How to achieve dense light field video compression?

Mehrdad Teratani (Associate Professor, Nagoya University) Xin Jin (Graduate School at Shenzhen, Tsinghua University)

N18445: Activity Report on Dense Light Fields

Dense light field

Muti-cam (multiview)

Plenoptic (lenslet)

2012 @ Osaka

NIC

End-to-end system for dense light field

Plenoptic Camera type 1.0

Plenoptic 1.0 (e.g., Lytro)

"Lytro," https://www.lytro.jp/.

- Spatial resolution = number of microlens.
- Completely defocused relative to main lens image.

GSST Plenoptic 1.0 Lenslet Data

M44684: "Toys"

M46258: "Teapots"

M44684: "Trees"

M46258: "Mini-garden"

Lenslet Video Data

Resolution: 8656×6075 Color: 24 bits, PNG Frame rate: 30 fps

Lenslet Video Data

Resolution: 8654×6074 Color: 24 bits, PNG Frame rate: 30 fps

Plenoptic Camera 2.0

Single-Focused Plenoptic Camera

Designed and made by Tsinghua University

- resolution independent of microlenses
- spatial-angular resolution = free tradeoff point.
- Exactly focused on the main lens image.

GSST Plenoptic 2.0 Lenslet data

M46259: "Boys"

M46259: "Experimenting"

M49007: "cars"

Colored Lenslet Video Data	Multiview Video Data
Resolution: 4088×3068 Color: 24 bits, BMP Frame rate: 30 fps Number of frames: 300	Resolution of each view: 926×672 Views: 5×5 Number of frames: 300

Plenoptic Camera 2.0

Multi-Focused Plenoptic Camera

"Raytrix," https://www.raytrix.de/.

- Flexible (3 kind of ML)
- resolution independent of microlenses
- spatial-angular resolution = free tradeoff point.

Nagoya University Lenslet data Plenoptic 2.0

NagoyaFujita Fixed Camera Horizontal view M47642, M49670

<u>NagoyaOrigami</u> Fixed Camera Top view M47642, M49670

NagoyaDataLeading Camera on turn table Horizontal view M47642, M49670

Resolution: 2048x2048 pixels Color: 24 bits PNG, and YUV420 Number of frames: 300-400 Camera parameters (SDK output)

Raytrix R5-C-GigE-F2.4 (color) Main Lens: LMVZ166HC (Kowa)

INRIA Lenslet data Plenoptic 2.0

S 10 11

D 11 Tri

Colored Lenslet Video

Resolution: 3840 ×2160 pixels Color: 24 bits, PNG Frame rate: 30 fps Number of frames: 300 Camera parameters (SDK output)

Center viewpoint

Inia

Boxer-IrishMan-Gladiator

Chess-Pieces

S 10

D 11 12 1

ChessPieces-MovingCamera "Raytrix," https://www.raytrix.de/.

m42468

Raytrix R8

End-to-end system for dense light field

Conversion from Lenslet to Multiview

Plenoptic 1.0 Data Conversion Tool

P. David et al. MMSP2017

M44684: New Test Sequences "Toys'' and "Trees" Captured by a Light Field Camera @MPEG,Macao

Plenoptic 1.0 Data Conversion Tool

M44684: New Test Sequences "Toys'' and "Trees" Captured by a Light Field Camera @MPEG,Macao

Conversion from Lenslet to Multiview

Reference Lenslet content Convertor

$$K(i,j) = \arg \min E_k(i,j)$$

$$E'_k(i,j) = \sum_{s \in \mathcal{S}} \sum_{t \in \mathcal{T}} \sum_{(u,v) \in b(i,j)} \nabla^2 I_k^{(s,t)}(u,v)$$

K(i,j) is the suitable patch size for the (I,j)-th microlens, b(i,j) contains the pixel indices of patch border at the (i,j)-th microlens. (s,t) and (u,v) are view and pixel coordinates.

Reference Lenslet content Convertor (RLC) MPEG (2017 - 2019), IC3D2018

16

RLC: Plenoptic 2.0 to Multview

Reference Lenslet content Convertor (RLC)

MPEG (2017 - 2019), IC3D2018

End-to-end system for dense light field

EE_MV: Multiview>Compression>Multiview

Plenoptic 1.0	Plenotic 2.0		
HTM16.2	HM-16.9_SCM_8.0		

EE_LL: Lenslet>Compression>Lenslet

Compression of plenoptic 1.0 vs plenoptic 2.0

New coding tools for EE_LL

- M44685: Imaging Reshaping (IR)
- M46261: Boundary matching based prediction

Imaging Reshaping (IR)

X. Jin, H. Han, and Q. Dai. "Image Reshaping for Efficient Compression of Plenoptic Content." IEEE Journal of Selected Topics in Signal Processing, 11(7): 1173-1186, 2017

Imaging Reshaping

Test conditions:

- Reference Software: HM-16.9SCM8.0
- Profile: HEVC Format Range Extension(RExt)
- o All Intra Main
- Input Color Format: YUV4:4:4
- o QP: 26, 32, 38, 44
- Evaluation: light field performance BD-bitrate

Datasets	Image Name	IR vs. HEVC	
Lytro Illum	Ankylosaurus	-30.0%	
	Color_Chart	-15.6%	
	House & Lake	-34.0%	
	Cards	-8.6%	
	Rubik's Cube	-13.9%	
Lytro 1.0	BSNMom	-23.1%	
	Cocktails	-19.8%	
	Dessert	-13.6%	
	Edelweiss	-4.1%	
	Flat_Toes	-20.6%	
Average		-18.3%	

Boundary matching based prediction

high correlations among the neighboring macropixels — collocated blocks are used to predict the current PU

PU size is 32×32 or 64×64

Weights determination

minimize $||Xw - y||_2^2$ subject to $\mathbf{1}^T w = \mathbf{1}$ $w \ge \mathbf{0}$

Weighted prediction

 $y' = w_0 x_0 + w_1 x_1 + w_2 x_2 + w_3 x_3$

PU size is 16×16

M47314: Boundary matching based prediction for lenslet video compression@ MPEG, Geneva

M46261: Boundary matching based prediction

Test Conditions

- Test sequences: Teapots, Mini-garden
- Total frames: 60 frames
- Resolution: $8656(H) \times 6074(V)$
- Anchor: HTM-HM mode

- Compared methods: IBC, BMP, IBC+BMP
- Configuration: all intra, random access
- QP: 24, 30, 36, 42 and 48
- Evaluation: RD curve and BD-Bitrate

Compression Performance on Plenoptic 1.0

-25.12%

Avg. (All)

BD-Bitrate result for QP 30, 36, 42 and 48 under the all Intra configuration					
	IBC vs HTM	BMP vs HTM	IBC+BMP vs.	IBC+BMP vs.	Codec version
			HTM	IBC	
Toys	-16.44%	-21.17%	-23.33%	-8.20%	HM15.0+RExt
Trees	-3.69%	-4.14%	-5.36%	-1.74%	-8.0+SCM-2.0
Avg.	-10.07%	-12.66%	-14.35%	-4.97%	
Teapots	-22.28%	-24.78%	-32.55%	-13.21%	HM-
Mini-garden	-30.30%	-31.98%	-38.30%	-11.54%	16.9_SCM_8.0
Avg.	-26.29%	-28.38%	-35.43%	-12.38%	
Avg. (All)	-18.18%	-20.52%	-24.89%	-8.67%	
BD-Bitrate result for QP 30, 36, 42 and 48under the random access configuration					
IDC	IRC ve UTM		IBC+BMP vs.	IBC+BMP	Codec version
	IDC vs. IIIW		HTM	vs. IBC	
Toys	-16.62%	-19.25%	-22.36%	-6.84%	HM-15.0+RExt-
Trees	-35.58%	-1.50%	-36.03%	-0.72%	8.0+SCM-2.0
Avg.	-26.10%	-10.38%	-29.20%	-3.78%	
Teapots	-21.76%	-11.93%	-27.16%	-6.78%	HM-
Mini-garden	-26.52%	-18.20%	-32.26%	-7.72%	16.9_SCM_8.0
Avg.	-24.14%	-15.07%	-29.71%	-7.25%	

-29.45%

-5.52%

M47314: Boundary matching based prediction for lenslet video compression@ MPEG, Geneva

-12.72%

M47314: Boundary matching based prediction for lenslet video compression@ MPEG, Geneva

Compression Performance on Plenoptic 2.0

Test Conditions:

- Test sequences: Tunnel_Train_2, Chess-Pieces, Boxer-IrishMan-Gladiator and ChessPieces-MovingCamera.
- Total frames: 100 frames
- Resolution: $R5:2048(H) \times 2048(V)$, $R8:3840(H) \times 2160(V)$,

- Anchor: HTM-HM mode
- Compared methods: IBC, BMP, IBC+BMP
- Configuration: all intra, random access
- QP: 28, 33, 38 and 46
- Evaluation: BD-Bitrate and RD curve

Compression Performance on Plenoptic 2.0

BD-Bitrate result for QP 28,33,38 and 46 under all intra configuration

	IBC vs.	BMP vs.	IBC+BMP vs.	IBC+BMP vs.	Codec
	HTM	HTM	HTM	IBC	version
Tunnel_Train_2	-16.15%	-3.61%	-16.54%	-0.52%	
Chess-Pieces	-42.99%	-20.77%	-43.42%	-0.85%	ШМ
Boxer-IrishMan- Gladiator	-37.84%	-15.95%	-38.55%	-1.17%	16.9+SCM
ChessPieces- MovingCamera	-24.81%	-22.83%	-29.57%	-6.54%	-0.0
Avg. (All)	-30.45%	-15.79%	-32.02%	-2.27%	
BD-Bitrate re	esult for QF	28,33,38 and	46 under rando	m access config	uration
	IBC vs.	BMP vs.	IBC+BMP vs.	IBC+BMP vs.	Codec
	HTM	HTM	HTM	IBC	version
Tunnel_Train_2	-13.66%	-2.01%	-13.63%	0.03%	
Chess-Pieces	-30.22%	-13.89%	-30.67%	-0.63%	
Boxer-IrishMan- Gladiator	-27.45%	-10.02%	-29.24%	-2.16%	HM-
ChessPieces- MovingCamera	-17.29%	-13.60%	-19.22%	-2.41%	-8.0
Avg. (All)	-22.16%	-9.88%	-23.19%	-1.29%	

Light Field Capture to Display System

ViewPLUS ProFUSION 25

Acquired images

Layered patterns

Layer type 3D display

Light Field Representation based on Weighted Sum of Binary Patterns

End-to-end system for dense light field

3D TV Based on Spatial Imaging

- No special glasses
- Full parallax
- Natural 3D image

3D image based on Integral Photography

Integral photography

M. G. Lippmann (1908)

Integral 3D TV

Features Real-time capture and display of moving 3D images

Real objects (not computer graphics) are captured and displayed Full-parallax images

Problem Integral 3D system requires huge number of pixels

Problem with Integral 3D system

Concluding Remark

• Lenslet data

- integral display, 3D modeling, refocusing , multiview rendering.
- Multimedia, medical applications
- Compression efficiency of lenslet data
 - Utilize the structure of lenslet data for inter/intra predictions
 - Novel image transform and entropy coding methods
 - Utilize machine learning tools
- New compression method for lenslet
 - leads to improvement over the existing standards.

Acknowledgement

Tsinghua University

