TODAY’S AND FUTURE CHALLENGES WITH NEW FORMS OF CONTENT LIKE 360°, AR, AND VR

Stefan Lederer
Bitmovin, Inc.
+1 650 4438956
stefan.lederer@bitmovin.com
@bitmovin

www.bitmovin.com

301 Howard Street, Suite 1800 | San Francisco | CA 94105 | USA
Schleppeplatz 7 | 9020 Klagenfurt | Austria | Europe

MPEG WORKSHOP: GLOBAL MEDIA TECHNOLOGY STANDARDS FOR AN IMMERSIVE AGE
FULL-STACK VIDEO INFRASTRUCTURE

360° & Virtual Reality Streaming

Raw files → Encoding → Storage → CDN → Player → Analytics → End user

Analytics optimisation loop

Encoding optimisation loop

The best possible user experience!
No special techniques for coding in spherical domain are widely available yet

- Encoding in rectangular domain
- Therefore we need the described projections to rectangular layouts
 - Equirectangular projection
 - Cube projection
 - Pyramid, Equal-Area projection and more . . .
- Traditional video codecs are used:
 AVC / HEVC (/ VP8 / VP9)
Primarily: Progressive MP4 for 360°

• 1080p to 4K Videos, using H.264 (some VP9)
• Why?
 • Browser/OS restrictions, e.g., on iPhone
 • Application has no access to frames
• Without adaptive streaming, the result is buffering and poor QoE
360° VIDEO – WHAT’S OUT THERE?

Current trends? MPEG-DASH / HLS
• Logical next step to use adaptive streaming
• Especially for high bitrate/resolution content

Challenges:
• Device coverage & issues
 • Desktop browsers, mobile Web, smartphone apps, VR headsets, TVs, casting devices, etc.
 • 360° rendering and access to frames is different on all platforms
 • Lack of frame access, DASH/HLS support, etc.
• Overlays and ads
 • How to position/communicate/integrate different types of ads
• DRM protection
 • No access to decoded frame
 • See also next slides
Content owners have to protect their content

E.g. in Browsers: HTML5 Encrypted Media Extensions
- DRM protection for adaptive streaming in HTML5
- Support for DASH / CENC content in HTML5

Where is the problem?
- 360°/VR content needs to be rendered in JavaScript
- Equirectangular to viewpoint rendering
- However: touching the frame for rendering breaks the DRM security principles (one could store the unprotected frames)
PROBLEMS: HTML5 EME + 360°
This problem needs to be solved to enable business cases

By whom?

» Standardization bodies (W3C, MPEG, etc.)
» Platform providers (Browsers, mobile OS vendors)
» DRM systems (Fairplay, Playready, Widevine, etc.)
NEW APPROACHES: ADAPTIVE PYRAMID MAPS

» Base of pyramid represents
» Field of View: high quality
 Sides of pyramid contain rest of whole panorama: low quality
» File size reduced by 80 percent against the original
NEW APPROACHES: ADAPTIVE PYRAMID MAPS

» Approach was developed by Facebook
» No public available scientific demos, evaluations or sources so far
» When the viewer shifts perspective, a new pyramid is streamed and rendered
» In total 30 viewports covering the sphere, separated by about 30 degrees
» 5 different resolutions for each stream
» Results in 150 different versions of same video, thus significantly increase storage and encoding requirements
WHAT ARE THE REAL NEEDS FOR 360°?

» 360° content allows the user to change the viewing orientation while watching a video
 › Large areas of the video are not seen

» Full 360° area has to be stored
 › Large file sizes
 › Challenge of streaming of such content

» → Increase streaming efficiency
 › Choose the “right” content representation
 › Utilize new delivery approaches
The state of the art streaming technology is to encode the video with each frame containing the full panorama as a whole in one uniform quality.

» This is inefficient because
» only a part of each video frame is presented to the user based on the current viewing angle
» But all parts are streamed in same high quality
WHY WE NEED MORE BANDWIDTH EFFICIENT APPROACHES

Needed resolution of panoramic video for achieving 4k field of view resolution:

12,000 pixels (12K) 360°

6,000 pixels (12K)

4,000 pixels 4K FOV 120°

4,000 pixels 4K FOV 120°

4,000 pixels 4K FOV 120°

© bitmovin, Inc. | Confidential | Patents Pending
MOTIVATION

» Field of view << full panorama
 › E.g., 90° → only a fourth of the full panorama displayed

» Render FoV in 2K → full panorama should be 8K
 › Won’t work well with traditional streaming approaches

» Traditional codecs (AVC/HEVC) need a rectangular two-dimensional video representation to work well
 › Equirectangular, cubic, pyramid, etc. projections
 › Traditional packaging and storing technologies can be used
 › Streaming technologies like DASH and HLS can be used

» Special video player is needed
 › Must know which projection is used
 › Must provide interaction possibilities
NEW APPROACHES: TILED BASED STREAMING

» Video is sliced into tiles
» Tiles are encoded in several qualities
» Only needed tiles are streamed in high quality
» Tiles outside FoV are streamed in descending quality, lower quality or not at all
TILED STREAMING

» Each tile can be encoded separately and independently streamed, decoded, and rendered
 › Each tile can have different bitrates and resolutions
 › Adapt quality of each tile independently

» H.265/HEVC provides tile support
 › Unfortunately not H.264
 › Need for a single decoder (enabled by HEVC), as usage of multiple decoders is not (yet) possible on consumer devices

» Can be used to realize a compressed domain mixing of tiles
 › Implementation as network services
 › Client side implementation
NEW APPROACHES: TILED BASED STREAMING

Front view, 6x4 tiles:
NEW APPROACHES: TILED BASED STREAMING

Top view, 6x4 tiles:
NEW APPROACHES: TILED BASED STREAMING

Front view, 3x2 tiles:
COMBINING STANDARDS: DASH + HTML5

» Client-based approach, using a single decoder
 › Written in JavaScript
 › Using Media Source Extensions (MSE)

» Different need to be mixed into a single video stream
 › Only one decoder is required
 › No need for synchronization

» Three different quality levels for each tile

» 6 x 4 tiling scheme

1: Where a higher number of tiles in general might lead to an increased user experience, but decreases the efficiency of the codec
DASH + HTML5 EXAMPLE

Tiling scheme selector

0 0 0 0 0 0
0 1 2 2 1 0
0 1 2 2 1 0
0 0 0 0 0 0
OVERHEAD USING TILES IN HEVC

Tile Overhead for resolution: 3840x1920
Sequence: 4k-AssassinsCreed
60%+ BANDWIDTH REDUCTION

Monolithic Streaming compared to Tiled Streaming:
4k–ExploreTheWorld, 6x4 Tiles, Resolution: 3840x1920
Head movement: 4k–ExploreTheWorld_1_FrameLog.txt
WHAT WE NEED IN THE FUTURE?

» 6 degrees of freedom
 › Light field, point cloud, multi-view, etc. approaches
 › Codecs, streaming standards, platform support, tools, etc.

» Good demos so far:

http://8i.com/experience
TODAY’S AND FUTURE CHALLENGES WITH NEW FORMS OF CONTENT LIKE 360°, AR, AND VR

Stefan Lederer
Bitmovin, Inc.
+1 650 4438956
stefan.lederer@bitmovin.com
@bitmovin

www.bitmovin.com

MPEG WORKSHOP:
GLOBAL MEDIA TECHNOLOGY STANDARDS FOR AN IMMERSIVE AGE