INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC 1/SC 29/WG 11
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC 1/SC 29/WG 11 N13952
Incheon, KR – April 2013

	Source:
	Communication Group

	Status
	Approved

	Title:
	White Paper on MPEG-M: A Digital Media Ecosystem for Interoperable Applications

Contents
Keywords	2
Abstract	2
2	Introduction	2
3	Scope and Objectives	4
4	Technology	5
4.1	Part 1 – Architecture (23006 – 1)	6
4.2	Part 2 – Application Programming Interface (23006 – 2)	8
4.2.1	Protocol Engines	8
4.2.2	Technology Engines	9
4.2.3	Orchestrator Engines	11
4.2.4	Engine Load and Initialization	11
4.3	Part 3 – Conformance and Reference Software (23006 – 3)	13
4.3.1	MXM Project Structure	13
4.3.2	MXM Core Module	13
4.3.3	Engines Container Module	13
4.3.4	Schemata Container Module	14
4.3.5	Elementary Services Module	14
4.3.6	Applications Container Module	14
4.4	Part 4 – Elementary Services (23006 – 4)	14
4.4.1	Table of Elementary Services	16
4.4.2	Elementary Services in Action	17
4.5	Part 5 – Service Aggregation (23006 – 5)	20
5	Related Developments	23
6	Acknowledgements	24
7	Standard	24
8	References	24

[bookmark: _Toc353016698]MPEG-M: A Digital Media Ecosystem for Interoperable Applications

[bookmark: _Toc353016699]Panos Kudumakis1, Mark Sandler1, Angelos-Christos G. Anadiotis2, Iakovos S. Venieris2,
[bookmark: _Toc353016700]Angelo Difino3, Xin Wang4, Giuseppe Tropea5, Michael Grafl6, Víctor Rodríguez-Doncel7,
Silvia Llorente8, Jaime Delgado8
1 School of Electronic Engineering and Computer Science, Queen Mary University of London, London, UK
2 School of Electrical and Computer Engineering, National Technical University of Athens, Greece
3 CEDEO.net, Torino, Italy, 4 Huawei, Santa Clara, USA
5 Consorzio Nazionale Interuniversitario per le Telecomunicazioni, Parma, Italy
6 Institute of Information Technology, Alpen-Adria-Universität Klagenfurt, Klagenfurt, Austria
7 Universidad Politecnica de Madrid, Madrid, Spain
8 Universitat Politècnica de Catalunya, Barcelona, Spain
[bookmark: _Toc353016701]Keywords
MPEG Standard; MPEG-M; IPTV; Digital Media; Multimedia Architecture; Middleware; Cloud Services; Multimedia Service Platform Technologies; Interoperable Digital Media Applications and Services;

[bookmark: _Toc353016702]Abstract
MPEG-M is a suite of ISO/IEC standards (ISO/IEC 23006) that has been developed under the auspices of Moving Picture Experts Group (MPEG). MPEG-M, also known as Multimedia Service Platform Technologies (MSPT), facilitates a collection of multimedia middleware APIs and elementary services as well as service aggregation so that service providers can offer users a plethora of innovative services by extending current IPTV technology toward the seamless integration of personal content creation and distribution, e-commerce, social networks and Internet distribution of digital media.

[bookmark: _Toc353016703]Introduction
With the deployment of broadband networks enabling new ways to deliver and exchange multimedia services and the improvement of hardware performance allowing many service aspects to be implemented as web-service software, businesses related to media services are facing significant changes. These changes are opening new business opportunities for multimedia services, such as those generated by the recent introduction of IPTV services for which several standards have been or are being developed. Examples of already developed standards are: ITU-T Q.13/16, Open IPTV Forum, Alliance for Telecommunications Industry Solutions IPTV Interoperability Forum, Digital Video Broadcasting IPTV, Hybrid Broadcast Broadband TV and YouView.

However, most of the current IPTV efforts stem from rather conventional value chain structures thus standing in stark contrast with the buoyant web environment where new initiatives – sometimes assembling millions of users in a fortnight – pop-up almost daily with exciting new features, such as Apple's and Google's Application Programming Interfaces (APIs) enabling third parties to develop and provide applications and services [1], [2].

At the same time we are witnessing cases where the closed delivery and content bundles offered by some operators are being either abandoned (e.g. mobile phone brands linked to a particular content service) or complemented with the possibility offered to users to freely access services (e.g., broadband, mobile and IPTV) of their choice. The latter becomes more eminent by the appearance of new operators offering service components (e.g., cloud services) and the need for these to be interoperable.

MPEG has been the provider of some enabling technologies and has developed a large portfolio of standards that can be assembled to provide multimedia services [3]. Continuing its approach of providing standards for the next generation of products, services and applications, MPEG has developed MPEG-M, a standard for advanced IPTV services. MPEG-M is based on a flexible architecture capable of accommodating and extending in an interoperable fashion many features that are being deployed on the web for delivering and consuming multimedia content (e.g., Hulu, Netflix or Apple TV), next to those enabled by the recent standard MPEG technologies (e.g., High Efficiency Video Coding and Dynamic Adaptive Streaming over HTTP [4], [5]).

Thanks to the MPEG-M suite of standards, aimed at facilitating the creation and provisioning of vastly enhanced IPTV services, it is envisaged that a thriving digital media economy can be established, where developers can offer MPEG-M service components to the professional market because a market will be enabled by the standard MPEG-M component service API; manufacturers can offer MPEG-M devices to the global consumer market because of the global reach of MPEG-M services; service providers can set up and launch new attractive MPEG-M services because of the ease to design and implement innovative MPEG-M value chains; and users can seamlessly create, offer, search, access, pay/cash and consume MPEG-M services.

The MPEG-M suite of standards extends the devices capabilities with advanced features such as content generation, processing, and distribution by a large number of users; easy creation of new services by combining service components of their choice; global, seamless and transparent use of services regardless of geo-location, service provider, network provider, device manufacturer and provider of payment and cashing services; diversity of user experience through easy download and installation of applications produced by a global community of developers since all applications share the same middleware APIs; and innovative business models because of the ease to design and implement media-handling value chains whose devices interoperate because they are all based on the same set of technologies, especially MPEG technologies.

A brief overview of the MPEG-M suite of standards can be found in [6]. In contrast, this paper is focused on the detailed description of the MPEG-M digital media services ecosystem and its components providing all the necessary technical information (including access to the reference software) needed by developers who would like to build MPEG-M compliant applications and services; and, why not attract millions of users in a fortnight, too!

The rest of the paper is structured as follows: In section 2 the scope and objectives of the MPEG-M digital media services ecosystem are explained. In section 3 each of the individual MPEG-M standards described in detail including the functionalities offered by each of them. Finally, in section 4 a number of MPEG-M related developments offering various digital media applications and services are presented.

[bookmark: _Toc353016704]Scope and Objectives
The scope of the MPEG-M is to support the service providers’ drive to deploy innovative multimedia services by identifying a set of Elementary Services (ESs) and defining the corresponding set of protocols and APIs to enable any user in an MPEG-M value chain to access those services in an interoperable fashion. Note that an MPEG-M value chain is a collection of users, including creators, end users and service providers that conform to the MPEG-M standard.

Assuming that in an MPEG-M value chain there is a Service Provider (SP) for each ES, a User may ask the Post Content SP to get a sequence of songs satisfying certain Content and User Descriptions (metadata). The “mood” of a group of friends could be a type of User Description.

[image:]
Figure 1: A possible chain of Services centred around Post Content Service Provider.

With reference to Figure 1, the End User would contact the Post Content SP who would get appropriate information from both the Describe Content SP and the Describe User SP in order to prepare the sequence of songs according to the friends "mood" by using, for example, a semantic music playlist generator [7]. The End User would then get the necessary licenses from the Manage License SP. The sequence of songs would then be handed over to the Package Content SP, possibly in the form of an "MPEG-21 Digital Item", the latter being a container for Resources, Metadata, Rights and their interrelationships [8]. The Package Content SP will get the Resources from the Store Content SP and hand over the Packaged Content to the Deliver Content SP who will stream the Packaged Content to the End User.

In many real-world MPEG-M value chains, service providers would not be able to exploit the potential of the standard if they were confined to only offer ESs. Therefore service providers will typically offer bundles of ESs, known as Aggregated Services (ASs). In general, as shown in Figure 2, there will be a plurality of service providers offering the same or partially overlapping ASs, for example, a SP offering User Description Services, may offer Content Description Services as well.

[image: AggregatedServices.jpg]
Figure 2: MPEG-M standard-enabled digital media services eco-system underpinning and supporting the activities of content creators and consumers.

Starting from MPEG-M elementary services, the aggregation of services can put together a certain amount of services generating a complex MPEG-M value network, having different topologies and associating services in several ways. For example, the Payment and Cashing and Rights Negotiation ESs are aggregated to create AS#4, while Content Delivery and License Provision ESs are both shared between AS#6 and AS#7.

[bookmark: _Toc353016705]Technology
MPEG-M (ISO/IEC 23006) is a suite of standards that has been developed under the auspices of Moving Picture Experts Group (MPEG).

ISO/IEC 23006 is referred as MPEG Extensible Middleware (MXM) in its first edition, and it specifies an architecture (Part 1), an API (Part 2), a reference software (Part 3) and a set of protocols which MXM Devices had to adhere (Part 4).

MPEG-M (ISO/IEC 23006) is referred as Multimedia Service Platform Technologies (MSPT) in its second edition, and it conserves the architecture and design philosophy of the first edition, but stressing its Service Oriented Architecture character. Furthermore, it specifies how to combine elementary services into aggregated services (Part 5).

More specifically, the second edition of MPEG-M is subdivided into five parts:

•	Part 1 - Architecture: specifies the architecture that is part of an MPEG-M implementation;
•	Part 2 - MPEG Extensible Middleware (MXM) Application Programming Interface (API): specifies the middleware APIs;
•	Part 3 - Conformance and Reference Software: specifies conformance tests and the software implementation of the standard;
•	Part 4 - Elementary Services: specifies elementary service protocols between MPEG-M applications;
•	Part 5 - Service Aggregation: specifies mechanisms enabling the combination of elementary services and other services to build aggregated services.
These five parts are described next.
[bookmark: _Toc353016706]Part 1 – Architecture (23006 – 1)
The first part of the standard describes the MPEG-M architecture, its elements and APIs that enable MPEG-M compliant devices to be interoperable albeit made by different manufacturers.

A general architecture of an MPEG-M device is given in Figure 3, where MPEG-M applications running on an MPEG-M device could call, via an application-middleware API, the Technology Engines (TEs) in the middleware to access local functionality modules, and the Protocol Engines (PEs) to communicate with applications running on other devices by executing elementary or aggregated service protocols among them. The role of the orchestrator engine is to set up a more complex chain of TEs and PEs.

[image:]
Figure 3: MPEG-M device architecture; the middleware is populated by Technology Engines (TEs), Protocol Engines (PEs) and one or more Orchestration Engines (ORCH).

Typical technology engines include those implementing MPEG technologies such as Audio, Video, 3D Graphics, Sensory Data, File Format, Streaming, Metadata, Search, Rendering, Adaptation, Rights Management and Media Value Chain Ontologies [3].

Typical protocol engines include those implementing the elementary services, as described earlier in the music "mood" example, such as Describe User, Describe Content, Manage License, Package Content and Deliver Content.

The elements of the MPEG-M architecture are MPEG-M engines, MPEG-M engine APIs, MPEG-M orchestrator engine, MPEG-M orchestrator engine API, MPEG-M device, and MPEG-M application. MPEG-M engines are collections of specific technologies that can be meaningfully bundled together; the MPEG-M engine APIs can be used to access functionalities of MPEG-M engines; an MPEG-M orchestrator engine is a special MPEG-M engine capable of creating chains of MPEG-M engines to execute a high-level application call such as “Photo Slide Show”; the MPEG-M orchestrator engine API can be used to access the MPEG-M orchestrator engine; an MPEG-M device is a device equipped with MPEG-M engines; and an MPEG-M application is an application that runs on an MPEG-M device and makes calls to the MPEG-M engine APIs and the MPEG-M orchestrator engine API.

In general an MPEG-M device can have several MPEG-M applications running on it such as an audiovisual player or a content creator combining audio-visual resources with metadata and rights information. Some applications may be resident (i.e., loaded by the MPEG-M manufacturer) while some may be temporary (i.e., downloaded for a specific purpose).

When an MPEG-M application is executed, there may be “low-level” calls directly to some MPEG-M engines through their APIs and “high-level” calls like, say, “Photo Slide Show”, which will be handled by the orchestrator engine. The MPEG-M orchestrator is capable of setting up a chain of MPEG-M engines for handling complex operations, orchestrating the intervention and send/receive data to/from the particular chain of engines that a given high-level call will trigger, thus relieving MPEG-M applications from the logic of handling them.
[bookmark: _Toc353016707]Part 2 – Application Programming Interface (23006 – 2)
The second part of the standard specifies a set of Application Programming Interfaces (APIs). These APIs are the gateway to the MPEG-M middleware – providing access to its technology engines as specified in Part 1 – for any application running on an MPEG-M device.

These APIs are designed in such a way so that an individual MPEG-M engine, which provides access to a single MPEG technology (e.g., video coding), can be orchestrated with other engines. In this way, chains of MPEG-M engines to execute "high-level" application calls can be created. That is, calls to a group of MPEG technologies (e.g., creating a "Photo Slide Show") become feasible.

Conceptually, these APIs are divided in four categories, namely creation APIs, editing APIs, access APIs and engine-specific APIs. Creation APIs are used to create data structures, files and elementary streams conforming to the respective standards; Editing APIs are used to modify an existing data structure, file, elementary stream in order to obtain a derived object still conforming to the respective standard; Access APIs are used to parse data structures, files, decode elementary streams in order to retrieve the information contained within; and Engine-specific APIs are those that do not fall into the above categories, such as APIs for license authorization and content rendering.

Furthermore, Part 2 of the standard contains the description and the API specification of MPEG-M engines, which are classified into three types: a) Protocol Engines (PEs), b) Technology Engines (TEs), and c) Orchestrator Engines.
[bookmark: _Toc353016708]Protocol Engines
The protocol engines are instantiating the communication protocol of the elementary services and, therefore, there is a one-to-one relationship between them. Their APIs have been designed in a unified way by providing interfaces for creating and parsing protocol requests and responses, as they are specified by the corresponding elementary services in MPEG-M Part 4, as well as for performing the requests and receiving the responses.

A fundamental abstract protocol engine is the Base PE, corresponding to the base protocol of MPEG-M Part 4, which contains the methods and interfaces for creating and parsing the MPEG-M base schema. The Base PE cannot exist alone; all the other protocol engines must extend the Base PE, in order to ensure the consistency between MPEG-M Parts 2 and 4.

The schema handler of a protocol engine is used to manipulate the schemata dictated by the corresponding elementary services, where the technology handler provides the means to implement the call to the orchestrator (local or remote) which manages the technology engines that perform the actual elementary service operation. A typical protocol engine of the form <Action><Entity>Engine (e.g., CreateContentEngine) has a specification similar to the one shown in Listing 1. This specification is neither exhaustive nor aligned to all the engines; it is just given as a typical example.

Listing 1: Typical Protocol Engine (PE) form
	<Action><Entity>Engine:
· <Action><Entity>SchemaHandler:
· <Action><Entity>Request extends ProtocolRequest
· <Action><Entity>Response extends ProtocolResponse:
· <Action><Entity>Success extends ProtocolSuccess
· <Action><Entity>Failure extends ProtocolFailure
· <Action><Entity>TechnologyHandler:
· <Action><Entity>Protocol

[bookmark: _Toc353016709]Technology Engines
The technology engines are responsible for carrying out the actual operation of an elementary service (even though a technology engine can be used by other components of the middleware or application layer, their primary scope is the support of elementary services operation). They are also organized in terms of schema and technology handlers. The schema handler is mainly used for managing the schemata dictated by the standards used for implementing the corresponding technology. For example, the Security TE schema handler provides interfaces which allow for creating and parsing objects based on XML security schemata provided by W3C (e.g., digital signatures) and OASIS (e.g., Security Assertion Markup Language). On the other hand, the Digital Item TE is based on MPEG-21 technologies, such as the MPEG-21 DIDL schema and, hence, its schema handler provides the interfaces to access this schema transparently, thereby stimulating the interoperability features of MPEG-M implementations.

The technology handler of the technology engines is responsible for exposing the API that allows handling of the underlying technology. With respect to the aforementioned Security TE example, these APIs enable developers to use encryption and signature capabilities, which could be provided by different implementations (e.g., smart card and/or other software security solutions).

Table 1 provides a list with the technology engines supported by the standard. These engines can be deployed by several elementary services and can be accessed either directly or through an orchestrator engine.

Table 1: List of Technology Engines (TEs)
	Digital Item Engine
	The Digital Item Engine interface defines the APIs for handling ISO/IEC 21000-2 and ISO/IEC 23000-7 Digital Item Declaration (DID) data structures and providing functionalities, such as: creation of Digital Items and data retrieval from them; and, management of Item, Statement, Descriptor, Component, Resource, License, Metadata and Event Report Requests in Digital Items.

	MPEG-21 File Format Engine
	The MPEG-21 File Format Engine interface defines the methods for operating over ISO/IEC 21000-9 MPEG-21 File Format files and providing functionalities, such as: creation of MPEG-21 files and accessing data contained in them.

	REL Engine
	The REL Engine interface defines the methods for handling ISO/IEC 21000-5 Rights Expression Language (REL) expressions and providing functionalities, such as: creation of Rights' Expressions, accessing data contained in them and users' authorization to exercise rights.

	IPMP Engine
	The IPMP Engine interface defines the methods for operating over ISO/IEC 21000-4 and ISO/IEC 23000-5 Intellectual Property Management and Protection (IPMP) data structures and providing functionalities, such as: creation of IPMP data structures and accessing data contained in them.

	Media Framework Engine
	The Media Framework Engine is a high level MXM Engine, grouping together several media specific engines, such as: Video, Image, Audio and Graphics Engines. It implements common functionalities (independent on the media type) such as resource loading and saving. The following media specific engines are currently supported: VideoEngine, AudioEngine, ImageEngine, Graphics3DEngine; each of them exposes APIs for creation (encoding) and accessing (decoding) elementary streams. The Media Framework Engine provides functionalities, such as: creation and accessing data to be provided in the aforementioned supported engines.

	Metadata Engine
	The Metadata Engine interface defines the methods for handling creation and management of metadata structures.

	Event Reporting Engine
	The Event Reporting Engine interface defines the methods for operating over ISO/IEC 21000-15 Event Reporting data structures.

	Security Engine
	The Security Engine interface defines security-related methods providing functionalities, such as: creation of new credentials and management of public-key based certificates; generation of symmetric keys and encryption/decryption of data; storing of confidential information such as licenses and keys in the secure repository; certification of tools integrity; and, enabling complex authentication protocols.

	Search Engine
	The Search Engine interface defines the methods for operating over metadata structures and providing functionalities, such as: creation and parsing of MPQF query structures.

	CEL Engine
	The CEL Engine interface defines the methods for handling ISO/IEC 21000-20 Contract Expression Language (CEL) expressions and providing functionalities, such as: creation of Contract Expressions and accessing data contained in them.

	Overlay Engine
	The Overlay Engine specifies a minimum set of interfaces that should be implemented by any device participating in a Content Delivery Network. Emphasis is given in peer-to-peer networks, that are quite popular with users for content discovery.

[bookmark: _Toc353016710]Orchestrator Engines
Orchestrator engines are managing the execution flow of technology engines in the context of an elementary service, an aggregated service or an application. The standard contains one protocol engine per elementary service. In contrast, one or more orchestrator engines can be specified based on service or application requirements. Given that orchestration engines are specific to applications, the focus of their APIs is in providing a standardized way to their instantiation, rather than providing access to their functionalities which are, anyway, wrapped in generic methods.

The standardized orchestrator engines APIs require at least one method that wraps the orchestration. In the case of the elementary services orchestrations, this method corresponds to the protocol request/response. All the orchestrator engines are accessible through a basic OrchestratorEngine, which instantiates and returns to them, taking also into account any possible requirements that they may have in technology engines. The OrchestratorEngine, on the other hand, is initialized as any other protocol or technology engine.
[bookmark: _Toc353016711]Engine Load and Initialization
MXM has been designed to be modular following an engine-level granularity. The use of standard APIs enables applications development regardless of the middleware implementation. Moreover, different engines' instances can be provided in order to support different functionality, provided by each engine. This is achieved through the runtime engine loading feature of MXM, which is based on a configuration file, where the MPEG-M application developer indicates the implementation that should be used for each involved engine. This configuration file is given as an XML document, which is based on a standard schema. An example configuration file is given in Listing 2.

Listing 2: An example of a Configuration File for loading and initialization of TEs.
<?xml version="1.0" encoding="UTF-8"?>
<mxm:MXMConfiguration xmlns:mxm="org:iso:mpeg:mxm:configuration:schema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="org:iso:mpeg:mxm:configuration:schema mxmconfiguration.xsd">
 <MXMParameters>
 <entry key="username">JohnDoe</entry>
 <ComplexParameter>
 <bar:CustomMXMParam xmlns:bar="urn-x:bar">
 A complex MXM configuration parameter
 </bar:CustomMXMParam>
 </ComplexParameter>
 <MXMEnginesFolder>/usr/bin/MXMEngines</MXMEnginesFolder>
 </MXMParameters>
 <mxm:MXMEngine id="0" type="MPEG21FileTE">
 <ClassName>org.iso.mpeg.mxm.test.MPEG21FileEngine</ClassName>
 </mxm:MXMEngine>
 <mxm:MXMEngine id="1" type="MetadataTE" isDefault="true">
 <ClassName>org.iso.mpeg.mxm.test.GenericMetadataEngine</ClassName>
 <EngineParameters xsi:type="mxm:MXMGenericParameterType">
 <entry key="verbosity">ALL</entry>
 </EngineParameters>
 </mxm:MXMEngine>
 <mxm:MXMEngine id="2" type="MetadataTE">
 <ClassName>org.iso.mpeg.mxm.test.MPEG7SMPMetadataEngine</ClassName>
 <EngineParameters xsi:type="mxm:MXMGenericParameterType">
 <entry key="verbosity">DEBUG</entry>
 </EngineParameters>
 </mxm:MXMEngine>
 <mxm:MXMEngine id="3" type="DigitalItemTE">
 <ClassName>org.iso.mpeg.mxm.test.MPEG7SMPMetadataEngine</ClassName>
 <EngineParameters xsi:type="mxm:MXMGenericParameterType">
 <entry key="verbosity">DEBUG</entry>
 </EngineParameters>
 <EngineDependencies>
 <DependentMXMEngine id="1"/>
 </EngineDependencies>
 </mxm:MXMEngine>
</mxm:MXMConfiguration>

The configuration given above contains some global MXM parameters and listing four MPEG-M Engines: a DigitalItemEngine (implemented by class org.iso.mpeg.mxm.test.DIDEngine); an MPEG21FileEngine (implemented by class org.iso.mpeg.mxm.test.MPEG21FileEngine); and, two MetadataEngines (implemented by classes org.iso.mpeg.mxm.test.MPEG7SMPMetadataEngine and org.iso.mpeg.mxm.test.GenericMetadataEngine).
It should be noted that the "id" attribute of an MPEG-M Engine indicates the identifier of a specific MPEG-M Engine. If two MPEG-M Engines of the same type, as in the case of MetadataEngine, are listed in the MXM Configuration File, the "id" attribute is mandatory as it is needed to differentiate the two implementations of the same engine. The default value of the "id" attribute is zero indicating that it is the default engine of that type.
[bookmark: _Toc353016712]Part 3 – Conformance and Reference Software (23006 – 3)
The third part of the standard is about the conformance and reference software. The reference software, a Java implementation of the engines, is licensed under a Berkley Software
Distribution (BSD) type of license. The software can be downloaded via Subversion (SVN) software versioning and revision control system from http://wg11.sc29.org/mxmsvn/repos/JAVA/trunk using "mxmpubro" as username and "mpegmxmro" as password. The APIs and the ESs are given in MPEG-M Part 2 and MPEG-M Part 4, respectively.
[bookmark: _Toc353016713]MXM Project Structure
The MXM project structure is dictated by Maven, a tool that provides flexibility in organizing a large project in a modular way along with sophisticated dependency management. The MXM implementation consisted of the following basic modules: a) MXM Core Module (mxm-core); b) Engines Contained Module (mxm-engines); c) Schemata Container Module (mxm-dataobject); d) Elementary Services Module (mxm-es); and, e) Applications Container Module (mxm-applications). In the following these modules are described.
[bookmark: _Toc353016714]MXM Core Module
The fundamental (and the only normative) module of MXM reference software is the mxm-core, which includes the implementation for the instantiation and dynamic engine loading through the configuration file, whose schema is specified in MPEG-M Part 2. The mxm-core is the part of MXM that essentially enables the interoperability between the various implementations of MXM Engines and guarantees the conformance of the software to the standard. This is achieved by using a general container to carry the MXM data units and by automatically instantiating the engines and providing hooks to them only via their standard APIs. Moreover, mxm-core is responsible for dependency management between the engines. This is achieved by checking the MXM configuration file for possible dependency circles along with taking care for proper engine initialization so as to make sure that all engines are loaded in the right order. The mxm-core module contains all the abstract classes and interfaces that correspond to the engines' APIs specified in MPEG-M Part 2. Any further engines, outside the MPEG-M context, or extensions of MPEG-M engines in terms of APIs is suggested to be provided in a respective, project-specific, module. For example, the xyz middleware, which extends MPEG-M will have a xyz-core module, inheriting basic MXM functionality, such as initialization, which will also contain the APIs for any custom engines of xyz.
[bookmark: _Toc353016715]Engines Container Module
The mxm-engines (informative) module is the container for all protocol, technology and orchestrator engines implementation. This implementation should be in line with the APIs specified in MPEG-M Part 2; in particular the engines should implement the full or part of the functionality defined in the corresponding engine APIs. Each engine implementation must implement the corresponding interface, so that the engine can be instantiated by the MXM Core Module. Moreover, an engine may have several different implementations, each included as a different module in mxm-engines and identified with a different identifier in the MXM configuration file, used for loading. The application developer can select the engine implementation by means of that identifier provided in the MXM configuration file. The mxm-engines module also contains any custom implementations of third-party engines or MPEG-M engines extensions.
[bookmark: _Toc353016716]Schemata Container Module
The mxm-dataobject (informative) module contains the implementations for handling the XML schemata needed by the MXM engines. As explained in MPEG-M Part 2, the engines include a schema handler module, which provides the APIs for managing any schemata related to the engines. This implementation can be engine-specific and, therefore, the mxm-dataobject module is not considered a mandatory component of MXM. However, in the reference software, a JAXB based implementation is provided, which allows easy schema handling, with a similar API to the one of the schema handlers. Moreover, the mxm-dataobject module includes the implementation of a generic XML schema creator and parser that enables middleware developers to create interoperable data objects out of the XML elements of the corresponding schemata.
[bookmark: _Toc353016717]Elementary Services Module
The mxm-es (informative) module includes the implementation of the elementary services, specified in MPEG-M Part 4. MXM provides a reference elementary services implementation using Web Services and the Enterprise Java Beans (EJB3) framework. This, however, is not binding, since other emerging standards may be used as well, such as Representational State Transfer (REST). The reference implementation is application-centered, in the sense that each elementary service makes a call to the orchestrator engine that carries out the corresponding operations to fulfill the application. The elementary service is invoked by the remote module of the protocol engine, which runs on the client side.
[bookmark: _Toc353016718]Applications Container Module
The mxm-application (informative) module contains a set of reference implementations for applications, which are based on MXM. These applications are provided as examples for MPEG-M application developers to get easier accustomed to the use of MXM reference software, especially with basic features, such as its instantiation and the use of the MXM configuration file.
[bookmark: _Toc353016719]Part 4 – Elementary Services (23006 – 4)
The forth part of the standard is concerned with the specification of Elementary Services (ESs) and their protocols. The latter being the key elements in achieving services interoperability in the MPEG-M ecosystem.

The holistic view of MPEG-M Part 4 starts from a comprehensive list of Entities and the Operations that can be performed on them, and identifies an ES to be specified whenever a meaningful combination of them exists. ESs are understood as Services of atomic nature, which cannot be usefully divided into smaller ones, but which can be combined to form more complex services. The latter known as Aggregated Services are actually defined in MPEG-M Part 5 (as described in the next section) and realize the concept of MPEG-M Services, which are an integral part of the MPEG-M architecture.

Some of the ESs are considered as regular ESs, that is, when specific Operations are performed on a specific kind of Entity (e.g., Search Content); some as generic ESs, with specified Entity but generic Operations (e.g., Process Content); and, some as abstract ESs, with specified Operation but generic Entities (e.g., Search Entity). A particular implementation of a service is known as a Service Instance, as illustrated in Figure 4. It is typically described in terms of its provider, connection end-points, and usage conditions. Furthermore, two Service Instances implementing a single ES are shown in Figure 4; their connection end-points are http://example-a.com and http://example-b.com, respectively. Each Service Instance is described by a Service Instance Declaration (SID) XML document comprising the aforementioned information. Among others, it may contain usage conditions specifying the terms and availability of the Service Instance.

[image:]
Figure 4: Multiple Service Instances can Implement the same Elementary Service.

Each of the ESs is described by a narrative description, the protocol specification as an exchange of XML messages, and the syntax (in XML Schema) and semantics of the messages and their parameters. As a formal description of the Service’s workflow, the Business Process Model and Notation (BPMN) 2.0 XML (see also section 3.5) representation of the collaboration and process is also given, as well as the extension to the Service Instance Declaration. The machine-readable representation of the Elementary Service workflows is further utilized in Part 5 for the aggregation of Services.

In order to remain as open as possible, the standard does not specify the transport protocol, which has to be given in the Service Instance Declaration of each particular implementation, although the use of some HTTP responses is informatively described.
[bookmark: _Toc353016720]Table of Elementary Services
The list of MPEG-M Entities is restricted to seven elements: Entity (as an abstract generalization), Content, Contract, Device, Event, License, Service and User. The list of Operations comprises eighteen items: Authenticate, Authorize, Check With, Create, Deliver, Describe, Identify, Negotiate, Package, Post, Present, Process, Request, Revoke, Search, Store, Transact and Verify. These Entities and Operations cover the whole spectrum of elements and possible actions in the MPEG-M ecosystem.

MPEG-M Part 4 describes thus a total number of 51 Elementary Services, as shown in Table 2.

Table 2: Elementary Services classified by Operations and Entities
	
	Content
	Contract
	Device
	Event
	License
	Service
	User

	Authenticate
	X
	X
	
	
	
	
	X

	Authorize
	
	
	
	
	
	
	X

	Check With
	
	X
	
	
	X
	
	

	Create
	X
	X
	
	
	X
	
	

	Deliver
	X
	X
	
	
	
	
	

	Describe
	X
	
	X
	
	
	X
	X

	Identify
	X
	X
	X
	
	X
	
	X

	Negotiate
	
	X
	
	
	X
	
	

	Package
	X
	
	
	
	
	
	

	Post
	X
	
	
	
	
	
	

	Present
	
	X
	
	
	X
	
	

	Process
	X
	
	
	
	X
	
	

	Request
	X
	X
	X
	X
	X
	
	

	Revoke
	X
	X
	
	
	X
	
	

	Search
	X
	X
	X
	
	X
	X
	X

	Store
	X
	X
	
	X
	X
	
	

	Transact
	X
	
	
	
	X
	
	

	Verify
	
	X
	X
	
	X
	
	

Opening the standard to future extensions, Entities and Operations are foreseen to be further specialized generating in turn new Services. In fact, some exemplary extensions as Service Types are given for the Process Content: recognize and synthesize speech, process and translate language, extract sensory information, making a content adaptation or a resource/stream transcoding.

Third parties may define their own Elementary Services based on the MPEG-M architecture and technologies. MPEG-M Part 4 specifies the mandatory information that a third-party ES definition has to exhibit, such as the XML Schema definition of the protocol messages and a description of the behavior of the ES.
[bookmark: _Toc353016721]Elementary Services in Action
In the following, the usage of an Elementary Service is described based on an example. Assume a content producer wants to register his newest work at a dedicated registration authority in order to have an identifier assigned to this work, a song in this case.

The creator uses the Identify Content ES for this purpose. As most Elementary Services, Identify Content comprises a single request message from the client to the service provider and a response message. The messages can be sent via various protocols as discussed later. In this example, it is assumed that the request message is sent as an HTTP POST request and the response message is sent as the corresponding HTTP response.

The creator sends a content request to an Identify Content service provider as shown in Listing 3. Note that XML declaration tags and namespace definitions in the XML snippets are omitted for readability reasons.

Listing 3: XML snippet of an Identify Content request message.
[bookmark: _Ref338855647]<IdentifyContentRequest>
 <mpegmb:TransactionIdentifier>60f717d62a3f7589</mpegmb:TransactionIdentifier>
 <dsig:Signature>
 <!-- Signature of the message... -->
 </dsig:Signature>
 <IdentificationContent>
 <didl:DIDL xsi:type="mpegm-didl:DIDLType">
 <mpegm-didl:Item>
 <mpegm-didl:Descriptor>
 <didl:Statement mimeType="application/xml">
 <mpeg7:Mpeg7>
 <mpeg7:DescriptionUnit xsi:type="mpeg7:CreationType">
 <mpeg7:Title>Raining Today</mpeg7:Title>
 <mpeg7:Creator>
 <mpeg7:Role href="urn:mpeg:mpeg7:cs:RoleCS:2001:SINGER">
 <mpeg7:Name>Singer</mpeg7:Name>
 </mpeg7:Role>
 <mpeg7:Agent xsi:type="mpeg7:PersonType">
 <mpeg7:Name>
 <mpeg7:GivenName>Sunny</mpeg7:GivenName>
 <mpeg7:FamilyName>Sunshine</mpeg7:FamilyName>
 </mpeg7:Name>
 <mpeg7:ElectronicAddress xsi:type="mpeg7:ExtendedElectronicAddressType">
 <mpeg7:InstantMessagingScreenName service="http://twitter.com">
 @Sunshine_Singer
 </mpeg7:InstantMessagingScreenName>
 </mpeg7:ElectronicAddress>
 </mpeg7:Agent>
 </mpeg7:Creator>
 <mpeg7:CreationCoordinates>
 <mpeg7:Date>
 <mpeg7:TimePoint>2012-11-02</mpeg7:TimePoint>
 </mpeg7:Date>
 </mpeg7:CreationCoordinates>
 </mpeg7:DescriptionUnit>
 </mpeg7:Mpeg7>
 </didl:Statement>
 </mpegm-didl:Descriptor>
 <mpegm-didl:Component>
 <mpegm-didl:Resource mimeType="audio/mp4" encoding="base64">
 <!-- base64-encoded audio file... -->
 </mpegm-didl:Resource>
 </mpegm-didl:Component>
 </mpegm-didl:Item>
 </didl:DIDL>
 </IdentificationContent>
</IdentifyContentRequest>

The message contains the content to be identified, which is represented as an MPEG-21 Digital Item (DI) [8]. The DI describes the content by means of a title, its creator, and creation date. Of course, the DI also contains the actual song as an inline MP4 audio bitstream.

The message further has a TransactionIdentifier, which ensures that the client can unambiguously match a later response to its request, regardless of the transport protocol. The client also signs the message via a Digital Signature to ensure its authenticity to the service provider.

The service provider receives the request and assigns a new identifier to the content. In the example, the identifier is doi:10.9999/123.456. The service provider sends this identifier via a response message to the client as shown in Listing 4.

[bookmark: _Ref338860671]Listing 4: XML snippet of an Identify Content response message.
<IdentifyContentResponse>
 <mpegmb:TransactionIdentifier>60f717d62a3f7589</mpegmb:TransactionIdentifier>
 <dsig:Signature>
 <!-- Signature of the message... -->
 </dsig:Signature>
 <IdentifyContentSuccess>
 <IdentifiedContent>
 <dii:Identifier>doi:10.9999/123.456</dii:Identifier>
 </IdentifiedContent>
 </IdentifyContentSuccess>
</IdentifyContentResponse>

Now, that this simple protocol run has been completed, here are some details to explain how the client knows which transport protocol to use for message exchange and how it discovers the service provider in the first place. The Service Instance Declaration (SID), shown in Listing 5, describes a particular implementation of a Service, providing a name and identifier, as well as a communication end point for request messages and which transfer protocol to use for those messages. Two transfer protocols can be currently defined via the ProtocolBinding element: XML over HTTP and SOAP [9]. Similar to protocol messages, the authenticity of the SID can be ensured via a Digital Signature. Note that the xsi:type of the ServiceInstanceDeclaration element is IdentifyContentSIDType, which tells the client that this is an implementation of Identify Content. Depending on the requirements of a Service, the SID may contain further configuration information for the client, e.g., which metadata formats are supported by the service provider.
The client can obtain the SID either from outside the MPEG-M framework, e.g., from a website, or it may use the Search Service ES to search inside a directory for any kinds of MPEG-M Service Instances.

[bookmark: _Ref338925715]Listing 5: XML snippet for a Service Instance Declaration of a particular implementation of Identify Content.
<sid:ServiceInstanceDeclaration xsi:type="sid:IdentifyContentSIDType" strictMetadataSupport="true">
 <mpegmb:SIDIdentifier>urn-x:example:identify-content:version-1.0</mpegmb:SIDIdentifier>
 <sid:Name>Example Implementation for IdentifyContent</sid:Name>
 <sid:Provider xsi:type="mpeg7:OrganizationType">
 <mpeg7:Name>Example Content Registration Authority</mpeg7:Name>
 </sid:Provider>
 <sid:EndPoint>http://example.com/identify-content</sid:EndPoint>
 <sid:ProtocolBinding href="urn:mpeg:mpegM:cs:03-es-NS:2012:ProtocolBindingCS:1">
 <mpeg7:Name>XML over HTTP</mpeg7:Name>
 </sid:ProtocolBinding>
 <dsig:Signature>
 <!-- Signature of the SID... -->
 </dsig:Signature>
</sid:ServiceInstanceDeclaration>

Similar to Identify Content, most Elementary Services are specified in a straight-forward manner, with a request and a response message. However, there are some Elementary Services that may require more time and protocol steps to complete, such as Negotiate License. Negotiate License allows two parties to reach an agreement on the terms of a license through offers and counter offers. Another example is Store Content, which allows uploading content to a storage device. As this ES is designed in particular for content of large size, the uploading process might be time consuming. For such Services with long-running sessions, two meta protocols exist for a) session control (i.e., to pause, resume, or abort a session) and b) status polling.
[bookmark: _Toc353016722]Part 5 – Service Aggregation (23006 – 5)
The fifth part of the standard specifies how Elementary Services (ESs) and perhaps other existing Aggregated Services (ASs) should be combined to build new ASs. To do so, it provides a methodology which defines the basic steps for the definition of ASs. A set of representative examples are also provided in Part 5 to illustrate new AS definitions. These are briefly summarized next. The "Multimedia Content Registration and Sell" example shows how a content creator can register her multimedia content in order to release it. The "Multimedia Content Search and Purchase" example shows how a user can search some multimedia content, purchase and consume it. The "Create and Identify Content" example shows how a content creator can create and identify some multimedia content. The "TV-Multimedia Processing" example shows how a user can process (e.g., adapt) content. The "Video On Demand Service via Speech Interface" example shows how a user can access some multimedia content using a speech interface. These examples are based on real business scenarios with the aim of demonstrating the applicability of service aggregation.

Part 5 also describes the procedure for registration of both new ESs - not currently present in Part 4 - as well as new ASs. For this purpose, an MPEG-M ESs and ASs Registration Authority (RA) has been set up. Its aim is twofold. On the one hand, services' developers may submit their ESs or ASs compliant information to the RA for registration, while on the other hand, other developers may utilize the RA services to find registered ESs or ASs for reuse.

During ESs and ASs registration, the RA will verify their syntactic correctness and will perform regular checks to verify that the registered information and related links are valid.

The methodology for the ASs definition comprises the following steps:

1) Provision of a narrative description of the actions that a new AS would perform; in other words, the use case or scenario to be implemented as AS.
2) Identification of ESs and ASs that are needed by a new AS in order to be implemented. These ESs and ASs could be classified as those: a) described in Part 4 and Part 5, respectively; b) registered with the corresponding RA; and, c) external ESs specifically required by the new AS. The external ESs could also be registered with the RA for further use by third parties.
3) Provision of a textual description of the AS workflow describing the interactions between the Client and Service Provider.
4) Resulting AS service workflow formal description provision. It should describe both protocol and service by including the service workflow graphical representation and optional its XML serialization.
5) Optional registration of the resulting AS with the RA. The RA syntactically validates each registered AS.

For the definition of the AS workflow, the Business Process Model and Notation (BPMN) has been used [10]. It provides a standard notation that is readily understandable by all business stakeholders, including the business analysts who create and refine the processes, the technical developers responsible for implementing the processes, and the business managers who monitor and manage the processes. Consequently, BPMN is intended to serve as common language to bridge the communication gap that frequently occurs between business process design and implementation. It is defined by the Object Management Group (OMG).

Thus, in Part 5, the use of two different service description types (bpmn:collaboration and bpmn:choreography) based on BPMN has been adopted for illustration purposes regarding the AS definition. However, it should be noted that Part 5 does not impose any restriction for the service workflow representation (step 4 of the methodology) and any graphical workflow notation could be used.

In the following an example is given on how an AS could be defined using the aforementioned methodology:

Step 1. Narrative description
In this use case, a User asks for a sequence of songs satisfying certain “mood”, as described in the "Scope and Objectives" section.

Step 2. Identification of ESs and ASs required by the AS in question
The ESs to be used are: Post Content, Describe Content, Describe User, Manage License, Package Content, Store Content and Deliver Content. All of them are defined in Part 4. Manage License is an AS which makes use of Create License and Store License ESs.

Step 3. Workflow textual description
In the following, the service workflow associated to music "mood" AS is described. Its graphical representation is given in Figure 5.

[image:]
Figure 5: Music "mood" AS workflow.

· End User contacts Post Content SP to ask for a list of songs according to the friends “mood”.
· Post Content SP contacts Describe Content SP to get descriptions.
· Post Content SP contacts Describe User SP to get descriptions. After that, it can prepare a list of songs, which is sent back to the End User.
· End User gets necessary licenses from the Manage License SP.
· The sequence of songs is handed over to Package Content SP.
· Package Content SP will get the Resources from Store Content SP.
· [bookmark: _GoBack]Store Content SP hands over the Packaged Content to the Deliver Content SP who streams the Packaged Content to the End User.

Step 4. Formal description of the service workflow
In this example, BPMN 2.0 is used for the formal description of the proposed AS. The corresponding diagram is shown in Figure 6.

Figure 6: Music "mood" BPMN diagram.
[bookmark: _Toc353016723]Related Developments
· Open Connected TV (OCTV) has been set up by the Digital Media Project (DMP). The outcome of OCTV is not a complete product or a running service, but a commercial-grade implementation of MPEG-M software, that may be used direct by DMP members who implement commercial products and services. [Online]. Available: http://octv.dmpf.org/

· WimTV (Web/Internet/Mobile TV) is a digital media ecosystem enabling diffuse trading and distribution of video content. Media move from one user to the next with associated terms of use and payment conditions. The WimTV server implements the MPEG-M suite of standards and exposes a set of application-oriented API. [Online]. Available: http://www.wim.tv/

· Another MPEG-M compliant implementation for secure management and distribution of multimedia content, known as MIPAMS, has been developed by DMAG-UPC [11]. This platform provides several MPEG-M Elementary Services that are accessible by third parties to further develop their own Aggregated Services. [Online]. Available: http://dmag.ac.upc.edu/mipams

· The EC funded project ALICANTE (FP7-248652), deploys MPEG-M Elementary Services on the Service Provider side of the media handling chain to manage the distribution of content to end-user devices. It also defines additional Elementary Services for managing multimedia service offerings. [Online]. Available: http://ict-alicante.eu/

· The EC funded project CONVERGENCE (FP7-257123), offers an MPEG-M based platform with additional Aggregated Services supporting publish, control, search for, and content usage, where users are able to define their own policies on it. Thus, enabling new business models on content usage. [Online]. Available: http://www.ict-convergence.eu/

· A collaborative music analysis, visualisation, annotation and repurposing service is also currently under development based on Sonic Visualiser [12] integrated into MPEG-M digital media trading platform. Sonic Visualiser supports multi-track audio with volume sliders for DJ mixing and lyrics for Karaoke applications, thanks to MPEG-A: Interactive Music Application Format (IM AF) [13], [14], as well as chords and melody extraction, automatic audio tracks alignment and audio effects. [Online]. Available: http://www.isophonics.net/SonicVisualiser

[bookmark: _Toc353016724]Acknowledgements
This work was partially supported by the European Commission under contracts FP7-257123 (CONVERGENCE project) and FP7-248652 (ALICANTE project); and, by the Spanish Ministry of Economy and Competitiveness under contract TEC2011-22989 (PBInt project). Panos Kudumakis would also like to acknowledge that this work has been partially done during his visit at the University of Malaga in the context of the program Andalucía TECH: Campus of International Excellence.

[bookmark: _Toc353016725]Standard
ISO/IEC JTC1/SC29/WG11 Information Technology - Multimedia Service Platform Technologies (23006):
1. ISO/IEC 23006-1:2013 Information technology – Multimedia Service Platform Technologies – Part 1: Architecture
2. ISO/IEC 23006-2:2013 Information technology – Multimedia Service Platform Technologies – Part 2: MPEG Extensible Middleware API
3. ISO/IEC 23006-3:2013 Information technology – Multimedia Service Platform Technologies – Part 3: Reference software and conformance
4. ISO/IEC 23006-4:2013 Information technology – Multimedia Service Platform Technologies – Part 4: Elementary Services
5. ISO/IEC 23006-5:2013 Information technology – Multimedia Service Platform Technologies – Part 5: Service Aggregation

[bookmark: _Toc353016726]References
[1] iOS, Apple [Online], Available: http://developer.apple.com/, Last accessed: 14/03/2013.
[2] Android, Google [Online], Available: http://developer.android.com/, Last accessed: 14/03/2013.
[3] L. Chiariglione, MPEG technologies [Online], Available: http://mpeg.chiariglione.org/technologies, Last accessed: 14/03/2013.
[4] ISO/IEC 23008-2:2013 MPEG-H Part 2 and ITU-T H.265 -- High Efficiency Video Coding (HEVC).
[5] ISO/IEC 23009:2012 Information technology -- Dynamic Adaptive Streaming over HTTP (DASH).
[6] P. Kudumakis, X. Wang, S. Matone, M. Sandler, MPEG-M: Multimedia Service Platform Technologies, Signal Processing Magazine, IEEE 28 (6) (Nov.) 159-163. doi: 10.1109/MSP.2011.942296.
[7] SoundBite: Semantic Music Playlist Generator, Centre for Digital Music, Queen Mary University of London. [Online]. Available: http://isophonics.net/content/soundbite, Last accessed: 14/03/2013.
[8] ISO/IEC 21000-2:2005 Information technology -- Multimedia Framework (MPEG-21) -- Part 2: Digital Item Declaration.
[9] SOAP Version 1.2 Part 1: Messaging Framework (Second Edition), W3C Recommendation, Apr. 2007, [Online], Available: http://www.w3.org/TR/soap12-part1/, Last accessed: 14/03/2013.
[10] Business Process Model and Notation (BPMN), Version 2.0, Object Management Group, Jan. 2011, [Online], Available: http://www.omg.org/spec/BPMN/2.0/, Last accessed: 14/03/2013.
[11] S. Llorente, E. Rodriguez, J. Delgado, V. Torres-Padrosa, Standards-based architectures for content management, MultiMedia, IEEE (99) 1-1. doi:10.1109/MMUL.2012.58.
[12] Sonic Visualiser, Centre for Digital Music, Queen Mary University of London. [Online]. Available: http://www.isophonics.net/SonicVisualiser, Last accessed: 14/03/2013.
[13] ISO/IEC 23000-12:2012 Information Technology—Multimedia Application Format (MPEG-A) -- Part 12: Interactive Music Application Format (IM AF)
[14] I. Jang, P. Kudumakis, M. Sandler and K. Kang, The MPEG Interactive Music Application Format Standard, Signal Processing Magazine, IEEE 28 (1) (Jan.) 150-154. doi: 10.1109/MSP.2010.939073
1

image3.png

image4.png

image5.png

image6.emf
Post_Content_

SP

Mood_User

User Mood

Response

Post Content

Describe_Content_

SP

Post_Content

User Mood

DI

Describe Content

Describe_User

_SP

Post_Content

User Mood

DI

Describe User

Store_Content_SP

Package_Content

DI

Packaged DI

Store Content

Manage_License_

SP

Mood_User

License Parameters

License

Manage License

Package_Content

_SP

Mood_User

DI

Result

Package Content

Mood_User

Package_Content

Packaged DI

Streamed songs

Deliver Content

Mood_Start

Mood_End

oleObject1.bin
�

Post Content

Post_Content_SP

image1.png

image2.jpeg

