ISO/IEC ISO/IEC 23090-4 MPEG-I Immersive Audio

Schuyler Quackenbush Audio Research Labs

1

Talk Overview

- What is 6DoF Audio?
- Architecture for 6DoF Audio standard
- Requirements
- Evaluation Platform for CfP
- Test Material
- Timeline for the work

What is 6DoF Audio for Immersive Experiences?

- The good news is that 6DoF Audio is relatively easy to do!
- 6 DoF is (x, y, z) and (yaw, pitch, roll)
 - User physical movement directs virtual experience
 - Within limitations of physical space
- This includes audio presentations for
 - Virtual Reality
 - Augmented Reality
- Presentation via HMD and headphones
- Position virtual sources in VR or AR world
- Render with
 - Localization, Directivity and Reverberation

Position of Virtual Sources

- Use Head-Related Transfer Function (HRTF)
 - From virtual source to L and R ears
- Realistic rendering of spatial position due to perceptual cues
 - ITD time of arrival differences
 - ILD level difference
 - IC coherence, due to reverberation differences

Directivity of Sources

- Object perceived loudness changes as user moved around object
 - Louder in front
 - Softer in back

Ambience and Reverberation

- Almost all spaces impose some reverberation on sound sources
 - Need to simulate this
 - Have model for virtual reality
 - Need to estimate model for augmented reality
- Also need to simulate occlusion
 - Going "around the corner" from a sound object

Architecture

- MPEG-I Immersive Audio includes
 - Coding of audio sources
 - Coding of meta-data (e.g. source directivity or room acoustic properties)
 - Rendering of audio presentation for headphones
- MPEG-H 3D Audio is already a 3DoF presentation technology

ARE Will use for coding of audio sources audio research labs

New Technology in MPEG-I Audio

- Bitstream format, to include both
 - MPEG-H 3D Audio
 - MPEG-I additional meta-data
- Audio rendering technology
 - Can be acoustic "ray-tracing"
 - Can be parametric model (e.g. RT-60, describes envelope of reverberation decay)

MPEG-I Audio Architecture

(*) MPEG-H 3DA Decoder as defined in this document.

MPEG-I Audio Requirements

- Categories of Requirements
 - General (e.g. audio quality, perceived realism)
 - Rendering
 - Interfaces (e.g. user 6DoF)
 - Extensibility (i.e. "future-proof")
 - Presentation modes (headphones but can be loudspeakers)
 - Social VR (e.g. two users in one virtual world)

Evaluation of Technology

- Immersive VR world requires audio and visual presentations
 - Correctly perceiving virtual audio world without any visual cues is very difficult
- Hence, we will evaluate audio technology using a full, real-time audio-visual presentation
 - Head-Mounted Display for "Unity" visual presentation
 - Headphones and "Max 8" for audio presentation
 - Proponent technology runs in real-time in Max VST3 plugin

Example VR Presentation

- Outside scene with piano, fountain and birds
- [demo]

MPEG-I Evaluation Platform

- MaxMSP version 8 with VST3 plugins for proponent technology
- Automatically configured for each test
- Full randomization (since it is platform for subjective test)
- Signaling between Max and Unity to coordinate

MPEG-I Audio CfP Evaluation Platform

audio research labs

• Thanks to Philips for graphic 14

MPEG-I Encoder Input Format

- Specifies format of all information needed by proponent to respond to MPEG-I Audio CfP
 - Audio signals (objects, channels, HOA)
 - Metadata for signals (position, orientation, directivity)
 - Room information (walls, acoustic reflectivity)
 - Animation (moving objects)
- Hierarchical scene description
- Expressed in XML

Use in Evaluation Platform

Example Audio Object in EIF

- Trumpet
 - Position (x, y, z)
 - Orientation (y, p, r)
 - Directivity
 - Gain
 - mode="Continuous"
- Streaming sound

<AudioScene> <AudioStream id="signal:trumpet" file="armstrong.wav" mode="continuous" /> <SourceDirectivity id="dir:trumpet" file="trumpet.sofa" /> <ObjectSource id="src:trumpet" position="2 1.7 -1.25" orientation="30 -12 0" signal="signal:trumpet" directivity="dir:trumpet" gainDb="-2" active="true" />

Scene Updates

• Updates are *atomic*

```
<Update time="0.2">
  </Modify id="engine" position="2.2 1.7 -1.25'
  </Modify id="tire1" position="2.2 1.7 0.75" />
  </Modify id="tire2" position="2.2 1.7 -0.95" /:
  </Update>
```

```
<Update time="0.4">
<Modify id="engine" position="2.4 1.7 -1.20" />
<Modify id="tire1" position="2.4 1.7 0.70" />
<Modify id="tire2" position="2.4 1.7 -0.95" />
</Update>
```

ARL audio research labs

User Interaction Updates

- User can open the door
 - Door handle has position
 - mode="event"
 - Sound effect is local (cached)
 - Playout triggered by "update" message
 - From Unity to Max

```
<AudioStream id="sig:doorHandle1" file="doorHandle1.wav" />
<ObjectSource id="src:doorHandle" position="1.0 2.0 3.0" signal="sig:doorHandle1" mode="event" />
```

```
<Update id="upd:doorOpen">
```

```
<Modify id="src:doorHandle" play="true" />
```

</Update>

ARL audio research labs

MPEG-I Test Material

- Test Material expressed in Encoder Input Format
- Need richer test material that supports
 - Sound object localization
 - Sound object radiation patterns
 - Sound object extent or width
 - Occlusion of sounds
 - Reverberation of environment
 - Transition through "scene gateways" such as doorways

Timeline for Standardization

- Jan 2020 Call for Proposals
- Jun 2020 Evaluation and Selection of Technology
- Oct 2020 Working Draft
- Apr 2021 CD
- Jul 2021 DIS
- Oct 2021 Verification Test complete
- Jan 2022 FDIS

Questions?

