ISO/IEC WD 23009-5
ISO/IEC DIS 23009-6

INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC1/SC29/WG11
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11/N17283
October 2017, Macau, China

	Source
	Communication

	Status
	Approved

	Title
	White paper on MPEG-DASH with Server Push and WebSockets

	Authors
	Viswanathan (Vishy) Swaminathan, Saayan Mitra (Adobe)

[bookmark: _GoBack]Nobody wants to see a live tweet reporting a goal before it appears when you are watching a soccer match live on television. MPEG Dynamic Adaptive Streaming over HTTP (DASH) [1] has revolutionized video delivery over the internet but usually individual segments are fully generated before being streamed, which introduces a latency of at least one segment (see also Figure 1 below). A naïve solution could be to reduce the segment size, which decreases coding efficiency and increases communication overhead due to higher number of HTTP requests. A solution to this problem is provided by Part 6 of MPEG-DASH standard, which is referred to as DASH with server push and WebSockets (ISO/IEC 23009-6) [2]. The former – server push – enables sending multiple responses (i.e., pushed by the server) to a single client request according to various strategies, which are specific to the implementation, and the latter – WebSocket – provides full-duplex communication with the aim of reducing the HTTP overhead.
The remainder of this white paper provides a brief overview of the carriage of MPEG-DASH media presentations over full duplex HTTP-compatible protocols, particularly HTTP/2 and WebSockets, as defined within Part 6 of the MPEG-DASH standard.
Introduction
MPEG Dynamic Adaptive Streaming over HTTP (DASH) has revolutionized video delivery over the internet with using the existing web server and cache infrastructure. It has made streaming cost-effective, easily deployable, and scalable. Among the two scenarios of streaming, video on demand (VoD) and live (such as sports), the latter is more challenging since the content should be delivered as soon as it is generated. Having low latency is of paramount importance in such cases. Nobody wants to see a live tweet reporting a goal before it appears on the television when you are watching a soccer match live in television.
Although HTTP streaming makes it delivery of media cheaper, it has shortcomings when it comes to live streaming, since a segment is typically fully generated before it can be streamed. This introduces a latency of at least one segment.
Encoder
Live Packager
Web Server
Player
…
segments
HTTP
Live Latency
1:0
0:0

Figure. 1
A naïve solution could be to reduce the size of segments generated. But for the same amount of content the number of HTTP requests will go up by the same factor. This is counterintuitive to what the goal of MPEG-DASH is. This establishes the need for a scheme that will lower the latency and will work with MPEG-DASH.
HTTP/2 [3] introduced the server push feature geared towards faster content retrieval minimizing overhead in the communication part. The introduction of server push opened up the possibility of sending multiple responses (pushed by the server) to a single request by the client. This is the key to alleviating the request response explosion problem that plagues the earlier approaches. The solution also has to maintain backwards compatibility with server and clients working over HTTP/1.1.
WebSockets [4] were introduced to provide full-duplex communication and enable message flow on top of TCP, with the intention of having less overhead than HTTP. The WebSockets standard has been developed to be compatible with HTTP, and in fact it uses the “HTTP upgrade” header for the initial client-server handshake. Most browsers today support the WebSockets protocol.
Just like HTTP/2, WebSockets also allow server-initiated and client-initiated transactions, data request cancelation, and multiplexing of multiple data responses. Hence, if the server supports WebSockets, the server push strategy can be applied with WebSocket-specific message bindings.
Push strategies
The client and server first has to initiate a media channel enabled by HTTP/2 server push or WebSocket messaging. Once the connection is established, the MPEG-DASH client issues a request for the media or the MPD from the server with a URI and a push strategy. There can be three potential scenarios for server push strategy:
· No-Push: It is the same as the conventional HTTP requests and responses occurring sequentially. [Fig. 2(a)]
· All-Push: On the other end of the spectrum is the server pushing all segments as and when they are generated one after another in response to a single request from the client. [Fig. 2(b)]
· k-Push: The client issues requests every k segments and specifies which segments it needs. When the server receives the request, it responds by pushing the next segments consecutively as soon as each one is ready. [Fig. 2(c)]
[image:]
Fig 2. Potential scenarios for server push strategy.
Opting for server-push is completely optional and can be specified by a directive (PushDirective) to the server. The directive may accompany an MPD request, or a segment request to the server. There can be multiple directives accompanying a single message. When the server receives communication for push to occur, it provides an acknowledgment to the client and chooses one strategy if multiple options are present in the directive. This allows for future compatibility with the introduction of potential new push strategies. There can be various flavours of the push strategy as follows:
· A server may appropriately push segments as it deems fit for providing a fast start at the client.
· The segments to be pushed can be explicitly mentioned in a list (URLList) and communicated to the server before.
· The strategy can be to push the next k segments upon receiving a request from the client.
· The push strategy can specify only segments adhering to a URL template (URLTemplate) are considered.
· The strategy can be to push segments till a segment exceeding the specific time is reached.
Conclusion
With server push, the biggest benefit is lowering the latency of live streaming. It can be beneficial for facilitating a fast start time for playback of VoD DASH presentation. In case, either the client or server does not support the push based protocol, the communication can fall back to HTTP 1.1. The server push approach achieves low latency in live streaming by reducing the request overhead.
References
[1] Information technology – Dynamic adaptive streaming over HTTP (DASH) – Part 1: Media presentation description and segment formats, International Standard, ISO/IEC 23009-1, May 2014.
[2] Information technology – Dynamic adaptive streaming over HTTP (DASH) –Part 6: DASH with server push and websockets, ISO/IEC 23009-1, 2017.
[3] M. Belshe, R. Peon, M. Thomson, Hypertext Transfer Protocol Version 2 (HTTP/2), available online: https://tools.ietf.org/html/rfc7540, May 2015.
[4] I. Fette, A. Melnikov, The WebSocket Protocol, available online: https://tools.ietf.org/html/rfc6455, December 2011.
	iii
	© ISO/IEC 2014 – All rights reserved

	vi
	© ISO/IEC 2016 – All rights reserved

image4.png

image5.png

image6.png

image7.emf

image8.png

image9.jpeg

image10.png

image11.png

image12.png

image7.png
Client

"eq seg 4

seg

re

29seg2

req Se:q n

Server Client

‘y

(a) No-Push

"eq seq ¢ ton

segt

‘/gz
‘y

Server Client

(b) All-Push

"eq seg 1 to k
——9 ok |
| seal —

sed

€4 seq (n-k+1) to y
é/ﬁg’f‘/—

(c) k-Push

Server

image1.emf

image2.png

image3.jpeg

