INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC1/SC29/WG11
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC 1/SC 29/WG 11 N16525
Chengdu, CN – October 2016
[bookmark: _GoBack]ISO/TC 276/WG 5 N119
Dublin, IE – October 2016

	Source
	ISO/IEC JTC 1/SC 29/WG 11
ISO/TC 276/WG 5

	Status
	Final

	Title
	Benchmark framework for lossy compression of sequencing quality values

Table of contents
1	Executive Summary	2
1.1	Notes to the new edition of this document	2
2	Types of data	3
2.1	Human genome	3
2.2	Metagenomics	3
2.3	Cancer genomes	3
2.4	Other species	3
3	Applications and toolchains	3
3.1	Genomic variation detection	3
3.1.1	Alignment and variant calling	4
3.1.2	Copy number variation and large structural variant detection	4
3.2	RNA-seq quantification and differential expression evaluation	4
3.3	Other applications and toolchains	4
4	Data	4
4.1	Human genome	4
4.2	Human genome assembly	5
4.3	Variant calling “golden reference”	5
4.4	Variant calling using simulated data	5
4.5	Metagenomics, cancer genomes, and other species	6
5	Metrics	6
5.1	Sensitivity/recall and precision	6
5.2	Benchmarking tools	6
6	References	7
7	Appendix A	9
7.1	Alignment with Bowtie2	9
7.2	Sorting and indexing	9
7.3	Duplicate removal	10
7.4	INDEL realignment	10
7.5	Base quality score recalibration (BQSR)	10
7.6	SNP calling with GATK	11

[bookmark: _Toc465694052]Executive Summary
High-throughput sequencing machines produce genomic information in the form of strings of nucleotides (bases) associated to metadata. Among the produced metadata quality values (QVs) account for the largest part of the compressed information when lossless compression is adopted. QVs are a vendor-specific expression of the probability each sequenced nucleotide is correct and express the level of approximation of each sequencing process. Due to their nature, their use in downstream analyses is extremely diversified.
[bookmark: __Fieldmark__6111_1341256051][bookmark: __Fieldmark__4004_1341256051][bookmark: __Fieldmark__3505_1883585934][bookmark: __Fieldmark__6122_1341256051][bookmark: __Fieldmark__4011_1341256051][bookmark: __Fieldmark__3510_1883585934][bookmark: __Fieldmark__6133_1341256051][bookmark: __Fieldmark__4018_1341256051][bookmark: __Fieldmark__3518_1883585934]The focus of efficient compression of QVs is currently shifting from the lossless approach adopted by tools such as Samtools [1] and other more optimized implementations [2] to lossy schemes recently appeared in literature [3]–[7]. However, because of the specific characteristics of QVs, “traditional” methods of measuring the impact of lossy compression (e.g. mean squared error (MSE)) do not consider that in certain cases errors are acceptable, whereas in other cases a high fidelity of QVs is required. The evaluation of lossy QV compression should take into account how the QVs are actually used in downstream analyses. The goal of this document is the design of a benchmark framework to measure the “perceived” impact of lossy QV compression on the results produced by various processing pipelines. Such framework will constitute the base for the comparison of different approaches to lossy compression of QVs. The identification of evaluation methodologies to form such framework requires the definition of:
· the types of data to be analyzed,
· the genomic analysis applications and toolchains in scope,
· methodologies to cope with possible special behavior of the genomic analysis applications and toolchains in scope,
· the specific data to be analyzed,
· the metrics to evaluate the impact of lossy compression on subsequent analyses.
[bookmark: _Toc465694053]Notes to the new edition of this document
This is an updated document referring to the output documents N15739, N16135, N16324, and N16326 [8]–[11] with the following amendments:
· Section 4: Update of the dataset for the evaluation of lossy compression approaches; variant calling is now only performed on chromosomes 11 and 20.
· Section 3.2: Update on RNA-seq quantification and differential expression evaluation
· Section 4.4: Only chromosome 22 was simulated, previous documents stated that the complete human genome was simulated.
· Section 5: Usage of the tool hap.py instead of the calculation of an ROC curve for deriving distortion metrics.
The following items might be incorporated in future versions of this document:
· The dynamic range of all experiments done to assess the introduced distortion might be determined and included.
· High-coverage cancer/normal SNP calls might be added to the variant calling data.
[bookmark: _Toc465694054]Types of data
[bookmark: _Toc465694055]Human genome
A wide variety of biomedical applications is currently growing around human genomic variation detection. Such applications include:
· disease genetics studies: the study of the relation between gene variations and disease state,
· pharmacogenomic studies: the study of the relation between an individual’s genetic profile and her response to various drugs.
Efficient compression of genomic data would enable the biomedical industry to scale these and other applications to large populations of individuals. There is a consensus around a small number of tools and pipelines and reference data sets.
[bookmark: _Toc465694056]Metagenomics
Metagenomics is the study of genetic material extracted from environmental samples. One of the areas of primary interest for metagenomics in human health is the one related to the human gut as the microbial community contained in the gut plays an important role in protecting against pathogenic microbes, modulating immunity, and regulating metabolic processes. However, there is still not enough bias in the scientific community towards the use of a specific analysis tool or a set of tools.
[bookmark: _Toc465694057]Cancer genomes
[bookmark: __Fieldmark__6182_1341256051][bookmark: __Fieldmark__4063_1341256051][bookmark: __Fieldmark__3609_1883585934]Genomic variation detection of genetic material extracted from tumor cells can play an important role in oncology with the possibility to define targeted and personalized therapies. There are some tools for the detection of somatic single nucleotide variants (sSNVs) in cancer genome sequencing data [12]–[14]. However, there is still not enough bias in the scientific community towards the use of a specific tool or a set of tools.
[bookmark: _Toc465694058]Other species
Other species such as infectious disease agents are not in the scope of this activity for now as a solid consensus on how to perform genomic variation detection is not yet present in the scientific community.
[bookmark: _Toc465694059]Applications and toolchains
[bookmark: _Toc465694060]Genomic variation detection
[bookmark: __Fieldmark__6217_1341256051][bookmark: __Fieldmark__4094_1341256051][bookmark: __Fieldmark__3635_1883585934]In general, genomic variations can be split up into the following categories which cover single-base variations up to chromosomal-level alterations [15]:
· single nucleotide variants (SNVs),
· (small) insertions and deletions (INDELs),
· copy number variations (CNVs),
· (large) structural variants (SVs).
[bookmark: __Fieldmark__6234_1341256051][bookmark: __Fieldmark__4107_1341256051][bookmark: __Fieldmark__3655_1883585934]SNV and INDEL calling is also often referred to as “variant calling”. While there exist many algorithms for genomic variation detection, they are all geared towards different types of variation. Thus, there is no tool being considered a community standard [16].
[bookmark: _Toc465694061]Alignment and variant calling
[bookmark: __Fieldmark__6300_1341256051][bookmark: __Fieldmark__4153_1341256051][bookmark: __Fieldmark__3691_1883585934][bookmark: __Fieldmark__6311_1341256051][bookmark: __Fieldmark__4160_1341256051][bookmark: __Fieldmark__3696_1883585934]It has been identified in document N16135, that reference-based alignment tools BWA [17] and Bowtie 2 [18], [19] are widely used. For the task of variant calling, in document N16135, the GATK Haplotype Caller [20] and SAMtools in conjunction with BCFtools [1] were chosen.
[bookmark: _Toc465694062]Copy number variation and large structural variant detection
[bookmark: __Fieldmark__6388_1341256051][bookmark: __Fieldmark__4229_1341256051][bookmark: __Fieldmark__3764_1883585934]Other types of variations such as CNV and SV calling are not (yet) in the scope of this report, as we were not able to identify a clear bias towards certain tools or pipelines used yet. However, Zhao et al. [21] provide an overview of several tools for CNV detection. Consensus candidates might be the tool DELLY [22] (for CNV calling) and LUMPY [23] (for SV calling).
[bookmark: _Ref465682969][bookmark: _Toc465694063]RNA-seq quantification and differential expression evaluation
[bookmark: __Fieldmark__6520_1341256051][bookmark: __Fieldmark__4327_1341256051][bookmark: __Fieldmark__3821_1883585934][bookmark: __Fieldmark__6531_1341256051][bookmark: __Fieldmark__4334_1341256051][bookmark: __Fieldmark__3826_1883585934][bookmark: __Fieldmark__6543_1341256051][bookmark: __Fieldmark__4342_1341256051][bookmark: __Fieldmark__3834_1883585934][bookmark: __Fieldmark__6554_1341256051][bookmark: __Fieldmark__4349_1341256051][bookmark: __Fieldmark__3839_1883585934]High-throughput mRNA sequencing (RNA-seq) quantification tools count the abundances of RNA transcripts from the raw FASTQ files. Differential expression tools take as input the RNA-seq quantification data (i.e. the “counts”) to look for genes (or transcripts) that have been differentially expressed across conditions. Some well-established tools are e.g. the Cufflinks pipeline [24] and the RSEM pipeline [25]. Newer tools are e.g. kallisto [26] as well as Sailfish and its successor Salmon [27].
We have put together a DGE pipeline consisting of HISAT2, StringTie, and DESeq2 [28]–[30] and have run tests to identify differentially expressed genes between two conditions of the yeast S. Cerevisiae: the wild type and a mutant. We selected six biological replicates per condition from a dataset of highly replicated yeast samples for the purpose of differential gene expression testing [44]. The pipeline was run on two settings: with lossy compression of quality values and without compression. A ranked list of the most up- and down- regulated genes was produced. Preliminary results show that RNA-seq experiments have a limited dynamic range and therefore RNA-seq experiments will at this point in time not be considered a part of this benchmark framework. However, such experiments should be taken further into account in the scope of this activity to document and proof that lossy compression does only marginally affect the results.
[bookmark: _Toc465694064]Other applications and toolchains
Other applications of genomic information processing that are growing rapidly but are not mature enough to see a clear prevalence of tools or methodologies include:
1. De-novo assembly
2. ChIP-seq
[bookmark: _Ref465682922][bookmark: _Toc465694065]Data
All data mentioned in the scope of this document can be found here:
http://www.tnt.uni-hannover.de/cloud/mpeg-omics/
http://www.tnt.uni-hannover.de/cloud/tc276-omics/
The user names are mpeg-omics and tc726-omics, respectively. The mpeg-omics password is the same as for the MPEG document website. The tc726-omics password can be obtained from the ISO TC 276/WG 5 secretary Björn Hermes (bjoern.hermes@din.de).
[bookmark: _Toc465694066]Human genome
We are considering individual NA12878. This individual has been sequenced using different technologies and configurations. To make the comparison more relevant we are going to select the following datasets, where the dataset with ID 11 was sequenced with IonTorrent technology and the dataset with ID 12 with Illumina technology. For the variant calling, we only consider chromosomes 11 and 20.

Table 1: Human whole genome sequencing data
	Category
	Name
	File name
	Input ID

	Human
	NA12878-SRX517292
	SRR1238539.fastq
	11

	Human
	NA12878 Garvan replicate J
	NA12878_V2.5_Robot_2_R1.fastq
	12

	
	
	NA12878_V2.5_Robot_2_R2.fastq
	

[bookmark: _Toc465694067]Human genome assembly
The reference decoy is a pragmatic solution to the “incompleteness” of the reference genome. It integrates the reference sequence from the GRCh37 primary assembly with sequences derived from HuRef, Human Bac and Fosmid clones, and NA12878 (decoy sequences). Such sequences provide additional information that helps in aligning many reads quickly and with high confidence, eliminating excessive mapping depth and mismatches.
[bookmark: _Toc465694068]Variant calling “golden reference”
The “golden reference” for variant calling taken into account are the NIST Genome in a Bottle (GIAB) high confidence variant calls version 3.2.2. This data set contains high confidence regions containing variants for which the probability of error is deemed low enough to represent a benchmark for other tools. It is recommended to separate results related to variants called in high confidence regions from those of variants in other regions of the genome.
[bookmark: _Ref465676786][bookmark: _Toc465694069]Variant calling using simulated data
To assess how a specific bioinformatics pipeline impacts variant calling, a ground truth set of genotypes must be provided. Since ground truth datasets from real individuals are difficult to develop at scale, simulated data is an excellent alternative. Variant calling on simulated data has the advantage of providing a known ground truth. Sequenced reads are simulated by mimicking real sequencing process with empirical error models or quality profiles summarized from large recalibrated sequencing data. Evaluating variant calls from simulated data requires 1) a simulated ground truth genome with variants that have a known location and 2) simulated sequencing reads from the simulated genome. To be useful, the reads should not be error-free, but should instead match the error models and quality profile of the sequencing technology in question.
ART is a tool that enables the creation of synthetic sequence reads for a given genome that is documented and maintained by the NIH. The error models and quality profiles for ART are modeled from a large corpus of real sequencing data. ART draws from these distributions to simulate sequence reads. The input genome is a simple FASTA file created by the user. Ideally, the FASTA file will be a variation of the human reference sequence that includes “spiked in” SNPs, INDELs, structural variants, etc. These variants should be added in a biologically realistic way (in terms of location and frequency).
To mimic an Illumina sequencer, ART can generate paired-end reads (with sequencing errors), where the mean fragment size and fragment size standard deviation may be given as parameters. The user can also specify the depth of coverage to be generated. The error models and quality profiles for the sequence reads created by ART are modeled after a corpus of real sequencing data.
For the purpose of this work, human chromosome 22 has been simulated by Rachel Goldfeder at Stanford University. It has paired-end reads with lengths of 100 base pairs, a coverage of 30x, and a read distance (paired) of 300.

Table 2: Simulated human genome sequencing data
	Category
	Name
	File name
	Input ID

	Simulated data
	Simulated human genome sequencing data
	simulation.1.homoINDELs.homoCEUsnps.
reads2.fq.sam.samelength.bam
	26

[bookmark: _Toc465694070]Metagenomics, cancer genomes, and other species
The existing MPEG dataset already contains metagenomics and cancer cell data that can be used to evaluate performance of lossy compression on downstream analysis. This is currently not in the scope of the evaluation, but it can provide additional indication of the potential impact of lossy QV compression on downstream analysis.
Moreover, there are parameters that cannot be easily controlled for and are outside the scope of this document. Namely there can be:
· individual variations in sequencing equipment of the same model as well as from lab to lab and library to library,
· lack of guaranteed fidelity to true error model from the sequencer in the simulated data.
[bookmark: _Ref465683000][bookmark: _Toc465694071]Metrics
[bookmark: _Toc465694072][bookmark: _Ref465694597]Sensitivity/recall and precision
In literature, two metrics are used to assess the correctness of variant calling against a reference:
· Sensitivity (or recall) defined as:
This metric provides a measure of the correctness of positives calls.
· Precision defined as:
This metric provides a measure of the proportion of the correct calls with respect to the totality of calls.
Where:
· TP = number of variants in the gold standard that have been called and marked as positive;
· FN = number of variants in the gold standard that have not been called or have been called but marked as negative;
· FP = number of positions that have been called and marked as positive but are not in the gold standard.
These definitions imply some threshold τ to call something “positive”. The harmonic mean of the sensitivity and precision named F-score provides a way to balance the effects of the two metrics and will be used as final measure:

The F-score ranges from 0 to 1, where 0 is the worst score and 1 represents a perfect score. We recommend the calculation of F-scores at these points of interest (values of τ): 90, 99, 99.9, 100.
[bookmark: _Toc465694073]Benchmarking tools
We recommend the use of the benchmarking tools proposed by the Global Alliance for Genome and Health (GA4GH). The benchmarking is based mainly on the Haplotype Comparison Tools (hap.py[footnoteRef:1]), developed by Illumina. Hap.py needs the following files to run: [1: https://github.com/Illumina/hap.py]

· the VCF file containing the “golden reference”,
· the BED file containing the confident regions of the golden reference,
· the VCF file generated after running the variant calling pipeline as defined in document N16324/N100.
Also the following option is recommended: --roc VQLSOD. This option will allow the creation of a ROC curve-like curve based on Recall and Precision. This plot is more consistent than the traditional ROC curve as it does not use false negatives and true negatives, which for this case are ill-defined. Thus, the recommended command to run hap.py is as following:

	$ python hap.py $gt_vcf $calls_VCF \
 -f $gt_bed \
 -o $happy_root \
 -r $ref \
 --roc VQLSOD

where $gt_vcf and $gt_bed are the paths to the golden reference and its associated BED file, respectively. $calls_VCF is the VCF file output by the variant calling pipelines after variant filtering, $happy_root is the output files root and $ref is the reference genome in FASTA format. The output files can be summarized in an HTML file using the benchmarking tool rep.py[footnoteRef:2] from the GA4GH. [2: https://github.com/ga4gh/benchmarking-tools/blob/master/reporting/basic/bin/rep.py]

[bookmark: _Toc465694074]References
[1]	H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, and R. Durbin, “The Sequence Alignment/Map format and SAMtools,” Bioinformatics, vol. 25, no. 16, pp. 2078–2079, 2009.
[2]	J. K. Bonfield and M. V Mahoney, “Compression of FASTQ and SAM Format Sequencing Data,” PLoS One, vol. 8, no. 3, p. e59190, 2013.
[3]	G. Malysa, M. Hernaez, I. Ochoa, M. Rao, K. Ganesan, and T. Weissman, “QVZ: lossy compression of quality values.,” Bioinformatics, vol. 31, no. 19, pp. 3122–3129, 2015.
[4]	I. Ochoa, H. Asnani, D. Bharadia, M. Chowdhury, T. Weissman, and G. Yona, “QualComp: a new lossy compressor for quality scores based on rate distortion theory.,” BMC Bioinformatics, vol. 14, no. 187, p. 187, 2013.
[5]	Y. W. Yu, D. Yorukoglu, J. Peng, and B. Berger, “Quality score compression improves genotyping accuracy,” Nat. Biotechnol., vol. 33, no. 3, pp. 240–3, 2015.
[6]	R. Cánovas, A. Moffat, and A. Turpin, “Lossy compression of quality scores in genomic data,” Bioinformatics, vol. 30, no. 15, pp. 2130–6, Aug. 2014.
[7]	I. Ochoa, M. Hernaez, R. Goldfeder, T. Weissman, and E. Ashley, “Effect of lossy compression of quality scores on variant calling,” Brief. Bioinform., Mar. 2016.
[8]	C. Alberti, M. Mattavelli, N. Daniels, M. Hernaez, I. Ochoa, J. Voges, R. Goldfeder, and D. Greenfield, “Evaluation framework of lossy compression of Quality Values,” Geneva (CH), 2015.
[9]	Requirements Subgroup, “Lossy compression framework for Genome Data,” San Diego, CA (US), 2016.
[10]	Joint AhG on Genomic Information Compression And Storage, “Lossy compression framework for Genome Data,” Geneva (CH), 2016.
[11]	Joint AhG on Genomic Information Compression And Storage, “Benchmark framework for lossy compression of genome sequencing quality values,” Geneva (CH), 2016.
[12]	Q. Wang, P. Jia, F. Li, H. Chen, H. Ji, D. Hucks, K. B. Dahlman, W. Pao, and Z. Zhao, “Detecting somatic point mutations in cancer genome sequencing data: a comparison of mutation callers,” Genome Med., vol. 5, no. 10, p. 91, Jan. 2013.
[13]	K. Cibulskis, M. S. Lawrence, S. L. Carter, A. Sivachenko, D. Jaffe, C. Sougnez, S. Gabriel, M. Meyerson, E. S. Lander, and G. Getz, “Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples,” Nat. Biotechnol., vol. 31, no. 3, pp. 213–9, Mar. 2013.
[14]	D. C. Koboldt, Q. Zhang, D. E. Larson, D. Shen, M. D. McLellan, L. Lin, C. A. Miller, E. R. Mardis, L. Ding, and R. K. Wilson, “VarScan 2: Somatic mutation and copy number alteration discovery in cancer by exome sequencing,” Genome Res., vol. 22, no. 3, pp. 568–76, Mar. 2012.
[15]	L. Tattini, R. D’Aurizio, and A. Magi, “Detection of genomic structural variants from next-generation sequencing data,” Front. Bioeng. Biotechnol., vol. 3, p. 92, Jan. 2015.
[16]	K. Lin, G. Bonnema, G. Sanchez-Perez, and D. De Ridder, “Making the difference: Integrating structural variation detection tools,” Brief. Bioinform., vol. 16, no. 5, pp. 852–64, 2014.
[17]	H. Li and R. Durbin, “Fast and accurate short read alignment with Burrows-Wheeler transform,” Bioinformatics, vol. 25, no. 14, pp. 1754–1760, 2009.
[18]	B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, “Ultrafast and memory-efficient alignment of short DNA sequences to the human genome,” Genome Biol., vol. 10, no. 3, p. R25.1-10, 2009.
[19]	B. Langmead and S. L. Salzberg, “Fast gapped-read alignment with Bowtie 2,” Nat. Methods, vol. 9, no. 4, pp. 357–359, 2012.
[20]	A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly, and M. A. DePristo, “The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data,” Genome Res., vol. 20, no. 9, pp. 1297–1303, Sep. 2010.
[21]	M. Zhao, Q. Wang, Q. Wang, P. Jia, and Z. Zhao, “Computational tools for copy number variation (CNV) detection using next-generation sequencing data: features and perspectives,” BMC Bioinformatics, vol. 14, no. 11, p. S1, Jan. 2013.
[22]	T. Rausch, T. Zichner, A. Schlattl, A. M. Stütz, V. Benes, and J. O. Korbel, “DELLY: Structural variant discovery by integrated paired-end and split-read analysis,” Bioinformatics, vol. 28, no. 18, pp. 333–9, 2012.
[23]	R. M. Layer, C. Chiang, A. R. Quinlan, and I. M. Hall, “LUMPY: a probabilistic framework for structural variant discovery,” Genome Biol., vol. 15, no. 6, p. R84, Jan. 2014.
[24]	C. Trapnell, B. A. Williams, G. Pertea, A. Mortazavi, G. Kwan, M. J. van Baren, S. L. Salzberg, B. J. Wold, and L. Pachter, “Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation,” Nat. Biotechnol., vol. 28, no. 5, pp. 511–5, May 2010.
[25]	B. Li and C. N. Dewey, “RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome.,” BMC Bioinformatics, vol. 12, no. 1, p. 323, Jan. 2011.
[26]	N. L. Bray, H. Pimentel, P. Melsted, and L. Pachter, “Near-optimal probabilistic RNA-seq quantification,” Nat. Biotechnol., vol. 34, no. 5, pp. 525–7, Apr. 2016.
[27]	R. Patro, S. M. Mount, and C. Kingsford, “Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms,” Nat. Biotechnol., vol. 32, no. 5, pp. 462–464, May 2014.
[28]	D. Kim, B. Langmead, and S. L. Salzberg, “HISAT: a fast spliced aligner with low memory requirements,” Nat. Methods, vol. 12, no. 4, pp. 357–360, Mar. 2015.
[29]	M. Pertea, G. M. Pertea, C. M. Antonescu, T.-C. Chang, J. T. Mendell, and S. L. Salzberg, “StringTie enables improved reconstruction of a transcriptome from RNA-seq reads,” Nat. Biotechnol., vol. 33, no. 3, pp. 290–295, 2015.
[30]	M. I. Love, W. Huber, and S. Anders, “Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2,” Genome Biol., vol. 15, no. 12, p. 550, 2014.

[bookmark: _Toc465694075]Appendix A
This section provides details on the specific configuration of the pipeline listed in Section 3 as representative toolchain to perform genomic variation detection. Note: In the following commands, the words proceeded by “$” are user-defined input/output files.
The following tool versions shall be used:
· Bowtie 2 version 2.2.5
· Picard version 2.4.1
· Samtools version 1.3 (built with HTSlib version 1.3)
· GATK version 3.6
To perform the preprocessing of the file and the variant calling, the following additional files are needed:
· Mills_and_1000G_gold_standard.indels.b37.vcf
· 1000G_phase1.indels.b37.vcf
· dbsnp_138.b37.vcf
· hapmap_3.3.b37.vcf
· 1000G_omni2.5.b37.vcf
· 1000G_phase1.snps.high_confidence.b37.vcf
[bookmark: _Toc464058651][bookmark: _Toc464555094][bookmark: _Toc465694076]Alignment with Bowtie2
The first step consists in building the reference indexes:

	$ bowtie2-build $ref.fa $idx

Once completed the current directory will contain new files that all start with $idx and end with .1.bt2, .2.bt2, .3.bt2, .4.bt2, .rev.1.bt2, and .rev.2.bt2. These files constitute the index. At this point alignment can take place:

	$ bowtie2 -x $idx \
 -1 $reads_1.fq -2 $reads_2.fq \
 -S $aln.sam

[bookmark: _Toc464058652][bookmark: _Toc464555095][bookmark: _Toc465694077]Sorting and indexing
Then we convert the SAM file to the BAM format and filter out unmapped reads using SAMtools.

	$ samtools view -@ -bh -F 4 $aln.sam > $aln.bam

Then we sort and index the BAM file:

	$ samtools sort $aln.bam > $sorted.bam
$ samtools index $sorted.bam

[bookmark: _Toc464058653][bookmark: _Toc464555096][bookmark: _Toc465694078]Duplicate removal
The duplicates are marked in the BAM file using Picard tools:

	$ java -jar $picard MarkDuplicates \
 I=$sorted.bam \
 O=$prededup.bam \
 M=$metrics.txt \
 ASSUME_SORTED=true

The following command line removes the duplicates.

	$ samtools view -bh -F 0xF40 $prededup.bam > $dedup.bam

We use Picard to label the BAM headers:

	$ java -jar $picard AddOrReplaceReadGroups \
 I=dedup.bam \
 O=$label.bam \
 RGID=1
 RGLB=Library \
 RGPL=Illumna\
 RGPU=PlatformUnit \
 RGSM=SampleName

Then we index the resulting file:

	$ samtools index $label.bam

[bookmark: _Toc464058654][bookmark: _Toc464555097][bookmark: _Toc465694079]INDEL realignment
Create the target list of intervals:

	$ java -jar $gatk -T RealignerTargetCreator \
 -R $ref.fa \
 -I $label.bam \
 -known $Mills_and_1000G_gold_standard.indels.b37.vcf \
 -o $target.intervals_list

The following command performs the realignment:

	$ java -jar $gatk -T IndelRealigner \
 -R $ref.fa \
 -I $label.bam \
 -targetIntervals $target.intervals_list \
 -o $realign.bam

[bookmark: _Toc464058655][bookmark: _Toc464555098][bookmark: _Toc465694080]Base quality score recalibration (BQSR)
A recalibration of the quality scores is performed using the following two commands:

	$ java -jar $gatk -T BaseRecalibrator \
 -R $ref.fa \
 -I $realign.bam \ 
 -knownSites $dbsnp_138.b37.vcf \
 -knownSites $Mills_and_1000G_gold_standard.indels.b37.vcf \
 -knownSites $1000G_phase1.indels.b37.vcf \
 -o $recal_data

	$ java -jar $gatk -T PrintReads \
 -R $ref.fa \
 -I $realign.bam \ 
 -BQSR $recal_data \
 -o $recal.bam

[bookmark: _Toc464058656][bookmark: _Toc464555099][bookmark: _Toc465694081]SNP calling with GATK
We consider the Haplotype Caller as the variant caller for the GATK pipeline:

	$ java -jar $gatk -T HaplotypeCaller \
 -R $ref.fa \
 -I $recal.bam \
 --dbsnp $dbsnp_138.b37.vcf \
 --genotyping_mode DISCOVERY \
 -stand_emit_conf 10 \
 -stand_call_conf 30 \
 –o $calls.vcf

Once the calls are made, SNPs extraction is performed using the following command:

	$ java -jar $gatk -T SelectVariants \
 -R $ref.fa \
 -V $calls.vcf \
 -selectType SNP \
 -o $snps.vcf

Call filtering is performed using the VQSR command. First the SNP recalibration model is built:

	java -jar $gatk -T VariantRecalibrator \
 -R $ref.fa \
 -input $snps.vcf \
 -resource:hapmap,known=false,training=true,truth=true,prior=15.0 \
 $hapmap_3.3.b37.vcf \
 -resource:omni,known=false,training=true,truth=true,prior=12.0 \
 $1000G_omni2.5.b37.vcf \
 -resource:1000G,known=false,training=true,truth=false,prior=10.0 \
 $1000G_phase1.snps.high_confidence.b37.vcf \
 -resource:dbsnp,known=true,training=false,truth=false,prior=2.0 \
 $dbsnp_138.b37.vcf \
 -an DP -an QD -an FS -an SOR -an MQ -an MQRankSum -an ReadPosRankSum \
 -mode SNP \
 -tranche 100.0 -tranche 99.9 -tranche 99.0 -tranche 90.0 \
 -recalFile $snps.recal \
 -tranchesFile $snps.tranches \
 -rscriptFile $snps.r

Where 100.0, 99.9, 99.0 and 90.0 are the thresholds introduced in Section 5.1. Then the desired level of recalibration is applied. Note that the variable $recal_level should be 100.0, 99.9, 99.0 and 90.0 in accordance with Section 5.1.

	java -jar $gatk -T ApplyRecalibration \
 -R $ref.fa
 -input $outputSNPS.vcf \
 -mode SNP \
 --ts_filter_level $recal_level \
 -recalFile snps.recal \
 -tranchesFile $snps.tranches \
 -o $recal.vcf

