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1 Introduction

The 14th IVC test model (ITM 14.0) was specified by decisions taken at the 113th MPEG meeting in Geneva (19–23 October 2015). This document serves as a source of general tutorial information on the ITM and also provides an encoder-side description of ITM 14.0. The purpose of this text is to help readers understand the ITM software and the IVC design. The corresponding sections of the IVC draft specification [6] should be referred to for any descriptions regarding normative processes.
2 General Coding Structure

The key technologies used in the current test model are listed as follows: 
· Integer DCT transforms: transform sizes of 16x16 and 8x8 are supported. 16-bit implementation is supported.
· Quad-tree based variable block-size coding: the macroblock (MB) size is 16x16. The MB is tiled to coding blocks in a quad-tree style. Inter coding supports 16x16, 16x8, 8x16  and 8x8 regions; intra coding supports 16x16, 8x8, and 4x4 regions.
· Arithmetic entropy coding (AEC): an arithmetic coding scheme in the logarithmic domain is used for entropy coding.

· Motion accuracy of resolution-dependent three interpolation filters (i.e., 4-tap, 6-tap and 10-tap) for luma, and motion accuracy of 1/8 pel with bi-linear interpolaton filter for chroma.

· IBBP and IPPP structure: I, B, and P frames are supported, and the number of B frames is defined in the sequence header.

· Non-reference P frames: It is not necessary for a P frame to be a reference frame; when it’s not a reference frame, the reconstructed non-reference P frame should not be put into picture reference buffer. 
Figure 2-1 shows the coding process of the current test model. It is similar to MPEG-2 Video, but a few aspects are different, such as intra prediction (using spatial prediction rather than the DC-only prediction used in MPEG-2) and AEC (instead of variable length coding). Each coding tool is discussed in detail in the following sections.

[image: image1.png]
Figure 2-1 Simplified block diagram of ITM encoder

A general bitstream made by the current ITM would have the following structure, which is classified by encoding types as shown in Figure 2-2.

[image: image2.png]
Figure 2-2 Simplified block diagram of encoded bitstream structure

3 Sequence level encoding

Sequence header

A sequence header is placed before the data for one or more encoded pictures. The sequence header includes sequence-related information: profile, level, horizontal and vertical size, chroma format, sample precision, aspect ratio, frame rate, bit rate, buffer size, and tool usage (16x16 transform, 16x16 intra prediction, interpolation filter). Refer to Table 3.1 for additional details.

Table 3.1 Syntax elements and corresponding description in sequence header
	Syntax
	Descriptor
	Description

	profile_id
	u(8)
	Specifies the profile of a bitstream. ‘32’ means there is Baseline Profile of the profile.

	level_id
	u(8)
	Specifies the level of a bitstream. ‘16’ means the level is ‘2.0’ of. ‘32’ means the level is ‘4.0’. ‘64’ means the level is ‘6.0’.

	horizontal_size
	u(14)
	Specifies the width of display area of the luma component.

horizontal_size = img_width – (16 – (img_width % 16).

	vertical_size
	u(14)
	Specifies the height of display area of the luminance component.

vertical _size = img_height – (16 – (img_height % 16)

	chroma_format
	u(2)
	Set to the value 1.

	sample_precision
	u(3)
	Set to the value 1.

	aspect_ratio
	u(4)
	Set to the value 1.

	frame_rate_code
	u(4)
	Specifies the frame rate. Refer to Table 3.2

	bit_rate_lower
	u(18)
	Low-order 18 bits of the BitRate used by the bitstream buffer verifier (BBV).
bit_rate_lower = (bit_rate / 400) & (0x3FFFF)

	bit_rate_upper
	u(12)
	High-order 12 bits of BitRate.

bit_rate_upper = (bit_rate / 400) >> 18

	low_delay
	u(1)
	‘1’ means that B frames are not used in the video sequence. ‘0’ means that B frames are used in the video sequence.

	bbv_buffer_size
	u(18)
	Specifies the requirement for bitstream buffer size of the BBV.

bbv_buffer_size = BBS_size >> 14

	abt_enable
	u(1)
	‘1’ means the sequence is using 16x16 transform and intra prediction; ‘0’ means the sequence is not using these tools.

	if_type
	u(1)
	‘1’ means the sequence is using the tool of adaptive motion compensation interpolation tap length; ‘0’ means the sequence is using 8 tap motion compensation. 


Table 3.2 specifies the frame rate syntax frame_rate_code.

Table 3.2 Frame rate codes

	frame_rate_code
	Frame rate

	0000
	Forbidden

	0001
	24000 ( 1001 (23.967…)

	0010
	24

	0011
	25

	0100
	30000 ( 1001 (29.97…)

	0101
	30

	0110
	50

	0111
	60000 ( 1001 (59.94…)

	1000
	60

	1001 – 1111
	Reserved


4 Frame encoding
Frame type
A frame is a representation of video signals in the spatial domain. Each picture is a frame, composed of an array of luma samples and two corresponding arrays of chroma samples in 4:2:0 format. There are three types of pictures that use different coding methods, which are similar to MPEG-2: 

· an intra (I) picture is a picture which is coded using information only from itself;

· a predictive-coded (P) picture is a picture which is coded using inter-picture prediction with a previous frame(s) and/or coded using intra prediction;

· a bidirectionally predictive-coded (B) picture is a picture which is coded using inter prediction with one or more previous and/or future frames and/or coded using intra prediction.

Each frame can be used as a reference frame for prediction (unless indicated otherwise) and is divided into one or more slices that contain macroblock data. Macroblocks in a P picture may refer to previous frame(s) in decoder output order, and macroblocks in a B picture may refer to previous and/or future frames in output order, as shown in Figure 4.1. 

[image: image3.png]
Figure 4-1 Example of prediction for P (left) and B (right) frames. T represents the time for the input order of the encoder (i.e., the output order of the decoder). T-1 is a previous frame and T+1 is a future frame.
Frame header

There are two types of frame header – an I picture header and PB picture header. These headers may be repeatedly presented after the sequence header, based on the setting of the intra picture period, and are followed by a series of coded pictures that each contain slice and macroblock data. Two picture header types can be distinguished by their start code values. i_picture_start_code is bit string 0x000001B3, and pb_picture_start_code is bit string 0x000001B6.
4.1.1 I picture header

An I picture header is a header for I picture, which is selected when the current frame number is zero or a multiple of the intra period, as configured by the user of the encoder. This header data includes the distance (in pictures) between previous and current picture, including skipped pictures if these exist. The header also contains the quantization parameter (QP) of the picture and associated information.
4.1.2 PB picture header

A PB picture header is a header for a P or B picture. Unlike an I picture header, this header carries a picture_coding_type syntax element to specify whether the current picture type is P or B.
At the encoder, it is possible to decide for a P picture to be a non-reference frame and to assign a high QP to the picture to improve compression performance without sending any additional syntax elements. Note that the picture_coding_type of such a non-reference P picture will be regarded as the P sub type.
4.1.3 Slice

A slice is a series of one or more macroblocks in raster scan order, starting at some macroblock raster can position (as in MPEG-2). Slices are not allowed to overlap within a picture. The position of the slices within the picture may change from picture to picture. The decoding process of a macroblock inside a slice does not use data in the other slices of the same picture.
5 Macroblock level encoding

Macroblock level coding structure

The macroblock-level syntax structure is a structure that contains prediction mode selection, transform type, quantization control, and entropy coding as shown in Figure 5-1.
[image: image4.png]
Figure 5-1 Macroblock level coding structure.
5.1.1 Tool classification

For inter prediction, there are two cases, depending on the picture type, as shown in Figure 5-2. Note that the prediction mode is selected by a rate-distortion optimization (RDO) process, but each mode is first selected by the sum-of-absolute differences (SAD) measure as shown in Figure 5-3. For intra prediction, its mode selection with macroblock type and prediction modes is shown in Figure 5-4.
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Figure 5-2 Inter prediction process. Left is for P pictures, and right is for B pictures.

[image: image6.png]
Figure 5-3 Mode selection process of inter prediction by SAD.

[image: image7.png]
Figure 5-4 Intra prediction process.
Macroblock header

The macroblock header is formatted based on its prediction mode as shown in Figure 5-5. In an I frame, mb_trans_type is the first syntax element, which indicates which block size of intra prediction and transform will be used. In a P or B frame, an mb_part_type syntax element is the first syntax element, and it indicates the type of macroblock partition. The mb_part_type selects one prediction type among skip, intra, and inter. For the skip case, no further syntax elements follow the mb_part_type. For the intra prediction case, the same syntax elements as in a macroblock of an I frame follow the mb_part_type. For inter prediction, the mb_pred_type and associated prediction and transform information follow.
[image: image8.jpg]
(a)

[image: image9.png]
(b)

Figure 5-5 Macroblock header structure. (a) intra frame (b) inter frame
Rate-distortion optimization (RDO)

Rate-distortion optimization (RDO) is a process that computes rate and distortion cost to try to select the best prediction mode for compression efficiency as shown in Figure 5-2. The detailed process for encoding the residual is shown in Figure 5-3. By turning on an encoder option, a temporal-dependent RDO can be applied by constructing a temporal propagation chain and developing a source distortion temporal propagation (SDTP) model under low-delay case (for further detail, see contribution m35891).
[image: image10.png]
Figure 5-2 Simplified diagram of RDO process.
[image: image11.png]
Figure 5-3 Encoding process for coefficient and mode information.
5.1.2 Lagrange multiplier selection

In the computation of the R-D cost, the trade-off between bitrate and compression distortion is tuned through the choice of the Lagrange multiplier. The value of the Lagrange multiplier is determined by the picture types (I, P, or B) and the encoding modes – Random Access (RA), or Low-Delay (LD). In the case of non-reference P frame coding in the low-delay encoding configuration, there may exist three different types of P frames in terms of QP values to be used, and associated Lagrange multiplier values of 
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 are selected for normal P frames (the first level P), referenced P frames (the second level P), and non-referenced P frames (the third level P), respectively. The overall selection of the Lagrange multiplier is performed as follows: 
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Macroblock partitioning
The basic unit of video encoding and decoding is the macroblock. A macroblock consists of a 16(16 luminance block and two corresponding chroma blocks. A macroblock can be further divided to 16x8, 8x16 and 8(8 luma blocks to perform prediction, as shown in Figure 2-1.

[image: image16.png]
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Figure 2-1 Macroblock partitioning
For inter prediction, all macroblock partitions shown in Figure 2-1 can be applied, but for intra prediction, only 16x16 and 8x8 can be selected.

Intra Prediction
5.1.3 Intra prediction mode
The decoded boundary samples of adjacent blocks are used as reference data for spatial prediction in regions where inter prediction is not performed. The intra prediction is performed in I, P, and B frames. The encoder selects the luma prediction modes of each macroblock from 5 modes (that is DC, Horizontal, Vertical, Down-Right and Down-Left) as shown in Figure 3-1. One of these 5 intra prediction modes will be applied to 16x16, 8x8, and 4x4 luma blocks as shown in Table 3-1, according to the selected prediction mode.

[image: image17.png]
Figure 3-1 Intra prediction mode for luma

Table 3-1 Intra prediction mode number for luma

	Intra_luma_pred_mode
	Name

	0
	Vertical prediction

	1
	Horizontal prediction

	2
	DC prediction

	3
	Down-Left prediction

	4
	Down-Right prediction


For the chroma components of an intra macroblock, the encoder selects chroma prediction modes among four modes (that is Plane, DC, Horizontal and Vertical). The 8x8 chroma region for a macroblock uses one of the 4 modes shown in Table 3-2. When the predicted chroma region is 4x4, only the DC prediction mode is used.

Table 3-2 Intra prediction mode number for chroma

	Intra_chroma_pred_mode
	Name

	0
	DC prediction

	1
	Horizontal prediction

	2
	Vertical prediction

	3
	Plane prediction


Inter Prediction

5.1.4 Inter Prediction mode

There are five inter prediction modes: skip mode, forward prediction mode, backward prediction mode, multiple-hypothesis mode, and symmetrical mode. Each prediction mode can be available depending on the reference picture type or block partition as shown in Table 5-1. [Ed: Table 5-1 will be modified]
Table 5-1 Available inter prediction mode in accordance with each macroblock type
	MBPart

Mode
	P_16x16
	P_16x8
	P_8x16
	P_8x8
	B_Skip
	B_16x16
	B_16x8
	B_8x16
	B_8x8

	Skip
	○
	
	
	
	○
	○
	
	
	○

	Forward prediction
	○
	○
	○
	○
	
	○
	○
	○
	○

	Backward prediction
	
	
	
	
	
	○
	○
	○
	○

	Multiple-hypothesis
	○
	○
	○
	○
	
	
	
	
	

	Symmetrical
	
	
	
	
	
	○
	○
	○
	○


For inter prediction, the motion vector difference and residual signal are computed by comparing the RD cost with each block partitions. The motion vector difference and residual signal may not be transmitted in bitstream, depending on the prediction mode. Also the number of motion vectors is decided according to the prediction mode or the current block partition.

Skip mode

The skip mode omits all syntax elements for prediction except its mode type information. If the skip mode is selected for the current macroblock, the motion vector difference is set to 0, no residual signal is transmitted in the bitstream.

The calculation process of the skip mode is executed differently depending on the reference picture type of the current macroblock. In a P frame, the skip mode uses only the temporally preceding reference picture to calculate the residual signal, and it is available for 16x16 macroblock partition. The motion vector is calculated by the following process: 

· If neither the left neighbouring block or the above neighbouring block is available, the motion vector of the current macroblock would be set to 0. 

· If the left neighbouring block or the above neighbouring block doesn’t have a motion vector (e.g., if it is outside the current slice or if it is an intra predicted block), or if the reference picture of a neighbouring block is not the same as for the current block, then the motion vector would be set to 0 as well. 

· Otherwise, the motion vector of the current macroblock is inferred using motion vector prediction.

In a B frame, the skip mode uses temporally preceding and temporally following reference pictures. Also it is calculated based on 8x8 luma block regions. The reference block is calculated by averaging the referred forward block and the referred backward block. And the motion vector is calculated by the following process: 

· If the type of referred block which is corresponding with the current block position is and intra macroblock type, forward and backward prediction modes are calculated with the motion vector prediction as in a P frame. 

· Otherwise, the motion vector of the current block is calculated by using the motion vector of the referred block which is corresponding to the current block. Also the distance values from the forward reference frame to current frame and from the backward reference frame to the current frame are used.

Forward prediction mode

The forward prediction mode uses the forward (temporally preceding) reference picture. It is calculated with the motion vector prediction and the motion search. Finally, the motion vector difference and the residual signal are transmitted in bitstream.

Backward prediction mode
The backward prediction mode is similar to the forward prediction mode, but it uses backward (temporally following) reference picture.

Multiple-hypothesis prediction mode
The multiple-hypothesis prediction mode uses two motion vectors with the corresponding final prediction blocks. One motion vector (denoted MVL1) is calculated with the motion vector prediction at first, and the other motion vector (denoted MVL2) is calculated with a motion search. The final predicton block is calculated by combining the prediction blocks of two motion vectors, and this process is executed whenever MVL2 is searched. When the final prediction block which has the least SAD cost is selected, the corresponding MVL2 is determined. The MVL1 can be inferred in decoding process, so only the difference between MVL1 and MVL2 is transmitted in bitstream. Also the residual signal is transmitted in bitstream.

Symmetrical mode
The symmetrical mode uses a picture which is generated from a combination of the forward reference picture and the backward reference picture. It needs a forward motion vector which is calculated with motion vector prediction and motion search. The backward motion vector is calculated with the forward motion vector, the distance between the forward reference frame and the current frame, and the distance between the backward reference frame and the current frame. Finally, the motion vector difference for forward prediction and two residual signals are transmitted in bitstream.
5.1.5 Motion Estimation

Motion vector prediction
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Figure 5-1 Neighbouring macroblocks for MVP

To calculate the motion vector of current macroblock, four neighbouring macroblocks are referred to as left, above, left-above, and right-above, as shown in Figure 5-1. If unavailable neighbouring macroblock exists, the motion vector of that macroblock is set to 0. So the motion vector of current macroblock is set to 0 when all the neighbouring macroblocks are not available. But when only one neighbouring macroblock is available, the x and y axis values of the motion vector are same with x and y axis values of the motion vector of available neighbouring macroblock. Otherwise, the motion vector is calculated by the following process.

The calculation of the motion vector uses three neighbouring macroblocks: left, above, and right-above. First, right-above neighbouring macroblock is confirmed whether it is available. If it is not available, left-above neighbouring block would be used instead. Second, the signs for each x axis value of the neighbouring motion vector are compared. If the sign for the x axis value of one neighbouring motion vector is opposite to the sign for the x axis value of the other motion vectors, the corresponding motion vector is excluded from the motion vector calculation process. So the x axis value of the current motion vector is calculated with the average of the x axis values of the other motion vectors.

Otherwise, the differences of x axis value for each motion vectors are calculated, and two motion vectors which have the smallest value of the three difference values with one another are selected. Then, the x axis value of the current motion vector is calculated with the average of the x axis values of the selected motion vectors.

The y axis value of the motion vector is calculated in the same way as calculation of x axis value.

Motion search
The motion search proceeds differently for the block search method or pixel value calculation. There are two searching block methods which are fast block motion search, and full block motion search. In addition, there are integer block motion search and sub pixel block motion search. Each method is different, depending on the calculation of values in the reference frame.

The fast block search method uses a "UMHexagon" search, and the full block search method uses a full search within a search range. The interger pixel block motion search uses default pixel values, but the sub pixel block motion search uses combined pixel values. There are two methods for the sub pixel block motion search: half-pel search, and quarter-pel search.
To find the best motion, not only the distortion cost of a searched block, but also the bit cost of the block is calculated during the motion search process. Since the real bit cost cannot be obtained before entopy encoding, ITM estimates the bit cost by two ways: 1) simply multiplying two to MV distance from the starting point (i.e., MVP) and 2) updating the estibated bit cost for each MV distance using the record of the real bit cost computed during entropy encoding process for past blocks. The diagram for the second way is shown in the Figure 5-2.
[image: image19.jpg]
Figure 5-2 MV bit cost updating process for motion search
In addition to the bit cost of MV, the bit cost for reference frame index can also be obtained from the entropy encoding of previous blocks and can be used for motion search if multiple reference frame method is used. The detailed calculation is described in Subclause 5.6.2.5. 
Luma interpolation filter

There are 3 interpolation filters which are resolution-dependent. The 4-tap filter shown in Table 5-2 is used for the UHD (2560x1600 and above) video, the 6-tap filter shown in Table 5-3 is used for video with resolutions ranging from 720P (1280x720) to 1080P (1920x1080), and the 10-tap filter shown in Table 5-4 is used for video with resolution below 720P, respectively.

Table 5-2 Coefficients of 4-tap filters
	Position
	Filter coefficients
	Mults
	Adds

	1/4
	{-6, 56, 15, -1}
	3
	3

	2/4
	{-4, 36, 36, -4}
	4
	3

	3/4
	{-1, 15, 56, -6}
	3
	3


Table 5-3 Coefficients of 6-tap filters
	Position
	Filter coefficients
	Mults
	Adds

	1/4
	{2, -9, 57, 17, -4, 1}
	5
	5

	2/4
	{2, -9, 39, 39, -9, 2}
	6
	5

	3/4
	{1, -4, 17, 57, -9, 2}
	5
	5


Table 5-4 Coefficients of-10 tap filters
	Position
	Filter coefficients
	Mults
	Adds

	1/4
	{1, -2, 4, -10, 57, 19, -7, 3, -1, 0}
	7
	8

	2/4
	{1, -2, 5, -12, 40, 40, -12, 5, -2, 1}
	8
	9

	3/4
	{0, -1, 3, -7, 19, 57, -10, 4, -2, 1}
	7
	8


[Ed. Note: Needs expansion]

Chroma interpolation filter

[Ed. Note: Needs expansion]

The current ITM uses a 4-tap interpolation filter for chroma. The coefficients of the 4 tap filters in 1/8 pixel position precision are shown in Table 5-5.
Table 5-5 Coefficients of 4 tap filters for chroma
	Position
	Filter coefficients

	1/8
	{ -4, 62,  6,  0}

	2/8
	{ -6, 56, 15, -1}

	3/8
	{ -5, 47, 25, -3}

	4/8
	{ -4, 36, 36, -4}

	5/8
	{ -3, 25, 47, -5}

	6/8
	{ -1, 15, 56, -6}

	7/8
	{  0,  6, 62, -4}


Multiple Reference Frames Search
The inter prediction process can refer to multiple reference frames in the forward direction which is included in the forward prediction or the multiple-hypothesis prediction. In the current ITM, the number of reference frames is five (though it doesn’t need to be five in general). This can be changed by an encoding configuration. 
For motion search described in Subclause 5.6.2.2, the bit costs for MV and reference frame index can be used, and MV_bit_cost is calculated by the following equation:

[image: image27.png][image: image29.png].
.
where mv_bits represents the distance of each MV during motion search, ref_bits represents the updated bit cost for reference frame index. Note that mv_bits can be updated as described in Figure 5-2. The updating process of ref_bits is similarly done as shown in Figure 5-2.
In the backward prediction, the skip mode, or the symmetrical mode, the inter prediction process refers not to multiple reference frames but to only one reference frame. Also in the forward direction which is included in the skip mode, the inter prediction process refers to only one reference frame.
ITM took different location set for reference frames from other well-known designs. Let the current frame be temporally at t, and then the current frame refers to the following five locations: t-1, t-2, t-4, t-8, and t-12. If the number of reference frame is set to more than five, then the current frame will refer to t-1, t-2, and t-4·n (for n = 1, 2, 3, …).

[image: image30.png]
Figure 2. The intervals for MRF within five frames in ITM.

5.1.6 Non-reference P frame coding

Non-reference P frame coding uses three different QP values according to the types of P frame: P frame, non-reference P frame, or non-reference P frame with reference picture buffer (RPB) swapping. A coding structure of a non-reference P frame coding is shown in Figure 5-1. As an typical example of QP setting, the lowest value of QP is assigned to the reference P picture (P8), and then the increased value of QP is assigned to the reference P frame (P6), and the largest QP is assigned to non-reference frames (P5, P7). As a result, a 3-level coding structure in terms of QP values to be assigned is used in non-reference P frame coding. 
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Figure 5-1. Non-reference P coding with a 3-level coding structure
Adaptive/non-adaptive method
As shown in Figure 5-1, it can be adaptively determined that whether non-reference P frame coding is used or not for every four frames (e.g., P5, P6, P7, and P8). Application of non-reference P frame coding can be basically determined based on the temporal correlation which is measured by the amount of motion in an adaptive manner. In addition, in order to obtain more reliable improvement by excluding the negative effect of non-reference P frame coding, the ratio of the generated bit amount of non-reference pictures among the latest four pictures coded as non-reference P frame coding to that of the four pictures is used to the adaptive selection of non-reference P frame coding. 
In the case of non-adaptive method, a 3-level coding structure of non-reference P frame coding is applied for every four frames over the whole sequence.

Non-reference P frame coding in single reference frame
In the 3-level non-reference P frame coding shown in Figure 5-1, the P frame type of P7 is set as the type of ‘non-reference P frame with RPB swapping’, which results that the P4 frame is referenced for the P8 frame decoding instead of the P6 frame. In order words, after decoding the P7 frame, the newest two decoded pictures stored in RPB, the P6 frame and the P4 frame are swapped. Therefore, the decoded pictures are placed in RPB in the nearest order of P4, P6, P3, P2, P1 instead of P6, P4, P3, P2, P1 after swapping that is indicated by the frame type of P7.
Non-reference P frame coding in mumtiple reference frame
When multiple reference frame prediction is used, different coding structures indicated by the P frame type are possible. In other words, the P frame type of P7 is set as either ‘non-reference P frame with RPB swapping’ or ‘non-reference P frame’ that does not accompany RPB swapping. In the figure 5-1, when RPB swapping is occurrred after reconstructing P7, P4 may be the first reference picture of P8 which has the smallest value of ref_idx. Otherwise, P6 may be the first reference picture. The coding performance may be improved when RPB swapping is not used. 
Transform

The current ITM supports supports 4x4, 8x8, and 16x16 transforms. 
5.1.7 4x4 Transform

The following process is performed for the 4x4 transform:

Cij = （T(4)ijT x Rij x T(4)ij + （1 << 15 ））>> 16,    

for i, j = 0..4.

Where R is the 4x4 residual matrix, T4 is the transform matrix which is shown inthe following matrix, and C is the transformed 4x4 matrix. 

T4 = {
128，  128，  128，  128，

167，    69，   -69， -167，

128， -128， -128，  128，

69，   -167，   167，  -69 
}
5.1.8 8x8 Transform

The following process is performed for the 8x8 transform:
Cij = （T(8)ijT x Rij x T(8)ij + （1 << 4 ））>> 5,    

for i, j = 0..7.

Where R is the 8x8 residual matrix, T8 is the transform matrix which is shown inthe following matrix, and C is the transformed 8x8 matrix. 

T8 = {

{ 8,  10,   10,      9,   8,     6,   4,     2},

{ 8,    9,    4,     -2,   -8, -10,  -10,  -6},

{ 8,    6,   -4,   -10,   -8,    2,  10,     9},

{ 8,    2,  -10,   -6,     8,     9,   -4,  -10},

{ 8,   -2,  -10,    6,     8,   -9,   -4,   10},

{ 8,   -6,    -4,  10,    -8,   -2,  10,   -9},

{ 8,   -9,     4,    2,    -8,   10,-10,    6},

{ 8, -10,   10,   -9,     8,    -6,   4,   -2}
}

Note that current ITM supports 1-D 8-point forward transform. The butterfly structure of 8x8 1-D DCT is shown as Figure 6.1.1, with “x” as input and “X” as output [3].
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Figure 6-1. The butterfly structure of 8x8 1-D DCT

The irrational numbers of the parameters in the butterfly structure are approximated with rational numbers as follows:
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After this approximation, since the transform matrix is still orthogonal, no scaling operations are needed, and the performance is more similar with DCT.
5.1.9 16x16 Transform

The following process is performed for the 16x16 transform [4]:

 Cij = （T(16)ijT x Rij x T(16)ij + （1 << 13 ））>>14,


for i,j = 0..15.

Where R is the 16x16 residual matrix, T16 is the transform matrix which is shown in the following matrix, and C is the transformed 16x16 matrix.
T16 = {

{ 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32},

{ 45, 43, 40, 35, 29, 21, 13,  4, -4,-13,-21,-29,-35,-40,-43,-45},

{ 44, 38, 25,  9, -9,-25,-38,-44,-44,-38,-25, -9,  9, 25, 38, 44},

{ 43, 29,  4,-21,-40,-45,-35,-13, 13, 35, 45, 40, 21, -4,-29,-43},

{ 42, 17,-17,-42,-42,-17, 17, 42, 42, 17,-17,-42,-42,-17, 17, 42},

{ 40,  4,-35,-43,-13, 29, 45, 21,-21,-45,-29, 13, 43, 35, -4,-40},

{ 38, -9,-44,-25, 25, 44,  9,-38,-38,  9, 44, 25,-25,-44, -9, 38},

{ 35,-21,-43,  4, 45, 13,-40,-29, 29, 40,-13,-45, -4, 43, 21,-35},

{ 32,-32,-32, 32, 32,-32,-32, 32, 32,-32,-32, 32, 32,-32,-32, 32},

{ 29,-40,-13, 45, -4,-43, 21, 35,-35,-21, 43,  4,-45, 13, 40,-29},

{ 25,-44,  9, 38,-38, -9, 44,-25,-25, 44, -9,-38, 38,  9,-44, 25},

{ 21,-45, 29, 13,-43, 35,  4,-40, 40, -4,-35, 43,-13,-29, 45,-21},

{ 17,-42, 42,-17,-17, 42,-42, 17, 17,-42, 42,-17,-17, 42,-42, 17},

{ 13,-35, 45,-40, 21,  4,-29, 43,-43, 29, -4,-21, 40,-45, 35,-13},

{  9,-25, 38,-44, 44,-38, 25, -9, -9, 25,-38, 44,-44, 38,-25,  9},

{  4,-13, 21,-29, 35,-40, 43,-45, 45,-43, 40,-35, 29,-21, 13, -4}

}
Quantization 

The quantization parameter (QP) range is from 0 to 63. The quantization process is defined with 16-bit precision as follows:
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Where C[i][j] is the coefficient after transform and Cq the coefficient after quantization. The values of s[i][j] are shown in Figure 7-1, and the values of Q_TAB are shown in Table 7-2.
Table 7-1 The value of  s[i][j].

	i/j
	0
	1
	2
	3
	4
	5
	6
	7

	0
	32768
	37958
	36158
	37958
	32768
	37958
	36158
	37958

	1
	37958
	43969
	41884
	43969
	37958
	43969
	41884
	43969

	2
	36158
	41884
	39898
	41884
	36158
	41884
	39898
	41884

	3
	37958
	43969
	41884
	43969
	37958
	43969
	41884
	43969

	4
	32768
	37958
	36158
	37958
	32768
	37958
	36158
	37958

	5
	37958
	43969
	41884
	43969
	37958
	43969
	41884
	43969

	6
	36158
	41884
	39898
	41884
	36158
	41884
	39898
	41884

	7
	37958
	43969
	41884
	43969
	37958
	43969
	41884
	43969


The quantization process is defined without scaling operation as follows [5]:
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Where C is the coefficient after transform and Cq the coefficient after quantization, Q_TAB is shown in Table 7-2.

Table 7-2 The value of Q_TAB[QP].

	QP
	0
	1
	2
	3
	4
	5
	6
	7

	Q_TAB
	32768
	29775
	27554
	25268
	23170
	21247
	19369
	17770

	QP
	8
	9
	10
	11
	12
	13
	14
	15

	Q_TAB
	16302
	15024
	13777
	12634
	11626
	10624
	9742
	8958

	QP
	16
	17
	18
	19
	20
	21
	22
	23

	Q_TAB
	8192
	7512
	6889
	6305
	5793
	5303
	4878
	4467

	QP
	24
	25
	26
	27
	28
	29
	30
	31

	Q_TAB
	4091
	3756
	3444
	3161
	2894
	2654
	2435
	2235

	QP
	32
	33
	34
	35
	36
	37
	38
	39

	Q_TAB
	2048
	1878
	1722
	1579
	1449
	1329
	1218
	1117

	QP
	40
	41
	42
	43
	44
	45
	46
	47

	Q_TAB
	1024
	939
	861
	790
	724
	664
	609
	558

	QP
	48
	49
	50
	51
	52
	53
	54
	55

	Q_TAB
	512
	470
	430
	395
	362
	332
	304
	279

	QP
	56
	57
	58
	59
	60
	61
	62
	63

	Q_TAB
	256
	235
	215
	197
	181
	166
	152
	140



If the current block is for luma, the QP of this block (i.e., QPL) is equal to the QP of the current Macroblock (i.e. QPMB). If current block is for chroma, the QP of this block (i.e., QPC) is equal to corresponding QPMB as shown in table 7-3.

Table 7-3 The relationship between QPC and QPMB

	QPMB
	<43
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52

	QPC
	QPMB
	42
	43
	43
	44
	44
	45
	45
	46
	46
	47

	QPMB
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63

	QPC
	47
	48
	48
	48
	49
	49
	49
	50
	50
	50
	51


5.1.10 Enhanced quantization process on intra predicted chroma blocks
After the quantization process for chroma is processed, the ITM tries to optimize the quantized chroma sample values by changing the DC value of the quantized coefficients for intra predicted blocks. There are three stages for this enhanced technique: 1) save a residual block and conduct the transform and quantization processes, 2) add/subtract 1 from a DC coefficient and conduct dequantization and inverse transformation with two changed coefficient blocks, and 3) Compare the SADs of the changed coefficient blocks and encode the coefficient block with the lowest SAD. 
Firstly, the ITM encoder needs to save a residual block that will be used in the transform and quantization process and in the SAD computation. Secondly, ITM encoder tries to change the DC value of the original quantized coefficient block within the range of one (i.e., add one or substitute one from the original DC value). Afterwards, the three coefficient blocks (one is original and others are changed block) go to dequantization and inverse transform process to compare the coding efficiency. Finally, ITM encoder compares three blocks by computing their SAD. Among them, the test model method chooses one that has the best SAD value and encodes that block.
Entropy Coding
5.1.11 Entropy Coding Structure
An arithmetic coding method in the logarithmic domain is used as the entropy coding engine, named as AEC. Coding a data symbol involves the following steps: (a) binarization, (b) context model selection and (c) arithmetic encoding. For a given non-binary valued syntax element, it is uniquely mapped to a binary sequence, a so called bin string. Each of the given binary decision, which refers to as a bin in the sequence, enters the context modeling stage, where a context is selected and the corresponding choice of contexts may depend on previously encoded syntax elements or binarized bins. Then, after the assignment of a context, the bin value along with its associated model is passed to the regular coding engine or bypass coding, where the final stage of arithmetic encoding together with a subsequent context updating takes place. It is shown in Figure 7-1 and Figure 7-2.

[image: image36.png]
Figure 7-1 Entropy coding structure

[image: image37.png]
Figure 7-2 Block diagram of AEC encoder for Syntax element

5.1.12 Binarization

[Ed. Note: Needs expansion]

5.1.13 Arithmetic entropy coding
Syntax element is coded in single path. Unlike syntax element, DCT coefficients are coded as (Level, Run) pairs. Figure 7-3 depicts the coding block diagram of DCT coefficients.
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Figure 7-2 Block diagram of AEC encoder for DCT coefficient.

AEC codes each (Li, Ri) (i = 0, 1, 2, ... N) pair one by one along the reverse scan order until all pairs are coded. A so-called EOB symbol is coded at last to signal the end of a DCT block. For each (Li, Ri) pair, the Level precedes the associated Run. Firstly, both Level and Run are unary binarized into several bins. For the signed integer Level, it is presented by sign and unary bits of its magnitude (absLevel). Secondly, for each bin of absLevel and Run, a product context is applied, which consists of a primary context CP(L, R)(Li-1) and a secondary context indicated by CS(L)(j) for Level or CS(L)(j, L) for Run. Primary context relies on the past coded Li-1, and the corresponding context index is determined by the variable Lmax which denotes the maximal prior coded absLevel. To keep the number of contexts used for coefficient coding reasonably small, the primary contexts are quantized into five categories. Under each primary context, seven nested secondary contexts are defined. They are classified according to the bin indices for Level or both the value of currently coded absLevel and bin indices for Run. In the following, the bin index of absLevel or Run is denoted as variable j. The secondary context index is first initialized with the value of zero at the beginning of (Level, Run) pair coding. Besides, for the first bin of absLevel, another so-called accompanying context CA(L)(ReverseP) which utilizes the position of absLevel in coded order is designed for context weighting. It is quantized by the variable ReverseP. At last, the first bin of absLevel is sent to regular binary arithmetic coder with the technique of context weighting using secondary context and accompanying context. All other bins of absLevel and Run are regularly coded according to the secondary context index. Besides, the sign of Level is coded with bypass coding. After one (Level, Run) instance has been coded, all these contexts are updated. 
Loop filtering

Loop filtering takes a macroblock as a unit. If the level difference between the two pixels in the same block and the adjacent block around the edge meets certain conditions, the edge is filtered. Except for image edges and slice edges, all edges shall be filtered. Here, edges are defined as the edges between all 8x8 blocks inside the macroblock, and the upper and left edges between current and neighbouring macroblock. Chroma blocks follow luma blocks. There are three kinds of filtering methods: weak, normal, and strong loop filterings. The order of vertical and horizontal filtering for each of the macroblocks is shown in Figure 8-1.

[image: image39.emf]3146134652Luma edge of macroblockChroma edge of macroblock(Cb or Cr)


Figure 8-2. The order of filtered edges in a macroblock(4:2:0 format)

Note: Solid lines represent a vertical edge considered to belong to the macroblock, bold dashed lines represent a horizontal edge considered to belong to the macroblock, and thin dashed lines represent an edge considered to belong to a neighbouring macroblock to the right or below.

Figure 8-2 indicates 6 sampling positions around two vertical or horizontal sides of p and q (the edge is identified by a bold line). 
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Figure 8-2. Horizontal or vertical edge sample of 8x8 block

The conditions of loop filtering are:

(1). 
abs(p0 – p1) < β && abs(q0 – q1) < β;

(2). 
abs(q0 – p0) > abs(p0 – p1) && abs(q0 – p0) > abs(q0 – q1);

(3). 
abs(q0 – p0) < α
(4). 
abs(p2 – p0) < β && abs(q2 – q0) < β ;
(5). abs(p3 – p0) < ( && abs(q3 – q0) < (;

(6). abs(p0 – p1) < min(3, () && abs(q0 – q1) < min (3, ();

As long as the first three conditions are all satisfied, loop filtering is active. For the luma component, if (4) is also satisfied, normal loop filter is applied. Strong loop filtering is used when all the six conditions are satisfied for macroblock luminance edges. For chroma components, only when (4) and (6) are also satisfied, normal loop filtering is used.

5.1.14 Filtering Process for weak loop filtering

P0 = (p0– q0) /4 + p0; 
Q0 = (q0–p0) /4 + q0; 

P0 and Q0 are sample values obtained after filtering process of p0 and q0.

5.1.15 Filtering Process for normal loop filtering

P1 = (3 * ( p2- q0) + 4 * (p0 – q0) + 8 * ( q0 – p1)) /16 + p1;

P0 = ((p2 – q0) + 4 * ( p1 – q0 )  + ( q1 – p0 ) + 9 * ( q0 – p0 ) ) /16 + p0; 
Q0 = ((q2 – p0) + 4 * ( q1 – p0 )  + ( p1 – q0 ) + 9 * ( p0 – q0 ) ) /16 + q0; 

Q1 = (3 * ( q2- p0) + 4 * (q0 – p0) + 8 * ( p0 – q1) ) /16 + q1;

P0 and Q0 are sample values obtained after filtering process of p0 and q0, P1 and Q1 denote the sample values obtained after filtering process of p1 and q1.

5.1.16 Filtering Process for strong loop filtering

P2 = (4 * ( p0- q0) + 5 * (q0 – p2) ) /8 + p2;
P1 = (16 * ( q0- p1) + 6 * (p2 – q0) + 7 * ( p0 – q0)) /16 + p1;

P0 = (9 * ( p2- q0) + 6 * (q2 – p0) + 17 * ( q0 – p0))/32 + p0; 
Q0 = (9 * ( q2- p0) + 6 * (p2 – q0) + 17 * ( p0 – q0))/32 + q0; 

Q1 = (16 * ( p0- q1) + 6 * (q2 – p0) + 7 * ( q0 – p0))/16 + q1;

Q2 = (4 * ( q0- p0) + 5 * (p0 – q2)) /8+ q2;
P0 and Q0 are sample values obtained after the filtering process of p0 and q0, P1 and Q1 denote the sample values obtained after filtering process of p1 and q1, P2 and Q2 denote the sample values obtained after filtering process of p2 and q2.

The predetermined levels, α and β, are values calculated by using the QP value of the current block before loop filtering, and are coded into the picture header. For chroma components, α and β use the same value as for the luma component.

IndexA and IndexB are:

IndexA = Clip3(0, 63, QP)

IndexB = Clip3(0, 63, QP)

According to IndexA and IndexB, the threshold values α and β can be obtained from Table 8-1.

Table 8-1. Relation of Index and threshold value ( and (
	Index
	(
	(
	Index
	(
	(
	Index
	(
	(
	Index
	(
	(

	0
	0
	0
	16
	4
	2
	32
	22
	6
	48
	46
	15

	1
	0
	0
	17
	4
	2
	33
	24
	7
	49
	48
	16

	2
	0
	0
	18
	5
	3
	34
	26
	7
	50
	50
	17

	3
	0
	0
	19
	5
	3
	35
	28
	7
	51
	52
	18

	4
	0
	0
	20
	6
	3
	36
	30
	8
	52
	53
	19

	5
	0
	0
	21
	7
	3
	37
	33
	8
	53
	54
	20

	6
	1
	1
	22
	8
	4
	38
	33
	8
	54
	55
	21

	7
	1
	1
	23
	9
	4
	39
	35
	9
	55
	56
	22

	8
	1
	1
	24
	10
	4
	40
	35
	9
	56
	57
	23

	9
	1
	1
	25
	11
	4
	41
	36
	10
	57
	58
	23

	10
	1
	1
	26
	12
	5
	42
	37
	10
	58
	59
	24

	11
	2
	1
	27
	13
	5
	43
	37
	11
	59
	60
	24

	12
	2
	1
	28
	15
	5
	44
	39
	11
	60
	61
	25

	13
	2
	2
	29
	16
	5
	45
	39
	12
	61
	62
	25

	14
	3
	2
	30
	18
	6
	46
	42
	13
	62
	63
	26

	15
	3
	2
	31
	20
	6
	47
	44
	14
	63
	64
	27


If all of the conditions are satisfied, the edge is filtered as follows. Otherwise, loop filtering is skipped.
(1). P0 = q0 – (q0–p0) >> 2; 

(2). 
Q0 = p0 – (p0–q0) >> 2; 

P0 and Q0 are sample values obtained after filtering process of p0 and q0.
Annex A

Encoder Configurations in IVC Test Model


A. 1 Constraint set 1 configuration 

For satisfying constraint set 1, structural delay of processing units is restricted to be no larger than 8-picture "group of pictures (GOPs)" and random access intervals is restricted to be 1.1 seconds or less. The encoder is configured as follows:

· IBBP coding structure

· Random access intervals are restricted to be 1.1 seconds or less.

· Fixed QP assignment: QP for I, QP+2 for P, QP+5 for B

· 5 forward reference pictures in P frame & 1 forward reference picture and 1 backward reference picture in B frame
· RD Optimization enabled

· Fast motion estimation (UMHexagon Search)

· RDOQ enabled

A. 2 Constraint set 2 configuration 

For satisfying constraint set 2, no picture reordering is allowed between decoder processing and output, with bit rate fluctuation characteristics and no multi-pass encoding. The encoder is configured as follows:

· IPPP coding structure

· Fixed QP assignment: QP for I, QP+2 for P

· 8 forward reference pictures
· RD Optimization enabled

· Fast motion estimation (UMHexagon Search)

· RDOQ enabled
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