INTERNATIONAL ORGANISATION FOR STANDARDISATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND AUDIO
ISO/IEC JTC1/SC29/WG11

MPEG2005/N7686
October 2005, Nice, France
Source:
Audio Subgroup
Title:
Verification Report on MPEG-4 ALS
Status:
Approved
1 Introduction

MPEG-4 Audio Lossless Coding (ALS) is a new extension of the MPEG-4 audio coding family. Unlike perceptual MPEG audio coding standards such as MP3 and AAC, the ALS scheme provides lossless compression of digital audio data, i.e. it enables bit-identical reconstruction of the original data.

The ALS core codec is based on forward-adaptive linear prediction, which offers remarkable compression together with low complexity. Alternatively, also a backward-adaptive predictor can be used. ALS supports audio input with resolutions of up to 32 bit, at arbitrary sampling rates. Additional features include multi-channel coding and compression of floating-point audio material.
ALS also offers much flexibility in terms of compression-complexity tradeoff, ranging from very low-complexity implementations to maximum compression modes, thus adapting to different requirements.
The following sections constitute an overview of the ALS architecture, performance criteria, test methodologies, with the most important performance results in terms of compression and complexity in sections 2 and 3, and additional codec features and test results in sections 4 and 5.
ALS Architecture
The basic ALS algorithm [Lie05] essentially uses forward-adaptive linear predictive coding (LPC). The prediction residual is transmitted along with quantized filter coefficients. The decoder applies the inverse prediction filter in order to achieve lossless reconstruction (see Figures 1 and 2).

[image: image1.emf]Original

Buffer

Parcor

Values

Predictor

Quantized

Parcor Values

Entropy

Coding

Code Indices

M

u

l

t

i

p

l

e

x

i

n

g

Residual

Bitstream

Estimate

Entropy

Coding

Parcor

to LPC

Q

Prediction

Figure 1 – ALS encoder

[image: image2.emf]D

e

m

u

l

t

i

p

l

e

x

i

n

g

Bitstream

Entropy

Decoder

Predictor

Lossless Reconstruction

Parcor

Values

Code Indices

Estimate

Residual

Parcor

to LPC

Entropy

Decoder

Inverse Prediction

Figure 2 – ALS decoder
The complexity of the decoder mainly depends on the multiplications performed by the inverse prediction filter. The number of multiplications equals the prediction order, i.e. the number of filter taps. The order of the prediction filter can be adapted, thus the average complexity depends on the average prediction order chosen by the encoder.

Additional tools, which can be switched on to improve compression, comprise long-term prediction (LTP) and multi-channel prediction (MCC). Alternatively, a backward-adaptive predictor (RLS-LMS) can be used instead of the forward-adaptive predictor [N7364]. The RLS-LMS predictor can improve compression at the expense of a significantly increased decoder complexity.

2 Performance of ALS

2.1 Criteria and Test Methodologies

Test Data: The performance is evaluated using the MPEG-4 lossless audio coding test sets, donated by Matsushita Corporation [N5208]. There are four test sets with the following formats:

· 48 kHz sampling rate / 16-bit resolution (15 items)

· 48 kHz sampling rate / 24-bit resolution (15 items)

· 96 kHz sampling rate / 24-bit resolution (15 items)

· 192 kHz sampling rate / 24-bit resolution (6 items)

All test sets contain the same items in different formats (the 192/24 set only contains a subset), where all items have a length of 30 seconds (see Appendix B).
Coding Efficiency: All coding results are given in terms of compression ratio

[image: image3.wmf] Size

Compressed

ize

Original S

n Ratio

Compressio

=

and compression size

[image: image4.wmf]%

100

ize

Original S

 Size

Compressed

n Size

Compressio

×

=

,
where the latter is equivalent to the remaining percentage of data.

Complexity: In the following, the computational complexity is represented by a weighted average number of standard instructions (with weights: 14.0 – multiplications, 56.0 – divisions, 4.0 – shifts, and 0.5 – for additions, comparisons, and memory-access operations), corresponding to the estimated latencies of instructions in Intel Pentium processors [IA32]. An estimation of ROM usage is given as well.
For the purpose of comparison, also the total number of instructions of all kinds (complexity metric relevant for RISC and other architectures with single-cycle instructions) can be used. Please refer to Appendix A for a more detailed analysis of the theoretical ALS decoder complexity. In addition to that, some test results from a performance evaluation on a PC platform can also be found in section 5.
2.2 Coding Efficiency
In the following, three representative combinations of coding parameters (“coding modes”) of MPEG-4 ALS are compared:
· Standard predictor (forward-adaptive) with maximum prediction order limited to K (20, BGMC entropy coding, LTP and MCC enabled
· Standard predictor at maximum compression (K (1023), BGMC, LTP and MCC enabled
· RLS-LMS predictor (backward-adaptive) at maximum compression (RLS order: 16, LMS orders: 512, 128, 16)

In each case, random access of 500 ms is provided. Table 1 summarizes the most important compression results, divided into separate results for the four audio formats and the whole test set, both in terms of compression ratio and compression size.

	Format
	Standard (K <= 20)
	Standard (max)
	RLS-LMS (max)

	
	Ratio
	Size
	Ratio
	Size
	Ratio
	Size

	48 kHz / 16-bit
	2.204
	45.37 %
	2.242
	44.61 %
	2.257
	44.31 %

	48 kHz / 24-bit
	1.583
	63.18 %
	1.596
	62.66 %
	1.603
	62.39 %

	96 kHz / 24-bit
	2.157
	46.35 %
	2.169
	46.09 %
	2.181
	45.85 %

	192 kHz / 24-bit
	2.656
	37.65 %
	2.669
	37.46 %
	2.668
	37.48 %

	Average
	2.150
	48.14 %
	2.169
	47.71 %
	2.177
	47.50 %

Table 1 – Compression ratio and size for different formats and compression modes

[image: image5.wmf]1.0

1.5

2.0

2.5

3.0

48 / 16

48 / 24

96 / 24

192 / 24

Average

Compression Ratio

Standard (K<=20)

Standard (max)

RLS-LMS (max)

Figure 3 – Compression ratio for different formats and compression modes
The compression ratios for each format and mode are also illustrated in Figure 3. It can be seen that the compression ratio increases for higher sampling rates (i.e. from 48 kHz to 192 kHz), but decreases for higher resolutions (i.e. from 16-bit to 24-bit).

2.3 Compression vs. Complexity
Figures 4-7 show the relation between coding efficiency and estimated decoder complexity for an Intel Pentium platform (see Appendix A for a detailed discussion). The vertical axis shows the compression rates, achieved on the test set, while the horizontal axis shows the average complexity of the decoder in terms of Pentium cycles per processed sample. The complexity of the forward-adaptive predictor is given on the left-hand side, while the complexity of the RLS-LMS predictor is separately given on the right-hand side (please note the different scales).
[image: image6.wmf]44.0

44.5

45.0

45.5

46.0

46.5

0

1000

2000

3000

4000

5000

Complexity

Compression Size [%]

[image: image7.wmf]44.0

44.5

45.0

45.5

46.0

46.5

10000

40000

70000

Complexity

Figure 4 – Relation between compression and complexity (48 kHz / 16 bit)

[image: image8.wmf]62.0

62.5

63.0

63.5

64.0

0

1000

2000

3000

4000

5000

Complexity

Compression Size [%]

[image: image9.wmf]62.0

62.5

63.0

63.5

64.0

10000

40000

70000

Complexity

Figure 5 – Relation between compression and complexity (48 kHz / 24 bit)

[image: image10.wmf]45.5

46.0

46.5

47.0

47.5

48.0

0

500

1000

1500

2000

2500

3000

Complexity

Compression Size [%]

[image: image11.wmf]45.5

46.0

46.5

47.0

47.5

48.0

10000

40000

70000

Complexity

Figure 6 – Relation between compression and complexity (96 kHz / 24 bit)

[image: image12.wmf]37.0

37.5

38.0

38.5

39.0

0

500

1000

1500

2000

Complexity

Compression Size [%]

[image: image13.wmf]37.0

37.5

38.0

38.5

39.0

10000

40000

70000

Complexity

Figure 7 – Relation between compression and complexity (192 kHz / 24 bit)

More information on the estimated complexity of the ALS decoder for several modes of operation are provides in Appendix A, including a list of all individual instructions (i.e. multiplications, additions, etc.), as well as the total number of instructions.
2.4 ROM Usage Requirements
The ROM requirements of an ALS decoder depend on the employed entropy coding scheme (either Rice coding or BGMC). In Table 2, the memory requirements of both schemes are summarized.
	
	ALS / Rice
	ALS / BGMC

	ROM usage
	0.7 kBytes
	7 kBytes

Table 2 – ROM usage requirements for ALS decoders
3 Functionalities

MPEG-4 ALS offers a number of interesting functionalities. Table 3 summarizes some of its most prominent features.
	Feature
	Realization

	Numerical lossless coding
	Yes

	Support for multi-channel audio
	Yes, up to 65536 channels

	Support for 32-bit PCM formats
	Yes, any resolution up to 32-bit, including 8-bit, 16-bit, 24-bit, and intermediate resolutions such as 12-bit

	Support for 32-bit floating-point formats
	Yes, IEEE 32-bit

	Random Access
	Minimum length of random access units tmin depends on frame length N and sampling rate fs: tmin = N / fs.

Example: 48 kHz, N = 2048: 42 ms

Table 3 – Features of MPEG-4 ALS
4 Additional Information and Results
4.1 Compression of Floating-Point Audio Data
In addition to integer audio signals, MPEG-4 ALS also supports lossless compression of audio signals in the IEEE 32-bit floating-point format [IEEE754]. The floating-point sequence is modeled by the sum of an integer sequence and a residual sequence. The integer sequence is compressed using the basic ALS tools for integer data, while the residual sequence is compressed separately.
Since currently there are only few tools available for lossless compression of floating-point audio, MPEG-4 ALS is compared with WinZip, which is one of the most popular programs for dictionary based lossless compression.

Figure 8 shows the compression ratios for a set of 96 kHz test data, consisting of several original recordings, which were supplied by a professional sound studio. The results show that ALS compresses floating-point audio data much more effectively than a general-purpose compression tool such as WinZip. Similar results can be obtained for other sampling rates.
[image: image14.wmf]0

0.5

1

1.5

2

2.5

3

#1

#2

#3

#4

#5

#6

Total

Track #

Compression ratio

ZIP

ALS

Figure 8 – Compression ratios for 32-bit floating-point audio data (96 kHz)
4.2 Compression Results for Multi-Channel Data
MPEG-4 ALS can efficiently compress multi-channel signals, including 5.1 surround sound and wave field synthesis signals, but it is also suited for non-audio multi-channel signals such as bio-medical (e.g. EEG, MEG) and seismic data.
Figure 9 shows the compression ratios for some typical 5.1 multi-channel audio signals (48 kHz), taken from an MPEG test set for multi-channel testing. Figure 10 shows some results for different 512-channel MEG signals, which were kindly provided by Prof. Tsunehiro Takeda, The University of Tokyo.

The compression ratios for 5.1 material are typically higher than for stereo material, since there is often only low activity in some channels.
[image: image15.wmf]0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

applse_REF.wav

fountain_music_REF.wav

harpsi_REF.wav

mansini_REF.wav

sqamcom_REF.wav

Stomp_REF.wav

Average

Compression ratio

Figure 9 – Compression ratios for 5.1 multi-channel audio data (48 kHz)
[image: image16.wmf]2.5

2.6

2.7

2.8

2.9

3

h-sefRAW512.wav

o-a1a5oRAW512.wav

o-a1a5pRAW512.wav

o-a2RAW512.wav

o-a4RAW512.wav

Average

Compression ratio

Figure 10 – Compression ratios for multi-channel MEG data
4.3 Complexity Analysis on a PC platform
In the following, some experimental performance results for MPEG-4 ALS on a PC platform are presented. Besides the reference software decoder (RM16), also the performance of a faster implementation, supplied by NTT, is shown. For means of comparison, results for Monkey's Audio v3.99 [MAC] at three modes (c2000, c4000, c5000) are given as well.
Since one of the most typical use case scenarios for ALS is archival application on a PC platform, the test was processed on a system with Windows Server 2003, AMD Opteron Processor 250, 2.39 GHz, and 2.0 GB RAM.
Figure 11 shows the relation between compression efficiency and average decoding time over all items (each of which is 30 seconds), similar to Figures 4-7, but averaged over the four test sets (same as last row of Table 1).
[image: image17.wmf]47.0%

47.5%

48.0%

48.5%

49.0%

49.5%

50.0%

0

1

2

3

4

5

6

7

Decoding Time [sec]

Compression Size [%]

ALS RM16

ALS fast

Monkey's Audio

 [image: image18.wmf]47.0%

47.5%

48.0%

48.5%

49.0%

49.5%

50.0%

40

80

120

160

Decoding Time [sec]

ALS RLS-LMS

Figure 11 – Relation between compression size and decoding time (average over all test sets)
Although the ALS reference decoder runs significantly faster than real-time, the results show that an even the faster implementation is easily possible. The complexity at the lower end can be further reduced by using Rice coding instead of BGMC.

As a conclusion, ALS performs better than Monkey’s Audio, both on average as well as for the four individual test sets (not shown).
5 Summary

MPEG-4 Audio Lossless Coding (ALS) is a highly efficient and fast lossless audio compression scheme for both professional and consumer applications, which offers many innovative features.

Maximum compression can be achieved by means of high prediction orders or the RLS-LMS mode. Using low and medium complexity modes, real-time encoding and decoding are possible even on low-end devices.
6 References

[N5208]
ISO/IEC JTC1/SC29/WG11 (MPEG), Document N5208, “Final Call for Proposals on MPEG-4 Lossless Audio Coding”, Shanghai, China, October 2002.

[N7364]
ISO/IEC JTC1/SC29/WG11 (MPEG), Document N7364, “Text of 14496-3:2001/FDAM 4, Audio Lossless Coding (ALS), new audio profiles and BSAC extensions”, Poznan, Poland, July 2005.

[Lie05]
T. Liebchen, T. Moriya, N. Harada, Y. Kamamoto, Y. Reznik, “The MPEG-4 Audio Lossless Coding (ALS) Standard – Technology and Applications”, 119th AES Convention, New York, USA, October 2005.

[IA32]
IA-32 Intel Architecture Optimization Reference Manual, ON: 248966-009, Intel Corp.
[MAC]
Monkey's Audio: http://www.monkeysaudio.com/

Appendix A: Analysis of ALS Decoder Complexity
The main blocks contributing to the ALS decoder’s complexity are LPC synthesis filter, and either Golomb-Rice or BGMC residual coding engines. Below we analyze the numbers of 32-bit arithmetic operations involved in each process.
The computational complexity is evaluated by counting the total numbers of standard instructions (multiplications, additions, bit-shifts, comparisons, memory transfers, etc) required for performing the decoding process on a generic 32-bit fixed-point CPU.

For the purpose of comparison we are also computing the total number of instructions of all kinds (complexity metric relevant for RISC- and other architectures with single-cycle instructions) and a weighted average number (with weights: 14.0 – multiplications, 56.0 – divisions, 4.0 – shifts, and 0.5 – for additions, comparisons, and memory-access operations) corresponding to the estimated latencies of instructions in Intel Pentium processors [IA32].
The complexity of deterministic algorithms is evaluated exactly, while the complexity of arithmetic coding engines is estimated as the upper bound for the average complexity, assuming that both systems achieve compression ratio of 2:1.
In addition, we also provide estimates of ROM usage requirements of the algorithm, and compare the description complexity expressed in the number of lines of plain C-code (excluding lines containing comments and single start/end-of-block operators) required to describe the main functions.
A.1
Complexity of LPC Synthesis Filter
The computational complexity of LPC synthesis filter can be expressed by the following formula:
N * K * (2 adds + 1 mul) + N * (1 add + 2 shifts)
where N is the frame size, and K is the predictor order (either maximum or average, depending on complexity approach).
The actual numbers of instructions, calculated using this formula for various predictors orders are listed in the following table.
	K

	Muls
	Adds/Subs
	Shifts
	Combined

All = 1 cycle
	Combined

Pentium

	
	K
	2K+1
	2
	7
	8

	10
	10
	21
	2
	33
	158.5

	15
	15
	31
	2
	48
	233.5

	20
	20
	41
	2
	63
	308.5

	30
	30
	61
	2
	93
	458.5

	40
	40
	81
	2
	123
	608.5

	50
	50
	101
	2
	153
	758.5

	60
	60
	121
	2
	183
	908.5

	80
	80
	161
	2
	243
	1208.5

	100
	100
	201
	2
	301
	1508.5

	120
	120
	241
	2
	361
	1808.5

	255
	255
	511
	2
	767
	3833.5

Table 4 – Numbers of INT32 operations (per sample / channel) in ALS synthesis filter
A.2
Complexity of RLS-LMS Filter
The detailed analysis of this filter has been performed. The formula for total computational complexity of RLS-LMS filter, reported in [N7371], is:

M_rls^2 * (0.5 div64x32 + 2.5 muls + 9.5 adds + 3 shifts + 2.5 cmps + 1 or + 1 neg + 1 mov).
+ M_rls * (0.5 div64x32 + 5.5 muls + 16.5 adds + 12 shifts + 4.5 cmps + 5 ors + 5 negs + 4 movs).
+ M_lms * (3 muls + 6 adds + 2 shifts + 1 mov).
+ nstages * (1 muls + 3 adds + 2 shifts + 2 cmps).
+ 2 div64x32 + 37 adds + 51 shifts - 6 cmps.
+ (M_lms * (1 muls + 2 adds) + lms_stages * 2 cmps) / N;

where:

N – is the length of a frame;

M_rls – the length of an RLS filter;

M_lms – the combined length of all LMS filters in RLS-LMS cascade;

nstages – the total number of stages in RLS-LMS cascade;

lms_stages – the number of LMS stages in RLS-LMS cascade

(in current implementation: lms_stages = nstages - 2).

The complexity analysis of the three RLS-LMS modes is given in Table 9.

	Mode
	RLS-LMS filter complexity

	#
	stages
	M_rls
	M_lms
	Divs
	Muls
	Adds
	Shifts
	Cmps
	Movs
	Total
	Pentium

	-z1
	5
	8
	164
	38
	701
	1776
	677
	200
	260
	3652
	16985

	-z2
	5
	12
	328
	80
	1415
	3586
	1293
	418
	520
	7312
	34286

	-z3
	5
	16
	656
	138
	2701
	6685
	2333
	716
	976
	13548
	63482

Table 5 – Computational complexity of RLS-LMS filter

A.3
Complexity of the Golomb-Rice decoder
Given a number x, the Golomb-Rice code of x with parameter s, consists of x / 2^s 1s, followed by a zero bit, and an s-bit remainder x % 2^s.
It is clear, that the decoding of such a code would require:
(x / 2^s + 1 + s) bit-reads + (x / 2^s + 1) additions + 1 shift.
In a reference ALS encoder the Rice code parameter s is chosen using a formula:

[image: image19.wmf](

)

22

1

1

s = log.471log

n

n

i

i

xx

=

êú

æö

+£

êú

ç÷

èø

ëû

å

so the average number of operations required to decode a residual sample can be upper bounded by:
(2 + 1 + s) bit_reads + (2 + 1) additions + 1 shift.
The number of bit_reads in this formula must also be equal to the average bitrate of the encoded block of residual samples, so the more accurate upper bound is:
R bit_reads + 3 additions + 1 shift.
where R is the average bitrate for a block.

A.4
Total ALS Decoder Complexity using the Golomb-Rice Coder
The total maximal complexity of ALS/Rice decoder is:
N * K * (1 mul + 2 adds) + N * (1 add + 2 shifts)
+ N * (3 additions + 1 shift) + R bit_reads
+ N / 2 additions.
The corresponding numbers calculated for various predictor orders are shown below:
	K

	Muls
	Adds/Subs
	Shifts
	Combined

All = 1 cycle
	Combined

Pentium

	
	K
	2K+4.5
	3
	
	

	10
	10
	21
	3
	37.5
	164.25

	15
	15
	31
	3
	52.5
	239.25

	20
	20
	41
	3
	67.5
	314.25

	30
	30
	61
	3
	97.5
	464.25

	40
	40
	81
	3
	127.5
	614.25

	50
	50
	101
	3
	157.5
	764.25

	60
	60
	121
	3
	187.5
	914.25

	80
	80
	161
	3
	247.5
	1214.25

	100
	100
	201
	3
	307.5
	1514.25

	120
	120
	241
	3
	367.5
	1814.25

	255
	255
	511
	3
	772.5
	3839.25

Table 6 – Complexity of ALS decoder using Golomb-Rice codes for residual
A.5
Complexity of the BGMC Decoder
In BGMC mode, the code for prediction residual consists of arithmetically-coded most-significant bits (MSB) of the residual, followed by the directly transmitted LSBs or Rice-Coded values outside of the central region [Lie05]. Since the large values outside of the central region happen with combined probability of 2^(-14), their effect on the overall complexity is negligible.

The number of directly transmitted LSB bits (parameter k) in BGMC encoder is calculated as follows:
b = (log n – 3)/2;
k = max(0, s – b);
where n is the sub-block size, and s is the Golomb-Rice code parameter calculated as mentioned above. An additional parameter (delta), defining the step size in the probability table is obtained using
delta = 5 – s + k.
Effective cardinality of the alphabet given parameters k, and delta:
7-delta <= Log |A| < = 8 – delta
The following table lists the attainable ranges of values of these parameters for typical block sizes:
	N
	n
	b
	min_delta
	Max_delta
	Min log |A|
	Max log |A|

	512
	128
	2
	3
	5
	2
	5

	1024
	256
	2
	3
	5
	2
	5

	2048
	512
	3
	2
	5
	2
	6

	4096
	1024
	3
	2
	5
	2
	6

Table 7 – Ranges of parameters delta and log|A| in BGMC decoder
The pseudo code of the multi-symbol arithmetic decoding process used in BGMC mode is provided below:
 /* calculate range */
 range = high – low + 1;

// 2 adds
 cum = (((value - low + 1) << F_BITS) –1) / range;
// 3 adds + 1 shift

// 1 div
 /* decode symbol */
 while (s_freq[s] > cum)

// using binary search the complexity is <= Log|A|
 s += 1;

// in number of comparisons; |A| - alphabet size

// division can be avoided by using <= Log |A|

// multiplications in such a search process
 /* interval update: */
 high = low + (range*s_freq[s-1] >>F_BITS) -1;
// 1 mul + 2 adds+ 1 shift
 low = low + (range*s_freq[s] >>F_BITS);
// 1 mul + 1 add + 1 shift
 /* renormalize interval: */
 for (; ;) {

// times the number of read bits:
 if (high < HALF) {
 /* nothing */
 } else
 if (low >= HALF) {
 value -= HALF;

// 3 adds
 low -= HALF;
 high -= HALF;
 } else
 if (low >= FIRST_QTR && high < THIRD_QTR) {
 value -= FIRST_QTR;

// 3 adds
 low -= FIRST_QTR;
 high -= FIRST_QTR;
 } else
 break;
 /* scale up code range and load next bit */
 low = low<<1;

// 3 shifts + 1 add
 high = high<<1;
 value = value<<1 + get_bit ();

// 1 bit read
 }
}
Based on this pseudo-code we can upper bound the total complexity of arithmetic decoder by:
N * (2 muls + 1 div + 8 adds + 3 shifts + log |A| cmps
+ R * (4 adds + 3 shifts + 1 bit-read))
where N is the sub-block size, |A| is the cardinality of the alphabet, and R is the effective rate of the arithmetically encoded data in BGMC bitstream.
Assuming that the effective rate of the arithmetic coder is the ½ of the effective alphabet size log |A| then the complexity becomes:
N* (2 muls + 1 div + 8 adds + 3 shifts + log |A| cmps

+ log |A| /2 * (4 adds + 3 shifts + 1 bit-red))
The actual numbers calculated using this formula for different block sizes are given in the following table:
	N
	Muls
	Divs
	Adds/

Subs
	Shifts
	Cmps
	Combined

All = 1 cycle
	Combined

Pentium

	512
	2
	1
	18
	10.5
	5
	36.5
	137.5

	1024
	2
	1
	18
	10.5
	5
	36.5
	137.5

	2048
	2
	1
	20
	12
	6
	39
	144

	4096
	2
	1
	20
	12
	6
	39
	144

Table 8 – Maximal complexity of the arithmetic decoder in BGMC mode

It shall be stressed that divisions in the above scheme are not essential, and can be easily replaced by multiplications in the search loop. With such a substitution, the number of required multiplications will be equal to the number of comparisons in the above table.
A.6
Total ALS Decoder Complexity using the BGMC Coder
The total complexity of ALS/BGMC decoder, assuming that the compression ratio is 2:1, can be upper bounded as follows:
N * (K*(2 adds + 1 mul) + 1 add + 2 shifts)

+ N* (2 muls + 1 div + 8 adds + 3 shifts + log |A| cmps

+ log |A| /2 * (4 adds + 3 shifts + 1 bit-red))
The corresponding numbers for various block sizes are shown in the following table.
	N

	K

	Muls
	Div
	Adds/

Subs
	Shifts
	Cmps
	Combined

All = 1 cycle
	Combined

Pentium

	
	
	K+2
	1
	2K+19
	12.5
	5
	
	

	1024

	10
	12
	1
	39
	12.5
	5
	69.5
	296.0

	
	15
	17
	1
	49
	12.5
	5
	84.5
	371.0

	
	20
	22
	1
	59
	12.5
	5
	99.5
	446.0

	
	30
	32
	1
	79
	12.5
	5
	129.5
	596.0

	
	40
	42
	1
	99
	12.5
	5
	159.5
	746.0

	
	50
	52
	1
	119
	12.5
	5
	189.5
	896.0

	
	60
	62
	1
	139
	12.5
	5
	219.5
	1046.0

	
	80
	82
	1
	179
	12.5
	5
	279.5
	1346.0

	
	100
	102
	1
	219
	12.5
	5
	339.5
	1646.0

	
	120
	122
	1
	259
	12.5
	5
	399.5
	1946.0

	
	255
	257
	1
	529
	12.5
	5
	804.5
	3971.0

	N

	K

	Muls
	Div
	Adds/

Subs
	Shifts
	Cmps
	Combined

All = 1 cycle

	Combined

Pentium

	
	
	K+2
	1
	2P+21
	14
	6
	
	

	2048,

4096

	10
	12
	1
	41
	14
	6
	74
	303.5

	
	15
	17
	1
	51
	14
	6
	89
	378.5

	
	20
	22
	1
	61
	14
	6
	104
	453.5

	
	30
	32
	1
	81
	14
	6
	134
	603.5

	
	40
	42
	1
	101
	14
	6
	164
	753.5

	
	50
	52
	1
	121
	14
	6
	194
	903.5

	
	60
	62
	1
	141
	14
	6
	224
	1053.5

	
	80
	82
	1
	181
	14
	6
	284
	1353.5

	
	100
	102
	1
	221
	14
	6
	344
	1653.5

	
	120
	122
	1
	261
	14
	6
	404
	1953.5

	
	255
	257
	1
	531
	14
	6
	809
	3978.5

Table 9 – Estimated maximum numbers of INT32 operations in ALS LPC synthesis filter and BGMC entropy decoder
As the prediction order can be adaptively chosen on a frame-by-frame basis, the complexity of the decoder is largely determined by the average prediction order chosen by the encoder. Assumed that the encoder specifies a maximum prediction order Kmax that can not be exceeded, the actual average prediction order Kavg is typically lower. The following Tables 10-13 present measured values of average prediction orders for given maximum orders, and how they relate to the decoder complexity in terms of Pentium cycles per processed sample, according the upper part of Table 9. The right column additionally shows the corresponding compression sizes, thus the last two columns contain exactly the data that was used to generate Figures 4-7.
	Kmax
	Kavg
	Pentium (Kavg)
	Size [%]

	10
	10
	296
	45.521

	15
	14
	356
	45.407

	20
	18
	416
	45.365

	30
	23
	491
	45.328

	40
	29
	581
	45.294

	60
	41
	761
	45.210

	90
	60
	1046
	45.057

	127
	84
	1406
	44.939

	191
	119
	1931
	44.832

	255
	156
	2486
	44.763

	383
	218
	3416
	44.677

	511
	256
	3986
	44.640

	1023
	309
	4781
	44.609

Table 10 – Average prediction orders and complexities (48 kHz / 16-bit)
	Kmax
	Kavg
	Pentium (Kavg)
	Size [%]

	10
	10
	296
	63.308

	15
	14
	356
	63.214

	20
	18
	416
	63.178

	30
	25
	521
	63.149

	40
	31
	611
	63.124

	60
	43
	791
	63.066

	90
	62
	1076
	62.961

	127
	86
	1436
	62.881

	191
	121
	1961
	62.809

	255
	158
	2516
	62.762

	383
	220
	3446
	62.704

	511
	255
	3971
	62.678

	1023
	312
	4826
	62.657

Table 11 – Average prediction orders and complexities (48 kHz / 24-bit)
	Kmax
	Kavg
	Pentium (Kavg)
	Size [%]

	10
	10
	296
	47.826

	15
	15
	371
	46.640

	20
	19
	431
	46.353

	30
	28
	566
	46.269

	40
	35
	671
	46.241

	60
	46
	836
	46.221

	90
	60
	1046
	46.201

	127
	77
	1301
	46.172

	191
	106
	1736
	46.126

	255
	128
	2066
	46.108

	383
	157
	2501
	46.095

	511
	168
	2666
	46.094

Table 12 – Average prediction orders and complexities (96 kHz / 24-bit)
	Kmax
	Kavg
	Pentium (Kavg)
	Size [%]

	10
	10
	296
	38.602

	15
	15
	371
	37.776

	20
	20
	446
	37.652

	30
	28
	566
	37.541

	40
	34
	656
	37.504

	60
	44
	806
	37.474

	90
	55
	971
	37.466

	127
	64
	1106
	37.462

Table 13 – Average prediction orders and complexities (192 kHz / 24-bit)
A.7
ALS Memory Usage
The following is the summary of tables used in the ALS decoder:
Coefficient tables:
3*20

= 60 Bytes
Compander table:
128 words

= 512 Bytes
BGMC tables:

3*129 + 8*192 + 5*256 shorts
= 6432 Bytes
Total/BGMC mode:

= 7004 Bytes ~ 7 kBytes
Total/Rice codes:

= 672 Bytes ~ 0.7 kBytes
A.8
ALS Decoder Algorithm Description Complexity

In the following, the description complexity in terms of C code is given:
Predictor:

48 lines

Golomb-Rice decoder:
22 lines
BGMC decoder:

73 lines
Total / Rice decoder only:
70 lines

Total Rice+BGMC decoders:
143 lines

Appendix B: Testing Sequences

The MPEG-4 Lossless Audio Coding Testing Sequences are listed in the following table. Sequences of lower sampling rate (96 kHz, 48 kHz) and lower wordlength (16-bit) were made available by downsampling and truncating (with proper dither) sequences of higher sampling rates and higher length.

	Group
	Spec.
	File name
	Source

	a)
	192kHz/24bit
/stereo
	Avemaria.wav
	Avemaria / C. Gounod

	
	
	Etude.wav
	Etude / F.Chopin

	b)
	96kHz/24bit/
stereo

	Flute.wav
	Concerto for Two Flutes and Orchestra RV.533 Op.42 No.2 in C major / Vivaldi

	
	
	Clarinet.wav
	Concerto for Clarinet and Orchestra in A major K.622 / Mozart

	
	
	Violin.wav
	Concerto for Violin and String Orchestra No.1, BWV1041 / Bach

	
	
	Haffner.wav
	Symphony No.35 in D major “Haffner”, K.385 / Mozart

	c)
	192/24/stereo
	Cymbal192.wav
	MEI original recording

	
	96/24/stereo
	Cymbal96.wav
	

	d)
	192kHz/24bit
/stereo
	Broadway
	

	
	
	Dcymbals
	

	
	
	Mfv
	

	e)
	96kHz/24bit/
stereo

	Blackandtan
	

	
	
	Broadway
	

	
	
	Cherokee
	

	
	
	Dcymbals
	

	
	
	Fouronsix
	

	
	
	Mfv
	

	
	
	Unfo
	

	
	
	Waltz
	

Note for groups a), b), c): Music source recording of New York Symphonic Ensemble.

_1190647520.vsd
Original

Buffer

Parcor Values

Predictor

Quantized Parcor Values

Entropy Coding

Code Indices

Multiplexing

Residual

Bitstream

Estimate

Entropy Coding

Parcor to LPC

Q

Prediction

_1191328923.unknown

_1191328944.unknown

_1190647432.vsd
Demultiplexing

Bitstream

Entropy Decoder

Predictor

Lossless Reconstruction

Parcor Values

Code Indices

Estimate

Residual

Parcor to LPC

Entropy Decoder

Inverse Prediction

_1152101101.unknown

