

Workshop on Coding Technologies for Immersive Audio/Visual Experiences

Lu Yu 2019.7.10

Immersive Experiences

• Immersion can be

 defined as the state of consciousness where a visitor or immersant's awareness of physical self is transformed by being surrounded in an artificial environment.

• An immersive digital environment

• <u>artificial</u>, <u>interactive</u>, computer-created <u>scene</u> or "world" within which users can immerse themselves.

Immersive Experiences

• Immersion can also be

- used for describing partial or complete suspension of disbelief by enabling action or reaction to stimulations encountered in a virtual or artistic environment.
- The greater the suspension of disbelief, the greater the degree of presence achieved.

Immersive Experiences

- To create a sense of **full immersion**, the 5 senses (sight, sound, touch, smell, taste) must perceive the digital environment to be physically real.
- Immersive technology can perceptually fool the senses through:
 - Panoramic 3D displays (visual)
 - Surround sound acoustics (auditory)
 - Haptics and force feedback (tactile)
 - Smell replication (olfactory)
 - Taste replication (gustation)

IGHT (UPPER) LIDE

Multi-Sphere for Parallax

virtual viewpoint

30cm radius

TechnicolorHijack: 10 semi-ERP RGB+D virtual cameras

Dense Light Fields

- Lenslet cameras
 - Plenoptic 1.0

• Plenoptic 2.0

Point Cloud Capturing

Example studio for capturing dynamic point clouds

Camera(front;right)
 Camera(front;left)
 Camera(side;right)
 Camera(side;left)
 Camera(rear;right)
 Camera(rear;left)
 Laser scanner (front;downward)
 Laser scanner (rear; upward)
 Laser scanner (rear; downward)
 In-wheel odometer

Sensor system for generating mobile mapping point clouds

Virtual Acoustic Environment

Big Data – 3 Degree of Freedom

- Retina resolution at fovea: ~200 PPD (pixel per degree)
- 4K UHD, 16:9, 3-times-height-of-picture viewing distance,
 - 36° FoV \rightarrow ~100 PPD
- 4K UHD, 360 $^{\circ}$ omnidirectional video \rightarrow ~ 11PPD
 - ✓ 200PPD , 360 $^\circ$ * 180 $^\circ$, 72K * 36K \rightarrow 2.5G pixel \rightarrow 4,500Gbps

E. Bastug, Toward interconnected Virtual Reality: Opportunities, Challenges, and Enablers, IEEE Communications Magazine, Jun. 2017

Big Data – 3 Degree of Freedom +

Synthesis Results

Synthesis from 24 views

Synthesis from 8 views

Synthesis from 2 views

MPEG-I Visual 3DoF+ Activities

3DoF+: 3DoF with additional limited translational movements (typically, head movements)

MPEG-I Visual 6DoF Activities

6DoF: 3DoF with full translational movements along X, Y and Z axes. A typical use case is a user freely walking through 3D 360 VR content

Point Cloud Compression

Animated Point Cloud

(voxels)

Bounding volume

Orthographic projection

of Points

sequence	Frames	fps	# Pts	Geometry Precision
Queen	250	50	~1,000,000/fr	10 bit
8i VFB – Loot	300	30	~780,000/fr	10 bit
8i VFB – Red_and_Black	300	30	~700,000/fr	10 bit
8i VFB – Soldier	300	30	~1,500,000/fr	10 bit
8i VFB – Long_dress	300	30	~800,000/fr	10 bit
classroomVideo	120	30	~120,000,000/fr	float

Video & Graphics based Workflow of Immersive Visual Content

Time slot	Торіс	Speaker
1300-1315	Introduction	Lu Yu, Zhejiang University
1315-1345	Usecases and challenges about user immersive experiences	Valerie Allie, InterDigital
1345-1415	Overview of technologies for immersive visual experiences	Marek Domanski, Poznan University of Technology
1415-1445	MPEG-I Immersive Audio	Schuyler Quackenbush, Audio Research Labs
1445-1455	 Brief introduction about demos: Integral photography display Realtime interactive demo with 3DoF+ content Plenoptic 2.0 video camera A simple free-viewpoint television system 	 NHK InterDigital Tsinghua University Poznan University of Technology
1455-1530	Demos Coffee break	
1530-1600	360° and 3DoF+ video	Bart Kroon, Philips
1600-1630	Point cloud compression	Marius Preda, Telecom SudParis, CNRS Samovar
1630-1700	How can we achieve 6DoF video compression?	Joel Jung, Orange
1700-1730	How can we achieve lenslet video compression?	Xin Jin, Tsinghua University, Mehrdad Teratani, Nagoya University