and Overall Procedure

The Y, U, and V planes are processed independently and identically.

The loop filter acts on the edges between adjacent macroblocks and on the edges between adjacent subblocks of a macroblock. All such edges are horizontal or vertical. For each pixel position on an edge, a small number (two or three) of pixels adjacent to either side of the position are examined and possibly modified. The displacements of these pixels are at a right angle to the edge orientation; that is, for a horizontal edge, the pixels immediately above and below the edge position are processed, and for a vertical edge, the pixels immediately to the left and right of the edge are processed.

This group of pixels associated to an edge position is named a “segment”; the length of a segment is 2, 4, 6, or 8. The treatment of edges is uniform: All segments straddling an edge are treated identically; there is no distinction between the treatment of horizontal and vertical edges, whether between macroblocks or between subblocks.

As a consequence, adjacent subblock edges within a macroblock may be concatenated and processed in their entirety. There is a single 8-pixel-long vertical edge horizontally centred in each of the U and V blocks (the concatenation of upper and lower 4-pixel edges between chroma subblocks), and three 16-pixel-long vertical edges at horizontal positions 1/4, 1/2, and 3/4 the width of the luma macroblock, each representing the concatenation of four 4-pixel sub-edges between pairs of Y subblocks.

The macroblocks comprising the frame are processed in the usual raster-scan order. Each macroblock is "responsible for" the inter-macroblock edges immediately above and to the left of it (but not the edges below and to the right of it), as well as the edges between its subblocks.

For each macroblock M, there are four filtering steps, which are:

1. If M is not on the leftmost column of macroblocks, filter across the left (vertical) inter-macroblock edge of M.

2. Filter across the vertical subblock edges within M.

3. If M is not on the topmost row of macroblocks, filter across the top (horizontal) inter-macroblock edge of M.

4. Filter across the horizontal subblock edges within M.

Labels MY, MU, and MV are used for the planar constituents of M, that is, the 16x16 luma block, 8x8 U block, and 8x8 V block comprising M.

In step 1, for each of the three blocks MY, MU, and MV, each of the (16 luma or 8 chroma) segments straddling the column separating the block from the block immediately to the left of it are filtered, using the inter-macroblock filter and controls associated to the loop_filter_level and sharpness_level.

In step 4, filtering is performed across the (three luma and one each for U and V) vertical subblock edges described above, using the inter-subblock filter and controls.

Steps 2 and 4 are skipped for macroblocks that satisfy both of the following two conditions:

Macroblock coding mode is neither B_PRED nor SPLITMV; and

There is no DCT coefficient coded for the whole macroblock.

For these macroblocks, loop filtering for edges between subblocks internal to a macroblock is effectively skipped. This skip strategy significantly reduces loop-filtering complexity.

Edges between macroblocks and those between subblocks are treated with different control parameters (and, in the case of the normal filter, with different algorithms). Except for pixel addressing, there is no distinction between the treatment of vertical and horizontal edges. Luma edges are always 16 pixels long, chroma edges are always 8 pixels long, and the segments straddling an edge are treated identically; this facilitates vector processing.

Because many pixels belong to segments straddling two or more edges, and so will be filtered more than once, the order in which edges are processed given above shall be respected by any implementation. Within a single edge, however, the segments straddling that edge are disjoint, and the order in which these segments are processed is immaterial.

Note that the loop filter applies after all the macroblocks have been "reconstructed" (i.e., had their predictor summed with their residue); correct decoding is predicated on the fact that already-constructed portions of the current frame referenced via intra-prediction are not yet filtered.

5.3.7.2 Simple Filter

The simple filter only applies to luma edges. Chroma edges are left unfiltered.

Most of the filtering arithmetic is done using 8-bit signed operands (having a range of -128 to +127, inclusive), supplemented by 16-bit temporaries holding results of multiplies.

Sums and other temporaries need to be "clamped" to a valid signed 8-bit range:

Table ‎5‑30 Clamping function used for filtering

	int8 c(int v)

	 {

	 return (int8) (v < -128 ? -128 : (v < 128 ? v : 127));

	 }

Since pixel values themselves are unsigned 8-bit numbers, there is a need to convert between signed and unsigned values:

	/* Convert pixel value (0 <= v <= 255) to an 8-bit signed

	 number. */

	 int8 u2s(Pixel v) { return (int8) (v - 128);}

	 /* Clamp, then convert signed number back to pixel value. */

	 Pixel s2u(int v) { return (Pixel) (c(v) + 128);}

To simplify the specification of relative pixel positions, the word "before" is used to mean "immediately above" (for a vertical segment straddling a horizontal edge) or "immediately to the left of" (for a horizontal segment straddling a vertical edge), and the word "after" is used to mean "immediately below" or "immediately to the right of".
Given an edge, a segment, and a limit value, the simple loop filter computes a value based on the four pixels that straddle the edge (two either side). The same procedure is used for all segments straddling any type of edge regardless of the nature (inter-macroblock, inter-subblock, luma, or chroma) of the edge; only the limit value depends on the edge type.

The exact procedure (for a single segment) is as follows; the function common_adjust is used by both the simple filter presented here and the normal filters discussed in Section ‎5.3.7.3.
Table ‎5‑31 Simple loop filter algorithm functions
	int8 common_adjust(

	 int use_outer_taps, /* filter is 2 or 4 taps wide */

	 const Pixel *P1, /* pixel before P0 */

	 Pixel *P0, /* pixel before edge */

	 Pixel *Q0, /* pixel after edge */

	 const Pixel *Q1 /* pixel after Q0 */

) {

	 cint8 p1 = u2s(*P1); /* retrieve and convert all 4 pixels */

	 cint8 p0 = u2s(*P0);

	 cint8 q0 = u2s(*Q0);

	 cint8 q1 = u2s(*Q1);

	 /* Disregarding clamping, when "use_outer_taps" is false, "a" is 3*(q0-p0). Since we are about to divide "a" by 8, in this case we end up multiplying the edge difference by 5/8. When "use_outer_taps" is true (as for the simple filter), "a" is p1 - 3*p0 + 3*q0 - q1, which can be thought of as a refinement of 2*(q0 - p0), and the adjustment is something like (q0 - p0)/4. */

	 int8 a = c((use_outer_taps? c(p1 - q1) : 0) + 3*(q0 - p0));

	 /* b is used to balance the rounding of a/8 in the case where the "fractional" part "f" of a/8 is exactly 1/2. */

	 cint8 b = (c(a + 3)) >> 3;

	 /* Divide a by 8, rounding up when f >= 1/2. Although not strictly part of the C language, the right shift is assumed to propagate the sign bit. */

	 a = c(a + 4) >> 3;

	 /* Subtract "a" from q0, "bringing it closer" to p0. */

	 *Q0 = s2u(q0 - a);

	/* Add "a" (with adjustment "b") to p0, "bringing it closer" to q0. The clamp of "a+b", while present in the reference decoder, is superfluous; we have -16 <= a <= 15 at this point. */

	 *P0 = s2u(p0 + b);

	 return a;

	 }

Table ‎5‑32 Simple filter algorithm

	 void simple_segment(

	 uint8 edge_limit, /* do nothing if edge difference exceeds limit */

	 const Pixel *P1, /* pixel before P0 */

	 Pixel *P0, /* pixel before edge */

	 Pixel *Q0, /* pixel after edge */

	 const Pixel *Q1 /* pixel after Q0 */

) {

	 if ((abs(*P0 - *Q0)*2 + abs(*P1 - *Q1)/2) <= edge_limit))

	 common_adjust(1, P1, P0, Q0, Q1); /* use outer taps */

	 }

The derivation of the edge_limit value used above, which depends on the loop_filter_level and sharpness_level, as well as the type of edge being processed, is described later in this document (after the normal loop filtering algorithm below).

5.3.7.3 Normal Filter
The normal loop filter is a refinement of the simple loop filter.

As mentioned above, the normal algorithms for inter-macroblock and inter-subblock edges differ. Nonetheless, they have a great deal in common: They use similar threshold algorithms to disable the filter and to detect high internal edge variance (which influences the filtering algorithm). Both algorithms also use, at least conditionally, the simple filter adjustment procedure described above.

The common thresholding algorithms are as follows:

Table ‎5‑33 Common filtering thresholding algorithms

	 /* All functions take (among other things) a segment (of length at most 4 + 4 = 8) symmetrically straddling an edge.The pixel values (or pointers) are always given in order, from the "beforemost" to the "aftermost". So, for a horizontal edge (written "|"), an 8-pixel segment would be ordered p3 p2 p1 p0 | q0 q1 q2 q3. */

	 /* Filtering is disabled if the difference between any two adjacent "interior" pixels in the 8-pixel segment exceeds the relevant threshold (I). A more complex thresholding calculation is done for the group of four pixels that straddle the edge, in line with the calculation in simple_segment() above. */

	int filter_yes(

	 uint8 I, /* limit on interior differences */

	 uint8 E, /* limit at the edge */

	 cint8 p3, cint8 p2, cint8 p1, cint8 p0, /* pixels before edge */

	 cint8 q0, cint8 q1, cint8 q2, cint8 q3 /* pixels after edge */

) {

	 return (abs(p0 - q0)*2 + abs(p1 - q1)/2) <= E && abs(p3 - p2) <= I && abs(p2 - p1) <= I && abs(p1 - p0) <= I && abs(q3 - q2) <= I && abs(q2 - q1) <= I && abs(q1 - q0) <= I;

	 }

	/* Filtering is altered if (at least) one of the differences on either side of the edge exceeds a threshold (we have "high edge variance"). */

	 int hev(

	 uint8 threshold,

	 cint8 p1, cint8 p0, /* pixels before edge */

	 cint8 q0, cint8 q1 /* pixels after edge */

) {

	 return abs(p1 - p0) > threshold || abs(q1 - q0) > threshold;

	 }

 The subblock filter is a variant of the simple filter.

Table ‎5‑34 Subblock normal filter

	void subblock_filter(

	 uint8 hev_threshold, /* detect high edge variance */

	 uint8 interior_limit, /* possibly disable filter */

	 uint8 edge_limit,

	 cint8 *P3, cint8 *P2, int8 *P1, int8 *P0, /* pixels before edge */

	 int8 *Q0, int8 *Q1, cint8 *Q2, cint8 *Q3 /* pixels after edge */

) {

	 cint8 p3 = u2s(*P3), p2 = u2s(*P2), p1 = u2s(*P1),

	 p0 = u2s(*P0);

	 cint8 q0 = u2s(*Q0), q1 = u2s(*Q1), q2 = u2s(*Q2),

	 q3 = u2s(*Q3);

	 if (filter_yes(interior_limit, edge_limit, q3, q2, q1, q0,

	 p0, p1, p2, p3))

	 {

	 const int hv = hev(hev_threshold, p1, p0, q0, q1);

	 cint8 a = (common_adjust(hv, P1, P0, Q0, Q1) + 1) >> 1;

	 if (!hv) {

	 *Q1 = s2u(q1 - a);

	 *P1 = s2u(p1 + a);

	 }

	 }

	 }

Table ‎5‑35 The Inter-MB normal filter

	void MBfilter(

	 uint8 hev_threshold, /* detect high edge variance */

	 uint8 interior_limit, /* possibly disable filter */

	 uint8 edge_limit,

	 cint8 *P3, int8 *P2, int8 *P1, int8 *P0, /* pixels before edge */

	 int8 *Q0, int8 *Q1, int8 *Q2, cint8 *Q3 /* pixels after edge */

) {

	 cint8 p3 = u2s(*P3), p2 = u2s(*P2), p1 = u2s(*P1), p0 = u2s(*P0);

	 cint8 q0 = u2s(*Q0), q1 = u2s(*Q1), q2 = u2s(*Q2), q3 = u2s(*Q3);

	 if (filter_yes(interior_limit, edge_limit, q3, q2, q1, q0, p0, p1, p2, p3))

	 {

	 if (!hev(hev_threshold, p1, p0, q0, q1))

	 {

	 /* Same as the initial calculation in "common_adjust", w is something like twice the edge difference */

	 const int8 w = c(c(p1 - q1) + 3*(q0 - p0));

	 /* 9/64 is approximately 9/63 = 1/7, and 1<<7 = 128 =2*64. So this a, used to adjust the pixels adjacent to the edge, is something like 3/7 the edge difference. */

	 int8 a = c((27*w + 63) >> 7);

	 *Q0 = s2u(q0 - a); *P0 = s2u(p0 + a);

	 /* Next two are adjusted by 2/7 the edge difference */

	 a = c((18*w + 63) >> 7);

	 *Q1 = s2u(q1 - a); *P1 = s2u(p1 + a);

	 /* Last two are adjusted by 1/7 the edge difference */

	 a = c((9*w + 63) >> 7);

	 *Q2 = s2u(q2 - a); *P2 = s2u(p2 + a);

	} else /* if hev, do simple filter */

	 common_adjust(1, P1, P0, Q0, Q1); /* using outer taps */

	 }

	 }

5.3.7.4 Calculation of Control Parameters

This sub-section shows how the thresholds supplied to the procedures above are derived from the two control parameters sharpness_level (an unsigned 3-bit number having maximum value 7) and loop_filter_level (an unsigned 6-bit number having maximum value 63).

While the sharpness_level is constant over the frame, individual macroblocks may override the loop_filter_level with one of four possibilities supplied in the frame header.

Both the simple and normal filters disable filtering if a value derived from the four pixels that straddle the edge (2 either side) exceeds a threshold / limit value.

Table ‎5‑36 Thresholds to disable filtering for both the normal and simple filter

	/* Luma and Chroma use the same inter-macroblock edge limit */

	uint8 mbedge_limit = ((loop_filter_level + 2) * 2) + interior_limit;

	 /* Luma and Chroma use the same inter-subblock edge limit */

	 uint8 sub_bedge_limit = (loop_filter_level * 2) + interior_limit;

The remaining thresholds are used only by the normal filters. The filter-disabling interior difference limit is the same for all edges (luma, chroma, inter-subblock, inter-macroblock) and is given by the following:

uint8 interior_limit = loop_filter_level;

Table ‎5‑37 Thresholds specific to normal filters

	 if (sharpness_level)

	 {

	 interior_limit >>= sharpness_level > 4 ? 2 : 1;

	 if (interior_limit > 9 - sharpness_level)

	 interior_limit = 9 - sharpness_level;

	 }

	 if (!interior_limit)

	 interior_limit = 1;

Finally, the derivation of the high edge-variance threshold, which is also the same for all edge types is given below:

Table ‎5‑38 Derivation of the edge variance threshold

	uint8 hev_threshold = 0;

	 if (we_are_decoding_akey_frame) /* current frame is a key frame */

	 {

	 if (loop_filter_level >= 40)

	 hev_threshold = 2;

	 else if (loop_filter_level >= 15)

	 hev_threshold = 1;

	 }

	 else /* current frame is an interframe */

	 {

	 if (loop_filter_level >= 40)

	 hev_threshold = 3;

	 else if (loop_filter_level >= 20)

	 hev_threshold = 2;

	 else if (loop_filter_level >= 15)

	 hev_threshold = 1;

	 }

5.3.8 Interframe Macroblock Prediction

This sub-section describes the layout and semantics of the prediction data for macroblocks in an interframe.

After the feature specification (which is identical for intraframes and interframes), the element prob_intra is read from the frame header (Table ‎4‑4). This element indicates inter-prediction (i.e., prediction from prior frames) when true and intra-prediction (i.e., prediction from already-coded portions of the current frame) when false.

5.3.8.1 Intra-Predicted Macroblocks

For intra-prediction, the layout of the prediction data is essentially the same as the layout for key frames, although the contexts used by the decoding process are slightly different.

The "outer" Y mode in interframes uses a different tree from that used in key frames (see Table ‎5‑11).
Table ‎5‑39 Luma mode tree code

	const tree_index ymode_tree [2 * (num_ymodes - 1)] =

	 {

	 -DC_PRED, 2, /* root: DC_PRED = "0", "1" subtree */

	 4, 6, /* "1" subtree has 2 descendant subtrees */

	 -V_PRED, -H_PRED, /* "10" subtree: V_PRED = "100", H_PRED = "101" */

	 -TM_PRED, -B_PRED /* "11" subtree: TM_PRED = "110", B_PRED = "111" */

	 };

The probability table used to decode this tree is variable. As described in Section ‎5.3.2, it (along with the similarly treated UV table) can be updated by field prob_intra of the frame header. Similar to the coefficient-decoding probabilities, such updates are cumulative and affect all ensuing frames until the next key frame or explicit update. The default probabilities for the Y and UV tables are:

Table ‎5‑40 default probabilities for intra MBs in interframes

	Prob ymode_prob [num_ymodes - 1] = { 112, 86, 140, 37};

	 Prob uv_mode_prob [num_uv_modes - 1] = { 162, 101, 204};

These defaults shall be restored after detection of a key frame. Just as for key frames, if the Y mode is B_PRED, there next comes an encoding of the intra_bpred mode used by each of the sixteen Y subblocks. These encodings use the same tree as does that for key frames but, in place of the contexts used in key frames, these encodings use the single fixed probability table.

Table ‎5‑41 Interframe intra subblock mode decoding probabilities

	const Prob bmode_prob [num_intra_bmodes - 1] = {

	 120, 90, 79, 133, 87, 85, 80, 111, 151

	 };

Last comes the chroma mode, again coded using the same tree as that used for key frames, this time using the dynamic uv_mode_prob table described in Table ‎5‑40 above. The calculation of the intra-prediction buffer is identical to that was described for key frames in Section ‎5.3.3.

5.3.8.2 Inter-Predicted Macroblocks

The next datum in the bitstream is then another bool, prob_last, selecting the reference frame. If 0, the reference frame is the previous frame (the last frame); if 1, another bool, prob_gf, selects the reference frame between the golden frame (0) and the altref frame (1).

Together with setting the reference frame, the purpose of inter-mode decoding is to set a motion vector for each of the sixteen Y subblocks of the current macroblock. These settings then define the calculation of the inter-prediction buffer (detailed later in this document).

After the reference frame selector comes the mode (or motion vector reference) applied to the macroblock as a whole, coded using the following enumeration and tree. Setting mv_nearest = num_ymodes is a convenience that allows a single variable to unambiguously hold an inter- or intra-prediction mode.

Table ‎5‑42 MV modes and tree code

	typedef enum

	 {

	 mv_nearest = num_ymodes, /* use "nearest" motion vector for entire MB */

	 mv_near, /* use "next nearest" "" */

	 mv_zero, /* use zero "" */

	 mv_new, /* use explicit offset from implicit "" */

	 mv_split, /* use multiple motion vectors */

	 num_mv_refs = mv_split + 1 - mv_nearest

	 }

	 mv_ref;

	 const tree_index mv_ref_tree [2 * (num_mv_refs - 1)] =

	 {

	 -mv_zero, 2, /* zero = "0" */

	 -mv_nearest, 4, /* nearest = "10" */

	 -mv_near, 6, /* near = "110" */

	 -mv_new, -mv_split /* new = "1110", split = "1111" */

	 };

5.3.9 Mode and Motion Vector Contexts

The probability table used to decode the mv_ref, along with three reference motion vectors used by the selected mode, is calculated via a survey of the already-decoded motion vectors in (up to) 3 nearby macroblocks.

The algorithm used generates a sorted list of distinct motion vectors adjacent to the search site. The best_mv is the vector with the highest score. The mv_nearest is the non-zero vector with the highest score. The mv_near is the non-zero vector with the next highest score. The number of motion vectors coded using the SPLITMV mode is scored using the same weighting and is returned with the scores of the best, nearest, and near vectors.

The three adjacent macroblocks above, left, and above-left are considered in order. If the macroblock is intra-coded, no action is taken. Otherwise, the motion vector is compared to other previously found motion vectors to determine if it has been seen before, and if so contributes its weight to that vector; otherwise, it enters a new vector in the list. The above and left vectors have twice the weight of the above-left vector.

It is possible for macroblocks near the top or left edges of the image to reference blocks that are outside the visible image. A border of 1 macroblock filled with 0x0 motion vectors left of the left edge, and a border filled with 0x0 motion vectors of 1 macroblocks above the top edge is used for these cases.

The calculation of reference vectors, probability table, and, finally, the inter-prediction mode itself is implemented as follows:

Table ‎5‑43 Reference vector, probability table and inter-prediction mode calculation

	typedef union

	 {

	 unsigned int as_int;

	 MV as_mv;

	 } int_mv; /* facilitates rapid equality tests */

	 static void mv_bias(MODE_INFO *x,int refframe, int_mv *mvp,

	 int * ref_frame_sign_bias)

	 {

	 MV xmv;

	 xmv = x->mbmi.mv.as_mv;

	 if (ref_frame_sign_bias[x->mbmi.ref_frame] !=

	 ref_frame_sign_bias[refframe])

	 {

	 xmv.row*=-1;

	 xmv.col*=-1;

	 }

	 mvp->as_mv = xmv;

	 }

Table ‎5‑44 MV clamp algorithm

	void vp8_clamp_mv(MV *mv, const MACROBLOCKD *xd)

	 {

	 if (mv->col < (xd->mb_to_left_edge - LEFT_TOP_MARGIN))

	 mv->col = xd->mb_to_left_edge - LEFT_TOP_MARGIN;

	 else if (mv->col > xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN)

	 mv->col = xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN;

	

	 if (mv->row < (xd->mb_to_top_edge - LEFT_TOP_MARGIN))

	 mv->row = xd->mb_to_top_edge - LEFT_TOP_MARGIN;

	 else if (mv->row > xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN)

	 mv->row = xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN;

	 }

In the function vp8_find_near_mvs(), the vectors "nearest" and "near" are used by the corresponding modes.

The vector best_mv is used as a base for explicitly coded motion vectors.

The first three entries in the return value cnt are (in order) weighted census values for "zero", "nearest", and "near" vectors. The final value indicates the extent to which SPLITMV was used by the neighboring macroblocks. The largest possible "weight" value in each case is 5.

Table ‎5‑45 Algorithm for determining the nearest MV

	void vp8_find_near_mvs

	 (

	 MACROBLOCKD *xd,

	 const MODE_INFO *here,

	 MV *nearest,

	 MV *near,

	 MV *best_mv,

	 int cnt[4],

	 int refframe,

	 int * ref_frame_sign_bias

)

	{

	 const MODE_INFO *above = here - xd->mode_info_stride;

	 const MODE_INFO *left = here - 1;

	 const MODE_INFO *aboveleft = above - 1;

	 int_mv near_mvs[4];

	 int_mv *mv = near_mvs;

	 int *cntx = cnt;

	 enum {CNT_ZERO, CNT_NEAREST, CNT_NEAR, CNT_SPLITMV};

	 /* Zero accumulators */

	 mv[0].as_int = mv[1].as_int = mv[2].as_int = 0;

	 cnt[0] = cnt[1] = cnt[2] = cnt[3] = 0;

	 /* Process above */

	 if (above->mbmi.ref_frame != INTRA_FRAME) {

	 if (above->mbmi.mv.as_int) {

	 (++mv)->as_int = above->mbmi.mv.as_int;

	 mv_bias(above, refframe, mv, ref_frame_sign_bias);

	 ++cntx;

	 }

	 *cntx += 2;

	 }

	 /* Process left */

	 if (left->mbmi.ref_frame != INTRA_FRAME) {

	 if (left->mbmi.mv.as_int) {

	 int_mv this_mv;

	 this_mv.as_int = left->mbmi.mv.as_int;

	 mv_bias(left, refframe, &this_mv, ref_frame_sign_bias);

	 if (this_mv.as_int != mv->as_int) {

	 (++mv)->as_int = this_mv.as_int;

	 ++cntx;

	 }

	 *cntx += 2;

	 } else

	 cnt[CNT_ZERO] += 2;

	 }

	 /* Process above left */

	 if (aboveleft->mbmi.ref_frame != INTRA_FRAME) {

	 if (aboveleft->mbmi.mv.as_int) {

	 int_mv this_mv;

	 this_mv.as_int = aboveleft->mbmi.mv.as_int;

	 mv_bias(aboveleft, refframe, &this_mv,

	 ref_frame_sign_bias);

	if (this_mv.as_int != mv->as_int) {

	 (++mv)->as_int = this_mv.as_int;

	 ++cntx;

	 }

	 *cntx += 1;

	 } else

	 cnt[CNT_ZERO] += 1;

	 }

	 /* If we have three distinct MVs ... */

	 if (cnt[CNT_SPLITMV]) {

	 /* See if above-left MV can be merged with NEAREST */

	 if (mv->as_int == near_mvs[CNT_NEAREST].as_int)

	 cnt[CNT_NEAREST] += 1;

	 }

	 cnt[CNT_SPLITMV] = ((above->mbmi.mode == SPLITMV)

	 + (left->mbmi.mode == SPLITMV)) * 2

	 + (aboveleft->mbmi.mode == SPLITMV);

	 /* Swap near and nearest if necessary */

	 if (cnt[CNT_NEAR] > cnt[CNT_NEAREST]) {

	 int tmp;

	 tmp = cnt[CNT_NEAREST];

	 cnt[CNT_NEAREST] = cnt[CNT_NEAR];

	 cnt[CNT_NEAR] = tmp;

	 tmp = near_mvs[CNT_NEAREST].as_int;

	 near_mvs[CNT_NEAREST].as_int = near_mvs[CNT_NEAR].as_int;

	 near_mvs[CNT_NEAR].as_int = tmp;

	 }

	 /* Use near_mvs[0] to store the "best" MV */

	 if (cnt[CNT_NEAREST] >= cnt[CNT_ZERO])

	 near_mvs[CNT_ZERO] = near_mvs[CNT_NEAREST];

	 /* Set up return values */

	 *best_mv = near_mvs[0].as_mv;

	 *nearest = near_mvs[CNT_NEAREST].as_mv;

	 *near = near_mvs[CNT_NEAR].as_mv;

	

	 vp8_clamp_mv(nearest, xd);

	 vp8_clamp_mv(near, xd);

	 vp8_clamp_mv(best_mv, xd);

	 }

The mv_ref probability table (mv_ref_p) is then derived from the census as follows:

Table ‎5‑46 Deriving the mv_ref probability table

	const int vp8_mode_contexts[6][4] =

	 {

	 { 7, 1, 1, 143, },

	 { 14, 18, 14, 107, },

	 { 135, 64, 57, 68, },

	 { 60, 56, 128, 65, },

	 { 159, 134, 128, 34, },

	 { 234, 188, 128, 28, },

	 }

	vp8_prob *vp8_mv_ref_probs(vp8_prob mv_ref_p[VP8_MVREFS-1],

	 int cnt[4])

	 {

	 mv_ref_p[0] = vp8_mode_contexts [cnt[0]] [0];

	 mv_ref_p[1] = vp8_mode_contexts [cnt[1]] [1];

	 mv_ref_p[2] = vp8_mode_contexts [cnt[2]] [2];

	 mv_ref_p[3] = vp8_mode_contexts [cnt[3]] [3];

	 return p;

	 }

Once mv_ref_p is established, the mv_ref is decoded as:
	mvr = (mv_ref) treed_read(d, mv_ref_tree, mv_ref_p);

For the first four inter-coding modes, the same motion vector is used for all the Y subblocks. The first three modes use an implicit motion vector.
Table ‎5‑47 Interpretation of MV modes

	 Mode
	 Instruction

	 mv_nearest
	 Use the nearest vector returned by vp8_find_near_mvs.

	 mv_near
	 Use the near vector returned by vp8_find_near_mvs.

	 mv_zero
	 Use a zero vector; that is, predict the current macroblock from the corresponding macroblock in the prediction frame.

	 NEWMV
	 This mode is followed by an explicitly coded motion vector (the format of which is described in the next section) that is added (component-wise) to the best_mv reference vector returned by find_near_mvs and applied to all 16 subblocks.

5.3.9.1 Split Prediction

The remaining mode (SPLITMV) causes multiple vectors to be applied to the Y subblocks. It is immediately followed by a partition specification that determines how many vectors will be specified and how they will be assigned to the subblocks. The possible partitions, with indicated subdivisions and coding tree, are as follows.

Table ‎5‑48 Possible partitions and tree code for SPLITMV mode

	typedef enum

	 {

	 mv_top_bottom, /* two pieces {0...7} and {8...15} */

	 mv_left_right, /* {0,1,4,5,8,9,12,13} and {2,3,6,7,10,11,14,15} */

	 mv_quarters, /* {0,1,4,5}, {2,3,6,7}, {8,9,12,13}, {10,11,14,15} */

	 MV_16, /* every subblock gets its own vector {0} ... {15} */

	 mv_num_partitions

	 }

	 MVpartition;

	 const tree_index mvpartition_tree [2 * (mvnum_partition - 1)] =

	 {

	 -MV_16, 2, /* MV_16 = "0" */

	 -mv_quarters, 4, /* mv_quarters = "10" */

	 -mv_top_bottom, -mv_left_right /* top_bottom = "110", left_right = "111" */

	 };

The partition is decoded using a fixed, constant probability table:

Table ‎5‑49 MV partition probabilities table

	const Prob mvpartition_probs [mvnum_partition - 1] ={ 110, 111, 150};

	 part = (MVpartition) treed_read(d, mvpartition_tree, mvpartition_probs);

After the partition come two (for mv_top_bottom or mv_left_right), four (for mv_quarters), or sixteen (for MV_16) subblock inter-prediction modes. These modes occur in the order indicated by the partition layouts (given as comments to the MVpartition enum) and are coded as follows:
Prior to decoding each subblock, a decoding tree context is chosen as illustrated in the code snippet below. The context is based on the immediate left and above subblock neighbors, and whether they are equal, are zero, or a combination of those.

Table ‎5‑50 Selection of a decoding tree context

	 typedef enum

	 {

	 LEFT4x4 = num_intra_bmodes, /* use already-coded MV to my left */

	 ABOVE4x4, /* use already-coded MV above me */

	 ZERO4x4, /* use zero MV */

	 NEW4x4, /* explicit offset from "best" */

	 num_sub_mv_ref

	 };

	 sub_mv_ref;

	const tree_index sub_mv_ref_tree [2 * (num_sub_mv_ref - 1)] =

	 {

	 -LEFT4X4, 2, /* LEFT = "0" */

	 -ABOVE4X4, 4, /* ABOVE = "10" */

	 -ZERO4X4, -NEW4X4 /* ZERO = "110", NEW = "111" */

	 };

	 /* Choose correct decoding tree context

	 * Function parameters are left subblock neighbor MV and above

	 * subblock neighbor MV */

	 int vp8_mvCont(MV *l, MV*a)

	 {

	 int lez = (l->row == 0 && l->col == 0); /* left neighbour is zero */

	 int aez = (a->row == 0 && a->col == 0); /* above neighbor is zero */

	 int lea = (l->row == a->row && l->col == a->col); /* left neighbor equals above neighbor */

	 if (lea && lez)

	 return SUBMVREF_LEFT_ABOVE_ZED; /* =4 */

	 if (lea)

	 return SUBMVREF_LEFT_ABOVE_SAME; /* =3 */

	 if (aez)

	 return SUBMVREF_ABOVE_ZED; /* =2 */

	 if (lez)

	 return SUBMVREF_LEFT_ZED; /* =1*/

	 return SUBMVREF_NORMAL; /* =0 */

	 }

	 /* Constant probabilities and decoding procedure. */

	 const Prob sub_mv_ref_prob [5][num_sub_mv_ref - 1] = {

	 { 147,136,18 },

	 { 106,145,1 },

	 { 179,121,1 },

	 { 223,1 ,34 },

	 { 208,1 ,1 }

	 };

	 sub_ref = (sub_mv_ref) treed_read(d, sub_mv_ref_tree, sub_mv_ref_prob[context]);

The first two sub-prediction modes copy the already-coded motion vectors used by the blocks above and to the left of the subblock at the upper left corner of the current subset (i.e., collection of subblocks being predicted). These prediction blocks need not lie in the current macroblock and, if the current subset lies at the top or left edges of the frame, need not lie in the frame. In this latter case, their motion vectors are taken to be zero, as are subblock motion vectors within an intra-predicted macroblock. Also, to ensure the correctness of prediction within this macroblock, all subblocks lying in an already-decoded subset of the current macroblock must have their motion vectors set.

ZERO4x4 uses a zero motion vector and predicts the current subset using the corresponding subset from the prediction frame.

NEW4x4 is exactly like NEWMV except that NEW4x4 is applied only to the current subset. It is followed by a two-dimensional motion vector offset (described in the next section) that is added to the best vector returned by the earlier call to find_near_mvs to form the motion vector in effect for the subset.

5.3.9.2 Motion Vector Decoding

As discussed above, motion vectors appear in two places in the bitstream: applied to whole macroblocks in NEWMV mode and applied to subsets of macroblocks in NEW4x4 mode. The format of the vectors is identical in both cases.

Each vector has two pieces: a vertical component (row) followed by a horizontal component (column). The row and column use separate coding probabilities but are otherwise represented identically.

5.3.9.3 Coding of Each Component

Each component is a signed integer V representing a vertical or horizontal luma displacement of V quarter-pixels (and a chroma displacement of V eighth-pixels). The absolute value of V, if non-zero, is followed by a boolean sign. V may take any value between -1023 and +1023, inclusive.

The absolute value A is coded in one of two different ways according to its size. For 0 <= A <= 7, A is tree-coded, and for 8 <= A <=1023, the bits in the binary expansion of A are coded using independent boolean probabilities. The coding of A begins with a bool specifying which range is in effect.

Decoding a motion vector component then requires a 19-position probability table, whose offsets, along with the procedure used to decode components, are as follows:

Table ‎5‑51 Decoding MV components

	typedef enum

	 {

	 mvpis_short, /* short (<= 7) vs long (>= 8) */

	 MVPsign, /* sign for non-zero */

	 MVPshort, /* 8 short values = 7-position tree */

	 MVPbits = MVPshort + 7, /* 8 long value bits w/independent probs */

	 MVPcount = MVPbits + 10 /* 19 probabilities in total */

	 }

	 MVPindices;

	 typedef Prob MV_CONTEXT [MVPcount]; /* Decoding spec for a single component */

	 /* Tree used for small absolute values (has expected correspondence). */

	 const tree_index small_mvtree [2 * (8 - 1)] =

	 {

	 2, 8, /* "0" subtree, "1" subtree */

	 4, 6, /* "00" subtree, "01" subtree */

	 -0, -1, /* 0 = "000", 1 = "001" */

	 -2, -3, /* 2 = "010", 3 = "011" */

	 10, 12, /* "10" subtree, "11" subtree */

	 -4, -5, /* 4 = "100", 5 = "101" */

	 -6, -7 /* 6 = "110", 7 = "111" */

	 };

	 /* Read MV component at current decoder position, using supplied probs. */

	 int read_mvcomponent(bool_decoder *d, const MV_CONTEXT *mvc)

	 {

	 const Prob * const p = (const Prob *) mvc;

	int A = 0;

	 if (read_bool(d, p [mvpis_short])) /* 8 <= A <= 1023 */

	 {

	 /* Read bits 0, 1, 2 */

	 int i = 0;

	 do { A += read_bool(d, p [MVPbits + i]) << i;}

	 while (++i < 3);

	 /* Read bits 9, 8, 7, 6, 5, 4 */

	 i = 9;

	 do { A += read_bool(d, p [MVPbits + i]) << i;}

	 while (--i > 3);

	 /* Since A >= 8 because it is coded long, so if A <= 15, bit 3 is one and is not explicitly coded. */

	 if (!(A & 0xfff0) || read_bool(d, p [MVPbits + 3]))

	 A += 8;

	 }

	 else /* 0 <= A <= 7 */

	 A = treed_read(d, small_mvtree, p + MVPshort);

	 return A && read_bool(r, p [MVPsign]) ? -A : A;

	 }

5.3.9.4 Probability Updates

The decoder should maintain an array of two MV_CONTEXTs for decoding row and column components, respectively. These MV_CONTEXTs should be set to their defaults every key frame. Each individual probability may be updated every interframe using a constant table of update probabilities. Each optional update is of the form B? P(7), that is, a bool followed by a 7-bit probability specification if true.

The updates remain in effect until the next key frame or until replaced via another update.

In detail, the probabilities should then be managed as follows:
Table ‎5‑52 MV probability updates

	/* Never-changing table of update probabilities for each individual probability used in decoding motion vectors. */

	 const MV_CONTEXT vp8_mv_update_probs[2] =

	 {

	 {

	 237, 246, 253, 253, 254, 254, 254, 254, 254,

	 254, 254, 254, 254, 254, 250, 250, 252, 254, 254

	 },

	 {

	 231, 243, 245, 253, 254, 254, 254, 254, 254,

	 254, 254, 254, 254, 254, 251, 251, 254, 254, 254

	 }

	 };

	 /* Default MV decoding probabilities. */

	 const MV_CONTEXT default_mv_context[2] =

	 {

	 { // row

	 162, // is short

	 128, // sign

	 225, 146, 172, 147, 214, 39, 156, // short tree

	 128, 129, 132, 75, 145, 178, 206, 239, 254, 254 // long bits

	 },

	 { // same for column

	 164, // is short

	 128,

	 204, 170, 119, 235, 140, 230, 228,

	 128, 130, 130, 74, 148, 180, 203, 236, 254, 254 // long bits

	 }

	 };

	 /* Current MV decoding probabilities, set to above defaults every key frame. */

	 MV_CONTEXT mvc [2]; /* always row, then column */

	/* Procedure for decoding a complete motion vector. */

	 typedef struct { int16 row, col;} MV; /* as in previous section */

	 MV read_mv(bool_decoder *d)

	 {

	 MV v;

	 v.row = (int16) read_mvcomponent(d, mvc);

	 v.col = (int16) read_mvcomponent(d, mvc + 1);

	 return v;

	 }

	 /* Procedure for updating MV decoding probabilities, called every interframe with "d" at the appropriate position in the frame header. */

	 void update_mvcontexts(bool_decoder *d)

	 {

	 int i = 0;

	 do { /* component = row, then column */

	 const Prob *up = mv_update_probs[i]; /* update probs for component */

	 Prob *p = mvc[i]; /* start decode tbl "" */

	 Prob * const pstop = p + MVPcount; /* end decode tbl "" */

	 do {

	 if (read_bool(d, *up++)) /* update this position */

	 {

	 const Prob x = read_literal(d, 7);

	 *p = x? x<<1 : 1;

	 }

	 } while (++p < pstop); /* next position */

	 } while (++i < 2); /* next component */

	 }

This completes the description of the motion-vector decoding procedure and, with it, the procedure for decoding interframe macroblock prediction data.

5.3.10 Interframe Prediction

Given an inter-prediction specification for the current macroblock, that is, a reference frame together with a motion vector for each of the sixteen Y subblocks, the calculation of the prediction buffer for the macroblock is described next. Frame reconstruction is then completed via the previously described processes of residue summation (Section ‎5.3.6) and loop filtering (Section ‎5.3.7).

5.3.10.1 Bounds on, and Adjustment of, Motion Vectors

VCB imposes a motion vector size range limit of -4096 to 4095 full pixels, regardless of image size. Bitstream-compliant encoders and decoders shall enforce this limit.

Because the motion vectors applied to the chroma subblocks have 1/8-pixel resolution, the synthetic pixel calculation detailed below, uses this resolution for the luma subblocks as well. In accordance, the stored luma motion vectors are all doubled, each component of each luma vector becoming an even integer in the range -2046 to +2046, inclusive.

The vector applied to each chroma subblock is calculated by averaging the vectors for the 4 luma subblocks occupying the same visible area as the chroma subblock in the usual correspondence; that is, the vector for U and V block 0 is the average of the vectors for the Y subblocks { 0, 1, 4, 5}, chroma block 1 corresponds to Y blocks { 2,3, 6, 7}, chroma block 2 to Y blocks { 8, 9, 12, 13}, and chroma block 3 to Y blocks { 10, 11, 14, 15}.

Each of the two components of the vectors for each of the chroma subblocks is calculated from the corresponding luma vector components as follows:

Table ‎5‑53 Calculation of the chroma MVs from the luma MV

	int avg(int c1, int c2, int c3, int c4)

	 {

	 int s = c1 + c2 + c3 + c4;

	 /* The shift divides by 8 (not 4) because chroma pixels have twice the diameter of luma pixels. The handling of negative motion vector components is slightly cumbersome because, strictly speaking, right shifts of negative numbers are not well-defined in C. */

	 return s >= 0 ? (s + 4) >> 3 : -((-s + 4) >> 3);

	 }

Furthermore, if the version number in the frame tag specifies only full-pel chroma motion vectors, then the fractional parts of both components of the vector are truncated to zero, as illustrated in the following pseudocode (assuming 3 bits of fraction for both luma and chroma vectors):

	x = x & (~7);

	 y = y & (~7);

Additional clamping is performed for NEWMV macroblocks, for which the final motion vector is clamped again after combining the "best" predictor and the differential vector decoded from the stream.

However, the secondary clamping is not performed for SPLITMV macroblocks, meaning that any subblock's motion vector within the SPLITMV macroblock may point outside the clamping zone. These non-clamped vectors are also used when determining the decoding tree context for subsequent subblocks' modes in the vp8_mvCont() function in Table ‎5‑50.

5.3.10.2 Prediction Subblocks

The prediction calculation for each subblock is then as follows. Temporarily disregarding the fractional part of the motion vector (that is, rounding "up" or "left" by right-shifting each component 3 bits with sign propagation) and adding the origin (upper left position) of the (16x16 luma or 8x8 chroma) current macroblock gives us an origin in the Y, U, or V plane of the predictor frame (either the golden frame or previous frame).

Considering that origin to be the upper left corner of a (luma or chroma) macroblock, the relative positions of the pixels associated to that subblock, that is, any pixels that might be involved in the sub-pixel interpolation processes for the subblock is required.

5.3.10.3 Sub-Pixel Interpolation

The sub-pixel interpolation is performed via two one-dimensional convolutions. These convolutions may be thought of as operating on a two-dimensional array of pixels whose origin is the subblock origin, that is the origin of the prediction macroblock described above plus the offset to the subblock. Because motion vectors are arbitrary, so are these "prediction subblock origins".

The integer part of the motion vector is subsumed in the origin of the prediction subblock; the 16 (synthetic) pixels needed to construct are given by 16 offsets from the origin. The integer part of each of these offsets is the offset of the corresponding pixel from the subblock origin (using the vertical stride). To these integer parts is added a constant fractional part, which is the difference between the actual motion vector and its integer truncation used to calculate the origins of the prediction macroblock and subblock. Each component of this fractional part is an integer between 0 and 7, representing a forward displacement in eighths of a pixel.

It is these fractional displacements that determine the filtering process. If they both happen to be zero (that is, there was a "whole pixel" motion vector), the prediction subblock is simply copied into the corresponding piece of the current macroblock's prediction buffer. As discussed in Section ‎5.3.6, the layout of the macroblock's prediction buffer can depend on the specifics of the reconstruction implementation chosen. The vertical displacement between lines of the prediction subblock is given by the stride, as are all vertical displacements used here.

Otherwise, at least one of the fractional displacements is non-zero. The missing pixels are then synthesized via a horizontal, followed by a vertical, one-dimensional interpolation.

The two interpolations are essentially identical. Each uses a (at most) six-tap filter (the choice of which of course depends on the one-dimensional offset). Thus, every calculated pixel references at most three pixels before (above or to the left of) it and at most three pixels after (below or to the right of) it. The horizontal interpolation must calculate two extra rows above and three extra rows below the 4x4 block, to provide enough samples for the vertical interpolation to proceed.

 Depending on the reconstruction filter type given in the version number field in the frame tag, either a bicubic or a bilinear tap set is used. The exact implementation of subsampling is as follows:

Table ‎5‑54 sub-pixel interpolation

	/* Filter taps taken to 7-bit precision. Because DC is always passed, taps always sum to 128. */

	 const int BilinearFilters[8][6] =

	 {

	 { 0, 0, 128, 0, 0, 0 },

	 { 0, 0, 112, 16, 0, 0 },

	 { 0, 0, 96, 32, 0, 0 },

	 { 0, 0, 80, 48, 0, 0 },

	 { 0, 0, 64, 64, 0, 0 },

	 { 0, 0, 48, 80, 0, 0 },

	 { 0, 0, 32, 96, 0, 0 },

	 { 0, 0, 16, 112, 0, 0 }

	 };

	 const int filters [8] [6] = { /* indexed by displacement */

	 { 0, 0, 128, 0, 0, 0 }, /* degenerate whole-pixel */

	 { 0, -6, 123, 12, -1, 0 }, /* 1/8 */

	 { 2, -11, 108, 36, -8, 1 }, /* 1/4 */

	 { 0, -9, 93, 50, -6, 0 }, /* 3/8 */

	 { 3, -16, 77, 77, -16, 3 }, /* 1/2 is symmetric */

	 { 0, -6, 50, 93, -9, 0 }, /* 5/8 = reverse of 3/8 */

	 { 1, -8, 36, 108, -11, 2 }, /* 3/4 = reverse of 1/4 */

	 { 0, -1, 12, 123, -6, 0 } /* 7/8 = reverse of 1/8 */

	 };

	/* One-dimensional synthesis of a single sample. Filter is determined by fractional displacement */

	 Pixel interp(

	 const int fil[6], /* filter to apply */

	 const Pixel *p, /* origin (rounded "before") in prediction area */

	 const int s /* size of one forward step "" */

) {

	 int32 a = 0;

	 int i = 0;

	 p -= s + s; /* move back two positions */

	 do {

	 a += *p * fil[i];

	 p += s;

	 } while (++i < 6);

	 return clamp255((a + 64) >> 7); /* round to nearest 8-bit value */

	 }

	 /* First do horizontal interpolation, producing intermediate buffer. */

	 void Hinterp(

	 Pixel temp[9][4], /* 9 rows of 4 (intermediate) destination values */

	 const Pixel *p, /* subblock origin in prediction frame */

	 int s, /* vertical stride to be used in prediction frame */

	 uint hfrac, /* 0 <= horizontal displacement <= 7 */

	 uint bicubic /* 1=bicubic filter, 0=bilinear */

) {

	 const int * const fil = bicubic ? filters [hfrac] :

	 BilinearFilters[hfrac];

	 int r = 0; do /* for each row */

	 {

	 int c = 0; do /* for each destination sample */

	 {

	 /* Pixel separation = one horizontal step = 1 */

	 temp[r][c] = interp(fil, p + c, 1);

	 }

	while (++c < 4);

	 }

	 while (p += s, ++r < 9); /* advance p to next row */

	 }

	 /* Finish with vertical interpolation, producing final results.

	 Input array "temp" is of course that computed above. */

	 void Vinterp(

	 Pixel final[4][4], /* 4 rows of 4 (final) destination values */

	 const Pixel temp[9][4],

	 uint vfrac, /* 0 <= vertical displacement <= 7 */

	 uint bicubic /* 1=bicubic filter, 0=bilinear */

) {

	 const int * const fil = bicubic ? filters [vfrac] :

	 BilinearFilters[vfrac];

	 int r = 0; do /* for each row */

	 {

	 int c = 0; do /* for each destination sample */

	 {

	 /* Pixel separation = one vertical step = width

	 of array = 4 */

	 final[r][c] = interp(fil, temp[r] + c, 4);

	 }

	 while (++c < 4);

	 }

	 while (++r < 4);

	 }

Annex A

Encoder Description

A.6 Summary

The VCB encode is macroblock (MB) based, a MB being defined as a 16×16 block for the Luma channel (Y) and 8×8 for both Chroma channels (U, V). VCB works exclusively with an 8-bit YUV 4:2:0 image format. The entry point in the software for the VCB encoding process is the function encode_frame() which is called after some command line processing and in turn calls vpx_codec_encode()which implements the required encoding algorithm. The VCB specific algorithm is exercised through vp8e_encode(). One more layer down in the software, the encoded data is obtained from vp8_get_compressed_data().

VCB one pass encoding consists of the following major steps (see [3] and the provided software – it should be noted that the software also allows for 2 pass encoding):

The frame type is set. There are two encoding frame types (1) a “KEY” frame, which is the same as an INTRA in the traditional MPEG nomenclature, and (2) an “INTER” frame – which is a predicted frame. The initial frame type selection is simply made on the basis of whether or not a KEY frame is being forced because of the command line configuration.

The target rate for this specific frame is then set using either calc_iframe_target_size() or calc_pframe_target_size().

An INTER frame is approximated to require 4 times less bits than a KEY frame.

The initial number of bits to be spent of each frame is calculated based on the requested bit rate divided by the frame rate. This is then further adjusted based on the number of bits that have been used by the encoder.

Another adjustment is applied if this frame is to be designated a “GOLDEN” frame (which is explained later in this document).

The initial QP value is determined based on the calculated rate and the estimated number of bits that will be spent on this frame type using a selected QP value. The function estimate_bits_at_q()is used for this purpose. The function uses normalized tables (approximated costs for frames with 512 macroblocks) to estimate the eventual cost of the target frame.

The initial QP value is then refined using vp8_regulate_q() by repeatedly choosing a finer quantizer whilst still remaining below the target rate. Note there is no distortion calculation at this stage.

The target rate is then adjusted again using vp8_compute_frame_size_bounds() by allowing for different overshoot and undershoot values for different types of frames. These values were selected based on many experiments conducted with different video material.

The remainder of the encoding process is focused on processing the macroblocks using vp8_encode_frame(). It is important to note that different implementations of signal processing blocks can be used here since this function is used to initialize a number of function pointers that satisfy defined interfaces. For example, the loop filter module is initialized here to either be a six tap filter or a bilinear filter. The six tap filter is the default and that was the filter chosen for the preparation of this response to the CfP.

The target frame is encoded one macroblock (MB) row at a time using encode_mb_row(). The MB is predicted using two types of predictors - one using spatial information (pixel values surrounding the sub-block), and the other temporal information (motion vectors from other frames). The prediction is subtracted from the original MB to form the residual. Macroblocks are processed in a raster-scan order.

The use of spatial prediction depends on whether or not the target frame is a KEY frame. If it is a KEY frame, vp8cx_encode_intra_macroblock()is used, on the other hand, if an INTER frame is being processed then vp8cx_encode_inter_macroblock()is used.

In either case (spatial or temporal prediction), the MB mode is selected (more about MB modes later in this document) based on either an RD calculation or a speed limitation based calculation (recall that the provided software is product grade and so it allows for its operations under certain computational complexity constraints). In the case where no speed limit is set on the encoder, vp8_rd_pick_intra_mode() is used, on the other hand, vp8_pick_intra_mode() is used. Similar functions are used for the temporal prediction case.

In the case of mode selection being RD based (which is how this encoder was used in preparing this response to the call), the default is to use 16x16 MBs unless the RD cost for the use of 4x4 blocks is lower, in which case the B_PRED mode is used (see Section ‎2.1for more details). These are Luma sizes, whereas the block size for the UV plane is kept at 8x8.

The block is then processed through functions such as vp8_encode_intra4x4block()which calculate the residual signal, transform it and quantize it. The residual signal is transformed using a 4x4 DCT or WHT transform. The DCT or WHT is selected depending on the prediction mode that is used. VCB can perform all the calculations using 16-bit operations in the full pipeline of transform, quantization, dequantization and inverse transform [3]. Note that in the provided software, the transforms are performed using functions implemented in assembly and the YASM interpreter is needed (since it allows for multiple assembler syntaxes to be supported [9]). One such function is vp8_short_fdct8x4_sse2().

VCB defines 128 quantization levels in its scalar quantization process. For each video frame, VCB allows different quantization levels to be used for six frequency components: 1st order luma DC, 1st order luma AC, 2nd order luma DC, 2nd order luma AC, chroma DC and chroma AC. In addition, VCB’s design includes a simple and effective region adaptive quantization scheme, in which the bitstream provides the capability of classifying macroblocks within a frame into 4 different segments, with each segment having its own quantization parameter set [3].

The resulting quantized transform coefficients are then dequantized, inverse transformed and added back to the prediction signal to form the reconstructed MB as it will appear at the decoder.

The reconstructed MB is then loop filtered. VCB has an adaptive in-loop deblocking filter. The type and strength of the filtering can be adjusted for different prediction modes and reference frame types.

The coding modes, any motion vectors and quantized transform coefficients are entropy coded using a boolean entropy coder (BoolCoder) to form the compressed bitstream. This is implemented using optimize_b().

The reference frame buffers are updated. Decisions are made with regards to whether or not the current frame should be labeled as a GOLDEN frame, an ALTREF (or ARF) frame or simply as the last frame (LF) or KEY frame. The provided encoder implementation tends to produce a GOLDEN frame once every 7 (seven) frames approximately (statistics are tracked to determine what label the current frame should take).

As mentioned previously, two frame types are defined: “KEY” frames (INTRA) frames and “INTER” frames. KEY frames, can be decoded without reference to any other frame and as such, provide random access points in a video stream. Interframes may make reference to prior encoded reference frames.

Specifically, VCB defines three potential reference frames:

The “Last (LF)” encoded frame

The “GOLDEN Frame (GF)”
The “Alternate Reference Frame (ARF)”
The reference encoder updates the last frame (LF) each time a frame is encoded. The GOLDEN frame is an occasional reference frame that is encoded at a higher quality than surrounding frames. The alternative reference frame (ARF) is formed by applying a non-linear temporal filter to a contiguous set of future frames.

Blocks in an interframe may be predicted from blocks in any of the three reference frames, LF, GF or ARF. Every KEY frame is automatically a GF. Further, the encoder may update any of the reference frames with the last encoded frame if it so chooses (this is done by tracking statistics indicating how useful the current reference frames have been, in the provided implementation the updates occur in an approximately cyclical manner). ARF frames may be composed from future frames or from previous frames. In the provided implementation ARF frames are only used in 2-pass mode because the implementation constructs ARF frames from future frames only.

The VCB encode is macroblock (MB) based, a MB being defined as a 16×16 block for the Luma channel (Y) and 8×8 for both Chroma channels (U, V). VCB works exclusively with an 8-bit YUV 4:2:0 image format. The entry point in the software for the VCB encoding process is the function encode_frame() which is called after some command line processing and in turn calls vpx_codec_encode()which implements the required encoding algorithm. The VCB specific algorithm is exercised through vp8e_encode(). One more layer down in the software, the encoded data is obtained from vp8_get_compressed_data().

VCB one pass encoding consists of the following major steps (see [3] and the provided software – it should be noted that the software also allows for 2 pass encoding):

The frame type is set. There are two encoding frame types (1) a “KEY” frame, which is the same as an INTRA in the traditional MPEG nomenclature, and (2) an “INTER” frame – which is a predicted frame. The initial frame type selection is simply made on the basis of whether or not a KEY frame is being forced because of the command line configuration.

The target rate for this specific frame is then set using either calc_iframe_target_size() or calc_pframe_target_size().

An INTER frame is approximated to require 4 times less bits than a KEY frame.

The initial number of bits to be spent of each frame is calculated based on the requested bit rate divided by the frame rate. This is then further adjusted based on the number of bits that have been used by the encoder.

Another adjustment is applied if this frame is to be designated a “GOLDEN” frame (which is explained later in this document).

The initial QP value is determined based on the calculated rate and the estimated number of bits that will be spent on this frame type using a selected QP value. The function estimate_bits_at_q()is used for this purpose. The function uses normalized tables (approximated costs for frames with 512 macroblocks) to estimate the eventual cost of the target frame.
The initial QP value is then refined using vp8_regulate_q() by repeatedly choosing a finer quantizer whilst still remaining below the target rate. Note there is no distortion calculation at this stage.

The target rate is then adjusted again using vp8_compute_frame_size_bounds() by allowing for different overshoot and undershoot values for different types of frames. These values were selected based on many experiments conducted with different video material.

The remainder of the encoding process is focused on processing the macroblocks using vp8_encode_frame(). It is important to note that different implementations of signal processing blocks can be used here since this function is used to initialize a number of function pointers that satisfy defined interfaces. For example, the loop filter module is initialized here to either be a six tap filter or a bilinear filter. The six tap filter is the default and that was the filter chosen for the preparation of this response to the CfP.

The target frame is encoded one macroblock (MB) row at a time using encode_mb_row(). The MB is predicted using two types of predictors - one using spatial information (pixel values surrounding the sub-block), and the other temporal information (motion vectors from other frames). The prediction is subtracted from the original MB to form the residual. Macroblocks are processed in a raster-scan order.

The use of spatial prediction depends on whether or not the target frame is a KEY frame. If it is a KEY frame, vp8cx_encode_intra_macroblock()is used, on the other hand, if an INTER frame is being processed then vp8cx_encode_inter_macroblock()is used.

In either case (spatial or temporal prediction), the MB mode is selected (more about MB modes later in this document) based on either an RD calculation or a speed limitation based calculation (recall that the provided software is product grade and so it allows for its operations under certain computational complexity constraints). In the case where no speed limit is set on the encoder, vp8_rd_pick_intra_mode() is used, on the other hand, vp8_pick_intra_mode() is used. Similar functions are used for the temporal prediction case.

In the case of mode selection being RD based (which is how this encoder was used in preparing this response to the call), the default is to use 16x16 MBs unless the RD cost for the use of 4x4 blocks is lower, in which case the B_PRED mode is used (see Section ‎2.1for more details). These are Luma sizes, whereas the block size for the UV plane is kept at 8x8.

The block is then processed through functions such as vp8_encode_intra4x4block()which calculate the residual signal, transform it and quantize it. The residual signal is transformed using a 4x4 DCT or WHT transform. The DCT or WHT is selected depending on the prediction mode that is used. VCB can perform all the calculations using 16-bit operations in the full pipeline of transform, quantization, dequantization and inverse transform [3]. Note that in the provided software, the transforms are performed using functions implemented in assembly and the YASM interpreter is needed (since it allows for multiple assembler syntaxes to be supported [9]). One such function is vp8_short_fdct8x4_sse2().

VCB defines 128 quantization levels in its scalar quantization process. For each video frame, VCB allows different quantization levels to be used for six frequency components: 1st order luma DC, 1st order luma AC, 2nd order luma DC, 2nd order luma AC, chroma DC and chroma AC. In addition, VCB’s design includes a simple and effective region adaptive quantization scheme, in which the bitstream provides the capability of classifying macroblocks within a frame into 4 different segments, with each segment having its own quantization parameter set [3].

The resulting quantized transform coefficients are then dequantized, inverse transformed and added back to the prediction signal to form the reconstructed MB as it will appear at the decoder.

The reconstructed MB is then loop filtered. VCB has an adaptive in-loop deblocking filter. The type and strength of the filtering can be adjusted for different prediction modes and reference frame types.

The coding modes, any motion vectors and quantized transform coefficients are entropy coded using a boolean entropy coder (BoolCoder) to form the compressed bitstream. This is implemented using optimize_b().
The reference frame buffers are updated. Decisions are made with regards to whether or not the current frame should be labeled as a GOLDEN frame, an ALTREF (or ARF) frame or simply as the last frame (LF) or KEY frame. The provided encoder implementation tends to produce a GOLDEN frame once every 7 (seven) frames approximately (statistics are tracked to determine what label the current frame should take).

As mentioned previously, two frame types are defined: “KEY” frames (INTRA) frames and “INTER” frames. KEY frames, can be decoded without reference to any other frame and as such, provide random access points in a video stream. Interframes may make reference to prior encoded reference frames.

Specifically, VCB defines three potential reference frames:

The “Last (LF)” encoded frame

The “GOLDEN Frame (GF)”
The “Alternate Reference Frame (ARF)”
The reference encoder updates the last frame (LF) each time a frame is encoded. The GOLDEN frame is an occasional reference frame that is encoded at a higher quality than surrounding frames. The alternative reference frame (ARF) is formed by applying a non-linear temporal filter to a contiguous set of future frames.

Blocks in an interframe may be predicted from blocks in any of the three reference frames, LF, GF or ARF. Every KEY frame is automatically a GF. Further, the encoder may update any of the reference frames with the last encoded frame if it so chooses (this is done by tracking statistics indicating how useful the current reference frames have been, in the provided implementation the updates occur in an approximately cyclical manner). ARF frames may be composed from future frames or from previous frames. In the provided implementation ARF frames are only used in 2-pass mode because the implementation constructs ARF frames from future frames only.

A.7 Prediction
VCB employs intra- and inter-frame prediction.

A.7 Intraframe prediction
There are 5 intra prediction modes defined for 16×16 luma MBs, which are simply referred to as mode DC_PRED, V_PRED, H_PRED, TM_PRED and, B_PRED. B_PRED splits the signal into 16 4x4 sub-blocks and selects a mode for each sub-block independently. The first four modes are also used for the intra prediction of 8x8 chroma blocks.

For B_PRED mode there are 10 available modes for predicting each 4x4 sub-block, (Figure 1 shows the different 4x4 Luma intra modes):
[image: image62.png]

[image: image63.png]

[image: image64.png]

[image: image65.png]

[image: image66.png]

[image: image67.png]

0 – vertical

1 - horizontal

[image: image68.png]

[image: image69.png]

[image: image70.png]

[image: image71.png]

[image: image72.png]

[image: image73.png]

[image: image74.png]

[image: image75.png]

[image: image76.png]

[image: image77.png]

[image: image78.png]

[image: image79.png]

[image: image80.png]

2 – DC

3 – diagonal down-left

[image: image81.png]

[image: image82.png]

[image: image83.png]

[image: image84.png]

[image: image85.png]

[image: image86.png]

[image: image87.png]

[image: image88.png]

[image: image89.png]

[image: image90.png]

[image: image91.png]

4 – diagonal down-right

5 – vertical-right

[image: image92.png]

[image: image93.png]

[image: image94.png]

[image: image95.png]

[image: image96.png]

[image: image97.png]

[image: image98.png]

[image: image99.png]

[image: image100.png]

[image: image101.png]

[image: image102.png]

6 – horizontal down

7 – vertical-[image: image103.png]

left

[image: image104.png]

[image: image105.png]

[image: image106.png]

[image: image107.png]

[image: image108.png]

8 – horizontal-up

7 – TM[image: image109.png]

_PRED

[image: image110.png]A,

[image: image111.png]A,

[image: image112.png]

[image: image113.png]

[image: image114.png]

Figure 1 - Intra prediction modes (4x4) used in VCB [2].

The encoder tests the application of all these modes and selects the modes causing the smallest sum of differences.

The pixel values of already encoded adjacent blocks are simply copied either in a horizontal, vertical or diagonal way in order to predict the contents of the current block. The sole exception is the true motion prediction mode TM_PRED (see Figure 1) which is defined as:

[image: image11.png]

(1)

This prediction mode is chosen in 20%-45% for all intra coded MBs [5][6].

Intraframe prediction is performed in raster-scan sequence. The predictor value is subtracted from the corresponding values of the prediction block. The residual values form the prediction residual block which is then transformed to the frequency domain via DCT or WHT transform.

The call sequence for luminance intra prediction mode and processing is shown below.

vpx_codec_encode()

-> vp8_first_pass()

 -> vp8_encode_intra()

 -> vp8_encode_intra16x16mby()

 -> vp8_build_intra_predictors_mby_ptr()

 -> ENCODEMB_INVOKE(&rtcd->encodemb, submby)()
// encodeintra.c
-> vp8_subtract_mby_c()

// encodeintra.c
A.7 Interframe prediction
When using interframe prediction, a good match for the current MB is sought in the available reference pictures. The motion vectors (MV) describe the displacement of a block from the reference image used to predict in the current MB. The two blocks are compared to establish good prediction. The MVs have up to quarter pixel accuracy for the luma plane and since the MVs for the chroma plane are simply the average of the corresponding four luma MVs, they show a virtual accuracy of an eighth of a pixel. The encoder may also subdivide the MB into number of sub-partitions, and assign MVs to each using the mode SPLIT_MV. The encoder selects the best mode and reference frame combination to use based on rate-distortion criteria.

Macroblocks in interframes can be intra-coded.

An alternate reference frame (ARF) is usually designated non-displayable, but it is possible for the encoder to encode an ARF and signal that it should be displayed if it chooses. In the encoder ARFs are constructed by temporally filtering a number of future frames and once created may be used as a reference for frames that are encoded subsequently. Again, the provided encoder only does this for 2-pass mode.

The call sequence for luminance interframe prediction starts at the same module based on existence of previous frames.

vpx_codec_encode()

-> vp8_first_pass()

// firstpass.c
 -> vp8_first_pass_motion_search()

// firstpass.c
 -> vp8_diamond_search_sad()

// mcomp.c

 -> vp8_mse16x16_c()

// varience_c.c
A.7 Motion Vectors

Motion estimation is carried out to quarter-pixel accuracy using a set of interpolation filters, and is based only on the luma component of the MB.

There are five ways to signal a MV:

	Name
	Description

	Nearest
	Use the nearest MV for this MB

	Near
	Use the next nearest MV for this MB

	Zero
	Use a zero MV for this MB

	New
	Use an explicit offset from implicit MV for this MB

	Split
	Use multiple MVs for this MB

Table ‎2‑1 - The Five Types of Motion Vectors

A coding context is defined based on the three neighboring macroblocks, above, left, and above-left. For macroblocks on the topmost or leftmost edge, or for those coded using an intra-prediction mode, the zero motion vector is assumed for the purposes of creating the context.

For each MB the VCB encoder considers a context comprising three neighboring MBs when working out a set of candidate MV predictors:

(1) The MB to the LEFT

(2) The MB ABOVE

(3) The MB ABOVE_LEFT

Starting with an empty list each candidate MV is evaluated in turn.

If (MV == (0,0)) or (MB encoded with INTRA mode)

{
ignore and move on to the next MV
}

else If (MV is not in the list)

{
add to the list with an initial score of +N
}

else

{
increment the counter of the corresponding MV in the list by +N
}

Where N = 2 for the ABOVE & LEFT MB MVs and N=1 for the ABOVE_LEFT MB MV.

Each MV in the list then has a score between 0 & 5, inclusive. The highest scoring MV is classified "BEST_MV" and will be used as an initial offset to code the real MV if NEW_MV mode is selected.

The highest scoring MV is also classified as "NEAREST", and the second highest scoring MV classified as "NEAR". It is these two MVs that are used if modes NEAREST_MV and NEAR_MV are signaled [3].
A.7 Interpolation and Filtering

Interpolation is used to achieve quarter pixel accuracy in the motion vector estimation. VCB defines two sets of interpolation filters, 6-tap bicubic filter set for higher quality estimation at the cost of greater computational load, and bilinear filter set for reduced complexity estimation.

The basic interpolation for either the bicubic or bilinear interpolation filter is by convolution. The process uses a clamped convolution which limits the output to 8 bits. This convolution proceeds through two passes, the horizontal initial pass is followed by a vertical pass applied to the resulting data.
[image: image12.png]3
iFlter (3,6) = Clampozes (Z bm-x[cl)
.

[image: image13.png]3
(Filter ,upe () = Clampycs (Z bm-x[cl)
.

For the initial horizontal pass, five additional rows of pixel data (two above and three below the block) are processed to create the nine rows that will be required by the vertical pass.

The additional rows are required so that there is data where the six-tap filter extends beyond the extent of the block itself. The second pass creates the final 4x4 output block by applying the same filter in the vertical direction.

The call sequence for luminance interframe prediction starts at the same module based on existence of previous frames.

vpx_codec_encode()

-> vp8_first_pass()

// firstpass.c
 -> vp8_first_pass_motion_search()

// firstpass.c
 -> vp8_diamond_search_sad()

// mcomp.c

 -> vp8_mse16x16_c()

// varience_c.c

A.8 Transforms
VCB uses two transforms to encode the residual signal, the 4x4 Discrete Cosine Transform (DCT) and the 4x4 Walsh-Hadamard Transform (WHT). The Transform block uses the prediction mode to decide whether or not to use the WHT or the DCT [4].

The DCT is used for the 16 Y, 4 U and 4 V sub-blocks (SMBs) of a MB. The WHT is used to transform a 4x4 block constructed from the 16 DC coefficients by the application of the DCT to the 16 sub-blocks. This is a stand-in for the 0th DCT coefficients of the Y sub-blocks. The additional sub-block is the 25th sub-block in a MB; the other 24 comprise the 16 luma and 8 chroma sub-blocks.
A.8 The Discrete Cosine Transform
The transformation Y from the spatial domain into the frequency domain is performed by convolving each SMB X of size 4×4 with a transformation kernel A and it’s transposed AT.

[image: image15.png]Y=A-X-AT

(2)

[image: image115.png]

The transformation used in VCB is very close to the definition of the discrete cosine transform (DCT), which is given by:
[image: image17.png]ideal
Aldea

 = [image: image19.png]

 where

(3)

The main difference is a multiplication with the factor √2 rather than a division by it. In order to guarantee plain integer arithmetic, the coefficients are stored as constants in an up-scaled version (factor 216). During the transformation process, the up-scaling can be reverted by applying bit shifts. Due to the large intermediate results, the transformation utilizes 16 bit integer multiplications [7].

[image: image116.png]

[image: image117.png]

[image: image118.png]

[image: image119.png]

[image: image120.png]

[image: image121.png]

[image: image122.png]

[image: image123.png]

[image: image124.png]

[image: image125.png]

[image: image126.png]

[image: image127.png]

[image: image128.png]

[image: image129.png]

[image: image130.png]

Each MB consists of either 16 or 17 SMBs containing luminance data or 4 SMBs for each luma channel, summing up to a total of 24 or 25 SMBs. The eventual 17th luma SMB is available in most prediction modes that process the whole 16×16 at once (all besides SPLIT_MV and B_PRED). It contains the second order luma information of the DC coefficients of all luma SMBs, which means, these coefficients are transformed via the WHT to further decrease correlation within a MB. In this case, all transformed SMBs start with the 1st coefficient instead of the 0th.

The DCT and WHT implementations used by VCB can be found in the file dct.c which has the functions vp8_short_fdct4x4_c(),vp8_short_fdct8x4_c() and vp8_short_walsh4x4_c(), however, on running the provided implementation, it will be noted that the assembly counterparts of these functions are the ones that are actually used (the assembly versions have the same function names with an _sse2 extension instead of the _c extension).

A.8 The Walsh-Hadamard Transform
The WHT, also known as the Walsh-Hadamard Transform, is recursively defined by:
[image: image21.png]T e

(4)
where Hm is a 2m x 2m matrix, where H0 = 1. To transform a matrix via the WHT, the matrix, A, is multiplied by Hm. A must also be a 2m x 2m matrix as in

[image: image23.png]Awnr

(5)

Where X and Y are the 4x4 size input and output and H is defined as:

[image: image25.png]

(6)

The intra encoder call sequence to the transforms modules is listed below

vp8_encode_intra16x16mby()

// encodeinrtra.c
-> vp8_transform_intra_mby()
// encodeintra.c
 -> vp8_short_fdct8x4_c()

// dct.c

-> vp8_short_fdct4x4_c()
// dct.c
 -> vp8_build_dcblock(x)

// encodemb.c
 -> short_walsh4x4_c()

// dct.c
The inter encoding is performed from the same module fistpass.c where the function vp8_first_pass() calls vp8_encode_inter16x16y()

vp8_encode_inter16x16y()

// fistpass.c
-> vp8_transform_mby()

// encodemb.c
 -> vp8_short_fdct8x4_c()

// dct.c

-> vp8_short_fdct4x4_c()
// dct.c
 -> vp8_build_dcblock(x)

// encodemb.c
 -> short_walsh4x4_c()

// dct.c
A.9 Quantization

To quantize the residue, each coefficient is divided by one of six quantization factors, the selection of which depends upon the plane being encoded. In VCB, a plane is a set of two-dimensional data with metadata describing the type of that data. There are four types of planes in VCB: Y2, the virtual plane from the WHT, Y, the luminance plane, U and V, the two chroma planes. The quantization step also depend on the coefficient position, either DC – coefficient 0, or AC – coefficients 1 through 15. These values are specified in one of two ways, via an index in a look-up table, or as an offset to an index.

The baseline quantization factor, Yac, is specified as a 7-bit lookup into the AC quantizer lookup table. Yac is added to each of the other quantization factors, which are specified as 4-bit positive or negative offsets from the index of Yac.

Each other factor is specified as a four bit offset from the Yac index, and includes a sign bit. This means that if Yac = 16, then a value of Y1 = 3 would be 19, and a value of Y2 = 10 would be 6. This allows an index range of +/- 15 from the index of Yac. In the VCB bitstream, the five factors other than Yac are optional, and only included if a flag is true. If they are omitted, they are set to zero, which indicates that the same quantization factor as Yac should be used for them.

There are two tables defined for each plane (Y, U+V, Y2), one containing the de-quantization coefficients for the DC values (the 0th coefficient of the DCT) and one for all other coefficients representing higher frequencies. The choice of the correct value depends on the default quantization parameter (QP) for the whole image. The encoded MBs are stored in raster-scan order and start at the beginning of partition 2. In case the image was encoded using multiple segments, the corresponding segment ID precedes the DCT / WHT coefficients of each MB. According to the segment ID, the default QP-value that was set for the whole frame may be overridden.

A.9 Coding the Transformed Coefficients

The coefficients of the 16 sub-blocks of each macroblock are arithmetic coded, using the defined token set. The probability table for encoding this is four-dimensional, and is dependent on the type of plane being encoded, the sub-block being encoded, the local complexity, and the token tree structure.

There are four possible values for the first dimension of the probability table, depending on what type of plane is being encoded, either Y after a Y2 plane, a Y2 plane, a chroma plane (U or V), or a Y plane without a Y2 plane, index, respectively from 0 to 3.

The next dimension depends upon the position of the current subblock within the current macroblock, and is indexed from 0 to 7, known as bands. The mapping of subblocks to the index is shown in Figure 7. The upper half of the macroblock and the last subblock are treated specially, while the lower half shares index 6.
	0
	1
	2
	3

	6
	4
	5
	6

	6
	6
	6
	6

	6
	6
	6
	7

Figure 3 - Subblock Mapping to the Token Probability Table
The local complexity dimension attempts to match the local area to the corresponding probability. If there are many zeros in the local area, it is more likely that index 0 is used. If there are some, but not a lot, 1 is used. If there is a large amount, index 2 is used.

For the first coefficient of the macroblock, the surrounding macroblocks are examined. The index is the number of surrounding macroblocks that contain at least one non-zero coefficient in their residue. This way, the first coefficient’s probability accuracy depends on how similar it is to the immediately surrounding macroblocks. The remaining coefficients local complexity index is described by the following equation:

[image: image27.png]if leel =1

(7)

Where the local complexity index is determined by the previous coefficient encoded. This can have suboptimal behavior when wrapping around the macroblock, for instance, from position 3 to position 4.

As the meaning between the first and remaining coefficients is slightly different for the local complexity dimension, it is important to note that this is acceptable, because each subblock position maps to a band. Therefore, the first coefficient has its own probabilities for the cases of surrounding macroblocks, and it doesn’t interfere with the other meaning of local complexity, which is the value of the previous coefficient.

The quantization is imitated with the following call,

vp8cx_frame_init_quantizer()
// firstpass.c
and the encode sequence is listed below including the encoder modules.

vp8_encode_intra16x16mby()

// encodeinrtra.c

 -> vp8_quantize_mby()

// quantize.c

 -> vp8_regular_quantize_b()
// quantize.c
A.10 Loop Filter

There can be discontinuities at the boundaries between adjacent macroblocks that require filtering to reduce their perceptual impact on the viewer. This process occurs in the reconstruction loop of the encoder and is known as loop filtering.

The loop filter settings can be adapted on segment-level and there are two filtering modes of differing complexity.

The loop filter types may be specified at the frame level and/or MB level. The frame header can select one of three loop-filter types, “none”, “simple”, and “normal”. The filter signaled at MB, level overrides the one specified at frame level.

A gradient-based search for horizontal and vertical edges on MB and SMB borders is performed. There is no significant difference in handling both block types. The filtering occurs orthogonal to the edge’s direction and involves 1 to 4 pixels (extreme case: all pixels of the SMBs on both sides of the border are involved) on each side of the border, dependent on the choice of filter type and the sharpness setting. In case the gradients exceed a certain threshold limit, the border is assumed to be “natural” and no filtering is performed to preserve high-frequency details in the image.
 MBs encoded with the prediction modes B_PRED or SPLIT_MV are not filtered, which considerably speeds up the filtering process.

A.10 Simple filter

The simple filter processes the luma channel only. For detecting edges, 2 pixels on each side of the MB’s borders are evaluated. If the absolute difference is below a given threshold value, a simple low pass operation is applied to the 4 pixels, which roughly reduces the gradient by about 25%.

A.10 Normal filter

The normal filter applies to all channels, and utilizes up to 4 pixels on each side of the border to identify edges. The algorithms used here are much more complex than the ones for the simple filter. Amongst other things, more pixels are evaluated, the gradients for each pair of pixels are also taken into account and the low-pass function features different weights depending on the pixels relative position to the edge.

The horizontal loop filter is defined in vp8_loop_filter_mbh_c() and the vertical vp8_loop_filter_mbv_c() in the file loopfilter.c. The block edges are filtered with vp8_loop_filter_bv_c() for the vertical edges and vp8_loop_filter_bh_c() for the horizontal edges both are also defined in the loopfilter.c module.

A.11 Entropy Coder

VCB uses arithmetic coding as its final step in the encoding process to compress the residual after quantization, transformation, and prediction.

Every symbol of the alphabet is connected to a probability for it to appear. There exist different alphabets and probability tables for the different data sets to encode. The tables can be adapted for the whole frame when it is stated in the header. All instances of the entropy coders are independent from each other, which is utilized to speed up the decoding process, by separating the image into multiple partitions to parallelize the reverse DCT and de-quantization.

The largest alphabet is used for the compression of quantized DCT coefficients, which contains 12 unique values and 11 internal nodes to distinguish all possible values. Together with a return value that influences further decisions; such data-tuples can easily fit into an 8-bit value and therefore are stored as arrays of such 8-bit values.
A.11 Bit Representation of the Entropy Encoder
The probabilities that the boolean entropy encoder works with in VCB are unsigned 8-bit integers. To get the actual probability, the 8-bit integer is divided by 256. The state of the encoder is maintained with five values: the current bit position n; the bit string already written; the bottom value; an 8-bit integer; and the range, another 8-bit integer. The range is clamped to within a specified boundary, so that the probabilities remain accurate.

The value v is the next value of w, and the final value of v is the end condition, where v = x. v must satisfy the inequality in
[image: image29.png]Wt (5% i50) S v < W (5% (Lhor +irmg))

(8)

The scale of the bit position 8-bits ahead is generated as,

[image: image31.png]

(9)
Another value, split, is calculated as follows,

[image: image33.png]split = 1+ 2 irma D

(10)
and is constrained by

[image: image35.png]split € [1,i,,, —1]

(11)
The entropy encoding module vp8_quantize_b() in the reference software file encodemb.c is used for the implementation of the BoolCoder.
A.12 Segments and Slices

VCB does not use the slice concept directly. Each macroblock in a VCB frame can encode a segment identification number, 1 through 4, to indicate which quantization step size it uses. Figure 4 shows how VCB could organize its macroblocks into segments

	0
	0
	0
	2
	1
	1

	0
	0
	0
	2
	1
	1

	0
	0
	0
	2
	1
	1

	0
	0
	0
	2
	1
	1

	0
	2
	3
	3
	3
	3

	3
	3
	3
	3
	1
	3

Figure 4 Subblock Mapping to the Token Probability Table
The segments need not be contiguous or have any predefined order. However, there is a strict maximum of four segments in a VCB frame.

A.13 Prediction
VCB employs intra- and inter-frame prediction.

A.13 Intraframe prediction

There are 5 intra prediction modes defined for 16×16 luma MBs, which are simply referred to as mode DC_PRED, V_PRED, H_PRED, TM_PRED and, B_PRED. B_PRED splits the signal into 16 4x4 sub-blocks and selects a mode for each sub-block independently. The first four modes are also used for the intra prediction of 8x8 chroma blocks.

For B_PRED mode there are 10 available modes for predicting each 4x4 sub-block, (Figure 1 shows the different 4x4 Luma intra modes):
[image: image131.png]

[image: image132.png]

[image: image133.png]

[image: image134.png]

[image: image135.png]

[image: image136.png]

0 – vertical

1 - horizontal

[image: image137.png]

[image: image138.png]

[image: image139.png]

[image: image140.png]

[image: image141.png]

[image: image142.png]

[image: image143.png]

[image: image144.png]

[image: image145.png]

[image: image146.png]

[image: image147.png]

[image: image148.png]

[image: image149.png]

2 – DC

3 – diagonal down-left

[image: image150.png]

[image: image151.png]

[image: image152.png]

[image: image153.png]

[image: image154.png]

[image: image155.png]

[image: image156.png]

[image: image157.png]

[image: image158.png]

[image: image159.png]

[image: image160.png]

4 – diagonal down-right

5 – vertical-right

[image: image161.png]

[image: image162.png]

[image: image163.png]

[image: image164.png]

[image: image165.png]

[image: image166.png]

[image: image167.png]

[image: image168.png]

[image: image169.png]

[image: image170.png]

[image: image171.png]

6 – horizontal down

7 – vertical-[image: image172.png]

left

[image: image173.png]

[image: image174.png]

[image: image175.png]

[image: image176.png]

[image: image177.png]

8 – horizontal-up

7 – TM[image: image178.png]

_PRED

[image: image179.png]

[image: image180.png]

[image: image181.png]

[image: image182.png]

[image: image183.png]

Figure 1 - Intra prediction modes (4x4) used in VCB [2].

The encoder tests the application of all these modes and selects the modes causing the smallest sum of differences.

The pixel values of already encoded adjacent blocks are simply copied either in a horizontal, vertical or diagonal way in order to predict the contents of the current block. The sole exception is the true motion prediction mode TM_PRED (see Figure 1) which is defined as:

[image: image37.png]

(1)

This prediction mode is chosen in 20%-45% for all intra coded MBs [5][6].

Intraframe prediction is performed in raster-scan sequence. The predictor value is subtracted from the corresponding values of the prediction block. The residual values form the prediction residual block which is then transformed to the frequency domain via DCT or WHT transform.

The call sequence for luminance intra prediction mode and processing is shown below.

vpx_codec_encode()

-> vp8_first_pass()

 -> vp8_encode_intra()

 -> vp8_encode_intra16x16mby()

 -> vp8_build_intra_predictors_mby_ptr()

 -> ENCODEMB_INVOKE(&rtcd->encodemb, submby)()
// encodeintra.c
-> vp8_subtract_mby_c()

// encodeintra.c

A.13 Interframe prediction

When using interframe prediction, a good match for the current MB is sought in the available reference pictures. The motion vectors (MV) describe the displacement of a block from the reference image used to predict in the current MB. The two blocks are compared to establish good prediction. The MVs have up to quarter pixel accuracy for the luma plane and since the MVs for the chroma plane are simply the average of the corresponding four luma MVs, they show a virtual accuracy of an eighth of a pixel. The encoder may also subdivide the MB into number of sub-partitions, and assign MVs to each using the mode SPLIT_MV. The encoder selects the best mode and reference frame combination to use based on rate-distortion criteria.

Macroblocks in interframes can be intra-coded.

An alternate reference frame (ARF) is usually designated non-displayable, but it is possible for the encoder to encode an ARF and signal that it should be displayed if it chooses. In the encoder ARFs are constructed by temporally filtering a number of future frames and once created may be used as a reference for frames that are encoded subsequently. Again, the provided encoder only does this for 2-pass mode.

The call sequence for luminance interframe prediction starts at the same module based on existence of previous frames.

vpx_codec_encode()

-> vp8_first_pass()

// firstpass.c
 -> vp8_first_pass_motion_search()

// firstpass.c

 -> vp8_diamond_search_sad()

// mcomp.c

 -> vp8_mse16x16_c()

// varience_c.c
A.13 Motion Vectors

Motion estimation is carried out to quarter-pixel accuracy using a set of interpolation filters, and is based only on the luma component of the MB.

There are five ways to signal a MV:

	Name
	Description

	Nearest
	Use the nearest MV for this MB

	Near
	Use the next nearest MV for this MB

	Zero
	Use a zero MV for this MB

	New
	Use an explicit offset from implicit MV for this MB

	Split
	Use multiple MVs for this MB

Table ‎8‑1 - The Five Types of Motion Vectors

A coding context is defined based on the three neighboring macroblocks, above, left, and above-left. For macroblocks on the topmost or leftmost edge, or for those coded using an intra-prediction mode, the zero motion vector is assumed for the purposes of creating the context.

For each MB the VCB encoder considers a context comprising three neighboring MBs when working out a set of candidate MV predictors:

(1) The MB to the LEFT

(2) The MB ABOVE

(3) The MB ABOVE_LEFT

Starting with an empty list each candidate MV is evaluated in turn.

If (MV == (0,0)) or (MB encoded with INTRA mode)

{
ignore and move on to the next MV
}

else If (MV is not in the list)

{
add to the list with an initial score of +N
}

else

{
increment the counter of the corresponding MV in the list by +N
}

Where N = 2 for the ABOVE & LEFT MB MVs and N=1 for the ABOVE_LEFT MB MV.

Each MV in the list then has a score between 0 & 5, inclusive. The highest scoring MV is classified "BEST_MV" and will be used as an initial offset to code the real MV if NEW_MV mode is selected.

The highest scoring MV is also classified as "NEAREST", and the second highest scoring MV classified as "NEAR". It is these two MVs that are used if modes NEAREST_MV and NEAR_MV are signaled [3].
A.13 Interpolation and Filtering

Interpolation is used to achieve quarter pixel accuracy in the motion vector estimation. VCB defines two sets of interpolation filters, 6-tap bicubic filter set for higher quality estimation at the cost of greater computational load, and bilinear filter set for reduced complexity estimation.

The basic interpolation for either the bicubic or bilinear interpolation filter is by convolution. The process uses a clamped convolution which limits the output to 8 bits. This convolution proceeds through two passes, the horizontal initial pass is followed by a vertical pass applied to the resulting data.
[image: image38.png]3
iFlter (3,6) = Clampozes (Z bm-x[cl)
.

[image: image39.png]3
(Filter ,upe () = Clampycs (Z bm-x[cl)
.

For the initial horizontal pass, five additional rows of pixel data (two above and three below the block) are processed to create the nine rows that will be required by the vertical pass.

The additional rows are required so that there is data where the six-tap filter extends beyond the extent of the block itself. The second pass creates the final 4x4 output block by applying the same filter in the vertical direction.

The call sequence for luminance interframe prediction starts at the same module based on existence of previous frames.

vpx_codec_encode()

-> vp8_first_pass()

// firstpass.c
 -> vp8_first_pass_motion_search()

// firstpass.c
 -> vp8_diamond_search_sad()

// mcomp.c

 -> vp8_mse16x16_c()

// varience_c.c

A.13 Transforms

VCB uses two transforms to encode the residual signal, the 4x4 Discrete Cosine Transform (DCT) and the 4x4 Walsh-Hadamard Transform (WHT). The Transform block uses the prediction mode to decide whether or not to use the WHT or the DCT [4].

The DCT is used for the 16 Y, 4 U and 4 V sub-blocks (SMBs) of a MB. The WHT is used to transform a 4x4 block constructed from the 16 DC coefficients by the application of the DCT to the 16 sub-blocks. This is a stand-in for the 0th DCT coefficients of the Y sub-blocks. The additional sub-block is the 25th sub-block in a MB; the other 24 comprise the 16 luma and 8 chroma sub-blocks.
A.13 The Discrete Cosine Transform

The transformation Y from the spatial domain into the frequency domain is performed by convolving each SMB X of size 4×4 with a transformation kernel A and it’s transposed AT.

[image: image41.png]Y=A-X-AT

(2)

[image: image184.png]

The transformation used in VCB is very close to the definition of the discrete cosine transform (DCT), which is given by:
[image: image43.png]ideal
Aldea

 = [image: image45.png]

 where

(3)

The main difference is a multiplication with the factor √2 rather than a division by it. In order to guarantee plain integer arithmetic, the coefficients are stored as constants in an up-scaled version (factor 216). During the transformation process, the up-scaling can be reverted by applying bit shifts. Due to the large intermediate results, the transformation utilizes 16 bit integer multiplications [7].

[image: image185.png]

[image: image186.png]

[image: image187.png]

[image: image188.png]

[image: image189.png]

[image: image190.png]

[image: image191.png]

[image: image192.png]

[image: image193.png]

[image: image194.png]

[image: image195.png]

[image: image196.png]

[image: image197.png]

[image: image198.png]

[image: image199.png]

Each MB consists of either 16 or 17 SMBs containing luminance data or 4 SMBs for each luma channel, summing up to a total of 24 or 25 SMBs. The eventual 17th luma SMB is available in most prediction modes that process the whole 16×16 at once (all besides SPLIT_MV and B_PRED). It contains the second order luma information of the DC coefficients of all luma SMBs, which means, these coefficients are transformed via the WHT to further decrease correlation within a MB. In this case, all transformed SMBs start with the 1st coefficient instead of the 0th.

The DCT and WHT implementations used by VCB can be found in the file dct.c which has the functions vp8_short_fdct4x4_c(),vp8_short_fdct8x4_c() and vp8_short_walsh4x4_c(), however, on running the provided implementation, it will be noted that the assembly counterparts of these functions are the ones that are actually used (the assembly versions have the same function names with an _sse2 extension instead of the _c extension).

A.13 The Walsh-Hadamard Transform

The WHT, also known as the Walsh-Hadamard Transform, is recursively defined by:
[image: image47.png]T e

(4)
where Hm is a 2m x 2m matrix, where H0 = 1. To transform a matrix via the WHT, the matrix, A, is multiplied by Hm. A must also be a 2m x 2m matrix as in

[image: image49.png]Awnr

(5)

Where X and Y are the 4x4 size input and output and H is defined as:

[image: image51.png]

(6)

The intra encoder call sequence to the transforms modules is listed below

vp8_encode_intra16x16mby()

// encodeinrtra.c

-> vp8_transform_intra_mby()
// encodeintra.c

 -> vp8_short_fdct8x4_c()

// dct.c

-> vp8_short_fdct4x4_c()
// dct.c
 -> vp8_build_dcblock(x)

// encodemb.c
 -> short_walsh4x4_c()

// dct.c
The inter encoding is performed from the same module fistpass.c where the function vp8_first_pass() calls vp8_encode_inter16x16y()

vp8_encode_inter16x16y()

// fistpass.c
-> vp8_transform_mby()

// encodemb.c

 -> vp8_short_fdct8x4_c()

// dct.c

-> vp8_short_fdct4x4_c()
// dct.c
 -> vp8_build_dcblock(x)

// encodemb.c
 -> short_walsh4x4_c()

// dct.c

A.13 Quantization

To quantize the residue, each coefficient is divided by one of six quantization factors, the selection of which depends upon the plane being encoded. In VCB, a plane is a set of two-dimensional data with metadata describing the type of that data. There are four types of planes in VCB: Y2, the virtual plane from the WHT, Y, the luminance plane, U and V, the two chroma planes. The quantization step also depend on the coefficient position, either DC – coefficient 0, or AC – coefficients 1 through 15. These values are specified in one of two ways, via an index in a look-up table, or as an offset to an index.

The baseline quantization factor, Yac, is specified as a 7-bit lookup into the AC quantizer lookup table. Yac is added to each of the other quantization factors, which are specified as 4-bit positive or negative offsets from the index of Yac.

Each other factor is specified as a four bit offset from the Yac index, and includes a sign bit. This means that if Yac = 16, then a value of Y1 = 3 would be 19, and a value of Y2 = 10 would be 6. This allows an index range of +/- 15 from the index of Yac. In the VCB bitstream, the five factors other than Yac are optional, and only included if a flag is true. If they are omitted, they are set to zero, which indicates that the same quantization factor as Yac should be used for them.

There are two tables defined for each plane (Y, U+V, Y2), one containing the de-quantization coefficients for the DC values (the 0th coefficient of the DCT) and one for all other coefficients representing higher frequencies. The choice of the correct value depends on the default quantization parameter (QP) for the whole image. The encoded MBs are stored in raster-scan order and start at the beginning of partition 2. In case the image was encoded using multiple segments, the corresponding segment ID precedes the DCT / WHT coefficients of each MB. According to the segment ID, the default QP-value that was set for the whole frame may be overridden.

A.13 Coding the Transformed Coefficients

The coefficients of the 16 sub-blocks of each macroblock are arithmetic coded, using the defined token set. The probability table for encoding this is four-dimensional, and is dependent on the type of plane being encoded, the sub-block being encoded, the local complexity, and the token tree structure.

There are four possible values for the first dimension of the probability table, depending on what type of plane is being encoded, either Y after a Y2 plane, a Y2 plane, a chroma plane (U or V), or a Y plane without a Y2 plane, index, respectively from 0 to 3.

The next dimension depends upon the position of the current subblock within the current macroblock, and is indexed from 0 to 7, known as bands. The mapping of subblocks to the index is shown in Figure 7. The upper half of the macroblock and the last subblock are treated specially, while the lower half shares index 6.
	0
	1
	2
	3

	6
	4
	5
	6

	6
	6
	6
	6

	6
	6
	6
	7

Figure 3 - Subblock Mapping to the Token Probability Table

The local complexity dimension attempts to match the local area to the corresponding probability. If there are many zeros in the local area, it is more likely that index 0 is used. If there are some, but not a lot, 1 is used. If there is a large amount, index 2 is used.

For the first coefficient of the macroblock, the surrounding macroblocks are examined. The index is the number of surrounding macroblocks that contain at least one non-zero coefficient in their residue. This way, the first coefficient’s probability accuracy depends on how similar it is to the immediately surrounding macroblocks. The remaining coefficients local complexity index is described by the following equation:

[image: image53.png]if leel =1

(7)

Where the local complexity index is determined by the previous coefficient encoded. This can have suboptimal behavior when wrapping around the macroblock, for instance, from position 3 to position 4.

As the meaning between the first and remaining coefficients is slightly different for the local complexity dimension, it is important to note that this is acceptable, because each subblock position maps to a band. Therefore, the first coefficient has its own probabilities for the cases of surrounding macroblocks, and it doesn’t interfere with the other meaning of local complexity, which is the value of the previous coefficient.

The quantization is imitated with the following call,

vp8cx_frame_init_quantizer()
// firstpass.c

and the encode sequence is listed below including the encoder modules.

vp8_encode_intra16x16mby()

// encodeinrtra.c

 -> vp8_quantize_mby()

// quantize.c

 -> vp8_regular_quantize_b()
// quantize.c

A.13 Loop Filter

There can be discontinuities at the boundaries between adjacent macroblocks that require filtering to reduce their perceptual impact on the viewer. This process occurs in the reconstruction loop of the encoder and is known as loop filtering.

The loop filter settings can be adapted on segment-level and there are two filtering modes of differing complexity.

The loop filter types may be specified at the frame level and/or MB level. The frame header can select one of three loop-filter types, “none”, “simple”, and “normal”. The filter signaled at MB, level overrides the one specified at frame level.

A gradient-based search for horizontal and vertical edges on MB and SMB borders is performed. There is no significant difference in handling both block types. The filtering occurs orthogonal to the edge’s direction and involves 1 to 4 pixels (extreme case: all pixels of the SMBs on both sides of the border are involved) on each side of the border, dependent on the choice of filter type and the sharpness setting. In case the gradients exceed a certain threshold limit, the border is assumed to be “natural” and no filtering is performed to preserve high-frequency details in the image.
 MBs encoded with the prediction modes B_PRED or SPLIT_MV are not filtered, which considerably speeds up the filtering process.

A.13 Simple filter

The simple filter processes the luma channel only. For detecting edges, 2 pixels on each side of the MB’s borders are evaluated. If the absolute difference is below a given threshold value, a simple low pass operation is applied to the 4 pixels, which roughly reduces the gradient by about 25%.

A.13 Normal filter

The normal filter applies to all channels, and utilizes up to 4 pixels on each side of the border to identify edges. The algorithms used here are much more complex than the ones for the simple filter. Amongst other things, more pixels are evaluated, the gradients for each pair of pixels are also taken into account and the low-pass function features different weights depending on the pixels relative position to the edge.

The horizontal loop filter is defined in vp8_loop_filter_mbh_c() and the vertical vp8_loop_filter_mbv_c() in the file loopfilter.c. The block edges are filtered with vp8_loop_filter_bv_c() for the vertical edges and vp8_loop_filter_bh_c() for the horizontal edges both are also defined in the loopfilter.c module.

A.13 Entropy Coder

VCB uses arithmetic coding as its final step in the encoding process to compress the residual after quantization, transformation, and prediction.

Every symbol of the alphabet is connected to a probability for it to appear. There exist different alphabets and probability tables for the different data sets to encode. The tables can be adapted for the whole frame when it is stated in the header. All instances of the entropy coders are independent from each other, which is utilized to speed up the decoding process, by separating the image into multiple partitions to parallelize the reverse DCT and de-quantization.

The largest alphabet is used for the compression of quantized DCT coefficients, which contains 12 unique values and 11 internal nodes to distinguish all possible values. Together with a return value that influences further decisions; such data-tuples can easily fit into an 8-bit value and therefore are stored as arrays of such 8-bit values.
A.13 Bit Representation of the Entropy Encoder
The probabilities that the boolean entropy encoder works with in VCB are unsigned 8-bit integers. To get the actual probability, the 8-bit integer is divided by 256. The state of the encoder is maintained with five values: the current bit position n; the bit string already written; the bottom value; an 8-bit integer; and the range, another 8-bit integer. The range is clamped to within a specified boundary, so that the probabilities remain accurate.

The value v is the next value of w, and the final value of v is the end condition, where v = x. v must satisfy the inequality in
[image: image55.png]Wt (5% i50) S v < W (5% (Lhor +irmg))

(8)

The scale of the bit position 8-bits ahead is generated as,

[image: image57.png]

(9)
Another value, split, is calculated as follows,

[image: image59.png]split = 1+ 2 irma D

(10)
and is constrained by

[image: image61.png]split € [1,i,,, —1]

(11)
The entropy encoding module vp8_quantize_b() in the reference software file encodemb.c is used for the implementation of the BoolCoder.
A.13 Segments and Slices

VCB does not use the slice concept directly. Each macroblock in a VCB frame can encode a segment identification number, 1 through 4, to indicate which quantization step size it uses. Figure 4 shows how VCB could organize its macroblocks into segments

	0
	0
	0
	2
	1
	1

	0
	0
	0
	2
	1
	1

	0
	0
	0
	2
	1
	1

	0
	0
	0
	2
	1
	1

	0
	2
	3
	3
	3
	3

	3
	3
	3
	3
	1
	3

Figure 4 Subblock Mapping to the Token Probability Table
The segments need not be contiguous or have any predefined order. However, there is a strict maximum of four segments in a VCB frame.
Annex B

Reference Software

B.14 VCB Encode Parameter Guide

The following explains the command line instructions that can be used to operate the encoder implementation in the reference software.

This document details some of the encoder controls that are available in VCB. Different encoders or tools will map these controls in different ways, but knowing what is available should at least give you some idea of what to look for. In this document we use the parameter names defined in the sample encoder, vpxenc.exe. A summary of the command line usage and parameter set is given at the end [11].
B.15 The Basics

This section describes the basic parameters for setting image dimensions, output frame rate, encoder speed profile and the target bitrate.

--width=<arg>
(or -w <arg>)

--height=<arg>
(or -h <arg>)
Image dimensions (width and height) is only required for a raw YUV input. The recommended input format is Y4M files, as these will set the dimensions and frame rate automatically.
--fps=<arg>
Output frame rate is expressed as a fraction. For example for 29.97 frames per second you could specify 30000/1001 is also only required for “raw” YUV input. The recommended input format is Y4M files, as these will set the dimensions and frame rate automatically.

--target-bitrate=<arg>
What bitrate per second should the encoder try and target (in vpxenc the number is assumed to be in kbits/second). The bitrate chosen will obviously have a big effect on quality. In general the larger this number the better the quality but the bigger the output files size. However, it is worth noting that this number is only a guideline to the encoder. How strictly the encoder tries to adhere to the value that you set, either on a frame by frame basis, or averaged over the duration of the clip, is controlled by other parameters.

B.16 Encode Quality vs. Speed

In general, the more time the encoder spends coding each frame the better the job it will do, though it is very much a case of diminishing returns.

The basic speed control parameters in VCB are as follows:

--best
This usually gives the best quality output but is extremely slow. In general this is not a recommended setting unless you have a lot of time on your hands

--good
This will probably be what most users use most of the time. Within the scope of “good” quality there are 6 further speed steps that are set through the --cpu-used parameter (values from 0 to 5). Setting --good quality and --cpu-used=0 will give quality that is usually very close to and ven sometimes better than that obtained with --best but the encoder will typically run about twice as fast. Setting --cpu-used=1 or --cpu-used=2 will give further significant boosts to encode speed, but will start to have a more noticeable impact on quality and may also start to effect the accuracy of the data rate control. Setting a value of 4 or 5 will turn off “rate distortion optimization” which has a big impact on quality, but also greatly speeds up the encoder
--rt
Real-time mode allows the encoder to auto adjust the speed vs. quality trade-off in order to try and hit a particular CPU utilization target. In this mode the --cpu-used parameter controls the %cpu target as follows:

target cpu utilisation = (100*(16-cpu-used)/16)%
Legal values for -cpu-used when combined with --rt mode are (0-15). It is worth noting that in --rt mode the encode quality will depend on how hard a particular clip or section of a clip is and how fast the encoding machine is. In this mode the results will thus vary from machine to machine and even from run to run depending on what else you are doing.

--cpu-used
The meaning depends on the mode above. Negative values are for debug and force specific internal speed configurations
B.17 Rate Control

This section describes more advanced rate control parameters and 1-pass vs. 2-pass encoding.

B.17 VBR, CBR and CQ Mode

VCB offers VBR (variable bitrate) and CBR (constant bitrate) encoding options, and a VBR variant called CQ (constrained quality) mode.

--end-usage=<arg> (vbr, cbr, cq)

--cq-level=<arg> (valid values 0-63, default 10)
CBR attempts to keep the bitrate more constant, though in most implementations CBR does not actually try to force all frames to be exactly the same size, as this tends to harm video quality. Rather, in CBR mode, the codec tries to remain within given buffering constraints. It can spend a few more bits on one frame or short section, but cannot sustain a higher than average data rate for too long, as its notional buffers will run empty. Likewise, it can choose to “save up” bits during an easy section, but only up to a certain upper limit. If the user sets CBR mode but gives very loose buffer restrictions, then the result will start to resemble VBR. At the opposite extreme if the restrictions are very tight, then this mode will move towards true CBR where all frames are encoded as near as possible at the same size.

CQ mode is a special variant of VBR. It is designed as a fire-and-forget mechanism for encoding a large set of clips such that, as much as possible, the output stays within given quality and size constraints across the set. CQ mode exposes an additional parameter (--cq-level), and the meaning of the --target-bitrate parameter changes to be the “target maximum rate”.
In CQ mode the encoder will try to encode normal frames (all frames apart from KEY frames, GOLDEN frames and alternative reference frames) at a quantizer / quality level of --cq-level, provided that this does not cause the bitrate to rise above the target maximum value. KEY frames, GOLDEN frames and alt ref frames may be coded at a lower “q” value, but the minimum is still linked to the user-selected value, and in all cases --min-q and --max-q are treated as hard limits. In practice this means that easy clips may undershoot the target maximum bitrate, because they are constrained by the CQ level, but harder clips will be bounded by the target maximum data rate and will increasingly revert to standard VBR behavior.
CQ mode is available for one-pass encodes, but is generally intended for two-pass. For one-pass, CQ applies the user cq-value, but can’t adapt to a higher value if the clip is difficult.

In the two-pass variant of CQ mode there is a further refinement. If the first pass analysis suggests that a clip is too difficult to be encoded at the user-selected --cq-level, then rather than code part of the clip at this level and the rest at a much lower quality, it tries to pick a sustainable “auto-cq” level. Under no circumstances will this “auto-cq” value drop below the user-selected value.
--buf-initial-sz=<arg>

--buf-optimal-sz=<arg>

--buf-sz=<arg>
These three parameters set (respectively) the initial assumed buffer level, the optimal level and an upper limit that the codec should try not to exceed. The numbers given are in ‘milliseconds worth of data’ so the actual number of bits that these number represent depends also on the target bit rate that the user has set. Typical recommended values for these three parameters might be 4000, 5000 and 6000 ms, respectively.

--undershoot-pct=<arg> (valid values 1-100)

--overshoot-pct=<arg> (no longer valid)
This parameter causes the codec to try and deliberately undershoot its normal data rate target for each frame in order to cause a notional decoder buffer to fill up. In effect it forces the codec to try and save bits if it can, ready for more difficult sections that it may encounter later. This is occasionally useful in 1-pass CBR mode but should generally be ignored or set to 100 for 2-pass encodes and when using VBR mode.

VBR attempts to distribute the bits between different frames or sections in order to maximize quality. Typically hard sections will be allocated more bits to ensure that the quality in these sections does not drop too low, at the expense of easy sections that will still look good even if coded with a lower than average number of bits per frame. Even in VBR mode though, there typically have to be some constraints on how skewed the distribution of bits can be.
B.18 One-Pass vs. Two-Pass

--passes=<arg> (or -p <arg>) (valid values 1 or 2)
Like many other codecs VCB offers both one-pass and two-pass encoding. In some situations the choice is obvious. For example a video conferencing or live streaming application can’t use two-pass, though for the latter case we are working on a sort of 1.5-pass solution that we call lagged compress which will give some of the benefits of a two-pass encode with a lag or latency of only a few frames.

In general two-pass encoding results in better quality and more accurate data rate control. The idea is that the encoder makes a first pass through the video data and collects statistics about each frame that can then be used to better allocate bits between different frames or sections of the video. Many two-pass (or even multi-pass) encoders do a full encode in the first pass and create a valid output video and this certainly has some advantages, but at the moment the VCB two-pass encoder only does a partial encode in the first pass that results in a small set of statistics for each frame. In contrast a true one-pass encoder never knows what is coming next so it has to base its encoding decision on recent history. For example when deciding how big to make a KEY frame at a scene cut it does not know how well the KEY frame is going to predict subsequent frames (e.g. is it going to be a static scene or is there a lot of motion) or how long it will be until the next KEY frame. Similarly, because one section is easy to encode does not mean that a later section will also be easy (or vice versa) so it is difficult for a one-pass encoder to distribute more bits to hard sections at the expense of easier sections (see discussion of CBR vs. VBR).

B.18 Additional 2-Pass Rate Control Parameters

--minsection-pct=<arg> (recommended value 0-20)

--maxsection-pct=<arg> (recommended value 200-400 CBR or 400-800 for VBR)
These two parameters set a nominal target bitrate range within which the VBR and CBR algorithms should try and remain when allocating bits to frames or sections. The numbers represent a percentage of the average allocation per frame. The restrictions are less stringent in VBR and in particular are relaxed for certain types of frame (for example KEY frames or GOLDEN frame updates).

--bias-pct=<arg> (recommended value 50)
This parameter is misleadingly named in vpxenc as it does not tie directly to any sort of percentage. Basically it controls how the two-pass algorithm distributes bits between easier and harder sections or frames, based on complexity statistics gathered for each frame during the first pass. If you select a value of 100 then the allocation will be linear based on the relative complexity value for each frame when compared to the average for the clip (within the limits set by --minsection-pct and --maxsection-pct). For values of less than 100 the allocation does not increase (or decrease) as sharply in response to a frames relative complexity and a value of 0 means that the complexity is ignored completely when allocating bits. We usually recommend a value of 50.

The following parameters apply to both CBR and VBR modes

--min-q=<arg> (valid values 0-63, recommended value 0-4)

--max-q=<arg> (valid values --min-q to 63, recommended value 50-63)
These two parameters define the range of quantizers that the rate control algorithm may use. A lower number equates to higher quality but more bits (note, however, that these are not real quantizer values just control values). In effect these two parameters can trump all the other rate control parameters. For example if you have set a maximum of 10 then the encoder will never use a quantizer greater than the value represented by 10, even if it massively overshoots the target bit rate. They are useful however, because they allow the user to set upper and lower quality limits for a clip.

B.19 KEY Frame Spacing

VCB supports automatic detection of scene cuts and insertion of KEY frames. However the user can also specify a maximum interval between KEY frames (in frames, so for example at 30 fps 120 would be every 4 seconds).

--kf-max-dist=<arg>

--kf-min-dist=<arg>
 (not currently supported)
B.20 The Alternate (or Constructed) Reference Frame

The alternate or constructed reference frame is currently only available for two-pass encodes. This frame buffer can be populated with arbitrary data by the encoder and updated in the bitstream but it is never displayed.

--auto-alt-ref=<arg> (0= disabled, 1=enabled <default 0>)

--lag-in-frames=<arg> (0-25 : recommended value 16)
When --auto-alt-ref is enabled the default mode of operation is to either populate the buffer with a copy of the previous GOLDEN frame when this frame is updated, or with a copy of a frame derived from some point of time in the future (the choice is made automatically by the encoder). The --lag-in-frames parameter defines an upper limit on the number of frames into the future that the encoder can look.

However, many other options are possible and one alternative that has been implemented uses a temporally filtered image derived from a group of future frames. The extra control parameters for this are:

--arnr-maxframes=<arg> (number of frames to filter over 0-25)

--arnr-strength=<arg> (strength of the temporal filter 0-6)

--arnr-type=<arg> (not currently supported)
Use of --auto-alt-ref can substantially improve quality in many situations (though there are still a few where it may hurt). Temporal filtering is experimental and is disabled by default.
B.21 Multi-threaded Encode and Decode

VCB supports the use of multiple threads in the encoder and decoder.

--threads=<arg> (or -t <arg>) (recommended value : number of real cores - 1)
The --threads parameter determines the number of threads that will be allocated to the encode process. VCB supports a mechanism whereby rows of macro-blocks can be simultaneously encoded on different threads. However, the entropy encoding stage is limited to 1 thread unless a second parameter, --token-parts, is set. It is worth noting that if the threads number is set to > 1 then the results of repeat encodes will not always be exactly the same.
--token-parts=<arg> (0-3: recommended 0 for small images, 2 or 3 for HD))
Setting the --token-parts argument to a non 0 value directs the encoder to split the coefficient encoding across multiple data partitions that can be encoded and decoded independently. At the moment this parameter is interpreted as follows (0 = 1 coefficient partition, 1 = 2 partitions, 2 = 4 partitions, 3 = 8 partitions)

The decoder will usually automatically use an appropriate number of threads according to how many cores are available but it can only use multiple threads for the coefficient data if the encoder selected --token-parts > 0 at encode time.
B.22 Temporal and Spatial Resampling

VCB supports both temporal and spatial resampling. These are specialist parameters and are not generally recommended. Temporal resampling is only used in CBR mode and causes the encoder to drop frames if it cannot prevent its notional buffer from running empty in any other way. Spatial resampling involves scaling the image down to a smaller size in the encoder (as an alternative method for reducing the number of bits per frame to increasing the quantizer) and then scaling it back up in the decoder. Note that frames can be dropped at any time but the encoder can only change its spatial re-sampling ratio on a KEY frame.

--drop-frame=<arg> (0=disabled to 100)
The drop frame parameter specifies a buffer fullness threshold at which the encoder starts to drop frames as a percentage of the optimal value specified by —buf-optimal-sz. If it is set to 0 then dropping of frames is disabled.

--resize-allowed=<arg> (0 disabled, 1 enabled)

--resize-down=<arg> (0-100)

--resize-up=<arg> (--resize-down-100)
The resize up and down parameters are high and low buffer fullness “watermark” levels at which we start to consider changing down to a smaller internal image size, if the buffer is being run down, or back up to a larger size if the buffer is filling up again. The numbers represent a percentage of —buf-optimal-sz.

B.23 Video Conferencing

--error-resilient=<arg> (0 disabled, 1 enabled <default 0>)
In error resilient mode encoder context tables are updated to a fully defined state not just on KEY frames but also whenever a “GOLDEN Frame” is encoded (a special kind of frame that is usually encoded at a higher quality that updates the “GOLDEN Frame reference buffer”. This frame can then be used to quickly recover if frame packets are dropped without the need to code a full KEY frame. Error resilient mode is not recommended for other scenarios.

--static-thresh=<arg>
The static threshold imposes a change threshold on blocks below which they will be skipped by the encoder. This can be used to suppress signal noise and enhance the encode speed in situations where there are low levels of real movement. Values of above 1000 are not recommended and any non zero value runs the risk of introducing artifacts caused by regions of the image not being updated. In most scenarios this value should be set to 0.

B.24 Miscellaneous

--profile (0-3: default and recommended value = 0)
This parameter sets the encoder profile. For non-zero values the encoder increasingly optimizes for reduced complexity playback on low powered devices at the expense of encode quality. For example using 1 tells the encoder only to use only bi-linear sub pixel filtering and a simplified loop filter. In general most users will want to set a value of 0 or ignore this parameter unless they are encoding high resolution content and require playback on very low power devices.

--sharpness=<arg> (0-7: default and recommended value = 0)
This parameter affects the loop filter. Anything above 0 weakens the deblocking effect of the loop filter.

--noise-sensitivity=<arg> (0-6: default and recommended value = 0)
The encoder includes a crude temporal noise filter. There are better filtering options available in specialist pre-processing products, so unless you are encoding a very noisy source and have no easy alternatives this should be set to 0. Non-zero values equate to increasingly strong filtration.

--tune=<arg> (psnr, ssim: default = psnr)
Optimize output for PSNR or SSIM quality measurement. Certain input data or modifications to vpxenc benefit PSNR and harm SSIM, or vice versa. The --tune parameter can be used to explicitly optimize for one or the other index.

--timebase=<arg> (default = 1/1000)
The desired precision of the timestamps in the output is expressed in fractional seconds. Default is 1/1000 (1 ms).
B.25 Sample Command Lines

In each case parameters that are particularly relevant to the scenario are highlighted.

B.25 2-Pass Best Quality VBR Encoding

vpxenc input_1280_720_30fps.yuv -o output_vp8.webm \

 --i420 -w 1280 -h 720 -p 2 -t 4 \

 --best --target-bitrate=2000 --end-usage=vbr \

 --auto-alt-ref=1 --fps=30000/1001 -v \

 --minsection-pct=5 --maxsection-pct=800 \

 --lag-in-frames=16 --kf-min-dist=0 --kf-max-dist=360 \

 --token-parts=2 --static-thresh=0 --drop-frame=0 \

 --min-q=0 --max-q=60

Alternative option to --best use --good --cpu-used=0
B.25 2-Pass Faster VBR Encoding

vpxenc input_1280_720_30fps.yuv -o output_vp8.webm \

 --i420 -w 1280 -h 720 -p 2 -t 4 \

 --good --cpu-used=1 --target-bitrate=2000 --end-usage=vbr \

 --auto-alt-ref=1 --fps=30000/1001 -v \

 --minsection-pct=5 --maxsection-pct=800 \

 --lag-in-frames=16 --kf-min-dist=0 --kf-max-dist=360 \

 --token-parts=2 --static-thresh=0 \

 --min-q=0 --max-q=60

B.25 2-Pass VBR Encoding for Smooth Playback on Low-end Hardware

vpxenc input_1280_720_30fps.yuv -o output_vp8.webm \

 --i420 -w 1280 -h 720 -p 2 -t 4 \

 --good --cpu-used=0 --target-bitrate=2000 --end-usage=vbr \

 --auto-alt-ref=1 --fps=30000/1001 -v \

 --minsection-pct=15 --maxsection-pct=400 \

 --lag-in-frames=16 --profile=1 \

 --kf-min-dist=0 --kf-max-dist=360 --static-thresh=0 \

 --min-q=4 --max-q=63

B.25 2-Pass CBR Encoding for Limited-bandwidth Streaming

vpxenc input_640_360_30fps.yuv -o output_vp8.webm \

 --i420 -w 640 -h 360 -p 2 \

 --good --cpu-used=0 --target-bitrate=400 --end-usage=cbr \

 --undershoot-pct=95 \

 --buf-sz=6000 --buf-initial-sz=4000 --buf-optimal-sz=5000 \

 --drop-frame=70 --fps=30000/1001 -v \

 --kf-min-dist=0 --kf-max-dist=360 --static-thresh=0 \

 --min-q=4 --max-q=63

It may be necessary to use --drop-frame (perhaps set to around 25) and/or --resize-allowed (see the section on temporal and spatial resampling above) if hitting buffer constraints is an absolute requirement.
B.25 2-Pass VBR Encoding for Noisy / Low-quality Input Source

vpxenc input_1280_720_30fps.yuv -o output_vp8.webm \

 --i420 -w 1280 -h 720 -p 2 -t 4 \

 --good --cpu-used=0 --target-bitrate=2000 --end-usage=vbr \

 --auto-alt-ref=1 --fps=30000/1001 -v \

 --minsection-pct=5--maxsection-pct=800 --lag-in-frames=16 \

 --kf-min-dist=0 --kf-max-dist=360 \

 --token-parts=2 \

 --min-q=4 --max-q=60 \

 --arnr-maxframes=5 --arnr-strength=3
B.25 1-Pass Good Quality VBR Encoding

vpxenc input_1280_720_30fps.yuv -o output_vp8.webm \

 --i420 -w 1280 -h 720 -p 1 -t 4 \

 --good --cpu-used=0 --target-bitrate=2000 --end-usage=vbr \

 --fps=30000/1001 -v \

 --kf-min-dist=0 --kf-max-dist=360 \

 --token-parts=2 --static-thresh=0 \

 --min-q=0 --max-q=63

B.25 1-Pass Fast VBR Encoding

vpxenc input_1280_720_30fps.yuv -o output_vp8.webm \

 --i420 -w 1280 -h 720 -p 1 -t 4 \

 --good --cpu-used=3 --target-bitrate=2000 --end-usage=vbr \

 --fps=30000/1001 -v \

 --kf-min-dist=0 --kf-max-dist=360 \

 --token-parts=2 --static-thresh=1000 \

 --min-q=0 --max-q=63

B.25 Real-time CBR Encoding and Streaming

vpxenc input_640_480_15fps.yuv -o output_vp8.webm \

 --i420 -w 640 -h 480 -p 1 -t 4 \

 --rt --cpu-used=4 --end-usage=cbr --target-bitrate=500 \

 --fps=15000/1001 --undershoot-pct=95 \

 --buf-sz=6000 --buf-initial-sz=4000 --buf-optimal-sz=5000 -v \

 --kf-max-dist=999999 \

 --min-q=4 --max-q=56

It may be necessary to use --drop-frame (perhaps set to around 25) and/or --resize-allowed (see section on temporal and spatial resampling above) if hitting buffer constraints is an absolute requirement.
B.26 vpxenc Parameter Summary

B.26 Usage:

vpxenc <options> -o dst_filename src_filename
B.26 Options:

-D, --debug Debug mode (makes output deterministic)

-o <arg>, --output=<arg> Output filename

 --codec=<arg> Codec to use

-p <arg>, --passes=<arg> Number of passes (1/2)

 --pass=<arg> Pass to execute (1/2)

 --fpf=<arg> First pass statistics file name

 --limit=<arg> Stop encoding after n input frames

-d <arg>, --deadline=<arg> Deadline per frame (usec)

 --best Use Best Quality Deadline

 --good Use Good Quality Deadline

 --rt Use Realtime Quality Deadline

-v, --verbose Show encoder parameters

 --psnr Show PSNR in status line

 --ivf Output IVF (default is WebM)

-P,
--output-partitions

Makes encoder output partitions.

Requires IVF output!

 --q-hist=<arg> Show quantizer histogram (n-buckets)

 --rate-hist=<arg> Show rate histogram (n-buckets)
B.26 Encoder Global Options:

 --yv12 Input file is YV12

 --i420 Input file is I420 (default)

-u <arg>, --usage=<arg> Usage profile number to use

-t <arg>, --threads=<arg> Max number of threads to use

 --profile=<arg> Bitstream profile number to use

-w <arg>, --width=<arg> Frame width

-h <arg>, --height=<arg> Frame height

 --stereo-mode=<arg> Stereo 3D video format

 mono, left-right, bottom-top, top-bottom, right-left

 --timebase=<arg> Output timestamp precision (fractional seconds)

 --fps=<arg> Stream frame rate (rate/scale)

 --error-resilient=<arg> Enable error resiliency features

 --lag-in-frames=<arg> Max number of frames to lag
B.26 Rate Control Options:

 --drop-frame=<arg> Temporal resampling threshold (buf %)

 --resize-allowed=<arg> Spatial resampling enabled (bool)

 --resize-up=<arg> Upscale threshold (buf %)

 --resize-down=<arg> Downscale threshold (buf %)

 --end-usage=<arg> Rate control mode

 vbr, cbr, cq

 --target-bitrate=<arg> Bitrate (kbps)

 --min-q=<arg> Minimum (best) quantizer

 --max-q=<arg> Maximum (worst) quantizer

 --undershoot-pct=<arg> Datarate undershoot (min) target (%)

 --overshoot-pct=<arg> Datarate overshoot (max) target (%)

 --buf-sz=<arg> Client buffer size (ms)

 --buf-initial-sz=<arg> Client initial buffer size (ms)

 --buf-optimal-sz=<arg> Client optimal buffer size (ms)
B.26 Two-pass Rate Control Options:

 --bias-pct=<arg> CBR/VBR bias (0=CBR, 100=VBR)

 --minsection-pct=<arg> GOP min bitrate (% of target)

 --maxsection-pct=<arg> GOP max bitrate (% of target)
B.26 KEYframe Placement Options:

 --kf-min-dist=<arg> Minimum KEYframe interval (frames)

 --kf-max-dist=<arg> Maximum KEYframe interval (frames)

 --disable-kf Disable KEYframe placement
B.26 Other VCB-Specific Options:

 --cpu-used=<arg> CPU Used (-16..16)

 --auto-alt-ref=<arg> Enable automatic alt reference frames

 --noise-sensitivity=<arg> Noise sensitivity (frames to blur)

 --sharpness=<arg> Filter sharpness (0-7)

 --static-thresh=<arg> Motion detection threshold

 --token-parts=<arg> Number of token partitions to use, log2

 --arnr-maxframes=<arg> AltRef Max Frames

 --arnr-strength=<arg> AltRef Strength

 --arnr-type=<arg> AltRef Type

 --tune=<arg> Material to favor

 psnr, ssim

 --cq-level=<arg> Constrained Quality Level

 --max-intra-rate=<arg> Max I-frame bitrate (pct)

Stream timebase (--timebase):

 The desired precision of timestamps in the output, expressed

 in fractional seconds. Default is 1/1000.
B.27 Data Structures

The following tables list the main data structures used in the provided implementation. These have been included here to allow an easier navigation of the software.

Table ‎14‑1 The MACROBLOCK data structure

	typedef struct macroblock

	{

	 DECLARE_ALIGNED(16, short, src_diff[400]); /* 25 blocks Y,U,V,Y2 */

	 DECLARE_ALIGNED(16, short, coeff[400]); /* 25 blocks Y,U,V,Y2 */

	 DECLARE_ALIGNED(16, unsigned char, thismb[256]); /*This means that this mb is 256 chars */

	 unsigned char *thismb_ptr;

	 /* 16 Y, 4 U, 4 V, 1 DC 2nd order block */

	 BLOCK block[25];

	 YV12_BUFFER_CONFIG src;

	 MACROBLOCKD e_mbd;

	 PARTITION_INFO *partition_info; /* work pointer */

	 PARTITION_INFO *pi;/* Corresponds to upper left visible macroblock */

	 PARTITION_INFO *pip; /* Base of allocated array */

	 int ref_frame_cost[MAX_REF_FRAMES]; /* MAX_REF_FRAMES is 4 */

	 search_site *ss;

	 int ss_count;

	 int searches_per_step;

	 int errorperbit;

	 int sadperbit16;

	 int sadperbit4;

	 int rddiv;

	 int rdmult;

	 unsigned int * mb_activity_ptr;

	 int * mb_norm_activity_ptr;

	 signed int act_zbin_adj;

	 signed int last_act_zbin_adj;

	 int *mvcost[2];

	 int *mvsadcost[2];

	 int (*mbmode_cost)[MB_MODE_COUNT];

	 int (*intra_uv_mode_cost)[MB_MODE_COUNT];

	 int (*bmode_costs)[10][10];

	 int *inter_bmode_costs;

	 int (*token_costs)[COEF_BANDS][PREV_COEF_CONTEXTS] [MAX_ENTROPY_TOKENS];

	 /* These define limits to motion vector components to prevent

	 * them from extending outside the UMV borders.

	 */

	 int mv_col_min;

	 int mv_col_max;

	 int mv_row_min;

	 int mv_row_max;

	 int skip;

	 unsigned int encode_breakout;

	 signed char *gf_active_ptr;

	 unsigned char *active_ptr;

	 MV_CONTEXT *mvc;

	 int optimize;

	 int q_index;

	#if CONFIG_TEMPORAL_DENOISING

	 MB_PREDICTION_MODE best_sse_inter_mode;

	 int_mv best_sse_mv;

	 MV_REFERENCE_FRAME best_reference_frame;

	 MV_REFERENCE_FRAME best_zeromv_reference_frame; __NOTE: Here we have two types of frames, one with zero MV and the other with MV__

	 unsigned char need_to_clamp_best_mvs;

	#endif

	 int skip_true_count;

	 unsigned int coef_counts [BLOCK_TYPES] [COEF_BANDS] [PREV_COEF_CONTEXTS] [MAX_ENTROPY_TOKENS];

	 unsigned int MVcount [2] [MVvals]; /* (row,col) MV cts this frame */

	 int ymode_count [VP8_YMODES]; /* intra MB type cts this frame */

	 int uv_mode_count[VP8_UV_MODES]; /* intra MB type cts this frame */

	 int64_t prediction_error;

	 int64_t intra_error;

	 int count_mb_ref_frame_usage[MAX_REF_FRAMES]; /* MAX_ERROR_BINS is 1024*/

	 int rd_thresh_mult[MAX_MODES];

	 int rd_threshes[MAX_MODES];

	 unsigned int mbs_tested_so_far;

	 unsigned int mode_test_hit_counts[MAX_MODES];

	 int zbin_mode_boost_enabled;

	 int zbin_mode_boost;

	 int last_zbin_mode_boost;

	 int last_zbin_over_quant;

	 int zbin_over_quant;

	 int error_bins[MAX_ERROR_BINS];

	 void (*short_fdct4x4)(short *input, short *output, int pitch); /* NOTE: Different size blocks have different DCT implementations */

	 void (*short_fdct8x4)(short *input, short *output, int pitch);

	 void (*short_walsh4x4)(short *input, short *output, int pitch);

	 void (*quantize_b)(BLOCK *b, BLOCKD *d); /* A quantization function prototype */

	 void (*quantize_b_pair)(BLOCK *b1, BLOCK *b2, BLOCKD *d0, BLOCKD *d1);

	} MACROBLOCK;

Table ‎14‑2 The BLOCK data structure

	typedef struct block

	{

	 /* 16 Y blocks, 4 U blocks, 4 V blocks each with 16 entries */

	 short *src_diff;

	 short *coeff;

	

	 /* 16 Y blocks, 4 U blocks, 4 V blocks each with 16 entries */

	 short *quant;

	 short *quant_fast;

	 short *quant_shift;

	 short *zbin;

	 short *zrun_zbin_boost;

	 short *round;

	

	 /* Zbin Over Quant value */

	 short zbin_extra;

	

	 unsigned char **base_src;

	 int src;

	 int src_stride;

	} BLOCK;

Table ‎14‑3 The YV12_BUFFER_CONFIG data structure

	 typedef struct yv12_buffer_config {

	 int y_width;

	 int y_height;

	 int y_crop_width;

	 int y_crop_height;

	 int y_stride;

	

	 int uv_width;

	 int uv_height;

	 int uv_stride;

	

	 uint8_t *y_buffer;

	 uint8_t *u_buffer;

	 uint8_t *v_buffer;

	

	 uint8_t *buffer_alloc;

	 int buffer_alloc_sz;

	 int border;

	 int frame_size;

	 YUV_TYPE clrtype;

	

	 int corrupted;

	 int flags;

	 } YV12_BUFFER_CONFIG

Table ‎14‑4 The MACROBLOCKD data structure

	/*Used to hold differences between MBs*/

typedef struct macroblockd

	{

	 DECLARE_ALIGNED(16, unsigned char, predictor[384]);

	 DECLARE_ALIGNED(16, short, qcoeff[400]);

	 DECLARE_ALIGNED(16, short, dqcoeff[400]);

	 DECLARE_ALIGNED(16, char, eobs[25]);

	

	 DECLARE_ALIGNED(16, short, dequant_y1[16]);

	 DECLARE_ALIGNED(16, short, dequant_y1_dc[16]);

	 DECLARE_ALIGNED(16, short, dequant_y2[16]);

	 DECLARE_ALIGNED(16, short, dequant_uv[16]);

	

	 /* 16 Y blocks, 4 U, 4 V, 1 DC 2nd order block, each with 16 entries. */

	 BLOCKD block[25];

	 int fullpixel_mask;

	

	 YV12_BUFFER_CONFIG pre; /*Filtered copy of previous frame reconstruction */

	 YV12_BUFFER_CONFIG dst;

	

	 MODE_INFO *mode_info_context;

	 int mode_info_stride;

	

	 FRAME_TYPE frame_type;

	

	 int up_available;

	 int left_available;

	

	 unsigned char *recon_above[3];

	 unsigned char *recon_left[3];

	 int recon_left_stride[2];

	

	 /* Y,U,V,Y2 */

	 ENTROPY_CONTEXT_PLANES *above_context;

	 ENTROPY_CONTEXT_PLANES *left_context;

	

	 /* 0 indicates segmentation at MB level is not enabled. Otherwise the individual bits indicate which features are active. */

	 unsigned char segmentation_enabled;

	

	 /* 0 (do not update) 1 (update) the macroblock segmentation map. */

	 unsigned char update_mb_segmentation_map;

	

	 /* 0 (do not update) 1 (update) the macroblock segmentation feature data. */

	 unsigned char update_mb_segmentation_data;

	

	 /* 0 (do not update) 1 (update) the macroblock segmentation feature data. */

	 unsigned char mb_segement_abs_delta;

	

	 /* Per frame flags that define which MB level features (such as quantizer or loop filter level) */

	 /* are enabled and when enabled the proabilities used to decode the per MB flags in MB_MODE_INFO */

	 vp8_prob mb_segment_tree_probs[MB_FEATURE_TREE_PROBS]; /* Probability Tree used to code Segment number */

	 /* This is an array of 3 unsigned chars */

	

	 signed char segment_feature_data[MB_LVL_MAX][MAX_MB_SEGMENTS]; /* Segment parameters */

	

	 /* mode_based Loop filter adjustment */

	 unsigned char mode_ref_lf_delta_enabled;

	 unsigned char mode_ref_lf_delta_update;

	

	 /* Delta values have the range +/- MAX_LOOP_FILTER */

	 signed char last_ref_lf_deltas[MAX_REF_LF_DELTAS];

/* 0 = Intra, Last, GF, ARF */

	 signed char ref_lf_deltas[MAX_REF_LF_DELTAS];

/* 0 = Intra, Last, GF, ARF */

	 signed char last_mode_lf_deltas[MAX_MODE_LF_DELTAS];

/* 0 = BPRED, ZERO_MV, MV, SPLIT */

	 signed char mode_lf_deltas[MAX_MODE_LF_DELTAS];

/* 0 = BPRED, ZERO_MV, MV, SPLIT */

	

	 /* Distance of MB away from frame edges */

	 int mb_to_left_edge;

	 int mb_to_right_edge;

	 int mb_to_top_edge;

	 int mb_to_bottom_edge;

	

	

	/* The following are different sub-pixel prediction functions for different size blocks */

	

	 vp8_subpix_fn_t subpixel_predict;

	 vp8_subpix_fn_t subpixel_predict8x4;

	 vp8_subpix_fn_t subpixel_predict8x8;

	 vp8_subpix_fn_t subpixel_predict16x16;

	

	 void *current_bc;

	

	 int corrupted;

	

	#if ARCH_X86 || ARCH_X86_64

	 /* This is an intermediate buffer currently used in sub-pixel motion search

	 * to keep a copy of the reference area. This buffer can be used for other

	 * purpose.

	 */

	 DECLARE_ALIGNED(32, unsigned char, y_buf[22*32]);

	#endif

	} MACROBLOCKD;

Table ‎14‑5 The BLOCKD data structure

	typedef struct blockd

	{

	 short *qcoeff;

	 short *dqcoeff;

	 unsigned char *predictor;

	 short *dequant;

	

	 int offset;

	 char *eob;

	

	 union b_mode_info bmi;

	} BLOCKD;

Table ‎14‑6 The PARTITION_INFO data structure

	typedef struct

	{

	 int count;

	 struct

	 {

	 B_PREDICTION_MODE mode;

	 int_mv mv;

	 } bmi[16];

	} PARTITION_INFO;

Table ‎14‑7 The B_PREDICTION_MODE enumerated type

	typedef enum

	{

	 B_DC_PRED, /* average of above and left pixels */

	 B_TM_PRED,

	

	 B_VE_PRED, /* vertical prediction */

	 B_HE_PRED, /* horizontal prediction */

	

	 B_LD_PRED,

	 B_RD_PRED,

	

	 B_VR_PRED,

	 B_VL_PRED,

	 B_HD_PRED,

	 B_HU_PRED,

	

	 LEFT4X4,

	 ABOVE4X4,

	 ZERO4X4,

	 NEW4X4,

	

	 B_MODE_COUNT

	} B_PREDICTION_MODE;

Table ‎14‑8 The search_site data structure

	typedef struct

	{

	 MV mv;

	 int offset;

	} search_site;

Table ‎14‑9 The MV data structure

	typedef struct

	{

	 short row;

	 short col;

	} MV;

Table ‎14‑10 The VP8Common data structure

	typedef struct VP8Common

	

	{

	 struct vpx_internal_error_info error;

	

	 DECLARE_ALIGNED(16, short, Y1dequant[QINDEX_RANGE][2]);

	 DECLARE_ALIGNED(16, short, Y2dequant[QINDEX_RANGE][2]);

	 DECLARE_ALIGNED(16, short, UVdequant[QINDEX_RANGE][2]);

	

	 int Width;

	 int Height;

	 int horiz_scale;

	 int vert_scale;

	

	 YUV_TYPE clr_type;

	 CLAMP_TYPE clamp_type;

	

	 YV12_BUFFER_CONFIG *frame_to_show;

	

	 YV12_BUFFER_CONFIG yv12_fb[NUM_YV12_BUFFERS];

	 int fb_idx_ref_cnt[NUM_YV12_BUFFERS];

	 int new_fb_idx, lst_fb_idx, gld_fb_idx, alt_fb_idx;

	

	 YV12_BUFFER_CONFIG temp_scale_frame;

	

	#if CONFIG_POSTPROC /* Not turned on for the submitted code*/

	 YV12_BUFFER_CONFIG post_proc_buffer;

	 YV12_BUFFER_CONFIG post_proc_buffer_int;

	 int post_proc_buffer_int_used;

	 unsigned char *pp_limits_buffer; /* post-processing filter coefficients*/

	#endif

	

	 FRAME_TYPE last_frame_type; /* Save last frame's frame type for motion search. */

	 FRAME_TYPE frame_type;

	

	 int show_frame;

	

	 int frame_flags;

	 int MBs;

	 int mb_rows;

	 int mb_cols;

	 int mode_info_stride;

	

	 /* profile settings */

	 int mb_no_coeff_skip;

	 int no_lpf;

	 int use_bilinear_mc_filter;

	 int full_pixel;

	

	 int base_qindex;

	

	 int y1dc_delta_q;

	 int y2dc_delta_q;

	 int y2ac_delta_q;

	 int uvdc_delta_q;

	 int uvac_delta_q;

	

	 unsigned int frames_since_golden;

	 unsigned int frames_till_alt_ref_frame;

	

	 /* We allocate a MODE_INFO struct for each macroblock, together with

	 an extra row on top and column on the left to simplify prediction. */

	

	 MODE_INFO *mip; /* Base of allocated array */

	 MODE_INFO *mi; /* Corresponds to upper left visible macroblock */

	#if CONFIG_ERROR_CONCEALMENT

	 MODE_INFO *prev_mip;/*MODE_INFO array 'mip' from last decoded frame*/

	 MODE_INFO *prev_mi; /* 'mi' from last frame (points into prev_mip) */

	#endif

	 MODE_INFO *show_frame_mi; /* MODE_INFO for the last decoded frame

	 to show */

	 LOOPFILTERTYPE filter_type;

	

	 loop_filter_info_n lf_info;

	

	 int filter_level;

	 int last_sharpness_level;

	 int sharpness_level;

	

	 int refresh_last_frame; /* Two state 0 = NO, 1 = YES */

	 int refresh_golden_frame; /* Two state 0 = NO, 1 = YES */

	 int refresh_alt_ref_frame; /* Two state 0 = NO, 1 = YES */

	

	 int copy_buffer_to_gf; /* 0 none, 1 Last to GF, 2 ARF to GF */

	 int copy_buffer_to_arf; /* 0 none, 1 Last to ARF, 2 GF to ARF */

	

	 int refresh_entropy_probs; /* Two state 0 = NO, 1 = YES */

	

	 int ref_frame_sign_bias[MAX_REF_FRAMES]; /* Two state 0, 1 */

	

	 /* Y,U,V,Y2 */

	 ENTROPY_CONTEXT_PLANES *above_context; /*row of context for each plane */

	 ENTROPY_CONTEXT_PLANES left_context; /* (up to) 4 contexts "" */

	

	 FRAME_CONTEXT lfc; /* last frame entropy */

	 FRAME_CONTEXT fc; /* this frame entropy */

	

	 unsigned int current_video_frame;

	

	 int near_boffset[3];

	 int version;

	

	 TOKEN_PARTITION multi_token_partition;

	

	#ifdef PACKET_TESTING

	 VP8_HEADER oh;

	#endif

	 double bitrate;

	 double framerate;

	

	#if CONFIG_MULTITHREAD

	 int processor_core_count;

	#endif

	#if CONFIG_POSTPROC

	 struct postproc_state postproc_state;

	#endif

	 int cpu_caps;

	} VP8_COMMON;

Table ‎14‑11 The YUV_TYPE enumerated type

	 typedef enum

	 {

	 REG_YUV = 0, /* Regular yuv */

	 INT_YUV = 1 /* The type of yuv that can be tranfer to and from RGB through integer transform */

	 }

	 YUV_TYPE;

Table ‎14‑12 The CLAMP_TYPE enumerated type

	typedef enum

	{

	 RECON_CLAMP_REQUIRED = 0,

	 RECON_CLAMP_NOTREQUIRED = 1

	} CLAMP_TYPE;

Table ‎14‑13 The FRAME_TYPE enumerated type

	typedef enum

	{

	 KEY_FRAME = 0,

	 INTER_FRAME = 1

	} FRAME_TYPE;

Table ‎14‑14 The MODE_INFO data structure

	typedef struct modeinfo

	{

	 MB_MODE_INFO mbmi;

	 union b_mode_info bmi[16];

	} MODE_INFO;

Table ‎14‑15 The MB_MODE_INFO data structure

	typedef struct

	{

	 uint8_t mode, uv_mode;

	 uint8_t ref_frame;

	 uint8_t is_4x4;

	 int_mv mv;

	

	 uint8_t partitioning;

	 uint8_t mb_skip_coeff; /* does this mb have coefficients at all, 1=no coefficients, 0=need decode tokens */

	 uint8_t need_to_clamp_mvs;

	 uint8_t segment_id; /* Which set of segmentation parameters should be used for this MB */

	} MB_MODE_INFO;

Table ‎14‑16 The LOOPFILTERTYPE enumerated type

	typedef enum

	{

	 NORMAL_LOOPFILTER = 0,

	 SIMPLE_LOOPFILTER = 1

	} LOOPFILTERTYPE;

Table ‎14‑17 The loop_filter_info_n data structure

	typedef struct

	{

	 DECLARE_ALIGNED(SIMD_WIDTH,unsigned char, mblim[MAX_LOOP_FILTER + 1][SIMD_WIDTH]);

	 DECLARE_ALIGNED(SIMD_WIDTH, unsigned char, blim[MAX_LOOP_FILTER + 1][SIMD_WIDTH]);

	 DECLARE_ALIGNED(SIMD_WIDTH, unsigned char, lim[MAX_LOOP_FILTER + 1][SIMD_WIDTH]);

	 DECLARE_ALIGNED(SIMD_WIDTH, unsigned char, hev_thr[4][SIMD_WIDTH]);

	 unsigned char lvl[4][4][4];

	 unsigned char hev_thr_lut[2][MAX_LOOP_FILTER + 1];

	 unsigned char mode_lf_lut[10];

	} loop_filter_info_n;

Table ‎14‑18 The ENTROPY_CONTEXT_PLANES data structure

	typedef char ENTROPY_CONTEXT;

	typedef struct

	{

	 ENTROPY_CONTEXT y1[4];

	 ENTROPY_CONTEXT u[2];

	 ENTROPY_CONTEXT v[2];

	 ENTROPY_CONTEXT y2;

	

	} ENTROPY_CONTEXT_PLANES;

Table ‎14‑19 The FRAME_CONTEXT data structure

	typedef struct frame_contexts

	{

	 vp8_prob bmode_prob [VP8_BINTRAMODES-1];

	 vp8_prob ymode_prob [VP8_YMODES-1]; /* interframe intra mode probs */

	 vp8_prob uv_mode_prob [VP8_UV_MODES-1];

	 vp8_prob sub_mv_ref_prob [VP8_SUBMVREFS-1];

	 vp8_prob coef_probs [BLOCK_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS][ENTROPY_NODES];

	 MV_CONTEXT mvc[2];

	} FRAME_CONTEXT;

Table ‎14‑20 The TOKEN_PARTITION enumerated type

	typedef enum

	{

	 ONE_PARTITION = 0,

	 TWO_PARTITION = 1,

	 FOUR_PARTITION = 2,

	 EIGHT_PARTITION = 3

	} TOKEN_PARTITION;

Table ‎14‑21 The TOKENEXTRA data structure

	typedef struct

	{

	 const vp8_prob *context_tree;

	 short Extra;

	 unsigned char Token;

	 unsigned char skip_eob_node;

	} TOKENEXTRA;

Table ‎14‑22 The BOOL_CODER data structure

	typedef struct

	{

	 unsigned int lowvalue;

	 unsigned int range;

	 int count;

	 unsigned int pos;

	 unsigned char *buffer;

	 unsigned char *buffer_end;

	 struct vpx_internal_error_info *error;

	

	 /*Variables used to track bit costs without outputing to the bitstream */

	 unsigned int measure_cost;

	 unsigned long bit_counter;

	} BOOL_CODER;

Table ‎14‑23 The vpx_internal_error_info data structure

	struct vpx_internal_error_info {

	 vpx_codec_err_t error_code;

	 int has_detail;

	 char detail[80];

	 int setjmp;

	 jmp_buf jmp;

	};

Table ‎14‑24 The vpx_codec_err_t (the error codes) enumerated type

	 /* Algorithm return codes */

	 typedef enum {

	 /* Operation completed without error */

	 VPX_CODEC_OK,

	

	 /* Unspecified error */

	 VPX_CODEC_ERROR,

	

	 /* Memory operation failed */

	 VPX_CODEC_MEM_ERROR,

	

	 /* ABI version mismatch */

	 VPX_CODEC_ABI_MISMATCH,

	

	 /* Algorithm does not have required capability */

	 VPX_CODEC_INCAPABLE,

	

	 /* The given bitstream is not supported.

	 * The bitstream was unable to be parsed at the highest level. The decoder

	 * is unable to proceed. This error \ref SHOULD be treated as fatal to the

	 * stream. */

	 VPX_CODEC_UNSUP_BITSTREAM,

	

	 /* Encoded bitstream uses an unsupported feature

	 * The decoder does not implement a feature required by the encoder. This

	 * return code should only be used for features that prevent future

	 * pictures from being properly decoded. This error \ref MAY be treated as

	 * fatal to the stream or \ref MAY be treated as fatal to the current GOP.

	 */

	 VPX_CODEC_UNSUP_FEATURE,

	

	 /* The coded data for this stream is corrupt or incomplete

	 *

	 * There was a problem decoding the current frame. This return code

	 * should only be used for failures that prevent future pictures from

	 * being properly decoded. This error \ref MAY be treated as fatal to the

	 * stream or \ref MAY be treated as fatal to the current GOP. If decoding

	 * is continued for the current GOP, artifacts may be present.

	 */

	 VPX_CODEC_CORRUPT_FRAME,

	

	 /*An application-supplied parameter is not valid.*/

	 VPX_CODEC_INVALID_PARAM,

	

	 /* An iterator reached the end of list.*/

	 VPX_CODEC_LIST_END

	

	 }

	 vpx_codec_err_t;

28 Reference Decoder Source Code

28.1 LICENSE file

The copyright in this software is being made available under the BSD License, included below. This software may be subject to other third party and contributor rights, including patent rights, and no such rights are granted under this license.

Copyright (c) 2010, the WebM project

Copyright (c) 2013, ISO/IEC

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright notice,

 this list of conditions and the following disclaimer.

 * Redistributions in binary form must reproduce the above copyright notice,

 this list of conditions and the following disclaimer in the documentation

 and/or other materials provided with the distribution.

 * Neither the name of ISO/IEC, or the WebM project, nor the names of its

 contributors may be used to endorse or promote products derived from this

 software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28.2 bit_ops.h
 ---- Begin code block --------------------------------------

 /*

 * Copyright (c) 2010 The project authors. All Rights Reserved.

 *

 * Use of this source code is governed by a BSD-style license

 * that can be found in the LICENSE file in the root of the source

 * tree. All contributing project authors may

 * be found in the AUTHORS file in the root of the source tree.

 */
 #ifndef BIT_OPS_H

 #define BIT_OPS_H

 /* Evaluates to a mask with n bits set */

 #define BITS_MASK(n) ((1<<(n))-1)

 /* Returns len bits, with the LSB at position bit */

 #define BITS_GET(val, bit, len) (((val)>>(bit))&BITS_MASK(len))

 #endif

 ---- End code block --
28.3 bool_decoder.h
 ---- Begin code block --------------------------------------

 /*

 * Copyright (c) 2010 The project authors. All Rights Reserved.

 *

 * Use of this source code is governed by a BSD-style license

 * that can be found in the LICENSE file in the root of the source

 * tree. All contributing project authors may

 * be found in the AUTHORS file in the root of the source tree.

 */
 #ifndef BOOL_DECODER_H

 #define BOOL_DECODER_H

 #include <stddef.h>

 struct bool_decoder

 {

 const unsigned char *input; /* next compressed data byte */

 size_t input_len; /* length of the input buffer */

 unsigned int range; /* identical to encoder's

 * range */

 unsigned int value; /* contains at least 8

 * significant bits */

 int bit_count; /* # of bits shifted out of

 * value, max 7 */

 };

 static void

 init_bool_decoder(struct bool_decoder *d,

 const unsigned char *start_partition,

 size_t sz)

 {

 if (sz >= 2)

 {

 d->value = (start_partition[0] << 8) /* first 2 input

 * bytes */

 | start_partition[1];

 d->input = start_partition + 2; /* ptr to next byte */

 d->input_len = sz - 2;

 }

 else

 {

 d->value = 0;

 d->input = NULL;

 d->input_len = 0;

 }

 d->range = 255; /* initial range is full */

 d->bit_count = 0; /* have not yet shifted out any bits */

 }

 static int bool_get(struct bool_decoder *d, int probability)

 {

 /* range and split are identical to the corresponding values

 used by the encoder when this bool was written */

 unsigned int split = 1 + (((d->range - 1) * probability) >> 8);

 unsigned int SPLIT = split << 8;

 int retval; /* will be 0 or 1 */

 if (d->value >= SPLIT) /* encoded a one */

 {

 retval = 1;

 d->range -= split; /* reduce range */

 d->value -= SPLIT; /* subtract off left endpoint of

 * interval */

 }

 else /* encoded a zero */

 {

 retval = 0;

 d->range = split; /* reduce range, no change in left

 * endpoint */

 }

 while (d->range < 128) /* shift out irrelevant value bits */

 {

 d->value <<= 1;

 d->range <<= 1;

 if (++d->bit_count == 8) /* shift in new bits 8 at a time */

 {

 d->bit_count = 0;

 if (d->input_len)

 {

 d->value |= *d->input++;

 d->input_len--;

 }

 }

 }

 return retval;

 }

 static int bool_get_bit(struct bool_decoder *br)

 {

 return bool_get(br, 128);

 }

 static int bool_get_uint(struct bool_decoder *br, int bits)

 {

 int z = 0;

 int bit;

 for (bit = bits - 1; bit >= 0; bit--)

 {

 z |= (bool_get_bit(br) << bit);

 }

 return z;

 }

 static int bool_get_int(struct bool_decoder *br, int bits)

 {

 int z = 0;

 int bit;

 for (bit = bits - 1; bit >= 0; bit--)

 {

 z |= (bool_get_bit(br) << bit);

 }

 return bool_get_bit(br) ? -z : z;

 }

 static int bool_maybe_get_int(struct bool_decoder *br, int bits)

 {

 return bool_get_bit(br) ? bool_get_int(br, bits) : 0;

 }

 static int

 bool_read_tree(struct bool_decoder *bool,

 const int *t,

 const unsigned char *p)

 {

 int i = 0;

 while ((i = t[i + bool_get(bool, p[i>>1])]) > 0);

 return -i;

 }

 #endif

 ---- End code block --

28.4 dequant_data.h
 ---- Begin code block --------------------------------------

 /*

 * Copyright (c) 2010 The project authors. All Rights Reserved.

 *

 * Use of this source code is governed by a BSD-style license

 * that can be found in the LICENSE file in the root of the source

 * tree. All contributing project authors may

 * be found in the AUTHORS file in the root of the source tree.

 */
 static const int dc_q_lookup[128] =

 {

 4, 5, 6, 7, 8, 9, 10, 10,

 11, 12, 13, 14, 15, 16, 17, 17,

 18, 19, 20, 20, 21, 21, 22, 22,

 23, 23, 24, 25, 25, 26, 27, 28,

 29, 30, 31, 32, 33, 34, 35, 36,

 37, 37, 38, 39, 40, 41, 42, 43,

 44, 45, 46, 46, 47, 48, 49, 50,

 51, 52, 53, 54, 55, 56, 57, 58,

 59, 60, 61, 62, 63, 64, 65, 66,

 67, 68, 69, 70, 71, 72, 73, 74,

 75, 76, 76, 77, 78, 79, 80, 81,

 82, 83, 84, 85, 86, 87, 88, 89,

 91, 93, 95, 96, 98, 100, 101, 102,

 104, 106, 108, 110, 112, 114, 116, 118,

 122, 124, 126, 128, 130, 132, 134, 136,

 138, 140, 143, 145, 148, 151, 154, 157

 };

 static const int ac_q_lookup[128] =

 {

 4, 5, 6, 7, 8, 9, 10, 11,

 12, 13, 14, 15, 16, 17, 18, 19,

 20, 21, 22, 23, 24, 25, 26, 27,

 28, 29, 30, 31, 32, 33, 34, 35,

 36, 37, 38, 39, 40, 41, 42, 43,

 44, 45, 46, 47, 48, 49, 50, 51,

 52, 53, 54, 55, 56, 57, 58, 60,

 62, 64, 66, 68, 70, 72, 74, 76,

 78, 80, 82, 84, 86, 88, 90, 92,

 94, 96, 98, 100, 102, 104, 106, 108,

 110, 112, 114, 116, 119, 122, 125, 128,

 131, 134, 137, 140, 143, 146, 149, 152,

 155, 158, 161, 164, 167, 170, 173, 177,

 181, 185, 189, 193, 197, 201, 205, 209,

 213, 217, 221, 225, 229, 234, 239, 245,

 249, 254, 259, 264, 269, 274, 279, 284

 };

 ---- End code block --

28.5 dixie.c
 ---- Begin code block --------------------------------------

 /*

 * Copyright (c) 2010, 2011, Google Inc. All rights reserved.

 *

 * Use of this source code is governed by a BSD-style license

 * that can be found in the LICENSE file in the root of the source

 * tree. All contributing project authors may

 * be found in the AUTHORS file in the root of the source tree.

 */

 #include "vpx_codec_internal.h"

 #include "bit_ops.h"

 #include "dixie.h"

 #include "vp8_prob_data.h"

 #include "dequant_data.h"

 #include "modemv.h"

 #include "tokens.h"

 #include "predict.h"

 #include "dixie_loopfilter.h"

 #include <string.h>

 #include <assert.h>

 enum

 {

 FRAME_HEADER_SZ = 3,

 KEYFRAME_HEADER_SZ = 7

 };

 #define ARRAY_COPY(a,b) {\

 assert(sizeof(a)==sizeof(b));memcpy(a,b,sizeof(a));}

 static void

 decode_entropy_header(struct vp8_decoder_ctx *ctx,

 struct bool_decoder *bool,

 struct vp8_entropy_hdr *hdr)

 {

 int i, j, k, l;

 /* Read coefficient probability updates */

 for (i = 0; i < BLOCK_TYPES; i++)

 for (j = 0; j < COEFF_BANDS; j++)

 for (k = 0; k < PREV_COEFF_CONTEXTS; k++)

 for (l = 0; l < ENTROPY_NODES; l++)

 if (bool_get(bool,

 k_coeff_entropy_update_probs

 [i][j][k][l]))

 hdr->coeff_probs[i][j][k][l] =

 bool_get_uint(bool, 8);

 /* Read coefficient skip mode probability */

 hdr->coeff_skip_enabled = bool_get_bit(bool);

 if (hdr->coeff_skip_enabled)

 hdr->coeff_skip_prob = bool_get_uint(bool, 8);

 /* Parse interframe probability updates */

 if (!ctx->frame_hdr.is_keyframe)

 {

 hdr->prob_inter = bool_get_uint(bool, 8);

 hdr->prob_last = bool_get_uint(bool, 8);

 hdr->prob_gf = bool_get_uint(bool, 8);

 if (bool_get_bit(bool))

 for (i = 0; i < 4; i++)

 hdr->y_mode_probs[i] = bool_get_uint(bool, 8);

 if (bool_get_bit(bool))

 for (i = 0; i < 3; i++)

 hdr->uv_mode_probs[i] = bool_get_uint(bool, 8);

 for (i = 0; i < 2; i++)

 for (j = 0; j < MV_PROB_CNT; j++)

 if (bool_get(bool, k_mv_entropy_update_probs[i][j]))

 {

 int x = bool_get_uint(bool, 7);

 hdr->mv_probs[i][j] = x ? x << 1 : 1;

 }

 }

 }

 static void

 decode_reference_header(struct vp8_decoder_ctx *ctx,

 struct bool_decoder *bool,

 struct vp8_reference_hdr *hdr)

 {

 unsigned int key = ctx->frame_hdr.is_keyframe;

 hdr->refresh_gf = key ? 1 : bool_get_bit(bool);

 hdr->refresh_arf = key ? 1 : bool_get_bit(bool);

 hdr->copy_gf = key ? 0 : !hdr->refresh_gf

 ? bool_get_uint(bool, 2) : 0;

 hdr->copy_arf = key ? 0 : !hdr->refresh_arf

 ? bool_get_uint(bool, 2) : 0;

 hdr->sign_bias[GOLDEN_FRAME] = key ? 0 : bool_get_bit(bool);

 hdr->sign_bias[ALTREF_FRAME] = key ? 0 : bool_get_bit(bool);

 hdr->refresh_entropy = bool_get_bit(bool);

 hdr->refresh_last = key ? 1 : bool_get_bit(bool);

 }

 static void

 decode_quantizer_header(struct vp8_decoder_ctx *ctx,

 struct bool_decoder *bool,

 struct vp8_quant_hdr *hdr)

 {

 int update;

 int last_q = hdr->q_index;

 hdr->q_index = bool_get_uint(bool, 7);

 update = last_q != hdr->q_index;

 update |= (hdr->y1_dc_delta_q = bool_maybe_get_int(bool, 4));

 update |= (hdr->y2_dc_delta_q = bool_maybe_get_int(bool, 4));

 update |= (hdr->y2_ac_delta_q = bool_maybe_get_int(bool, 4));

 update |= (hdr->uv_dc_delta_q = bool_maybe_get_int(bool, 4));

 update |= (hdr->uv_ac_delta_q = bool_maybe_get_int(bool, 4));

 hdr->delta_update = update;

 }

 static void

 decode_and_init_token_partitions(struct vp8_decoder_ctx *ctx,

 struct bool_decoder *bool,

 const unsigned char *data,

 unsigned int sz,

 struct vp8_token_hdr *hdr)

 {

 int i;

 hdr->partitions = 1 << bool_get_uint(bool, 2);

 if (sz < 3 *(hdr->partitions - 1))

 vpx_internal_error(&ctx->error, VPX_CODEC_CORRUPT_FRAME,

 "Truncated packet found parsing partition"

 " lengths.");

 sz -= 3 * (hdr->partitions - 1);

 for (i = 0; i < hdr->partitions; i++)

 {

 if (i < hdr->partitions - 1)

 {

 hdr->partition_sz[i] = (data[2] << 16)

 | (data[1] << 8) | data[0];

 data += 3;

 }

 else

 hdr->partition_sz[i] = sz;

 if (sz < hdr->partition_sz[i])

 vpx_internal_error(&ctx->error, VPX_CODEC_CORRUPT_FRAME,

 "Truncated partition %d", i);

 sz -= hdr->partition_sz[i];

 }

 for (i = 0; i < ctx->token_hdr.partitions; i++)

 {

 init_bool_decoder(&ctx->tokens[i].bool, data,

 ctx->token_hdr.partition_sz[i]);

 data += ctx->token_hdr.partition_sz[i];

 }

 }

 static void

 decode_loopfilter_header(struct vp8_decoder_ctx *ctx,

 struct bool_decoder *bool,

 struct vp8_loopfilter_hdr *hdr)

 {

 if (ctx->frame_hdr.is_keyframe)

 memset(hdr, 0, sizeof(*hdr));

 hdr->use_simple = bool_get_bit(bool);

 hdr->level = bool_get_uint(bool, 6);

 hdr->sharpness = bool_get_uint(bool, 3);

 hdr->delta_enabled = bool_get_bit(bool);

 if (hdr->delta_enabled && bool_get_bit(bool))

 {

 int i;

 for (i = 0; i < BLOCK_CONTEXTS; i++)

 hdr->ref_delta[i] = bool_maybe_get_int(bool, 6);

 for (i = 0; i < BLOCK_CONTEXTS; i++)

 hdr->mode_delta[i] = bool_maybe_get_int(bool, 6);

 }

 }

 static void

 decode_segmentation_header(struct vp8_decoder_ctx *ctx,

 struct bool_decoder *bool,

 struct vp8_segment_hdr *hdr)

 {

 if (ctx->frame_hdr.is_keyframe)

 memset(hdr, 0, sizeof(*hdr));

 hdr->enabled = bool_get_bit(bool);

 if (hdr->enabled)

 {

 int i;

 hdr->update_map = bool_get_bit(bool);

 hdr->update_data = bool_get_bit(bool);

 if (hdr->update_data)

 {

 hdr->abs = bool_get_bit(bool);

 for (i = 0; i < MAX_MB_SEGMENTS; i++)

 hdr->quant_idx[i] = bool_maybe_get_int(bool, 7);

 for (i = 0; i < MAX_MB_SEGMENTS; i++)

 hdr->lf_level[i] = bool_maybe_get_int(bool, 6);

 }

 if (hdr->update_map)

 {

 for (i = 0; i < MB_FEATURE_TREE_PROBS; i++)

 hdr->tree_probs[i] = bool_get_bit(bool)

 ? bool_get_uint(bool, 8)

 : 255;

 }

 }

 else

 {

 hdr->update_map = 0;

 hdr->update_data = 0;

 }

 }

 static void

 dequant_global_init(struct dequant_factors dqf[MAX_MB_SEGMENTS])

 {

 int i;

 for (i = 0; i < MAX_MB_SEGMENTS; i++)

 dqf[i].quant_idx = -1;

 }

 static int

 clamp_q(int q)

 {

 if (q < 0) return 0;

 else if (q > 127) return 127;

 return q;

 }

 static int

 dc_q(int q)

 {

 return dc_q_lookup[clamp_q(q)];

 }

 static int

 ac_q(int q)

 {

 return ac_q_lookup[clamp_q(q)];

 }

 static void

 dequant_init(struct dequant_factors factors[MAX_MB_SEGMENTS],

 const struct vp8_segment_hdr *seg,

 const struct vp8_quant_hdr *quant_hdr)

 {

 int i, q;

 struct dequant_factors *dqf = factors;

 for (i = 0; i < (seg->enabled ? MAX_MB_SEGMENTS : 1); i++)

 {

 q = quant_hdr->q_index;

 if (seg->enabled)

 q = (!seg->abs) ? q + seg->quant_idx[i]

 : seg->quant_idx[i];

 if (dqf->quant_idx != q || quant_hdr->delta_update)

 {

 dqf->factor[TOKEN_BLOCK_Y1][0] =

 dc_q(q + quant_hdr->y1_dc_delta_q);

 dqf->factor[TOKEN_BLOCK_Y1][1] =

 ac_q(q);

 dqf->factor[TOKEN_BLOCK_UV][0] =

 dc_q(q + quant_hdr->uv_dc_delta_q);

 dqf->factor[TOKEN_BLOCK_UV][1] =

 ac_q(q + quant_hdr->uv_ac_delta_q);

 dqf->factor[TOKEN_BLOCK_Y2][0] =

 dc_q(q + quant_hdr->y2_dc_delta_q) * 2;

 dqf->factor[TOKEN_BLOCK_Y2][1] =

 ac_q(q + quant_hdr->y2_ac_delta_q) * 155 / 100;

 if (dqf->factor[TOKEN_BLOCK_Y2][1] < 8)

 dqf->factor[TOKEN_BLOCK_Y2][1] = 8;

 if (dqf->factor[TOKEN_BLOCK_UV][0] > 132)

 dqf->factor[TOKEN_BLOCK_UV][0] = 132;

 dqf->quant_idx = q;

 }

 dqf++;

 }

 }

 static void

 decode_frame(struct vp8_decoder_ctx *ctx,

 const unsigned char *data,

 unsigned int sz)

 {

 vpx_codec_err_t res;

 struct bool_decoder bool;

 int i, row, partition;

 ctx->saved_entropy_valid = 0;

 if ((res = vp8_parse_frame_header(data, sz, &ctx->frame_hdr)))

 vpx_internal_error(&ctx->error, res,

 "Failed to parse frame header");

 if (ctx->frame_hdr.is_experimental)

 vpx_internal_error(&ctx->error, VPX_CODEC_UNSUP_BITSTREAM,

 "Experimental bitstreams not supported.");

 data += FRAME_HEADER_SZ;

 sz -= FRAME_HEADER_SZ;

 if (ctx->frame_hdr.is_keyframe)

 {

 data += KEYFRAME_HEADER_SZ;

 sz -= KEYFRAME_HEADER_SZ;

 ctx->mb_cols = (ctx->frame_hdr.kf.w + 15) / 16;

 ctx->mb_rows = (ctx->frame_hdr.kf.h + 15) / 16;

 }

 /* Start the bitreader for the header/entropy partition */

 init_bool_decoder(&bool, data, ctx->frame_hdr.part0_sz);

 /* Skip the colorspace and clamping bits */

 if (ctx->frame_hdr.is_keyframe)

 if (bool_get_uint(&bool, 2))

 vpx_internal_error(

 &ctx->error, VPX_CODEC_UNSUP_BITSTREAM,

 "Reserved bits not supported.");

 decode_segmentation_header(ctx, &bool, &ctx->segment_hdr);

 decode_loopfilter_header(ctx, &bool, &ctx->loopfilter_hdr);

 decode_and_init_token_partitions(ctx,

 &bool,

 data + ctx->frame_hdr.part0_sz,

 sz - ctx->frame_hdr.part0_sz,

 &ctx->token_hdr);

 decode_quantizer_header(ctx, &bool, &ctx->quant_hdr);

 decode_reference_header(ctx, &bool, &ctx->reference_hdr);

 /* Set keyframe entropy defaults. These get updated on keyframes

 * regardless of the refresh_entropy setting.

 */

 if (ctx->frame_hdr.is_keyframe)

 {

 ARRAY_COPY(ctx->entropy_hdr.coeff_probs,

 k_default_coeff_probs);

 ARRAY_COPY(ctx->entropy_hdr.mv_probs,

 k_default_mv_probs);

 ARRAY_COPY(ctx->entropy_hdr.y_mode_probs,

 k_default_y_mode_probs);

 ARRAY_COPY(ctx->entropy_hdr.uv_mode_probs,

 k_default_uv_mode_probs);

 }

 if (!ctx->reference_hdr.refresh_entropy)

 {

 ctx->saved_entropy = ctx->entropy_hdr;

 ctx->saved_entropy_valid = 1;

 }

 decode_entropy_header(ctx, &bool, &ctx->entropy_hdr);

 vp8_dixie_modemv_init(ctx);

 vp8_dixie_tokens_init(ctx);

 vp8_dixie_predict_init(ctx);

 dequant_init(ctx->dequant_factors, &ctx->segment_hdr,

 &ctx->quant_hdr);

 for (row = 0, partition = 0; row < ctx->mb_rows; row++)

 {

 vp8_dixie_modemv_process_row(

 ctx, &bool, row, 0, ctx->mb_cols);

 vp8_dixie_tokens_process_row(ctx, partition, row, 0,

 ctx->mb_cols);

 vp8_dixie_predict_process_row(ctx, row, 0, ctx->mb_cols);

 if (ctx->loopfilter_hdr.level && row)

 vp8_dixie_loopfilter_process_row(ctx, row - 1, 0,

 ctx->mb_cols);

 if (++partition == ctx->token_hdr.partitions)

 partition = 0;

 }

 if (ctx->loopfilter_hdr.level)

 vp8_dixie_loopfilter_process_row(

 ctx, row - 1, 0, ctx->mb_cols);

 ctx->frame_cnt++;

 if (!ctx->reference_hdr.refresh_entropy)

 {

 ctx->entropy_hdr = ctx->saved_entropy;

 ctx->saved_entropy_valid = 0;

 }

 /* Handle reference frame updates */

 if (ctx->reference_hdr.copy_arf == 1)

 {

 vp8_dixie_release_ref_frame(ctx->ref_frames[ALTREF_FRAME]);

 ctx->ref_frames[ALTREF_FRAME] =

 vp8_dixie_ref_frame(ctx->ref_frames[LAST_FRAME]);

 }

 else if (ctx->reference_hdr.copy_arf == 2)

 {

 vp8_dixie_release_ref_frame(ctx->ref_frames[ALTREF_FRAME]);

 ctx->ref_frames[ALTREF_FRAME] =

 vp8_dixie_ref_frame(ctx->ref_frames[GOLDEN_FRAME]);

 }

 if (ctx->reference_hdr.copy_gf == 1)

 {

 vp8_dixie_release_ref_frame(ctx->ref_frames[GOLDEN_FRAME]);

 ctx->ref_frames[GOLDEN_FRAME] =

 vp8_dixie_ref_frame(ctx->ref_frames[LAST_FRAME]);

 }

 else if (ctx->reference_hdr.copy_gf == 2)

 {

 vp8_dixie_release_ref_frame(ctx->ref_frames[GOLDEN_FRAME]);

 ctx->ref_frames[GOLDEN_FRAME] =

 vp8_dixie_ref_frame(ctx->ref_frames[ALTREF_FRAME]);

 }

 if (ctx->reference_hdr.refresh_gf)

 {

 vp8_dixie_release_ref_frame(ctx->ref_frames[GOLDEN_FRAME]);

 ctx->ref_frames[GOLDEN_FRAME] =

 vp8_dixie_ref_frame(ctx->ref_frames[CURRENT_FRAME]);

 }

 if (ctx->reference_hdr.refresh_arf)

 {

 vp8_dixie_release_ref_frame(ctx->ref_frames[ALTREF_FRAME]);

 ctx->ref_frames[ALTREF_FRAME] =

 vp8_dixie_ref_frame(ctx->ref_frames[CURRENT_FRAME]);

 }

 if (ctx->reference_hdr.refresh_last)

 {

 vp8_dixie_release_ref_frame(ctx->ref_frames[LAST_FRAME]);

 ctx->ref_frames[LAST_FRAME] =

 vp8_dixie_ref_frame(ctx->ref_frames[CURRENT_FRAME]);

 }

 }

 void

 vp8_dixie_decode_init(struct vp8_decoder_ctx *ctx)

 {

 dequant_global_init(ctx->dequant_factors);

 }

 #define CHECK_FOR_UPDATE(lval,rval,update_flag) do {\

 unsigned int old = lval; \

 update_flag |= (old != (lval = rval)); \

 } while (0)

 vpx_codec_err_t

 vp8_parse_frame_header(const unsigned char *data,

 unsigned int sz,

 struct vp8_frame_hdr *hdr)

 {

 unsigned long raw;

 if (sz < 10)

 return VPX_CODEC_CORRUPT_FRAME;

 /* The frame header is defined as a three-byte little endian

 * value

 */

 raw = data[0] | (data[1] << 8) | (data[2] << 16);

 hdr->is_keyframe = !BITS_GET(raw, 0, 1);

 hdr->version = BITS_GET(raw, 1, 2);

 hdr->is_experimental = BITS_GET(raw, 3, 1);

 hdr->is_shown = BITS_GET(raw, 4, 1);

 hdr->part0_sz = BITS_GET(raw, 5, 19);

 if (sz <= hdr->part0_sz + (hdr->is_keyframe ? 10 : 3))

 return VPX_CODEC_CORRUPT_FRAME;

 hdr->frame_size_updated = 0;

 if (hdr->is_keyframe)

 {

 unsigned int update = 0;

 /* Keyframe header consists of a three-byte sync code

 * followed by the width and height and associated scaling

 * factors.

 */

 if (data[3] != 0x9d || data[4] != 0x01 || data[5] != 0x2a)

 return VPX_CODEC_UNSUP_BITSTREAM;

 raw = data[6] | (data[7] << 8)

 | (data[8] << 16) | (data[9] << 24);

 CHECK_FOR_UPDATE(hdr->kf.w, BITS_GET(raw, 0, 14),

 update);

 CHECK_FOR_UPDATE(hdr->kf.scale_w, BITS_GET(raw, 14, 2),

 update);

 CHECK_FOR_UPDATE(hdr->kf.h, BITS_GET(raw, 16, 14),

 update);

 CHECK_FOR_UPDATE(hdr->kf.scale_h, BITS_GET(raw, 30, 2),

 update);

 hdr->frame_size_updated = update;

 if (!hdr->kf.w || !hdr->kf.h)

 return VPX_CODEC_UNSUP_BITSTREAM;

 }

 return VPX_CODEC_OK;

 }

 vpx_codec_err_t

 vp8_dixie_decode_frame(struct vp8_decoder_ctx *ctx,

 const unsigned char *data,

 unsigned int sz)

 {

 volatile struct vp8_decoder_ctx *ctx_ = ctx;

 ctx->error.error_code = VPX_CODEC_OK;

 ctx->error.has_detail = 0;

 if (!setjmp(ctx->error.jmp))

 decode_frame(ctx, data, sz);

 return ctx_->error.error_code;

 }

 void

 vp8_dixie_decode_destroy(struct vp8_decoder_ctx *ctx)

 {

 vp8_dixie_predict_destroy(ctx);

 vp8_dixie_tokens_destroy(ctx);

 vp8_dixie_modemv_destroy(ctx);

 }

 ---- End code block --
28.6 dixie.h
 ---- Begin code block --------------------------------------
 /*

 * Copyright (c) 2010 The project authors. All Rights Reserved.

 *

 * Use of this source code is governed by a BSD-style license

 * that can be found in the LICENSE file in the root of the source

 * tree. All contributing project authors may

 * be found in the AUTHORS file in the root of the source tree.

 */
 #ifndef DIXIE_H

 #define DIXIE_H

 #include "vpx_codec_internal.h"

 #include "bool_decoder.h"

 struct vp8_frame_hdr

 {

 unsigned int is_keyframe; /* Frame is a keyframe */

 unsigned int is_experimental; /* Frame is a keyframe */

 unsigned int version; /* Bitstream version */

 unsigned int is_shown; /* Frame is to be displayed. */

 unsigned int part0_sz; /* Partition 0 length, in bytes */

 struct vp8_kf_hdr

 {

 unsigned int w; /* Width */

 unsigned int h; /* Height */

 unsigned int scale_w; /* Scaling factor, Width */

 unsigned int scale_h; /* Scaling factor, Height */

 } kf;

 unsigned int frame_size_updated; /* Flag to indicate a resolution

 * update.

 */

 };

 enum

 {

 MB_FEATURE_TREE_PROBS = 3,

 MAX_MB_SEGMENTS = 4

 };

 struct vp8_segment_hdr

 {

 unsigned int enabled;

 unsigned int update_data;

 unsigned int update_map;

 unsigned int abs; /* 0=deltas, 1=absolute values */

 unsigned int tree_probs[MB_FEATURE_TREE_PROBS];

 int lf_level[MAX_MB_SEGMENTS];

 int quant_idx[MAX_MB_SEGMENTS];
 };

 enum

 {

 BLOCK_CONTEXTS = 4

 };

 struct vp8_loopfilter_hdr

 {

 unsigned int use_simple;

 unsigned int level;

 unsigned int sharpness;

 unsigned int delta_enabled;

 int ref_delta[BLOCK_CONTEXTS];

 int mode_delta[BLOCK_CONTEXTS];

 };

 enum

 {

 MAX_PARTITIONS = 8

 };

 struct vp8_token_hdr

 {

 unsigned int partitions;

 unsigned int partition_sz[MAX_PARTITIONS];

 };

 struct vp8_quant_hdr

 {

 unsigned int q_index;

 int delta_update;

 int y1_dc_delta_q;

 int y2_dc_delta_q;

 int y2_ac_delta_q;

 int uv_dc_delta_q;

 int uv_ac_delta_q;

 };

 struct vp8_reference_hdr

 {

 unsigned int refresh_last;

 unsigned int refresh_gf;

 unsigned int refresh_arf;

 unsigned int copy_gf;

 unsigned int copy_arf;

 unsigned int sign_bias[4];

 unsigned int refresh_entropy;

 };

 enum

 {

 BLOCK_TYPES = 4,

 PREV_COEFF_CONTEXTS = 3,

 COEFF_BANDS = 8,

 ENTROPY_NODES = 11,

 };

 typedef unsigned char coeff_probs_table_t[BLOCK_TYPES][COEFF_BANDS]

 [PREV_COEFF_CONTEXTS]

 [ENTROPY_NODES];

 enum

 {

 MV_PROB_CNT = 2 + 8 - 1 + 10 /* from entropymv.h */

 };
 typedef unsigned char mv_component_probs_t[MV_PROB_CNT];

 struct vp8_entropy_hdr

 {

 coeff_probs_table_t coeff_probs;

 mv_component_probs_t mv_probs[2];

 unsigned int coeff_skip_enabled;

 unsigned char coeff_skip_prob;

 unsigned char y_mode_probs[4];

 unsigned char uv_mode_probs[3];

 unsigned char prob_inter;

 unsigned char prob_last;

 unsigned char prob_gf;

 };

 enum reference_frame

 {

 CURRENT_FRAME,

 LAST_FRAME,

 GOLDEN_FRAME,

 ALTREF_FRAME,

 NUM_REF_FRAMES

 };

 enum prediction_mode

 {

 /* 16x16 intra modes */

 DC_PRED, V_PRED, H_PRED, TM_PRED, B_PRED,

 /* 16x16 inter modes */

 NEARESTMV, NEARMV, ZEROMV, NEWMV, SPLITMV,

 MB_MODE_COUNT,

 /* 4x4 intra modes */

 B_DC_PRED = 0, B_TM_PRED, B_VE_PRED, B_HE_PRED, B_LD_PRED,

 B_RD_PRED, B_VR_PRED, B_VL_PRED, B_HD_PRED, B_HU_PRED,

 /* 4x4 inter modes */

 LEFT4X4, ABOVE4X4, ZERO4X4, NEW4X4,

 B_MODE_COUNT

 };

 enum splitmv_partitioning

 {

 SPLITMV_16X8,

 SPLITMV_8X16,

 SPLITMV_8X8,

 SPLITMV_4X4

 };

 typedef short filter_t[6];

 typedef union mv

 {

 struct

 {

 int16_t x, y;

 } d;

 uint32_t raw;

 } mv_t;

 struct mb_base_info

 {

 unsigned char y_mode : 4;

 unsigned char uv_mode : 4;

 unsigned char segment_id : 2;

 unsigned char ref_frame : 2;

 unsigned char skip_coeff : 1;

 unsigned char need_mc_border : 1;

 enum splitmv_partitioning partitioning : 2;

 union mv mv;

 unsigned int eob_mask;

 };

 struct mb_info

 {

 struct mb_base_info base;

 union

 {

 union mv mvs[16];

 enum prediction_mode modes[16];

 } split;

 };

 /* A "token entropy context" has 4 Y values, 2 U, 2 V, and 1 Y2 */

 typedef int token_entropy_ctx_t[4 + 2 + 2 + 1];

 struct token_decoder

 {

 struct bool_decoder bool;

 token_entropy_ctx_t left_token_entropy_ctx;

 short *coeffs;

 };

 enum token_block_type

 {

 TOKEN_BLOCK_Y1,

 TOKEN_BLOCK_UV,

 TOKEN_BLOCK_Y2,

 TOKEN_BLOCK_TYPES,

 };

 struct dequant_factors

 {

 int quant_idx;

 short factor[TOKEN_BLOCK_TYPES][2]; /* [Y1, UV, Y2]

 * [DC, AC] */

 };

 struct ref_cnt_img

 {

 vpx_image_t img;

 unsigned int ref_cnt;

 };

 struct vp8_decoder_ctx

 {

 struct vpx_internal_error_info error;

 unsigned int frame_cnt;

 struct vp8_frame_hdr frame_hdr;

 struct vp8_segment_hdr segment_hdr;

 struct vp8_loopfilter_hdr loopfilter_hdr;

 struct vp8_token_hdr token_hdr;

 struct vp8_quant_hdr quant_hdr;

 struct vp8_reference_hdr reference_hdr;

 struct vp8_entropy_hdr entropy_hdr;

 struct vp8_entropy_hdr saved_entropy;

 unsigned int saved_entropy_valid;

 unsigned int mb_rows;

 unsigned int mb_cols;

 struct mb_info *mb_info_storage;

 struct mb_info **mb_info_rows_storage;

 struct mb_info **mb_info_rows;

 token_entropy_ctx_t *above_token_entropy_ctx;

 struct token_decoder tokens[MAX_PARTITIONS];

 struct dequant_factors dequant_factors[MAX_MB_SEGMENTS];

 struct ref_cnt_img frame_strg[NUM_REF_FRAMES];

 struct ref_cnt_img *ref_frames[NUM_REF_FRAMES];

 ptrdiff_t ref_frame_offsets[4];

 const filter_t *subpixel_filters;

 };

 void

 vp8_dixie_decode_init(struct vp8_decoder_ctx *ctx);
 void

 vp8_dixie_decode_destroy(struct vp8_decoder_ctx *ctx);

 vpx_codec_err_t

 vp8_parse_frame_header(const unsigned char *data,

 unsigned int sz,

 struct vp8_frame_hdr *hdr);

 vpx_codec_err_t

 vp8_dixie_decode_frame(struct vp8_decoder_ctx *ctx,

 const unsigned char *data,

 unsigned int sz);

 #define CLAMP_255(x) ((x)<0?0:((x)>255?255:(x)))

 #endif

 ---- End code block --
28.7 dixie_loopfilter.c

 ---- Begin code block --------------------------------------

 /*

 * Copyright (c) 2010 The project authors. All Rights Reserved.

 *

 * Use of this source code is governed by a BSD-style license

 * that can be found in the LICENSE file in the root of the source

 * tree. All contributing project authors may

 * be found in the AUTHORS file in the root of the source tree.

 */
 #include "dixie.h"

 #include "dixie_loopfilter.h"

 #define ABS(x) ((x) >= 0 ? (x) : -(x))

 #define p3 pixels[-4*stride]

 #define p2 pixels[-3*stride]

 #define p1 pixels[-2*stride]

 #define p0 pixels[-1*stride]

 #define q0 pixels[0*stride]

 #define q1 pixels[1*stride]

 #define q2 pixels[2*stride]

 #define q3 pixels[3*stride]

 #define static

 static int

 saturate_int8(int x)

 {

 if (x < -128)

 return -128;

 if (x > 127)

 return 127;

 return x;

 }

 static int

 saturate_uint8(int x)

 {

 if (x < 0)

 return 0;

 if (x > 255)

 return 255;

 return x;

 }

 static int

 high_edge_variance(unsigned char *pixels,

 int stride,

 int hev_threshold)

 {

 return ABS(p1 - p0) > hev_threshold ||

 ABS(q1 - q0) > hev_threshold;

 }

 static int

 simple_threshold(unsigned char *pixels,

 int stride,

 int filter_limit)

 {

 return (ABS(p0 - q0) * 2 + (ABS(p1 - q1) >> 1)) <= filter_limit;

 }

 static int

 normal_threshold(unsigned char *pixels,

 int stride,

 int edge_limit,

 int interior_limit)

 {

 int E = edge_limit;

 int I = interior_limit;

 return simple_threshold(pixels, stride, 2 * E + I)

 && ABS(p3 - p2) <= I && ABS(p2 - p1) <= I

 && ABS(p1 - p0) <= I && ABS(q3 - q2) <= I

 && ABS(q2 - q1) <= I && ABS(q1 - q0) <= I;

 }

 static void

 filter_common(unsigned char *pixels,

 int stride,

 int use_outer_taps)

 {

 int a, f1, f2;

 a = 3 * (q0 - p0);

 if (use_outer_taps)

 a += saturate_int8(p1 - q1);

 a = saturate_int8(a);

 f1 = ((a + 4 > 127) ? 127 : a + 4) >> 3;

 f2 = ((a + 3 > 127) ? 127 : a + 3) >> 3;

 p0 = saturate_uint8(p0 + f2);

 q0 = saturate_uint8(q0 - f1);

 if (!use_outer_taps)

 {

 /* This handles the case of subblock_filter()

 * (from the bitstream guide.

 */

 a = (f1 + 1) >> 1;

 p1 = saturate_uint8(p1 + a);

 q1 = saturate_uint8(q1 - a);

 }

 }

 static void

 filter_mb_edge(unsigned char *pixels,

 int stride)

 {

 int w, a;

 w = saturate_int8(saturate_int8(p1 - q1) + 3 * (q0 - p0));

 a = (27 * w + 63) >> 7;

 p0 = saturate_uint8(p0 + a);

 q0 = saturate_uint8(q0 - a);

 a = (18 * w + 63) >> 7;

 p1 = saturate_uint8(p1 + a);

 q1 = saturate_uint8(q1 - a);

 a = (9 * w + 63) >> 7;

 p2 = saturate_uint8(p2 + a);

 q2 = saturate_uint8(q2 - a);

 }

 static void

 filter_mb_v_edge(unsigned char *src,

 int stride,

 int edge_limit,

 int interior_limit,

 int hev_threshold,

 int size)

 {

 int i;

 for (i = 0; i < 8 * size; i++)

 {

 if (normal_threshold(src, 1, edge_limit, interior_limit))

 {

 if (high_edge_variance(src, 1, hev_threshold))

 filter_common(src, 1, 1);

 else

 filter_mb_edge(src, 1);

 }

 src += stride;

 }

 }

 static void

 filter_subblock_v_edge(unsigned char *src,

 int stride,

 int edge_limit,

 int interior_limit,

 int hev_threshold,

 int size)

 {

 int i;

 for (i = 0; i < 8 * size; i++)

 {

 if (normal_threshold(src, 1, edge_limit, interior_limit))

 filter_common(src, 1,

 high_edge_variance(src, 1, hev_threshold));

 src += stride;

 }

 }

 static void

 filter_mb_h_edge(unsigned char *src,

 int stride,

 int edge_limit,

 int interior_limit,

 int hev_threshold,

 int size)

 {

 int i;

 for (i = 0; i < 8 * size; i++)

 {

 if (normal_threshold(src, stride, edge_limit,

 interior_limit))

 {

 if (high_edge_variance(src, stride, hev_threshold))

 filter_common(src, stride, 1);

 else

 filter_mb_edge(src, stride);

 }

 src += 1;

 }

 }

 static void

 filter_subblock_h_edge(unsigned char *src,

 int stride,

 int edge_limit,

 int interior_limit,

 int hev_threshold,

 int size)

 {

 int i;

 for (i = 0; i < 8 * size; i++)

 {

 if (normal_threshold(src, stride, edge_limit,

 interior_limit))

 filter_common(src, stride,

 high_edge_variance(src, stride,

 hev_threshold));
 src += 1;

 }

 }

 static void

 filter_v_edge_simple(unsigned char *src,

 int stride,

 int filter_limit)

 {

 int i;

 for (i = 0; i < 16; i++)

 {

 if (simple_threshold(src, 1, filter_limit))

 filter_common(src, 1, 1);

 src += stride;

 }

 }

 static void

 filter_h_edge_simple(unsigned char *src,

 int stride,

 int filter_limit)

 {

 int i;

 for (i = 0; i < 16; i++)

 {

 if (simple_threshold(src, stride, filter_limit))

 filter_common(src, stride, 1);

 src += 1;

 }

 }

 static void

 calculate_filter_parameters(struct vp8_decoder_ctx *ctx,

 struct mb_info *mbi,

 int *edge_limit_,

 int *interior_limit_,

 int *hev_threshold_)

 {

 int filter_level, interior_limit, hev_threshold;

 /* Reference code/spec seems to conflate filter_level and

 * edge_limit

 */

 filter_level = ctx->loopfilter_hdr.level;

 if (ctx->segment_hdr.enabled)

 {

 if (!ctx->segment_hdr.abs)

 filter_level +=

 ctx->segment_hdr.lf_level[mbi->base.segment_id];

 else

 filter_level =

 ctx->segment_hdr.lf_level[mbi->base.segment_id];

 }

 if (filter_level > 63)

 filter_level = 63;

 else if (filter_level < 0)

 filter_level = 0;

 if (ctx->loopfilter_hdr.delta_enabled)

 {

 filter_level +=

 ctx->loopfilter_hdr.ref_delta[mbi->base.ref_frame];

 if (mbi->base.ref_frame == CURRENT_FRAME)

 {

 if (mbi->base.y_mode == B_PRED)

 filter_level += ctx->loopfilter_hdr.mode_delta[0];

 }

 else if (mbi->base.y_mode == ZEROMV)

 filter_level += ctx->loopfilter_hdr.mode_delta[1];

 else if (mbi->base.y_mode == SPLITMV)

 filter_level += ctx->loopfilter_hdr.mode_delta[3];

 else

 filter_level += ctx->loopfilter_hdr.mode_delta[2];

 }

 if (filter_level > 63)

 filter_level = 63;

 else if (filter_level < 0)

 filter_level = 0;

 interior_limit = filter_level;

 if (ctx->loopfilter_hdr.sharpness)

 {

 interior_limit >>= ctx->loopfilter_hdr.sharpness > 4 ? 2 : 1;

 if (interior_limit > 9 - ctx->loopfilter_hdr.sharpness)

 interior_limit = 9 - ctx->loopfilter_hdr.sharpness;

 }

 if (interior_limit < 1)

 interior_limit = 1;

 hev_threshold = (filter_level >= 15);

 if (filter_level >= 40)

 hev_threshold++;

 if (filter_level >= 20 && !ctx->frame_hdr.is_keyframe)

 hev_threshold++;

 *edge_limit_ = filter_level;

 *interior_limit_ = interior_limit;

 *hev_threshold_ = hev_threshold;

 }

 static void

 filter_row_normal(struct vp8_decoder_ctx *ctx,

 unsigned int row,

 unsigned int start_col,

 unsigned int num_cols)

 {

 unsigned char *y, *u, *v;

 int stride, uv_stride;

 struct mb_info *mbi;

 unsigned int col;

 /* Adjust pointers based on row, start_col */

 stride = ctx->ref_frames[CURRENT_FRAME]->img.stride[PLANE_Y];

 uv_stride = ctx->ref_frames[CURRENT_FRAME]->img.stride[PLANE_U];

 y = ctx->ref_frames[CURRENT_FRAME]->img.planes[PLANE_Y];

 u = ctx->ref_frames[CURRENT_FRAME]->img.planes[PLANE_U];

 v = ctx->ref_frames[CURRENT_FRAME]->img.planes[PLANE_V];

 y += (stride * row + start_col) * 16;

 u += (uv_stride * row + start_col) * 8;

 v += (uv_stride * row + start_col) * 8;

 mbi = ctx->mb_info_rows[row] + start_col;

 for (col = start_col; col < start_col + num_cols; col++)

 {

 int edge_limit, interior_limit, hev_threshold;

 /* TODO: Only need to recalculate every MB if segmentation is

 * enabled.

 */

 calculate_filter_parameters(ctx, mbi, &edge_limit,

 &interior_limit, &hev_threshold);

 if (edge_limit)

 {

 if (col)

 {

 filter_mb_v_edge(y, stride, edge_limit + 2,

 interior_limit, hev_threshold, 2);

 filter_mb_v_edge(u, uv_stride, edge_limit + 2,

 interior_limit, hev_threshold, 1);

 filter_mb_v_edge(v, uv_stride, edge_limit + 2,

 interior_limit, hev_threshold, 1);

 }

 /* NOTE: This conditional is actually dependent on the

 * number of coefficients decoded, not the skip flag as

 * coded in the bitstream. The tokens task is expected

 * to set 31 if there is *any* non-zero data.

 */

 if (mbi->base.eob_mask

 || mbi->base.y_mode == SPLITMV

 || mbi->base.y_mode == B_PRED)

 {

 filter_subblock_v_edge(y + 4, stride, edge_limit,

 interior_limit, hev_threshold,

 2);

 filter_subblock_v_edge(y + 8, stride, edge_limit,

 interior_limit, hev_threshold,

 2);

 filter_subblock_v_edge(y + 12, stride, edge_limit,

 interior_limit, hev_threshold,

 2);

 filter_subblock_v_edge(u + 4, uv_stride, edge_limit,

 interior_limit, hev_threshold,

 1);

 filter_subblock_v_edge(v + 4, uv_stride, edge_limit,

 interior_limit, hev_threshold,

 1);

 }

 if (row)

 {

 filter_mb_h_edge(y, stride, edge_limit + 2,

 interior_limit, hev_threshold, 2);

 filter_mb_h_edge(u, uv_stride, edge_limit + 2,

 interior_limit, hev_threshold, 1);

 filter_mb_h_edge(v, uv_stride, edge_limit + 2,

 interior_limit, hev_threshold, 1);

 }

 if (mbi->base.eob_mask

 || mbi->base.y_mode == SPLITMV

 || mbi->base.y_mode == B_PRED)

 {

 filter_subblock_h_edge(y + 4 * stride, stride,

 edge_limit, interior_limit,

 hev_threshold, 2);

 filter_subblock_h_edge(y + 8 * stride, stride,

 edge_limit, interior_limit,

 hev_threshold, 2);

 filter_subblock_h_edge(y + 12 * stride, stride,

 edge_limit, interior_limit,

 hev_threshold, 2);

 filter_subblock_h_edge(u + 4 * uv_stride, uv_stride,

 edge_limit, interior_limit,

 hev_threshold, 1);

 filter_subblock_h_edge(v + 4 * uv_stride, uv_stride,

 edge_limit, interior_limit,

 hev_threshold, 1);

 }

 }

 y += 16;

 u += 8;

 v += 8;

 mbi++;

 }

 }

 static void

 filter_row_simple(struct vp8_decoder_ctx *ctx,

 unsigned int row,

 unsigned int start_col,

 unsigned int num_cols)

 {

 unsigned char *y;

 int stride;

 struct mb_info *mbi;

 unsigned int col;

 /* Adjust pointers based on row, start_col */

 stride = ctx->ref_frames[CURRENT_FRAME]->img.stride[PLANE_Y];

 y = ctx->ref_frames[CURRENT_FRAME]->img.planes[PLANE_Y];

 y += (stride * row + start_col) * 16;

 mbi = ctx->mb_info_rows[row] + start_col;

 for (col = start_col; col < start_col + num_cols; col++)

 {

 int edge_limit, interior_limit, hev_threshold;

 /* TODO: Only need to recalculate every MB if segmentation is

 * enabled.

 */

 calculate_filter_parameters(ctx, mbi, &edge_limit,

 &interior_limit, &hev_threshold);

 if (edge_limit)

 {

 /* NOTE: This conditional is actually dependent on the

 * number of coefficients decoded, not the skip flag as

 * coded in the bitstream. The tokens task is expected

 * to set 31 if there is *any* non-zero data.

 */

 int filter_subblocks = (mbi->base.eob_mask

 || mbi->base.y_mode == SPLITMV

 || mbi->base.y_mode == B_PRED);

 int mb_limit = (edge_limit + 2) * 2 + interior_limit;

 int b_limit = edge_limit * 2 + interior_limit;

 if (col)

 filter_v_edge_simple(y, stride, mb_limit);

 if (filter_subblocks)

 {

 filter_v_edge_simple(y + 4, stride, b_limit);

 filter_v_edge_simple(y + 8, stride, b_limit);

 filter_v_edge_simple(y + 12, stride, b_limit);

 }

 if (row)

 filter_h_edge_simple(y, stride, mb_limit);

 if (filter_subblocks)

 {

 filter_h_edge_simple(y + 4 * stride, stride,

 b_limit);

 filter_h_edge_simple(y + 8 * stride, stride,

 b_limit);

 filter_h_edge_simple(y + 12 * stride, stride,

 b_limit);

 }

 }

 y += 16;

 mbi++;

 }

 }

 void

 vp8_dixie_loopfilter_process_row(struct vp8_decoder_ctx *ctx,

 unsigned int row,

 unsigned int start_col,

 unsigned int num_cols)

 {

 if (ctx->loopfilter_hdr.use_simple)

 filter_row_simple(ctx, row, start_col, num_cols);

 else

 filter_row_normal(ctx, row, start_col, num_cols);

 }

 ---- End code block --
28.8 dixie_loopfilter.h

 ---- Begin code block --------------------------------------

 /*

 * Copyright (c) 2010 The project authors. All Rights Reserved.

 *

 * Use of this source code is governed by a BSD-style license

 * that can be found in the LICENSE file in the root of the source

 * tree. All contributing project authors may

 * be found in the AUTHORS file in the root of the source tree.

 */
 #ifndef DIXIE_LOOPFILTER_H

 #define DIXIE_LOOPFILTER_H

 void

 vp8_dixie_loopfilter_process_row(struct vp8_decoder_ctx *ctx,

 unsigned int row,

 unsigned int start_col,

 unsigned int num_cols);

 #endif

 ---- End code block --
28.9 idct_add.c

 ---- Begin code block --------------------------------------

 /*

 * Copyright (c) 2010 The project authors. All Rights Reserved.

 *

 * Use of this source code is governed by a BSD-style license

 * that can be found in the LICENSE file in the root of the source

 * tree. All contributing project authors may

 * be found in the AUTHORS file in the root of the source tree.

 */
 #include "dixie.h"

 #include "idct_add.h"

 #include <assert.h>

 void

 vp8_dixie_walsh(const short *input, short *output)

 {

 int i;

 int a1, b1, c1, d1;

 int a2, b2, c2, d2;

 const short *ip = input;

 short *op = output;

 for (i = 0; i < 4; i++)

 {

 a1 = ip[0] + ip[12];

 b1 = ip[4] + ip[8];

 c1 = ip[4] - ip[8];

 d1 = ip[0] - ip[12];

 op[0] = a1 + b1;

 op[4] = c1 + d1;

 op[8] = a1 - b1;

 op[12] = d1 - c1;

 ip++;

 op++;

 }

 ip = output;

 op = output;

 for (i = 0; i < 4; i++)

 {

 a1 = ip[0] + ip[3];

 b1 = ip[1] + ip[2];

 c1 = ip[1] - ip[2];

 d1 = ip[0] - ip[3];

 a2 = a1 + b1;

 b2 = c1 + d1;

 c2 = a1 - b1;

 d2 = d1 - c1;

 op[0] = (a2 + 3) >> 3;

 op[1] = (b2 + 3) >> 3;

 op[2] = (c2 + 3) >> 3;

 op[3] = (d2 + 3) >> 3;

 ip += 4;

 op += 4;

 }

 }

 #define cospi8sqrt2minus1 20091

 #define sinpi8sqrt2 35468

 #define rounding 0

 static void

 idct_columns(const short *input, short *output)

 {

 int i;

 int a1, b1, c1, d1;

 const short *ip = input;

 short *op = output;

 int temp1, temp2;

 int shortpitch = 4;

 for (i = 0; i < 4; i++)

 {

 a1 = ip[0] + ip[8];

 b1 = ip[0] - ip[8];

 temp1 = (ip[4] * sinpi8sqrt2 + rounding) >> 16;

 temp2 = ip[12] +

 ((ip[12] * cospi8sqrt2minus1 + rounding) >> 16);

 c1 = temp1 - temp2;

 temp1 = ip[4] +

 ((ip[4] * cospi8sqrt2minus1 + rounding) >> 16);

 temp2 = (ip[12] * sinpi8sqrt2 + rounding) >> 16;

 d1 = temp1 + temp2;

 op[shortpitch*0] = a1 + d1;

 op[shortpitch*3] = a1 - d1;

 op[shortpitch*1] = b1 + c1;

 op[shortpitch*2] = b1 - c1;

 ip++;

 op++;

 }

 }

 void

 vp8_dixie_idct_add(unsigned char *recon,

 const unsigned char *predict,

 int stride,

 const short *coeffs)

 {

 int i;

 int a1, b1, c1, d1, temp1, temp2;

 short tmp[16];

 idct_columns(coeffs, tmp);

 coeffs = tmp;

 for (i = 0; i < 4; i++)

 {

 a1 = coeffs[0] + coeffs[2];

 b1 = coeffs[0] - coeffs[2];

 temp1 = (coeffs[1] * sinpi8sqrt2 + rounding) >> 16;

 temp2 = coeffs[3] +

 ((coeffs[3] * cospi8sqrt2minus1 + rounding) >> 16);

 c1 = temp1 - temp2;

 temp1 = coeffs[1] +

 ((coeffs[1] * cospi8sqrt2minus1 + rounding) >> 16);

 temp2 = (coeffs[3] * sinpi8sqrt2 + rounding) >> 16;

 d1 = temp1 + temp2;

 recon[0] = CLAMP_255(predict[0] + ((a1 + d1 + 4) >> 3));

 recon[3] = CLAMP_255(predict[3] + ((a1 - d1 + 4) >> 3));

 recon[1] = CLAMP_255(predict[1] + ((b1 + c1 + 4) >> 3));

 recon[2] = CLAMP_255(predict[2] + ((b1 - c1 + 4) >> 3));

 coeffs += 4;

 recon += stride;

 predict += stride;

 }

 }

 ---- End code block --
28.10 idct_add.h
 ---- Begin code block --------------------------------------

 /*

 * Copyright (c) 2010 The project authors. All Rights Reserved.

 *

 * Use of this source code is governed by a BSD-style license

 * that can be found in the LICENSE file in the root of the source

 * tree. All contributing project authors may

 * be found in the AUTHORS file in the root of the source tree.

 */
 #ifndef IDCT_ADD_H

 #define IDCT_ADD_H

 void

 vp8_dixie_idct_add_init(struct vp8_decoder_ctx *ctx);
 void

 vp8_dixie_idct_add(unsigned char *recon,

 const unsigned char *predict,

 int stride,

 const short *coeffs);

 void

 vp8_dixie_walsh(const short *in, short *out);

 void

 vp8_dixie_idct_add_process_row(struct vp8_decoder_ctx *ctx,

 short *coeffs,

 unsigned int row,

 unsigned int start_col,

 unsigned int num_cols);

 #endif

 ---- End code block --
28.11 mem.h
 ---- Begin code block --------------------------------------

 /*

 * Copyright (c) 2010 The project authors. All Rights Reserved.

 *

 * Use of this source code is governed by a BSD-style license

 * that can be found in the LICENSE file in the root of the source

 * tree. All contributing project authors may

 * be found in the AUTHORS file in the root of the source tree.

 */
 #ifndef VPX_PORTS_MEM_H

 #define VPX_PORTS_MEM_H

 #include "vpx_config.h"

 #include "vpx_integer.h"

 #if defined(__GNUC__) && __GNUC__

 #define DECLARE_ALIGNED(n,typ,val) typ val __attribute__ \

 ((aligned (n)))

 #elif defined(_MSC_VER)

 #define DECLARE_ALIGNED(n,typ,val) __declspec(align(n)) typ val

 #else

 #warning No alignment directives known for this compiler.

 #define DECLARE_ALIGNED(n,typ,val) typ val

 #endif

 #endif

 /* Declare an aligned array on the stack, for situations where the

 * stack pointer may not have the alignment we expect. Creates an

 * array with a modified name, then defines val to be a pointer, and

 * aligns that pointer within the array.

 */

 #define DECLARE_ALIGNED_ARRAY(a,typ,val,n)\

 typ val##_[(n)+(a)/sizeof(typ)+1];\

 typ *val = (typ*)((((intptr_t)val##_)+(a)-1)&((intptr_t)-(a)))

 /* Indicates that the usage of the specified variable has been

 * audited to assure that it's safe to use uninitialized. Silences

 * 'may be used uninitialized' warnings on gcc.

 */

 #if defined(__GNUC__) && __GNUC__

 #define UNINITIALIZED_IS_SAFE(x) x=x

 #else

 #define UNINITIALIZED_IS_SAFE(x) x

 #endif

 ---- End code block --
28.12 modemv.c

 ---- Begin code block --------------------------------------

 /*

 * Copyright (c) 2010 The project authors. All Rights Reserved.

 *

 * Use of this source code is governed by a BSD-style license

 * that can be found in the LICENSE file in the root of the source

 * tree. All contributing project authors may

 * be found in the AUTHORS file in the root of the source tree.

 */
 #include "dixie.h"

 #include "modemv_data.h"

 #include <stdlib.h>

 #include <assert.h>

 struct mv_clamp_rect

 {

 int to_left, to_right, to_top, to_bottom;

 };

 static union mv

 clamp_mv(union mv raw, const struct mv_clamp_rect *bounds)

 {

 union mv newmv;

 newmv.d.x = (raw.d.x < bounds->to_left)

 ? bounds->to_left : raw.d.x;

 newmv.d.x = (raw.d.x > bounds->to_right)

 ? bounds->to_right : newmv.d.x;

 newmv.d.y = (raw.d.y < bounds->to_top)

 ? bounds->to_top : raw.d.y;

 newmv.d.y = (raw.d.y > bounds->to_bottom)

 ? bounds->to_bottom : newmv.d.y;

 return newmv;

 }

 static int

 read_segment_id(struct bool_decoder *bool,

 struct vp8_segment_hdr *seg)

 {

 return bool_get(bool, seg->tree_probs[0])

 ? 2 + bool_get(bool, seg->tree_probs[2])

 : bool_get(bool, seg->tree_probs[1]);

 }

 static enum prediction_mode

 above_block_mode(const struct mb_info *this,

 const struct mb_info *above,

 unsigned int b)

 {

 if (b < 4)

 {

 switch (above->base.y_mode)

 {

 case DC_PRED:

 return B_DC_PRED;

 case V_PRED:

 return B_VE_PRED;

 case H_PRED:

 return B_HE_PRED;

 case TM_PRED:

 return B_TM_PRED;

 case B_PRED:

 return above->split.modes[b+12];

 default:

 assert(0);

 }

 }

 return this->split.modes[b-4];

 }

 static enum prediction_mode

 left_block_mode(const struct mb_info *this,

 const struct mb_info *left,

 unsigned int b)

 {

 if (!(b & 3))

 {

 switch (left->base.y_mode)

 {

 case DC_PRED:

 return B_DC_PRED;

 case V_PRED:

 return B_VE_PRED;

 case H_PRED:

 return B_HE_PRED;

 case TM_PRED:

 return B_TM_PRED;

 case B_PRED:

 return left->split.modes[b+3];

 default:

 assert(0);

 }

 }

 return this->split.modes[b-1];

 }

 static void

 decode_kf_mb_mode(struct mb_info *this,

 struct mb_info *left,

 struct mb_info *above,

 struct bool_decoder *bool)

 {

 int y_mode, uv_mode;

 y_mode = bool_read_tree(bool, kf_y_mode_tree, kf_y_mode_probs);

 if (y_mode == B_PRED)

 {

 unsigned int i;

 for (i = 0; i < 16; i++)

 {

 enum prediction_mode a = above_block_mode(this, above,

 i);

 enum prediction_mode l = left_block_mode(this, left, i);

 enum prediction_mode b;

 b = bool_read_tree(bool, b_mode_tree,

 kf_b_mode_probs[a][l]);

 this->split.modes[i] = b;

 }

 }

 uv_mode = bool_read_tree(bool, uv_mode_tree, kf_uv_mode_probs);

 this->base.y_mode = y_mode;

 this->base.uv_mode = uv_mode;

 this->base.mv.raw = 0;

 this->base.ref_frame = 0;

 }

 static void

 decode_intra_mb_mode(struct mb_info *this,

 struct vp8_entropy_hdr *hdr,

 struct bool_decoder *bool)

 {

 /* Like decode_kf_mb_mode, but with probabilities transmitted in

 * the bitstream and no context on the above/left block mode.

 */

 int y_mode, uv_mode;

 y_mode = bool_read_tree(bool, y_mode_tree, hdr->y_mode_probs);

 if (y_mode == B_PRED)

 {

 unsigned int i;

 for (i = 0; i < 16; i++)

 {

 enum prediction_mode b;

 b = bool_read_tree(bool, b_mode_tree,

 default_b_mode_probs);

 this->split.modes[i] = b;

 }

 }

 uv_mode = bool_read_tree(bool, uv_mode_tree, hdr->uv_mode_probs);

 this->base.y_mode = y_mode;

 this->base.uv_mode = uv_mode;

 this->base.mv.raw = 0;

 this->base.ref_frame = CURRENT_FRAME;

 }

 static int

 read_mv_component(struct bool_decoder *bool,

 const unsigned char mvc[MV_PROB_CNT])

 {

 enum {IS_SHORT, SIGN, SHORT, BITS = SHORT + 8 - 1,

 LONG_WIDTH = 10};

 int x = 0;

 if (bool_get(bool, mvc[IS_SHORT])) /* Large */

 {

 int i = 0;

 for (i = 0; i < 3; i++)

 x += bool_get(bool, mvc[BITS + i]) << i;

 /* Skip bit 3, which is sometimes implicit */

 for (i = LONG_WIDTH - 1; i > 3; i--)

 x += bool_get(bool, mvc[BITS + i]) << i;

 if (!(x & 0xFFF0) || bool_get(bool, mvc[BITS + 3]))

 x += 8;

 }

 else /* small */

 x = bool_read_tree(bool, small_mv_tree, mvc + SHORT);

 if (x && bool_get(bool, mvc[SIGN]))

 x = -x;

 return x << 1;

 }

 static mv_t

 above_block_mv(const struct mb_info *this,

 const struct mb_info *above,

 unsigned int b)

 {

 if (b < 4)

 {

 if (above->base.y_mode == SPLITMV)

 return above->split.mvs[b+12];

 return above->base.mv;

 }

 return this->split.mvs[b-4];

 }

 static mv_t

 left_block_mv(const struct mb_info *this,

 const struct mb_info *left,

 unsigned int b)

 {

 if (!(b & 3))

 {

 if (left->base.y_mode == SPLITMV)

 return left->split.mvs[b+3];

 return left->base.mv;

 }

 return this->split.mvs[b-1];

 }

 static enum prediction_mode

 submv_ref(struct bool_decoder *bool, union mv l, union mv a)

 {

 enum subblock_mv_ref

 {

 SUBMVREF_NORMAL,

 SUBMVREF_LEFT_ZED,

 SUBMVREF_ABOVE_ZED,

 SUBMVREF_LEFT_ABOVE_SAME,

 SUBMVREF_LEFT_ABOVE_ZED

 };

 int lez = !(l.raw);

 int aez = !(a.raw);

 int lea = l.raw == a.raw;

 enum subblock_mv_ref ctx = SUBMVREF_NORMAL;

 if (lea && lez)

 ctx = SUBMVREF_LEFT_ABOVE_ZED;

 else if (lea)

 ctx = SUBMVREF_LEFT_ABOVE_SAME;

 else if (aez)

 ctx = SUBMVREF_ABOVE_ZED;

 else if (lez)

 ctx = SUBMVREF_LEFT_ZED;

 return bool_read_tree(bool, submv_ref_tree,

 submv_ref_probs2[ctx]);

 }

 static void

 read_mv(struct bool_decoder *bool,

 union mv *mv,

 mv_component_probs_t mvc[2])

 {

 mv->d.y = read_mv_component(bool, mvc[0]);

 mv->d.x = read_mv_component(bool, mvc[1]);

 }

 static void

 mv_bias(const struct mb_info *mb,

 const unsigned int sign_bias[3],

 enum reference_frame ref_frame,

 union mv *mv)

 {

 if (sign_bias[mb->base.ref_frame] ^ sign_bias[ref_frame])

 {

 mv->d.x *= -1;

 mv->d.y *= -1;

 }

 }

 enum near_mv_v

 {

 CNT_BEST = 0,

 CNT_ZEROZERO = 0,

 CNT_NEAREST,

 CNT_NEAR,

 CNT_SPLITMV

 };

 static void

 find_near_mvs(const struct mb_info *this,

 const struct mb_info *left,

 const struct mb_info *above,

 const unsigned int sign_bias[3],

 union mv near_mvs[4],

 int cnt[4])

 {

 const struct mb_info *aboveleft = above - 1;

 union mv *mv = near_mvs;

 int *cntx = cnt;

 /* Zero accumulators */

 mv[0].raw = mv[1].raw = mv[2].raw = 0;

 cnt[0] = cnt[1] = cnt[2] = cnt[3] = 0;

 /* Process above */

 if (above->base.ref_frame != CURRENT_FRAME)

 {

 if (above->base.mv.raw)

 {

 (++mv)->raw = above->base.mv.raw;

 mv_bias(above, sign_bias, this->base.ref_frame, mv);

 ++cntx;

 }

 *cntx += 2;

 }

 /* Process left */

 if (left->base.ref_frame != CURRENT_FRAME)

 {

 if (left->base.mv.raw)

 {

 union mv this_mv;

 this_mv.raw = left->base.mv.raw;

 mv_bias(left, sign_bias, this->base.ref_frame, &this_mv);

 if (this_mv.raw != mv->raw)

 {

 (++mv)->raw = this_mv.raw;

 ++cntx;

 }

 *cntx += 2;

 }

 else

 cnt[CNT_ZEROZERO] += 2;

 }

 /* Process above left */

 if (aboveleft->base.ref_frame != CURRENT_FRAME)

 {

 if (aboveleft->base.mv.raw)

 {

 union mv this_mv;

 this_mv.raw = aboveleft->base.mv.raw;

 mv_bias(aboveleft, sign_bias, this->base.ref_frame,

 &this_mv);

 if (this_mv.raw != mv->raw)

 {

 (++mv)->raw = this_mv.raw;

 ++cntx;

 }

 *cntx += 1;

 }

 else

 cnt[CNT_ZEROZERO] += 1;

 }

 /* If we have three distinct MVs ... */

 if (cnt[CNT_SPLITMV])

 {

 /* See if above-left MV can be merged with NEAREST */

 if (mv->raw == near_mvs[CNT_NEAREST].raw)

 cnt[CNT_NEAREST] += 1;

 }

 cnt[CNT_SPLITMV] = ((above->base.y_mode == SPLITMV)

 + (left->base.y_mode == SPLITMV)) * 2

 + (aboveleft->base.y_mode == SPLITMV);

 /* Swap near and nearest if necessary */

 if (cnt[CNT_NEAR] > cnt[CNT_NEAREST])

 {

 int tmp;

 tmp = cnt[CNT_NEAREST];

 cnt[CNT_NEAREST] = cnt[CNT_NEAR];

 cnt[CNT_NEAR] = tmp;

 tmp = near_mvs[CNT_NEAREST].raw;

 near_mvs[CNT_NEAREST].raw = near_mvs[CNT_NEAR].raw;

 near_mvs[CNT_NEAR].raw = tmp;

 }

 /* Use near_mvs[CNT_BEST] to store the "best" MV. Note that this

 * storage shares the same address as near_mvs[CNT_ZEROZERO].

 */

 if (cnt[CNT_NEAREST] >= cnt[CNT_BEST])

 near_mvs[CNT_BEST] = near_mvs[CNT_NEAREST];

 }

 static void

 decode_split_mv(struct mb_info *this,

 const struct mb_info *left,

 const struct mb_info *above,

 struct vp8_entropy_hdr *hdr,

 union mv *best_mv,

 struct bool_decoder *bool)

 {

 const int *partition;

 int j, k, mask, partition_id;

 partition_id = bool_read_tree(bool, split_mv_tree,

 split_mv_probs);

 partition = mv_partitions[partition_id];

 this->base.partitioning = partition_id;

 for (j = 0, mask = 0; mask < 65535; j++)

 {

 union mv mv, left_mv, above_mv;

 enum prediction_mode subblock_mode;

 /* Find the first subblock in this partition. */

 for (k = 0; j != partition[k]; k++);

 /* Decode the next MV */

 left_mv = left_block_mv(this, left, k);

 above_mv = above_block_mv(this, above, k);

 subblock_mode = submv_ref(bool, left_mv, above_mv);

 switch (subblock_mode)

 {

 case LEFT4X4:

 mv = left_mv;

 break;

 case ABOVE4X4:

 mv = above_mv;

 break;

 case ZERO4X4:

 mv.raw = 0;

 break;

 case NEW4X4:

 read_mv(bool, &mv, hdr->mv_probs);

 mv.d.x += best_mv->d.x;

 mv.d.y += best_mv->d.y;

 break;

 default:

 assert(0);

 }

 /* Fill the MVs for this partition */

 for (; k < 16; k++)

 if (j == partition[k])

 {

 this->split.mvs[k] = mv;

 mask |= 1 << k;

 }

 }

 }

 static int

 need_mc_border(union mv mv, int l, int t, int b_w, int w, int h)

 {

 int b, r;

 /* Get distance to edge for top-left pixel */

 l += (mv.d.x >> 3);

 t += (mv.d.y >> 3);

 /* Get distance to edge for bottom-right pixel */

 r = w - (l + b_w);

 b = h - (t + b_w);

 return (l >> 1 < 2 || r >> 1 < 3 || t >> 1 < 2 || b >> 1 < 3);

 }

 static void

 decode_mvs(struct vp8_decoder_ctx *ctx,

 struct mb_info *this,

 const struct mb_info *left,

 const struct mb_info *above,

 const struct mv_clamp_rect *bounds,

 struct bool_decoder *bool)

 {

 struct vp8_entropy_hdr *hdr = &ctx->entropy_hdr;

 union mv near_mvs[4];

 union mv clamped_best_mv;

 int mv_cnts[4];

 unsigned char probs[4];

 enum {BEST, NEAREST, NEAR};

 int x, y, w, h, b;

 this->base.ref_frame = bool_get(bool, hdr->prob_last)

 ? 2 + bool_get(bool, hdr->prob_gf)

 : 1;

 find_near_mvs(this, this - 1, above,

 ctx->reference_hdr.sign_bias, near_mvs, mv_cnts);

 probs[0] = mv_counts_to_probs[mv_cnts[0]][0];

 probs[1] = mv_counts_to_probs[mv_cnts[1]][1];

 probs[2] = mv_counts_to_probs[mv_cnts[2]][2];

 probs[3] = mv_counts_to_probs[mv_cnts[3]][3];

 this->base.y_mode = bool_read_tree(bool, mv_ref_tree, probs);

 this->base.uv_mode = this->base.y_mode;

 this->base.need_mc_border = 0;

 x = (-bounds->to_left - 128) >> 3;

 y = (-bounds->to_top - 128) >> 3;

 w = ctx->mb_cols * 16;

 h = ctx->mb_rows * 16;

 switch (this->base.y_mode)

 {

 case NEARESTMV:

 this->base.mv = clamp_mv(near_mvs[NEAREST], bounds);

 break;

 case NEARMV:

 this->base.mv = clamp_mv(near_mvs[NEAR], bounds);

 break;

 case ZEROMV:

 this->base.mv.raw = 0;

 return; //skip need_mc_border check

 case NEWMV:

 clamped_best_mv = clamp_mv(near_mvs[BEST], bounds);

 read_mv(bool, &this->base.mv, hdr->mv_probs);

 this->base.mv.d.x += clamped_best_mv.d.x;

 this->base.mv.d.y += clamped_best_mv.d.y;

 break;

 case SPLITMV:

 {

 union mv chroma_mv[4] = {{{0}}};

 clamped_best_mv = clamp_mv(near_mvs[BEST], bounds);

 decode_split_mv(this, left, above, hdr, &clamped_best_mv,

 bool);

 this->base.mv = this->split.mvs[15];

 for (b = 0; b < 16; b++)

 {

 chroma_mv[(b>>1&1) + (b>>2&2)].d.x +=

 this->split.mvs[b].d.x;

 chroma_mv[(b>>1&1) + (b>>2&2)].d.y +=

 this->split.mvs[b].d.y;

 if (need_mc_border(this->split.mvs[b],

 x + (b & 3) * 4, y + (b & ~3), 4, w, h))

 {

 this->base.need_mc_border = 1;

 break;

 }

 }

 for (b = 0; b < 4; b++)

 {

 chroma_mv[b].d.x += 4 + 8 * (chroma_mv[b].d.x >> 31);

 chroma_mv[b].d.y += 4 + 8 * (chroma_mv[b].d.y >> 31);

 chroma_mv[b].d.x /= 4;

 chroma_mv[b].d.y /= 4;

 //note we're passing in non-subsampled coordinates

 if (need_mc_border(chroma_mv[b],

 x + (b & 1) * 8, y + (b >> 1) * 8, 16, w, h))

 {

 this->base.need_mc_border = 1;

 break;

 }

 }

 return; //skip need_mc_border check

 }

 default:

 assert(0);

 }

 if (need_mc_border(this->base.mv, x, y, 16, w, h))

 this->base.need_mc_border = 1;

 }

 void

 vp8_dixie_modemv_process_row(struct vp8_decoder_ctx *ctx,

 struct bool_decoder *bool,

 int row,

 int start_col,

 int num_cols)

 {

 struct mb_info *above, *this;

 unsigned int col;

 struct mv_clamp_rect bounds;

 this = ctx->mb_info_rows[row] + start_col;

 above = ctx->mb_info_rows[row - 1] + start_col;

 /* Calculate the eighth-pel MV bounds using a 1 MB border. */

 bounds.to_left = -((start_col + 1) << 7);

 bounds.to_right = (ctx->mb_cols - start_col) << 7;

 bounds.to_top = -((row + 1) << 7);

 bounds.to_bottom = (ctx->mb_rows - row) << 7;

 for (col = start_col; col < start_col + num_cols; col++)

 {

 if (ctx->segment_hdr.update_map)

 this->base.segment_id = read_segment_id(bool,

 &ctx->segment_hdr);

 if (ctx->entropy_hdr.coeff_skip_enabled)

 this->base.skip_coeff = bool_get(bool,

 ctx->entropy_hdr.coeff_skip_prob);

 if (ctx->frame_hdr.is_keyframe)

 {

 if (!ctx->segment_hdr.update_map)

 this->base.segment_id = 0;

 decode_kf_mb_mode(this, this - 1, above, bool);

 }

 else

 {

 if (bool_get(bool, ctx->entropy_hdr.prob_inter))

 decode_mvs(ctx, this, this - 1, above, &bounds,

 bool);

 else

 decode_intra_mb_mode(this, &ctx->entropy_hdr, bool);

 bounds.to_left -= 16 << 3;

 bounds.to_right -= 16 << 3;

 }

 /* Advance to next mb */

 this++;

 above++;

 }

 }

 void

 vp8_dixie_modemv_init(struct vp8_decoder_ctx *ctx)

 {

 unsigned int mbi_w, mbi_h, i;

 struct mb_info *mbi;

 mbi_w = ctx->mb_cols + 1; /* For left border col */

 mbi_h = ctx->mb_rows + 1; /* For above border row */

 if (ctx->frame_hdr.frame_size_updated)

 {

 free(ctx->mb_info_storage);

 ctx->mb_info_storage = NULL;

 free(ctx->mb_info_rows_storage);

 ctx->mb_info_rows_storage = NULL;

 }

 if (!ctx->mb_info_storage)

 ctx->mb_info_storage = calloc(mbi_w * mbi_h,

 sizeof(*ctx->mb_info_storage));

 if (!ctx->mb_info_rows_storage)

 ctx->mb_info_rows_storage = calloc(mbi_h,

 sizeof(*ctx->mb_info_rows_storage));

 /* Set up row pointers */

 mbi = ctx->mb_info_storage + 1;

 for (i = 0; i < mbi_h; i++)

 {

 ctx->mb_info_rows_storage[i] = mbi;

 mbi += mbi_w;

 }

 ctx->mb_info_rows = ctx->mb_info_rows_storage + 1;

 }

 void

 vp8_dixie_modemv_destroy(struct vp8_decoder_ctx *ctx)

 {

 free(ctx->mb_info_storage);

 ctx->mb_info_storage = NULL;

 free(ctx->mb_info_rows_storage);

 ctx->mb_info_rows_storage = NULL;

 }

 ---- End code block --
28.13 modemv.h

 ---- Begin code block --------------------------------------

 /*

 * Copyright (c) 2010 The project authors. All Rights Reserved.

 *

 * Use of this source code is governed by a BSD-style license

 * that can be found in the LICENSE file in the root of the source

 * tree. All contributing project authors may

 * be found in the AUTHORS file in the root of the source tree.

 */
 #ifndef MODEMV_H

 #define MODEMV_H

 void

 vp8_dixie_modemv_init(struct vp8_decoder_ctx *ctx);

 void

 vp8_dixie_modemv_destroy(struct vp8_decoder_ctx *ctx);

 void

 vp8_dixie_modemv_process_row(struct vp8_decoder_ctx *ctx,

 struct bool_decoder *bool,

 int row,

 int start_col,

 int num_cols);

 #endif

 ---- End code block --
28.14 modemv_data.h
 ---- Begin code block --------------------------------------

 /*

 * Copyright (c) 2010 The project authors. All Rights Reserved.

 *

 * Use of this source code is governed by a BSD-style license

 * that can be found in the LICENSE file in the root of the source

 * tree. All contributing project authors may

 * be found in the AUTHORS file in the root of the source tree.

 */
 static const unsigned char kf_y_mode_probs[] = { 145, 156, 163, 128};

 static const unsigned char kf_uv_mode_probs[] = { 142, 114, 183};

 static const unsigned char kf_b_mode_probs[10][10][9] =

 {

 { /* above mode 0 */

 { /* left mode 0 */ 231, 120, 48, 89, 115, 113, 120, 152, 112},

 { /* left mode 1 */ 152, 179, 64, 126, 170, 118, 46, 70, 95},

 { /* left mode 2 */ 175, 69, 143, 80, 85, 82, 72, 155, 103},

 { /* left mode 3 */ 56, 58, 10, 171, 218, 189, 17, 13, 152},

 { /* left mode 4 */ 144, 71, 10, 38, 171, 213, 144, 34, 26},

 { /* left mode 5 */ 114, 26, 17, 163, 44, 195, 21, 10, 173},

 { /* left mode 6 */ 121, 24, 80, 195, 26, 62, 44, 64, 85},

 { /* left mode 7 */ 170, 46, 55, 19, 136, 160, 33, 206, 71},

 { /* left mode 8 */ 63, 20, 8, 114, 114, 208, 12, 9, 226},

 { /* left mode 9 */ 81, 40, 11, 96, 182, 84, 29, 16, 36}

 },

 { /* above mode 1 */

 { /* left mode 0 */ 134, 183, 89, 137, 98, 101, 106, 165, 148},

 { /* left mode 1 */ 72, 187, 100, 130, 157, 111, 32, 75, 80},

 { /* left mode 2 */ 66, 102, 167, 99, 74, 62, 40, 234, 128},

 { /* left mode 3 */ 41, 53, 9, 178, 241, 141, 26, 8, 107},

 { /* left mode 4 */ 104, 79, 12, 27, 217, 255, 87, 17, 7},

 { /* left mode 5 */ 74, 43, 26, 146, 73, 166, 49, 23, 157},

 { /* left mode 6 */ 65, 38, 105, 160, 51, 52, 31, 115, 128},

 { /* left mode 7 */ 87, 68, 71, 44, 114, 51, 15, 186, 23},

 { /* left mode 8 */ 47, 41, 14, 110, 182, 183, 21, 17, 194},

 { /* left mode 9 */ 66, 45, 25, 102, 197, 189, 23, 18, 22}

 },

 { /* above mode 2 */

 { /* left mode 0 */ 88, 88, 147, 150, 42, 46, 45, 196, 205},

 { /* left mode 1 */ 43, 97, 183, 117, 85, 38, 35, 179, 61},

 { /* left mode 2 */ 39, 53, 200, 87, 26, 21, 43, 232, 171},

 { /* left mode 3 */ 56, 34, 51, 104, 114, 102, 29, 93, 77},

 { /* left mode 4 */ 107, 54, 32, 26, 51, 1, 81, 43, 31},

 { /* left mode 5 */ 39, 28, 85, 171, 58, 165, 90, 98, 64},

 { /* left mode 6 */ 34, 22, 116, 206, 23, 34, 43, 166, 73},

 { /* left mode 7 */ 68, 25, 106, 22, 64, 171, 36, 225, 114},

 { /* left mode 8 */ 34, 19, 21, 102, 132, 188, 16, 76, 124},

 { /* left mode 9 */ 62, 18, 78, 95, 85, 57, 50, 48, 51}

 },

 { /* above mode 3 */

 { /* left mode 0 */ 193, 101, 35, 159, 215, 111, 89, 46, 111},

 { /* left mode 1 */ 60, 148, 31, 172, 219, 228, 21, 18, 111},

 { /* left mode 2 */ 112, 113, 77, 85, 179, 255, 38, 120, 114},

 { /* left mode 3 */ 40, 42, 1, 196, 245, 209, 10, 25, 109},

 { /* left mode 4 */ 100, 80, 8, 43, 154, 1, 51, 26, 71},

 { /* left mode 5 */ 88, 43, 29, 140, 166, 213, 37, 43, 154},

 { /* left mode 6 */ 61, 63, 30, 155, 67, 45, 68, 1, 209},

 { /* left mode 7 */ 142, 78, 78, 16, 255, 128, 34, 197, 171},

 { /* left mode 8 */ 41, 40, 5, 102, 211, 183, 4, 1, 221},

 { /* left mode 9 */ 51, 50, 17, 168, 209, 192, 23, 25, 82}

 },

 { /* above mode 4 */

 { /* left mode 0 */ 125, 98, 42, 88, 104, 85, 117, 175, 82},

 { /* left mode 1 */ 95, 84, 53, 89, 128, 100, 113, 101, 45},

 { /* left mode 2 */ 75, 79, 123, 47, 51, 128, 81, 171, 1},

 { /* left mode 3 */ 57, 17, 5, 71, 102, 57, 53, 41, 49},

 { /* left mode 4 */ 115, 21, 2, 10, 102, 255, 166, 23, 6},

 { /* left mode 5 */ 38, 33, 13, 121, 57, 73, 26, 1, 85},

 { /* left mode 6 */ 41, 10, 67, 138, 77, 110, 90, 47, 114},

 { /* left mode 7 */ 101, 29, 16, 10, 85, 128, 101, 196, 26},

 { /* left mode 8 */ 57, 18, 10, 102, 102, 213, 34, 20, 43},

 { /* left mode 9 */ 117, 20, 15, 36, 163, 128, 68, 1, 26}

 },

 { /* above mode 5 */

 { /* left mode 0 */ 138, 31, 36, 171, 27, 166, 38, 44, 229},

 { /* left mode 1 */ 67, 87, 58, 169, 82, 115, 26, 59, 179},

 { /* left mode 2 */ 63, 59, 90, 180, 59, 166, 93, 73, 154},

 { /* left mode 3 */ 40, 40, 21, 116, 143, 209, 34, 39, 175},

 { /* left mode 4 */ 57, 46, 22, 24, 128, 1, 54, 17, 37},

 { /* left mode 5 */ 47, 15, 16, 183, 34, 223, 49, 45, 183},

 { /* left mode 6 */ 46, 17, 33, 183, 6, 98, 15, 32, 183},

 { /* left mode 7 */ 65, 32, 73, 115, 28, 128, 23, 128, 205},

 { /* left mode 8 */ 40, 3, 9, 115, 51, 192, 18, 6, 223},

 { /* left mode 9 */ 87, 37, 9, 115, 59, 77, 64, 21, 47}

 },

 { /* above mode 6 */

 { /* left mode 0 */ 104, 55, 44, 218, 9, 54, 53, 130, 226},

 { /* left mode 1 */ 64, 90, 70, 205, 40, 41, 23, 26, 57},

 { /* left mode 2 */ 54, 57, 112, 184, 5, 41, 38, 166, 213},

 { /* left mode 3 */ 30, 34, 26, 133, 152, 116, 10, 32, 134},

 { /* left mode 4 */ 75, 32, 12, 51, 192, 255, 160, 43, 51},

 { /* left mode 5 */ 39, 19, 53, 221, 26, 114, 32, 73, 255},

 { /* left mode 6 */ 31, 9, 65, 234, 2, 15, 1, 118, 73},

 { /* left mode 7 */ 88, 31, 35, 67, 102, 85, 55, 186, 85},

 { /* left mode 8 */ 56, 21, 23, 111, 59, 205, 45, 37, 192},

 { /* left mode 9 */ 55, 38, 70, 124, 73, 102, 1, 34, 98}

 },

 { /* above mode 7 */

 { /* left mode 0 */ 102, 61, 71, 37, 34, 53, 31, 243, 192},

 { /* left mode 1 */ 69, 60, 71, 38, 73, 119, 28, 222, 37},

 { /* left mode 2 */ 68, 45, 128, 34, 1, 47, 11, 245, 171},

 { /* left mode 3 */ 62, 17, 19, 70, 146, 85, 55, 62, 70},

 { /* left mode 4 */ 75, 15, 9, 9, 64, 255, 184, 119, 16},

 { /* left mode 5 */ 37, 43, 37, 154, 100, 163, 85, 160, 1},

 { /* left mode 6 */ 63, 9, 92, 136, 28, 64, 32, 201, 85},

 { /* left mode 7 */ 86, 6, 28, 5, 64, 255, 25, 248, 1},

 { /* left mode 8 */ 56, 8, 17, 132, 137, 255, 55, 116, 128},

 { /* left mode 9 */ 58, 15, 20, 82, 135, 57, 26, 121, 40}

 },

 { /* above mode 8 */

 { /* left mode 0 */ 164, 50, 31, 137, 154, 133, 25, 35, 218},

 { /* left mode 1 */ 51, 103, 44, 131, 131, 123, 31, 6, 158},

 { /* left mode 2 */ 86, 40, 64, 135, 148, 224, 45, 183, 128},

 { /* left mode 3 */ 22, 26, 17, 131, 240, 154, 14, 1, 209},

 { /* left mode 4 */ 83, 12, 13, 54, 192, 255, 68, 47, 28},

 { /* left mode 5 */ 45, 16, 21, 91, 64, 222, 7, 1, 197},

 { /* left mode 6 */ 56, 21, 39, 155, 60, 138, 23, 102, 213},

 { /* left mode 7 */ 85, 26, 85, 85, 128, 128, 32, 146, 171},

 { /* left mode 8 */ 18, 11, 7, 63, 144, 171, 4, 4, 246},

 { /* left mode 9 */ 35, 27, 10, 146, 174, 171, 12, 26, 128}

 },

 { /* above mode 9 */

 { /* left mode 0 */ 190, 80, 35, 99, 180, 80, 126, 54, 45},

 { /* left mode 1 */ 85, 126, 47, 87, 176, 51, 41, 20, 32},

 { /* left mode 2 */ 101, 75, 128, 139, 118, 146, 116, 128, 85},

 { /* left mode 3 */ 56, 41, 15, 176, 236, 85, 37, 9, 62},

 { /* left mode 4 */ 146, 36, 19, 30, 171, 255, 97, 27, 20},

 { /* left mode 5 */ 71, 30, 17, 119, 118, 255, 17, 18, 138},

 { /* left mode 6 */ 101, 38, 60, 138, 55, 70, 43, 26, 142},

 { /* left mode 7 */ 138, 45, 61, 62, 219, 1, 81, 188, 64},

 { /* left mode 8 */ 32, 41, 20, 117, 151, 142, 20, 21, 163},

 { /* left mode 9 */ 112, 19, 12, 61, 195, 128, 48, 4, 24}

 }

 };

 static const int kf_y_mode_tree[] =

 {

 -B_PRED, 2,

 4, 6,

 -DC_PRED, -V_PRED,

 -H_PRED, -TM_PRED

 };

 static const int y_mode_tree[] =

 {

 -DC_PRED, 2,

 4, 6,

 -V_PRED, -H_PRED,

 -TM_PRED, -B_PRED

 };

 static const int uv_mode_tree[6] =

 {

 -DC_PRED, 2,

 -V_PRED, 4,

 -H_PRED, -TM_PRED

 };

 static const int b_mode_tree[18] =

 {

 -B_DC_PRED, 2, /* 0 = DC_NODE */

 -B_TM_PRED, 4, /* 1 = TM_NODE */

 -B_VE_PRED, 6, /* 2 = VE_NODE */

 8, 12, /* 3 = COM_NODE */

 -B_HE_PRED, 10, /* 4 = HE_NODE */

 -B_RD_PRED, -B_VR_PRED, /* 5 = RD_NODE */

 -B_LD_PRED, 14, /* 6 = LD_NODE */

 -B_VL_PRED, 16, /* 7 = VL_NODE */

 -B_HD_PRED, -B_HU_PRED /* 8 = HD_NODE */

 };

 static const int small_mv_tree[14] =

 {

 2, 8,

 4, 6,

 -0, -1,

 -2, -3,

 10, 12,

 -4, -5,

 -6, -7

 };

 static const int mv_ref_tree[8] =

 {

 -ZEROMV, 2,

 -NEARESTMV, 4,

 -NEARMV, 6,

 -NEWMV, -SPLITMV

 };

 static const int submv_ref_tree[6] =

 {

 -LEFT4X4, 2,

 -ABOVE4X4, 4,

 -ZERO4X4, -NEW4X4

 };

 static const int split_mv_tree[6] =

 {

 -3, 2,

 -2, 4,

 -0, -1

 };

 static const unsigned char default_b_mode_probs[] =

 { 120, 90, 79, 133, 87, 85, 80, 111, 151};

 static const unsigned char mv_counts_to_probs[6][4] =

 {

 { 7, 1, 1, 143 },

 { 14, 18, 14, 107 },

 { 135, 64, 57, 68 },

 { 60, 56, 128, 65 },

 { 159, 134, 128, 34 },

 { 234, 188, 128, 28 }

 };

 static const unsigned char split_mv_probs[3] =

 { 110, 111, 150};

 static const unsigned char submv_ref_probs2[5][3] =

 {

 { 147, 136, 18 },

 { 106, 145, 1 },

 { 179, 121, 1 },

 { 223, 1, 34 },

 { 208, 1, 1 }

 };

 const static int mv_partitions[4][16] =

 {

 {0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1 },

 {0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1 },

 {0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 3, 3, 2, 2, 3, 3 },

 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }

 };

 ---- End code block --
28.15 predict.c

 ---- Begin code block --------------------------------------

 /*

 * Copyright (c) 2010 The project authors. All Rights Reserved.

 *

 * Use of this source code is governed by a BSD-style license

 * that can be found in the LICENSE file in the root of the source

 * tree. All contributing project authors may

 * be found in the AUTHORS file in the root of the source tree.

 */
 #include "dixie.h"

 #include "predict.h"

 #include "idct_add.h"

 #include "mem.h"

 #include <assert.h>

 #include <string.h>

 enum

 {

 BORDER_PIXELS = 16,

 };

 static const filter_t sixtap_filters[8] =

 {

 { 0, 0, 128, 0, 0, 0 },

 { 0, -6, 123, 12, -1, 0 },

 { 2, -11, 108, 36, -8, 1 },

 { 0, -9, 93, 50, -6, 0 },

 { 3, -16, 77, 77, -16, 3 },

 { 0, -6, 50, 93, -9, 0 },

 { 1, -8, 36, 108, -11, 2 },

 { 0, -1, 12, 123, -6, 0 }

 };

 static const filter_t bilinear_filters[8] =

 {

 { 0, 0, 128, 0, 0, 0 },

 { 0, 0, 112, 16, 0, 0 },

 { 0, 0, 96, 32, 0, 0 },

 { 0, 0, 80, 48, 0, 0 },

 { 0, 0, 64, 64, 0, 0 },

 { 0, 0, 48, 80, 0, 0 },

 { 0, 0, 32, 96, 0, 0 },

 { 0, 0, 16, 112, 0, 0 }

 };

 static void

 predict_h_nxn(unsigned char *predict,

 int stride,

 int n)

 {

 unsigned char *left = predict - 1;

 int i, j;

 for (i = 0; i < n; i++)

 for (j = 0; j < n; j++)

 predict[i *stride + j] = left[i * stride];

 }

 static void

 predict_v_nxn(unsigned char *predict,

 int stride,

 int n)

 {

 unsigned char *above = predict - stride;

 int i, j;

 for (i = 0; i < n; i++)

 for (j = 0; j < n; j++)

 predict[i *stride + j] = above[j];

 }

 static void

 predict_tm_nxn(unsigned char *predict,

 int stride,

 int n)

 {

 /* Transposes the left column to the top row for later

 * consumption by the idct/recon stage

 */

 unsigned char *left = predict - 1;

 unsigned char *above = predict - stride;

 unsigned char p = above[-1];

 int i, j;

 for (j = 0; j < n; j++)

 {

 for (i = 0; i < n; i++)

 predict[i] = CLAMP_255(*left + above[i] - p);

 predict += stride;

 left += stride;

 }

 }

 static void

 predict_dc_nxn(unsigned char *predict,

 int stride,

 int n)

 {

 unsigned char *left = predict - 1;

 unsigned char *above = predict - stride;

 int i, j, dc = 0;

 for (i = 0; i < n; i++)

 {

 dc += *left + above[i];

 left += stride;

 }

 switch (n)

 {

 case 16:

 dc = (dc + 16) >> 5;

 break;

 case 8:

 dc = (dc + 8) >> 4;

 break;

 case 4:

 dc = (dc + 4) >> 3;

 break;

 }

 for (i = 0; i < n; i++)

 for (j = 0; j < n; j++)

 predict[i *stride + j] = dc;

 }

 static void

 predict_ve_4x4(unsigned char *predict,

 int stride)

 {

 unsigned char *above = predict - stride;

 int i, j;

 predict[0] = (above[-1] + 2 * above[0] + above[1] + 2) >> 2;

 predict[1] = (above[0] + 2 * above[1] + above[2] + 2) >> 2;

 predict[2] = (above[1] + 2 * above[2] + above[3] + 2) >> 2;

 predict[3] = (above[2] + 2 * above[3] + above[4] + 2) >> 2;

 for (i = 1; i < 4; i++)

 for (j = 0; j < 4; j++)

 predict[i *stride + j] = predict[j];

 }

 static void

 predict_he_4x4(unsigned char *predict,

 int stride)

 {

 unsigned char *left = predict - 1;

 predict[0] =

 predict[1] =

 predict[2] =

 predict[3] = (left[-stride] + 2 * left[0] +

 left[stride] + 2) >> 2;

 predict += stride;

 left += stride;

 predict[0] =

 predict[1] =

 predict[2] =

 predict[3] = (left[-stride] + 2 * left[0] +

 left[stride] + 2) >> 2;

 predict += stride;

 left += stride;

 predict[0] =

 predict[1] =

 predict[2] =

 predict[3] = (left[-stride] + 2 * left[0] +

 left[stride] + 2) >> 2;

 predict += stride;

 left += stride;

 predict[0] =

 predict[1] =

 predict[2] =

 predict[3] = (left[-stride] + 2 * left[0] + left[0] + 2) >> 2;

 }

 static void

 predict_ld_4x4(unsigned char *predict,

 int stride)

 {

 unsigned char *above = predict - stride;

 int pred0, pred1, pred2, pred3, pred4, pred5, pred6;

 predict[0] = pred0 = (above[0] + 2 * above[1] +

 above[2] + 2) >> 2;

 predict[1] = pred1 = (above[1] + 2 * above[2] +

 above[3] + 2) >> 2;

 predict[2] = pred2 = (above[2] + 2 * above[3] +

 above[4] + 2) >> 2;

 predict[3] = pred3 = (above[3] + 2 * above[4] +

 above[5] + 2) >> 2;

 predict += stride;

 predict[0] = pred1;

 predict[1] = pred2;

 predict[2] = pred3;

 predict[3] = pred4 = (above[4] + 2 * above[5] +

 above[6] + 2) >> 2;

 predict += stride;

 predict[0] = pred2;

 predict[1] = pred3;

 predict[2] = pred4;

 predict[3] = pred5 = (above[5] + 2 * above[6] +

 above[7] + 2) >> 2;

 predict += stride;

 predict[0] = pred3;

 predict[1] = pred4;

 predict[2] = pred5;

 predict[3] = pred6 = (above[6] + 2 * above[7] +

 above[7] + 2) >> 2;

 }

 static void

 predict_rd_4x4(unsigned char *predict,

 int stride)

 {

 unsigned char *left = predict - 1;

 unsigned char *above = predict - stride;

 int pred0, pred1, pred2, pred3, pred4, pred5, pred6;

 predict[0] = pred0 =

 (left[0] + 2 * above[-1] + above[0] + 2) >> 2;

 predict[1] = pred1 =

 (above[-1] + 2 * above[0] + above[1] + 2) >> 2;

 predict[2] = pred2 =

 (above[0] + 2 * above[1] + above[2] + 2) >> 2;

 predict[3] = pred3 =

 (above[1] + 2 * above[2] + above[3] + 2) >> 2;

 predict += stride;

 predict[0] = pred4 =

 (left[stride] + 2 * left[0] + above[-1] + 2) >> 2;

 predict[1] = pred0;

 predict[2] = pred1;

 predict[3] = pred2;

 predict += stride;

 predict[0] = pred5 =

 (left[stride*2] + 2 * left[stride] + left[0] + 2) >> 2;

 predict[1] = pred4;

 predict[2] = pred0;

 predict[3] = pred1;

 predict += stride;

 predict[0] = pred6 = (left[stride*3] + 2 * left[stride*2] +

 left[stride] + 2) >> 2;

 predict[1] = pred5;

 predict[2] = pred4;

 predict[3] = pred0;

 }

 static void

 predict_vr_4x4(unsigned char *predict,

 int stride)

 {

 unsigned char *left = predict - 1;

 unsigned char *above = predict - stride;

 int pred0, pred1, pred2, pred3, pred4, pred5, pred6,

 pred7, pred8, pred9;

 predict[0] = pred0 = (above[-1] + above[0] + 1) >> 1;

 predict[1] = pred1 = (above[0] + above[1] + 1) >> 1;

 predict[2] = pred2 = (above[1] + above[2] + 1) >> 1;

 predict[3] = pred3 = (above[2] + above[3] + 1) >> 1;

 predict += stride;

 predict[0] = pred4 = (left[0] + 2 * above[-1] +

 above[0] + 2) >> 2;

 predict[1] = pred5 = (above[-1] + 2 * above[0] +

 above[1] + 2) >> 2;

 predict[2] = pred6 = (above[0] + 2 * above[1] +

 above[2] + 2) >> 2;

 predict[3] = pred7 = (above[1] + 2 * above[2] +

 above[3] + 2) >> 2;

 predict += stride;

 predict[0] = pred8 =

 (left[stride] + 2 * left[0] + above[-1] + 2) >> 2;

 predict[1] = pred0;

 predict[2] = pred1;

 predict[3] = pred2;

 predict += stride;

 predict[0] = pred9 =

 (left[stride*2] + 2 * left[stride] + left[0] + 2) >> 2;

 predict[1] = pred4;

 predict[2] = pred5;

 predict[3] = pred6;

 }

 static void

 predict_vl_4x4(unsigned char *predict,

 int stride)

 {

 unsigned char *above = predict - stride;

 int pred0, pred1, pred2, pred3, pred4, pred5, pred6,

 pred7, pred8, pred9;

 predict[0] = pred0 = (above[0] + above[1] + 1) >> 1;

 predict[1] = pred1 = (above[1] + above[2] + 1) >> 1;

 predict[2] = pred2 = (above[2] + above[3] + 1) >> 1;

 predict[3] = pred3 = (above[3] + above[4] + 1) >> 1;

 predict += stride;

 predict[0] = pred4 = (above[0] + 2 * above[1] +

 above[2] + 2) >> 2;

 predict[1] = pred5 = (above[1] + 2 * above[2] +

 above[3] + 2) >> 2;

 predict[2] = pred6 = (above[2] + 2 * above[3] +

 above[4] + 2) >> 2;

 predict[3] = pred7 = (above[3] + 2 * above[4] +

 above[5] + 2) >> 2;

 predict += stride;

 predict[0] = pred1;

 predict[1] = pred2;

 predict[2] = pred3;

 predict[3] = pred8 = (above[4] + 2 * above[5] +

 above[6] + 2) >> 2;

 predict += stride;

 predict[0] = pred5;

 predict[1] = pred6;

 predict[2] = pred7;

 predict[3] = pred9 = (above[5] + 2 * above[6] +

 above[7] + 2) >> 2;

 }

 static void

 predict_hd_4x4(unsigned char *predict,

 int stride)

 {

 unsigned char *left = predict - 1;

 unsigned char *above = predict - stride;

 int pred0, pred1, pred2, pred3, pred4, pred5, pred6,

 pred7, pred8, pred9;

 predict[0] = pred0 = (left[0] + above[-1] + 1) >> 1;

 predict[1] = pred1 = (left[0] + 2 * above[-1] +

 above[0] + 2) >> 2;

 predict[2] = pred2 = (above[-1] + 2 * above[0] +

 above[1] + 2) >> 2;

 predict[3] = pred3 = (above[0] + 2 * above[1] +

 above[2] + 2) >> 2;

 predict += stride;

 predict[0] = pred4 = (left[stride] + left[0] + 1) >> 1;

 predict[1] = pred5 = (left[stride] + 2 * left[0] +

 above[-1] + 2) >> 2;

 predict[2] = pred0;

 predict[3] = pred1;

 predict += stride;

 predict[0] = pred6 = (left[stride*2] + left[stride] + 1) >> 1;

 predict[1] = pred7 = (left[stride*2] + 2 * left[stride] +

 left[0] + 2) >> 2;

 predict[2] = pred4;

 predict[3] = pred5;

 predict += stride;

 predict[0] = pred8 = (left[stride*3] + left[stride*2] + 1) >> 1;

 predict[1] = pred9 = (left[stride*3] + 2 * left[stride*2] +

 left[stride] + 2) >> 2;

 predict[2] = pred6;

 predict[3] = pred7;

 }

 static void

 predict_hu_4x4(unsigned char *predict,

 int stride)

 {

 unsigned char *left = predict - 1;

 int pred0, pred1, pred2, pred3, pred4, pred5, pred6;

 predict[0] = pred0 = (left[stride*0] +

 left[stride*1] + 1) >> 1;

 predict[1] = pred1 = (left[stride*0] + 2 * left[stride*1] +

 left[stride*2] + 2) >> 2;

 predict[2] = pred2 = (left[stride*1] + left[stride*2] + 1) >> 1;

 predict[3] = pred3 = (left[stride*1] + 2 * left[stride*2] +

 left[stride*3] + 2) >> 2;

 predict += stride;

 predict[0] = pred2;

 predict[1] = pred3;

 predict[2] = pred4 = (left[stride*2] + left[stride*3] + 1) >> 1;

 predict[3] = pred5 = (left[stride*2] + 2 * left[stride*3] +

 left[stride*3] + 2) >> 2;

 predict += stride;

 predict[0] = pred4;

 predict[1] = pred5;

 predict[2] = pred6 = left[stride*3];

 predict[3] = pred6;

 predict += stride;

 predict[0] = pred6;

 predict[1] = pred6;

 predict[2] = pred6;

 predict[3] = pred6;

 }

 static void

 predict_h_16x16(unsigned char *predict, int stride)

 {

 predict_h_nxn(predict, stride, 16);

 }

 static void

 predict_v_16x16(unsigned char *predict, int stride)

 {

 predict_v_nxn(predict, stride, 16);

 }

 static void

 predict_tm_16x16(unsigned char *predict, int stride)

 {

 predict_tm_nxn(predict, stride, 16);

 }

 static void

 predict_h_8x8(unsigned char *predict, int stride)

 {

 predict_h_nxn(predict, stride, 8);

 }

 static void

 predict_v_8x8(unsigned char *predict, int stride)

 {

 predict_v_nxn(predict, stride, 8);

 }

 static void

 predict_tm_8x8(unsigned char *predict, int stride)

 {

 predict_tm_nxn(predict, stride, 8);

 }

 static void

 predict_tm_4x4(unsigned char *predict, int stride)

 {

 predict_tm_nxn(predict, stride, 4);

 }

 static void

 copy_down(unsigned char *recon,

 int stride)

 {

 /* Copy the four pixels above-right of subblock 3 to

 * above-right of subblocks 7, 11, and 15

 */

 uint32_t tmp, *copy = (void *)(recon + 16 - stride);

 stride = stride / sizeof(unsigned int);

 tmp = *copy;

 copy += stride * 4;

 *copy = tmp;

 copy += stride * 4;

 *copy = tmp;

 copy += stride * 4;

 *copy = tmp;

 }

 static void

 b_pred(unsigned char *predict,

 int stride,

 struct mb_info *mbi,

 short *coeffs)

 {

 int i;

 copy_down(predict, stride);

 for (i = 0; i < 16; i++)

 {

 unsigned char *b_predict = predict + (i & 3) * 4;

 switch (mbi->split.modes[i])

 {

 case B_DC_PRED:

 predict_dc_nxn(b_predict, stride, 4);

 break;

 case B_TM_PRED:

 predict_tm_4x4(b_predict, stride);

 break;

 case B_VE_PRED:

 predict_ve_4x4(b_predict, stride);

 break;

 case B_HE_PRED:

 predict_he_4x4(b_predict, stride);

 break;

 case B_LD_PRED:

 predict_ld_4x4(b_predict, stride);

 break;

 case B_RD_PRED:

 predict_rd_4x4(b_predict, stride);

 break;

 case B_VR_PRED:

 predict_vr_4x4(b_predict, stride);

 break;

 case B_VL_PRED:

 predict_vl_4x4(b_predict, stride);

 break;

 case B_HD_PRED:

 predict_hd_4x4(b_predict, stride);

 break;

 case B_HU_PRED:

 predict_hu_4x4(b_predict, stride);

 break;

 default:

 assert(0);

 }

 vp8_dixie_idct_add(b_predict, b_predict, stride, coeffs);

 coeffs += 16;

 if ((i & 3) == 3)

 {

 predict += stride * 4;

 }

 }

 }

 static void

 fixup_dc_coeffs(struct mb_info *mbi,

 short *coeffs)

 {

 short y2[16];

 int i;

 vp8_dixie_walsh(coeffs + 24 * 16, y2);

 for (i = 0; i < 16; i++)

 coeffs[i*16] = y2[i];

 }

 static void

 predict_intra_luma(unsigned char *predict,

 int stride,

 struct mb_info *mbi,

 short *coeffs)

 {

 if (mbi->base.y_mode == B_PRED)

 b_pred(predict, stride, mbi, coeffs);

 else

 {

 int i;

 switch (mbi->base.y_mode)

 {

 case DC_PRED:

 predict_dc_nxn(predict, stride, 16);

 break;

 case V_PRED:

 predict_v_16x16(predict, stride);

 break;

 case H_PRED:

 predict_h_16x16(predict, stride);

 break;

 case TM_PRED:

 predict_tm_16x16(predict, stride);

 break;

 default:

 assert(0);

 }

 fixup_dc_coeffs(mbi, coeffs);

 for (i = 0; i < 16; i++)

 {

 vp8_dixie_idct_add(predict, predict, stride, coeffs);

 coeffs += 16;

 predict += 4;

 if ((i & 3) == 3)

 predict += stride * 4 - 16;

 }

 }

 }

 static void

 predict_intra_chroma(unsigned char *predict_u,

 unsigned char *predict_v,

 int stride,

 struct mb_info *mbi,

 short *coeffs)

 {

 int i;

 switch (mbi->base.uv_mode)

 {

 case DC_PRED:

 predict_dc_nxn(predict_u, stride, 8);

 predict_dc_nxn(predict_v, stride, 8);

 break;

 case V_PRED:

 predict_v_8x8(predict_u, stride);

 predict_v_8x8(predict_v, stride);

 break;

 case H_PRED:

 predict_h_8x8(predict_u, stride);

 predict_h_8x8(predict_v, stride);

 break;

 case TM_PRED:

 predict_tm_8x8(predict_u, stride);

 predict_tm_8x8(predict_v, stride);

 break;

 default:

 assert(0);

 }

 coeffs += 16 * 16;

 for (i = 16; i < 20; i++)

 {

 vp8_dixie_idct_add(predict_u, predict_u, stride, coeffs);

 coeffs += 16;

 predict_u += 4;

 if (i & 1)

 predict_u += stride * 4 - 8;

 }

 for (i = 20; i < 24; i++)

 {

 vp8_dixie_idct_add(predict_v, predict_v, stride, coeffs);

 coeffs += 16;

 predict_v += 4;

 if (i & 1)

 predict_v += stride * 4 - 8;

 }

 }

 static void

 sixtap_horiz(unsigned char *output,

 int output_stride,

 const unsigned char *reference,

 int reference_stride,

 int cols,

 int rows,

 const filter_t filter

)

 {

 int r, c, temp;

 for (r = 0; r < rows; r++)

 {

 for (c = 0; c < cols; c++)

 {

 temp = (reference[-2] * filter[0]) +

 (reference[-1] * filter[1]) +

 (reference[0] * filter[2]) +

 (reference[1] * filter[3]) +

 (reference[2] * filter[4]) +

 (reference[3] * filter[5]) +

 64;

 temp >>= 7;

 output[c] = CLAMP_255(temp);

 reference++;

 }

 reference += reference_stride - cols;

 output += output_stride;

 }

 }

 static void

 sixtap_vert(unsigned char *output,

 int output_stride,

 const unsigned char *reference,

 int reference_stride,

 int cols,

 int rows,

 const filter_t filter

)

 {

 int r, c, temp;

 for (r = 0; r < rows; r++)

 {

 for (c = 0; c < cols; c++)

 {

 temp = (reference[-2*reference_stride] * filter[0]) +

 (reference[-1*reference_stride] * filter[1]) +

 (reference[0*reference_stride] * filter[2]) +

 (reference[1*reference_stride] * filter[3]) +

 (reference[2*reference_stride] * filter[4]) +

 (reference[3*reference_stride] * filter[5]) +

 64;

 temp >>= 7;

 output[c] = CLAMP_255(temp);

 reference++;

 }

 reference += reference_stride - cols;

 output += output_stride;

 }

 }

 static void

 sixtap_2d(unsigned char *output,

 int output_stride,

 const unsigned char *reference,

 int reference_stride,

 int cols,

 int rows,

 int mx,

 int my,

 const filter_t filters[8]

)

 {

 DECLARE_ALIGNED(16, unsigned char, temp[16*(16+5)]);

 sixtap_horiz(temp, 16,

 reference - 2 * reference_stride, reference_stride,

 cols, rows + 5, filters[mx]);

 sixtap_vert(output, output_stride,

 temp + 2 * 16, 16,

 cols, rows, filters[my]);

 }

 struct img_index

 {

 unsigned char *y, *u, *v;

 int stride, uv_stride;

 };

 static const unsigned char *

 filter_block(unsigned char *output,

 const unsigned char *reference,

 int stride,

 const union mv *mv,

 const filter_t filters[8])

 {

 int mx, my;

 /* Handle 0,0 as a special case. TODO: Does this make it any

 * faster?

 */

 if (!mv->raw)

 return reference;

 mx = mv->d.x & 7;

 my = mv->d.y & 7;

 reference += ((mv->d.y >> 3) * stride) + (mv->d.x >> 3);

 if (mx | my)

 {

 sixtap_2d(output, stride, reference, stride, 4, 4, mx, my,

 filters);

 reference = output;

 }

 return reference;

 }

 static void

 recon_1_block(unsigned char *output,

 const unsigned char *reference,

 int stride,

 const union mv *mv,

 const filter_t filters[8],

 short *coeffs,

 struct mb_info *mbi,

 int b

)

 {

 const unsigned char *predict;

 predict = filter_block(output, reference, stride, mv, filters);

 vp8_dixie_idct_add(output, predict, stride, coeffs + 16 * b);

 }

 static mv_t

 calculate_chroma_splitmv(struct mb_info *mbi,

 int b,

 int full_pixel)

 {

 int temp;

 union mv mv;

 temp = mbi->split.mvs[b].d.x +

 mbi->split.mvs[b+1].d.x +

 mbi->split.mvs[b+4].d.x +

 mbi->split.mvs[b+5].d.x;

 if (temp < 0)

 temp -= 4;

 else

 temp += 4;

 mv.d.x = temp / 8;

 temp = mbi->split.mvs[b].d.y +

 mbi->split.mvs[b+1].d.y +

 mbi->split.mvs[b+4].d.y +

 mbi->split.mvs[b+5].d.y;

 if (temp < 0)

 temp -= 4;

 else

 temp += 4;

 mv.d.y = temp / 8;

 if (full_pixel)

 {

 mv.d.x &= ~7;

 mv.d.y &= ~7;

 }

 return mv;

 }

 /* Note: We rely on the reconstructed border having the same stride

 * as the reference buffer because the filter_block can't adjust the

 * stride with its return value, only the reference pointer.

 */

 static void

 build_mc_border(unsigned char *dst,

 const unsigned char *src,

 int stride,

 int x,

 int y,

 int b_w,

 int b_h,

 int w,

 int h

)

 {

 const unsigned char *ref_row;

 /* Get a pointer to the start of the real data for this row */

 ref_row = src - x - y * stride;

 if (y >= h)

 ref_row += (h - 1) * stride;

 else if (y > 0)

 ref_row += y * stride;

 do

 {

 int left, right = 0, copy;

 left = x < 0 ? -x : 0;

 if (left > b_w)

 left = b_w;

 if (x + b_w > w)

 right = x + b_w - w;

 if (right > b_w)

 right = b_w;

 copy = b_w - left - right;

 if (left)

 memset(dst, ref_row[0], left);

 if (copy)

 memcpy(dst + left, ref_row + x + left, copy);

 if (right)

 memset(dst + left + copy, ref_row[w-1], right);

 dst += stride;

 y++;

 if (y < h && y > 0)

 ref_row += stride;

 }

 while (--b_h);

 }

 static void

 recon_1_edge_block(unsigned char *output,

 unsigned char *emul_block,

 const unsigned char *reference,

 int stride,

 const union mv *mv,

 const filter_t filters[8],

 short *coeffs,

 struct mb_info *mbi,

 int x,

 int y,

 int w,

 int h,

 int start_b

)

 {

 const unsigned char *predict;

 int b = start_b;

 const int b_w = 4;

 const int b_h = 4;

 x += mv->d.x >> 3;

 y += mv->d.y >> 3;

 /* Need two pixels left/above, 3 right/below for 6-tap */

 if (x < 2 || x + b_w - 1 + 3 >= w || y < 2 ||

 y + b_h - 1 + 3 >= h)

 {

 reference += (mv->d.x >> 3) + (mv->d.y >> 3) * stride;

 build_mc_border(emul_block,

 reference - 2 - 2 * stride, stride,

 x - 2, y - 2, b_w + 5, b_h + 5, w, h);

 reference = emul_block + 2 * stride + 2;

 reference -= (mv->d.x >> 3) + (mv->d.y >> 3) * stride;

 }

 predict = filter_block(output, reference, stride, mv, filters);

 vp8_dixie_idct_add(output, predict, stride, coeffs + 16 * b);

 }

 static void

 predict_inter_emulated_edge(struct vp8_decoder_ctx *ctx,

 struct img_index *img,

 short *coeffs,

 struct mb_info *mbi,

 int mb_col,

 int mb_row)

 {

 /* TODO: Move this into its own buffer. This only works because

 * we still have a border allocated.

 */

 unsigned char *emul_block = ctx->frame_strg[0].img.img_data;

 unsigned char *reference;

 unsigned char *output;

 ptrdiff_t reference_offset;

 int w, h, x, y, b;

 union mv chroma_mv[4];

 unsigned char *u = img->u, *v = img->v;

 int full_pixel = ctx->frame_hdr.version == 3;

 x = mb_col * 16;

 y = mb_row * 16;

 w = ctx->mb_cols * 16;

 h = ctx->mb_rows * 16;

 output = img->y;

 reference_offset = ctx->ref_frame_offsets[mbi->base.ref_frame];

 reference = output + reference_offset;

 if (mbi->base.y_mode != SPLITMV)

 {

 union mv uvmv;

 uvmv = mbi->base.mv;

 uvmv.d.x = (uvmv.d.x + 1 + (uvmv.d.x >> 31) * 2) / 2;

 uvmv.d.y = (uvmv.d.y + 1 + (uvmv.d.y >> 31) * 2) / 2;

 if (full_pixel)

 {

 uvmv.d.x &= ~7;

 uvmv.d.y &= ~7;

 }

 chroma_mv[0] = uvmv;

 chroma_mv[1] = uvmv;

 chroma_mv[2] = uvmv;

 chroma_mv[3] = uvmv;

 }

 else

 {

 chroma_mv[0] = calculate_chroma_splitmv(mbi, 0, full_pixel);

 chroma_mv[1] = calculate_chroma_splitmv(mbi, 2, full_pixel);

 chroma_mv[2] = calculate_chroma_splitmv(mbi, 8, full_pixel);

 chroma_mv[3] = calculate_chroma_splitmv(mbi, 10, full_pixel);

 }

 /* Luma */

 for (b = 0; b < 16; b++)

 {

 union mv *ymv;

 if (mbi->base.y_mode != SPLITMV)

 ymv = &mbi->base.mv;

 else

 ymv = mbi->split.mvs + b;

 recon_1_edge_block(output, emul_block, reference,

 img->stride, ymv, ctx->subpixel_filters, coeffs,

 mbi, x, y, w, h, b);

 x += 4;

 output += 4;

 reference += 4;

 if ((b & 3) == 3)

 {

 x -= 16;

 y += 4;

 output += 4 * img->stride - 16;

 reference += 4 * img->stride - 16;

 }

 }

 x = mb_col * 16;

 y = mb_row * 16;

 /* Chroma */

 x >>= 1;

 y >>= 1;

 w >>= 1;

 h >>= 1;

 for (b = 0; b < 4; b++)

 {

 recon_1_edge_block(u, emul_block, u + reference_offset,

 img->uv_stride,

 &chroma_mv[b], ctx->subpixel_filters,

 coeffs, mbi, x, y, w, h, b + 16);

 recon_1_edge_block(v, emul_block, v + reference_offset,

 img->uv_stride,

 &chroma_mv[b], ctx->subpixel_filters,

 coeffs, mbi, x, y, w, h, b + 20);

 u += 4;

 v += 4;

 x += 4;

 if (b & 1)

 {

 x -= 8;

 y += 4;

 u += 4 * img->uv_stride - 8;

 v += 4 * img->uv_stride - 8;

 }

 }

 }

 static void

 predict_inter(struct vp8_decoder_ctx *ctx,

 struct img_index *img,

 short *coeffs,

 struct mb_info *mbi)

 {

 unsigned char *y = img->y;

 unsigned char *u = img->u;

 unsigned char *v = img->v;

 ptrdiff_t reference_offset;

 union mv chroma_mv[4];

 int full_pixel = ctx->frame_hdr.version == 3;

 int b;

 if (mbi->base.y_mode != SPLITMV)

 {

 union mv uvmv;

 uvmv = mbi->base.mv;

 uvmv.d.x = (uvmv.d.x + 1 + (uvmv.d.x >> 31) * 2) / 2;

 uvmv.d.y = (uvmv.d.y + 1 + (uvmv.d.y >> 31) * 2) / 2;

 if (full_pixel)

 {

 uvmv.d.x &= ~7;

 uvmv.d.y &= ~7;

 }

 chroma_mv[0] =

 chroma_mv[1] =

 chroma_mv[2] =

 chroma_mv[3] = uvmv;

 }

 else

 {

 chroma_mv[0] = calculate_chroma_splitmv(mbi, 0, full_pixel);

 chroma_mv[1] = calculate_chroma_splitmv(mbi, 2, full_pixel);

 chroma_mv[2] = calculate_chroma_splitmv(mbi, 8, full_pixel);

 chroma_mv[3] = calculate_chroma_splitmv(mbi, 10, full_pixel);

 }

 reference_offset = ctx->ref_frame_offsets[mbi->base.ref_frame];

 for (b = 0; b < 16; b++)

 {

 union mv *ymv;

 if (mbi->base.y_mode != SPLITMV)

 ymv = &mbi->base.mv;

 else

 ymv = mbi->split.mvs + b;

 recon_1_block(y, y + reference_offset, img->stride,

 ymv, ctx->subpixel_filters, coeffs, mbi, b);

 y += 4;

 if ((b & 3) == 3)

 y += 4 * img->stride - 16;

 }

 for (b = 0; b < 4; b++)

 {

 recon_1_block(u, u + reference_offset,

 img->uv_stride, &chroma_mv[b],

 ctx->subpixel_filters, coeffs, mbi, b + 16);

 recon_1_block(v, v + reference_offset,

 img->uv_stride, &chroma_mv[b],

 ctx->subpixel_filters, coeffs, mbi, b + 20);

 u += 4;

 v += 4;

 if (b & 1)

 {

 u += 4 * img->uv_stride - 8;

 v += 4 * img->uv_stride - 8;

 }

 }

 }

 void

 vp8_dixie_release_ref_frame(struct ref_cnt_img *rcimg)

 {

 if (rcimg)

 {

 assert(rcimg->ref_cnt);

 rcimg->ref_cnt--;

 }

 }

 struct ref_cnt_img *

 vp8_dixie_ref_frame(struct ref_cnt_img *rcimg)

 {

 rcimg->ref_cnt++;

 return rcimg;

 }

 struct ref_cnt_img *

 vp8_dixie_find_free_ref_frame(struct ref_cnt_img *frames)

 {

 int i;

 for (i = 0; i < NUM_REF_FRAMES; i++)

 if (frames[i].ref_cnt == 0)

 {

 frames[i].ref_cnt = 1;

 return &frames[i];

 }

 assert(0);

 return NULL;

 }

 static void

 fixup_left(unsigned char *predict,

 int width,

 int stride,

 unsigned int row,

 enum prediction_mode mode)

 {

 /* The left column of out-of-frame pixels is taken to be 129,

 * unless we're doing DC_PRED, in which case we duplicate the

 * above row, unless this is also row 0, in which case we use

 * 129.

 */

 unsigned char *left = predict - 1;

 int i;

 if (mode == DC_PRED && row)

 {

 unsigned char *above = predict - stride;

 for (i = 0; i < width; i++)

 {

 *left = above[i];

 left += stride;

 }

 }

 else

 {

 /* Need to re-set the above row, in case the above MB was

 * DC_PRED.

 */

 left -= stride;

 for (i = -1; i < width; i++)

 {

 *left = 129;

 left += stride;

 }

 }

 }

 static void

 fixup_above(unsigned char *predict,

 int width,

 int stride,

 unsigned int col,

 enum prediction_mode mode)

 {

 /* The above row of out-of-frame pixels is taken to be 127,

 * unless we're doing DC_PRED, in which case we duplicate the

 * left col, unless this is also col 0, in which case we use

 * 127.

 */

 unsigned char *above = predict - stride;

 int i;

 if (mode == DC_PRED && col)

 {

 unsigned char *left = predict - 1;

 for (i = 0; i < width; i++)

 {

 above[i] = *left;

 left += stride;

 }

 }

 else

 /* Need to re-set the left col, in case the last MB was

 * DC_PRED.

 */

 memset(above - 1, 127, width + 1);

 memset(above + width, 127, 4); // for above-right subblock modes

 }

 void

 vp8_dixie_predict_init(struct vp8_decoder_ctx *ctx)

 {

 int i;

 unsigned char *this_frame_base;

 if (ctx->frame_hdr.frame_size_updated)

 {

 for (i = 0; i < NUM_REF_FRAMES; i++)

 {

 unsigned int w = ctx->mb_cols * 16 + BORDER_PIXELS * 2;

 unsigned int h = ctx->mb_rows * 16 + BORDER_PIXELS * 2;

 vpx_img_free(&ctx->frame_strg[i].img);

 ctx->frame_strg[i].ref_cnt = 0;

 ctx->ref_frames[i] = NULL;

 if (!vpx_img_alloc(&ctx->frame_strg[i].img,

 IMG_FMT_I420, w, h, 16))

 vpx_internal_error(&ctx->error, VPX_CODEC_MEM_ERROR,

 "Failed to allocate %dx%d"

 " framebuffer",

 w, h);

 vpx_img_set_rect(&ctx->frame_strg[i].img, BORDER_PIXELS,

 BORDER_PIXELS, ctx->frame_hdr.kf.w,

 ctx->frame_hdr.kf.h);

 }

 if (ctx->frame_hdr.version)

 ctx->subpixel_filters = bilinear_filters;

 else

 ctx->subpixel_filters = sixtap_filters;

 }

 /* Find a free framebuffer to predict into */

 if (ctx->ref_frames[CURRENT_FRAME])

 vp8_dixie_release_ref_frame(ctx->ref_frames[CURRENT_FRAME]);

 ctx->ref_frames[CURRENT_FRAME] =

 vp8_dixie_find_free_ref_frame(ctx->frame_strg);

 this_frame_base = ctx->ref_frames[CURRENT_FRAME]->img.img_data;

 /* Calculate offsets to the other reference frames */

 for (i = 0; i < NUM_REF_FRAMES; i++)

 {

 struct ref_cnt_img *ref = ctx->ref_frames[i];

 ctx->ref_frame_offsets[i] =

 ref ? ref->img.img_data - this_frame_base : 0;

 }

 /* TODO: No need to do this on every frame... */

 }

 void

 vp8_dixie_predict_destroy(struct vp8_decoder_ctx *ctx)

 {

 int i;

 for (i = 0; i < NUM_REF_FRAMES; i++)

 {

 vpx_img_free(&ctx->frame_strg[i].img);

 ctx->frame_strg[i].ref_cnt = 0;

 ctx->ref_frames[i] = NULL;

 }

 }

 void

 vp8_dixie_predict_process_row(struct vp8_decoder_ctx *ctx,

 unsigned int row,

 unsigned int start_col,

 unsigned int num_cols)

 {

 struct img_index img;

 struct mb_info *mbi;

 unsigned int col;

 short *coeffs;

 /* Adjust pointers based on row, start_col */

 img.stride =

 ctx->ref_frames[CURRENT_FRAME]->img.stride[PLANE_Y];

 img.uv_stride =

 ctx->ref_frames[CURRENT_FRAME]->img.stride[PLANE_U];

 img.y = ctx->ref_frames[CURRENT_FRAME]->img.planes[PLANE_Y];

 img.u = ctx->ref_frames[CURRENT_FRAME]->img.planes[PLANE_U];

 img.v = ctx->ref_frames[CURRENT_FRAME]->img.planes[PLANE_V];

 img.y += (img.stride * row + start_col) * 16;

 img.u += (img.uv_stride * row + start_col) * 8;

 img.v += (img.uv_stride * row + start_col) * 8;

 mbi = ctx->mb_info_rows[row] + start_col;

 coeffs = ctx->tokens[row &

 (ctx->token_hdr.partitions - 1)].coeffs +

 25 * 16 * start_col;

 /* Fix up the out-of-frame pixels */

 if (start_col == 0)

 {

 fixup_left(img.y, 16, img.stride, row, mbi->base.y_mode);

 fixup_left(img.u, 8, img.uv_stride, row, mbi->base.uv_mode);

 fixup_left(img.v, 8, img.uv_stride, row, mbi->base.uv_mode);

 if (row == 0)

 *(img.y - img.stride - 1) = 127;

 }

 for (col = start_col; col < start_col + num_cols; col++)

 {

 if (row == 0)

 {

 fixup_above(img.y, 16, img.stride, col,

 mbi->base.y_mode);

 fixup_above(img.u, 8, img.uv_stride, col,

 mbi->base.uv_mode);

 fixup_above(img.v, 8, img.uv_stride, col,

 mbi->base.uv_mode);

 }

 if (mbi->base.y_mode <= B_PRED)

 {

 predict_intra_luma(img.y, img.stride, mbi, coeffs);

 predict_intra_chroma(img.u, img.v, img.uv_stride, mbi,

 coeffs);

 }

 else

 {

 if (mbi->base.y_mode != SPLITMV) // && != BPRED

 fixup_dc_coeffs(mbi, coeffs);

 if (mbi->base.need_mc_border)

 predict_inter_emulated_edge(ctx, &img, coeffs, mbi,

 col, row);

 else

 predict_inter(ctx, &img, coeffs, mbi);

 }

 /* Advance to the next macroblock */

 mbi++;

 img.y += 16;

 img.u += 8;

 img.v += 8;

 coeffs += 25 * 16;

 }

 if (col == ctx->mb_cols)

 {

 /* Extend the last row by four pixels for intra-prediction.

 * This will be propagated later by copy_down.

 */

 uint32_t *extend = (uint32_t *)(img.y + 15 * img.stride);

 uint32_t val = 0x01010101 * img.y[-1 + 15 * img.stride];

 *extend = val;

 }

 }

 ---- End code block --
28.16 predict.h

 ---- Begin code block --------------------------------------

 /*

 * Copyright (c) 2010 The project authors. All Rights Reserved.

 *

 * Use of this source code is governed by a BSD-style license

 * that can be found in the LICENSE file in the root of the source

 * tree. All contributing project authors may

 * be found in the AUTHORS file in the root of the source tree.

 */
 #ifndef PREDICT_H

 #define PREDICT_H

 void

 vp8_dixie_predict_init(struct vp8_decoder_ctx *ctx);

 void

 vp8_dixie_predict_destroy(struct vp8_decoder_ctx *ctx);

 void

 vp8_dixie_predict_process_row(struct vp8_decoder_ctx *ctx,

 unsigned int row,

 unsigned int start_col,

 unsigned int num_cols);

 void

 vp8_dixie_release_ref_frame(struct ref_cnt_img *rcimg);

 struct ref_cnt_img *

 vp8_dixie_ref_frame(struct ref_cnt_img *rcimg);

 struct ref_cnt_img *

 vp8_dixie_find_free_ref_frame(struct ref_cnt_img *frames);

 #endif

 ---- End code block --
28.17 tokens.c

 ---- Begin code block --------------------------------------

 /*

 * Copyright (c) 2010 The project authors. All Rights Reserved.

 *

 * Use of this source code is governed by a BSD-style license

 * that can be found in the LICENSE file in the root of the source

 * tree. All contributing project authors may

 * be found in the AUTHORS file in the root of the source tree.

 */
 #include "vpx_codec_internal.h"

 #include "dixie.h"

 #include "tokens.h"

 #include <stdlib.h>

 #include <string.h>

 #include <malloc.h>

 enum

 {

 EOB_CONTEXT_NODE,

 ZERO_CONTEXT_NODE,

 ONE_CONTEXT_NODE,

 LOW_VAL_CONTEXT_NODE,

 TWO_CONTEXT_NODE,

 THREE_CONTEXT_NODE,

 HIGH_LOW_CONTEXT_NODE,

 CAT_ONE_CONTEXT_NODE,

 CAT_THREEFOUR_CONTEXT_NODE,

 CAT_THREE_CONTEXT_NODE,

 CAT_FIVE_CONTEXT_NODE

 };

 enum

 {

 ZERO_TOKEN,

 ONE_TOKEN,

 TWO_TOKEN,

 THREE_TOKEN,

 FOUR_TOKEN,

 DCT_VAL_CATEGORY1,

 DCT_VAL_CATEGORY2,

 DCT_VAL_CATEGORY3,

 DCT_VAL_CATEGORY4,

 DCT_VAL_CATEGORY5,

 DCT_VAL_CATEGORY6,

 DCT_EOB_TOKEN,

 MAX_ENTROPY_TOKENS

 };

 struct extrabits

 {

 short min_val;

 short length;

 unsigned char probs[12];

 };

 static const unsigned int left_context_index[25] =

 {

 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3,

 4, 4, 5, 5, 6, 6, 7, 7, 8

 };

 static const unsigned int above_context_index[25] =

 {

 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3,

 4, 5, 4, 5, 6, 7, 6, 7, 8

 };

 #define X(n) ((n) * PREV_COEFF_CONTEXTS * ENTROPY_NODES)

 static const unsigned int bands_x[16] =

 {

 X(0), X(1), X(2), X(3), X(6), X(4), X(5), X(6),

 X(6), X(6), X(6), X(6), X(6), X(6), X(6), X(7)

 };

 #undef X

 static const struct extrabits extrabits[MAX_ENTROPY_TOKENS] =

 {

 { 0, -1, { 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0 } }, //ZERO_TOKEN

 { 1, 0, { 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0 } }, //ONE_TOKEN

 { 2, 0, { 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0 } }, //TWO_TOKEN

 { 3, 0, { 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0 } }, //THREE_TOKEN

 { 4, 0, { 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0 } }, //FOUR_TOKEN

 { 5, 0, {159, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0 } }, //DCT_VAL_CATEGORY1

 { 7, 1, {145, 165, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0 } }, //DCT_VAL_CATEGORY2

 {11, 2, {140, 148, 173, 0, 0, 0,

 0, 0, 0, 0, 0, 0 } }, //DCT_VAL_CATEGORY3

 {19, 3, {135, 140, 155, 176, 0, 0,

 0, 0, 0, 0, 0, 0 } }, //DCT_VAL_CATEGORY4

 {35, 4, {130, 134, 141, 157, 180, 0,

 0, 0, 0, 0, 0, 0 } }, //DCT_VAL_CATEGORY5

 {67, 10, {129, 130, 133, 140, 153, 177,

 196, 230, 243, 254, 254, 0 } }, //DCT_VAL_CATEGORY6

 { 0, -1, { 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0 } }, // EOB TOKEN

 };

 static const unsigned int zigzag[16] =

 {

 0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15

 };

 #define DECODE_AND_APPLYSIGN(value_to_sign) \

 v = (bool_get_bit(bool) ? -value_to_sign \

 : value_to_sign) * dqf[!!c];

 #define DECODE_AND_BRANCH_IF_ZERO(probability,branch) \

 if (!bool_get(bool, probability)) goto branch;

 #define DECODE_AND_LOOP_IF_ZERO(probability,branch) \

 if (!bool_get(bool, probability)) \

 { \

 prob = type_probs; \

 if (c<15) {\

 ++c; \

 prob += bands_x[c]; \

 goto branch; \

 }\

 else \

 goto BLOCK_FINISHED; /* for malformed input */\

 }

 #define DECODE_SIGN_WRITE_COEFF_AND_CHECK_EXIT(val) \

 DECODE_AND_APPLYSIGN(val) \

 prob = type_probs + (ENTROPY_NODES*2); \

 if (c < 15){\

 b_tokens[zigzag[c]] = v; \

 ++c; \

 goto DO_WHILE; }\

 b_tokens[zigzag[15]] = v; \

 goto BLOCK_FINISHED;

 #define DECODE_EXTRABIT_AND_ADJUST_VAL(t,bits_count)\

 val += bool_get(bool, extrabits[t].probs[bits_count]) << \

 bits_count;

 static int

 decode_mb_tokens(struct bool_decoder *bool,

 token_entropy_ctx_t left,

 token_entropy_ctx_t above,

 short *tokens,

 enum prediction_mode mode,

 coeff_probs_table_t probs,

 short factor[TOKEN_BLOCK_TYPES][2])

 {

 int i, stop, type;

 int c, t, v;

 int val, bits_count;

 int eob_mask;

 short *b_tokens; // tokens for this block

 unsigned char *type_probs; // probabilities for this block type

 unsigned char *prob;

 short *dqf;

 eob_mask = 0;

 if (mode != B_PRED && mode != SPLITMV)

 {

 i = 24;

 stop = 24;

 type = 1;

 b_tokens = tokens + 24 * 16;

 dqf = factor[TOKEN_BLOCK_Y2];

 }

 else

 {

 i = 0;

 stop = 16;

 type = 3;

 b_tokens = tokens;

 dqf = factor[TOKEN_BLOCK_Y1];

 }

 /* Save a pointer to the coefficient probs for the current type.

 * Need to repeat this whenever type changes.

 */

 type_probs = probs[type][0][0];

 BLOCK_LOOP:

 t = left[left_context_index[i]] + above[above_context_index[i]];

 c = !type; /* all blocks start at 0 except type 0, which starts

 * at 1. */

 prob = type_probs;

 prob += t * ENTROPY_NODES;

 DO_WHILE:

 prob += bands_x[c];

 DECODE_AND_BRANCH_IF_ZERO(prob[EOB_CONTEXT_NODE],

 BLOCK_FINISHED);

 CHECK_0_:

 DECODE_AND_LOOP_IF_ZERO(prob[ZERO_CONTEXT_NODE], CHECK_0_);

 DECODE_AND_BRANCH_IF_ZERO(prob[ONE_CONTEXT_NODE],

 ONE_CONTEXT_NODE_0_);

 DECODE_AND_BRANCH_IF_ZERO(prob[LOW_VAL_CONTEXT_NODE],

 LOW_VAL_CONTEXT_NODE_0_);

 DECODE_AND_BRANCH_IF_ZERO(prob[HIGH_LOW_CONTEXT_NODE],

 HIGH_LOW_CONTEXT_NODE_0_);

 DECODE_AND_BRANCH_IF_ZERO(prob[CAT_THREEFOUR_CONTEXT_NODE],

 CAT_THREEFOUR_CONTEXT_NODE_0_);

 DECODE_AND_BRANCH_IF_ZERO(prob[CAT_FIVE_CONTEXT_NODE],

 CAT_FIVE_CONTEXT_NODE_0_);

 val = extrabits[DCT_VAL_CATEGORY6].min_val;

 bits_count = extrabits[DCT_VAL_CATEGORY6].length;

 do

 {

 DECODE_EXTRABIT_AND_ADJUST_VAL(DCT_VAL_CATEGORY6,

 bits_count);

 bits_count --;

 }

 while (bits_count >= 0);

 DECODE_SIGN_WRITE_COEFF_AND_CHECK_EXIT(val);

 CAT_FIVE_CONTEXT_NODE_0_:

 val = extrabits[DCT_VAL_CATEGORY5].min_val;

 DECODE_EXTRABIT_AND_ADJUST_VAL(DCT_VAL_CATEGORY5, 4);

 DECODE_EXTRABIT_AND_ADJUST_VAL(DCT_VAL_CATEGORY5, 3);

 DECODE_EXTRABIT_AND_ADJUST_VAL(DCT_VAL_CATEGORY5, 2);

 DECODE_EXTRABIT_AND_ADJUST_VAL(DCT_VAL_CATEGORY5, 1);

 DECODE_EXTRABIT_AND_ADJUST_VAL(DCT_VAL_CATEGORY5, 0);

 DECODE_SIGN_WRITE_COEFF_AND_CHECK_EXIT(val);

 CAT_THREEFOUR_CONTEXT_NODE_0_:

 DECODE_AND_BRANCH_IF_ZERO(prob[CAT_THREE_CONTEXT_NODE],

 CAT_THREE_CONTEXT_NODE_0_);

 val = extrabits[DCT_VAL_CATEGORY4].min_val;

 DECODE_EXTRABIT_AND_ADJUST_VAL(DCT_VAL_CATEGORY4, 3);

 DECODE_EXTRABIT_AND_ADJUST_VAL(DCT_VAL_CATEGORY4, 2);

 DECODE_EXTRABIT_AND_ADJUST_VAL(DCT_VAL_CATEGORY4, 1);

 DECODE_EXTRABIT_AND_ADJUST_VAL(DCT_VAL_CATEGORY4, 0);

 DECODE_SIGN_WRITE_COEFF_AND_CHECK_EXIT(val);

 CAT_THREE_CONTEXT_NODE_0_:

 val = extrabits[DCT_VAL_CATEGORY3].min_val;

 DECODE_EXTRABIT_AND_ADJUST_VAL(DCT_VAL_CATEGORY3, 2);

 DECODE_EXTRABIT_AND_ADJUST_VAL(DCT_VAL_CATEGORY3, 1);

 DECODE_EXTRABIT_AND_ADJUST_VAL(DCT_VAL_CATEGORY3, 0);

 DECODE_SIGN_WRITE_COEFF_AND_CHECK_EXIT(val);

 HIGH_LOW_CONTEXT_NODE_0_:

 DECODE_AND_BRANCH_IF_ZERO(prob[CAT_ONE_CONTEXT_NODE],

 CAT_ONE_CONTEXT_NODE_0_);

 val = extrabits[DCT_VAL_CATEGORY2].min_val;

 DECODE_EXTRABIT_AND_ADJUST_VAL(DCT_VAL_CATEGORY2, 1);

 DECODE_EXTRABIT_AND_ADJUST_VAL(DCT_VAL_CATEGORY2, 0);

 DECODE_SIGN_WRITE_COEFF_AND_CHECK_EXIT(val);

 CAT_ONE_CONTEXT_NODE_0_:

 val = extrabits[DCT_VAL_CATEGORY1].min_val;

 DECODE_EXTRABIT_AND_ADJUST_VAL(DCT_VAL_CATEGORY1, 0);

 DECODE_SIGN_WRITE_COEFF_AND_CHECK_EXIT(val);

 LOW_VAL_CONTEXT_NODE_0_:

 DECODE_AND_BRANCH_IF_ZERO(prob[TWO_CONTEXT_NODE],

 TWO_CONTEXT_NODE_0_);

 DECODE_AND_BRANCH_IF_ZERO(prob[THREE_CONTEXT_NODE],

 THREE_CONTEXT_NODE_0_);

 DECODE_SIGN_WRITE_COEFF_AND_CHECK_EXIT(4);

 THREE_CONTEXT_NODE_0_:

 DECODE_SIGN_WRITE_COEFF_AND_CHECK_EXIT(3);

 TWO_CONTEXT_NODE_0_:

 DECODE_SIGN_WRITE_COEFF_AND_CHECK_EXIT(2);

 ONE_CONTEXT_NODE_0_:

 DECODE_AND_APPLYSIGN(1);

 prob = type_probs + ENTROPY_NODES;

 if (c < 15)

 {

 b_tokens[zigzag[c]] = v;

 ++c;

 goto DO_WHILE;

 }

 b_tokens[zigzag[15]] = v;

 BLOCK_FINISHED:

 eob_mask |= (c > 1) << i;

 t = (c != !type); // any non-zero data?

 eob_mask |= t << 31;

 left[left_context_index[i]] = above[above_context_index[i]] = t;

 b_tokens += 16;

 i++;

 if (i < stop)

 goto BLOCK_LOOP;

 if (i == 25)

 {

 type = 0;

 i = 0;

 stop = 16;

 type_probs = probs[type][0][0];

 b_tokens = tokens;

 dqf = factor[TOKEN_BLOCK_Y1];

 goto BLOCK_LOOP;

 }

 if (i == 16)

 {

 type = 2;

 type_probs = probs[type][0][0];

 stop = 24;

 dqf = factor[TOKEN_BLOCK_UV];

 goto BLOCK_LOOP;

 }

 return eob_mask;

 }

 static void

 reset_row_context(token_entropy_ctx_t *left)

 {

 memset(left, 0, sizeof(*left));

 }

 static void

 reset_above_context(token_entropy_ctx_t *above, unsigned int cols)

 {

 memset(above, 0, cols * sizeof(*above));

 }

 static void

 reset_mb_context(token_entropy_ctx_t *left,

 token_entropy_ctx_t *above,

 enum prediction_mode mode)

 {

 /* Reset the macroblock context on the left and right. We have

 * to preserve the context of the second order block if this mode

 * would not have updated it.

 */

 memset(left, 0, sizeof((*left)[0]) * 8);

 memset(above, 0, sizeof((*above)[0]) * 8);

 if (mode != B_PRED && mode != SPLITMV)

 {

 (*left)[8] = 0;

 (*above)[8] = 0;

 }

 }

 void

 vp8_dixie_tokens_process_row(struct vp8_decoder_ctx *ctx,

 unsigned int partition,

 unsigned int row,

 unsigned int start_col,

 unsigned int num_cols)

 {

 struct token_decoder *tokens = &ctx->tokens[partition];

 short coeffs = tokens->coeffs + 25 * 16 * start_col;

 unsigned int col;

 token_entropy_ctx_t *above = ctx->above_token_entropy_ctx

 + start_col;

 token_entropy_ctx_t *left = &tokens->left_token_entropy_ctx;

 struct mb_info *mbi = ctx->mb_info_rows[row] + start_col;

 if (row == 0)

 reset_above_context(above, num_cols);

 if (start_col == 0)

 reset_row_context(left);

 for (col = start_col; col < start_col + num_cols; col++)

 {

 memset(coeffs, 0, 25 * 16 * sizeof(short));

 if (mbi->base.skip_coeff)

 {

 reset_mb_context(left, above, mbi->base.y_mode);

 mbi->base.eob_mask = 0;

 }

 else

 {

 struct dequant_factors *dqf;

 dqf = ctx->dequant_factors + mbi->base.segment_id;

 mbi->base.eob_mask =

 decode_mb_tokens(&tokens->bool,

 *left, *above,

 coeffs,

 mbi->base.y_mode,

 ctx->entropy_hdr.coeff_probs,

 dqf->factor);

 }

 above++;

 mbi++;

 coeffs += 25 * 16;

 }

 }

 void

 vp8_dixie_tokens_init(struct vp8_decoder_ctx *ctx)

 {

 unsigned int partitions = ctx->token_hdr.partitions;

 if (ctx->frame_hdr.frame_size_updated)

 {

 unsigned int i;

 unsigned int coeff_row_sz =

 ctx->mb_cols * 25 * 16 * sizeof(short);

 for (i = 0; i < partitions; i++)

 {

 free(ctx->tokens[i].coeffs);

 ctx->tokens[i].coeffs = memalign(16, coeff_row_sz);

 if (!ctx->tokens[i].coeffs)

 vpx_internal_error(&ctx->error, VPX_CODEC_MEM_ERROR,

 NULL);

 }

 free(ctx->above_token_entropy_ctx);

 ctx->above_token_entropy_ctx =

 calloc(ctx->mb_cols,

 sizeof(*ctx->above_token_entropy_ctx));

 if (!ctx->above_token_entropy_ctx)

 vpx_internal_error(&ctx->error,

 VPX_CODEC_MEM_ERROR, NULL);

 }

 }

 void

 vp8_dixie_tokens_destroy(struct vp8_decoder_ctx *ctx)

 {

 int i;

 for (i = 0; i < MAX_PARTITIONS; i++)

 free(ctx->tokens[i].coeffs);

 free(ctx->above_token_entropy_ctx);

 }

 ---- End code block --
28.18 tokens.h

 ---- Begin code block --------------------------------------

 /*

 * Copyright (c) 2010 The project authors. All Rights Reserved.

 *

 * Use of this source code is governed by a BSD-style license

 * that can be found in the LICENSE file in the root of the source

 * tree. All contributing project authors may

 * be found in the AUTHORS file in the root of the source tree.

 */
 #ifndef TOKENS_H

 #define TOKENS_H

 void

 vp8_dixie_tokens_init(struct vp8_decoder_ctx *ctx);

 void

 vp8_dixie_tokens_destroy(struct vp8_decoder_ctx *ctx);

 void

 vp8_dixie_tokens_process_row(struct vp8_decoder_ctx *ctx,

 unsigned int partition,

 unsigned int row,

 unsigned int start_col,

 unsigned int num_cols);

 #endif

 ---- End code block --

28.19 vp8_prob_data.h

 ---- Begin code block --------------------------------------

 /*

 * Copyright (c) 2010 The project authors. All Rights Reserved.

 *

 * Use of this source code is governed by a BSD-style license

 * that can be found in the LICENSE file in the root of the source

 * tree. All contributing project authors may

 * be found in the AUTHORS file in the root of the source tree.

 */
 static const

 unsigned char k_coeff_entropy_update_probs[BLOCK_TYPES][COEFF_BANDS]

 [PREV_COEFF_CONTEXTS]

 [ENTROPY_NODES] =

 {

 {

 {

 {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 },

 {

 {176, 246, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 {223, 241, 252, 255, 255, 255, 255, 255, 255, 255, 255},

 {249, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255},

 },

 {

 {255, 244, 252, 255, 255, 255, 255, 255, 255, 255, 255},

 {234, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},

 {253, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 },

 {

 {255, 246, 254, 255, 255, 255, 255, 255, 255, 255, 255},

 {239, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},

 {254, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255},

 },

 {

 {255, 248, 254, 255, 255, 255, 255, 255, 255, 255, 255},

 {251, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255},

 {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 },

 {

 {255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},

 {251, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},

 {254, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255},

 },

 {

 {255, 254, 253, 255, 254, 255, 255, 255, 255, 255, 255},

 {250, 255, 254, 255, 254, 255, 255, 255, 255, 255, 255},

 {254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 },

 {

 {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 },

 },

 {

 {

 {217, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 {225, 252, 241, 253, 255, 255, 254, 255, 255, 255, 255},

 {234, 250, 241, 250, 253, 255, 253, 254, 255, 255, 255},

 },

 {

 {255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 {223, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},

 {238, 253, 254, 254, 255, 255, 255, 255, 255, 255, 255},

 },

 {

 {255, 248, 254, 255, 255, 255, 255, 255, 255, 255, 255},

 {249, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 },

 {

 {255, 253, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 {247, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 },

 {

 {255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},

 {252, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 },

 {

 {255, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},

 {253, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 },

 {

 {255, 254, 253, 255, 255, 255, 255, 255, 255, 255, 255},

 {250, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 {254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 },

 {

 {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 },

 },

 {

 {

 {186, 251, 250, 255, 255, 255, 255, 255, 255, 255, 255},

 {234, 251, 244, 254, 255, 255, 255, 255, 255, 255, 255},

 {251, 251, 243, 253, 254, 255, 254, 255, 255, 255, 255},

 },

 {

 {255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},

 {236, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},

 {251, 253, 253, 254, 254, 255, 255, 255, 255, 255, 255},

 },

 {

 {255, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},

 {254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},

 {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 },

 {

 {255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 {254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 {254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 },

 {

 {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 {254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 },

 {

 {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 },

 {

 {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 },

 {

 {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 },

 },

 {

 {

 {248, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 {250, 254, 252, 254, 255, 255, 255, 255, 255, 255, 255},

 {248, 254, 249, 253, 255, 255, 255, 255, 255, 255, 255},

 },

 {

 {255, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255},

 {246, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255},

 {252, 254, 251, 254, 254, 255, 255, 255, 255, 255, 255},

 },

 {

 {255, 254, 252, 255, 255, 255, 255, 255, 255, 255, 255},

 {248, 254, 253, 255, 255, 255, 255, 255, 255, 255, 255},

 {253, 255, 254, 254, 255, 255, 255, 255, 255, 255, 255},

 },

 {

 {255, 251, 254, 255, 255, 255, 255, 255, 255, 255, 255},

 {245, 251, 254, 255, 255, 255, 255, 255, 255, 255, 255},

 {253, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},

 },

 {

 {255, 251, 253, 255, 255, 255, 255, 255, 255, 255, 255},

 {252, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},

 {255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 },

 {

 {255, 252, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 {249, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255},

 {255, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255},

 },

 {

 {255, 255, 253, 255, 255, 255, 255, 255, 255, 255, 255},

 {250, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 },

 {

 {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 {254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

 },

 },

 };

 static const

 unsigned char k_default_y_mode_probs [] =

 { 112, 86, 140, 37};

 static const

 unsigned char k_default_uv_mode_probs [] =

 { 162, 101, 204};

 static const

 unsigned char k_default_coeff_probs [BLOCK_TYPES][COEFF_BANDS]

 [PREV_COEFF_CONTEXTS][ENTROPY_NODES] =

 {

 { /* block type 0 */

 { /* coeff band 0 */

 { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128},

 { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128},

 { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128}

 },

 { /* coeff band 1 */

 { 253, 136, 254, 255, 228, 219, 128, 128, 128, 128, 128},

 { 189, 129, 242, 255, 227, 213, 255, 219, 128, 128, 128},

 { 106, 126, 227, 252, 214, 209, 255, 255, 128, 128, 128}

 },

 { /* coeff band 2 */

 { 1, 98, 248, 255, 236, 226, 255, 255, 128, 128, 128},

 { 181, 133, 238, 254, 221, 234, 255, 154, 128, 128, 128},

 { 78, 134, 202, 247, 198, 180, 255, 219, 128, 128, 128}

 },

 { /* coeff band 3 */

 { 1, 185, 249, 255, 243, 255, 128, 128, 128, 128, 128},

 { 184, 150, 247, 255, 236, 224, 128, 128, 128, 128, 128},

 { 77, 110, 216, 255, 236, 230, 128, 128, 128, 128, 128}

 },

 { /* coeff band 4 */

 { 1, 101, 251, 255, 241, 255, 128, 128, 128, 128, 128},

 { 170, 139, 241, 252, 236, 209, 255, 255, 128, 128, 128},

 { 37, 116, 196, 243, 228, 255, 255, 255, 128, 128, 128}

 },

 { /* coeff band 5 */

 { 1, 204, 254, 255, 245, 255, 128, 128, 128, 128, 128},

 { 207, 160, 250, 255, 238, 128, 128, 128, 128, 128, 128},

 { 102, 103, 231, 255, 211, 171, 128, 128, 128, 128, 128}

 },

 { /* coeff band 6 */

 { 1, 152, 252, 255, 240, 255, 128, 128, 128, 128, 128},

 { 177, 135, 243, 255, 234, 225, 128, 128, 128, 128, 128},

 { 80, 129, 211, 255, 194, 224, 128, 128, 128, 128, 128}

 },

 { /* coeff band 7 */

 { 1, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128},

 { 246, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128},

 { 255, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128}

 }

 },

 { /* block type 1 */

 { /* coeff band 0 */

 { 198, 35, 237, 223, 193, 187, 162, 160, 145, 155, 62},

 { 131, 45, 198, 221, 172, 176, 220, 157, 252, 221, 1},

 { 68, 47, 146, 208, 149, 167, 221, 162, 255, 223, 128}

 },

 { /* coeff band 1 */

 { 1, 149, 241, 255, 221, 224, 255, 255, 128, 128, 128},

 { 184, 141, 234, 253, 222, 220, 255, 199, 128, 128, 128},

 { 81, 99, 181, 242, 176, 190, 249, 202, 255, 255, 128}

 },

 { /* coeff band 2 */

 { 1, 129, 232, 253, 214, 197, 242, 196, 255, 255, 128},

 { 99, 121, 210, 250, 201, 198, 255, 202, 128, 128, 128},

 { 23, 91, 163, 242, 170, 187, 247, 210, 255, 255, 128}

 },

 { /* coeff band 3 */

 { 1, 200, 246, 255, 234, 255, 128, 128, 128, 128, 128},

 { 109, 178, 241, 255, 231, 245, 255, 255, 128, 128, 128},

 { 44, 130, 201, 253, 205, 192, 255, 255, 128, 128, 128}

 },

 { /* coeff band 4 */

 { 1, 132, 239, 251, 219, 209, 255, 165, 128, 128, 128},

 { 94, 136, 225, 251, 218, 190, 255, 255, 128, 128, 128},

 { 22, 100, 174, 245, 186, 161, 255, 199, 128, 128, 128}

 },

 { /* coeff band 5 */

 { 1, 182, 249, 255, 232, 235, 128, 128, 128, 128, 128},

 { 124, 143, 241, 255, 227, 234, 128, 128, 128, 128, 128},

 { 35, 77, 181, 251, 193, 211, 255, 205, 128, 128, 128}

 },

 { /* coeff band 6 */

 { 1, 157, 247, 255, 236, 231, 255, 255, 128, 128, 128},

 { 121, 141, 235, 255, 225, 227, 255, 255, 128, 128, 128},

 { 45, 99, 188, 251, 195, 217, 255, 224, 128, 128, 128}

 },

 { /* coeff band 7 */

 { 1, 1, 251, 255, 213, 255, 128, 128, 128, 128, 128},

 { 203, 1, 248, 255, 255, 128, 128, 128, 128, 128, 128},

 { 137, 1, 177, 255, 224, 255, 128, 128, 128, 128, 128}

 }

 },

 { /* block type 2 */

 { /* coeff band 0 */

 { 253, 9, 248, 251, 207, 208, 255, 192, 128, 128, 128},

 { 175, 13, 224, 243, 193, 185, 249, 198, 255, 255, 128},

 { 73, 17, 171, 221, 161, 179, 236, 167, 255, 234, 128}

 },

 { /* coeff band 1 */

 { 1, 95, 247, 253, 212, 183, 255, 255, 128, 128, 128},

 { 239, 90, 244, 250, 211, 209, 255, 255, 128, 128, 128},

 { 155, 77, 195, 248, 188, 195, 255, 255, 128, 128, 128}

 },

 { /* coeff band 2 */

 { 1, 24, 239, 251, 218, 219, 255, 205, 128, 128, 128},

 { 201, 51, 219, 255, 196, 186, 128, 128, 128, 128, 128},

 { 69, 46, 190, 239, 201, 218, 255, 228, 128, 128, 128}

 },

 { /* coeff band 3 */

 { 1, 191, 251, 255, 255, 128, 128, 128, 128, 128, 128},

 { 223, 165, 249, 255, 213, 255, 128, 128, 128, 128, 128},

 { 141, 124, 248, 255, 255, 128, 128, 128, 128, 128, 128}

 },

 { /* coeff band 4 */

 { 1, 16, 248, 255, 255, 128, 128, 128, 128, 128, 128},

 { 190, 36, 230, 255, 236, 255, 128, 128, 128, 128, 128},

 { 149, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128}

 },

 { /* coeff band 5 */

 { 1, 226, 255, 128, 128, 128, 128, 128, 128, 128, 128},

 { 247, 192, 255, 128, 128, 128, 128, 128, 128, 128, 128},

 { 240, 128, 255, 128, 128, 128, 128, 128, 128, 128, 128}

 },

 { /* coeff band 6 */

 { 1, 134, 252, 255, 255, 128, 128, 128, 128, 128, 128},

 { 213, 62, 250, 255, 255, 128, 128, 128, 128, 128, 128},

 { 55, 93, 255, 128, 128, 128, 128, 128, 128, 128, 128}

 },

 { /* coeff band 7 */

 { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128},

 { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128},

 { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128}

 }

 },

 { /* block type 3 */

 { /* coeff band 0 */

 { 202, 24, 213, 235, 186, 191, 220, 160, 240, 175, 255},

 { 126, 38, 182, 232, 169, 184, 228, 174, 255, 187, 128},

 { 61, 46, 138, 219, 151, 178, 240, 170, 255, 216, 128}

 },

 { /* coeff band 1 */

 { 1, 112, 230, 250, 199, 191, 247, 159, 255, 255, 128},

 { 166, 109, 228, 252, 211, 215, 255, 174, 128, 128, 128},

 { 39, 77, 162, 232, 172, 180, 245, 178, 255, 255, 128}

 },

 { /* coeff band 2 */

 { 1, 52, 220, 246, 198, 199, 249, 220, 255, 255, 128},

 { 124, 74, 191, 243, 183, 193, 250, 221, 255, 255, 128},

 { 24, 71, 130, 219, 154, 170, 243, 182, 255, 255, 128}

 },

 { /* coeff band 3 */

 { 1, 182, 225, 249, 219, 240, 255, 224, 128, 128, 128},

 { 149, 150, 226, 252, 216, 205, 255, 171, 128, 128, 128},

 { 28, 108, 170, 242, 183, 194, 254, 223, 255, 255, 128}

 },

 { /* coeff band 4 */

 { 1, 81, 230, 252, 204, 203, 255, 192, 128, 128, 128},

 { 123, 102, 209, 247, 188, 196, 255, 233, 128, 128, 128},

 { 20, 95, 153, 243, 164, 173, 255, 203, 128, 128, 128}

 },

 { /* coeff band 5 */

 { 1, 222, 248, 255, 216, 213, 128, 128, 128, 128, 128},

 { 168, 175, 246, 252, 235, 205, 255, 255, 128, 128, 128},

 { 47, 116, 215, 255, 211, 212, 255, 255, 128, 128, 128}

 },

 { /* coeff band 6 */

 { 1, 121, 236, 253, 212, 214, 255, 255, 128, 128, 128},

 { 141, 84, 213, 252, 201, 202, 255, 219, 128, 128, 128},

 { 42, 80, 160, 240, 162, 185, 255, 205, 128, 128, 128}

 },

 { /* coeff band 7 */

 { 1, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128},

 { 244, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128},

 { 238, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128}

 }

 }

 };

 static const

 unsigned char k_mv_entropy_update_probs[2][MV_PROB_CNT] =

 {

 {

 237,

 246,

 253, 253, 254, 254, 254, 254, 254,

 254, 254, 254, 254, 254, 250, 250, 252, 254, 254

 },

 {

 231,

 243,

 245, 253, 254, 254, 254, 254, 254,

 254, 254, 254, 254, 254, 251, 251, 254, 254, 254

 }

 };

 static const

 unsigned char k_default_mv_probs[2][MV_PROB_CNT] =

 {

 { // row

 162, // is short

 128, // sign

 225, 146, 172, 147, 214, 39, 156, // short tree

 128, 129, 132, 75, 145, 178, 206, 239, 254, 254 // long bits

 },

 {

 164,

 128,

 204, 170, 119, 235, 140, 230, 228,

 128, 130, 130, 74, 148, 180, 203, 236, 254, 254

 }

 };

 ---- End code block ---------------------------------------
28.20 vpx_codec_internal.h

 ---- Begin code block --------------------------------------

 /*

 * Copyright (c) 2010 The project authors. All Rights Reserved.

 *

 * Use of this source code is governed by a BSD-style license

 * that can be found in the LICENSE file in the root of the source

 * tree. All contributing project authors may

 * be found in the AUTHORS file in the root of the source tree.

 */
 /*!\file vpx_codec_internal.h

 * \brief Describes the decoder algorithm interface for algorithm

 * implementations.

 *

 * This file defines the private structures and data types that are

 * only relevant to implementing an algorithm, as opposed to using

 * it.

 *

 * To create a decoder algorithm class, an interface structure is put

 * into the global namespace:

 * <pre>

 * my_codec.c:

 * vpx_codec_iface_t my_codec = {

 * "My Codec v1.0",

 * VPX_CODEC_ALG_ABI_VERSION,

 * ...

 * };

 * </pre>

 *

 * An application instantiates a specific decoder instance by using

 * vpx_codec_init() and a pointer to the algorithm's interface

 * structure:

 * <pre>

 * my_app.c:

 * extern vpx_codec_iface_t my_codec;

 * {

 * vpx_codec_ctx_t algo;

 * res = vpx_codec_init(&algo, &my_codec);

 * }

 * </pre>

 *

 * Once initialized, the instance is managed using other functions

 * from the vpx_codec_* family.

 */

 #ifndef VPX_CODEC_INTERNAL_H

 #define VPX_CODEC_INTERNAL_H

 #include "vpx_decoder.h"

 #include <stdarg.h>

 /*!\brief Current ABI version number

 *

 * \internal

 * If this file is altered in any way that changes the Application

 * Binary Interface (ABI), this value must be bumped. Examples

 * include, but are not limited to, changing types, removing or

 * reassigning enums, adding/removing/rearranging fields to

 * structures.

 */

 #define VPX_CODEC_INTERNAL_ABI_VERSION (3)

 typedef struct vpx_codec_alg_priv vpx_codec_alg_priv_t;

 /*!\brief init function pointer prototype

 *

 * Performs algorithm-specific initialization of the decoder context.

 * This function is called by the generic vpx_codec_init() wrapper

 * function, so plugins implementing this interface may trust the

 * input parameters to be properly initialized.

 *

 * \param[in] ctx Pointer to this instance's context

 * \retval #VPX_CODEC_OK

 * The input stream was recognized and decoder initialized.

 * \retval #VPX_CODEC_MEM_ERROR

 * Memory operation failed.

 */

 typedef vpx_codec_err_t (*vpx_codec_init_fn_t)(vpx_codec_ctx_t *ctx);

 /*!\brief destroy function pointer prototype

 *

 * Performs algorithm-specific destruction of the decoder context.

 * This function is called by the generic vpx_codec_destroy() wrapper

 * function, so plugins implementing this interface may trust the

 * input parameters to be properly initialized.

 *

 * \param[in] ctx Pointer to this instance's context

 * \retval #VPX_CODEC_OK

 * The input stream was recognized and decoder initialized.

 * \retval #VPX_CODEC_MEM_ERROR

 * Memory operation failed.

 */

 typedef vpx_codec_err_t (*vpx_codec_destroy_fn_t)(

 vpx_codec_alg_priv_t *ctx);

 /*!\brief parse stream info function pointer prototype

 *

 * Performs high level parsing of the bitstream. This function is

 * called by the generic vpx_codec_parse_stream() wrapper function,

 * so plugins implementing this interface may trust the input

 * parameters to be properly initialized.

 *

 * \param[in] data Pointer to a block of data to parse

 * \param[in] data_sz Size of the data buffer

 * \param[in,out] si Pointer to stream info to update. The

 * size member \ref MUST be properly

 * initialized, but \ref MAY be clobbered by

 * the algorithm. This parameter \ref MAY

 * be NULL.

 *

 * \retval #VPX_CODEC_OK

 * Bitstream is parsable and stream information updated

 */

 typedef vpx_codec_err_t (*vpx_codec_peek_si_fn_t)(

 const uint8_t *data,

 unsigned int data_sz,

 vpx_codec_stream_info_t *si);

 /*!\brief Return information about the current stream.

 *

 * Returns information about the stream that has been parsed during

 * decoding.

 *

 * \param[in] ctx Pointer to this instance's context

 * \param[in,out] si Pointer to stream info to update. The

 * size member \ref MUST be properly

 * initialized, but \ref MAY be clobbered by

 * the algorithm. This parameter \ref MAY

 * be NULL.

 *

 * \retval #VPX_CODEC_OK

 * Bitstream is parsable and stream information updated

 */

 typedef vpx_codec_err_t (*vpx_codec_get_si_fn_t)(

 vpx_codec_alg_priv_t *ctx,

 vpx_codec_stream_info_t *si);

 /*!\brief control function pointer prototype

 *

 * This function is used to exchange algorithm-specific data with the

 * decoder instance. This can be used to implement features specific

 * to a particular algorithm.

 *

 * This function is called by the generic vpx_codec_control() wrapper

 * function, so plugins implementing this interface may trust the

 * input parameters to be properly initialized. However, this

 * interface does not provide type safety for the exchanged data or

 * assign meanings to the control codes. Those details should be

 * specified in the algorithm's header file. In particular, the

 * ctrl_id parameter is guaranteed to exist in the algorithm's

 * control mapping table, and the data parameter may be NULL.

 *

 *

 * \param[in] ctx Pointer to this instance's context

 * \param[in] ctrl_id Algorithm-specific control identifier

 * \param[in,out] data Data to exchange with algorithm instance.

 *

 * \retval #VPX_CODEC_OK

 * The internal state data was deserialized.

 */

 typedef vpx_codec_err_t (*vpx_codec_control_fn_t)(

 vpx_codec_alg_priv_t *ctx,

 int ctrl_id,

 va_list ap);

 /*!\brief control function pointer mapping

 *

 * This structure stores the mapping between control identifiers and

 * implementing functions. Each algorithm provides a list of these

 * mappings. This list is searched by the vpx_codec_control()

 * wrapper function to determine which function to invoke. The

 * special value {0, NULL} is used to indicate end-of-list, and must

 * be present. The special value {0, <non-null>} can be used as a

 * catch-all mapping. This implies that ctrl_id values chosen by the

 * algorithm \ref MUST be non-zero.

 */

 typedef const struct

 {

 int ctrl_id;

 vpx_codec_control_fn_t fn;

 } vpx_codec_ctrl_fn_map_t;

 /*!\brief decode data function pointer prototype

 *

 * Processes a buffer of coded data. If the processing results in a

 * new decoded frame becoming available, #VPX_CODEC_CB_PUT_SLICE and

 * #VPX_CODEC_CB_PUT_FRAME events are generated as appropriate.

 * This function is called by the generic vpx_codec_decode() wrapper

 * function, so plugins implementing this interface may trust the

 * input parameters to be properly initialized.

 *

 * \param[in] ctx Pointer to this instance's context

 * \param[in] data Pointer to this block of new coded data.

 * If NULL, a #VPX_CODEC_CB_PUT_FRAME event is

 * posted for the previously decoded frame.

 * \param[in] data_sz Size of the coded data, in bytes.

 *

 * \return Returns #VPX_CODEC_OK if the coded data was processed

 * completely and future pictures can be decoded without

 * error. Otherwise, see the descriptions of the other error

 * codes in ::vpx_codec_err_t for recoverability

 * capabilities.

 */

 typedef vpx_codec_err_t (*vpx_codec_decode_fn_t)(

 vpx_codec_alg_priv_t *ctx,

 const uint8_t *data,

 unsigned int data_sz,

 void *user_priv,

 long deadline);

 /*!\brief Decoded frames iterator

 *

 * Iterates over a list of the frames available for display. The

 * iterator storage should be initialized to NULL to start the

 * iteration. Iteration is complete when this function returns NULL.

 *

 * The list of available frames becomes valid upon completion of the

 * vpx_codec_decode call, and remains valid until the next call to

 * vpx_codec_decode.

 *

 * \param[in] ctx Pointer to this instance's context

 * \param[in out] iter Iterator storage, initialized to NULL

 *

 * \return Returns a pointer to an image, if one is ready for

 * display. Frames produced will always be in PTS

 * (presentation time stamp) order.

 */

 typedef vpx_image_t*(*vpx_codec_get_frame_fn_t)(

 vpx_codec_alg_priv_t *ctx,

 vpx_codec_iter_t *iter);

 /*\brief External Memory Allocation memory map get iterator

 *

 * Iterates over a list of the memory maps requested by the decoder.

 * The iterator storage should be initialized to NULL to start the

 * iteration. Iteration is complete when this function returns NULL.

 *

 * \param[in out] iter Iterator storage, initialized to NULL

 *

 * \return Returns a pointer to a memory segment descriptor, or NULL

 * to indicate end-of-list.

 */

 typedef vpx_codec_err_t (*vpx_codec_get_mmap_fn_t)(

 const vpx_codec_ctx_t *ctx,

 vpx_codec_mmap_t *mmap,

 vpx_codec_iter_t *iter);

 /*\brief External Memory Allocation memory map set iterator

 *

 * Sets a memory descriptor inside the decoder instance.

 *

 * \param[in] ctx Pointer to this instance's context

 * \param[in] mmap Memory map to store.

 *

 * \retval #VPX_CODEC_OK

 * The memory map was accepted and stored.

 * \retval #VPX_CODEC_MEM_ERROR

 * The memory map was rejected.

 */

 typedef vpx_codec_err_t (*vpx_codec_set_mmap_fn_t)(

 vpx_codec_ctx_t *ctx,

 const vpx_codec_mmap_t *mmap);

 typedef vpx_codec_err_t (*vpx_codec_encode_fn_t)(

 vpx_codec_alg_priv_t *ctx,

 const vpx_image_t *img,

 vpx_codec_pts_t pts,

 unsigned long duration,

 vpx_enc_frame_flags_t flags,

 unsigned long deadline);

 typedef const vpx_codec_cx_pkt_t*(*vpx_codec_get_cx_data_fn_t)(

 vpx_codec_alg_priv_t *ctx,

 vpx_codec_iter_t *iter);

 typedef vpx_codec_err_t

 (*vpx_codec_enc_config_set_fn_t)(

 vpx_codec_alg_priv_t *ctx,

 const vpx_codec_enc_cfg_t *cfg);

 typedef vpx_fixed_buf_t *

 (*vpx_codec_get_global_headers_fn_t)(vpx_codec_alg_priv_t *ctx);

 typedef vpx_image_t *

 (*vpx_codec_get_preview_frame_fn_t)(vpx_codec_alg_priv_t *ctx);

 /*!\brief usage configuration mapping

 *

 * This structure stores the mapping between usage identifiers and

 * configuration structures. Each algorithm provides a list of these

 * mappings. This list is searched by the

 * vpx_codec_enc_config_default() wrapper function to determine which

 * config to return. The special value {-1, {0}} is used to indicate

 * end-of-list, and must be present. At least one mapping must be

 * present, in addition to the end-of-list.

 *

 */

 typedef const struct

 {

 int usage;

 vpx_codec_enc_cfg_t cfg;

 } vpx_codec_enc_cfg_map_t;

 #define NOT_IMPLEMENTED 0

 /*!\brief Decoder algorithm interface

 *

 * All decoders \ref MUST expose a variable of this type.

 */

 struct vpx_codec_iface

 {

 const char *name;

 int abi_version;

 vpx_codec_caps_t caps;

 vpx_codec_init_fn_t init;

 vpx_codec_destroy_fn_t destroy;

 vpx_codec_ctrl_fn_map_t *ctrl_maps;

 vpx_codec_get_mmap_fn_t get_mmap;

 vpx_codec_set_mmap_fn_t set_mmap;

 struct

 {

 vpx_codec_peek_si_fn_t peek_si;

 vpx_codec_get_si_fn_t get_si;

 vpx_codec_decode_fn_t decode;

 vpx_codec_get_frame_fn_t get_frame;

 } dec;

 struct

 {

 vpx_codec_enc_cfg_map_t *cfg_maps;

 vpx_codec_encode_fn_t encode;

 vpx_codec_get_cx_data_fn_t get_cx_data;

 vpx_codec_enc_config_set_fn_t cfg_set;

 vpx_codec_get_global_headers_fn_t get_glob_hdrs;

 vpx_codec_get_preview_frame_fn_t get_preview;

 } enc;

 };

 /*!\brief Callback function pointer / user data pair storage */

 typedef struct vpx_codec_priv_cb_pair

 {

 union

 {

 vpx_codec_put_frame_cb_fn_t put_frame;

 vpx_codec_put_slice_cb_fn_t put_slice;

 };

 void *user_priv;

 } vpx_codec_priv_cb_pair_t;

 /*!\brief Instance private storage

 *

 * This structure is allocated by the algorithm's init function. It

 * can be extended in one of two ways. First, a second, algorithm

 * specific structure can be allocated and the priv member pointed to

 * it. Alternatively, this structure can be made the first member of

 * the algorithm-specific structure, and the pointer casted to the

 * proper type.

 */

 struct vpx_codec_priv

 {

 unsigned int sz;

 vpx_codec_iface_t *iface;

 struct vpx_codec_alg_priv *alg_priv;

 const char *err_detail;

 vpx_codec_flags_t init_flags;

 struct

 {

 vpx_codec_priv_cb_pair_t put_frame_cb;

 vpx_codec_priv_cb_pair_t put_slice_cb;

 } dec;

 struct

 {

 struct vpx_fixed_buf cx_data_dst_buf;

 unsigned int cx_data_pad_before;

 unsigned int cx_data_pad_after;

 vpx_codec_cx_pkt_t cx_data_pkt;

 } enc;

 };

 #undef VPX_CTRL_USE_TYPE

 #define VPX_CTRL_USE_TYPE(id, typ) \

 static typ id##__value(va_list args) \

 {return va_arg(args, typ);} \

 static typ id##__convert(void *x)\

 {\

 union\

 {\

 void *x;\

 typ d;\

 } u;\

 u.x = x;\

 return u.d;\

 }

 #undef VPX_CTRL_USE_TYPE_DEPRECATED

 #define VPX_CTRL_USE_TYPE_DEPRECATED(id, typ) \

 static typ id##__value(va_list args) \

 {return va_arg(args, typ);} \

 static typ id##__convert(void *x)\

 {\

 union\

 {\

 void *x;\

 typ d;\

 } u;\

 u.x = x;\

 return u.d;\

 }

 #define CAST(id, arg) id##__value(arg)

 #define RECAST(id, x) id##__convert(x)

 /* Internal Utility Functions

 *

 * The following functions are intended to be used inside algorithms

 * as utilities for manipulating vpx_codec_* data structures.

 */

 struct vpx_codec_pkt_list

 {

 unsigned int cnt;

 unsigned int max;

 struct vpx_codec_cx_pkt pkts[1];

 };

 #define vpx_codec_pkt_list_decl(n)\

 union {struct vpx_codec_pkt_list head;\

 struct {struct vpx_codec_pkt_list head;\

 struct vpx_codec_cx_pkt pkts[n];} alloc;}

 #define vpx_codec_pkt_list_init(m)\

 (m)->alloc.head.cnt = 0,\

 (m)->alloc.head.max = \

 sizeof((m)->alloc.pkts) / sizeof((m)->alloc.pkts[0])

 int

 vpx_codec_pkt_list_add(struct vpx_codec_pkt_list *,

 const struct vpx_codec_cx_pkt *);

 const vpx_codec_cx_pkt_t*

 vpx_codec_pkt_list_get(struct vpx_codec_pkt_list *list,

 vpx_codec_iter_t *iter);

 #include <stdio.h>

 #include <setjmp.h>

 struct vpx_internal_error_info

 {

 vpx_codec_err_t error_code;

 int has_detail;

 char detail[80];

 int setjmp;

 jmp_buf jmp;

 };

 static void vpx_internal_error(struct vpx_internal_error_info *info,

 vpx_codec_err_t error,

 const char *fmt,

 ...)

 {

 va_list ap;

 info->error_code = error;

 info->has_detail = 0;

 if (fmt)

 {

 size_t sz = sizeof(info->detail);

 info->has_detail = 1;

 va_start(ap, fmt);

 vsnprintf(info->detail, sz - 1, fmt, ap);

 va_end(ap);

 info->detail[sz-1] = '\0';

 }

 if (info->setjmp)

 longjmp(info->jmp, info->error_code);

 }

 #endif

 ---- End code block --
28.21 vpx_decoder.h

 ---- Begin code block --------------------------------------

 /*

 * Copyright (c) 2010 The project authors. All Rights Reserved.

 *

 * Use of this source code is governed by a BSD-style license

 * that can be found in the LICENSE file in the root of the source

 * tree. All contributing project authors may

 * be found in the AUTHORS file in the root of the source tree.

 */
 /*!\defgroup decoder Decoder Algorithm Interface

 * \ingroup codec

 * This abstraction allows applications using this decoder to easily

 * support multiple video formats with minimal code duplication.

 * This section describes the interface common to all decoders.

 * @{

 */

 /*!\file vpx_decoder.h

 * \brief Describes the decoder algorithm interface to applications.

 *

 * This file describes the interface between an application and a

 * video decoder algorithm.

 *

 */

 #ifdef __cplusplus

 extern "C" {

 #endif

 #ifndef VPX_DECODER_H

 #define VPX_DECODER_H

 #include "vpx_codec.h"

 /*!\brief Current ABI version number

 *

 * \internal

 * If this file is altered in any way that changes the ABI, this

 * value must be bumped. Examples include, but are not limited

 * to, changing types, removing or reassigning enums,

 * adding/removing/rearranging fields to structures

 */

 #define VPX_DECODER_ABI_VERSION (2 + VPX_CODEC_ABI_VERSION)

 /*! \brief Decoder capabilities bitfield

 *

 * Each decoder advertises the capabilities it supports as part

 * of its ::vpx_codec_iface_t interface structure. Capabilities

 * are extra interfaces or functionality, and are not required

 * to be supported by a decoder.

 *

 * The available flags are specified by VPX_CODEC_CAP_* defines.

 */

 #define VPX_CODEC_CAP_PUT_SLICE 0x10000 /**< Will issue put_slice

 callbacks */

 #define VPX_CODEC_CAP_PUT_FRAME 0x20000 /**< Will issue put_frame

 callbacks */

 #define VPX_CODEC_CAP_POSTPROC 0x40000 /**< Can postprocess decoded

 frame */

 /*! \brief Initialization-time Feature Enabling

 *

 * Certain codec features must be known at initialization time,

 * to allow for proper memory allocation.

 *

 * The available flags are specified by VPX_CODEC_USE_* defines.

 */

 #define VPX_CODEC_USE_POSTPROC 0x10000 /**< Postprocess decoded

 frame */

 /*!\brief Stream properties

 *

 * This structure is used to query or set properties of the

 * decoded stream. Algorithms may extend this structure with

 * data specific to their bitstream by setting the sz member

 * appropriately.

 */

 typedef struct vpx_codec_stream_info

 {

 unsigned int sz; /**< Size of this structure */

 unsigned int w; /**< Width (or 0 for unknown/default) */

 unsigned int h; /**< Height (or 0 for unknown/default) */

 unsigned int is_kf; /**< Current frame is a keyframe */

 } vpx_codec_stream_info_t;

 /* REQUIRED FUNCTIONS

 *

 * The following functions are required to be implemented for all

 * decoders. They represent the base case functionality expected

 * of all decoders.

 */

 /*!\brief Initialization Configurations

 *

 * This structure is used to pass init time configuration options

 * to the decoder.

 */

 typedef struct vpx_codec_dec_cfg

 {

 unsigned int threads; /**< Maximum number of threads to use,

 default 1 */

 unsigned int w; /**< Width */

 unsigned int h; /**< Height */

 } vpx_codec_dec_cfg_t; /**< alias for struct vpx_codec_dec_cfg */

 /*!\brief Initialize a decoder instance

 *

 * Initializes a decoder context using the given interface.

 * Applications should call the vpx_codec_dec_init convenience

 * macro instead of this function directly, to ensure that the

 * ABI version number parameter is properly initialized.

 *

 * In XMA mode (activated by setting VPX_CODEC_USE_XMA in the

 * flags parameter), the storage pointed to by the cfg parameter

 * must be kept readable and stable until all memory maps have

 * been set.

 *

 * \param[in] ctx Pointer to this instance's context.

 * \param[in] iface Pointer to the algorithm interface to

 * use.

 * \param[in] cfg Configuration to use, if known. May be

 * NULL.

 * \param[in] flags Bitfield of VPX_CODEC_USE_* flags

 * \param[in] ver ABI version number. Must be set to

 * VPX_DECODER_ABI_VERSION

 * \retval #VPX_CODEC_OK

 * The decoder algorithm initialized.

 * \retval #VPX_CODEC_MEM_ERROR

 * Memory allocation failed.

 */

 vpx_codec_err_t vpx_codec_dec_init_ver(

 vpx_codec_ctx_t *ctx,

 vpx_codec_iface_t *iface,

 vpx_codec_dec_cfg_t *cfg,

 vpx_codec_flags_t flags,

 int ver);

 /*!\brief Convenience macro for vpx_codec_dec_init_ver()

 *

 * Ensures the ABI version parameter is properly set.

 */

 #define vpx_codec_dec_init(ctx, iface, cfg, flags) \

 vpx_codec_dec_init_ver(ctx, iface, cfg, flags, \

 VPX_DECODER_ABI_VERSION)

 /*!\brief Parse stream info from a buffer

 *

 * Performs high level parsing of the bitstream. Construction of

 * a decoder context is not necessary. Can be used to determine

 * if the bitstream is of the proper format, and to extract

 * information from the stream.

 *

 * \param[in] iface Pointer to the algorithm interface

 * \param[in] data Pointer to a block of data to parse

 * \param[in] data_sz Size of the data buffer

 * \param[in,out] si Pointer to stream info to update. The

 * size member

 * \ref MUST be properly initialized, but

 * \ref MAY be clobbered by the

 * algorithm. This parameter \ref MAY be

 * NULL.

 *

 * \retval #VPX_CODEC_OK

 * Bitstream is parsable and stream information updated

 */

 vpx_codec_err_t vpx_codec_peek_stream_info(

 vpx_codec_iface_t *iface,

 const uint8_t *data,

 unsigned int data_sz,

 vpx_codec_stream_info_t *si);

 /*!\brief Return information about the current stream.

 *

 * Returns information about the stream that has been parsed

 * during decoding.

 *

 * \param[in] ctx Pointer to this instance's context

 * \param[in,out] si Pointer to stream info to update. The

 * size member \ref MUST be properly

 * initialized, but \ref MAY be clobbered

 * by the algorithm. This parameter \ref

 * MAY be NULL.

 *

 * \retval #VPX_CODEC_OK

 * Bitstream is parsable and stream information updated

 */

 vpx_codec_err_t vpx_codec_get_stream_info(

 vpx_codec_ctx_t *ctx,

 vpx_codec_stream_info_t *si);

 /*!\brief Decode data

 *

 * Processes a buffer of coded data. If the processing results

 * in a new decoded frame becoming available, PUT_SLICE and

 * PUT_FRAME events may be generated, as appropriate. Encoded

 * data \ref MUST be passed in DTS (decode time stamp) order.

 * Frames produced will always be in PTS (presentation time

 * stamp) order.

 *

 * \param[in] ctx Pointer to this instance's context

 * \param[in] data Pointer to this block of new coded

 * data. If NULL, a

 * VPX_CODEC_CB_PUT_FRAME event is posted

 * for the previously decoded frame.

 * \param[in] data_sz Size of the coded data, in bytes.

 * \param[in] user_priv Application-specific data to associate

 * with this frame.

 * \param[in] deadline Soft deadline the decoder should

 * attempt to meet, in us. Set to zero

 * for unlimited.

 *

 * \return Returns #VPX_CODEC_OK if the coded data was processed

 * completely and future pictures can be decoded without

 * error. Otherwise, see the descriptions of the other

 * error codes in ::vpx_codec_err_t for recoverability

 * capabilities.

 */

 vpx_codec_err_t vpx_codec_decode(vpx_codec_ctx_t *ctx,

 const uint8_t *data,

 unsigned int data_sz,

 void *user_priv,

 long deadline);

 /*!\brief Decoded frames iterator

 *

 * Iterates over a list of the frames available for display. The

 * iterator storage should be initialized to NULL to start the

 * iteration. Iteration is complete when this function returns

 * NULL.

 *

 * The list of available frames becomes valid upon completion of

 * the vpx_codec_decode call, and remains valid until the next

 * call to vpx_codec_decode.

 *

 * \param[in] ctx Pointer to this instance's context

 * \param[in,out] iter Iterator storage, initialized to NULL

 *

 * \return Returns a pointer to an image, if one is ready for

 * display. Frames produced will always be in PTS

 * (presentation time stamp) order.

 */

 vpx_image_t *vpx_codec_get_frame(vpx_codec_ctx_t *ctx,

 vpx_codec_iter_t *iter);

 /*!\defgroup cap_put_frame Frame-Based Decoding Functions

 *

 * The following functions are required to be implemented for all

 * decoders that advertise the VPX_CODEC_CAP_PUT_FRAME

 * capability. Calling these functions for codecs that don't

 * advertise this capability will result in an error code being

 * returned, usually VPX_CODEC_ERROR

 * @{

 */

 /*!\brief put frame callback prototype

 *

 * This callback is invoked by the decoder to notify the

 * application of the availability of decoded image data.

 */

 typedef void (*vpx_codec_put_frame_cb_fn_t)(

 void *user_priv,

 const vpx_image_t *img);

 /*!\brief Register for notification of frame completion.

 *

 * Registers a given function to be called when a decoded frame

 * is available.

 *

 * \param[in] ctx Pointer to this instance's context

 * \param[in] cb Pointer to the callback function

 * \param[in] user_priv User's private data

 *

 * \retval #VPX_CODEC_OK

 * Callback successfully registered.

 * \retval #VPX_CODEC_ERROR

 * Decoder context not initialized, or algorithm not capable

 * of posting slice completion.

 */

 vpx_codec_err_t vpx_codec_register_put_frame_cb(

 vpx_codec_ctx_t *ctx,

 vpx_codec_put_frame_cb_fn_t cb,

 void *user_priv);

 /*!@} - end defgroup cap_put_frame */

 /*!\defgroup cap_put_slice Slice-Based Decoding Functions

 *

 * The following functions are required to be implemented for all

 * decoders that advertise the VPX_CODEC_CAP_PUT_SLICE

 * capability. Calling these functions for codecs that don't

 * advertise this capability will result in an error code being

 * returned, usually VPX_CODEC_ERROR

 * @{

 */

 /*!\brief put slice callback prototype

 *

 * This callback is invoked by the decoder to notify the

 * application of the availability of partially decoded image

 * data.

 */

 typedef void (*vpx_codec_put_slice_cb_fn_t)(

 void *user_priv,

 const vpx_image_t *img,

 const vpx_image_rect_t *valid,

 const vpx_image_rect_t *update);

 /*!\brief Register for notification of slice completion.

 *

 * Registers a given function to be called when a decoded slice

 * is available.

 *

 * \param[in] ctx Pointer to this instance's context

 * \param[in] cb Pointer to the callback function

 * \param[in] user_priv User's private data

 *

 * \retval #VPX_CODEC_OK

 * Callback successfully registered.

 * \retval #VPX_CODEC_ERROR

 * Decoder context not initialized, or algorithm not capable

 * of posting slice completion.

 */

 vpx_codec_err_t vpx_codec_register_put_slice_cb(

 vpx_codec_ctx_t *ctx,

 vpx_codec_put_slice_cb_fn_t cb,

 void *user_priv);

 /*!@} - end defgroup cap_put_slice*/

 /*!@} - end defgroup decoder*/

 #endif

 #ifdef __cplusplus

 }

 #endif

 #if !defined(VPX_CODEC_DISABLE_COMPAT) || !VPX_CODEC_DISABLE_COMPAT

 #include "vpx_decoder_compat.h"

 #endif

 ---- End code block --
28.22 vpx_decoder_compat.h

 ---- Begin code block --------------------------------------

 /*

 * Copyright (c) 2010 The project authors. All Rights Reserved.

 *

 * Use of this source code is governed by a BSD-style license

 * that can be found in the LICENSE file in the root of the source

 * tree. All contributing project authors may

 * be found in the AUTHORS file in the root of the source tree.

 */
 /*!\defgroup decoder Common Decoder Algorithm Interface

 * This abstraction allows applications using this decoder to easily

 * support multiple video formats with minimal code duplication.

 * This section describes the interface common to all codecs.

 * @{

 */

 /*!\file

 * \brief Provides a compatibility layer between version 1 and 2 of

 * this API.

 *

 * This interface has been deprecated. Only existing code should

 * make use of this interface, and therefore, it is only thinly

 * documented. Existing code should be ported to the vpx_codec_*

 * API.

 */

 #ifdef __cplusplus

 extern "C" {

 #endif

 #ifndef VPX_DECODER_COMPAT_H

 #define VPX_DECODER_COMPAT_H

 /*!\brief Decoder algorithm return codes */

 typedef enum {

 /*!\brief Operation completed without error */

 VPX_DEC_OK = VPX_CODEC_OK,

 /*!\brief Unspecified error */

 VPX_DEC_ERROR = VPX_CODEC_ERROR,

 /*!\brief Memory operation failed */

 VPX_DEC_MEM_ERROR = VPX_CODEC_MEM_ERROR,

 /*!\brief ABI version mismatch */

 VPX_DEC_ABI_MISMATCH = VPX_CODEC_ABI_MISMATCH,

 /*!\brief The given bitstream is not supported.

 *

 * The bitstream was unable to be parsed at the highest

 * level. The decoder is unable to proceed. This error \ref

 * SHOULD be treated as fatal to the stream.

 */

 VPX_DEC_UNSUP_BITSTREAM = VPX_CODEC_UNSUP_BITSTREAM,

 /*!\brief Encoded bitstream uses an unsupported feature

 *

 * The decoder does not implement a feature required by the

 * encoder. This return code should only be used for

 * features that prevent future pictures from being properly

 * decoded. This error \ref MAY be treated as fatal to the

 * stream or \ref MAY be treated as fatal to the current

 * Group of Pictures (GOP).

 */

 VPX_DEC_UNSUP_FEATURE = VPX_CODEC_UNSUP_FEATURE,

 /*!\brief The coded data for this stream is corrupt or

 * incomplete

 *

 * There was a problem decoding the current frame. This

 * return code should only be used for failures that prevent

 * future pictures from being properly decoded. This error

 * \ref MAY be treated as fatal to the stream or \ref MAY be

 * treated as fatal to the current GOP. If decoding is

 * continued for the current GOP, artifacts may be present.

 */

 VPX_DEC_CORRUPT_FRAME = VPX_CODEC_CORRUPT_FRAME,

 /*!\brief An application-supplied parameter is not valid.

 *

 */

 VPX_DEC_INVALID_PARAM = VPX_CODEC_INVALID_PARAM,

 /*!\brief An iterator reached the end of list.

 *

 */

 VPX_DEC_LIST_END = VPX_CODEC_LIST_END

 }

 vpx_dec_err_t;

 /*! \brief Decoder capabilities bitfield

 *

 * Each decoder advertises the capabilities it supports as part

 * of its ::vpx_dec_iface_t interface structure. Capabilities

 * are extra interfaces or functionality, and are not required

 * to be supported by a decoder.

 *

 * The available flags are specified by VPX_DEC_CAP_* defines.

 */

 typedef int vpx_dec_caps_t;

 #define VPX_DEC_CAP_PUT_SLICE 0x0001 /**< Will issue put_slice

 callbacks */

 #define VPX_DEC_CAP_PUT_FRAME 0x0002 /**< Will issue put_frame

 callbacks */

 #define VPX_DEC_CAP_XMA 0x0004 /**< Supports External Memory

 Allocation */

 /*!\brief Stream properties

 *

 * This structure is used to query or set properties of the

 * decoded stream. Algorithms may extend this structure with

 * data specific to their bitstream by setting the sz member

 * appropriately.

 */

 #if 1

 typedef vpx_codec_stream_info_t vpx_dec_stream_info_t;

 #else

 typedef struct

 {

 unsigned int sz; /**< Size of this structure */

 unsigned int w; /**< Width (or 0 for unknown/default) */

 unsigned int h; /**< Height (or 0 for unknown/default) */

 unsigned int is_kf; /**< Current frame is a keyframe */

 } vpx_dec_stream_info_t;

 #endif

 /*!\brief Decoder interface structure.

 *

 * Contains function pointers and other data private to the

 * decoder implementation. This structure is opaque to the

 * application.

 */

 typedef const struct vpx_codec_iface vpx_dec_iface_t;

 typedef struct vpx_codec_priv vpx_dec_priv_t;

 /*!\brief Iterator

 *

 * Opaque storage used for iterating over lists.

 */

 typedef vpx_codec_iter_t vpx_dec_iter_t;

 /*!\brief Decoder context structure

 *

 * All decoders \ref MUST support this context structure fully.

 * In general, this data should be considered private to the

 * decoder algorithm, and not be manipulated or examined by the

 * calling application. Applications may reference the 'name'

 * member to get a printable description of the algorithm.

 */

 #if 1

 typedef vpx_codec_ctx_t vpx_dec_ctx_t;

 #else

 typedef struct

 {

 const char *name; /**< Printable interface name */

 vpx_dec_iface_t *iface; /**< Interface pointers */

 vpx_dec_err_t err; /**< Last returned error */

 vpx_dec_priv_t *priv; /**< Algorithm private storage */

 } vpx_dec_ctx_t;

 #endif

 /*!\brief Return the build configuration

 *

 * Returns a printable string containing an encoded version of

 * the build configuration. This may be useful to vpx support.

 *

 */

 const char *vpx_dec_build_config(void) DEPRECATED;

 /*!\brief Return the name for a given interface

 *

 * Returns a human readable string for name of the given decoder

 * interface.

 *

 * \param[in] iface Interface pointer

 *

 */

 const char *vpx_dec_iface_name(

 vpx_dec_iface_t *iface) DEPRECATED;

 /*!\brief Convert error number to printable string

 *

 * Returns a human readable string for the last error returned

 * by the algorithm. The returned error will be one line and

 * will not contain any newline characters.

 *

 *

 * \param[in] err Error number.

 *

 */

 const char *vpx_dec_err_to_string(vpx_dec_err_t err) DEPRECATED;

 /*!\brief Retrieve error synopsis for decoder context

 *

 * Returns a human readable string for the last error returned by

 * the algorithm. The returned error will be one line and will

 * not contain any newline characters.

 *

 *

 * \param[in] ctx Pointer to this instance's context.

 *

 */

 const char *vpx_dec_error(vpx_dec_ctx_t *ctx) DEPRECATED;

 /*!\brief Retrieve detailed error information for decoder context

 *

 * Returns a human readable string providing detailed information

 * about the last error.

 *

 * \param[in] ctx Pointer to this instance's context.

 *

 * \retval NULL

 * No detailed information is available.

 */

 const char *vpx_dec_error_detail(vpx_dec_ctx_t *ctx) DEPRECATED;

 /* REQUIRED FUNCTIONS

 *

 * The following functions are required to be implemented for all

 * decoders. They represent the base case functionality expected

 * of all decoders.

 */

 /*!\brief Initialize a decoder instance

 *

 * Initializes a decoder context using the given interface.

 * Applications should call the vpx_dec_init convenience macro

 * instead of this function directly, to ensure that the ABI

 * version number parameter is properly initialized.

 *

 * \param[in] ctx Pointer to this instance's context.

 * \param[in] iface Pointer to the algorithm interface to use.

 * \param[in] ver ABI version number. Must be set to

 * VPX_DECODER_ABI_VERSION

 * \retval #VPX_DEC_OK

 * The decoder algorithm initialized.

 * \retval #VPX_DEC_MEM_ERROR

 * Memory allocation failed.

 */

 vpx_dec_err_t vpx_dec_init_ver(

 vpx_dec_ctx_t *ctx,

 vpx_dec_iface_t *iface,

 int ver) DEPRECATED;

 #define vpx_dec_init(ctx, iface) \

 vpx_dec_init_ver(ctx, iface, VPX_DECODER_ABI_VERSION)

 /*!\brief Destroy a decoder instance

 *

 * Destroys a decoder context, freeing any associated memory

 * buffers.

 *

 * \param[in] ctx Pointer to this instance's context

 *

 * \retval #VPX_DEC_OK

 * The decoder algorithm initialized.

 * \retval #VPX_DEC_MEM_ERROR

 * Memory allocation failed.

 */

 vpx_dec_err_t vpx_dec_destroy(vpx_dec_ctx_t *ctx) DEPRECATED;

 /*!\brief Get the capabilities of an algorithm.

 *

 * Retrieves the capabilities bitfield from the algorithm's

 * interface.

 *

 * \param[in] iface Pointer to the algorithm interface

 *

 */

 vpx_dec_caps_t vpx_dec_get_caps(

 vpx_dec_iface_t *iface) DEPRECATED;

 /*!\brief Parse stream info from a buffer

 *

 * Performs high level parsing of the bitstream. Construction of

 * a decoder context is not necessary. Can be used to determine

 * if the bitstream is of the proper format, and to extract

 * information from the stream.

 *

 * \param[in] iface Pointer to the algorithm interface

 * \param[in] data Pointer to a block of data to parse

 * \param[in] data_sz Size of the data buffer

 * \param[in,out] si Pointer to stream info to update. The

 * size member \ref MUST be properly

 * initialized, but \ref MAY be

 * clobbered by the algorithm. This

 * parameter \ref MAY be NULL.

 *

 * \retval #VPX_DEC_OK

 * Bitstream is parsable and stream information updated

 */

 vpx_dec_err_t vpx_dec_peek_stream_info(

 vpx_dec_iface_t *iface,

 const uint8_t *data,

 unsigned int data_sz,

 vpx_dec_stream_info_t *si) DEPRECATED;

 /*!\brief Return information about the current stream.

 *

 * Returns information about the stream that has been parsed

 * during decoding.

 *

 * \param[in] ctx Pointer to this instance's context

 * \param[in,out] si Pointer to stream info to update.

 * The size member \ref MUST be properly

 * initialized, but \ref MAY be clobbered

 * by the algorithm. This parameter \ref

 * MAY be NULL.

 *

 * \retval #VPX_DEC_OK

 * Bitstream is parsable and stream information updated

 */

 vpx_dec_err_t vpx_dec_get_stream_info(

 vpx_dec_ctx_t *ctx,

 vpx_dec_stream_info_t *si) DEPRECATED;

 /*!\brief Control algorithm

 *

 * This function is used to exchange algorithm-specific data with

 * the decoder instance. This can be used to implement features

 * specific to a particular algorithm.

 *

 * This wrapper function dispatches the request to the helper

 * function associated with the given ctrl_id. It tries to call

 * this function transparently, but will return #VPX_DEC_ERROR if

 * the request could not be dispatched.

 *

 * \param[in] ctx Pointer to this instance's context

 * \param[in] ctrl_id Algorithm-specific control

 * identifier

 * \param[in,out] data Data to exchange with algorithm

 * instance.

 *

 * \retval #VPX_DEC_OK

 * The control request was processed.

 * \retval #VPX_DEC_ERROR

 * The control request was not processed.

 * \retval #VPX_DEC_INVALID_PARAM

 * The data was not valid.

 */

 vpx_dec_err_t vpx_dec_control(vpx_dec_ctx_t *ctx,

 int ctrl_id,

 void *data) DEPRECATED;

 /*!\brief Decode data

 *

 * Processes a buffer of coded data. If the processing results

 * in a new decoded frame becoming available,

 * #VPX_DEC_CB_PUT_SLICE and #VPX_DEC_CB_PUT_FRAME events may be

 * generated, as appropriate. Encoded data \ref MUST be passed

 * in DTS (decode time stamp) order. Frames produced will always

 * be in PTS (presentation time stamp) order.

 *

 * \param[in] ctx Pointer to this instance's context

 * \param[in] data Pointer to this block of new coded

 * data. If NULL, a VPX_DEC_CB_PUT_FRAME

 * event is posted for the previously

 * decoded frame.

 * \param[in] data_sz Size of the coded data, in bytes.

 * \param[in] user_priv Application-specific data to associate

 * with this frame.

 * \param[in] rel_pts PTS relative to the previous frame, in

 * us. If unknown or unavailable, set to

 * zero.

 *

 * \return Returns #VPX_DEC_OK if the coded data was processed

 * completely and future pictures can be decoded without

 * error. Otherwise, see the descriptions of the other

 * error codes in ::vpx_dec_err_t for recoverability

 * capabilities.

 */

 vpx_dec_err_t vpx_dec_decode(

 vpx_dec_ctx_t *ctx,

 uint8_t *data,

 unsigned int data_sz,

 void *user_priv,

 int rel_pts) DEPRECATED;

 /*!\brief Decoded frames iterator

 *

 * Iterates over a list of the frames available for display. The

 * iterator storage should be initialized to NULL to start the

 * iteration. Iteration is complete when this function returns

 * NULL.

 *

 * The list of available frames becomes valid upon completion of

 * the vpx_dec_decode call, and remains valid until the next call

 * to vpx_dec_decode.

 *

 * \param[in] ctx Pointer to this instance's context

 * \param[in out] iter Iterator storage, initialized to NULL

 *

 * \return Returns a pointer to an image, if one is ready for

 * display. Frames produced will always be in PTS

 * (presentation time stamp) order.

 */

 vpx_image_t *vpx_dec_get_frame(vpx_dec_ctx_t *ctx,

 vpx_dec_iter_t *iter) DEPRECATED;

 /*!\defgroup cap_put_frame Frame-Based Decoding Functions

 *

 * The following functions are required to be implemented for all

 * decoders that advertise the VPX_DEC_CAP_PUT_FRAME capability.

 * Calling these functions for codecs that don't advertise this

 * capability will result in an error code being returned,

 * usually VPX_DEC_ERROR @{

 */

 /*!\brief put frame callback prototype

 *

 * This callback is invoked by the decoder to notify the

 * application of the availability of decoded image data.

 */

 typedef void (*vpx_dec_put_frame_cb_fn_t)(

 void *user_priv,

 const vpx_image_t *img);

 /*!\brief Register for notification of frame completion.

 *

 * Registers a given function to be called when a decoded frame

 * is available.

 *

 * \param[in] ctx Pointer to this instance's context

 * \param[in] cb Pointer to the callback function

 * \param[in] user_priv User's private data

 *

 * \retval #VPX_DEC_OK

 * Callback successfully registered.

 * \retval #VPX_DEC_ERROR

 * Decoder context not initialized, or algorithm not capable

 * of posting slice completion.

 */

 vpx_dec_err_t vpx_dec_register_put_frame_cb(

 vpx_dec_ctx_t *ctx,

 vpx_dec_put_frame_cb_fn_t cb,

 void *user_priv) DEPRECATED;

 /*!@} - end defgroup cap_put_frame */

 /*!\defgroup cap_put_slice Slice-Based Decoding Functions

 *

 * The following functions are required to be implemented for all

 * decoders that advertise the VPX_DEC_CAP_PUT_SLICE capability.

 * Calling these functions for codecs that don't advertise this

 * capability will result in an error code being returned,

 * usually VPX_DEC_ERROR

 * @{

 */

 /*!\brief put slice callback prototype

 *

 * This callback is invoked by the decoder to notify the

 * application of the availability of partially decoded image

 * data.

 */

 typedef void (*vpx_dec_put_slice_cb_fn_t)(void *user_priv,

 const vpx_image_t *img,

 const vpx_image_rect_t *valid,

 const vpx_image_rect_t *update);

 /*!\brief Register for notification of slice completion.

 *

 * Registers a given function to be called when a decoded slice

 * is available.

 *

 * \param[in] ctx Pointer to this instance's context

 * \param[in] cb Pointer to the callback function

 * \param[in] user_priv User's private data

 *

 * \retval #VPX_DEC_OK

 * Callback successfully registered.

 * \retval #VPX_DEC_ERROR

 * Decoder context not initialized, or algorithm not capable

 * of posting slice completion.

 */

 vpx_dec_err_t vpx_dec_register_put_slice_cb(vpx_dec_ctx_t *ctx,

 vpx_dec_put_slice_cb_fn_t cb,

 void *user_priv) DEPRECATED;

 /*!@} - end defgroup cap_put_slice*/

 /*!\defgroup cap_xma External Memory Allocation Functions

 *

 * The following functions are required to be implemented for all

 * decoders that advertise the VPX_DEC_CAP_XMA capability.

 * Calling these functions for codecs that don't advertise this

 * capability will result in an error code being returned,

 * usually VPX_DEC_ERROR

 * @{

 */

 /*!\brief Memory Map Entry

 *

 * This structure is used to contain the properties of a memory

 * segment. It is populated by the decoder in the request phase,

 * and by the calling application once the requested allocation

 * has been performed.

 */

 #if 1

 #define VPX_DEC_MEM_ZERO 0x1 /**< Segment must be zeroed by

 allocation */

 #define VPX_DEC_MEM_WRONLY 0x2 /**< Segment need not be

 readable */

 #define VPX_DEC_MEM_FAST 0x4 /**< Place in fast memory, if

 available */

 typedef struct vpx_codec_mmap vpx_dec_mmap_t;

 #else

 typedef struct vpx_dec_mmap

 {

 /*

 * The following members are set by the codec when requesting

 * a segment

 */

 unsigned int id; /**< identifier for the segment's

 contents */

 unsigned long sz; /**< size of the segment, in bytes */

 unsigned int align; /**< required alignment of the

 segment, in bytes */

 unsigned int flags; /**< bitfield containing segment

 properties */

 #define VPX_DEC_MEM_ZERO 0x1 /**< Segment must be zeroed by

 allocation */

 #define VPX_DEC_MEM_WRONLY 0x2 /**< Segment need not be

 readable */

 #define VPX_DEC_MEM_FAST 0x4 /**< Place in fast memory, if

 available */

 /* The following members are to be filled in by the

 * allocation function */

 void *base; /**< pointer to the allocated

 segment */

 void (*dtor)(struct vpx_dec_mmap *map); /**< destructor to

 call */

 void *priv; /**< allocator private storage */

 } vpx_dec_mmap_t;

 #endif

 /*!\brief Initialize a decoder instance in external allocation

 * mode

 *

 * Initializes a decoder context using the given interface.

 * Applications should call the vpx_dec_xma_init convenience

 * macro instead of this function directly, to ensure that the

 * ABI version number parameter is properly initialized.

 *

 * \param[in] ctx Pointer to this instance's context.

 * \param[in] iface Pointer to the algorithm interface to

 * use.

 * \param[in] ver ABI version number. Must be set to

 * VPX_DECODER_ABI_VERSION

 * \retval #VPX_DEC_OK

 * The decoder algorithm initialized.

 * \retval #VPX_DEC_ERROR

 * Decoder does not support XMA mode.

 */

 vpx_dec_err_t vpx_dec_xma_init_ver(vpx_dec_ctx_t *ctx,

 vpx_dec_iface_t *iface,

 int ver) DEPRECATED;

 #define vpx_dec_xma_init(ctx, iface) \

 vpx_dec_xma_init_ver(ctx, iface, VPX_DECODER_ABI_VERSION)

 /*!\brief Iterate over the list of segments to allocate.

 *

 * Iterates over a list of the segments to allocate. The

 * iterator storage should be initialized to NULL to start the

 * iteration. Iteration is complete when this function returns

 * VPX_DEC_LIST_END. The amount of memory needed to allocate is

 * dependent upon the size of the encoded stream. This means

 * that the stream info structure must be known at allocation

 * time. It can be populated with the vpx_dec_peek_stream_info()

 * function. In cases where the stream to be decoded is not

 * available at allocation time, a fixed size must be requested.

 * The decoder will not be able to decode streams larger than the

 * size used at allocation time.

 *

 * \param[in] ctx Pointer to this instance's context.

 * \param[out] mmap Pointer to the memory map entry to

 * populate.

 * \param[in] si Pointer to the stream info.

 * \param[in out] iter Iterator storage, initialized to NULL

 *

 * \retval #VPX_DEC_OK

 * The memory map entry was populated.

 * \retval #VPX_DEC_ERROR

 * Decoder does not support XMA mode.

 * \retval #VPX_DEC_MEM_ERROR

 * Unable to determine segment size from stream info.

 */

 vpx_dec_err_t vpx_dec_get_mem_map(

 vpx_dec_ctx_t *ctx,

 vpx_dec_mmap_t *mmap,

 const vpx_dec_stream_info_t *si,

 vpx_dec_iter_t *iter) DEPRECATED;

 /*!\brief Identify allocated segments to decoder instance

 *

 * Stores a list of allocated segments in the decoder. Segments

 * \ref MUST be passed in the order they are read from

 * vpx_dec_get_mem_map(), but may be passed in groups of any

 * size. Segments \ref MUST be set only once. The allocation

 * function \ref MUST ensure that the vpx_dec_mmap_t::base member

 * is non-NULL. If the segment requires cleanup handling (e.g.,

 * calling free() or close()) then the vpx_dec_mmap_t::dtor

 * member \ref MUST be populated.

 *

 * \param[in] ctx Pointer to this instance's context.

 * \param[in] mmaps Pointer to the first memory map

 * entry in the list.

 * \param[in] num_maps Number of entries being set at this

 * time

 *

 * \retval #VPX_DEC_OK

 * The segment was stored in the decoder context.

 * \retval #VPX_DEC_ERROR

 * Decoder does not support XMA mode.

 * \retval #VPX_DEC_MEM_ERROR

 * Segment base address was not set, or segment was already

 * stored.

 */

 vpx_dec_err_t vpx_dec_set_mem_map(

 vpx_dec_ctx_t *ctx,

 vpx_dec_mmap_t *mmaps,

 unsigned int num_maps) DEPRECATED;

 /*!@} - end defgroup cap_xma*/

 /*!@} - end defgroup decoder*/

 #endif

 #ifdef __cplusplus

 }

 #endif

 ---- End code block --
28.23 vpx_image.c

 ---- Begin code block --------------------------------------

 /*

 * Copyright (c) 2010 The project authors. All Rights Reserved.

 *

 * Use of this source code is governed by a BSD-style license

 * that can be found in the LICENSE file in the root of the source

 * tree. All contributing project authors may

 * be found in the AUTHORS file in the root of the source tree.

 */
 #include <stdlib.h>

 #include <string.h>

 #include "vpx/vpx_image.h"

 static vpx_image_t *img_alloc_helper(vpx_image_t *img,

 vpx_img_fmt_t fmt,

 unsigned int d_w,

 unsigned int d_h,

 unsigned int stride_align,

 unsigned char *img_data)

 {

 unsigned int h, w, s, xcs, ycs, bps;

 int align;

 /* Treat align==0 like align==1 */

 if (!stride_align)

 stride_align = 1;

 /* Validate alignment (must be power of 2) */

 if (stride_align & (stride_align - 1))

 goto fail;

 /* Get sample size for this format */

 switch (fmt)

 {

 case VPX_IMG_FMT_RGB32:

 case VPX_IMG_FMT_RGB32_LE:

 case VPX_IMG_FMT_ARGB:

 case VPX_IMG_FMT_ARGB_LE:

 bps = 32;

 break;

 case VPX_IMG_FMT_RGB24:

 case VPX_IMG_FMT_BGR24:

 bps = 24;

 break;

 case VPX_IMG_FMT_RGB565:

 case VPX_IMG_FMT_RGB565_LE:

 case VPX_IMG_FMT_RGB555:

 case VPX_IMG_FMT_RGB555_LE:

 case VPX_IMG_FMT_UYVY:

 case VPX_IMG_FMT_YUY2:

 case VPX_IMG_FMT_YVYU:

 bps = 16;

 break;

 case VPX_IMG_FMT_I420:

 case VPX_IMG_FMT_YV12:

 case VPX_IMG_FMT_VPXI420:

 case VPX_IMG_FMT_VPXYV12:

 bps = 12;

 break;

 default:

 bps = 16;

 break;

 }

 /* Get chroma shift values for this format */

 switch (fmt)

 {

 case VPX_IMG_FMT_I420:

 case VPX_IMG_FMT_YV12:

 case VPX_IMG_FMT_VPXI420:

 case VPX_IMG_FMT_VPXYV12:

 xcs = 1;

 break;

 default:

 xcs = 0;

 break;

 }

 switch (fmt)

 {

 case VPX_IMG_FMT_I420:

 case VPX_IMG_FMT_YV12:

 case VPX_IMG_FMT_VPXI420:

 case VPX_IMG_FMT_VPXYV12:

 ycs = 1;

 break;

 default:

 ycs = 0;

 break;

 }

 /* Calculate storage sizes given the chroma subsampling */

 align = (1 << xcs) - 1;

 w = (d_w + align) & ~align;

 align = (1 << ycs) - 1;

 h = (d_h + align) & ~align;

 s = (fmt & VPX_IMG_FMT_PLANAR) ? w : bps * w / 8;

 s = (s + stride_align - 1) & ~(stride_align - 1);

 /* Allocate the new image */

 if (!img)

 {

 img = (vpx_image_t *)calloc(1, sizeof(vpx_image_t));

 if (!img)

 goto fail;

 img->self_allocd = 1;

 }

 else

 {

 memset(img, 0, sizeof(vpx_image_t));

 }

 img->img_data = img_data;

 if (!img_data)

 {

 img->img_data = malloc((fmt & VPX_IMG_FMT_PLANAR) ?

 h * w * bps / 8 : h * s);

 img->img_data_owner = 1;

 }

 if (!img->img_data)

 goto fail;

 img->fmt = fmt;

 img->w = w;

 img->h = h;

 img->x_chroma_shift = xcs;

 img->y_chroma_shift = ycs;

 img->bps = bps;

 /* Calculate strides */

 img->stride[VPX_PLANE_Y] = img->stride[VPX_PLANE_ALPHA] = s;

 img->stride[VPX_PLANE_U] = img->stride[VPX_PLANE_V] = s >> xcs;

 /* Default viewport to entire image */

 if (!vpx_img_set_rect(img, 0, 0, d_w, d_h))

 return img;

 fail:

 vpx_img_free(img);

 return NULL;

 }

 vpx_image_t *vpx_img_alloc(vpx_image_t *img,

 vpx_img_fmt_t fmt,

 unsigned int d_w,

 unsigned int d_h,

 unsigned int stride_align)

 {

 return img_alloc_helper(img, fmt, d_w, d_h, stride_align, NULL);

 }

 vpx_image_t *vpx_img_wrap(vpx_image_t *img,

 vpx_img_fmt_t fmt,

 unsigned int d_w,

 unsigned int d_h,

 unsigned int stride_align,

 unsigned char *img_data)

 {

 return img_alloc_helper(img, fmt, d_w, d_h, stride_align,

 img_data);

 }

 int vpx_img_set_rect(vpx_image_t *img,

 unsigned int x,

 unsigned int y,

 unsigned int w,

 unsigned int h)

 {

 unsigned char *data;

 if (x + w <= img->w && y + h <= img->h)

 {

 img->d_w = w;

 img->d_h = h;

 /* Calculate plane pointers */

 if (!(img->fmt & VPX_IMG_FMT_PLANAR))

 {

 img->planes[VPX_PLANE_PACKED] =

 img->img_data + x * img->bps / 8 + y *

 img->stride[VPX_PLANE_PACKED];

 }

 else

 {

 data = img->img_data;

 if (img->fmt & VPX_IMG_FMT_HAS_ALPHA)

 {

 img->planes[VPX_PLANE_ALPHA] =

 data + x + y * img->stride[VPX_PLANE_ALPHA];

 data += img->h * img->stride[VPX_PLANE_ALPHA];

 }

 img->planes[VPX_PLANE_Y] =

 data + x + y * img->stride[VPX_PLANE_Y];

 data += img->h * img->stride[VPX_PLANE_Y];

 if (!(img->fmt & VPX_IMG_FMT_UV_FLIP))

 {

 img->planes[VPX_PLANE_U] = data

 + (x >> img->x_chroma_shift)

 + (y >> img->y_chroma_shift) *

 img->stride[VPX_PLANE_U];

 data += (img->h >> img->y_chroma_shift) *

 img->stride[VPX_PLANE_U];

 img->planes[VPX_PLANE_V] = data

 + (x >> img->x_chroma_shift)

 + (y >> img->y_chroma_shift) *

 img->stride[VPX_PLANE_V];

 }

 else

 {

 img->planes[VPX_PLANE_V] = data

 + (x >> img->x_chroma_shift)

 + (y >> img->y_chroma_shift) *

 img->stride[VPX_PLANE_V];

 data += (img->h >> img->y_chroma_shift) *

 img->stride[VPX_PLANE_V];

 img->planes[VPX_PLANE_U] = data

 + (x >> img->x_chroma_shift)

 + (y >> img->y_chroma_shift) *

 img->stride[VPX_PLANE_U];

 }

 }

 return 0;

 }

 return -1;

 }

 void vpx_img_flip(vpx_image_t *img)

 {

 /* Note: In the calculation pointer adjustment calculation, we

 * want the rhs to be promoted to a signed type. Section 6.3.1.8

 * of the ISO C99 standard [ISO-C99] indicates that if the

 * adjustment parameter is unsigned, the stride parameter will be

 * promoted to unsigned, causing errors when the lhs is a larger

 * type than the rhs.

 */

 img->planes[VPX_PLANE_Y] += (signed)

 (img->d_h - 1) * img->stride[VPX_PLANE_Y];

 img->stride[VPX_PLANE_Y] = -img->stride[VPX_PLANE_Y];

 img->planes[VPX_PLANE_U] += (signed)

 ((img->d_h >> img->y_chroma_shift) - 1)

 * img->stride[VPX_PLANE_U];

 img->stride[VPX_PLANE_U] = -img->stride[VPX_PLANE_U];

 img->planes[VPX_PLANE_V] += (signed)

 ((img->d_h >> img->y_chroma_shift) - 1) *

 img->stride[VPX_PLANE_V];

 img->stride[VPX_PLANE_V] = -img->stride[VPX_PLANE_V];

 img->planes[VPX_PLANE_ALPHA] += (signed)

 (img->d_h - 1) * img->stride[VPX_PLANE_ALPHA];

 img->stride[VPX_PLANE_ALPHA] = -img->stride[VPX_PLANE_ALPHA];

 }

 void vpx_img_free(vpx_image_t *img)

 {

 if (img)

 {

 if (img->img_data && img->img_data_owner)

 free(img->img_data);

 if (img->self_allocd)

 free(img);

 }

 }

 ---- End code block --
28.24 vpx_image.h

 ---- Begin code block --------------------------------------

 /*

 * Copyright (c) 2010 The project authors. All Rights Reserved.

 *

 * Use of this source code is governed by a BSD-style license

 * that can be found in the LICENSE file in the root of the source

 * tree. All contributing project authors may

 * be found in the AUTHORS file in the root of the source tree.

 */
 /*!\file

 * \brief Describes the vpx image descriptor and associated

 * operations

 *

 */

 #ifdef __cplusplus

 extern "C" {

 #endif

 #ifndef VPX_IMAGE_H

 #define VPX_IMAGE_H

 /*!\brief Current ABI version number

 *

 * \internal

 * If this file is altered in any way that changes the ABI, this

 * value must be bumped. Examples include, but are not limited

 * to, changing types, removing or reassigning enums,

 * adding/removing/rearranging fields to structures

 */

 #define VPX_IMAGE_ABI_VERSION (1) /**<\hideinitializer*/

 #define VPX_IMG_FMT_PLANAR 0x100 /**< Image is a planar

 format */

 #define VPX_IMG_FMT_UV_FLIP 0x200 /**< V plane precedes U plane

 in memory */

 #define VPX_IMG_FMT_HAS_ALPHA 0x400 /**< Image has an alpha channel

 component */

 /*!\brief List of supported image formats */

 typedef enum vpx_img_fmt {

 VPX_IMG_FMT_NONE,

 VPX_IMG_FMT_RGB24, /**< 24 bit per pixel packed RGB */

 VPX_IMG_FMT_RGB32, /**< 32 bit per pixel packed 0RGB */

 VPX_IMG_FMT_RGB565, /**< 16 bit per pixel, 565 */

 VPX_IMGFMT_RGB555, /**< 16 bit per pixel, 555 */

 VPX_IMG_FMT_UYVY, /**< UYVY packed YUV */

 VPX_IMG_FMT_YUY2, /**< YUYV packed YUV */

 VPX_IMG_FMT_YVYU, /**< YVYU packed YUV */

 VPX_IMG_FMT_BGR24, /**< 24 bit per pixel packed BGR */

 VPX_IMG_FMT_RGB32_LE, /**< 32 bit packed BGR0 */

 VPX_IMG_FMT_ARGB, /**< 32 bit packed ARGB, alpha=255 */

 VPX_IMG_FMT_ARGB_LE, /**< 32 bit packed BGRA, alpha=255 */

 VPX_IMG_FMT_RGB565_LE, /**< 16 bit per pixel,

 gggbbbbb rrrrrggg */

 VPX_IMG_FMT_RGB555_LE, /**< 16 bit per pixel,

 gggbbbbb 0rrrrrgg */

 VPX_IMG_FMT_YV12 = VPX_IMG_FMT_PLANAR |

 VPX_IMG_FMT_UV_FLIP | 1, /**< planar YVU */

 VPX_IMG_FMT_I420 = VPX_IMG_FMT_PLANAR | 2,

 VPX_IMG_FMT_VPXYV12 = VPX_IMG_FMT_PLANAR |

 VPX_IMG_FMT_UV_FLIP | 3, /** < planar 4:2:0 format with

 vpx color space */

 VPX_IMG_FMT_VPXI420 = VPX_IMG_FMT_PLANAR | 4 /** < planar

 4:2:0 format with vpx color space */

 }

 vpx_img_fmt_t; /**< alias for enum vpx_img_fmt */

 #if !defined(VPX_CODEC_DISABLE_COMPAT) || !VPX_CODEC_DISABLE_COMPAT

 /** \deprecated Use #VPX_IMG_FMT_PLANAR */

 #define IMG_FMT_PLANAR VPX_IMG_FMT_PLANAR

 /** \deprecated Use #VPX_IMG_FMT_UV_FLIP */

 #define IMG_FMT_UV_FLIP VPX_IMG_FMT_UV_FLIP

 /** \deprecated Use #VPX_IMG_FMT_HAS_ALPHA */

 #define IMG_FMT_HAS_ALPHA VPX_IMG_FMT_HAS_ALPHA

 /*!\brief Deprecated list of supported image formats

 * \deprecated New code should use #vpx_img_fmt

 */

 #define img_fmt vpx_img_fmt

 /*!\brief alias for enum img_fmt.

 * \deprecated New code should use #vpx_img_fmt_t

 */

 #define img_fmt_t vpx_img_fmt_t

 /** \deprecated Use #VPX_IMG_FMT_NONE */

 #define IMG_FMT_NONE VPX_IMG_FMT_NONE

 /** \deprecated Use #VPX_IMG_FMT_RGB24 */

 #define IMG_FMT_RGB24 VPX_IMG_FMT_RGB24

 /** \deprecated Use #VPX_IMG_FMT_RGB32 */

 #define IMG_FMT_RGB32 VPX_IMG_FMT_RGB32

 /** \deprecated Use #VPX_IMG_FMT_RGB565 */

 #define IMG_FMT_RGB565 VPX_IMG_FMT_RGB565

 /** \deprecated Use #VPX_IMG_FMT_RGB555 */

 #define IMG_FMT_RGB555 VPX_IMG_FMT_RGB555

 /** \deprecated Use #VPX_IMG_FMT_UYVY */

 #define IMG_FMT_UYVY VPX_IMG_FMT_UYVY

 /** \deprecated Use #VPX_IMG_FMT_YUY2 */

 #define IMG_FMT_YUY2 VPX_IMG_FMT_YUY2

 /** \deprecated Use #VPX_IMG_FMT_YVYU */

 #define IMG_FMT_YVYU VPX_IMG_FMT_YVYU

 /** \deprecated Use #VPX_IMG_FMT_BGR24 */

 #define IMG_FMT_BGR24 VPX_IMG_FMT_BGR24

 /**< \deprecated Use #VPX_IMG_FMT_RGB32_LE */

 #define IMG_FMT_RGB32_LE VPX_IMG_FMT_RGB32_LE

 /** \deprecated Use #VPX_IMG_FMT_ARGB */

 #define IMG_FMT_ARGB VPX_IMG_FMT_ARGB

 /** \deprecated Use #VPX_IMG_FMT_ARGB_LE */

 #define IMG_FMT_ARGB_LE VPX_IMG_FMT_ARGB_LE

 /** \deprecated Use #VPX_IMG_FMT_RGB565_LE */

 #define IMG_FMT_RGB565_LE VPX_IMG_FMT_RGB565_LE

 /** \deprecated Use #VPX_IMG_FMT_RGB555_LE */

 #define IMG_FMT_RGB555_LE VPX_IMG_FMT_RGB555_LE

 /** \deprecated Use #VPX_IMG_FMT_YV12 */

 #define IMG_FMT_YV12 VPX_IMG_FMT_YV12

 /** \deprecated Use #VPX_IMG_FMT_I420 */

 #define IMG_FMT_I420 VPX_IMG_FMT_I420

 /** \deprecated Use #VPX_IMG_FMT_VPXYV12 */

 #define IMG_FMT_VPXYV12 VPX_IMG_FMT_VPXYV12

 /** \deprecated Use #VPX_IMG_FMT_VPXI420 */

 #define IMG_FMT_VPXI420 VPX_IMG_FMT_VPXI420

 #endif /* VPX_CODEC_DISABLE_COMPAT */

 /**\brief Image Descriptor */

 typedef struct vpx_image

 {

 vpx_img_fmt_t fmt; /**< Image Format */

 /* Image storage dimensions */

 unsigned int w; /**< Stored image width */

 unsigned int h; /**< Stored image height */

 /* Image display dimensions */

 unsigned int d_w; /**< Displayed image width */

 unsigned int d_h; /**< Displayed image height */

 /* Chroma subsampling info */

 unsigned int x_chroma_shift; /**< subsampling order, X */

 unsigned int y_chroma_shift; /**< subsampling order, Y */

 /* Image data pointers. */

 #define VPX_PLANE_PACKED 0 /**< To be used for all packed formats */

 #define VPX_PLANE_Y 0 /**< Y (Luminance) plane */

 #define VPX_PLANE_U 1 /**< U (Chroma) plane */

 #define VPX_PLANE_V 2 /**< V (Chroma) plane */

 #define VPX_PLANE_ALPHA 3 /**< A (Transparency) plane */

 #if !defined(VPX_CODEC_DISABLE_COMPAT) || !VPX_CODEC_DISABLE_COMPAT

 #define PLANE_PACKED VPX_PLANE_PACKED

 #define PLANE_Y VPX_PLANE_Y

 #define PLANE_U VPX_PLANE_U

 #define PLANE_V VPX_PLANE_V

 #define PLANE_ALPHA VPX_PLANE_ALPHA

 #endif

 unsigned char *planes[4]; /**< pointer to the top-left pixel

 q for each plane */

 int stride[4]; /**< stride between rows for each plane */

 int bps; /**< bits per sample (for packed formats) */

 /* The following member may be set by the application to

 * associate data with this image.

 */

 void *user_priv; /**< may be set by the application to

 associate data with this image. */

 /* The following members should be treated as private. */

 unsigned char *img_data; /**< private */

 int img_data_owner; /**< private */

 int self_allocd; /**< private */

 } vpx_image_t; /**< alias for struct vpx_image */

 /**\brief Representation of a rectangle on a surface */

 typedef struct vpx_image_rect

 {

 unsigned int x; /**< leftmost column */

 unsigned int y; /**< topmost row */

 unsigned int w; /**< width */

 unsigned int h; /**< height */

 } vpx_image_rect_t; /**< alias for struct vpx_image_rect */

 /*!\brief Open a descriptor, allocating storage for the

 * underlying image

 *

 * Returns a descriptor for storing an image of the given format.

 * The storage for the descriptor is allocated on the heap.

 *

 * \param[in] img Pointer to storage for descriptor.

 * If this parameter is NULL, the storage

 * for the descriptor will be allocated

 * on the heap.

 * \param[in] fmt Format for the image

 * \param[in] d_w Width of the image

 * \param[in] d_h Height of the image

 * \param[in] align Alignment, in bytes, of each row in

 * the image.

 *

 * \return Returns a pointer to the initialized image descriptor.

 * If the img parameter is non-null, the value of the img

 * parameter will be returned.

 */

 vpx_image_t *vpx_img_alloc(vpx_image_t *img,

 vpx_img_fmt_t fmt,

 unsigned int d_w,

 unsigned int d_h,

 unsigned int align);

 /*!\brief Open a descriptor, using existing storage for the

 * underlying image

 *

 * Returns a descriptor for storing an image of the given format.

 * The storage for descriptor has been allocated elsewhere, and a

 * descriptor is desired to "wrap" that storage.

 *

 * \param[in] img Pointer to storage for descriptor.

 * If this parameter is NULL, the storage

 * for the descriptor will be

 * allocated on the heap.

 * \param[in] fmt Format for the image

 * \param[in] d_w Width of the image

 * \param[in] d_h Height of the image

 * \param[in] align Alignment, in bytes, of each row in

 * the image.

 * \param[in] img_data Storage to use for the image

 *

 * \return Returns a pointer to the initialized image descriptor.

 * If the img parameter is non-null, the value of the img

 * parameter will be returned.

 */

 vpx_image_t *vpx_img_wrap(vpx_image_t *img,

 vpx_img_fmt_t fmt,

 unsigned int d_w,

 unsigned int d_h,

 unsigned int align,

 unsigned char *img_data);

 /*!\brief Set the rectangle identifying the displayed portion of

 * the image

 *

 * Updates the displayed rectangle (aka viewport) on the image

 * surface to match the specified coordinates and size.

 *

 * \param[in] img Image descriptor

 * \param[in] x leftmost column

 * \param[in] y topmost row

 * \param[in] w width

 * \param[in] h height

 *

 * \return 0 if the requested rectangle is valid, non-zero

 * otherwise.

 */

 int vpx_img_set_rect(vpx_image_t *img,

 unsigned int x,

 unsigned int y,

 unsigned int w,

 unsigned int h);

 /*!\brief Flip the image vertically (top for bottom)

 *

 * Adjusts the image descriptor's pointers and strides to make

 * the image be referenced upside-down.

 *

 * \param[in] img Image descriptor

 */

 void vpx_img_flip(vpx_image_t *img);

 /*!\brief Close an image descriptor

 *

 * Frees all allocated storage associated with an image

 * descriptor.

 *

 * \param[in] img Image descriptor

 */

 void vpx_img_free(vpx_image_t *img);

 #endif

 #ifdef __cplusplus

 }

 #endif

 ---- End code block --
28.25 vpx_integer.h

 ---- Begin code block --------------------------------------

 /*

 * Copyright (c) 2010 The project authors. All Rights Reserved.

 *

 * Use of this source code is governed by a BSD-style license

 * that can be found in the LICENSE file in the root of the source

 * tree. All contributing project authors may

 * be found in the AUTHORS file in the root of the source tree.

 */
 #ifndef VPX_INTEGER_H

 #define VPX_INTEGER_H

 /* get ptrdiff_t, size_t, wchar_t, NULL */

 #include <stddef.h>

 #if defined(_MSC_VER) || defined(VPX_EMULATE_INTTYPES)

 typedef signed char int8_t;

 typedef signed short int16_t;

 typedef signed int int32_t;

 typedef unsigned char uint8_t;

 typedef unsigned short uint16_t;

 typedef unsigned int uint32_t;

 #if defined(_MSC_VER)

 typedef signed __int64 int64_t;

 typedef unsigned __int64 uint64_t;

 #define PRId64 "I64d"

 #endif

 #ifdef HAVE_ARMV6

 typedef unsigned int int_fast16_t;

 #else

 typedef signed short int_fast16_t;

 #endif

 typedef signed char int_fast8_t;

 typedef unsigned char uint_fast8_t;

 #ifndef _UINTPTR_T_DEFINED

 typedef unsigned int uintptr_t;

 #endif

 #else

 /* Most platforms have the C99 standard integer types. */

 #if defined(__cplusplus) && !defined(__STDC_FORMAT_MACROS)

 #define __STDC_FORMAT_MACROS

 #endif

 #include <stdint.h>

 #include <inttypes.h>

 #endif

 #endif

 ---- End code block --

�

�

C

�

�

�

�

�

�

�

�

�

�

�

�

C

�

�

�

�

�

�

�

�

�

�

�

�

C

�

�

�

�

�

�

�

�

�

�

�

�

C

�

�

�

�

�

�

�

�

�

�

Mean value

� QUOTE � ��� and

�

�

�

C

�

�

�

�

�

�

�

�

�

�

�

�

C

�

�

�

�

�

�

�

�

�

�

�

�

C

�

�

�

�

�

�

�

�

�

�

�

�

C

�

�

�

�

�

�

�

�

�

�

�

�

�

C

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

C

�

�

�

�

�

�

�

�

�

�

� QUOTE � ��� � QUOTE � ���

b = � QUOTE � ���

c = � QUOTE � ���

addition

�

�

�

�

�

�

�

�

subtraction

�

�

�

�

�

�

Figure � SEQ Figure * ARABIC �2� - Inverse DCT’s 1-D signal graph [5]

�

�

C

�

�

�

�

�

�

�

�

�

�

�

�

C

�

�

�

�

�

�

�

�

�

�

�

�

C

�

�

�

�

�

�

�

�

�

�

�

�

C

�

�

�

�

�

�

�

�

�

�

Mean value

� QUOTE � ��� and

�

�

�

C

�

�

�

�

�

�

�

�

�

�

�

�

C

�

�

�

�

�

�

�

�

�

�

�

�

C

�

�

�

�

�

�

�

�

�

�

�

�

C

�

�

�

�

�

�

�

�

�

�

�

�

�

C

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

C

�

�

�

�

�

�

�

�

�

�

� QUOTE � ��� � QUOTE � ���

b = � QUOTE � ���

c = � QUOTE � ���

addition

�

�

�

�

�

�

�

�

subtraction

�

�

�

�

�

�

Figure � SEQ Figure * ARABIC �2� - Inverse DCT’s 1-D signal graph [5]

	© ISO 2013 – All rights reserved
	1

	108
	© ISO 2012 – All rights reserved

	
	153

[image: image200.png]

[image: image201.png]

[image: image202.png]

[image: image203.png]cos(0)

[image: image204.png]cos(0)

[image: image205.png]Y 5+ cos("/e)

[image: image206.png]Y 5+ cos("/e)

[image: image207.png]Y 5+ sin("/g)

[image: image208.png]Y 5+ sin("/g)

[image: image209.png]

[image: image210.png]

[image: image211.png]

[image: image212.png]

[image: image213.png]

[image: image214.png]

[image: image215.png]

[image: image216.png]

[image: image217.png]

[image: image218.png]

[image: image219.png]

[image: image220.png]

[image: image221.png]y, = V2(xg* cos("fg) + x, = sin(T/g))

[image: image222.png]yo =V2(xo* sin(/g) — x, * cos("/g))

[image: image223.png]

[image: image224.png]

[image: image225.png]

[image: image226.png]

[image: image227.png]

[image: image228.png]

[image: image229.png]

[image: image230.png]

[image: image231.png]

[image: image232.png]

[image: image233.png]

[image: image234.png]

[image: image235.png]

[image: image236.png]

[image: image237.png]

[image: image238.png]

[image: image239.png]

[image: image240.png]

[image: image241.png]

[image: image242.png]

[image: image243.png]

[image: image244.png]

[image: image245.png]

[image: image246.png]

[image: image247.png]

[image: image248.png]

[image: image249.png]

[image: image250.png]

[image: image251.png]

[image: image252.png]

[image: image253.png]

[image: image254.png]

[image: image255.png]

[image: image256.png]

[image: image257.png]

[image: image258.png]

[image: image259.png]

[image: image260.png]

[image: image261.png]

[image: image262.png]

[image: image263.png]

[image: image264.png]

[image: image265.png]

[image: image266.png]

[image: image267.png]

[image: image268.png]

[image: image269.png]

[image: image270.png]

[image: image271.png]A,

[image: image272.png]A,

[image: image273.png]

[image: image274.png]

[image: image275.png]

[image: image276.png]

[image: image277.png]

[image: image278.png]

[image: image279.png]

[image: image280.png]

[image: image281.png]

[image: image282.png]

[image: image283.png]

[image: image284.png]

[image: image285.png]

[image: image286.png]

[image: image287.png]

[image: image288.png]

[image: image289.png]

[image: image290.png]

[image: image291.png]

[image: image292.png]

[image: image293.png]

[image: image294.png]

[image: image295.png]

[image: image296.png]

[image: image297.png]

[image: image298.png]

[image: image299.png]

[image: image300.png]

[image: image301.png]

[image: image302.png]

[image: image303.png]

[image: image304.png]

[image: image305.png]

[image: image306.png]

[image: image307.png]

[image: image308.png]

[image: image309.png]

[image: image310.png]

[image: image311.png]

[image: image312.png]

[image: image313.png]

[image: image314.png]

[image: image315.png]

[image: image316.png]

[image: image317.png]

[image: image318.png]

[image: image319.png]

[image: image320.png]

[image: image321.png]

[image: image322.png]

[image: image323.png]

[image: image324.png]

[image: image325.png]

[image: image326.png]

[image: image327.png]

[image: image328.png]

[image: image329.png]

[image: image330.png]

[image: image331.png]

[image: image332.png]

[image: image333.png]

[image: image334.png]

[image: image335.png]

[image: image336.png]

[image: image337.png]

[image: image338.png]

[image: image339.png]

[image: image340.png]

[image: image341.png]

[image: image342.png]

[image: image343.png]

[image: image344.png]

[image: image345.png]

[image: image346.png]

[image: image347.png]

[image: image348.png]

[image: image349.png]

[image: image350.png]

[image: image351.png]

[image: image352.png]

[image: image353.png]

[image: image354.png]

[image: image355.png]

[image: image356.png]

[image: image357.png]

[image: image358.png]

[image: image359.png]

[image: image360.png]

[image: image361.png]

[image: image362.png]

[image: image363.png]

[image: image364.png]cos(0)

[image: image365.png]cos(0)

[image: image366.png]Y 5+ cos("/e)

[image: image367.png]Y 5+ cos("/e)

[image: image368.png]Y 5+ sin("/g)

[image: image369.png]Y 5+ sin("/g)

[image: image370.png]

[image: image371.png]

[image: image372.png]

[image: image373.png]

[image: image374.png]

[image: image375.png]

[image: image376.png]

[image: image377.png]

[image: image378.png]

[image: image379.png]

[image: image380.png]

[image: image381.png]

[image: image382.png]y, = V2(xg* cos("fg) + x, = sin(T/g))

[image: image383.png]yo =V2(xo* sin(/g) — x, * cos("/g))

