
Flexible compressed storage
of genomic information
beyond file formats:
Our experience with CARGO

Łukasz Roguski† and Paolo Ribeca‡

†Algorithm Development
 Centro Nacional de Análisis Genómico, Barcelona, Spain

‡Integrative Biology
 The Pirbright Institute, Woking, UK

Geneva, 20.10.2015

On the SAM format
and its shortcomings

• The SAM format is ubiquitous
 in HTS alignment and storage.

• However:
 • Not rationally designed (output format for BWA/1000-genomes project)

 • Not a universal format for alignment

 • The “standard” is a continuously changing PDF, with no versioning

 • Complex (many fields, optional fields actually conveying almost all the relevant information)

 • Inconsistent:

 • One of the fields is a multi-bit flag encoded as an integer for compactness

 • An arbitrary number of additional very verbose custom fields is allowed

 • Semantics completely hidden (and hence, correctness very hard to check).

About semantics
in bioinformatics

• Relevant content is almost never represented explicitly.
 • There are implicit graphs in every GTF/GFF file:

• In general:
 • Data manipulation is format-centric. Formats are rigid.

 • A different format for each analysis intermediate?
 Additional data is usually stored as hacked-out “additional fields”.

Our solution: CARGO
and its main concepts

• Each genomic dataset modeled as:
 • A header containing meta-information

 • A collection of structured records (with possibly variant type)

• Record type defined by the user in a rich domain-specific meta-language

 allowing easy and rapid prototyping of type-specific compressor/decompressor applications.
 Same spirit as that of data-bases (the semantics is in the schema!).

 Record fields can be annotated (for instance, specifying a different compression method for each field).

• All data stored in containers with configurable size, from MB to PB in size

 that can contain an arbitrary number of datasets of different formats.

Creating a format-specific compressor
with CARGO

(1) Define record type in CARGO meta-language

(2) Translate the definition

 (generates user files, application template files, Makefile and internal record specifications)

(3) Write record parser (and optionally record transformations, key generation)

 by filling the gaps in the C++ template files generated during previous step

(4) Compile CARGO application template files
 by using the Makefile script generated at step (2).

Result: command-line binary able to write to/read from a CARGO container
 a compressed form of the specified format. Done only once per new format!

Data streams and containers
in CARGO

• Record fields are decomposed in one or more
 separate stream(s)

• Each field is stored as a set of compressed
 stream blocks within a container

• Each container has separate
 meta-information, dataset and
 stream-blocks areas
 • As stream blocks are stored inside container blocks,
 multiple datasets can be concurrently interleaved in one container

 • The container is configurable, adaptable and resizable

 • Multiple setups are possible
 (streaming, random access, max ratio/performance, ...)

FASTQ
Compression
benchmarks

on
single
archives

SAM compression benchmarks

on single archives

SAM
compression
benchmarks

on a
collection
of volumes

A problem of data & software scaling

Throughput constantly improves much more than computing power

• The first Solexa Genome Analyzer @ CRG, 2008: 3 Gb / run
 and at the beginning (2010), the CNAG used to have 12 GA IIx: 30 Gb / run each.

• Current Illumina HiSeq 2000 machines produce > 500 Gb / run
 after some relatively minor hardware upgrade, which gave a 3x boost.

 The CNAG has 10 of them.

• The CNAG has a peak sequencing capacity of > 700 Gb / day...
 while the one originally planned in 2010 was 100 Gb / day.

• ...but still “only” 1000 processors in its cluster
 which is the amount originally intended to process 100 Gb / day.

• And it's happening again!
 New 3x upgrade under way. Will get Illumina HiSeq 4000 machines soon!

WARNING: this slide is very much Illumina-specific

Putting things in perspective
and getting some outlook

• Yield is essentially an Illumina-specific issue.
 • Short reads require high coverages (30x? 100x? 300X?)

 • (Sufficiently) Long reads require lower coverages: remember Sanger and 454! (7x?)

• FASTQ/SAM-like formats can be used only:

 • When base-calling is well-established • When there are few indels.

• Orthogonal realignment formats for long reads already exist

 à la Myers, storing intervals in the alignment matrix (linear time reconstructions) rather than differences

• More complex format already used by long-reads vendors:
 • PacBio (“extended SAM”) • Oxford sNanopore (HDF5, base calling information).

• Even if quality scores were sufficient,
 semantics, intermediates and HPC always a problem.

A word of caution about benchmarks in genomics
Genomics is not engineering!

• (Individual) genome assembly is not a well-established procedure
 • Many (repetitive) parts of the genome are missing from the reference

• Variant calling is not a well-established procedure
 • SNPs are OK, large scale variants are not (re-sequencing with short reads!)

 • ICGC paper in press showing that:

 • The same software calls very different sets of variants depending on the parameters used

 • Some classes of variants (for instance in repeats) are there but hard(er) to call

 • Benchmarks very difficult because we don't know the truth (i.e. all the variants present).

• Premature optimization is the root of all evil!
 • Too early to talk about “quality de-noising”? Keeping all the information might be a safer bet.

Thank you for your attention!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

