INTERNATIONAL ORGANISATION FOR STANDARDISATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11 N13777
August 2013, Vienna, AT

	Source
	WG11

	Status
	Output

	Title
	Test Model 1 of Video Coding for Browsers (VCB)

	Editors
	Mohamad Raad, Harald Alvestrand, Lazar Bivolarsky

Contents
31
Introduction

32
VCB Encoding Process

62.1
Prediction

62.1.1
Intraframe prediction

82.1.2
Interframe prediction

112.2
Transforms

112.2.1
The Discrete Cosine Transform

122.2.2
The Walsh-Hadamard Transform

132.3
Quantization

132.3.1
Coding the Transformed Coefficients

152.4
Loop Filter

152.4.1
Simple filter

152.4.2
Normal filter

162.5
Entropy Coder

172.6
Segments and Slices

173
VCB Encode Parameter Guide

173.1
The Basics

183.2
Encode Quality vs. Speed

193.3
Rate Control

193.3.1
VBR, CBR and CQ Mode

203.3.2
One-Pass vs. Two-Pass

213.3.3
Additional 2-Pass Rate Control Parameters

213.3.4
KEY Frame Spacing

223.3.5
The Alternate (or Constructed) Reference Frame

223.3.6
Multi-threaded Encode and Decode

233.3.7
Temporal and Spatial Resampling

233.3.8
Video Conferencing

233.3.9
Miscellaneous

243.4
Sample Command Lines

243.4.1
2-Pass Best Quality VBR Encoding

243.4.2
2-Pass Faster VBR Encoding

253.4.3
2-Pass VBR Encoding for Smooth Playback on Low-end Hardware

253.4.4
2-Pass CBR Encoding for Limited-bandwidth Streaming

253.4.5
2-Pass VBR Encoding for Noisy / Low-quality Input Source

253.4.6
1-Pass Good Quality VBR Encoding

253.4.7
1-Pass Fast VBR Encoding

263.4.8
Real-time CBR Encoding and Streaming

263.5
vpxenc Parameter Summary

263.5.1
Usage:

263.5.2
Options:

263.5.3
Encoder Global Options:

273.5.4
Rate Control Options:

273.5.5
Two-pass Rate Control Options:

273.5.6
KEYframe Placement Options:

273.5.7
Other VCB-Specific Options:

274
Data Structures

395
References

1 Introduction
This document presents a technical overview of the Video Coding for Browsers (VCB) test model (i.e. the encoder). This document initially gives a general overview of the encoding process followed by a more specific description of the different parts of the encoder. It should be noted that the encoder description here follows the accompanying reference software, which is available from the WG11 SVN. Parts of the software are focused on providing a usable API to application developers and other parts are intended to allow the introduction of different encoders and/or different signal processing modules (such as the calculation of the difference between two macroblocks). This document thus focuses on operations implemented within the call stack scope of the function vp8_get_compressed_data()from the vpxenc project in the reference software (in the WG11 SVN).
2 VCB Encoding Process

The VCB encode is macroblock (MB) based, a MB being defined as a 16×16 block for the Luma channel (Y) and 8×8 for both Chroma channels (U, V). VCB works exclusively with an 8-bit YUV 4:2:0 image format. The entry point in the software for the VCB encoding process is the function encode_frame() which is called after some command line processing and in turn calls vpx_codec_encode()which implements the required encoding algorithm. The VCB specific algorithm is exercised through vp8e_encode(). One more layer down in the software, the encoded data is obtained from vp8_get_compressed_data().

VCB one pass encoding consists of the following major steps (see [3] and the provided software – it should be noted that the software also allows for 2 pass encoding):

1. The frame type is set. There are two encoding frame types (1) a “KEY” frame, which is the same as an INTRA in the traditional MPEG nomenclature, and (2) an “INTER” frame – which is a predicted frame. The initial frame type selection is simply made on the basis of whether or not a KEY frame is being forced because of the command line configuration.
2. The target rate for this specific frame is then set using either calc_iframe_target_size() or calc_pframe_target_size().

a. An INTER frame is approximated to require 4 times less bits than a KEY frame.

b. The initial number of bits to be spent of each frame is calculated based on the requested bit rate divided by the frame rate. This is then further adjusted based on the number of bits that have been used by the encoder.

c. Another adjustment is applied if this frame is to be designated a “GOLDEN” frame (which is explained later in this document).

d. The initial QP value is determined based on the calculated rate and the estimated number of bits that will be spent on this frame type using a selected QP value. The function estimate_bits_at_q()is used for this purpose. The function uses normalized tables (approximated costs for frames with 512 macroblocks) to estimate the eventual cost of the target frame.
e. The initial QP value is then refined using vp8_regulate_q() by repeatedly choosing a finer quantizer whilst still remaining below the target rate. Note there is no distortion calculation at this stage.

f. The target rate is then adjusted again using vp8_compute_frame_size_bounds() by allowing for different overshoot and undershoot values for different types of frames. These values were selected based on many experiments conducted with different video material.

3. The remainder of the encoding process is focused on processing the macroblocks using vp8_encode_frame(). It is important to note that different implementations of signal processing blocks can be used here since this function is used to initialize a number of function pointers that satisfy defined interfaces. For example, the loop filter module is initialized here to either be a six tap filter or a bilinear filter. The six tap filter is the default and that was the filter chosen for the preparation of this response to the CfP.
4. The target frame is encoded one macroblock (MB) row at a time using encode_mb_row(). The MB is predicted using two types of predictors - one using spatial information (pixel values surrounding the sub-block), and the other temporal information (motion vectors from other frames). The prediction is subtracted from the original MB to form the residual. Macroblocks are processed in a raster-scan order.

5. The use of spatial prediction depends on whether or not the target frame is a KEY frame. If it is a KEY frame, vp8cx_encode_intra_macroblock()is used, on the other hand, if an INTER frame is being processed then vp8cx_encode_inter_macroblock()is used.
6. In either case (spatial or temporal prediction), the MB mode is selected (more about MB modes later in this document) based on either an RD calculation or a speed limitation based calculation (recall that the provided software is product grade and so it allows for its operations under certain computational complexity constraints). In the case where no speed limit is set on the encoder, vp8_rd_pick_intra_mode() is used, on the other hand, vp8_pick_intra_mode() is used. Similar functions are used for the temporal prediction case.
7. In the case of mode selection being RD based (which is how this encoder was used in preparing this response to the call), the default is to use 16x16 MBs unless the RD cost for the use of 4x4 blocks is lower, in which case the B_PRED mode is used (see Section ‎2.1for more details). These are Luma sizes, whereas the block size for the UV plane is kept at 8x8.
8. The block is then processed through functions such as vp8_encode_intra4x4block()which calculate the residual signal, transform it and quantize it. The residual signal is transformed using a 4x4 DCT or WHT transform. The DCT or WHT is selected depending on the prediction mode that is used. VCB can perform all the calculations using 16-bit operations in the full pipeline of transform, quantization, dequantization and inverse transform [3]. Note that in the provided software, the transforms are performed using functions implemented in assembly and the YASM interpreter is needed (since it allows for multiple assembler syntaxes to be supported [9]). One such function is vp8_short_fdct8x4_sse2().
9. VCB defines 128 quantization levels in its scalar quantization process. For each video frame, VCB allows different quantization levels to be used for six frequency components: 1st order luma DC, 1st order luma AC, 2nd order luma DC, 2nd order luma AC, chroma DC and chroma AC. In addition, VCB’s design includes a simple and effective region adaptive quantization scheme, in which the bitstream provides the capability of classifying macroblocks within a frame into 4 different segments, with each segment having its own quantization parameter set [3].
10. The resulting quantized transform coefficients are then dequantized, inverse transformed and added back to the prediction signal to form the reconstructed MB as it will appear at the decoder.

11. The reconstructed MB is then loop filtered. VCB has an adaptive in-loop deblocking filter. The type and strength of the filtering can be adjusted for different prediction modes and reference frame types.

12. The coding modes, any motion vectors and quantized transform coefficients are entropy coded using a boolean entropy coder (BoolCoder) to form the compressed bitstream. This is implemented using optimize_b().
13. The reference frame buffers are updated. Decisions are made with regards to whether or not the current frame should be labeled as a GOLDEN frame, an ALTREF (or ARF) frame or simply as the last frame (LF) or KEY frame. The provided encoder implementation tends to produce a GOLDEN frame once every 7 (seven) frames approximately (statistics are tracked to determine what label the current frame should take).
As mentioned previously, two frame types are defined: “KEY” frames (INTRA) frames and “INTER” frames. KEY frames, can be decoded without reference to any other frame and as such, provide random access points in a video stream. Interframes may make reference to prior encoded reference frames.

Specifically, VCB defines three potential reference frames:

1. The “Last (LF)” encoded frame

2. The “GOLDEN Frame (GF)”
3. The “Alternate Reference Frame (ARF)”
The reference encoder updates the last frame (LF) each time a frame is encoded. The GOLDEN frame is an occasional reference frame that is encoded at a higher quality than surrounding frames. The alternative reference frame (ARF) is formed by applying a non-linear temporal filter to a contiguous set of future frames.

Blocks in an interframe may be predicted from blocks in any of the three reference frames, LF, GF or ARF. Every KEY frame is automatically a GF. Further, the encoder may update any of the reference frames with the last encoded frame if it so chooses (this is done by tracking statistics indicating how useful the current reference frames have been, in the provided implementation the updates occur in an approximately cyclical manner). ARF frames may be composed from future frames or from previous frames. In the provided implementation ARF frames are only used in 2-pass mode because the implementation constructs ARF frames from future frames only.
2.1 Prediction
VCB employs intra- and inter-frame prediction.

2.1.1 Intraframe prediction
There are 5 intra prediction modes defined for 16×16 luma MBs, which are simply referred to as mode DC_PRED, V_PRED, H_PRED, TM_PRED and, B_PRED. B_PRED splits the signal into 16 4x4 sub-blocks and selects a mode for each sub-block independently. The first four modes are also used for the intra prediction of 8x8 chroma blocks.

For B_PRED mode there are 10 available modes for predicting each 4x4 sub-block, (Figure 1 shows the different 4x4 Luma intra modes):
[image: image27.png]

[image: image28.png]

[image: image29.png]

[image: image30.png]

[image: image31.png]

[image: image32.png]

0 – vertical

1 - horizontal

[image: image33.png]

[image: image34.png]

[image: image35.png]

[image: image36.png]

[image: image37.png]

[image: image38.png]

[image: image39.png]

[image: image40.png]

[image: image41.png]

[image: image42.png]

[image: image43.png]

[image: image44.png]

[image: image45.png]

2 – DC

3 – diagonal down-left

[image: image46.png]

[image: image47.png]

[image: image48.png]

[image: image49.png]

[image: image50.png]

[image: image51.png]

[image: image52.png]

[image: image53.png]

[image: image54.png]

[image: image55.png]

[image: image56.png]

4 – diagonal down-right

5 – vertical-right

[image: image57.png]

[image: image58.png]

[image: image59.png]

[image: image60.png]

[image: image61.png]

[image: image62.png]

[image: image63.png]

[image: image64.png]

[image: image65.png]

[image: image66.png]

[image: image67.png]

6 – horizontal down

7 – vertical-[image: image68.png]

left

[image: image69.png]

[image: image70.png]

[image: image71.png]

[image: image72.png]

[image: image73.png]

8 – horizontal-up

7 – TM[image: image74.png]

_PRED

[image: image75.png]A,

[image: image76.png]A,

[image: image77.png]

[image: image78.png]

[image: image79.png]

Figure 1 - Intra prediction modes (4x4) used in VCB [2].

The encoder tests the application of all these modes and selects the modes causing the smallest sum of differences.

The pixel values of already encoded adjacent blocks are simply copied either in a horizontal, vertical or diagonal way in order to predict the contents of the current block. The sole exception is the true motion prediction mode TM_PRED (see Figure 1) which is defined as:

[image: image2.png]

(1)

This prediction mode is chosen in 20%-45% for all intra coded MBs [5][6].

Intraframe prediction is performed in raster-scan sequence. The predictor value is subtracted from the corresponding values of the prediction block. The residual values form the prediction residual block which is then transformed to the frequency domain via DCT or WHT transform.

The call sequence for luminance intra prediction mode and processing is shown below.

vpx_codec_encode()

-> vp8_first_pass()

 -> vp8_encode_intra()

 -> vp8_encode_intra16x16mby()

 -> vp8_build_intra_predictors_mby_ptr()

 -> ENCODEMB_INVOKE(&rtcd->encodemb, submby)()
// encodeintra.c
-> vp8_subtract_mby_c()

// encodeintra.c
2.1.2 Interframe prediction
When using interframe prediction, a good match for the current MB is sought in the available reference pictures. The motion vectors (MV) describe the displacement of a block from the reference image used to predict in the current MB. The two blocks are compared to establish good prediction. The MVs have up to quarter pixel accuracy for the luma plane and since the MVs for the chroma plane are simply the average of the corresponding four luma MVs, they show a virtual accuracy of an eighth of a pixel. The encoder may also subdivide the MB into number of sub-partitions, and assign MVs to each using the mode SPLIT_MV. The encoder selects the best mode and reference frame combination to use based on rate-distortion criteria.

Macroblocks in interframes can be intra-coded.

An alternate reference frame (ARF) is usually designated non-displayable, but it is possible for the encoder to encode an ARF and signal that it should be displayed if it chooses. In the encoder ARFs are constructed by temporally filtering a number of future frames and once created may be used as a reference for frames that are encoded subsequently. Again, the provided encoder only does this for 2-pass mode.
The call sequence for luminance interframe prediction starts at the same module based on existence of previous frames.

vpx_codec_encode()

-> vp8_first_pass()

// firstpass.c
 -> vp8_first_pass_motion_search()

// firstpass.c
 -> vp8_diamond_search_sad()

// mcomp.c

 -> vp8_mse16x16_c()

// varience_c.c
2.1.2.1 Motion Vectors

Motion estimation is carried out to quarter-pixel accuracy using a set of interpolation filters, and is based only on the luma component of the MB.

There are five ways to signal a MV:

	Name
	Description

	Nearest
	Use the nearest MV for this MB

	Near
	Use the next nearest MV for this MB

	Zero
	Use a zero MV for this MB

	New
	Use an explicit offset from implicit MV for this MB

	Split
	Use multiple MVs for this MB

Table 1 - The Five Types of Motion Vectors

A coding context is defined based on the three neighboring macroblocks, above, left, and above-left. For macroblocks on the topmost or leftmost edge, or for those coded using an intra-prediction mode, the zero motion vector is assumed for the purposes of creating the context.

For each MB the VCB encoder considers a context comprising three neighboring MBs when working out a set of candidate MV predictors:

(1) The MB to the LEFT

(2) The MB ABOVE

(3) The MB ABOVE_LEFT

Starting with an empty list each candidate MV is evaluated in turn.

If (MV == (0,0)) or (MB encoded with INTRA mode)

{
ignore and move on to the next MV
}

else If (MV is not in the list)

{
add to the list with an initial score of +N
}

else

{
increment the counter of the corresponding MV in the list by +N
}

Where N = 2 for the ABOVE & LEFT MB MVs and N=1 for the ABOVE_LEFT MB MV.

Each MV in the list then has a score between 0 & 5, inclusive. The highest scoring MV is classified "BEST_MV" and will be used as an initial offset to code the real MV if NEW_MV mode is selected.

The highest scoring MV is also classified as "NEAREST", and the second highest scoring MV classified as "NEAR". It is these two MVs that are used if modes NEAREST_MV and NEAR_MV are signaled [3].
2.1.2.2 Interpolation and Filtering

Interpolation is used to achieve quarter pixel accuracy in the motion vector estimation. VCB defines two sets of interpolation filters, 6-tap bicubic filter set for higher quality estimation at the cost of greater computational load, and bilinear filter set for reduced complexity estimation.

The basic interpolation for either the bicubic or bilinear interpolation filter is by convolution. The process uses a clamped convolution which limits the output to 8 bits. This convolution proceeds through two passes, the horizontal initial pass is followed by a vertical pass applied to the resulting data.
[image: image3.png]3
iFlter (3,6) = Clampozes (Z bm-x[cl)
.

[image: image4.png]3
(Filter ,upe () = Clampycs (Z bm-x[cl)
.

For the initial horizontal pass, five additional rows of pixel data (two above and three below the block) are processed to create the nine rows that will be required by the vertical pass.

The additional rows are required so that there is data where the six-tap filter extends beyond the extent of the block itself. The second pass creates the final 4x4 output block by applying the same filter in the vertical direction.

The call sequence for luminance interframe prediction starts at the same module based on existence of previous frames.

vpx_codec_encode()

-> vp8_first_pass()

// firstpass.c
 -> vp8_first_pass_motion_search()

// firstpass.c
 -> vp8_diamond_search_sad()

// mcomp.c

 -> vp8_mse16x16_c()

// varience_c.c

2.2 Transforms
VCB uses two transforms to encode the residual signal, the 4x4 Discrete Cosine Transform (DCT) and the 4x4 Walsh-Hadamard Transform (WHT). The Transform block uses the prediction mode to decide whether or not to use the WHT or the DCT [4].

The DCT is used for the 16 Y, 4 U and 4 V sub-blocks (SMBs) of a MB. The WHT is used to transform a 4x4 block constructed from the 16 DC coefficients by the application of the DCT to the 16 sub-blocks. This is a stand-in for the 0th DCT coefficients of the Y sub-blocks. The additional sub-block is the 25th sub-block in a MB; the other 24 comprise the 16 luma and 8 chroma sub-blocks.
2.2.1 The Discrete Cosine Transform
The transformation Y from the spatial domain into the frequency domain is performed by convolving each SMB X of size 4×4 with a transformation kernel A and it’s transposed AT.

[image: image6.png]Y=A-X-AT

(2)

[image: image80.png]

The transformation used in VCB is very close to the definition of the discrete cosine transform (DCT), which is given by:
[image: image8.png]ideal
Aldea

 = [image: image10.png]

 where

(3)

The main difference is a multiplication with the factor √2 rather than a division by it. In order to guarantee plain integer arithmetic, the coefficients are stored as constants in an up-scaled version (factor 216). During the transformation process, the up-scaling can be reverted by applying bit shifts. Due to the large intermediate results, the transformation utilizes 16 bit integer multiplications [7].

[image: image81.png]

[image: image82.png]

[image: image83.png]

[image: image84.png]

[image: image85.png]

[image: image86.png]

[image: image87.png]

[image: image88.png]

[image: image89.png]

[image: image90.png]

[image: image91.png]

[image: image92.png]

[image: image93.png]

[image: image94.png]

[image: image95.png]

Each MB consists of either 16 or 17 SMBs containing luminance data or 4 SMBs for each luma channel, summing up to a total of 24 or 25 SMBs. The eventual 17th luma SMB is available in most prediction modes that process the whole 16×16 at once (all besides SPLIT_MV and B_PRED). It contains the second order luma information of the DC coefficients of all luma SMBs, which means, these coefficients are transformed via the WHT to further decrease correlation within a MB. In this case, all transformed SMBs start with the 1st coefficient instead of the 0th.

The DCT and WHT implementations used by VCB can be found in the file dct.c which has the functions vp8_short_fdct4x4_c(),vp8_short_fdct8x4_c() and vp8_short_walsh4x4_c(), however, on running the provided implementation, it will be noted that the assembly counterparts of these functions are the ones that are actually used (the assembly versions have the same function names with an _sse2 extension instead of the _c extension).
2.2.2 The Walsh-Hadamard Transform
The WHT, also known as the Walsh-Hadamard Transform, is recursively defined by:
[image: image12.png]T e

(4)
where Hm is a 2m x 2m matrix, where H0 = 1. To transform a matrix via the WHT, the matrix, A, is multiplied by Hm. A must also be a 2m x 2m matrix as in

[image: image14.png]Awnr

(5)

Where X and Y are the 4x4 size input and output and H is defined as:

[image: image16.png]

(6)

The intra encoder call sequence to the transforms modules is listed below

vp8_encode_intra16x16mby()

// encodeinrtra.c
-> vp8_transform_intra_mby()
// encodeintra.c
 -> vp8_short_fdct8x4_c()

// dct.c

-> vp8_short_fdct4x4_c()
// dct.c
 -> vp8_build_dcblock(x)

// encodemb.c
 -> short_walsh4x4_c()

// dct.c
The inter encoding is performed from the same module fistpass.c where the function vp8_first_pass() calls vp8_encode_inter16x16y()

vp8_encode_inter16x16y()

// fistpass.c
-> vp8_transform_mby()

// encodemb.c
 -> vp8_short_fdct8x4_c()

// dct.c

-> vp8_short_fdct4x4_c()
// dct.c
 -> vp8_build_dcblock(x)

// encodemb.c
 -> short_walsh4x4_c()

// dct.c
2.3 Quantization

To quantize the residue, each coefficient is divided by one of six quantization factors, the selection of which depends upon the plane being encoded. In VCB, a plane is a set of two-dimensional data with metadata describing the type of that data. There are four types of planes in VCB: Y2, the virtual plane from the WHT, Y, the luminance plane, U and V, the two chroma planes. The quantization step also depend on the coefficient position, either DC – coefficient 0, or AC – coefficients 1 through 15. These values are specified in one of two ways, via an index in a look-up table, or as an offset to an index.

The baseline quantization factor, Yac, is specified as a 7-bit lookup into the AC quantizer lookup table. Yac is added to each of the other quantization factors, which are specified as 4-bit positive or negative offsets from the index of Yac.

Each other factor is specified as a four bit offset from the Yac index, and includes a sign bit. This means that if Yac = 16, then a value of Y1 = 3 would be 19, and a value of Y2 = 10 would be 6. This allows an index range of +/- 15 from the index of Yac. In the VCB bitstream, the five factors other than Yac are optional, and only included if a flag is true. If they are omitted, they are set to zero, which indicates that the same quantization factor as Yac should be used for them.

There are two tables defined for each plane (Y, U+V, Y2), one containing the de-quantization coefficients for the DC values (the 0th coefficient of the DCT) and one for all other coefficients representing higher frequencies. The choice of the correct value depends on the default quantization parameter (QP) for the whole image. The encoded MBs are stored in raster-scan order and start at the beginning of partition 2. In case the image was encoded using multiple segments, the corresponding segment ID precedes the DCT / WHT coefficients of each MB. According to the segment ID, the default QP-value that was set for the whole frame may be overridden.

2.3.1 Coding the Transformed Coefficients

The coefficients of the 16 sub-blocks of each macroblock are arithmetic coded, using the defined token set. The probability table for encoding this is four-dimensional, and is dependent on the type of plane being encoded, the sub-block being encoded, the local complexity, and the token tree structure.

There are four possible values for the first dimension of the probability table, depending on what type of plane is being encoded, either Y after a Y2 plane, a Y2 plane, a chroma plane (U or V), or a Y plane without a Y2 plane, index, respectively from 0 to 3.

The next dimension depends upon the position of the current subblock within the current macroblock, and is indexed from 0 to 7, known as bands. The mapping of subblocks to the index is shown in Figure 7. The upper half of the macroblock and the last subblock are treated specially, while the lower half shares index 6.
	0
	1
	2
	3

	6
	4
	5
	6

	6
	6
	6
	6

	6
	6
	6
	7

Figure 3 - Subblock Mapping to the Token Probability Table
The local complexity dimension attempts to match the local area to the corresponding probability. If there are many zeros in the local area, it is more likely that index 0 is used. If there are some, but not a lot, 1 is used. If there is a large amount, index 2 is used.

For the first coefficient of the macroblock, the surrounding macroblocks are examined. The index is the number of surrounding macroblocks that contain at least one non-zero coefficient in their residue. This way, the first coefficient’s probability accuracy depends on how similar it is to the immediately surrounding macroblocks. The remaining coefficients local complexity index is described by the following equation:

[image: image18.png]if leel =1

(7)

Where the local complexity index is determined by the previous coefficient encoded. This can have suboptimal behavior when wrapping around the macroblock, for instance, from position 3 to position 4.

As the meaning between the first and remaining coefficients is slightly different for the local complexity dimension, it is important to note that this is acceptable, because each subblock position maps to a band. Therefore, the first coefficient has its own probabilities for the cases of surrounding macroblocks, and it doesn’t interfere with the other meaning of local complexity, which is the value of the previous coefficient.

The quantization is imitated with the following call,

vp8cx_frame_init_quantizer()
// firstpass.c
and the encode sequence is listed below including the encoder modules.

vp8_encode_intra16x16mby()

// encodeinrtra.c

 -> vp8_quantize_mby()

// quantize.c

 -> vp8_regular_quantize_b()
// quantize.c
2.4 Loop Filter

There can be discontinuities at the boundaries between adjacent macroblocks that require filtering to reduce their perceptual impact on the viewer. This process occurs in the reconstruction loop of the encoder and is known as loop filtering.

The loop filter settings can be adapted on segment-level and there are two filtering modes of differing complexity.

The loop filter types may be specified at the frame level and/or MB level. The frame header can select one of three loop-filter types, “none”, “simple”, and “normal”. The filter signaled at MB, level overrides the one specified at frame level.

A gradient-based search for horizontal and vertical edges on MB and SMB borders is performed. There is no significant difference in handling both block types. The filtering occurs orthogonal to the edge’s direction and involves 1 to 4 pixels (extreme case: all pixels of the SMBs on both sides of the border are involved) on each side of the border, dependent on the choice of filter type and the sharpness setting. In case the gradients exceed a certain threshold limit, the border is assumed to be “natural” and no filtering is performed to preserve high-frequency details in the image.
 MBs encoded with the prediction modes B_PRED or SPLIT_MV are not filtered, which considerably speeds up the filtering process.

2.4.1 Simple filter

The simple filter processes the luma channel only. For detecting edges, 2 pixels on each side of the MB’s borders are evaluated. If the absolute difference is below a given threshold value, a simple low pass operation is applied to the 4 pixels, which roughly reduces the gradient by about 25%.

2.4.2 Normal filter

The normal filter applies to all channels, and utilizes up to 4 pixels on each side of the border to identify edges. The algorithms used here are much more complex than the ones for the simple filter. Amongst other things, more pixels are evaluated, the gradients for each pair of pixels are also taken into account and the low-pass function features different weights depending on the pixels relative position to the edge.

The horizontal loop filter is defined in vp8_loop_filter_mbh_c() and the vertical vp8_loop_filter_mbv_c() in the file loopfilter.c. The block edges are filtered with vp8_loop_filter_bv_c() for the vertical edges and vp8_loop_filter_bh_c() for the horizontal edges both are also defined in the loopfilter.c module.

2.5 Entropy Coder

VCB uses arithmetic coding as its final step in the encoding process to compress the residual after quantization, transformation, and prediction.

Every symbol of the alphabet is connected to a probability for it to appear. There exist different alphabets and probability tables for the different data sets to encode. The tables can be adapted for the whole frame when it is stated in the header. All instances of the entropy coders are independent from each other, which is utilized to speed up the decoding process, by separating the image into multiple partitions to parallelize the reverse DCT and de-quantization.

The largest alphabet is used for the compression of quantized DCT coefficients, which contains 12 unique values and 11 internal nodes to distinguish all possible values. Together with a return value that influences further decisions; such data-tuples can easily fit into an 8-bit value and therefore are stored as arrays of such 8-bit values.
2.5.1.1 Bit Representation of the Entropy Encoder
The probabilities that the boolean entropy encoder works with in VCB are unsigned 8-bit integers. To get the actual probability, the 8-bit integer is divided by 256. The state of the encoder is maintained with five values: the current bit position n; the bit string already written; the bottom value; an 8-bit integer; and the range, another 8-bit integer. The range is clamped to within a specified boundary, so that the probabilities remain accurate.

The value v is the next value of w, and the final value of v is the end condition, where v = x. v must satisfy the inequality in
[image: image20.png]Wt (5% i50) S v < W (5% (Lhor +irmg))

(8)

The scale of the bit position 8-bits ahead is generated as,

[image: image22.png]

(9)
Another value, split, is calculated as follows,

[image: image24.png]split = 1+ 2 irma D

(10)
and is constrained by
[image: image26.png]split € [1,i,,, —1]

(11)
The entropy encoding module vp8_quantize_b() in the reference software file encodemb.c is used for the implementation of the BoolCoder.
2.6 Segments and Slices

VCB does not use the slice concept directly. Each macroblock in a VCB frame can encode a segment identification number, 1 through 4, to indicate which quantization step size it uses. Figure 4 shows how VCB could organize its macroblocks into segments

	0
	0
	0
	2
	1
	1

	0
	0
	0
	2
	1
	1

	0
	0
	0
	2
	1
	1

	0
	0
	0
	2
	1
	1

	0
	2
	3
	3
	3
	3

	3
	3
	3
	3
	1
	3

Figure 4 Subblock Mapping to the Token Probability Table
The segments need not be contiguous or have any predefined order. However, there is a strict maximum of four segments in a VCB frame.

3 VCB Encode Parameter Guide

The following explains the command line instructions that can be used to operate the encoder implementation in the reference software.

This document details some of the encoder controls that are available in VCB. Different encoders or tools will map these controls in different ways, but knowing what is available should at least give you some idea of what to look for. In this document we use the parameter names defined in the sample encoder, vpxenc.exe. A summary of the command line usage and parameter set is given at the end [11].
3.1 The Basics

This section describes the basic parameters for setting image dimensions, output frame rate, encoder speed profile and the target bitrate.

--width=<arg>
(or -w <arg>)

--height=<arg>
(or -h <arg>)
Image dimensions (width and height) is only required for a raw YUV input. The recommended input format is Y4M files, as these will set the dimensions and frame rate automatically.
--fps=<arg>
Output frame rate is expressed as a fraction. For example for 29.97 frames per second you could specify 30000/1001 is also only required for “raw” YUV input. The recommended input format is Y4M files, as these will set the dimensions and frame rate automatically.

--target-bitrate=<arg>
What bitrate per second should the encoder try and target (in vpxenc the number is assumed to be in kbits/second). The bitrate chosen will obviously have a big effect on quality. In general the larger this number the better the quality but the bigger the output files size. However, it is worth noting that this number is only a guideline to the encoder. How strictly the encoder tries to adhere to the value that you set, either on a frame by frame basis, or averaged over the duration of the clip, is controlled by other parameters.

3.2 Encode Quality vs. Speed

In general, the more time the encoder spends coding each frame the better the job it will do, though it is very much a case of diminishing returns.

The basic speed control parameters in VCB are as follows:

--best
This usually gives the best quality output but is extremely slow. In general this is not a recommended setting unless you have a lot of time on your hands

--good
This will probably be what most users use most of the time. Within the scope of “good” quality there are 6 further speed steps that are set through the --cpu-used parameter (values from 0 to 5). Setting --good quality and --cpu-used=0 will give quality that is usually very close to and ven sometimes better than that obtained with --best but the encoder will typically run about twice as fast. Setting --cpu-used=1 or --cpu-used=2 will give further significant boosts to encode speed, but will start to have a more noticeable impact on quality and may also start to effect the accuracy of the data rate control. Setting a value of 4 or 5 will turn off “rate distortion optimization” which has a big impact on quality, but also greatly speeds up the encoder
--rt
Real-time mode allows the encoder to auto adjust the speed vs. quality trade-off in order to try and hit a particular CPU utilization target. In this mode the --cpu-used parameter controls the %cpu target as follows:
target cpu utilisation = (100*(16-cpu-used)/16)%
Legal values for -cpu-used when combined with --rt mode are (0-15). It is worth noting that in --rt mode the encode quality will depend on how hard a particular clip or section of a clip is and how fast the encoding machine is. In this mode the results will thus vary from machine to machine and even from run to run depending on what else you are doing.

--cpu-used
The meaning depends on the mode above. Negative values are for debug and force specific internal speed configurations
3.3 Rate Control

This section describes more advanced rate control parameters and 1-pass vs. 2-pass encoding.

3.3.1 VBR, CBR and CQ Mode

VCB offers VBR (variable bitrate) and CBR (constant bitrate) encoding options, and a VBR variant called CQ (constrained quality) mode.

--end-usage=<arg> (vbr, cbr, cq)

--cq-level=<arg> (valid values 0-63, default 10)
CBR attempts to keep the bitrate more constant, though in most implementations CBR does not actually try to force all frames to be exactly the same size, as this tends to harm video quality. Rather, in CBR mode, the codec tries to remain within given buffering constraints. It can spend a few more bits on one frame or short section, but cannot sustain a higher than average data rate for too long, as its notional buffers will run empty. Likewise, it can choose to “save up” bits during an easy section, but only up to a certain upper limit. If the user sets CBR mode but gives very loose buffer restrictions, then the result will start to resemble VBR. At the opposite extreme if the restrictions are very tight, then this mode will move towards true CBR where all frames are encoded as near as possible at the same size.

CQ mode is a special variant of VBR. It is designed as a fire-and-forget mechanism for encoding a large set of clips such that, as much as possible, the output stays within given quality and size constraints across the set. CQ mode exposes an additional parameter (--cq-level), and the meaning of the --target-bitrate parameter changes to be the “target maximum rate”.
In CQ mode the encoder will try to encode normal frames (all frames apart from KEY frames, GOLDEN frames and alternative reference frames) at a quantizer / quality level of --cq-level, provided that this does not cause the bitrate to rise above the target maximum value. KEY frames, GOLDEN frames and alt ref frames may be coded at a lower “q” value, but the minimum is still linked to the user-selected value, and in all cases --min-q and --max-q are treated as hard limits. In practice this means that easy clips may undershoot the target maximum bitrate, because they are constrained by the CQ level, but harder clips will be bounded by the target maximum data rate and will increasingly revert to standard VBR behavior.
CQ mode is available for one-pass encodes, but is generally intended for two-pass. For one-pass, CQ applies the user cq-value, but can’t adapt to a higher value if the clip is difficult.

In the two-pass variant of CQ mode there is a further refinement. If the first pass analysis suggests that a clip is too difficult to be encoded at the user-selected --cq-level, then rather than code part of the clip at this level and the rest at a much lower quality, it tries to pick a sustainable “auto-cq” level. Under no circumstances will this “auto-cq” value drop below the user-selected value.
--buf-initial-sz=<arg>

--buf-optimal-sz=<arg>

--buf-sz=<arg>
These three parameters set (respectively) the initial assumed buffer level, the optimal level and an upper limit that the codec should try not to exceed. The numbers given are in ‘milliseconds worth of data’ so the actual number of bits that these number represent depends also on the target bit rate that the user has set. Typical recommended values for these three parameters might be 4000, 5000 and 6000 ms, respectively.

--undershoot-pct=<arg> (valid values 1-100)

--overshoot-pct=<arg> (no longer valid)
This parameter causes the codec to try and deliberately undershoot its normal data rate target for each frame in order to cause a notional decoder buffer to fill up. In effect it forces the codec to try and save bits if it can, ready for more difficult sections that it may encounter later. This is occasionally useful in 1-pass CBR mode but should generally be ignored or set to 100 for 2-pass encodes and when using VBR mode.

VBR attempts to distribute the bits between different frames or sections in order to maximize quality. Typically hard sections will be allocated more bits to ensure that the quality in these sections does not drop too low, at the expense of easy sections that will still look good even if coded with a lower than average number of bits per frame. Even in VBR mode though, there typically have to be some constraints on how skewed the distribution of bits can be.
3.3.2 One-Pass vs. Two-Pass

--passes=<arg> (or -p <arg>) (valid values 1 or 2)
Like many other codecs VCB offers both one-pass and two-pass encoding. In some situations the choice is obvious. For example a video conferencing or live streaming application can’t use two-pass, though for the latter case we are working on a sort of 1.5-pass solution that we call lagged compress which will give some of the benefits of a two-pass encode with a lag or latency of only a few frames.

In general two-pass encoding results in better quality and more accurate data rate control. The idea is that the encoder makes a first pass through the video data and collects statistics about each frame that can then be used to better allocate bits between different frames or sections of the video. Many two-pass (or even multi-pass) encoders do a full encode in the first pass and create a valid output video and this certainly has some advantages, but at the moment the VCB two-pass encoder only does a partial encode in the first pass that results in a small set of statistics for each frame. In contrast a true one-pass encoder never knows what is coming next so it has to base its encoding decision on recent history. For example when deciding how big to make a KEY frame at a scene cut it does not know how well the KEY frame is going to predict subsequent frames (e.g. is it going to be a static scene or is there a lot of motion) or how long it will be until the next KEY frame. Similarly, because one section is easy to encode does not mean that a later section will also be easy (or vice versa) so it is difficult for a one-pass encoder to distribute more bits to hard sections at the expense of easier sections (see discussion of CBR vs. VBR).

3.3.3 Additional 2-Pass Rate Control Parameters

--minsection-pct=<arg> (recommended value 0-20)
--maxsection-pct=<arg> (recommended value 200-400 CBR or 400-800 for VBR)
These two parameters set a nominal target bitrate range within which the VBR and CBR algorithms should try and remain when allocating bits to frames or sections. The numbers represent a percentage of the average allocation per frame. The restrictions are less stringent in VBR and in particular are relaxed for certain types of frame (for example KEY frames or GOLDEN frame updates).

--bias-pct=<arg> (recommended value 50)
This parameter is misleadingly named in vpxenc as it does not tie directly to any sort of percentage. Basically it controls how the two-pass algorithm distributes bits between easier and harder sections or frames, based on complexity statistics gathered for each frame during the first pass. If you select a value of 100 then the allocation will be linear based on the relative complexity value for each frame when compared to the average for the clip (within the limits set by --minsection-pct and --maxsection-pct). For values of less than 100 the allocation does not increase (or decrease) as sharply in response to a frames relative complexity and a value of 0 means that the complexity is ignored completely when allocating bits. We usually recommend a value of 50.

The following parameters apply to both CBR and VBR modes

--min-q=<arg> (valid values 0-63, recommended value 0-4)

--max-q=<arg> (valid values --min-q to 63, recommended value 50-63)
These two parameters define the range of quantizers that the rate control algorithm may use. A lower number equates to higher quality but more bits (note, however, that these are not real quantizer values just control values). In effect these two parameters can trump all the other rate control parameters. For example if you have set a maximum of 10 then the encoder will never use a quantizer greater than the value represented by 10, even if it massively overshoots the target bit rate. They are useful however, because they allow the user to set upper and lower quality limits for a clip.

3.3.4 KEY Frame Spacing

VCB supports automatic detection of scene cuts and insertion of KEY frames. However the user can also specify a maximum interval between KEY frames (in frames, so for example at 30 fps 120 would be every 4 seconds).

--kf-max-dist=<arg>

--kf-min-dist=<arg>
 (not currently supported)
3.3.5 The Alternate (or Constructed) Reference Frame

The alternate or constructed reference frame is currently only available for two-pass encodes. This frame buffer can be populated with arbitrary data by the encoder and updated in the bitstream but it is never displayed.

--auto-alt-ref=<arg> (0= disabled, 1=enabled <default 0>)

--lag-in-frames=<arg> (0-25 : recommended value 16)
When --auto-alt-ref is enabled the default mode of operation is to either populate the buffer with a copy of the previous GOLDEN frame when this frame is updated, or with a copy of a frame derived from some point of time in the future (the choice is made automatically by the encoder). The --lag-in-frames parameter defines an upper limit on the number of frames into the future that the encoder can look.

However, many other options are possible and one alternative that has been implemented uses a temporally filtered image derived from a group of future frames. The extra control parameters for this are:

--arnr-maxframes=<arg> (number of frames to filter over 0-25)

--arnr-strength=<arg> (strength of the temporal filter 0-6)

--arnr-type=<arg> (not currently supported)
Use of --auto-alt-ref can substantially improve quality in many situations (though there are still a few where it may hurt). Temporal filtering is experimental and is disabled by default.
3.3.6 Multi-threaded Encode and Decode

VCB supports the use of multiple threads in the encoder and decoder.

--threads=<arg> (or -t <arg>) (recommended value : number of real cores - 1)
The --threads parameter determines the number of threads that will be allocated to the encode process. VCB supports a mechanism whereby rows of macro-blocks can be simultaneously encoded on different threads. However, the entropy encoding stage is limited to 1 thread unless a second parameter, --token-parts, is set. It is worth noting that if the threads number is set to > 1 then the results of repeat encodes will not always be exactly the same.
--token-parts=<arg> (0-3: recommended 0 for small images, 2 or 3 for HD))
Setting the --token-parts argument to a non 0 value directs the encoder to split the coefficient encoding across multiple data partitions that can be encoded and decoded independently. At the moment this parameter is interpreted as follows (0 = 1 coefficient partition, 1 = 2 partitions, 2 = 4 partitions, 3 = 8 partitions)

The decoder will usually automatically use an appropriate number of threads according to how many cores are available but it can only use multiple threads for the coefficient data if the encoder selected --token-parts > 0 at encode time.
3.3.7 Temporal and Spatial Resampling

VCB supports both temporal and spatial resampling. These are specialist parameters and are not generally recommended. Temporal resampling is only used in CBR mode and causes the encoder to drop frames if it cannot prevent its notional buffer from running empty in any other way. Spatial resampling involves scaling the image down to a smaller size in the encoder (as an alternative method for reducing the number of bits per frame to increasing the quantizer) and then scaling it back up in the decoder. Note that frames can be dropped at any time but the encoder can only change its spatial re-sampling ratio on a KEY frame.

--drop-frame=<arg> (0=disabled to 100)
The drop frame parameter specifies a buffer fullness threshold at which the encoder starts to drop frames as a percentage of the optimal value specified by —buf-optimal-sz. If it is set to 0 then dropping of frames is disabled.

--resize-allowed=<arg> (0 disabled, 1 enabled)

--resize-down=<arg> (0-100)

--resize-up=<arg> (--resize-down-100)
The resize up and down parameters are high and low buffer fullness “watermark” levels at which we start to consider changing down to a smaller internal image size, if the buffer is being run down, or back up to a larger size if the buffer is filling up again. The numbers represent a percentage of —buf-optimal-sz.

3.3.8 Video Conferencing

--error-resilient=<arg> (0 disabled, 1 enabled <default 0>)
In error resilient mode encoder context tables are updated to a fully defined state not just on KEY frames but also whenever a “GOLDEN Frame” is encoded (a special kind of frame that is usually encoded at a higher quality that updates the “GOLDEN Frame reference buffer”. This frame can then be used to quickly recover if frame packets are dropped without the need to code a full KEY frame. Error resilient mode is not recommended for other scenarios.

--static-thresh=<arg>
The static threshold imposes a change threshold on blocks below which they will be skipped by the encoder. This can be used to suppress signal noise and enhance the encode speed in situations where there are low levels of real movement. Values of above 1000 are not recommended and any non zero value runs the risk of introducing artifacts caused by regions of the image not being updated. In most scenarios this value should be set to 0.

3.3.9 Miscellaneous

--profile (0-3: default and recommended value = 0)
This parameter sets the encoder profile. For non-zero values the encoder increasingly optimizes for reduced complexity playback on low powered devices at the expense of encode quality. For example using 1 tells the encoder only to use only bi-linear sub pixel filtering and a simplified loop filter. In general most users will want to set a value of 0 or ignore this parameter unless they are encoding high resolution content and require playback on very low power devices.

--sharpness=<arg> (0-7: default and recommended value = 0)
This parameter affects the loop filter. Anything above 0 weakens the deblocking effect of the loop filter.

--noise-sensitivity=<arg> (0-6: default and recommended value = 0)
The encoder includes a crude temporal noise filter. There are better filtering options available in specialist pre-processing products, so unless you are encoding a very noisy source and have no easy alternatives this should be set to 0. Non-zero values equate to increasingly strong filtration.

--tune=<arg> (psnr, ssim: default = psnr)
Optimize output for PSNR or SSIM quality measurement. Certain input data or modifications to vpxenc benefit PSNR and harm SSIM, or vice versa. The --tune parameter can be used to explicitly optimize for one or the other index.

--timebase=<arg> (default = 1/1000)
The desired precision of the timestamps in the output is expressed in fractional seconds. Default is 1/1000 (1 ms).
3.4 Sample Command Lines

In each case parameters that are particularly relevant to the scenario are highlighted.

3.4.1 2-Pass Best Quality VBR Encoding

vpxenc input_1280_720_30fps.yuv -o output_vp8.webm \

 --i420 -w 1280 -h 720 -p 2 -t 4 \

 --best --target-bitrate=2000 --end-usage=vbr \

 --auto-alt-ref=1 --fps=30000/1001 -v \

 --minsection-pct=5 --maxsection-pct=800 \

 --lag-in-frames=16 --kf-min-dist=0 --kf-max-dist=360 \

 --token-parts=2 --static-thresh=0 --drop-frame=0 \

 --min-q=0 --max-q=60

Alternative option to --best use --good --cpu-used=0
3.4.2 2-Pass Faster VBR Encoding

vpxenc input_1280_720_30fps.yuv -o output_vp8.webm \

 --i420 -w 1280 -h 720 -p 2 -t 4 \

 --good --cpu-used=1 --target-bitrate=2000 --end-usage=vbr \

 --auto-alt-ref=1 --fps=30000/1001 -v \

 --minsection-pct=5 --maxsection-pct=800 \

 --lag-in-frames=16 --kf-min-dist=0 --kf-max-dist=360 \

 --token-parts=2 --static-thresh=0 \

 --min-q=0 --max-q=60

3.4.3 2-Pass VBR Encoding for Smooth Playback on Low-end Hardware

vpxenc input_1280_720_30fps.yuv -o output_vp8.webm \

 --i420 -w 1280 -h 720 -p 2 -t 4 \

 --good --cpu-used=0 --target-bitrate=2000 --end-usage=vbr \

 --auto-alt-ref=1 --fps=30000/1001 -v \

 --minsection-pct=15 --maxsection-pct=400 \

 --lag-in-frames=16 --profile=1 \

 --kf-min-dist=0 --kf-max-dist=360 --static-thresh=0 \

 --min-q=4 --max-q=63

3.4.4 2-Pass CBR Encoding for Limited-bandwidth Streaming

vpxenc input_640_360_30fps.yuv -o output_vp8.webm \

 --i420 -w 640 -h 360 -p 2 \

 --good --cpu-used=0 --target-bitrate=400 --end-usage=cbr \

 --undershoot-pct=95 \

 --buf-sz=6000 --buf-initial-sz=4000 --buf-optimal-sz=5000 \

 --drop-frame=70 --fps=30000/1001 -v \

 --kf-min-dist=0 --kf-max-dist=360 --static-thresh=0 \

 --min-q=4 --max-q=63

It may be necessary to use --drop-frame (perhaps set to around 25) and/or --resize-allowed (see the section on temporal and spatial resampling above) if hitting buffer constraints is an absolute requirement.
3.4.5 2-Pass VBR Encoding for Noisy / Low-quality Input Source

vpxenc input_1280_720_30fps.yuv -o output_vp8.webm \

 --i420 -w 1280 -h 720 -p 2 -t 4 \

 --good --cpu-used=0 --target-bitrate=2000 --end-usage=vbr \

 --auto-alt-ref=1 --fps=30000/1001 -v \

 --minsection-pct=5--maxsection-pct=800 --lag-in-frames=16 \

 --kf-min-dist=0 --kf-max-dist=360 \

 --token-parts=2 \

 --min-q=4 --max-q=60 \

 --arnr-maxframes=5 --arnr-strength=3
3.4.6 1-Pass Good Quality VBR Encoding

vpxenc input_1280_720_30fps.yuv -o output_vp8.webm \

 --i420 -w 1280 -h 720 -p 1 -t 4 \

 --good --cpu-used=0 --target-bitrate=2000 --end-usage=vbr \

 --fps=30000/1001 -v \

 --kf-min-dist=0 --kf-max-dist=360 \

 --token-parts=2 --static-thresh=0 \

 --min-q=0 --max-q=63

3.4.7 1-Pass Fast VBR Encoding

vpxenc input_1280_720_30fps.yuv -o output_vp8.webm \

 --i420 -w 1280 -h 720 -p 1 -t 4 \

 --good --cpu-used=3 --target-bitrate=2000 --end-usage=vbr \

 --fps=30000/1001 -v \

 --kf-min-dist=0 --kf-max-dist=360 \

 --token-parts=2 --static-thresh=1000 \

 --min-q=0 --max-q=63

3.4.8 Real-time CBR Encoding and Streaming

vpxenc input_640_480_15fps.yuv -o output_vp8.webm \

 --i420 -w 640 -h 480 -p 1 -t 4 \

 --rt --cpu-used=4 --end-usage=cbr --target-bitrate=500 \

 --fps=15000/1001 --undershoot-pct=95 \

 --buf-sz=6000 --buf-initial-sz=4000 --buf-optimal-sz=5000 -v \

 --kf-max-dist=999999 \

 --min-q=4 --max-q=56

It may be necessary to use --drop-frame (perhaps set to around 25) and/or --resize-allowed (see section on temporal and spatial resampling above) if hitting buffer constraints is an absolute requirement.
3.5 vpxenc Parameter Summary

3.5.1 Usage:

vpxenc <options> -o dst_filename src_filename
3.5.2 Options:

-D, --debug Debug mode (makes output deterministic)

-o <arg>, --output=<arg> Output filename

 --codec=<arg> Codec to use

-p <arg>, --passes=<arg> Number of passes (1/2)

 --pass=<arg> Pass to execute (1/2)

 --fpf=<arg> First pass statistics file name

 --limit=<arg> Stop encoding after n input frames

-d <arg>, --deadline=<arg> Deadline per frame (usec)

 --best Use Best Quality Deadline

 --good Use Good Quality Deadline

 --rt Use Realtime Quality Deadline

-v, --verbose Show encoder parameters

 --psnr Show PSNR in status line

 --ivf Output IVF (default is WebM)

-P,
--output-partitions

Makes encoder output partitions.

Requires IVF output!

 --q-hist=<arg> Show quantizer histogram (n-buckets)

 --rate-hist=<arg> Show rate histogram (n-buckets)
3.5.3 Encoder Global Options:

 --yv12 Input file is YV12

 --i420 Input file is I420 (default)

-u <arg>, --usage=<arg> Usage profile number to use

-t <arg>, --threads=<arg> Max number of threads to use

 --profile=<arg> Bitstream profile number to use

-w <arg>, --width=<arg> Frame width

-h <arg>, --height=<arg> Frame height

 --stereo-mode=<arg> Stereo 3D video format

 mono, left-right, bottom-top, top-bottom, right-left

 --timebase=<arg> Output timestamp precision (fractional seconds)

 --fps=<arg> Stream frame rate (rate/scale)

 --error-resilient=<arg> Enable error resiliency features

 --lag-in-frames=<arg> Max number of frames to lag
3.5.4 Rate Control Options:

 --drop-frame=<arg> Temporal resampling threshold (buf %)

 --resize-allowed=<arg> Spatial resampling enabled (bool)

 --resize-up=<arg> Upscale threshold (buf %)

 --resize-down=<arg> Downscale threshold (buf %)

 --end-usage=<arg> Rate control mode

 vbr, cbr, cq

 --target-bitrate=<arg> Bitrate (kbps)

 --min-q=<arg> Minimum (best) quantizer

 --max-q=<arg> Maximum (worst) quantizer

 --undershoot-pct=<arg> Datarate undershoot (min) target (%)

 --overshoot-pct=<arg> Datarate overshoot (max) target (%)

 --buf-sz=<arg> Client buffer size (ms)

 --buf-initial-sz=<arg> Client initial buffer size (ms)

 --buf-optimal-sz=<arg> Client optimal buffer size (ms)
3.5.5 Two-pass Rate Control Options:

 --bias-pct=<arg> CBR/VBR bias (0=CBR, 100=VBR)

 --minsection-pct=<arg> GOP min bitrate (% of target)

 --maxsection-pct=<arg> GOP max bitrate (% of target)
3.5.6 KEYframe Placement Options:

 --kf-min-dist=<arg> Minimum KEYframe interval (frames)

 --kf-max-dist=<arg> Maximum KEYframe interval (frames)

 --disable-kf Disable KEYframe placement
3.5.7 Other VCB-Specific Options:

 --cpu-used=<arg> CPU Used (-16..16)

 --auto-alt-ref=<arg> Enable automatic alt reference frames

 --noise-sensitivity=<arg> Noise sensitivity (frames to blur)

 --sharpness=<arg> Filter sharpness (0-7)

 --static-thresh=<arg> Motion detection threshold

 --token-parts=<arg> Number of token partitions to use, log2

 --arnr-maxframes=<arg> AltRef Max Frames

 --arnr-strength=<arg> AltRef Strength

 --arnr-type=<arg> AltRef Type

 --tune=<arg> Material to favor

 psnr, ssim

 --cq-level=<arg> Constrained Quality Level

 --max-intra-rate=<arg> Max I-frame bitrate (pct)

Stream timebase (--timebase):

 The desired precision of timestamps in the output, expressed

 in fractional seconds. Default is 1/1000.
4 Data Structures

The following tables list the main data structures used in the provided implementation. These have been included here to allow an easier navigation of the software.
Table 2 The MACROBLOCK data structure

	typedef struct macroblock

	{

	 DECLARE_ALIGNED(16, short, src_diff[400]); /* 25 blocks Y,U,V,Y2 */

	 DECLARE_ALIGNED(16, short, coeff[400]); /* 25 blocks Y,U,V,Y2 */

	 DECLARE_ALIGNED(16, unsigned char, thismb[256]); /*This means that this mb is 256 chars */

	 unsigned char *thismb_ptr;

	 /* 16 Y, 4 U, 4 V, 1 DC 2nd order block */

	 BLOCK block[25];

	 YV12_BUFFER_CONFIG src;

	 MACROBLOCKD e_mbd;

	 PARTITION_INFO *partition_info; /* work pointer */

	 PARTITION_INFO *pi;/* Corresponds to upper left visible macroblock */

	 PARTITION_INFO *pip; /* Base of allocated array */

	 int ref_frame_cost[MAX_REF_FRAMES]; /* MAX_REF_FRAMES is 4 */

	 search_site *ss;

	 int ss_count;

	 int searches_per_step;

	 int errorperbit;

	 int sadperbit16;

	 int sadperbit4;

	 int rddiv;

	 int rdmult;

	 unsigned int * mb_activity_ptr;

	 int * mb_norm_activity_ptr;

	 signed int act_zbin_adj;

	 signed int last_act_zbin_adj;

	 int *mvcost[2];

	 int *mvsadcost[2];

	 int (*mbmode_cost)[MB_MODE_COUNT];

	 int (*intra_uv_mode_cost)[MB_MODE_COUNT];

	 int (*bmode_costs)[10][10];

	 int *inter_bmode_costs;

	 int (*token_costs)[COEF_BANDS][PREV_COEF_CONTEXTS] [MAX_ENTROPY_TOKENS];

	 /* These define limits to motion vector components to prevent

	 * them from extending outside the UMV borders.

	 */

	 int mv_col_min;

	 int mv_col_max;

	 int mv_row_min;

	 int mv_row_max;

	 int skip;

	 unsigned int encode_breakout;

	 signed char *gf_active_ptr;

	 unsigned char *active_ptr;

	 MV_CONTEXT *mvc;

	 int optimize;

	 int q_index;

	#if CONFIG_TEMPORAL_DENOISING

	 MB_PREDICTION_MODE best_sse_inter_mode;

	 int_mv best_sse_mv;

	 MV_REFERENCE_FRAME best_reference_frame;

	 MV_REFERENCE_FRAME best_zeromv_reference_frame; __NOTE: Here we have two types of frames, one with zero MV and the other with MV__

	 unsigned char need_to_clamp_best_mvs;

	#endif

	 int skip_true_count;

	 unsigned int coef_counts [BLOCK_TYPES] [COEF_BANDS] [PREV_COEF_CONTEXTS] [MAX_ENTROPY_TOKENS];

	 unsigned int MVcount [2] [MVvals]; /* (row,col) MV cts this frame */

	 int ymode_count [VP8_YMODES]; /* intra MB type cts this frame */

	 int uv_mode_count[VP8_UV_MODES]; /* intra MB type cts this frame */

	 int64_t prediction_error;

	 int64_t intra_error;

	 int count_mb_ref_frame_usage[MAX_REF_FRAMES]; /* MAX_ERROR_BINS is 1024*/

	 int rd_thresh_mult[MAX_MODES];

	 int rd_threshes[MAX_MODES];

	 unsigned int mbs_tested_so_far;

	 unsigned int mode_test_hit_counts[MAX_MODES];

	 int zbin_mode_boost_enabled;

	 int zbin_mode_boost;

	 int last_zbin_mode_boost;

	 int last_zbin_over_quant;

	 int zbin_over_quant;

	 int error_bins[MAX_ERROR_BINS];

	 void (*short_fdct4x4)(short *input, short *output, int pitch); /* NOTE: Different size blocks have different DCT implementations */

	 void (*short_fdct8x4)(short *input, short *output, int pitch);

	 void (*short_walsh4x4)(short *input, short *output, int pitch);

	 void (*quantize_b)(BLOCK *b, BLOCKD *d); /* A quantization function prototype */

	 void (*quantize_b_pair)(BLOCK *b1, BLOCK *b2, BLOCKD *d0, BLOCKD *d1);

	} MACROBLOCK;

Table 3 The BLOCK data structure

	typedef struct block

	{

	 /* 16 Y blocks, 4 U blocks, 4 V blocks each with 16 entries */

	 short *src_diff;

	 short *coeff;

	

	 /* 16 Y blocks, 4 U blocks, 4 V blocks each with 16 entries */

	 short *quant;

	 short *quant_fast;

	 short *quant_shift;

	 short *zbin;

	 short *zrun_zbin_boost;

	 short *round;

	

	 /* Zbin Over Quant value */

	 short zbin_extra;

	

	 unsigned char **base_src;

	 int src;

	 int src_stride;

	} BLOCK;

Table 4 The YV12_BUFFER_CONFIG data structure

	 typedef struct yv12_buffer_config {

	 int y_width;

	 int y_height;

	 int y_crop_width;

	 int y_crop_height;

	 int y_stride;

	

	 int uv_width;

	 int uv_height;

	 int uv_stride;

	

	 uint8_t *y_buffer;

	 uint8_t *u_buffer;

	 uint8_t *v_buffer;

	

	 uint8_t *buffer_alloc;

	 int buffer_alloc_sz;

	 int border;

	 int frame_size;

	 YUV_TYPE clrtype;

	

	 int corrupted;

	 int flags;

	 } YV12_BUFFER_CONFIG

Table 5 The MACROBLOCKD data structure

	/*Used to hold differences between MBs*/

typedef struct macroblockd

	{

	 DECLARE_ALIGNED(16, unsigned char, predictor[384]);

	 DECLARE_ALIGNED(16, short, qcoeff[400]);

	 DECLARE_ALIGNED(16, short, dqcoeff[400]);

	 DECLARE_ALIGNED(16, char, eobs[25]);

	

	 DECLARE_ALIGNED(16, short, dequant_y1[16]);

	 DECLARE_ALIGNED(16, short, dequant_y1_dc[16]);

	 DECLARE_ALIGNED(16, short, dequant_y2[16]);

	 DECLARE_ALIGNED(16, short, dequant_uv[16]);

	

	 /* 16 Y blocks, 4 U, 4 V, 1 DC 2nd order block, each with 16 entries. */

	 BLOCKD block[25];

	 int fullpixel_mask;

	

	 YV12_BUFFER_CONFIG pre; /*Filtered copy of previous frame reconstruction */

	 YV12_BUFFER_CONFIG dst;

	

	 MODE_INFO *mode_info_context;

	 int mode_info_stride;

	

	 FRAME_TYPE frame_type;

	

	 int up_available;

	 int left_available;

	

	 unsigned char *recon_above[3];

	 unsigned char *recon_left[3];

	 int recon_left_stride[2];

	

	 /* Y,U,V,Y2 */

	 ENTROPY_CONTEXT_PLANES *above_context;

	 ENTROPY_CONTEXT_PLANES *left_context;

	

	 /* 0 indicates segmentation at MB level is not enabled. Otherwise the individual bits indicate which features are active. */

	 unsigned char segmentation_enabled;

	

	 /* 0 (do not update) 1 (update) the macroblock segmentation map. */

	 unsigned char update_mb_segmentation_map;

	

	 /* 0 (do not update) 1 (update) the macroblock segmentation feature data. */

	 unsigned char update_mb_segmentation_data;

	

	 /* 0 (do not update) 1 (update) the macroblock segmentation feature data. */

	 unsigned char mb_segement_abs_delta;

	

	 /* Per frame flags that define which MB level features (such as quantizer or loop filter level) */

	 /* are enabled and when enabled the proabilities used to decode the per MB flags in MB_MODE_INFO */

	 vp8_prob mb_segment_tree_probs[MB_FEATURE_TREE_PROBS]; /* Probability Tree used to code Segment number */

	 /* This is an array of 3 unsigned chars */

	

	 signed char segment_feature_data[MB_LVL_MAX][MAX_MB_SEGMENTS]; /* Segment parameters */

	

	 /* mode_based Loop filter adjustment */

	 unsigned char mode_ref_lf_delta_enabled;

	 unsigned char mode_ref_lf_delta_update;

	

	 /* Delta values have the range +/- MAX_LOOP_FILTER */

	 signed char last_ref_lf_deltas[MAX_REF_LF_DELTAS];
/* 0 = Intra, Last, GF, ARF */

	 signed char ref_lf_deltas[MAX_REF_LF_DELTAS];
/* 0 = Intra, Last, GF, ARF */

	 signed char last_mode_lf_deltas[MAX_MODE_LF_DELTAS];

/* 0 = BPRED, ZERO_MV, MV, SPLIT */

	 signed char mode_lf_deltas[MAX_MODE_LF_DELTAS];
/* 0 = BPRED, ZERO_MV, MV, SPLIT */

	

	 /* Distance of MB away from frame edges */

	 int mb_to_left_edge;

	 int mb_to_right_edge;

	 int mb_to_top_edge;

	 int mb_to_bottom_edge;

	

	

	/* The following are different sub-pixel prediction functions for different size blocks */

	

	 vp8_subpix_fn_t subpixel_predict;

	 vp8_subpix_fn_t subpixel_predict8x4;

	 vp8_subpix_fn_t subpixel_predict8x8;

	 vp8_subpix_fn_t subpixel_predict16x16;

	

	 void *current_bc;

	

	 int corrupted;

	

	#if ARCH_X86 || ARCH_X86_64

	 /* This is an intermediate buffer currently used in sub-pixel motion search

	 * to keep a copy of the reference area. This buffer can be used for other

	 * purpose.

	 */

	 DECLARE_ALIGNED(32, unsigned char, y_buf[22*32]);

	#endif

	} MACROBLOCKD;

Table 6 The BLOCKD data structure

	typedef struct blockd

	{

	 short *qcoeff;

	 short *dqcoeff;

	 unsigned char *predictor;

	 short *dequant;

	

	 int offset;

	 char *eob;

	

	 union b_mode_info bmi;

	} BLOCKD;

Table 7 The PARTITION_INFO data structure

	typedef struct

	{

	 int count;

	 struct

	 {

	 B_PREDICTION_MODE mode;

	 int_mv mv;

	 } bmi[16];

	} PARTITION_INFO;

Table 8 The B_PREDICTION_MODE enumerated type

	typedef enum

	{

	 B_DC_PRED, /* average of above and left pixels */

	 B_TM_PRED,

	

	 B_VE_PRED, /* vertical prediction */

	 B_HE_PRED, /* horizontal prediction */

	

	 B_LD_PRED,

	 B_RD_PRED,

	

	 B_VR_PRED,

	 B_VL_PRED,

	 B_HD_PRED,

	 B_HU_PRED,

	

	 LEFT4X4,

	 ABOVE4X4,

	 ZERO4X4,

	 NEW4X4,

	

	 B_MODE_COUNT

	} B_PREDICTION_MODE;

Table 9 The search_site data structure

	typedef struct

	{

	 MV mv;

	 int offset;

	} search_site;

Table 10 The MV data structure

	typedef struct

	{

	 short row;

	 short col;

	} MV;

Table 11 The VP8Common data structure

	typedef struct VP8Common

	

	{

	 struct vpx_internal_error_info error;

	

	 DECLARE_ALIGNED(16, short, Y1dequant[QINDEX_RANGE][2]);

	 DECLARE_ALIGNED(16, short, Y2dequant[QINDEX_RANGE][2]);

	 DECLARE_ALIGNED(16, short, UVdequant[QINDEX_RANGE][2]);

	

	 int Width;

	 int Height;

	 int horiz_scale;

	 int vert_scale;

	

	 YUV_TYPE clr_type;

	 CLAMP_TYPE clamp_type;

	

	 YV12_BUFFER_CONFIG *frame_to_show;

	

	 YV12_BUFFER_CONFIG yv12_fb[NUM_YV12_BUFFERS];

	 int fb_idx_ref_cnt[NUM_YV12_BUFFERS];

	 int new_fb_idx, lst_fb_idx, gld_fb_idx, alt_fb_idx;

	

	 YV12_BUFFER_CONFIG temp_scale_frame;

	

	#if CONFIG_POSTPROC /* Not turned on for the submitted code*/

	 YV12_BUFFER_CONFIG post_proc_buffer;

	 YV12_BUFFER_CONFIG post_proc_buffer_int;

	 int post_proc_buffer_int_used;

	 unsigned char *pp_limits_buffer; /* post-processing filter coefficients*/

	#endif

	

	 FRAME_TYPE last_frame_type; /* Save last frame's frame type for motion search. */

	 FRAME_TYPE frame_type;

	

	 int show_frame;

	

	 int frame_flags;

	 int MBs;

	 int mb_rows;

	 int mb_cols;

	 int mode_info_stride;

	

	 /* profile settings */

	 int mb_no_coeff_skip;

	 int no_lpf;

	 int use_bilinear_mc_filter;

	 int full_pixel;

	

	 int base_qindex;

	

	 int y1dc_delta_q;

	 int y2dc_delta_q;

	 int y2ac_delta_q;

	 int uvdc_delta_q;

	 int uvac_delta_q;

	

	 unsigned int frames_since_golden;

	 unsigned int frames_till_alt_ref_frame;

	

	 /* We allocate a MODE_INFO struct for each macroblock, together with

	 an extra row on top and column on the left to simplify prediction. */

	

	 MODE_INFO *mip; /* Base of allocated array */

	 MODE_INFO *mi; /* Corresponds to upper left visible macroblock */

	#if CONFIG_ERROR_CONCEALMENT

	 MODE_INFO *prev_mip;/*MODE_INFO array 'mip' from last decoded frame*/

	 MODE_INFO *prev_mi; /* 'mi' from last frame (points into prev_mip) */

	#endif

	 MODE_INFO *show_frame_mi; /* MODE_INFO for the last decoded frame

	 to show */

	 LOOPFILTERTYPE filter_type;

	

	 loop_filter_info_n lf_info;

	

	 int filter_level;

	 int last_sharpness_level;

	 int sharpness_level;

	

	 int refresh_last_frame; /* Two state 0 = NO, 1 = YES */

	 int refresh_golden_frame; /* Two state 0 = NO, 1 = YES */

	 int refresh_alt_ref_frame; /* Two state 0 = NO, 1 = YES */

	

	 int copy_buffer_to_gf; /* 0 none, 1 Last to GF, 2 ARF to GF */

	 int copy_buffer_to_arf; /* 0 none, 1 Last to ARF, 2 GF to ARF */

	

	 int refresh_entropy_probs; /* Two state 0 = NO, 1 = YES */

	

	 int ref_frame_sign_bias[MAX_REF_FRAMES]; /* Two state 0, 1 */

	

	 /* Y,U,V,Y2 */

	 ENTROPY_CONTEXT_PLANES *above_context; /*row of context for each plane */

	 ENTROPY_CONTEXT_PLANES left_context; /* (up to) 4 contexts "" */

	

	 FRAME_CONTEXT lfc; /* last frame entropy */

	 FRAME_CONTEXT fc; /* this frame entropy */

	

	 unsigned int current_video_frame;

	

	 int near_boffset[3];

	 int version;

	

	 TOKEN_PARTITION multi_token_partition;

	

	#ifdef PACKET_TESTING

	 VP8_HEADER oh;

	#endif

	 double bitrate;

	 double framerate;

	

	#if CONFIG_MULTITHREAD

	 int processor_core_count;

	#endif

	#if CONFIG_POSTPROC

	 struct postproc_state postproc_state;

	#endif

	 int cpu_caps;

	} VP8_COMMON;

Table 12 The YUV_TYPE enumerated type

	 typedef enum

	 {

	 REG_YUV = 0, /* Regular yuv */

	 INT_YUV = 1 /* The type of yuv that can be tranfer to and from RGB through integer transform */

	 }

	 YUV_TYPE;

Table 13 The CLAMP_TYPE enumerated type

	typedef enum

	{

	 RECON_CLAMP_REQUIRED = 0,

	 RECON_CLAMP_NOTREQUIRED = 1

	} CLAMP_TYPE;

Table 14 The FRAME_TYPE enumerated type

	typedef enum

	{

	 KEY_FRAME = 0,

	 INTER_FRAME = 1

	} FRAME_TYPE;

Table 15 The MODE_INFO data structure

	typedef struct modeinfo

	{

	 MB_MODE_INFO mbmi;

	 union b_mode_info bmi[16];

	} MODE_INFO;

Table 16 The MB_MODE_INFO data structure

	typedef struct

	{

	 uint8_t mode, uv_mode;

	 uint8_t ref_frame;

	 uint8_t is_4x4;

	 int_mv mv;

	

	 uint8_t partitioning;

	 uint8_t mb_skip_coeff; /* does this mb have coefficients at all, 1=no coefficients, 0=need decode tokens */

	 uint8_t need_to_clamp_mvs;

	 uint8_t segment_id; /* Which set of segmentation parameters should be used for this MB */

	} MB_MODE_INFO;

Table 17 The LOOPFILTERTYPE enumerated type

	typedef enum

	{

	 NORMAL_LOOPFILTER = 0,

	 SIMPLE_LOOPFILTER = 1

	} LOOPFILTERTYPE;

Table 18 The loop_filter_info_n data structure

	typedef struct

	{

	 DECLARE_ALIGNED(SIMD_WIDTH,unsigned char, mblim[MAX_LOOP_FILTER + 1][SIMD_WIDTH]);

	 DECLARE_ALIGNED(SIMD_WIDTH, unsigned char, blim[MAX_LOOP_FILTER + 1][SIMD_WIDTH]);

	 DECLARE_ALIGNED(SIMD_WIDTH, unsigned char, lim[MAX_LOOP_FILTER + 1][SIMD_WIDTH]);

	 DECLARE_ALIGNED(SIMD_WIDTH, unsigned char, hev_thr[4][SIMD_WIDTH]);

	 unsigned char lvl[4][4][4];

	 unsigned char hev_thr_lut[2][MAX_LOOP_FILTER + 1];

	 unsigned char mode_lf_lut[10];

	} loop_filter_info_n;

Table 19 The ENTROPY_CONTEXT_PLANES data structure

	typedef char ENTROPY_CONTEXT;

	typedef struct

	{

	 ENTROPY_CONTEXT y1[4];

	 ENTROPY_CONTEXT u[2];

	 ENTROPY_CONTEXT v[2];

	 ENTROPY_CONTEXT y2;

	} ENTROPY_CONTEXT_PLANES;

Table 20 The FRAME_CONTEXT data structure

	typedef struct frame_contexts

	{

	 vp8_prob bmode_prob [VP8_BINTRAMODES-1];

	 vp8_prob ymode_prob [VP8_YMODES-1]; /* interframe intra mode probs */

	 vp8_prob uv_mode_prob [VP8_UV_MODES-1];

	 vp8_prob sub_mv_ref_prob [VP8_SUBMVREFS-1];

	 vp8_prob coef_probs [BLOCK_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS][ENTROPY_NODES];

	 MV_CONTEXT mvc[2];

	} FRAME_CONTEXT;

Table 21 The TOKEN_PARTITION enumerated type

	typedef enum

	{

	 ONE_PARTITION = 0,

	 TWO_PARTITION = 1,

	 FOUR_PARTITION = 2,

	 EIGHT_PARTITION = 3

	} TOKEN_PARTITION;

Table 22 The TOKENEXTRA data structure

	typedef struct

	{

	 const vp8_prob *context_tree;

	 short Extra;

	 unsigned char Token;

	 unsigned char skip_eob_node;

	} TOKENEXTRA;

Table 23 The BOOL_CODER data structure

	typedef struct

	{

	 unsigned int lowvalue;

	 unsigned int range;

	 int count;

	 unsigned int pos;

	 unsigned char *buffer;

	 unsigned char *buffer_end;

	 struct vpx_internal_error_info *error;

	

	 /*Variables used to track bit costs without outputing to the bitstream */

	 unsigned int measure_cost;

	 unsigned long bit_counter;

	} BOOL_CODER;

Table 24 The vpx_internal_error_info data structure

	struct vpx_internal_error_info {

	 vpx_codec_err_t error_code;

	 int has_detail;

	 char detail[80];

	 int setjmp;

	 jmp_buf jmp;

	};

Table 25 The vpx_codec_err_t (the error codes) enumerated type

	 /* Algorithm return codes */

	 typedef enum {

	 /* Operation completed without error */

	 VPX_CODEC_OK,

	

	 /* Unspecified error */

	 VPX_CODEC_ERROR,

	

	 /* Memory operation failed */

	 VPX_CODEC_MEM_ERROR,

	

	 /* ABI version mismatch */

	 VPX_CODEC_ABI_MISMATCH,

	

	 /* Algorithm does not have required capability */

	 VPX_CODEC_INCAPABLE,

	

	 /* The given bitstream is not supported.

	 * The bitstream was unable to be parsed at the highest level. The decoder

	 * is unable to proceed. This error \ref SHOULD be treated as fatal to the

	 * stream. */

	 VPX_CODEC_UNSUP_BITSTREAM,

	

	 /* Encoded bitstream uses an unsupported feature

	 * The decoder does not implement a feature required by the encoder. This

	 * return code should only be used for features that prevent future

	 * pictures from being properly decoded. This error \ref MAY be treated as

	 * fatal to the stream or \ref MAY be treated as fatal to the current GOP.

	 */

	 VPX_CODEC_UNSUP_FEATURE,

	

	 /* The coded data for this stream is corrupt or incomplete

	 *

	 * There was a problem decoding the current frame. This return code

	 * should only be used for failures that prevent future pictures from

	 * being properly decoded. This error \ref MAY be treated as fatal to the

	 * stream or \ref MAY be treated as fatal to the current GOP. If decoding

	 * is continued for the current GOP, artifacts may be present.

	 */

	 VPX_CODEC_CORRUPT_FRAME,

	

	 /*An application-supplied parameter is not valid.*/

	 VPX_CODEC_INVALID_PARAM,

	

	 /* An iterator reached the end of list.*/

	 VPX_CODEC_LIST_END

	

	 }

	 vpx_codec_err_t;

5 References

[1].
libvpx 0.9.6 (Bali) repository snapshot, Mar 8th, 2011.

http://code.google.com/p/webm/downloads/detail?name=libvpx-v0.9.6.zip&can=1&q=
[2]
C. Feller, M. Raad, “Report on the comparison of the VP8 video codec to the IVC RFM 1.1 and the IVC CfP Anchors”, m26111, July 2012, MPEG 101st Meeting, Stockholm, Sweden.

[3]
J. Bankoski, J. Koleszar, L. Quillio, J. Salonen, P. Wilkins, and Y. Xu, “VP8 Data Format and Decoding Guide,” RFC 6386 (Informational), Internet Engineering Task Force, Nov. 2011. [Online]. Available: http://www.ietf.org/rfc/rfc6386.txt
[4]
H. Alvestrand, A. Grange, “draft--alvestrand--rtcweb--vp8-00“, Internet-Draft/Informational Google Inc., webrtc, IETF, October 15, 2012
[5]
J. Bankoski, P. Wilkins, and Y. Xu, “Technical overview of vp8, an open source video codec for the web,” in Multimedia and Expo (ICME), 2011 IEEE International Conference on, July 2011, pp. 1 –6. doi: 10.1109/ICME.2011.6012227
[6]
S. Cassidy, “An Analysis of VP8, a New Video Codec for the Web”, Dept. of Computer Engineering, Rochester Institute of Technology, Rochester, NY, 11, 2011

[7]
C. Loeffler, A. Ligtenberg, and G. S. Moschytz; “Practical fast 1-D DCT algorithms with 11 multiplications”, Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '89), vol. 2, pp. 988–991, Glasgow, UK, May 1989.

[8]
The WebM Project: “VP8 Encode Parameters Guide”, Google, Inc.,

http://www.webmproject.org/docs/encoder-parameters/#

[9]
YASM documentation at http://yasm.tortall.net/Guide.html.

�

�

C

�

�

�

�

�

�

�

�

�

�

�

�

C

�

�

�

�

�

�

�

�

�

�

�

�

C

�

�

�

�

�

�

�

�

�

�

�

�

C

�

�

�

�

�

�

�

�

�

�

Mean value

� QUOTE � ��� and

�

�

�

C

�

�

�

�

�

�

�

�

�

�

�

�

C

�

�

�

�

�

�

�

�

�

�

�

�

C

�

�

�

�

�

�

�

�

�

�

�

�

C

�

�

�

�

�

�

�

�

�

�

�

�

�

C

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

C

�

�

�

�

�

�

�

�

�

�

� QUOTE � ��� � QUOTE � ���

b = � QUOTE � ���

c = � QUOTE � ���

addition

�

�

�

�

�

�

�

�

subtraction

�

�

�

�

�

�

Figure � SEQ Figure * ARABIC �2� - Inverse DCT’s 1-D signal graph [5]

	© ISO 2013 – All rights reserved
	30

[image: image96.png]

[image: image97.png]

[image: image98.png]

[image: image99.png]

[image: image100.png]

[image: image101.png]

[image: image102.png]

[image: image103.png]

[image: image104.png]

[image: image105.png]

[image: image106.png]

[image: image107.png]

[image: image108.png]

[image: image109.png]

[image: image110.png]

[image: image111.png]

[image: image112.png]

[image: image113.png]

[image: image114.png]

[image: image115.png]

[image: image116.png]

[image: image117.png]

[image: image118.png]

[image: image119.png]

[image: image120.png]

[image: image121.png]

[image: image122.png]

[image: image123.png]

[image: image124.png]

[image: image125.png]

[image: image126.png]

[image: image127.png]

[image: image128.png]

[image: image129.png]

[image: image130.png]

[image: image131.png]

[image: image132.png]

[image: image133.png]

[image: image134.png]

[image: image135.png]

[image: image136.png]

[image: image137.png]

[image: image138.png]

[image: image139.png]

[image: image140.png]

[image: image141.png]

[image: image142.png]

[image: image143.png]

[image: image144.png]

[image: image145.png]

[image: image146.png]

[image: image147.png]

[image: image148.png]

[image: image149.png]

[image: image150.png]

[image: image151.png]

[image: image152.png]

[image: image153.png]

[image: image154.png]

[image: image155.png]

[image: image156.png]

[image: image157.png]

[image: image158.png]

[image: image159.png]

[image: image160.png]

[image: image161.png]

[image: image162.png]

[image: image163.png]

[image: image164.png]

[image: image165.png]

[image: image166.png]

[image: image167.png]

[image: image168.png]cos(0)

[image: image169.png]cos(0)

[image: image170.png]Y 5+ cos("/e)

[image: image171.png]Y 5+ cos("/e)

[image: image172.png]Y 5+ sin("/g)

[image: image173.png]Y 5+ sin("/g)

[image: image174.png]

[image: image175.png]

[image: image176.png]

[image: image177.png]

[image: image178.png]

[image: image179.png]

[image: image180.png]

[image: image181.png]

[image: image182.png]

[image: image183.png]

[image: image184.png]

[image: image185.png]

[image: image186.png]y, = V2(xg* cos("fg) + x, = sin(T/g))

[image: image187.png]yo =V2(xo* sin(/g) — x, * cos("/g))

