
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC 1/SC 29/WG 11

CODING OF MOVING PICTURES AND AUDIO
ISO/IEC JTC1/SC29/WG11

MPEG 2012/N13154
October 2012, Shanghai, China

	Source
	JCT-VC Video Subgroup

	Status
	Approved

	Title
	HM9: High Efficiency Video Coding (HEVC) Test Model 9 Encoder Description

	Editors
	Il-Koo Kim, Ken McCann, Kazuo Sugimoto, Benjamin Bross, Woo-Jin Han

	Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11

11th Meeting: Shanghai, CN, 10–19 October 2012
	Document: JCTVC-K1002-v1

	Title:
	HM9: High Efficiency Video Coding (HEVC) Test Model 9 Encoder Description

	Status:
	Output Document of JCT-VC

	Purpose:
	Report

	Author(s) or
Contact(s):
	Il-Koo Kim (Samsung)
Ken McCann (Samsung/ZetaCast)

Kazuo Sugimoto (Mitsubishi)

Benjamin Bross (HHI)
Woo-Jin Han (Gachon University)
	Email:
	ilkoo.kim@samsung.com
ken@zetacast.com
Sugimoto.Kazuo@ak.MitsubishiElectric.co.jp
benjamin.bross@hhi.fraunhofer.de
hurumi@gmail.com

	Source:
	Editors

Abstract

The JCT-VC established a 9th HEVC test model (HM9) at its 11th meeting in Shanghai from 10 October to 19 October 2012. This document serves as a source of general tutorial information on HEVC and also provides an encoder-side description of HM9.
CONTENTS

Page

1Abstract

51
Introduction

62
Scope

63
Description of HEVC Test Model

63.1
General overview of coding structure

73.2
Picture partitioning

73.2.1
CTU partitioning

73.2.2
Slice structure

83.2.3
Tile structure

83.2.4
Coding unit (CU) structure

83.2.5
Prediction unit (PU) structure

93.2.6
Transform unit (TU) structure

103.3
Intra Prediction

103.3.1
Prediction Modes

113.3.2
Filtering of neighbouring samples

123.3.3
Intra prediction sample generation

123.4
Inter Prediction

123.4.1
Prediction Modes

133.4.1.1
Derivation of motion merge candidates

133.4.1.2
Spatial merge candidates

143.4.1.3
Temporal merge candidates

153.4.1.4
Generated merge candidates

153.4.2
Motion vector prediction

153.4.2.1
Derivation of motion vector prediction candidates

163.4.2.2
Spatial motion vector candidates

173.4.2.3
Temporal motion vector candidates

173.4.3
Interpolation filter

183.4.4
Weighted Prediction

183.5
Transform and Quantization

183.5.1
Transform matrices

193.5.2
Scaling and quantization

193.6
Entropy Coding

193.7
Loop Filtering

193.7.1
Deblocking filter

203.7.1.1
Boundary decision

203.7.1.2
Boundary strength calculation

213.7.1.3
β and tC decision

223.7.1.4
Filter on/off decision for 4 lines

223.7.1.5
Strong/weak filter selection for 4 lines

233.7.1.6
Strong filtering

233.7.1.7
Weak filtering

233.7.1.8
Chroma filtering

233.7.2
Sample Adaptive Offset (SAO)

243.7.2.1
Operation of each SAO type

243.8
Wavefront parallel processing

254
Description of encoding methods

254.1
Cost Functions

254.1.1
Sum of Square Error (SSE)

254.1.2
Sum of Absolute Difference (SAD)

254.1.3
Hadamard transformed SAD (SATD)

254.1.4
RD cost functions

254.1.4.1
Lagrangian constant values

264.1.4.2
Weighting factor for chroma component

264.1.4.3
SAD based cost function for prediction parameter decision

264.1.4.4
SATD based cost function for prediction parameter decision

264.1.4.5
Cost function for mode decision

274.2
Encoder configurations

274.2.1
Overview of Encoder Configurations

274.2.2
High Efficiency (HE) coding

274.2.3
Low Complexity (LC) coding

274.3
Temporal Prediction Structure

274.3.1
Intra-only configuration

274.3.2
Low-delay configurations

284.3.3
Random-access configuration

284.4
Input bit depth modification

294.5
Slice partitioning operation

294.6
Tile partitioning operation

294.7
Derivation process for slice-level coding parameters

294.7.1
Sample Adaptive Offset (SAO) parameters

294.7.1.1
Search the SAO type with minimum rate-distortion cost

294.7.1.2
Slice level on/off Control

294.8
Derivation process for CU-level and PU-level coding parameters

294.8.1
Intra prediction mode and parameters

304.8.2
Inter prediction mode and parameters

304.8.2.1
Derivation of motion parameters

304.8.2.2
Motion estimation

324.8.2.3
Decision process on AMP mode evaluation procedure

334.8.3
Intra/Inter/PCM mode decision

354.9
Derivation process for TU-level coding parameters

354.9.1
Residual Quad-tree partitioning

354.9.2
Rate-Distortion Optimized Quantization

355
References

List of figures
7Figure 3‑1 – Block diagram of HM encoder

7Figure 3‑2 – Example of a picture divided into CTUs

8Figure 3‑3 – Example of coding unit structure

9Figure 3‑4 – 8 partition modes for inter prediction unit

9Figure 3‑5 – Example of Transform Unit structure

10Figure 3‑6 – The 33 intra prediction directions

11Figure 3‑7 – Mapping between intra prediction direction and intra prediction mode for luma

13Figure 3‑8 – Derivation process for motion merge candidate

14Figure 3‑9 – Positions of spatial merge candidate

14Figure 3‑10 – Positions for the second PU of Nx2N and 2NxN partitions

15Figure 3‑11 – Illustration of motion vector scaling for temporal merge candidate

15Figure 3‑12 – Candidate positions for temporal merge candidate, C3 and H

16Figure 3‑13 – Overall processing flow of deblocking filter process

17Figure 3‑14 – Illustration of motion vector scaling for spatial motion vector candidate

20Figure 3‑15 – Overall processing flow of deblocking filter process

21Figure 3‑16 – Flow diagram for Bs calculation

21Figure 3‑17 – Referred information for Bs calculation at CTU boundary.

22Figure 3‑18 – Red boxes represent pixels involving in filter on/off decision and strong/weak filter selection.

24Figure 3‑19 – Four 1-D 3-pixel patterns for the pixel classification in EO

27Figure 4‑1 – Graphical presentation of Intra-only configuration

28Figure 4‑2 – Graphical presentation of Low-delay configuration

28Figure 4‑3 – Graphical presentation of Random-access configuration

31Figure 4‑5 – Start position selection

32Figure 4‑6 – Search patterns for the first search

34Figure 4‑7 – The schematic of Intra/Inter/PCM mode decision

List of tables

5Table 1‑1 – Structure of Tools in HM9 Configurations

9Table 3‑1 – Maximum quadtree depth according to test scenario and prediction modes

11Table 3‑2 – Mapping between intra prediction direction and intra prediction mode for chroma

12Table 3‑3 – Specification of intraHorVerDistThres[nS] for various prediction unit sizes

12Table 3‑4 – Intra prediction direction and the associated section number of HEVC text specification draft 9

17Table 3‑5 – 8-tap DCT-IF coefficients for 1/4th luma interpolation

17Table 3‑6 – 4-tap DCT-IF coefficients for 1/8th chroma interpolation

22Table 3‑7 – Derivation of threshold variables β and tC from input Q

24Table 3‑8 – Specification of SAO type

24Table 3‑9 – Pixel classification rule for EO

Table 4‑1 – Derivation of
26

32Table 4‑2 – Conditions and actions for fast AMP mode evaluation

1 Introduction

The 9th HEVC test model (HM9) was defined by decisions taken at the 11th meeting of JCT-VC in Shanghai from 10 October to 19 October 2012. Two configurations have been defined: Main and High efficiency 10 (HE10). A summary list of the tools that are included in Main and HE10 is provided in Table 1‑1 below.
Table 1‑1 – Structure of Tools in HM9 Configurations

	Main
	High efficiency 10 (HE10)

	High-level Structure:

	High-level support for frame rate temporal nesting and random access

	Clean random access (CRA) support

	Rectangular tile-structured scanning

	Wavefront-structured processing dependencies for parallelism

	Slices with spatial granularity equal to coding tree unit

	Slices with independent and dependent slice segments

	Coding units, Prediction units, and Transform units:

	Coding unit quadtree structure
(square coding unit block sizes 2Nx2N, for N=4, 8, 16, 32;
i.e., up to 64x64 luma samples in size)

	Prediction units
(for coding unit size 2Nx2N: for Inter, 2Nx2N, 2NxN, Nx2N, and,
for N>4, also 2Nx(N/2+3N/2) & (N/2+3N/2)x2N; for Intra, only 2Nx2N and, for N=4, also NxN)

	Transform unit tree structure within coding unit (maximum of 3 levels)

	Transform block size of 4x4 to 32x32 samples
(always square)

	Spatial Signal Transformation and PCM Representation:

	DCT-like integer block transform;
for Intra also a DST-based integer block transform (only for Luma 4x4)

	Transforms can cross prediction unit boundaries for Inter; not for Intra

	PCM coding with worst-case bit usage limit

	Intra-picture Prediction:

	Angular intra prediction (35 directions)

	Planar intra prediction

	Inter-picture Prediction:

	Luma motion compensation interpolation: 1/4 sample precision,
8x8 separable with 6 bit tap values

	Chroma motion compensation interpolation: 1/8 sample precision,
4x4 separable with 6 bit tap values

	Advanced motion vector prediction with motion vector “competition” and “merging”

	Entropy Coding:

	Context adaptive binary arithmetic entropy coding

	RDOQ on

	Picture Storage and Output Precision:

	8 bit-per-sample storage and output
	10 bit-per-sample storage and output

	In-Loop Filtering:

	Deblocking filter

	Sample-adaptive offset filter

At its 1st meeting, in April 2010, the JCT-VC defined a "Test Model under Consideration" (TMuC), which was documented in JCTVC-B204 [1]. At its 3rd meeting, in October 2010, the JCT-VC defined a 1st HEVC Test Model (HM1) [2]. The majority of the tools within HM1 were in the TMuC, but HM1 had substantially fewer coding tools and hence there was a substantial decrease in the computational resources necessary for encoding and decoding. Further optimizations of the HEVC Test Model in HM2 [3], HM3 [4], HM4 [5], HM5 [6], HM6 [7], HM7[8], HM8[9] and HM9 were specified at subsequent meetings, with each successive model achieving better performance than the previous in terms of the trade-off between coding efficiency and complexity.

2 Scope

This document provides an encoder-side description of HEVC Test Model (HM), which serves as tutorial information of the encoding model implemented into the HM software. The purpose of this text is to share a common understanding on reference encoding methods supported in the HM software, in order to facilitate the assessment of the technical impact of proposed new technologies during the HEVC standardization process. Although brief descriptions of HEVC design are provided to help understanding of HM, the corresponding sections of the HEVC draft specification [10] should be referred to for any descriptions regarding normative processes. A further document [11] defines the common test conditions and software reference configurations that should be used for experimental works.
3 Description of HEVC Test Model
3.1 General overview of coding structure

The HEVC standard is based on the well-known block-based hybrid coding architecture, combining motion-compensated prediction and transform coding with high-efficiency entropy coding. However, in contrast to previous video coding standards, it employs a flexible quad-tree coding block partitioning structure that enables the efficient use of large and multiple sizes of coding, prediction, and transform blocks. It also employs improved intra prediction and coding, adaptive motion parameter prediction and coding, and an enhanced version of Context-adaptive binary arithmetic coding (CABAC) entropy coding. A general block-diagram of the HM encoder is depicted in Figure 3‑1.
The picture partitioning constructs are described in Section 3.2. The input video is first divided into blocks called coding tree units (CTUs), which perform a role that is broadly analogous to that of macroblocks in previous standards. The coding unit (CU) defines a region sharing the same prediction mode (intra, inter or skip) and it is represented by the leaf node of a quadtree structure. The prediction unit (PU) defines a region sharing the same prediction information. The transform unit (TU), specified by another quadtree, defines a region sharing the same transformation.
The intra-picture coding prediction processes are described in Section 3.3. The best intra mode among a total of 35 modes (Planar, DC, and 33 angular directions) is selected and coded. Mode dependent context sample smoothing is applied to increase prediction efficiency and the three most probable modes (MPM) are used to increase symbol coding efficiency.
The inter-picture prediction processes are described in Section 3.4. The best motion parameters are selected and coded by merge mode and adaptive motion vector prediction (AMVP) mode, in which motion predictors are selected and explicitly coded among several candidates. To increase the efficiency of motion-compensated prediction, non-cascaded interpolation structure with 1D FIR filters are used. An 8-tap or 7-tap filter is directly applied to generate the samples of half-pel and quarter-pel luma samples, respectively. A 4-tap filter is utilized for chroma interpolation.
Transforms and quantization are described in Section 3.5. Residuals generated by subtracting the prediction from the input are spatially transformed and quantized. In the transform process, matrices which are approximations to DCT are used. In the case of 4x4 intra predicted residuals, DST can be applied for luma. 58-level quantization steps are used in the quantization process. Reconstructed samples are created by inverse quantization and inverse transform.
Entropy coding is described in Section 3.6. It is applied to the generated symbols and quantized transform coefficients in the encoding process using a CABAC process.
Loop filtering is described in Section 3.7. After reconstruction, two in-loop filtering processes are applied to achieve better coding efficiency and visual quality: deblocking filtering and sample adaptive offset (SAO). Reconstructed CTUs are assembled to construct a picture and stored in the decoded picture buffer to be used to encode the next picture of input video.

[image: image2]
Figure 3‑1 – Block diagram of HM encoder
3.2 Picture partitioning

3.2.1 CTU partitioning

Pictures are divided into a sequence of coding tree units (CTUs). A CTU consists of an NxN block of luma samples together with two corresponding blocks of chroma samples for a picture that has three sample arrays, or an NxN block of samples of a monochrome plane in a picture that is coded using three separate colour planes. The CTU concept is broadly analogous to that of the macroblock in previous standards such as AVC [12]. The maximum allowed size of the luma block in a CTU is specified by 64x64 in Main profile.
[image: image3.emf]
Figure 3‑2 – Example of a picture divided into CTUs
3.2.2 Slice structure

Slice is specified as a unit of packetization of coded video data for transmission purpose. Slices are designed to be independently decodable, so no prediction is performed across slice borders, and entropy coding is restarted between slices. A slice consists of a slice header followed by a series of successive coding units in coding order. Slice boundaries can be located inside a CTU to ease encoder-side control for finding slice boundary that can maximize packetization efficiency.

Entropy slices are similar to slices, except in that prediction may be performed between entropy slices. If both regular slices and entropy slices are used, an entropy slice is always contained in a single slice, while a slice may contain several entropy slices.
3.2.3 Tile structure
Tile is specified as a unit of integer number of coding tree blocks co-occurring in one column and one row. Tiles are always rectangular and always contain an integer number of coding tree blocks in coding tree block raster scan. A tile may consist of coding tree blocks contained in more than one slice. Similarly, a slice may consist of coding tree blocks contained in more than one tile.

One or both of the following conditions shall be fulfilled for each slice and tile:

–
All coding tree blocks in a slice belong to the same tile.

–
All coding tree blocks in a tile belong to the same slice.

The tile scan order traverses the coding tree blocks in coding tree block raster scan within a tile and traverses tiles in tile raster scan within a picture. Although a slice contains coding tree blocks that are consecutive in coding tree block raster scan of a tile, these coding tree blocks are not necessarily consecutive in coding tree block raster scan of the picture.
[Ed. Note: Needs improvement]
3.2.4 Coding unit (CU) structure

The Coding unit (CU) is the basic unit of region splitting used for inter/intra coding. It is always square and it may take a size from 8x8 luma samples up to the size of the CTU.
The CU concept allows recursive splitting into four equally sized blocks, starting from the CTU. This process gives a content-adaptive coding tree structure comprised of CU blocks, each of which may be as large as the CTU or as small as 8x8.

[image: image4.emf]
Figure 3‑3 – Example of coding unit structure

Both skipped CU and non-skipped CU types are allowed. The skipped CU is considered to be an inter prediction mode without coding of motion vector differences and residual information. The non-skipped CU is assigned to one of two prediction modes, intra prediction and inter prediction.

3.2.5 Prediction unit (PU) structure
The Prediction unit (PU) is the basic unit used for carrying the information related to the prediction processes. In general, it is not restricted to being square in shape, in order to facilitate partitioning which matches the boundaries of real objects in the picture. Figure 3‑4 illustrates 8 partition modes used for inter-coded CU. PART_2Nx2N and PART_NxN partition modes are used for intra-coded CU. Partition mode PART_NxN is allowed only when the corresponding CU size is greater than the minimum CU size. Each CU may contain one or more PUs depending on partition mode. CU with PART_2Nx2N has a PU. CU with PART_NxN has 4 PUs. The other prediction mode has 2 PUs, respectively. In order to reduce memory bandwidth of motion compensation, 4x4 block size is not allowed for inter-coded PU.
 [image: image5.wmf]PART_2Nx2N

PART_2NxN

PART_Nx2N

PART_NxN

PART_2NxnU

PART_2NxnD

PART_nLx2N

PART_nRx2N

Figure 3‑4 – 8 partition modes for inter prediction unit
For intra prediction unit, PART_2Nx2N and PART_NxN partition modes are used. PART_2Nx2N mode has one PU, PART_NxN mode has 4 PUs while the other prediction modes have 2 PUs.
3.2.6 Transform unit (TU) structure
The Transform unit (TU) is the basic unit used for the transform and quantization processes. TU shape depends on PU partitioning mode. When PU shape is square, TU shape is also square and it may take a size from 4x4 up to 32x32 luma samples. Each CU may contain one or more TUs, where multiple TUs may be arranged in a quadtree structure, as illustrated in Figure 3‑5 below.
[image: image6.emf]
Figure 3‑5 – Example of Transform Unit structure

The maximum quadtree depth is adjustable and is specified in the slice header syntax. The values are set according to the test scenario as shown in Table 3‑1 below.

Table 3‑1 – Maximum quadtree depth according to test scenario and prediction modes
	Test scenario
	Maximum quadtree depth
(for inter block)
	Maximum quadtree depth
(for intra block)

	Intra Only Main
	-
	3

	Random Access Main
	3
	3

	Low Delay Main
	3
	3

	Intra Only High Efficiency 10
	-
	3

	Random Access High Efficiency 10
	3
	3

	Low Delay High Efficiency 10
	3
	3

3.3 Intra Prediction
3.3.1 Prediction Modes
Each intra coded PU shall have an intra prediction mode for luma component and an intra prediction mode for chroma components to be used for intra prediction sample generation. All TUs within a PU shall use the same associated intra prediction mode for each component. Encoder can select the best luma intra prediction modes from 35 directional prediction modes including DC and Planar modes for luma component of each PU.
The 33 possible intra prediction directions are illustrated in Figure 3‑6 below.

[image: image7.emf]0-5-10-15-20-25-30-30-25-20-15-10-505101520253051015202530

Figure 3‑6 – The 33 intra prediction directions
The mapping between the intra prediction direction and the intra prediction mode number is specified in Figure 3‑7 below.

[image: image8.emf]1

7

1

6

1

5

1

4

1

3

1

2

1

1

1

0

9

8

7

6

5

4

3

2

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

0 : Intra_Planar

1 : Intra_DC

35: Intra_FromLuma

Figure 3‑7 – Mapping between intra prediction direction and intra prediction mode for luma
For chroma component of intra PU, Encoder can select the best chroma prediction modes from 5 modes including Planar, DC, Horizontal, Vertical and direct copy of intra prediction mode for luma component. The mapping between intra prediction direction and intra prediction mode number for chroma is shown in Table 3-2.
Table 3‑2 – Mapping between intra prediction direction and intra prediction mode for chroma
	intra_chroma_pred_mode
	Intra prediction direction

	
	0
	26
	10
	1
	X (0 <= X < 35)

	0
	34
	0
	0
	0
	0

	1
	26
	34
	26
	26
	26

	2
	10
	10
	34
	10
	10

	3
	1
	1
	1
	34
	1

	4
	0
	26
	10
	1
	X

When the intra prediction mode number for chroma component is 4, the intra prediction direction for the luma component is used for the intra prediction sample generation for chroma component. When the intra prediction mode number for chroma component is less than 4, and it is identical to the intra prediction mode number for luma component, the intra prediction direction of 34 is used for the intra prediction sample generation for chroma component.
3.3.2 Filtering of neighbouring samples

The neighbouring samples to be used for intra prediction sample generations are filtered before the generation process according to the steps below:

The value of intraFilterType is derived as the following ordered steps:

1. The variable minDistVerHor is derived as:

minDistVerHor = Min(Abs(intraPredMode − 26), Abs(intraPredMode − 10))
(3‑1)
2. If intraPredMode is equal to Intra_DC, intraFilterType is set equal to 0,

3. Otherwise, if minDistVerHor is larger than intraHorVerDistThresh[nS], intraFilterType is set to 1, otherwise it is set to 0. intraHorVerDistThres[nS] is specified in Table 3‑3.
Table 3‑3 – Specification of intraHorVerDistThres[nS] for various prediction unit sizes
	
	nS = 4
	nS = 8
	nS = 16
	nS = 32
	nS = 64

	intraHorVerDistThresh[nS]
	10
	7
	1
	0
	10

Filtered sample array pF[x, y] with x = −1..nS*2−1 and y = −1..nS*2−1 are derived as follows:

–
When intraFilterType[nS][IntraPredMode] is equal to 1, the following applies:

pF[−1, nS*2−1] = p[−1, nS*2−1]

(3‑2)
pF[nS*2−1, −1] = p[nS*2−1, −1]

(3‑3)
pF[−1, y] = (p[−1, y+1] + 2*p[−1, y] + p[−1, y−1] + 2) >> 2 for y = nS*2−2..0
(3‑4)

pF[−1, −1] = (p[−1, 0] + 2*p[−1, −1] + p[0, −1] + 2) >> 2
(3‑5)
pF[x, −1] = (p[x−1, −1] + 2*p[x, −1] + p[x+1, −1] + 2) >> 2 for x = 0..nS*2−2
(3‑6)
3.3.3 Intra prediction sample generation

Generation process of the intra prediction samples for each intra prediction direction is specified in the sections of HEVC text specification draft 9 as shown in Table 3‑4.
Table 3‑4 – Intra prediction direction and the associated section number of HEVC text specification draft 9
	Intra prediction direction
	Section number

	0 (Intar_Plenar)
	8.4.3.1.7

	1 (Intra_DC)
	8.4.3.1.5

	10 (Vertical)
	8.4.3.1.4

	26 (Horizontal)
	8.4.3.1.3

	2..9, 11..25, 27..34 (Intra_Angular)
	8.4.3.1.6

[Ed. Note: Needs further expansion]
3.4 Inter Prediction

3.4.1 Prediction Modes
Each inter coded PU shall have a set of motion parameters consisting of motion vector, reference picture index, reference picture list usage flag to be used for inter prediction sample generation, in an explicit or implicit way of signaling. When a CU is coded with skip mode (i.e., PredMode == MODE_SKIP), the CU shall be represented as one PU that has no significant transform coefficients and motion vectors, reference picture index and reference picture list usage flag obtained by motion merge. The motion merge is to find neighbouring inter coded PU such that its motion parameters (motion vector, reference picture index, and reference picture list usage flag) can be inferred as the ones for the current PU. Encoder can select the best inferred motion parameters from multiple candidates formed by spatial neighbouring PUs and temporally neighbouring PUs, and transmits corresponding index indicating chosen candidate. Not only for skip mode, the Motion Merge can be applied to any inter coded PU (i.e., PredMode == MODE_INTER). In any inter coded PUs, encoder can have freedom to use motion merge or explicit transmission of motion parameters, where motion vector, corresponding reference picture index for each reference picture list and reference picture list usage flag are signalled explicitly per each PU. For inter coded PU, significant transform coefficients are sent to decoder. The details are presented in following sections.
3.4.1.1 Derivation of motion merge candidates

[image: image9.emf]Remove duplicated candidatesAdd combined bi-predictive candidatesAdd non-scaled bi-predictive candidatesAdd zero merge candidates

Final merge candidates (maximum number is equal to MaxNumMergeCand)

Spatial candidate positions (5)

Select 4 candidatesPartition redundancy removal

(e.g., avoid virtual 2Nx2N partition by merging 2 2NxN)

Temporal candidate refidxderivation

Temporal candidate positions (2)B-SlicesSelect 1 candidates

Figure 3‑8 – Derivation process for motion merge candidate
Figure 3‑8 summarizes derivation process for motion merge candidates. 2 types of merge candidates are considered in motion merge: spatial merge candidate and temporal merge candidate. For spatial merge candidate derivation, 4 merge candidates are selected among candidates that are located in 5 different positions. In the process of candidate selection, redundant partition shape is avoided in order not to emulate virtual 2Nx2N partition by merging two 2NxN or two Nx2N partitions. For temporal merge candidate derivation, 1 merge candidate is selected among 2 candidates. After a list of spatio-temporal candidates is made, duplicated candidates which have same motion parameters in the list are removed in order to have distinctive candidates only. Since constant number of candidates for each PU is assumed at decoder, additional candidates are generated when the number of candidates does not reach to maximum number of merge candidate (MaxNumMergeCand) which is signalled in slice header. For B-Slices, combined bi-predictive and non-scaled bi-predictive candidates are generated utilizing the candidates from list of spatio-temporal candidates. For both P- and B-slices, zero merge candidates are added at the end of the list. Between each generation step, derivation process is stopped if the number of candidates reaches to MaxNumMergeCand. In current common test condition, MaxNumMergeCand is set equal to 5. Since the number of candidates is constant, index of best motion merge candidate is encoded using truncated unary binarization (TU).

3.4.1.2 Spatial merge candidates

In the derivation of spatial merge candidates, maximum 4 merge candidates are selected among candidates that are located in positions as depicted in Figure 3‑9. The order of derivation is A1 (B1 (B0 (A0 ((B2). Position B2 is considered only when any PU of position A1 , B1 , B0 , A0 are unavailable or intra coded.
[image: image10.png]
Figure 3‑9 – Positions of spatial merge candidate
For the second PU of Nx2N, nLx2N and nRx2N partitions, position A1 is not considered as a candidate to prevent from 2Nx2N partition emulation. In these cases, the order of derivation is B1 (B0 (A0 (B2. Similarly, for the second PU of 2NxN, 2NxnU and 2NxnD partitions, position B1 is not used: A1 (B0 (A0 (B2. Figure 3‑10 depicts example of candidate positions for the second PU of Nx2N and 2NxN, respectively.

[image: image11.emf]A

0

B

0

B

2

A

1

current PU

A

0

B

0

B

2

current PU

B

1

(a) second PU of Nx2N(b)second PU of 2NxN

Figure 3‑10 – Positions for the second PU of Nx2N and 2NxN partitions

3.4.1.3 Temporal merge candidates
In the derivation of temporal merge candidate, scaled motion vector is derived based on co-located PU belongs to the picture which has the smallest POC difference with current picture within given reference picture list. The reference picture list to be used for derivation of co-located PU is signalled in slice header explicitly. Scaled motion vector for temporal merge candidate is obtained like dotted line in Figure 3‑11, which is scaled from motion vector of co-located PU using the POC distance, tb and td. tb is defined as POC difference between reference picture of current picture and current picture. td is defined as POC difference between reference picture of co-located picture and co-located picture. Reference picture index of temporal merge candidate is set as reference picture index of PU at position A1. If PU of position A1 is not available or intra coded, the reference picture index is set equal to 0. Practical realization of scaling process is described in WD [10]. For B-slice, two motion vectors, one is for reference picture list 0 and the other is for reference picture list 1, are obtained and combined to make bi-predictive motion merge candidate.

[image: image12.emf]curr_piccol_piccol_refcurr_reftdtbcurr_PUcol_PU

Figure 3‑11 – Illustration of motion vector scaling for temporal merge candidate

Position of co-located PU is selected between 2 candidate positions, C3 and H, as depicted in Figure 3‑12. If PU at position H is not available or intra coded, or outside of current CTU, position C3 is used. Otherwise, position H is used for the derivation of temporal merge candidate.
[image: image13.emf]HC3C0

LCU boundary

current PU

TLBR

Figure 3‑12 – Candidate positions for temporal merge candidate, C3 and H
3.4.1.4 Generated merge candidates
Besides spatio-temporal merge candidates, there are additional three types of merge candidates which are generated utilizing spatio-temporal merge candidates: combined bi-predictive merge candidate, non-scaled bi-predictive merge candidate and zero motion merge candidates. Combined bi-predictive merge candidate and non-scaled bi-predictive merge candidate are used for B-Slice only. The maximum number of each candidate is limited to 5, 1 and same with number of reference index, respectively. [Ed: Needs expansion]
3.4.2 Motion vector prediction

Motion vector prediction exploits spatio-temporal correlation of motion vector with neighbouring PUs, which is used for explicit transmission of motion parameters. It constructs motion vector candidate list by firstly checking availability of left, above temporally neighbouring PU positions, removing redundant candidates and adding zero vector to make the candidate list to be constant length as a normative process. Then, encoder can select the best predictor from the candidate list and transmits corresponding index indicating chosen candidate. Similarly with merge index signalling, index of the best motion vector candidate is encoded using truncated unary as maximum number is equal to 2. In the following sections, details about derivation process of motion vector prediction candidate are provided.

3.4.2.1 Derivation of motion vector prediction candidates
[image: image14.emf]Remove duplicated MV candidatesAdd zero MV candidatesRemove MV candidates whose index is larger than 1

Spatial candidate positions (5)

Select 2 candidates

1 candidate for left, 1 candidate for above

Temporal candidate positions (2)Select 1 candidateFor each reference picture list with refidxas an inputFinal motion vector candidates (2)

Figure 3‑13 – Overall processing flow of deblocking filter process
Figure 3‑13 summarizes derivation process for motion vector prediction candidate. In motion vector prediction, 2 types of motion vector candidates are considered: spatial motion vector candidate and temporal motion vector candidate. For spatial motion vector candidate derivation, 2 motion vector candidates are derived based on motion vectors of each PU located in 5 different positions. In the process of derivation, 1 motion vector candidate is selected utilizing PUs in the left side of current PU and 1 motion vector candidate is derived utilizing Pus in the above side of current PU. For temporal motion vector candidate derivation, 1 motion vector candidate is selected between 2 candidates, which are derived based on 2 different co-located positions. After the first list of spatio-temporal candidates is made, duplicated motion vector candidates in the list are removed. If the number of candidates is larger than 2, motion vector candidates whose index is larger than 1 are removed from the list. If the number of spatio-temporal motion vector candidates is smaller than 2, additional zero motion vector candidates is added to the list.
3.4.2.2 Spatial motion vector candidates

In the derivation of spatial motion vector candidates, maximum 2 candidates are considered among 5 candidates, which are derived from PUs located in positions as depicted in Figure 3‑9. The candidate positions of motion vector prediction are same with those of motion merge. The order of derivation for left side of current PU is set as A0 (A1 (scaled A0 (scaled A1. The order of derivation for above side of current PU is set as B0 (B1 (B2 (scaled B0 (scaled B1 (scaled B2. For each side, there are 4 cases which can be used for motion vector candidate. Despite 2 cases are not required to do spatial scaling, the other 2 cases are required to do spatial scaling. 4 different cases are summarized as follows.

· No spatial scaling
· (1) Same reference picture list, and same reference picture index (same POC)
· (2) Different reference picture list, but same reference picture (same POC)
· Spatial scaling
· (3) Same reference picture list, but different reference picture (different POC)
· (4) Different reference picture list, and different reference picture (different POC)
No spatial scaling cases are checked first and spatial scaling cases are checked sequentially. Spatial scaling is considered when POC is different between reference picture of neighbouring PU and that of current PU regardless of reference picture list. If all PUs of left candidates is not available or intra coded, scaling for above motion vector is allowed to help parallel derivation of left and above MV candidates. Otherwise, spatial scaling is not allowed for above motion vector.

[image: image15.emf]curr_picneigh_refcurr_reftdtbcurr_PUneighbor_PU

Figure 3‑14 – Illustration of motion vector scaling for spatial motion vector candidate

In a spatial scaling process, motion vector of neighbouring PU is scaled as same manner of temporal scaling as depicted as Figure 3‑14. Main difference is that the reference picture list and index of current PU is given as input. Actual scaling process is same with that of temporal scaling.
3.4.2.3 Temporal motion vector candidates
Except reference picture index derivation, all process is same with the derivation of temporal merge candidate. The reference picture index is signalled to decoder.
3.4.3 Interpolation filter

For the luma interpolation filter, an 8-tap separable DCT-based interpolation filter is used, as shown in Table 3‑5.
Table 3‑5 – 8-tap DCT-IF coefficients for 1/4th luma interpolation

	Position
	Filter coefficients

	1/4
	{ -1, 4, -10, 58, 17, -5, 1 }

	2/4
	{ -1, 4, -11, 40, 40, -11, 4, -1 }

	3/4
	{ 1, -5, 17, 58, -10, 4, -1 }

[Ed. Note: Need to revise description to 7/8-tap]
Similarly, a 4-tap separable DCT-based interpolation filter is used for the chroma interpolation filter, as shown in Table 3‑6.
Table 3‑6 – 4-tap DCT-IF coefficients for 1/8th chroma interpolation

	Position
	Filter coefficients

	1/8
	{ -2, 58, 10, -2 }

	2/8
	{ -4, 54, 16, -2 }

	3/8
	{ -6, 46, 28, -4 }

	4/8
	{ -4, 36, 36, -4 }

	5/8
	{ -4, 28, 46, -6 }

	6/8
	{ -2, 16, 54, -4 }

	7/8
	{ -2, 10, 58, -2 }

For the bi-directional prediction, the bit-depth of the output of the interpolation filter is maintained to 14-bit accuracy, regardless of the source bit-depth, before the averaging of the two prediction signals. The actual averaging process is done implicitly with the bit-depth reduction process as:

predSamples[x, y] = (predSamplesL0[x, y] + predSamplesL1[x, y] + offset) >> shift

where

shift = (15 – BitDepth) and offset = 1 << (shift – 1)

[Ed. Note: Need to describe]
3.4.4 Weighted Prediction
[Ed. Note: Needs description. (However, note that the WP has not been enabled in the common test conditions)]
3.5 Transform and Quantization
Transforms of sizes 4x4 to 32x32 are supported. The transform coefficients dij (i, j=0..nS-1) are derived from the transform matrix cij (i, j=0..nS-1) of subclause 3.5.1and the residual samples rij (i, j=0..nS-1) as specified in the following ordered steps.

1. The intermediate sample values eij (i, j=0..nS-1) are derived as
eij
=
ci0*rj0 + ci1*rj1 + … + cinS-1*rjnS-1 with i,j = 0,..,nS-1
2. The intermediate sample values fij (i,j=0,..nS-1) are derived as
fij = (eij + 2nS-10+BitDepth) >> (nS + BitDepth – 9), with i,j = 0,...,nS-1

3. The unscaled transform coefficients gij (i, j=0..nS-1) are derived as
gij
=
ci0*fj0 + ci1*fj1 + … + cinS-1*fjnS-1 with i,j = 0,..,nS-1
4. The transform coefficients dij (i, j=0..nS-1) are derived as
dij = (gij + 2nS+5) >> (nS + 6), with i,j = 0,...,nS-1

3.5.1 Transform matrices

This subclause specifies transform matrices cij (i, j=0..nS-1) for nS = 4, 8, 16, and 32.

nS = 4

{64, 64, 64, 64}

{83, 36,-36,-83}

{64,-64,-64, 64}

{36,-83, 83,-36}

nS = 8

{64, 64, 64, 64, 64, 64, 64, 64}

{89, 75, 50, 18,-18,-50,-75,-89}

{83, 36,-36,-83,-83,-36, 36, 83}

{75,-18,-89,-50, 50, 89, 18,-75}

{64,-64,-64, 64, 64,-64,-64, 64}

{50,-89, 18, 75,-75,-18, 89,-50}

{36,-83, 83,-36,-36, 83,-83, 36}

{18,-50, 75,-89, 89,-75, 50,-18}

nS = 16

{64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64}

{90 87 80 70 57 43 25 9 -9-25-43-57-70-80-87-90}

{89 75 50 18-18-50-75-89-89-75-50-18 18 50 75 89}

{87 57 9-43-80-90-70-25 25 70 90 80 43 -9-57-87}

{83 36-36-83-83-36 36 83 83 36-36-83-83-36 36 83}

{80 9-70-87-25 57 90 43-43-90-57 25 87 70 -9-80}

{75-18-89-50 50 89 18-75-75 18 89 50-50-89-18 75}

{70-43-87 9 90 25-80-57 57 80-25-90 -9 87 43-70}

{64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 64}

{57-80-25 90 -9-87 43 70-70-43 87 9-90 25 80-57}

{50-89 18 75-75-18 89-50-50 89-18-75 75 18-89 50}

{43-90 57 25-87 70 9-80 80 -9-70 87-25-57 90-43}

{36-83 83-36-36 83-83 36 36-83 83-36-36 83-83 36}

{25-70 90-80 43 9-57 87-87 57 -9-43 80-90 70-25}

{18-50 75-89 89-75 50-18-18 50-75 89-89 75-50 18}

{ 9-25 43-57 70-80 87-90 90-87 80-70 57-43 25 -9}

nS = 32

{64 64}

{90 90 88 85 82 78 73 67 61 54 46 38 31 22 13 4 -4-13-22-31-38-46-54-61-67-73-78-82-85-88-90-90}

{90 87 80 70 57 43 25 9 -9-25-43-57-70-80-87-90-90-87-80-70-57-43-25 -9 9 25 43 57 70 80 87 90}

{90 82 67 46 22 -4-31-54-73-85-90-88-78-61-38-13 13 38 61 78 88 90 85 73 54 31 4-22-46-67-82-90}

{89 75 50 18-18-50-75-89-89-75-50-18 18 50 75 89 89 75 50 18-18-50-75-89-89-75-50-18 18 50 75 89}

{88 67 31-13-54-82-90-78-46 -4 38 73 90 85 61 22-22-61-85-90-73-38 4 46 78 90 82 54 13-31-67-88}

{87 57 9-43-80-90-70-25 25 70 90 80 43 -9-57-87-87-57 -9 43 80 90 70 25-25-70-90-80-43 9 57 87}

{85 46-13-67-90-73-22 38 82 88 54 -4-61-90-78-31 31 78 90 61 4-54-88-82-38 22 73 90 67 13-46-85}

{83 36-36-83-83-36 36 83 83 36-36-83-83-36 36 83 83 36-36-83-83-36 36 83 83 36-36-83-83-36 36 83}

{82 22-54-90-61 13 78 85 31-46-90-67 4 73 88 38-38-88-73 -4 67 90 46-31-85-78-13 61 90 54-22-82}

{80 9-70-87-25 57 90 43-43-90-57 25 87 70 -9-80-80 -9 70 87 25-57-90-43 43 90 57-25-87-70 9 80}

{78 -4-82-73 13 85 67-22-88-61 31 90 54-38-90-46 46 90 38-54-90-31 61 88 22-67-85-13 73 82 4-78}

{75-18-89-50 50 89 18-75-75 18 89 50-50-89-18 75 75-18-89-50 50 89 18-75-75 18 89 50-50-89-18 75}

{73-31-90-22 78 67-38-90-13 82 61-46-88 -4 85 54-54-85 4 88 46-61-82 13 90 38-67-78 22 90 31-73}

{70-43-87 9 90 25-80-57 57 80-25-90 -9 87 43-70-70 43 87 -9-90-25 80 57-57-80 25 90 9-87-43 70}

{67-54-78 38 85-22-90 4 90 13-88-31 82 46-73-61 61 73-46-82 31 88-13-90 -4 90 22-85-38 78 54-67}

{64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 64}

{61-73-46 82 31-88-13 90 -4-90 22 85-38-78 54 67-67-54 78 38-85-22 90 4-90 13 88-31-82 46 73-61}

{57-80-25 90 -9-87 43 70-70-43 87 9-90 25 80-57-57 80 25-90 9 87-43-70 70 43-87 -9 90-25-80 57}

{54-85 -4 88-46-61 82 13-90 38 67-78-22 90-31-73 73 31-90 22 78-67-38 90-13-82 61 46-88 4 85-54}

{50-89 18 75-75-18 89-50-50 89-18-75 75 18-89 50 50-89 18 75-75-18 89-50-50 89-18-75 75 18-89 50}

{46-90 38 54-90 31 61-88 22 67-85 13 73-82 4 78-78 -4 82-73-13 85-67-22 88-61-31 90-54-38 90-46}

{43-90 57 25-87 70 9-80 80 -9-70 87-25-57 90-43-43 90-57-25 87-70 -9 80-80 9 70-87 25 57-90 43}

{38-88 73 -4-67 90-46-31 85-78 13 61-90 54 22-82 82-22-54 90-61-13 78-85 31 46-90 67 4-73 88-38}

{36-83 83-36-36 83-83 36 36-83 83-36-36 83-83 36 36-83 83-36-36 83-83 36 36-83 83-36-36 83-83 36}

{31-78 90-61 4 54-88 82-38-22 73-90 67-13-46 85-85 46 13-67 90-73 22 38-82 88-54 -4 61-90 78-31}

{25-70 90-80 43 9-57 87-87 57 -9-43 80-90 70-25-25 70-90 80-43 -9 57-87 87-57 9 43-80 90-70 25}

{22-61 85-90 73-38 -4 46-78 90-82 54-13-31 67-88 88-67 31 13-54 82-90 78-46 4 38-73 90-85 61-22}

{18-50 75-89 89-75 50-18-18 50-75 89-89 75-50 18 18-50 75-89 89-75 50-18-18 50-75 89-89 75-50 18}

{13-38 61-78 88-90 85-73 54-31 4 22-46 67-82 90-90 82-67 46-22 -4 31-54 73-85 90-88 78-61 38-13}

{ 9-25 43-57 70-80 87-90 90-87 80-70 57-43 25 -9 -9 25-43 57-70 80-87 90-90 87-80 70-57 43-25 9}
{ 4-13 22-31 38-46 54-61 67-73 78-82 85-88 90-90 90-90 88-85 82-78 73-67 61-54 46-38 31-22 13 -4}

3.5.2 Scaling and quantization

 [Ed. note: The current description is non-RDOQ version. The text of section 6.7.2 should have alignment with this description.]

The quantized transform coefficients qij (i, j=0..nS-1) are derived from the transform coeficients dij (i, j=0..nS-1) as

qij = (dij * f[QP%6] + offset) >> (29 + QP/6 – nS – BitDepth), with i,j = 0,...,nS-1

where

f[x] = {26214,23302,20560,18396,16384,14564}, x=0,…,5

228+QP/6–nS-BitDepth < offset < 229+QP/6–nS-BitDepth
3.6 Entropy Coding

Only one entropy coding scheme is supported in the HM9: Context Adaptive Binary Arithmetic Coding (CABAC).
[Ed. Note: Needs expansion]
3.7 Loop Filtering
3.7.1 Deblocking filter

Deblocking filter process is performed for each CU with the same order as decoding process. Vertical edge is filtered (horizontal filtering) at first, and horizontal edge is filtered (vertical filtering) next. All filtering is applied to 8x8 block boundaries which is determined to be filtered for both luma and chroma components. 4x4 block boundaries are not processed in order to reduce the complexity, which is different from H.264/AVC.

[image: image16.emf]boundary decisionBs calculation4x4 8x8filter on/off decisionstrong/weak filter selectionstrong filteringweak filteringβ, t

C

decision

Figure 3‑15 – Overall processing flow of deblocking filter process

Figure 3‑15 illustrates the overall processing flow of deblocking filter process. A boundary can have three filtering status: no filtering, weak filtering and strong filtering. Each filtering decision is based on boundary strength, Bs, and threshold values, β and tC.
3.7.1.1 Boundary decision
There could be three kinds of boundaries involving in the filtering: CU boundary, TU boundary and PU boundary. Union of theses boundaries are involved in the deblocking filter process. For example, CU boundaries, which are outer edges of CU, are always involved in the filtering since CU boundaries are always TU boundary or PU boundary. When PU shape is 2NxN (N > 4) and RQT depth is equal to 1, TU boundary at 8x8 block grid and PU boundary between each PU inside CU are involved in the filtering. (This doesn’t mean that all involved boundaries are filtered. Actual filtering decision is done in another process.) [Ed. Note: need to check following sentence] One except is that when PU boundary is inside TU, the boundary shall not be filtered.

3.7.1.2 Boundary strength calculation
Generally speaking, boundary strength (Bs) reflects how strong filtering is needed for the boundary. If Bs is large, strong filtering should be considered.

[image: image17.emf]P or Q is

intra

Bs = 2

YesNo

P & Q has

different ref?

Bs= 1

|MV_P

h

–MV_Q

h

| >=4 or|MV_P

v

–MV_Q

v

| >=4

Bs= 0

YesYesNoNo

P & Q has

different # of

MVs?

YesNo

P or Q has

non-0 coeff’s?

YesNo

Figure 3‑16 – Flow diagram for Bs calculation

Let’s define P and Q as blocks which are involved in the filtering. P represents the block located in left (vertical edge case) or above (horizontal edge case) side of the boundary. In a similar fashion, Q represents the block located in right (vertical edge case) or above (horizontal edge case) side of the boundary. Figure 3‑16 illustrates how Bs value is calculated based on the intra coding mode, existence of non-zero transform coefficients and motion information, e.g., reference picture, number of motion vectors and motion vector difference. At first, Bs is calculated in 4x4 block basis, but it is re-mapped to 8x8 grid. Specifically, among two Bs which are belong to 8 pixels consisting a line in 4x4 grid, maximum Bs is selected as Bs for boundaries in 8x8 grid.

[image: image18.emf]P0P1P2P3Q0Q1Q2Q3LCU boundary

Figure 3‑17 – Referred information for Bs calculation at CTU boundary.

In order to reduce line buffer memory requirement, only for CTU boundary, information in every second block (4x4 grid) in left or above side is re-used as depicted in Figure 3‑17.
3.7.1.3 β and tC decision

Threshold values β and tC which involving in filter on/off decision, strong and weak filter selection and weak filtering process are derived based on luma quantization parameter of P and Q blocks, QPP and QPQ, respectively. Q used to derive β and tC is calculated as follows.
Q = ((QPP + QPQ + 1) >> 1).

A variables β is specified as Table 3‑7 with Q as input. If Bs is greater than 1, the variable tC is specified as Table 3‑7 with Clip3(0, 55, Q + 2) as input. Otherwise (BS is equal or less than 1), the variable tC is specified as Table 3‑7 with Q as input.
Table 3‑7 – Derivation of threshold variables β and tC from input Q
	Q
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18

	β
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	6
	7
	8

	tC
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1

	Q
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37

	β
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	20
	22
	24
	26
	28
	30
	32
	34
	36

	tC
	1
	1
	1
	1
	1
	1
	1
	1
	2
	2
	2
	2
	3
	3
	3
	3
	4
	4
	4

	Q
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	

	β
	38
	40
	42
	44
	46
	48
	50
	52
	54
	56
	58
	60
	62
	64
	64
	64
	64
	64
	

	tC
	5
	5
	6
	6
	7
	8
	9
	9
	10
	10
	11
	11
	12
	12
	13
	13
	14
	14
	

3.7.1.4 Filter on/off decision for 4 lines

Filter on/off decision is done for four lines as a unit. Figure 3‑18 illustrates the pixels involving in filter on/off decision. 6 pixels in the two red boxes for the first four lines are used to determine filter on/off for 4 lines. 6 pixels in two red boxes for the second 4 lines are used to determine filter on/off for the second four lines.

[image: image19.emf]p3

0

p2

0

p1

0

p0

0

q0

0

q1

0

q2

0

q3

0

p3

1

p2

1

p1

1

p0

1

q0

1

q1

1

q2

1

q3

1

p3

2

p2

2

p1

2

p0

2

q0

2

q1

2

q2

2

q3

2

p3

3

p2

3

p1

3

p0

3

q0

3

q1

3

q2

3

q3

3

p3

4

p2

4

p1

4

p0

4

q0

4

q1

4

q2

4

q3

4

p3

5

p2

5

p1

5

p0

5

q0

5

q1

5

q2

5

q3

5

p3

6

p2

6

p1

6

p0

6

q0

6

q1

6

q2

6

q3

6

p3

7

p2

7

p1

7

p0

7

q0

7

q1

7

q2

7

q3

7

first 4 linessecond 4 lines

Figure 3‑18 – Red boxes represent pixels involving in filter on/off decision and strong/weak filter selection.

If dp0+dq0+dp3+dq3 < β, filtering for the first four lines is turned on and strong/weak filter selection process is applied. Each variable is derived as follows.

dp0 = | p2,0 – 2*p1,0 + p0,0 |, dp3 = | p2,3 – 2*p1,3 + p0,3 |, dp4 = | p2,4 – 2*p1,4 + p0,4 |, dp7 = | p2,7 – 2*p1,7 + p0,7 |

dq0 = | q2,0 – 2*q1,0 + q0,0 |, dq3 = | q2,3 – 2*q1,3 + q0,3 |, dq4 = | q2,4 – 2*q1,4 + q0,4 |, dq7 = | q2,7 – 2*q1,7 + q0,7 |
If the condition is not met, no filtering is done for the first 4 lines. Additionally, if the condition is met, dE, dEp1 and dEp2 are derived for weak filtering process. The variable dE is set equal to 1. If dp0 + dp3 < (β + (β >> 1)) >> 3, the variable dEp1 is set equal to 1. If dq0 + dq3 < (β + (β >> 1)) >> 3, the variable dEq1 is set equal to 1.
For the second four lines, decision is made in a same fashion with above.
3.7.1.5 Strong/weak filter selection for 4 lines

After the first four lines are determined to filtering on in filter on/off decision, if following two conditions are met, strong filter is used for filtering of the first four lines. Otherwise, weak filter is used for filtering. Involving pixels are same with those used for filter on/off decision as depicted in Figure 3‑18.
1) 2*(dp0+dq0) < (β >> 2), | p30 – p00 | + | q00 – q30 | < (β >> 3) and | p00 – q00 | < (5* tC + 1) >> 1
2) 2*(dp3+dq3) < (β >> 2), | p33 – p03 | + | q03 – q33 | < (β >> 3) and | p03 – q03 | < (5* tC + 1) >> 1

As a same fashion, if following two conditions are met, strong filter is used for filtering of the second 4 lines. Otherwise, weak filter is used for filtering.
1) 2*(dp4+dq4) < (β >> 2), | p34 – p04 | + | q04 – q34 | < (β >> 3) and | p04 – q04 | < (5* tC + 1) >> 1

2) 2*(dp7+dq7) < (β >> 2), | p37 – p07 | + | q07 – q37 | < (β >> 3) and | p07 – q07 | < (5* tC + 1) >> 1
3.7.1.6 Strong filtering
For strong filtering, filtered pixel values are obtained by following equations. It is worth to note that three pixels are modified using four pixels as an input for each P and Q block, respectively.
p0’ = (p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4) >> 3

q0’ = (p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4) >> 3

p1’ = (p2 + p1 + p0 + q0 + 2) >> 2

q1’ = (p0 + q0 + q1 + q2 + 2) >> 2

p2’ = (2*p3 + 3*p2 + p1 + p0 + q0 + 4) >> 3

q2’ = (p0 + q0 + q1 + 3*q2 + 2*q3 + 4) >> 3

3.7.1.7 Weak filtering
Let’s define (as follows.

(= (9 * (q0 – p0) – 3 * (q1 – p1) + 8) >> 4
When abs(() is less than tC *10,
(= Clip3(- tC , tC , ()

p0’ = Clip1Y(p0 + ()

q0’ = Clip1Y(q0 - ()

If dEp1 is equal to 1,
(p = Clip3(-(tC >> 1), tC >> 1, (((p2 + p0 + 1) >> 1) – p1 + () >>1)

p1’ = Clip1Y(p1 + (p)

If dEq1 is equal to 1,
(q = Clip3(-(tC >> 1), tC >> 1, (((q2 + q0 + 1) >> 1) – q1 – () >>1)

q1’ = Clip1Y(q1 + (q)
It is worth to note that maximum two pixels are modified using three pixels as an input for each P and Q block, respectively.
3.7.1.8 Chroma filtering
Bs of chroma filtering is inherited from luma. If Bs > 1 or if coded chroma coefficient existing case, chroma filtering is performed. No other filtering decision is there. And only one filter is applied for chroma. No filter selection process for chroma is used. The filtered sample values p0’ and q0’ are derived as follows.
(= Clip3(-tC, tC, ((((q0 – p0) << 2) + p1 – q1 + 4) >> 3))

p0’ = Clip1C(p0 + ()

q0’ = Clip1C(q0 - ()
3.7.2 Sample Adaptive Offset (SAO)

Sample adaptive offset is applied to the reconstruction signal after the deblocking filter by using the offsets given in each CTB. The encoder makes a decision on whether or not the SAO is applied for current slice according to section 3.7.2.4. If SAO is enabled for current slice, the current slice allows each CTB select one of five SAO types as shown in Table 3-6. The concept of SAO is to classify pixels into categories and reduces the distortion by adding an offset to pixels of each category. SAO operation includes Edge Offset (EO) which uses edge properties for pixel classification as SAO type 1-4 and Band Offset (BO) which uses pixel intensity for pixel classification as SAO type 5. Each CTB will have its own SAO parameters include sao_merge_left_flag, sao_merge_up_flag, SAO type and four offsets. If sao_merge_left_flag is equal to 1 current CTB will reuse the SAO type and offsets of left CTB, otherwise current CTB will not reused SAO type and offsets of left CTB. If sao_merge_up_flag is equal to 1, current CTB will reuse SAO type and offsets of upper CTB, otherwise current CTB will not reuse SAO type and offsets of upper CTB.
Table 3‑8 – Specification of SAO type
	SAO type
	sample adaptive offset type to be used
	Number of categories

	0
	None
	0

	1
	1-D 0-degree pattern edge offset
	4

	2
	1-D 90-degree pattern edge offset
	4

	3
	1-D 135-degree pattern edge offset
	4

	4
	1-D 45-degree pattern edge offset
	4

	5
	band offset
	4

3.7.2.1 Operation of each SAO type

Edge offset (EO) uses four 1-D 3-pixel patterns for pixel classification with consideration of edge directional information, as shown in Figure 3‑19. Each CTB can select one pattern to classify pixels into 5 categories by comparing each pixel with its two neighbouring pixels according to Table 3-7. EO processing will compensate pixel value of each category by adding offset.
	
	　
	　
	
	　
	　
	　
	
	　
	　
	　
	
	　
	　
	　

	　
	p
	　
	
	　
	p
	　
	
	　
	p
	　
	
	　
	p
	　

	　
	　
	　
	
	　
	　
	　
	
	　
	　
	　
	
	　
	　
	　

Figure 3‑19 – Four 1-D 3-pixel patterns for the pixel classification in EO
From left to right these are: 0-degree, 90-degree, 135-degree, 45-degree; where p is current pixel to be classified.
Table 3‑9 – Pixel classification rule for EO
	Category
	Condition

	1
	p < 2 neighbors

	2
	p < 1 neighbor && p == 1 neighbor

	3
	p > 1 neighbor && p == 1 neighbor

	4
	p > 2 neighbors

	0
	None of the above

Band offset (BO) classifies all pixels in one CTB region into 32 uniform bands (categories) by using the five most significant bits of pixel value as the band index. In other words, the pixel intensity range is equally divided into 32 from zero to the maximum intensity value (e.g. 255 for 8-bit pixels), and each interval has an offset. Next, any four adjacent bands are grouped together and each group is indicated by its most left band position as shown in Figure 3-20. The encoder will search all position to get the group with the maximum distortion reduction by compensating offset of each band.
[image: image20.emf]Minimum pixel valueMaximum pixel valueSignal four offsets from

starting band

Starting band position

Figure 3‑20 – Four bands are grouped together and represented by its starting band position.
3.8 Wavefront parallel processing
Wavefront Parallel Processing (WPP) produces a bitstream that can be processed using one or more cores running in parallel. When WPP is used, the following operations can be performed by the encoder.

When the encoding of the second CTU in a CTU row is finished, the CABAC probabilities are stored in a buffer.

When starting the encoding of the first CTU in a CTU row, the following process shall be applied:

if the last CU of the second CTU of the row above is available, the CABAC probabilities are set to the values stored in the buffer.

if not, the CABAC probabilities are reset to the default values

When the encoding of the last CTU in a CTU row is finished, and the end of a slice has not been reached, CABAC is flushed and a byte alignment is performed.

Furthermore, entry point offsets shall be written in the slice header. Each CTU row in the slice shall have an entry point offset that indicates where the corresponding data starts in the slice data. Offsets are in byte units. When WPP is used, a slice that does not start at the beginning of a CTU row shall not finish after the last CTU in the same row. When a slice starts at the beginning of a CTB row, there is no constraint on where it finishes.
4 Description of encoding methods
4.1 Cost Functions

[Ed. note: Definitions of all cost functions used in the HM software and remaining sections should refer to relevant section number below that specifies cost function to be used]
Various cost functions are used in the HM software encoder to perform non-normative mode/parameter decisions. In this section, the cost functions actually used in the encoding process of the HM software are specified for reference in the remaining sections of this document.

4.1.1 Sum of Square Error (SSE)
The difference between two blocks with the same block size is produced using

Diff(i,j) = BlockA(i,j) - BlockB(i,j)

(4‑1)

SEE is computed using the following equation:

[image: image21.wmf]å

=

j

i

j

i

Diff

SSE

,

2

)

,

(

(4‑2)

4.1.2 Sum of Absolute Difference (SAD)
SAD is computed using the following equation:

[image: image22.wmf]å

=

j

i

j

i

Diff

SAD

,

)

,

(

(4‑3)

4.1.3 Hadamard transformed SAD (SATD)
Since the transformed coefficients are coded, an improved estimation of the cost of each mode can be obtained by estimating DCT with the Hadamard transform.

SATD is computed using:

[image: image23.wmf]2

/

)

)

,

(

(

,

å

=

j

i

j

i

DiffT

SATD

(4‑4)

The Hadamard transform flag can be turned on or off. SA(T)D refers to either SAD or SATD depending on the status of the Hadamard transform flag.

SAD is used when computing full-pel motion estimation while SA(T)D is used for sub-pel motion estimation.
4.1.4 RD cost functions

4.1.4.1 Lagrangian constant values

In the HM encoder, lambda values that are used for cost computation are defined as

[image: image24.wmf])

0

.

3

/

)

12

((

mode

2

*

*

-

=

QP

k

W

a

l

(4‑5)

[image: image25.wmf]l

pred
[image: image26.wmf]e

mod

l

=

(4‑6)
[image: image43.png][image: image44.png]

[image: image27.wmf]î

í

ì

-

=

0

.

1

)

_

_

_

*

05

.

0

,

5

.

0

,

0

.

0

(

3

0

.

1

frames

B

of

number

Clip

a

(4‑7)

[image: image28.wmf]k

W

represents weighting factor dependent to encoding configuration and QP offset hierarchy level of current picture within a GOP, as specified in Table 4‑1. Note that the value of
[image: image29.wmf]k

W

derived from Table 4‑1 is further modified by multiplying 0.95 when SATD based motion estimation is used.
Table 4‑1 – Derivation of
[image: image30.wmf]k

W

	k
	QP offset hierarchy level
	Slice type
	Referenced
	
[image: image31.wmf]k

W

	0
	0
	I
	-
	0.57

	1
	0
	GPB
	1
	RA: 0.442

LD: 0.578

	2
	1, 2
	B or GPB
	1
	RA: 0.3536 * Clip3(2.0, 4.0, (QP-12)/6.0)
LD: 0.4624 * Clip3(2.0, 4.0, (QP-12)/6.0)

	4
	3
	B
	0
	RA: 0.68 * Clip3(2.0, 4.0, (QP-12)/6.0)

4.1.4.2 Weighting factor for chroma component
The following weighting parameter wchroma is used to derive lambda value
[image: image32.wmf]chroma

l

to be used for chroma-specific decisions in RDOQ, SAO and ALF process.

[image: image33.wmf](

)

3

/

QP

QP

chroma

chroma

2

-

=

w

(4‑8)
With this parameter,
[image: image34.wmf]chroma

l

is obtained by

[image: image35.wmf]chroma

mode

/

w

chroma

l

l

=

(4‑9)
Note that the parameter wchroma is also used to define cost function to be used for mode decision in order to weight chroma part of SSE.
4.1.4.3 SAD based cost function for prediction parameter decision
The cost for prediction parameter decision Jpred,SAD is specified by the following formula.

Jpred,SAD =SAD + λpred * Bpred,

(4‑10)
where Bpred specifies bit cost to be considered for making decision, which depends on each decision case. λpred and SAD are defined in the section 4.1.4.1 and 4.1.2, respectively.
4.1.4.4 SATD based cost function for prediction parameter decision
The cost for motion parameter decision Jpred,SATD is specified by the following formula.

Jpred,SATD =SATD + λpred * Bpred,

(4‑11)
where Bpred specifies bit cost to be considered for making decision, which depends on each decision case. λpred and SATD are defined in the section 4.1.4.1 and 4.1.3, respectively.
4.1.4.5 Cost function for mode decision
The cost for mode decision Jmode is specified by the following formula.

Jmode =(SSEluma+ wchroma *SSEchroma)+ λmode * Bmode,

(4‑12)
where Bmode specifies bit cost to be considered for mode decision, which depends on each decision case. λmode and SSE are defined in the section 4.1.4.1 and 4.1.1, respectively.
4.2 Encoder configurations

4.2.1 Overview of Encoder Configurations

The HM encoder works with two sets of encoder configurations, designated High Efficiency (HE) and Low Complexity (LC), as defined in the JVC-VC test condition document [11].

4.2.2 High Efficiency (HE) coding

Coding tools for HE coding configuration are chosen to obtain high compression performance as its primary target. It supports a bit depth increase up to 10 bit, full capability of loop-filtering process including ALF and CABAC as entropy coder.
4.2.3 Low Complexity (LC) coding

Coding tools for LC coding configuration are chosen to obtain reasonably high compression performance while keeping codec complexity to be low. Compared with HE coding tools, main differences are no bit depth increase, no support of ALF and the use of CAVLC as its entropy coding.
4.3 Temporal Prediction Structure
The HM encoder works with three kinds of temporal prediction structures depending on experimental conditions, as defined in the JVC-VC test condition document [11]. Reference picture list management should depend on each temporal configuration.

4.3.1 Intra-only configuration

In the test case for Intra-only coding, each picture in a video sequence shall be encoded as IDR picture. No temporal reference pictures shall be used. It is not allowed to change QP during a sequence within a picture. Figure 4‑1 gives graphical presentation of Intra-only configuration. The number associated with each picture represents encoding order.

[image: image36.emf]

QPI

time

0135

7

2 64 8

IDR Picture

QPI

・・・・・

Figure 4‑1 – Graphical presentation of Intra-only configuration

4.3.2 Low-delay configurations
Two kinds of low-delay coding configurations have been defined for testing coding performance in low-delay mode. For these low-delay coding conditions, only the first picture in a video sequence shall be encoded as IDR picture. In mandatory low-delay test condition, the other successive pictures shall be encoded as Generalized P and B-picture (GPB). The GPB shall be able to use only the reference pictures, each of whose POC is smaller than the current picture (i.e., all reference pictures in RefPicList0 and RefPicList1 shall be temporally previous in display order relative to the current picture). The contents of RefPicList0 and RefPicList1 shall be identical, and they shall be updated with sliding-window management process. Reference picture list combination is used for management and entropy coding of reference picture index. Figure 4‑2 shows graphical presentation of Low-delay configuration that is mandatory for performance evaluation in any CEs. The number associated with each picture represents encoding order. QP of each inter coded picture shall be derived by adding offset to QP of Intra coded picture depending on temporal layer. In the additional non-normative low-delay condition, all inter pictures shall be coded as P-picture, where only the content of RefPicList0 is used for inter prediction.

[image: image37.emf]

QPI

QPB

L1

=QPI+1QPB

L1

=QPI+1

QPB

L2

=QPI+2

QPB

L3

=QPI+3

time

QPB

L3

=QPI+3

QPB

L3

=QPI+3

QPB

L3

=QPI+3

QPB

L2

=QPI+2

0

1357

2

4

6

8

IDR or Intra

Picture

GPB(GeneralizedP

and B) Picture

Figure 4‑2 – Graphical presentation of Low-delay configuration
4.3.3 Random-access configuration

For the random-access test condition, hierarchical B structure shall be used for coding. Figure 4‑3 shows graphical presentation of Random-access configuration. The number associated with each picture represents encoding order. Intra picture shall be inserted cyclically per about one second. The first intra picture of a video sequence shall be encoded as IDR picture and the other intra pictures shall be encoded as non-IDR intra pictures (“Open GOP”). The pictures located between successive intra pictures in display order shall be encoded as B-pictures. The GPB picture shall be used as the lowest temporal layer that can refer to I or GPB picture for inter prediction. The second and third temporal layers consists of referenced B pictures, and the highest temporal layer contains non-referenced B picture only. QP of each inter coded picture shall be derived by adding offset to QP of Intra coded picture depending on temporal layer. Reference picture list combination is used for management and entropy coding of reference picture index.

[image: image38.emf]

QPI

QPB

L1

=QPI+1

QPB

L2

=QPI+2

QPB

L3

=QPI+3

QPB

L4

=QPI+4

GPB(GeneralizedP

and B) Picture

time

Referenced B

Picture

Non-referenced B

Picture

0

5678

3 4

2

1

IDR or Intra

Picture

Referenced B

Picture

Figure 4‑3 – Graphical presentation of Random-access configuration

4.4 Input bit depth modification
When the Main configuration is used for a 10-bit source, each 10-bit source sample x is converted prior to encoding to an 8-bit value (x+2) / 4 clipped to the [0,255] range. Similarly when the HE10 configuration is used for an 8-bit source, each 8-bit source sample x is converted prior to encoding to a 10-bit value 4*x. This behaviour is built into the reference encoder and no external conversion program is required [11].
4.5 Slice partitioning operation

The HM encoder can configure the depth in a CTU at which slices may begin and end, provided that CUs at the given depth are of size 16x16 or larger. For 64x64 CTU, this means that the maximum allowed depth is 2 since that gives a CU of 16x16 which is the smallest allowed.

The HM encoder has two ways of determining slice size. One is to specify the maximum number of CUs at the determined depth in a slice. The other is to specify the number of bytes in a slice.

The HM encoder has also an option to enable entropy slice coding. In this case, the size of a slice can be specified as the maximum number of CUs in a slice, or by the number of bytes (CAVLC case) or bins (CABAC case) in a slice.

4.6 Tile partitioning operation

[Ed. note: need description on what kind of tile partitioning operation is available in HM9 encoder.]
4.7 Derivation process for slice-level coding parameters

4.7.1 Sample Adaptive Offset (SAO) parameters
4.7.1.1 Search the SAO type with minimum rate-distortion cost
In the HM encoder, the following process is performed to determine the SAO parameters:

1. Loop three colour components in a CTB as following
2. Collect the statistical information for all SAO type as following
2.1. Set sao_type_idx = 0

2.2. Classified pixels into categories according to sao_type_idx.

2.2.1. Calculate sum of difference between original signal and reconstructed signal in each category.

2.2.2. Calculate number of pixels in each category.

2.2.3. Calculate offsets using step 2.2.1 and step 2.2.2.
2.2.4. Calculate RD-cost according to section 3.7.2.2
2.3. Set sao_type_idx = sao_type_idx+1; if sao_type_idx <= 5, run step 2.2; otherwise, end.
3. Determine the SAO parameters with lowest rate-distortion (RD) cost among the following three items.
3.1. If left CTB is available, calculate the RD cost by reusing the SAO parameters of left CTB.
3.2. If upper CTB is available, calculate the RD cost by reusing SAO parameters of upper CTB.

3.3. Five SAO types with minimum RD-cost in step 2.
4. Update pixels in DPB according to selected SAO type by adding offset.

5. Run step1, 2, 3, and 4 for next CTB until all CTB is processed.

4.7.1.2 Slice level on/off Control
A hierarchical coding of pictures is used for both low delay and random access configurations which allows the encoder turns off (or on) SAO for picture with higher QP according to the percentage of SAO processed CTB of the previous picture with lower QP. If previous picture with lower QP with more than 25% of CTBs choosing SAO type from 1-5, SAO will be enabled for the current picture, otherwise SAO will be disabled for the current picture.
4.8 Derivation process for CU-level and PU-level coding parameters

4.8.1 Intra prediction mode and parameters

The unified intra coding tool provides up to 34 angular and planar prediction modes for luma component of different PUs. The best intra prediction mode for luma component of each PU is derived as follows. Firstly, a rough mode decision process is performed. Prediction cost Jpred,SATD specified in the section 4.1.4.4 is computed for all possible prediction modes and pre-determined number of intermediate candidates are found per each PU size (8 for 4x4-8x8 PU, 3 for other PU sizes) resulting in least prediction costs. In this rough decision process, number of coded bits for intra prediction mode is set to Bpred. Then, RD optimization using the coding cost Jmode specified in the section 4.1.4.5, is applied to the candidate modes selected by the rough mode decision and MostProbableMode. During this RD decision, prediction parameters and coefficients for luma component of the PU are accumulated into Bmode. Concerning chroma mode decision, all possible intra chroma prediction modes are evaluated through RD decision process, where coded bits for intra chroma prediction mode and chroma coefficient are used as Bmode.

4.8.2 Inter prediction mode and parameters

4.8.2.1 Derivation of motion parameters

In the HM encoder, an inter-coded CU can be segmented into multiple inter PUs, each of which has a set of motion parameters consisting of more than one motion vectors (per each RefPicListX), corresponding reference picture indices(ref_idx_lX) and prediction direction index (inter_pred_flag). Note that the current common test conditions those includes inter prediction coding are adopting reference picture list combination process, which is the case “X=c”. An inter-coded CU can be encoded with one of the following coding modes (“PredMode”): MODE_SKIP, MODE_INTER. For MODE_SKIP case, any sub-partitioning to smaller PUs is not allowed and its motion parameters are assigned to the CU itself, where the PU size is PART_2Nx2N. On the contrary, up to eight types of further partitioning to smaller PUs can be allowed for a CU coded with MODE_INTER. The PredMode and the CU partitioning shape (“PartMode”) are signaled by a CU level syntax element “part_type” as specified in Table 7-10 of the WD. For a MODE_INTER CU other than those having maximum depth, seven PU partitioning patterns (PART_2Nx2N, PART_2NxN, PART_Nx2N, PART_2NxnU, PART_2NxnD, PART_nLx2N and PART_nRx2N) can be selected. PART_NxN can only be chosen at maximum CU depth level but permission to set N to 4 is controlled by a specific flag in SPS(“inter_4x4_enabled_flag”). For each PU, PU-based Motion Merging (merge mode) or normal inter prediction with actually estimated motion parameters (inter mode) can be used. This section describes how luma motion parameters are obtained for each PU. It is noted that chroma motion vector shall be derived from luma motion vector of corresponding PU according to the normative process specified in section 8.4.2.1.10 of the WD, and the same reference picture index and prediction direction index as luma’s one shall be used in chroma components.
4.8.2.1.1 Motion Vector Prediction

For each PU, the best motion vector predictor is computed with the process specified as follows. Firstly, a set of motion vector predictor candidates for RefPicListX shall be derived with normative process specified in section 8.4.2.1.7 of the WD, by referring to motion parameters of neighbouring PUs. Then, the best one from the candidate set is determined by a criterion that selects a motion vector predictor candidate that minimizes the cost Jpred,SAD specified in the section 4.1.4.3, with setting the bits for an index specifying each motion vector predictor candidate to Bpred. The index corresponding to the selected best candidate is assigned to the mvp_idx_lX.

4.8.2.1.2 CU coding with MODE_SKIP
In the case of skip mode (i.e., PredMode == “MODE_SKIP”), motion parameters for the current CU(i.e., PART_2Nx2N PU) are derived by using merge mode. In this case, the motion parameters are determined by checking all possible merge candidates derived by the normative process specified in section 8.4.2.1.1 to 8.4.2.1.5 of the WD, and selecting the best set of motion parameters that minimizes the cost Jmode specified in the section 4.1.4.5. In this case, Bmode includes coded bits for skip_flag and merge_idx that signals position of the PU having the best motion parameters to be used for the current PU. Since prediction residual is not transmitted for skip mode, SSE is obtained by inter prediction samples.

4.8.2.1.3 CU coding with MODE_INTER
When a CU is coded with MODE_INTER, motion parameter decision for each PU is performed first based on the ME cost Jpred,SATD specified in the section 4.1.4.4.

For merge mode case, the motion parameter decision starts with checking availabilities of all neighbouring PUs to form merge candidates according to the normative process specified in the section 8.4.2.1.1 to 8.4.2.1.5 of the WD. If there is no available merge candidate, the HM encoder simply skips cost computation for merge mode and does not choose merge mode for the current PU. Otherwise(i.e., if there is at least one merge candidate), the ME cost Jpred,SATD specified in the section 4.1.4.4 is computed for all possible PUs as merge candidate and the best one is selected as the best motion parameters for the PU predicted with merge mode. SATD between source and prediction samples is used as distortion factor, and bits for merge_idx is set to Bpred.
For inter mode case, the best motion parameters are derived by invoking motion estimation process specified in the section 6.9.2.2. During the motion estimation process, the best motion parameters are obtained based on the cost function Jpred,SATD specified in the section 4.1.4.4, which is comparable with the cost of motion parameter derivation for merge mode. SATD between source and prediction samples is used as distortion factor, and bits for inter_pred_flag, ref_idx_lX, mvd_lX and mvp_idx_lX are set to Bpred.

After both of the best motion parameters are obtained, the best motion parameters are determined by comparing them and taking the better one that results in lower cost.
4.8.2.2 Motion estimation
In order to get motion vector for each PU, block matching algorithm (BMA) is performed at encoder. Motion vector accuracy supported in HEVC is quarter-pel. To generate half-pel and quarter-pel accuracy samples, interpolation filtering is performed for reference picture samples. Instead of searching all the positions for quarter-pel accuracy motion, integer-pel accuracy motion vector is obtained at first. For half-pel search, only 8 sample points around the motion vector which has the minimum cost are searched. Similarly, for quarter-pel search, 8 sample points around the motion which has the minimum cost so far are searched. The motion vector which has the minimum cost is selected as the motion vector of the PU. To get the cost, SAD is used for integer-pel motion search and SA(T)D is used for half-pel and quarter-pel motion search. The rate for motion vector is obtained by utilizing pre-calculated rate table. In the following sub-sections, algorithms for integer-pel motion search is provided in detail.

4.8.2.2.1 Integer-pel accuracy motion search

To reduce search points for integer-pel motion, 3 step motion search strategy is used. Figure 4‑4 illustrates 3 step approach for integer-pel accuracy motion search.
[image: image39.wmf]Start position selection

First search

Refinement search

Best motion vector

Figure 4‑4 – Three step motion search strategy for integer-pel accuracy
At first, start position of the search is selected. As a default, motion vector predictor (PMV) obtained by motion vector predictor derivation process is used. Optionally, motion vectors of neighbouring positions (A, B, and C), and zero motion can be checked. In the common test condition, only PMV is used as the start position of integer-pel search.
[image: image40.wmf]Examining

PMV

Adjacent MVs?

Examining adjacent MVs

(A, B, C)

Zero MV ?

Examining zero MV

Best start position

Figure 4‑5 – Start position selection

As a second step, the first search is done using diamond search pattern or square search pattern. Currently, diamond search pattern is default, and square search pattern is used by changing input configuration. Additional raster search is performed when the difference between obtained motion vector and start position is too big. Currently, search range is set by 64 in integer-pel accuracy. Figure 4‑6 illustrates 3 search patterns used for the first search. Red circles represent current position and coloured squares represent candidate search positions for each pattern. Same colour means positions having same distance from the start position.
[image: image41.wmf]Diamond

Square

Raster

Figure 4‑6 – Search patterns for the first search

Last step is refinement search. In this step, refinement search is performed by changing the start position to the best position from the second step. Also, diamond or square search is utilized, and refinement is stopped when 2 rounds are passed after best match.
4.8.2.2.2 Bi-predictive search strategy

In principle, bi-predictive motion search means to search two motion vectors which produce minimum error between original block (O) and predicted block with two prediction (P=P0+P1). In HM, practical strategy is implemented by utilizing iterative uni-predictive search. Bi-predictive search steps are as follows.
1) Search P1 which produces minimum error with (2O - P0), where O represents original block and P0 means predictor produced by the first motion vector. P0 is fixed in this step. To get motion vector for P1, uni-predictive motion search is utilized after setting (2O - P0) as reference samples.
2) Search P0 which produces minimum error with (2O – P1), where O represents original block and P1 means predictor produced by the second motion vector. P1 is the predictor obtained in step 1) and fixed in this step. To get P0, uni-predictive search is utilized after setting (2O – P1) as reference samples.
3) Iterate 1) and 2) until maximum number of iterations is reached. The maximum number of iteration is set by 4 unless the fast search option is enabled.
4.8.2.2.3 Fast search options
There are two options to accelerate motion estimation. The first one is using sub-sampled SAD for integer motion search. This option is only used for blocks which have larger number of rows than 8. In this method, only samples in odd-number rows are involved for SAD calculations. The second option is reducing number of iterations for bi-predictive motion search. The number of iteration is set by 4 unless the fast search option is enabled.
4.8.2.3 Decision process on AMP mode evaluation procedure
For encoder speed up, additional conditions are checked before doing motion estimation for AMP. If the certain conditions are met, additional motion estimation for AMP can be skipped. Conditions of mode skipping are based on the two values: the best partition mode (PartMode) before AMP modes are evaluated and the PartMode and prediction mode (PredMode) at lower level in CU quad-tree, so called, parent CU, which contains current PU. Conditions and actions are specified in Table 4-2. Related contribution is [14].
Table 4‑2 – Conditions and actions for fast AMP mode evaluation
	Conditions
	Actions

	The best PartMode is SIZE_2NxN
	Try SIZE_2NxnU and SIZE_2NxnD

	The best PartMode is SIZE_Nx2N
	Try SIZE_nLx2N and SIZE_nRx2N

	The best PartMode is 2Nx2N &&
!merge mode && ! skip mode
	Try all AMP modes

	PartMode of parent CU is AMP mode
	Try merge mode only for all AMP modes

	PartMode of parent CU is PART_2Nx2N && parent CU is not skipped
	Try merge mode only for all AMP modes

	PredMode of parent CU is intra && the best PartMode is SIZE_2NxN
	Try merge mode only for SIZE_2NxnU and SIZE_2NxnD

	PredMode of parent CU is intra && the best PartMode is SIZE_Nx2N
	Try merge mode only for SIZE_nLx2N and SIZE_nRx2N

	Size of current CU is 64x64
	No AMP modes are evaluated

4.8.3 Intra/Inter/PCM mode decision

For inter coded CUs, the following mode decision process is conducted in the HM encoder. Its schematic is also shown in Figure 4‑7. Please refer to contributions about early termination for Early_CU condition, CBF_Fast condition, and Early_SKIP condition [13]

 REF _Ref322607041 \n \h
[14]

 REF _Ref322607042 \n \h
[15].
1. Coding costs (Jmode) for MODE_INTER with PART_2Nx2N is computed and Jmode is set to minimum CU coding cost J.
2. Check if motion vector difference of MODE_INTER with PART_2Nx2N is equal to (0, 0) and MODE_INTER with PART_2Nx2N contains no non-zero transform coefficients (Early_SKIP condition). If both are true, proceed to 17 with setting the best interim coding mode as MODE_SKIP. Otherwise, proceed to 3.
3. Check if MODE_INTER with PART_2Nx2N contains no non-zero transform coefficients (CBF_Fast condition). If the condition is true, proceed to 17 with setting the best interim coding mode as MODE_INTER with PART_2Nx2N. Otherwise, proceed to 4.
4. Jmode for MODE_SKIP is evaluated and J is set equal to Jmode if Jmode < J.
5. Check if the current CU depth is maximum and the current CU size is not 8x8 when inter_4x4_enabled_flag is zero. If the conditions are true, proceed to 6. Otherwise, proceed to 7.

6. Jmode for MODE_INTER with PART_NxN is evaluated and J is set equal to Jmode if Jmode < J. After that, check if MODE_INTER with PART_NxN contains no non-zero transform coefficients (CBF_Fast condition). If the condition is true, proceed to 17 with setting the best interim coding mode as MODE_INTER with PART_NxN. Otherwise, proceed to 7.
7. Jmode for MODE_INTER with PART_Nx2N is evaluated and J is set equal to Jmode if Jmode < J. After that, check if MODE_INTER with PART_Nx2N contains no non-zero transform coefficients (CBF_Fast condition). If the condition is true, proceed to 17 with setting the best interim coding mode as MODE_INTER with PART_Nx2N. Otherwise, proceed to 8.
8. Jmode for MODE_INTER with PART_2NxN is evaluated and J is set equal to Jmode if Jmode < J. After that, check if MODE_INTER with PART_2NxN contains no non-zero transform coefficients (CBF_Fast condition). If the condition is true, proceed to 17 with setting the best interim coding mode as MODE_INTER with PART_2NxN. Otherwise, proceed to 9.
9. Invoke a process to determine AMP mode evaluation procedure specified in 4.8.2.3. Output of this process is assigned to TestAMP_Hor and TestAMP_Ver. TestAMP_Hor specifies whether horizontal AMP modes are tested with specific ME or tested with merge mode or not tested. TestAMP_Ver specifies whether vertical AMP modes are tested with specific ME or tested with merge mode or not tested.

10. If TestAMP_Hor indicates that horizontal AMP modes are tested, MODE_INTER with PART_2NxnU is evaluated with procedure suggested by TestAMP_Hor and J is set equal to the resulting coding cost Jmode if Jmode < J. After that, check if MODE_INTER with PART_2NxnU contains no non-zero transform coefficients (CBF_Fast condition). If the condition is true, proceed to 17 with setting the best interim coding mode as MODE_INTER with PART_2NxnU. Otherwise, MODE_INTER with PART_2NxnD is evaluated with procedure suggested by TestAMP_Hor and J is set equal to the resulting coding cost Jmode if Jmode < J. After that, check if MODE_INTER with PART_2NxnD contains no non-zero transform coefficients (CBF_Fast condition). If the condition is true, proceed to 17 with setting the best interim coding mode as MODE_INTER with PART_2NxnD. Otherwise, proceed to 11.
11. If TestAMP_Ver indicates that vertical AMP modes are tested, MODE_INTER with PART_nLx2N is evaluated with procedure suggested by TestAMP_Ver and J is set equal to the resulting coding cost Jmode if Jmode < J. After that, check if MODE_INTER with PART_nLx2N contains no non-zero transform coefficients (CBF_Fast condition). If the condition is true, proceed to 17 with setting the best interim coding mode as MODE_INTER with PART_nLx2N. Otherwise, MODE_INTER with PART_nRx2N is evaluated with procedure suggested by TestAMP_Ver and J is set equal to the resulting coding cost Jmode if Jmode < J. After that, check if MODE_INTER with PART_nRx2N contains no non-zero transform coefficients (CBF_Fast condition). If the condition is true, proceed to 17 with setting the best interim coding mode as MODE_INTER with PART_nRx2N. Otherwise, proceed to 12.
12. MODE_INTRA with PART_2Nx2N is evaluated by invoking the process specified in 4.8.1, only when at least one or more non-zero transform coefficients can be found by using the best interim coding mode. J is set equal to the resulting coding cost Jmode if Jmode < J.

13. Check if the current CU depth is maximum, If the condition is true, proceed to 14. Otherwise, proceed to 15.
14. MODE_INTRA with PART_NxN is evaluated by invoking the process specified in 4.8.1, only when the current CU size is larger than minimum TU size. The resulting coding cost Jmode is set to J if Jmode < J.

15. Check if the current CU size is greater than or equal to the minimum PCM mode size specified by the log2_min_pcm_coding_block_size_minus3 value of SPS parameter. If the condition is true, proceed to 16. Otherwise, proceed to 17.
16. Check if any of the following conditions are true. If the condition is true, PCM mode is evaluated and J is set equal to the resulting coding cost Jmode if Jmode < J.

· Bit cost of J is greater than that of the PCM sample data of the input image block.
· J is greater than bit cost of the PCM sample data of the input image block multiplied by λmode.
17. Update bit cost Bmode by adding bits for CU split flag and re-compute minimum coding cost J.
18. Check if the best interim coding mode is MODE_SKIP (Early_CU condition). If the condition is true, do not proceed to the recursive mode decision at next CU level. Otherwise, go to next CU level of recursive mode decision if the current CU depth is not maximum.

[image: image42.emf]INTER_2Nx2N

Early_SKIP

SKIP

INTRA_2Nx2NINTRA_NxN

TestAMP_Ver

TestAMP_Hor

No

Yes

No

Yes

No

PCM

xCompressCUxCompressCUxCompressCUxCompressCU

Early_CU

No

END

Yes

Yes

START

Recursive call

INTER_Nx2NINTER_2NxN

INTER_2NxnUINTER_2NxnD

INTER_NxN

INTER_nLx2NINTER_nRx2N

CBF_Fast

YesNo

Refer 6,7,8,10,11

Refer 5,14

Figure 4‑7 – The schematic of Intra/Inter/PCM mode decision
For the computation of Jmode except for PCM mode, residual signal is obtained by subtracting intra or inter prediction samples from source samples and is coded with transform and quantization with quad-tree TU partitioning as specified in the section 4.9. Bits for side information (skip_flag, merge_flag, merge_idx, pred_type, pcm_flag, inter_pred_flag, reference picture indices, motion vector(s), mvp_idx, intra prediction mode signaling) and residual coded data are considered as Bmode. SSEluma and SSEchroma are obtained by using local decoded samples, except for MODE_SKIP case where prediction sample is used as local decoded samples.

For the computation of Jmode for PCM mode, bits for side information (skip_flag, pred_type, pcm_flag, pcm_alignment_zero_bit) and PCM sample data are considered as Bmode. SSEluma and SSEchroma are set to 0. (Note that in current test conditions, the PCM mode decision processes in (15) and (16) are skipped since the minimum PCM mode size is 128.)
This CU level mode decision is recursively performed for each CU depth and final distribution of CU coding modes is determined at CTU level.

4.9 Derivation process for TU-level coding parameters

4.9.1 Residual Quad-tree partitioning

[Editor’s note: Non-normative description of C311 & C319 should be summarized here.]

4.9.2 Rate-Distortion Optimized Quantization

The basic idea behind rate distortion optimized quantization (RDOQ) is to perform a soft decision quantization for a given coefficient given both its impact on the bitrate and quality. In the HM, RDOQ is applied in a similar manner as it was applied to CABAC in H264/AVC.

To estimate the number of bits required to code coefficients, tabularized values of entropy of the probabilities corresponding to states in CABAC coding engine are used. Residual coding in CABAC includes two parts, i.e., coding a so-called significance map and coding non-zero coefficients. Given a scan ordered sequence of transform coefficients, its significance map is a binary sequence which indicates the occurrence and location of the non-zero coefficients.
[Editor’s note: Needs expansion.]
[Editor’s note: Needs description on sign bit hiding.]
5 References

[1] JCT-VC, “Encoder-side description of Test Model under Consideration”, JCTVC-B204, JCT-VC Meeting, Geneva, July 2010

[2] JCT-VC, “High Efficiency Video Coding (HEVC) Test Model 1 (HM 1) Encoder Description”, JCTVC-C402, October 2010
[3] JCT-VC, “High Efficiency Video Coding (HEVC) Test Model 2 (HM 2) Encoder Description”, JCTVC-D502, January 2011
[4] JCT-VC, “High Efficiency Video Coding (HEVC) Test Model 3 (HM 3) Encoder Description”, JCTVC-E602, March 2011
[5] JCT-VC, “High Efficiency Video Coding (HEVC) Test Model 4 (HM 4) Encoder Description”, JCTVC-F802, July 2011
[6] JCT-VC, “High Efficiency Video Coding (HEVC) Test Model 5 (HM 5) Encoder Description”, JCTVC-G1102, November 2011
[7] JCT-VC, “High Efficiency Video Coding (HEVC) Test Model 6 (HM 6) Encoder Description”, JCTVC-H1002, February 2012
[8] JCT-VC, “High Efficiency Video Coding (HEVC) Test Model 7 (HM 7) Encoder Description”, JCTVC-I1002, May 2012
[9] JCT-VC, “High Efficiency Video Coding (HEVC) Test Model 8 (HM 8) Encoder Description”, JCTVC-J1002, July 2012
[10] JCT-VC, “High Efficiency Video Coding (HEVC) text specification draft 9 (SoDIS)”, JCTVC-K1003, October 2012
[11] JCT-VC, “Common HM test conditions and software reference configurations”, JCTVC-K1101, October 2012
[12] ITU-T Recommendation H.264 / ISO/IEC 14496-10: "Information technology - Coding of audio-visual objects- Part 10: Advanced Video Coding"
[13] JCT-VC, “CE2: Test result of asymmetric motion partition (AMP)”, JCTVC-F379, July 2011
[14] JCT-VC, "Early Termination of CU Encoding to Reduce HEVC Complexity", JCTVC-F045, July 2011
[15] JCT-VC, "Coding tree pruning based CU early termination", JCTVC-F092, July 2011
[16] JCT-VC," Early skip detection for HEVC ", JCTVC-G543, November 2011
intra prediction

motion est. /

comp.

transform /

quantization

entropy coding

inv. quant / inv.

transform

quant. transf.

coeff

.

residual

deblocking

filtering

sample adaptive

offset (SAO)

decoded picture

buffer

predictor

input video

, for non-referenced pictures

, for referenced pictures

_1377437532.unknown

_1387626746.unknown

_1387627856.unknown

_1390210147.vsd
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

 0 : Intra_Planar
 1 : Intra_DC
 35: Intra_FromLuma

_1395509430.vsd
�

�

�

�

INTER_2Nx2N�

Early_SKIP�

SKIP�

INTER_2NxN�

INTER_Nx2N�

INTER_NxN�

INTRA_2Nx2N�

INTER_2NxnU�

INTER_2NxnD�

INTER_nLx2N�

INTER_nRx2N�

INTRA_NxN�

TestAMP_Ver�

TestAMP_Hor�

No�

Yes�

No�

Yes�

No�

PCM�

xCompressCU�

xCompressCU�

xCompressCU�

xCompressCU�

Early_CU�

No�

END�

Yes�

Yes�

START�

Recursive call�

CBF_Fast�

Yes�

No�

�

�

Refer 6,7,8,10,11

Refer 5,14

_1387627873.unknown

_1387627818.unknown

_1387626795.unknown

_1377437541.unknown

_1360761329.unknown

_1360761464.unknown

_1367074138.doc
[image: image1.emf]QPI

time

0135

7

2 64 8

IDR Picture

QPI

・・・・・

_1367076123.doc
[image: image1.emf]QPI

QPB

L1

=QPI+1QPB

L1

=QPI+1

QPB

L2

=QPI+2

QPB

L3

=QPI+3

time

QPB

L3

=QPI+3

QPB

L3

=QPI+3

QPB

L3

=QPI+3

QPB

L2

=QPI+2

0

1357

2

4

6

8

IDR or Intra

Picture

GPB(GeneralizedP

and B) Picture

_1367076147.doc
[image: image1.emf]QPI

QPB

L1

=QPI+1

QPB

L2

=QPI+2

QPB

L3

=QPI+3

QPB

L4

=QPI+4

GPB(GeneralizedP

and B) Picture

time

Referenced B

Picture

Non-referenced B

Picture

0

5678

3 4

2

1

IDR or Intra

Picture

Referenced B

Picture

_1360761701.unknown

_1360761454.unknown

_998298813.unknown

_1353835799.unknown

_998298812.unknown

