INTERNATIONAL ORGANISATION FOR STANDARDISATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11 N2005

MPEG98

February. 1998/San Jose

Source:	Audio Subgroup

Title:		Revised Report on Complexity of MPEG-2 AAC Tools

Status:	Approved

Author:	S. R. Quackenbush and Y. Toguri

This document is based on document N1712 [1] , which presented the complexity of the tools in MPEG-2 AAC Main and Low Complexity Profiles. We add to this an analysis of the complexity of AAC Scaleable Sampling Rate (SSR) Profile, so that this document presents a unified report on the complexity of all tools in MPEG-2 AAC profiles.

We desire to quantify the complexity of the tools in the MPEG-2 Advanced Audio Coding (AAC) decoder. They are:

huffman decoding

inverse quantization and scaling

M/S dematrixing

intensity stereo

coupling channel

backward adaptive prediction

temporal noise shaping (TNS)

inverse modified discrete cosine transform (IMDCT)

gain control and hybrid filter bank (inverse polyphase quadrature filter (IPQF)+IMDCT)

Unless otherwise indicated, complexity is specified in terms of

machine instructions required to realize the tool’s computations, as run on a typical (but unspecified) programmable digital signal processor

read/write storage locations

read-only storage locations

We assume that:

the target machine uses only IEEE floating point arithmetic, so that all floating point data require four bytes of storage. All storage is specified in terms of 32-bit words.

the coder block size is 1024 input samples, equivalent to 1024 spectral coefficients per channel.

an audio signal is sampled at 48 kHz, 16-bits per sample

the compressed bit rate is 64000 bits per second per audio channel

Furthermore, we only indicate storage that is required by a tool and cannot be shared or re-used by other tools. Specifically, we do not count temporary, stack-based scratch storage (“automatic” variables), as such storage is implicitly shared across tools.

Unless explicitly indicated, all complexity figures are for one audio channel.

Overview

One should consider two important categories of AAC decoder implementations: software decoders running on general-purpose processors, and hardware decoders running on single-chip ASICs. For these two categories the data presented in this document, augmented by demonstrated real-time software decoder implementations, can be summarized in the following table:

Decoder�
Complexity�
�
2-channel Main profile software decoder�
40 % of 133 MHz Pentium�
�
2-channel Low Complexity profile software decoder�
25 % of 133 MHz Pentium�
�
5-channel Main profile hardware decoder�
90 sq. mm die, 0.5 micron CMOS�
�
5-channel Low Complexity profile hardware decoder�
60 sq. mm die, 0.5 micron CMOS�
�
2-channel Scaleable Sampling Rate profile software decoder�
not estimated �
�
5-channel Scaleable Sampling Rate profile hardware decoder �
53 sq. mm die, 0.5 micron CMOS (3 band decoder) �
�

In this Table, the 3-band SSR decoder complexity is shown. The 4-band SSR decoder has almost the same complexity as Low Complexity Profile.

Specification of AAC Tool Complexity

Input/Output Buffers

Because of the encoder bit reservoir structure, a real-time decoder receiving a bitstream over a constant-rate channel must, to accomodate worst case buffering conditions, collect a number of input bits equal to the nominal rate per block plus the size of the encoder bit buffer before it can start decoding. This constraint specifies the minimum input buffer size. On output, we assume that the IMDCT result is copied to a 16-bit PCM output buffer in a conventional double-buffered manner.

Table � SEQ Table * ARABIC �1� Input/Output Buffer Storage Requirements

� EMBED Excel.Sheet.5 ���

Huffman Decode

In order to decoding a Huffman codeword the decoder must traverse a Huffman code tree from “root node” to “terminal node” (or leaf). The route taken depends on the Huffman codeword that is being decoded: if the next bit to be processed in the codeword is a “zero” then the “left” branch is taken relative to the current node; otherwise the “right” branch is taken. The decoder must be at the root note when it begins processing a new Huffman codeword, and should be at a terminal node when the entire codeword has been processed. The code fragment that does this processing is

v = *p;

while (v & Tnleaf) {

	if (cword & 1)

		p++;

	else

		p += v & (Tnleaf-1);

	v = *p;

	cword >>= 1;

}

where to start p points to the root node, cword contains the Huffman codeword to process (lsb first) and Tnleaf is a mask equal to 0x8000 that signals a terminal node. Based on this code it requires approximately 10 instructions per bit for the Huffman decoding. � REF _Ref360321785 * MERGEFORMAT �Table 2� shows the instruction complexity for both peak bits per block (3.5 times average) and average bits per block. The summary statistics use the complexity for average bits per block because, in the case of a software-only decoder, there are software speed-ups that can be used to reduce that complexity to 2 instructions per bit (using additional tables) and in the case of an ASIC decoder, the huffman decoding is highly amenable to hardware acceleration.

Pulse lossless coding follows the Huffman decode of the quantized spectral coefficients. It has a very simple reconstruction algorithm as follows:

k = start;

for (i=0; i<=number_pulse; i++) {

	k += pulse_offset[i];

	if (quant_coef[k] > 0) {

		quant_coef[k] += pulse_amp[i];

	}

	else {

		quant_coef[k] += pulse_amp[i];

	}

}

The bitstream syntax permits “number_pulse” to be no greater than 4 and the loop requires no more than 10 instructions per iteration, so the instruction complexity for pulse lossless coding is no more than 40 instructions per block, as indicated in � REF _Ref360321785 * MERGEFORMAT �Table 2�. Based on figures for peak compression (50 bits per block or 4%) and average compression (0.25 percent), a value of one tenth the peak complexity is used to approximate the average complexity.

Table � SEQ Table * ARABIC �2� Huffman Decoding Instruction Complexity

� EMBED Excel.Sheet.5 ���

The Huffman codewords can represent signed or unsigned values. � REF _Ref360261009 * MERGEFORMAT �

Table 3� shows the storage complexity for the Huffman codebooks in which spectrum tables 1, 2, 5 and 6 are signed.

Huffman decoding requires the storage of the tree and the value corresponding to the codeword. Interior notes must store an offset to the child nodes. The size of this offset does not have to be any larger than the total number of nodes in the table. In � REF _Ref360261009 * MERGEFORMAT �

Table 3� the offset is 8 or 16 bits. Furthermore, the offset to the left child can be implicit (it can always follow the parent) so only one offset must be stored. At the terminal notes instead of storing an offset, the decoded value is stored, in compressed form if necessary.

�

Table � SEQ Table * ARABIC �3� Huffman Decoding Read-Only Storage

� EMBED Excel.Sheet.5 ���

Inverse Quantization and Scaling

Each coefficient must be inverse quantized by a 4/3 power nonlinearity and then scaled by the quantizer stepsize. Since the range of values represented by the decoded Huffman values is limited by the codebook itself (except for the escape codebook), the inverse quantization can be done by table lookup. The stepsize, or scale factor, is itself logarithmicaly encoded and is similarly limited in dynamic range, so that it can be decoded by a table lookup as well. We assume that only 854 spectral coefficients (20 kHz bandwidth) must be inverse quantized and scaled by a scale factor. This is summarized in Table 4.

Table 4 Inverse Quantization and Scale Factor Complexity

� EMBED Excel.Sheet.5 ���

M/S Synthesis

This is a very simple tool that couples two channels into a stereo pair. For each sample in each channel of the stereo pair the samples may already be the left and right signals, in which case no computation is necessary, or the pair must be de-matrixed via one add and one subtract per pair of samples. Since the computation is done in-place, there is no additional storage requirements. It is assumed that only a 20 kHz bandwidth needs the M/S computation. This is summarized in Table 5.

�

Table 5 M/S Synthesis Complexity

� EMBED Excel.Sheet.5 ���

Intensity Stereo

In this tool a region of coefficients for a stereo pair is identical except for a “position” scaling of the coefficients of the second channel in the pair. Even though intensity stereo saves bits, the encoder will allocate those bits elsewhere (which is the point of intensity stereo compression) such that the huffman decoding comlexity is unchanged. Similarly, even though the right channel of intensity stereo coded regions do not have scale factors, they do have intensity stereo position factors that require the same decoding complexity. Left-channel intensity stereo regions must have inverse quantization and scaling applied. Right-channel intensity stereo regions use the left-channel inverse quantized and scaled coefficients, which must be re-scaled by the intensity position factors. Hence the net complexity of intensity stereo is a savings of one inverse quantization per intensity stereo coded coefficient. Intensity stereo does not use any additional read-only or read-write storage. This complexity estimate is summarized in Table 6.

Table 6 Intensity Stero Complexity

� EMBED Excel.Sheet.5 ���

Coupling Channel

The coupling channel is at its core a single channel element. Since bits allocated for the coupling channel are removed from other channels, there is no increase in Huffman decoding complexity. The coupling channel’s intrinsic scaling is approptiate for the first target channel of the set of coupled channels, while the other coupled channels scale factors must be transmitted and decoded. The final stage in the coupling decoding is to add the coupled channel to the target channel in the frequency domain (dependently switched coupling channel) or in the time domain (independently switched coupling channel).

Table 7 shows two cases for typical coupling channel compexity: one dependent coupling channel with three target channels (1 dcc, 3 tc) such as would be used in the Low Complexity profile, and one independent coupling channel and three target channels (1 icc, 3 tc) such as could be used in the Main profile.

�

Table 7 Coupling Channel Complexity

� EMBED Excel.Sheet.5 ���

Prediction

The backward-adaptive predictors must run at every block in the decoding process for every coefficient that will ever use prediction. In this analysis we that only the first 672 coefficients will use prediction and that all prediction and coefficient adaptation calculations are done in IEEE floating point arithmetic (although the calculations can be done on a fixed point platform as well). To reduce memory requirements, variables are truncated to 16 bits prior to storage.

Table 8 shows the instruction complexity of the prediction tool, with instruction counts specified for each step in the prediction computation. Table 9 shows the read-write storage required by the prediction tool.

Table 8 Prediction Instruction Complexity

� EMBED Excel.Sheet.5 ���

Table 9 Prediction Read-Write Storage Complexity

� EMBED Excel.Sheet.5 ���

TNS

Temporal noise shaping (TNS) has a variable load, depending on the order of its filters and the number of spectral coefficients that are filtered. Table 10 shows the “worst-case” complexity permitted by TNS. Table 11 shows that TNS requires negligible storage.

Table 10 TNS Instruction Complexity

� EMBED Excel.Sheet.5 ���

Table 11 TNS Storage Requirements

� EMBED Excel.Sheet.5 ���

IMDCT

It is assumed that the IMDCT calculation is done in floating point, although fixed point realizations are feasible. The only requirement is that any roundoff noise due to computational error (such as finite word length errors) be less than 1/2 lsb after the transform result is rounded to 16-bit PCM. Fixed point realizations using 24 bit words are certainly adequate, and word lengths as low as 20 or 21 bits may be sufficient. One compromise to this requirement is made in this analysis, which is that the windows used in the overlap-add portion of the transform are stored as 16-bit. This is reasonable since the window and overlap-add is the final computation prior to rounding to 16-bit PCM and therefore computational errors do not accumulate.

Table 12 shows the IMDCT complexity in multiply/add operations per block (1024 samples). Table 13 and Table 14 show the IMDCT complexity in terms of words of read/write and read-only storage. Note that the coefficient storage listed in Table 13 is actually the decoder’s “working storage” and is used by all the tools in the decoder.

Table 12 IMDCT Arithmetic Complexity

� EMBED Excel.Sheet.5 ���

Table 13 IMDCT Read/Write Storage Requirements

� EMBED Excel.Sheet.5 ���

Table 14 IMDCT Read-Only Storage Requirements

� EMBED Excel.Sheet.5 ���

�
Gain Control and Hybrid Filter Bank (IPQF + IMDCT)

Table 15 shows the Gain-control tool instruction complexity. The Hybrid Filterbank which consists of IPQF and IMDCT is also included in this table. The block size of the IMDCT for the Gain Control tool is 256 in the case of LONG WINDOW and 32 in the case of SHORT_WINDOW. Note that the SSR profile has a scaleable complexity due to the division of the 1024 spectral coefficients into four bands. Therefore an N-band (from 1-band though 4-band) decoder can be implemented. For example, the 3-band SSR decoder needs only three IMDCT operations per frame.

The maximum instructions per channel for the Gain-control tool is shown in Table 15. It is assumed that the instruction count associated with a single IPQF does not depend on the number of implemented bands and that the maximum instructions per single IPQF band of the Gain Window Reconstruction is 896 instructions per band for the case of EIGHT_SHORT_WINDOW.

Table 15: Gain Control Tool Instruction Complexity

�EMBED Excel.Sheet.8���

Summary of Tool Complexity

The following tables summarize the complexity of each tool based on number of instructions, amount of read-write storage and amount of read-only storage for Main profile Low Complexity profile and Scaleable Sampling Rate profile. Storage for the program itself has not been counted. The tables first list complexity on a per-channel basis and then factor this up to get the complexity for a 5-channel coder. Resources scale linearly with some exceptions: M/S joint stereo, intensity stereo and stereo prediction are stereo pair operations and there are only two stereo pairs in a 5-channel system; and obviously read-only memory is a shared resource so that its complexity is the same for 1- and 5-channel coders.

The most revealing data in the tables is the last column, which lists the complexity of a tool’s requirements (instructions, read-write storage or read-only storage) as a percentage of the total amount of that resource used in the entire 5-channel coder.

�

Main Profile

Tables 16 through 19 summarize the complexity of AAC Main profile.

Table 16 Summary of Instruction Complexity

� EMBED Excel.Sheet.5 ���

Table 17 Summary of Read-Write Storage

� EMBED Excel.Sheet.5 ���

Table 18 Summary of Read-Only Storage

� EMBED Excel.Sheet.5 ���

Table 19 lists the estimated area which each tool’s resources would consume if the AAC decoder were fabricated as a single-chip device using a 0.5 micron CMOS. The ALU used in this analysis is a MIPS R3000 RISC core with 1K instruction cache, 4K data cache and a fast 32 by 32 (64-bit result) integer multiplier. Each read-write memory cell (bit) is assumed to take six transistors while each read-only memory cell is assumed to take one transistor, so that the area of read-only cells are one sixth the area of read-write cells. Judging from a photo of the R3000 die, the 20 Kbytes of cache memory is 1/3 of the total die area. Therefore, the size of 1 K byte of read-write memory was assumed to be 1/60 of the total die area.

Table 19 Estimated Chip Area Required for Each Tool

� EMBED Excel.Sheet.5 ���

Low Complexity Profile

Tables 20 through 22 summarize the complexity of the AAC Low Complexity profile. The Low Complexity profile has the following features relative to the Main profile:

no prediction

TNS limited to 12 coefficients, but still over an 18 kHz bandwidth

Table 20 Summary of Instruction Complexity, Low Complexity Profile

� EMBED Excel.Sheet.5 ���

Table 21 Summary of Read-Write Storage, Low Complexity Profile

� EMBED Excel.Sheet.5 ���

Table 22 Estimated Chip Area Required for Each Tool, Low Complexity Profile

� EMBED Excel.Sheet.5 ���

Scaleable Sampling Rate Profile

Tables 23 through 26 summarize the complexity of the AAC Scaleable Sampling Rate profile. The Scaleable Sampling Rate profile has the following features relative to the Main profile:

no prediction

no coupling channel

gain control

Hybrid Filter Bank (IPQF + divided IMDCT)

TNS is limited to 12 coefficients , and is limited to 6 kHz bandwidth

Table 23: Summary of Instruction Complexity, SSR Profile

�EMBED Excel.Sheet.8���

	

�

Table 24: Summary of Read-Write Storage, SSR Profile

�EMBED Excel.Sheet.8���

Table 25: Summary of Read-Only Storage, SSR Profile

�EMBED Excel.Sheet.8���

�

Table 26: Estimated Chip Area Required for Each Tool, SSR Profile

�EMBED Excel.Sheet.8���

References

[1]	Report on Complexity of MPEG-2 AAC Tools, N1712, April 1997, Bristol.

�PAGE �

�PAGE �1�

