ISO/IEC 23008-2 : 201x (E)
			ISO/IEC 23008-2 : 201x (E)
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC1/SC29/WG11
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11 N13935
November 2013, Geneva, Switzerland

	Source
	JCT-VC and Video

	Status
	Approved

	Title
	Study text of ISO/IEC 23008-2:201x/PDAM3 HEVC Scalable Extensions

	Editors
	J. Chen, J. Boyce, Y. Ye, M. Hannuksela, Y.-K. Wang

	[bookmark: _Ref280362398][bookmark: _Toc287363716][bookmark: _Toc311216699][bookmark: _Toc317198660]Joint Collaborative Team on Video Coding (JCT-VC)
of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11
15th Meeting: Geneva, CH, 23 Oct. – 1 Nov. 2013
	Document: JCTVC-O1008_v3

	Title:
	High efficiency video coding (HEVC) scalable extension Draft 4

	Status:
	Output Document of JCT-VC

	Purpose:
	Draft of SHVC

	Author(s) or
Contact(s):
	Jianle Chen, Qualcomm
Jill Boyce, Vidyo
Yan Ye, InterDigital
Miska M. Hannuksela, Nokia
Ye-kui Wang, Qualcomm

	Email:
	cjianle@qti.qualcomm.com
jill@vidyo.com
Yan.Ye@interdigital.com
miska.hannuksela@nokia.com
yekuiw@qti.qualcomm.com

	Source:
	Editors

[bookmark: _Toc356148046][bookmark: _Toc345753769][bookmark: _Toc348629455][bookmark: _Toc348630608][bookmark: _Toc348631566][bookmark: _Toc348631845][bookmark: _Toc348632113][bookmark: _Toc348632853][bookmark: _Toc348633110][bookmark: _Toc373832671]Abstract
This document contains a preliminary version of SHVC Draft 4 text.
In this document, Annex F contains common syntax, semantics and decoding processes for multi-layer video coding extensions and Annex H contains Syntax, semantics and decoding processes for the scalable extensions. Modifications in long sections copied from the HEVC spec are highlighted in turquoise. Modifications to the MV-HEVC spec Annex C, D, E, F are highlighted in green. Open issues and editor's notes are highlighted in yellow.

Ed. Notes (Draft 4) (changes to JCTVC-N1008)
--------- Release v3 -----------
Accepted all change marks.
----------- Release v2 -----------
(Fix Ticket #4)
(Fix Ticket #3)
 (Review JB01): editorial improvements
(Review JC02): editorial improvement and fix
(Common HLS from JCT3V-F1004_v6) Ported from JCT3V-F1004_v6 and trace marks in Annex F is not recorded in this document. See JCT3V-F1004 for the integration detail of each proposal
----------- Release v1 -----------
(Review MH02)
(Review MH01):
· editorial improvements and fixes, editor's notes
· Made sure that for all profile constraints the following decision is obeyed: (JCTVC-O0253, Scalable Main profile decision 1): profile constraints apply to an output layer set
(Review YY01): editorial improvements and fixes, especially related to Scalable Main profile constraints.
(Review JB01): editorial improvement and fix
(Review JC01): editorial improvement and fix
(Scalable main profile decision 3): base layer bitstream shall be conformant to main profile and enhancement layers shall be YUV420 and 8 bits
(JCTVC-O0094, Scalable Main profile decision 2): layer number in any dependency layer chain shall be less than or equal to 8
(JCTVC-O0253, Scalable Main profile decision 1): profile constraints apply to an output layer set
(JCTVC-O0216): Slice information derivation for inter-layer reference picture
(JCTVC-O0215): Signaling a flag to specify the phase alignment between layers (zero or center phase shift) for upsampling process
(JCTVC-O0199): Adding a flag in VPS VUI for indication of skipping enhancement layer IRAP picture when single_layer_for_non_irap_flag is equal to 1
(JCTVC-O0194): Supporting bit-depth scalability by reducing scaling step after resampling when higher bit depth is used in enhancement layer
(SCE1): Arbitrary Spatial Ratio (ASR) with filters as documented in JCTVC-O0031 tables 2 and 3, first column

Ed. Notes (Draft 3) (changes to JCTVC-N0242)
----------- Release v2 -----------
(Review JB01): editorial improvements
(Review JC02): editorial improvement and fix
(Review MH01): editorial fixes in the inter-layer constrained tile sets SEI message
(Consisent ILRPS derivation with MV-HEVC text)
(JCTVC-N0160): offset delay calculation for extended spatial scalability
(Fix chroma filter coefficient at phase 11)
(Review YY01): editorial improvement and fix
----------- Release v1 -----------
(Subclause cross-reference clean up)
(Review JB01)
(Review JC01)
(Require texture and MV prediction from same layer): Prohibit the case that, the inter-layer texture prediction is from one reference layer and the inter-layer motion prediction is from another reference layer for decoding one enhancement layer picture
(JCTVC-N0108): Improve text clarity by adding explicit constraint that sample resampling may be done once per enhancement layer picture, and motion field resampling may be done once per enhancement layer picture
(Note to disable TMVP when only inter-layer pred) Add an editorial note for SHVC encoders to avoid use of TMVP when only the inter-layer reference pictures exist in the reference picture lists
(Common HLS of multi-layer video coding extensions): Ported from JCT3V-E1004_v5 and trace mark is not recorded in this document. See JCT3V-E1004_v5 for the integration detail of each proposal
(Motion mapping text completion): Picture and slice level information derivation for resampled interlayer reference picture
(JCTVC-N0214):Intermediate data dynamic range control for the cases of 10-bits or higher input
(JCTVC-N0139): Adding a rounding offset for the colocated position derivation in reference layer motion derivation
(JCTVC-N0111): Using scaling factor to calculate the rounding offset for reference layer sample location derivation

Ed. Notes (JCTVC-N0242) (changes to JCTVC-M1008)
----------- Editorial improvement of Wording Draft 2 (submmited as to JCTVC-N0242)
 (Restructured Annexes) Annex F contain common parts of MV-HEVC and SHVC, Annex H contain SHVC specific text

Ed. Notes (Wording Draft 2) (changes to JCTVC-L1008)
----------- Release v3 -----------
(Review JL03) Review, clean ups.
(Review YY02) Review, Editorial improvement.
(Common HLS03)Common high level syntax ported from MV-HEVC text JCT3V-D1004_v3,
· A group of high level syntax proposals and editorial improvement are ported with this track, please see JCT3V-D1004_v3 for the integration detail of each proposal
----------- Release v2 -----------
Modifications to JCTVC-M0309: scaled reference layer picture offsets
(JCTVC-M0040): Using SHVC for adaptive resolution change
(Review JL02) Review and editorial improvement for interlayer MV scaling,
(Common HLS02)Common high level syntax ported from MV-HEVC text JCT3V-D1004_v2,
· A group of high level syntax proposals and editorial improvement are ported with this track, please see JCT3V-D1004_v2 for the integration detail of each proposal
----------- Release v1 -----------
(SHVC only adoption): Integrate annex G of SHVC test model text (JCTVC-L1007) with updates of the following SHVC only adoptions at 13th meeting
· (Review YY01) Review and editorial improvement
· (Review JB01) Review and editorial improvement
· (Review JL01) Review and editorial improvement
· (JCTVC-M0269): limit inter-layer prediction for a particular picture to use at most one inter-layer reference picture for cases where filtering is needed for each lower layer reference picture
· (JCTVC-M0309): scaled reference layer picture offsets
· (JCTVC-M0274): inter-layer referencing outside of conformance cropping window
· (JCTVC-M0449 (JCTVC-M0188, JCTVC-M0322 and JCTVC-M0425)): division-free reference layer sample location derivation used in re-sampling process
· (JCTVC-M0133): the division-free reference layer sample location derivation
· (JCTVC-M0133): division-free MV scaling
· Supporting YUV 422 and 444 format decoding
· Bug fix in motion mapping, adding variable arrary predFlag
(Common HLS01)Common high level syntax ported from MV-HEVC text JCT3V-D1004_v1,
· A group of high level syntax proposals are ported with this track, please see JCT3V-D1004_v1 for the integration detail for of each proposal
[bookmark: _Toc348633111]
CONTENTS
[bookmark: _Ref20133025][bookmark: _Toc20134208][bookmark: _Toc77680319]	Page
Abstract	i
8	Decoding process	2
8.1	General decoding process	2
8.1.1	Decoding process for a coded picture with nuh_layer_id equal to 0	4
8.2	NAL unit decoding process	5
8.3	Slice decoding process	5
8.3.2	Decoding process for reference picture set	5
8.3.3	Decoding process for generating unavailable reference pictures	9
8.3.3.1	General decoding process for generating unavailable reference pictures	9
 Annex C Hypothetical reference decoder	11
C.1	General	11
C.2	Operation of coded picture buffer (CPB) and bitstream partition buffer (BPB)	17
C.2.1	General	17
C.2.2	Timing of decoding unit arrival	18
C.2.3	Timing of decoding unit removal and decoding of decoding unit	19
C.3	Operation of the decoded picture buffer (DPB)	22
C.3.1	General	22
C.3.2	Removal of pictures from the DPB	23
C.3.3	Picture output	23
C.3.4	Current decoded picture marking and storage	24
C.4	Bitstream conformance	24
C.5	Decoder conformance	26
C.5.1	General	26
C.5.2	Operation of the output order DPB	27
C.5.2.1	General	27
C.5.2.2	Output and removal of pictures from the DPB	28
C.5.2.3	Picture decoding, marking, additional bumping, and storage	28
C.5.2.4	"Bumping" process	29
C.6	Demultiplexing process for deriving a bitstream partition	29
 Annex D Supplemental enhancement information	32
D.1	SEI payload syntax	32
D.1.1	General SEI message syntax	32
 Annex E Video usability information	33
E.2	VUI semantics	33
E.2.1	VUI parameters semantics	33
 Annex F Common syntax, semantics and decoding processes for multi-layer video coding extensions	34
F.1	Scope	34
F.2	Normative references	34
F.3	Definitions	34
F.4	Abbreviations	35
F.5	Conventions	35
F.6	Source, coded, decoded and output data formats, scanning processes, and neighbouring relationships	35
F.7	Syntax and semantics	35
F.7.1	Method of specifying syntax in tabular form	35
F.7.2	Specification of syntax functions, categories, and descriptors	35
F.7.3	Syntax in tabular form	35
F.7.3.1	NAL unit syntax	35
F.7.3.2	Raw byte sequence payloads and RBSP trailing bits syntax	36
F.7.3.3	Profile, tier and level syntax	49
F.7.3.4	Scaling list data syntax	49
F.7.3.5	Supplemental enhancement information message syntax	49
F.7.3.6	Slice segment header syntax	50
F.7.3.7	Short-term reference picture set syntax	52
F.7.3.8	Slice segment data syntax	53
F.7.4	Semantics	53
F.7.4.1	General	53
F.7.4.2	NAL unit semantics	53
F.7.4.3	Raw byte sequence payloads, trailing bits, and byte alignment semantics	55
F.7.4.4	Profile, tier and level semantics	72
F.7.4.5	Scaling list data semantics	72
F.7.4.6	Supplemental enhancement information message semantics	72
F.7.4.7	Slice segment header semantics	72
F.7.4.8	Short-term reference picture set semantics	74
F.7.4.9	Slice segment data semantics	74
F.8	Decoding process	75
F.8.1	General decoding process	75
F.8.1.1	Decoding process for a coded picture with nuh_layer_id equal to 0	75
F.8.1.2	Decoding process for a coded picture with nuh_layer_id greater than 0	75
F.8.1.3	Decoding process for starting the decoding of a coded picture with nuh_layer_id greater than 0	76
F.8.1.4	Decoding process for ending the decoding of a coded picture with nuh_layer_id greater than 0	76
F.8.1.5	Generation of unavailable reference pictures for pictures first in decoding order within a layer	77
F.8.2	NAL unit decoding process	78
F.8.3	Slice decoding processes	78
F.8.3.1	Decoding process for picture order count	78
F.8.3.2	Decoding process for reference picture set	79
F.8.3.3	Decoding process for generating unavailable reference pictures	79
F.8.3.4	Decoding process for reference picture lists construction	79
F.8.3.5	Decoding process for collocated picture and no backward prediction flag	79
F.8.4	Decoding process for coding units coded in intra prediction mode	79
F.8.5	Decoding process for coding units coded in inter prediction mode	79
F.8.6	Scaling, transformation and array construction process prior to deblocking filter process	79
F.8.7	In-loop filter process	79
F.9	Parsing process	79
F.10	Specification of bitstream subsets	79
F.11	(Void)	80
F.12	Byte stream format	80
F.13	Hypothetical reference decoder	80
F.14	SEI messages	80
F.14.1	SEI message syntax	80
F.14.1.1	Layers not present SEI message syntax	80
F.14.1.2	Inter-layer constrained tile sets SEI message syntax	80
F.14.1.3	Bitstream partition nesting SEI message syntax	81
F.14.1.4	Bitstream partition initial arrival time SEI message syntax	81
F.14.1.5	Bitstream partition HRD parameters SEI message syntax	82
F.14.2	SEI message semantics	82
F.14.2.1	Layers not present SEI message semantics	83
F.14.2.2	Inter-layer constrained tile sets SEI message semantics	83
F.14.2.3	Bitstream partition nesting SEI message semantics	85
F.14.2.4	Bitstream partition initial arrival time SEI message semantics	85
F.14.2.5	Bitstream partition HRD parameters SEI message semantics	85
F.15	Video usability information	86
F.15.1	General	86
F.15.2	VUI syntax	86
F.15.3	VUI semantics	86
F.15.3.1	VUI parameters semantics	86
F.15.3.2	HRD parameters semantics	86
F.15.3.3	Sub-layer HRD parameters semantics	86
 Annex H Syntax, semantics and decoding processes for scalable extension	87
H.1	Scope	87
H.2	Normative references	87
H.3	Definitions	87
H.4	Abbreviations	87
H.5	Conventions	87
H.6	Source, coded, decoded and output data formats, scanning processes, and neighbouring relationships	87
H.6.1	Derivation process for reference layer sample location	87
H.6.2	Derivation process for reference layer sample location used in resampling	87
H.7	Syntax and semantics	88
H.8	Decoding processes	88
H.8.1	General decoding process	88
H.8.1.1	Decoding process for a coded picture with nuh_layer_id greater than 0	88
H.8.1.2	Decoding process for inter-layer reference picture set	88
H.8.1.3	Marking process for ending the decoding of a coded picture with nuh_layer_id greater than 0	89
H.8.1.4	Resampling process for inter layer reference pictures	89
H.8.2	NAL unit decoding process	96
H.8.3	Slice decoding processes	96
H.8.3.1	Decoding process for picture order count	96
H.8.3.2	Decoding process for reference picture set	96
H.8.3.3	Decoding process for generating unavailable reference pictures	96
H.8.3.4	Decoding process for reference picture lists construction	96
H.8.4	Decoding process for coding units coded in intra prediction mode	97
H.8.5	Decoding process for coding units coded in inter prediction mode	97
H.8.6	Scaling, transformation and array construction process prior to deblocking filter process	97
H.8.7	In-loop filter process	97
H.9	Parsing process	98
H.10	Specification of bitstream subsets	98
H.11	Profiles, tiers, and levels	98
H.11.1	Profiles	98
H.11.1.1	General	98
H.11.1.2	Scalable Main profile	98
H.11.2	Tiers and levels	98
H.12	Byte stream format	98
H.13	Hypothetical reference decoder	98
H.14	SEI messages	99
H.15	Video usability information	99

			Draft ISO/IEC 23008-2: 201x (E)
Draft ISO/IEC 23008-2 : 201x (E)

vi	Draft Rec. ITU-T H.265 (201x E)
	Draft Rec. ITU-T H.265 (201x E)	v
[bookmark: _Toc311217212][bookmark: _Toc311217213][bookmark: _Toc311217223][bookmark: _Toc311217224][bookmark: _Toc311217225][bookmark: _Toc311217226][bookmark: _Toc33101255][bookmark: _Toc351057897][bookmark: _Toc351335493][bookmark: _Hlt22614396][bookmark: _Toc35694271][bookmark: _Hlt22461470][bookmark: _Hlt22617966][bookmark: _Toc327284427][bookmark: _Toc327290315][bookmark: _Toc327299358][bookmark: _Toc327299671][bookmark: _Toc327284430][bookmark: _Toc327290318][bookmark: _Toc327299361][bookmark: _Toc327299674][bookmark: _Toc327284431][bookmark: _Toc327290319][bookmark: _Toc327299362][bookmark: _Toc327299675][bookmark: _Toc327284433][bookmark: _Toc327290321][bookmark: _Toc327299364][bookmark: _Toc327299677][bookmark: _Toc327284435][bookmark: _Toc327290323][bookmark: _Toc327299366][bookmark: _Toc327299679][bookmark: _Toc327284439][bookmark: _Toc327290327][bookmark: _Toc327299370][bookmark: _Toc327299683][bookmark: _Toc327284444][bookmark: _Toc327290332][bookmark: _Toc327299375][bookmark: _Toc327299688][bookmark: _Toc327284447][bookmark: _Toc327290335][bookmark: _Toc327299378][bookmark: _Toc327299691][bookmark: _Toc327284448][bookmark: _Toc327290336][bookmark: _Toc327299379][bookmark: _Toc327299692][bookmark: _Toc327284450][bookmark: _Toc327290338][bookmark: _Toc327299381][bookmark: _Toc327299694][bookmark: _Toc327299384][bookmark: _Toc327299697][bookmark: _Toc330810870][bookmark: _Toc330812665][bookmark: _Toc23159757][bookmark: _Toc328753017][bookmark: _Toc328753018][bookmark: _Toc282087387][bookmark: _Toc324427951][bookmark: _Toc324427952][bookmark: _Toc331084363][bookmark: _Toc331084365][bookmark: _Toc331084367][bookmark: _Toc331084368][bookmark: _Toc331084369][bookmark: _Toc317198810][bookmark: _Toc328753037][bookmark: _Toc328753041][bookmark: _Toc328753043][bookmark: _Toc328753044][bookmark: _Toc328753045][bookmark: _Toc328753049][bookmark: _Toc328753051][bookmark: _Toc328753054][bookmark: _Toc328753057][bookmark: _Toc328753059][bookmark: _Toc335234596][bookmark: _Toc335234597][bookmark: _Toc335234600][bookmark: _Toc335234602][bookmark: _Toc282087407][bookmark: _Toc335234780][bookmark: _Toc327178233][bookmark: _Toc317097546][bookmark: _Toc317097989][bookmark: _Toc317163823][bookmark: _Toc317163905][bookmark: _Toc317183550][bookmark: _Toc317183994][bookmark: _Toc317097655][bookmark: _Toc317183659][bookmark: _Toc330921582][bookmark: _Toc330921583][bookmark: _Toc330921584][bookmark: _Toc330921586][bookmark: _Toc330921588][bookmark: _Toc330921619][bookmark: _Toc330921620][bookmark: _Toc330921625][bookmark: _Toc330921628][bookmark: _Toc330921641][bookmark: _Toc330921684][bookmark: _Toc330921685][bookmark: _Toc330921791][bookmark: _Toc330921799][bookmark: _Toc330921800][bookmark: _Toc330921803][bookmark: _Toc330921805][bookmark: _Toc330921811][bookmark: _Toc330921813][bookmark: _Toc330921818][bookmark: _Toc330921821][bookmark: _Toc328577761][bookmark: _Toc328598564][bookmark: _Toc328663209][bookmark: _Toc328753078][bookmark: _Toc328577763][bookmark: _Toc328598566][bookmark: _Toc328663211][bookmark: _Toc328753080][bookmark: _Toc328577768][bookmark: _Toc328598571][bookmark: _Toc328663216][bookmark: _Toc328753085][bookmark: _Toc328577779][bookmark: _Toc328598582][bookmark: _Toc328663227][bookmark: _Toc328753096][bookmark: _Toc328577780][bookmark: _Toc328598583][bookmark: _Toc328663228][bookmark: _Toc328753097][bookmark: _Toc328577781][bookmark: _Toc328598584][bookmark: _Toc328663229][bookmark: _Toc328753098][bookmark: _Toc328577784][bookmark: _Toc328598587][bookmark: _Toc328663232][bookmark: _Toc328753101][bookmark: _Toc328577787][bookmark: _Toc328598590][bookmark: _Toc328663235][bookmark: _Toc328753104][bookmark: _Toc328577788][bookmark: _Toc328598591][bookmark: _Toc328663236][bookmark: _Toc328753105][bookmark: _Toc328577790][bookmark: _Toc328598593][bookmark: _Toc328663238][bookmark: _Toc328753107][bookmark: _Toc328577792][bookmark: _Toc328598595][bookmark: _Toc328663240][bookmark: _Toc328753109][bookmark: _Toc328577793][bookmark: _Toc328598596][bookmark: _Toc328663241][bookmark: _Toc328753110][bookmark: _Toc328577799][bookmark: _Toc328598602][bookmark: _Toc328663247][bookmark: _Toc328753116][bookmark: _Toc328577802][bookmark: _Toc328598605][bookmark: _Toc328663250][bookmark: _Toc328753119][bookmark: _Toc328577803][bookmark: _Toc328598606][bookmark: _Toc328663251][bookmark: _Toc328753120][bookmark: _Toc328577805][bookmark: _Toc328598608][bookmark: _Toc328663253][bookmark: _Toc328753122][bookmark: _Toc328577806][bookmark: _Toc328598609][bookmark: _Toc328663254][bookmark: _Toc328753123][bookmark: _Toc328577808][bookmark: _Toc328598611][bookmark: _Toc328663256][bookmark: _Toc328753125][bookmark: _Toc328577809][bookmark: _Toc328598612][bookmark: _Toc328663257][bookmark: _Toc328753126][bookmark: _Toc328577810][bookmark: _Toc328598613][bookmark: _Toc328663258][bookmark: _Toc328753127][bookmark: _Toc328577811][bookmark: _Toc328598614][bookmark: _Toc328663259][bookmark: _Toc328753128][bookmark: _Toc328577812][bookmark: _Toc328598615][bookmark: _Toc328663260][bookmark: _Toc328753129][bookmark: _Toc328577813][bookmark: _Toc328598616][bookmark: _Toc328663261][bookmark: _Toc328753130][bookmark: _Toc328577817][bookmark: _Toc328598620][bookmark: _Toc328663265][bookmark: _Toc328753134][bookmark: _Toc328577820][bookmark: _Toc328598623][bookmark: _Toc328663268][bookmark: _Toc328753137][bookmark: _Toc328577821][bookmark: _Toc328598624][bookmark: _Toc328663269][bookmark: _Toc328753138][bookmark: _Toc328577822][bookmark: _Toc328598625][bookmark: _Toc328663270][bookmark: _Toc328753139][bookmark: _Toc328577825][bookmark: _Toc328598628][bookmark: _Toc328663273][bookmark: _Toc328753142][bookmark: _Toc328577828][bookmark: _Toc328598631][bookmark: _Toc328663276][bookmark: _Toc328753145][bookmark: _Toc328577829][bookmark: _Toc328598632][bookmark: _Toc328663277][bookmark: _Toc328753146][bookmark: _Toc328577830][bookmark: _Toc328598633][bookmark: _Toc328663278][bookmark: _Toc328753147][bookmark: _Toc328577833][bookmark: _Toc328598636][bookmark: _Toc328663281][bookmark: _Toc328753150][bookmark: _Toc328577836][bookmark: _Toc328598639][bookmark: _Toc328663284][bookmark: _Toc328753153][bookmark: _Toc328577837][bookmark: _Toc328598640][bookmark: _Toc328663285][bookmark: _Toc328753154][bookmark: _Toc328577841][bookmark: _Toc328598644][bookmark: _Toc328663289][bookmark: _Toc328753158][bookmark: _Toc328577844][bookmark: _Toc328598647][bookmark: _Toc328663292][bookmark: _Toc328753161][bookmark: _Toc328577845][bookmark: _Toc328598648][bookmark: _Toc328663293][bookmark: _Toc328753162][bookmark: _Toc328577846][bookmark: _Toc328598649][bookmark: _Toc328663294][bookmark: _Toc328753163][bookmark: _Toc328577848][bookmark: _Toc328598651][bookmark: _Toc328663296][bookmark: _Toc328753165][bookmark: _Toc328577851][bookmark: _Toc328598654][bookmark: _Toc328663299][bookmark: _Toc328753168][bookmark: _Toc328577855][bookmark: _Toc328598658][bookmark: _Toc328663303][bookmark: _Toc328753172][bookmark: _Toc328577856][bookmark: _Toc328598659][bookmark: _Toc328663304][bookmark: _Toc328753173][bookmark: _Toc328577858][bookmark: _Toc328598661][bookmark: _Toc328663306][bookmark: _Toc328753175][bookmark: _Toc328577861][bookmark: _Toc328598664][bookmark: _Toc328663309][bookmark: _Toc328753178][bookmark: _Toc328577862][bookmark: _Toc328598665][bookmark: _Toc328663310][bookmark: _Toc328753179][bookmark: _Toc328577865][bookmark: _Toc328598668][bookmark: _Toc328663313][bookmark: _Toc328753182][bookmark: _Toc317097659][bookmark: _Toc317183663][bookmark: _Toc317097660][bookmark: _Toc317183664][bookmark: _Toc317097661][bookmark: _Toc317183665][bookmark: _Toc317097662][bookmark: _Toc317183666][bookmark: _Toc317097663][bookmark: _Toc317183667][bookmark: _Toc317097664][bookmark: _Toc317183668][bookmark: _Toc317097665][bookmark: _Toc317183669][bookmark: _Toc317097678][bookmark: _Toc317183682][bookmark: _Toc317097686][bookmark: _Toc317183690][bookmark: _Toc317097691][bookmark: _Toc317183695][bookmark: _Toc317097700][bookmark: _Toc317183704][bookmark: _Toc317097708][bookmark: _Toc317183712][bookmark: _Toc317097716][bookmark: _Toc317183720][bookmark: _Toc317097721][bookmark: _Toc317183725][bookmark: _Toc317097730][bookmark: _Toc317183734][bookmark: _Toc317097738][bookmark: _Toc317183742][bookmark: _Toc317097743][bookmark: _Toc317183747][bookmark: _Toc317097749][bookmark: _Toc317183753][bookmark: _Toc317097759][bookmark: _Toc317183763][bookmark: _Toc317097764][bookmark: _Toc317183768][bookmark: _Toc317097770][bookmark: _Toc317183774][bookmark: _Toc317097780][bookmark: _Toc317183784][bookmark: _Toc317097785][bookmark: _Toc317183789][bookmark: _Toc317097791][bookmark: _Toc317183795][bookmark: _Toc317097801][bookmark: _Toc317183805][bookmark: _Toc317097806][bookmark: _Toc317183810][bookmark: _Toc317097812][bookmark: _Toc317183816][bookmark: _Toc317097818][bookmark: _Toc317183822][bookmark: _Toc328577870][bookmark: _Toc328598673][bookmark: _Toc328663318][bookmark: _Toc328753187][bookmark: _Toc328577873][bookmark: _Toc328578354][bookmark: _Toc328598676][bookmark: _Toc328599178][bookmark: _Toc328663321][bookmark: _Toc328663825][bookmark: _Toc328663911][bookmark: _Toc328663997][bookmark: _Toc328664083][bookmark: _Toc328664169][bookmark: _Toc328664256][bookmark: _Toc328664344][bookmark: _Toc328664430][bookmark: _Toc328664791][bookmark: _Toc328753190][bookmark: _Toc328753694][bookmark: _Toc328577886][bookmark: _Toc328598689][bookmark: _Toc328663334][bookmark: _Toc328753203][bookmark: _Toc328577890][bookmark: _Toc328598693][bookmark: _Toc328663338][bookmark: _Toc328753207][bookmark: _Toc328577896][bookmark: _Toc328598699][bookmark: _Toc328663344][bookmark: _Toc328753213][bookmark: _Toc328577897][bookmark: _Toc328598700][bookmark: _Toc328663345][bookmark: _Toc328753214][bookmark: _Toc328577907][bookmark: _Toc328598710][bookmark: _Toc328663355][bookmark: _Toc328753224][bookmark: _Toc328577909][bookmark: _Toc328598712][bookmark: _Toc328663357][bookmark: _Toc328753226][bookmark: _Toc328577912][bookmark: _Toc328598715][bookmark: _Toc328663360][bookmark: _Toc328753229][bookmark: _Toc328577915][bookmark: _Toc328598718][bookmark: _Toc328663363][bookmark: _Toc328753232][bookmark: _Toc328577921][bookmark: _Toc328598724][bookmark: _Toc328663369][bookmark: _Toc328753238][bookmark: _Toc328577932][bookmark: _Toc328598735][bookmark: _Toc328663380][bookmark: _Toc328753249][bookmark: _Toc328577934][bookmark: _Toc328598737][bookmark: _Toc328663382][bookmark: _Toc328753251][bookmark: _Toc328577938][bookmark: _Toc328598741][bookmark: _Toc328663386][bookmark: _Toc328753255][bookmark: _Toc328577940][bookmark: _Toc328598743][bookmark: _Toc328663388][bookmark: _Toc328753257][bookmark: _Toc328577941][bookmark: _Toc328598744][bookmark: _Toc328663389][bookmark: _Toc328753258][bookmark: _Toc328577946][bookmark: _Toc328598749][bookmark: _Toc328663394][bookmark: _Toc328753263][bookmark: _Toc328577957][bookmark: _Toc328598760][bookmark: _Toc328663405][bookmark: _Toc328753274][bookmark: _Toc328577958][bookmark: _Toc328598761][bookmark: _Toc328663406][bookmark: _Toc328753275][bookmark: _Toc288383137][bookmark: _Toc328577995][bookmark: _Toc328598798][bookmark: _Toc328663443][bookmark: _Toc328753312][bookmark: _Toc328577999][bookmark: _Toc328598802][bookmark: _Toc328663447][bookmark: _Toc328753316][bookmark: _Toc328578001][bookmark: _Toc328598804][bookmark: _Toc328663449][bookmark: _Toc328753318][bookmark: _Toc328578003][bookmark: _Toc328598806][bookmark: _Toc328663451][bookmark: _Toc328753320][bookmark: _Toc328578011][bookmark: _Toc328598814][bookmark: _Toc328663459][bookmark: _Toc328753328][bookmark: _Toc328578012][bookmark: _Toc328598815][bookmark: _Toc328663460][bookmark: _Toc328753329][bookmark: _Toc328578055][bookmark: _Toc328598858][bookmark: _Toc328663503][bookmark: _Toc328753372][bookmark: _Toc328578056][bookmark: _Toc328598859][bookmark: _Toc328663504][bookmark: _Toc328753373][bookmark: _Toc328578162][bookmark: _Toc328598965][bookmark: _Toc328663610][bookmark: _Toc328753479][bookmark: _Toc328578170][bookmark: _Toc328598973][bookmark: _Toc328663618][bookmark: _Toc328753487][bookmark: _Toc328578171][bookmark: _Toc328598974][bookmark: _Toc328663619][bookmark: _Toc328753488][bookmark: _Toc328578172][bookmark: _Toc328598975][bookmark: _Toc328663620][bookmark: _Toc328753489][bookmark: _Toc328578174][bookmark: _Toc328598977][bookmark: _Toc328663622][bookmark: _Toc328753491][bookmark: _Toc328578182][bookmark: _Toc328598985][bookmark: _Toc328663630][bookmark: _Toc328753499][bookmark: _Toc278305710][bookmark: _Toc278893662][bookmark: _Toc278977647][bookmark: _Toc20221200][bookmark: _Toc330921832][bookmark: _Toc330921842][bookmark: _Toc330921843][bookmark: _Toc330921844][bookmark: _Toc330921845][bookmark: _Toc330921850][bookmark: _Toc330921851][bookmark: _Toc330921852][bookmark: _Toc330921853][bookmark: _Toc330921854][bookmark: _Toc330921855][bookmark: _Toc330921856][bookmark: _Toc330921858][bookmark: _Toc330921859][bookmark: _Toc330921860][bookmark: _Toc330921861][bookmark: _Toc330921862][bookmark: _Toc330921867][bookmark: _Toc330921868][bookmark: _Toc330921870][bookmark: _Toc330921871][bookmark: _Toc330921872][bookmark: _Toc330921873][bookmark: _Toc330921874][bookmark: _Toc330921879][bookmark: _Toc330921880][bookmark: _Toc330921882][bookmark: _Toc330921883][bookmark: _Toc330921884][bookmark: _Toc330921885][bookmark: _Toc330921890][bookmark: _Toc330921891][bookmark: _Toc330921893][bookmark: _Toc330921894][bookmark: _Toc330921895][bookmark: _Toc330921901][bookmark: _Toc330921902][bookmark: _Toc330921904][bookmark: _Toc330921905][bookmark: _Toc330921907][bookmark: _Toc330921908][bookmark: _Toc330921909][bookmark: _Toc330921913][bookmark: _Toc330921914][bookmark: _Toc330921916][bookmark: _Toc330921917][bookmark: _Toc330921919][bookmark: _Toc330921923][bookmark: _Toc330921924][bookmark: _Toc330921926][bookmark: _Toc330921927][bookmark: _Toc330921929][bookmark: _Toc330921931][bookmark: _Toc330921933][bookmark: _Toc330921936][bookmark: _Toc330921937][bookmark: _Toc330921939][bookmark: _Toc330921940][bookmark: _Toc330921943][bookmark: _Toc338608772][bookmark: _Toc338608774][bookmark: _Toc24167875][bookmark: _Toc24168931][bookmark: _Toc328598990][bookmark: _Toc328663636][bookmark: _Toc328753505][bookmark: _Toc328598993][bookmark: _Toc328663639][bookmark: _Toc328753508][bookmark: _Toc328598996][bookmark: _Toc328663642][bookmark: _Toc328753511][bookmark: _Toc328599001][bookmark: _Toc328663647][bookmark: _Toc328753516][bookmark: _Toc328599003][bookmark: _Toc328663649][bookmark: _Toc328753518][bookmark: _Toc328599006][bookmark: _Toc328663652][bookmark: _Toc328753521][bookmark: _Toc328599008][bookmark: _Toc328663654][bookmark: _Toc328753523][bookmark: _Toc22727479][bookmark: _Toc22728252][bookmark: _Toc22728986][bookmark: _Toc22790490][bookmark: _Toc22727483][bookmark: _Toc22728256][bookmark: _Toc22728990][bookmark: _Toc22790494][bookmark: _Toc22006965][bookmark: _Toc22033244][bookmark: _Toc330921949][bookmark: _Toc330921956][bookmark: _Toc330921957][bookmark: _Toc330921958][bookmark: _Toc330921959][bookmark: _Toc330921960][bookmark: _Toc311217284][bookmark: _Toc311217287][bookmark: _Toc311217291][bookmark: _Toc311217298][bookmark: _Toc311217303][bookmark: _Toc311217312][bookmark: _Toc311217316][bookmark: _Toc311217318][bookmark: _Toc311217320][bookmark: _Toc311217331][bookmark: _Toc311217332][bookmark: _Toc311217333][bookmark: _Toc311217334][bookmark: _Toc311217363][bookmark: _Toc311217416][bookmark: _Toc311217520][bookmark: _Toc311217530][bookmark: _Toc311217535][bookmark: _Toc311217610][bookmark: _Toc311217611][bookmark: _Toc311217686][bookmark: _Toc311217689][bookmark: _Toc311217690][bookmark: _Toc311217691][bookmark: _Toc311217759][bookmark: _Toc311217765][bookmark: _Toc311217825][bookmark: _Toc311217826][bookmark: _Toc311217867][bookmark: _Toc311217872][bookmark: _Toc311218100][bookmark: _Toc311218101][bookmark: _Toc311218106][bookmark: _Toc311218112][bookmark: _Toc311218117][bookmark: _Toc311218125][bookmark: _Toc311218127][bookmark: _Toc311218133][bookmark: _Toc311218135][bookmark: _Toc311218141][bookmark: _Toc311218143][bookmark: _Toc311218146][bookmark: _Toc311218147][bookmark: _Toc311218149][bookmark: _Toc311218323][bookmark: _Toc311218329][bookmark: _Toc311218332][bookmark: _Toc311218341][bookmark: _Toc311218342][bookmark: _Toc311218345][bookmark: _Toc311218349][bookmark: _Toc311218352][bookmark: _Toc311218353][bookmark: _Toc311218354][bookmark: _Toc311218356][bookmark: _Toc311218358][bookmark: _Toc311218446][bookmark: _Toc311218447][bookmark: _Toc311218535][bookmark: _Toc311218537][bookmark: _Toc311218642][bookmark: _Toc311218644][bookmark: _Toc311218749][bookmark: _Toc311218750][bookmark: _Toc311218849][bookmark: _Toc311218851][bookmark: _Toc311219347][bookmark: _Toc311219348][bookmark: _Toc311219815][bookmark: _Toc311219817][bookmark: _Toc311219824][bookmark: _Toc311219841][bookmark: _Toc311219842][bookmark: _Toc311219843][bookmark: _Toc311219844][bookmark: _Toc311219850][bookmark: _Toc311219852][bookmark: _Toc311219853][bookmark: _Toc311219854][bookmark: _Toc311219855][bookmark: _Toc311219856][bookmark: _Toc311219857][bookmark: _Toc311219861][bookmark: _Toc311219867][bookmark: _Toc311219870][bookmark: _Toc311219871][bookmark: _Toc311219872][bookmark: _Toc311219873][bookmark: _Toc311219874][bookmark: _Toc311219875][bookmark: _Toc311219877][bookmark: _Toc311219883][bookmark: _Toc311219886][bookmark: _Toc311219889][bookmark: _Toc311219890][bookmark: _Toc311219891][bookmark: _Toc311219892][bookmark: _Toc311219893][bookmark: _Toc311219895][bookmark: _Toc311219896][bookmark: _Toc311219897][bookmark: _Toc311219898][bookmark: _Toc311219899][bookmark: _Toc311219900][bookmark: _Toc311219901][bookmark: _Toc311219902][bookmark: _Toc311219938][bookmark: _Toc311219940][bookmark: _Toc311219961][bookmark: _Toc311219989][bookmark: _Toc29970785][bookmark: _Toc29970797][bookmark: _Toc29970909][bookmark: _Toc29971021][bookmark: _Toc29971133][bookmark: _Toc29971188][bookmark: _Toc29971192][bookmark: _Toc29971235][bookmark: _Toc29971238][bookmark: _Toc29971240][bookmark: _Toc29971249][bookmark: _Toc29971260][bookmark: _Toc29971279][bookmark: _Toc29971281][bookmark: _Toc29971300][bookmark: _Toc29971302][bookmark: _Toc29971321][bookmark: _Toc29971323][bookmark: _Toc29971342][bookmark: _Toc29971344][bookmark: _Toc29971363][bookmark: _Toc29971365][bookmark: _Toc29971384][bookmark: _Toc29971771][bookmark: _Toc330921963][bookmark: _Toc330857423][bookmark: _Toc33078898][bookmark: _Toc33078899][bookmark: _Toc24878143][bookmark: _Toc24878171][bookmark: _Toc24878199][bookmark: _Toc24878227][bookmark: _Toc24878251][bookmark: _Toc24878277][bookmark: _Toc24878303][bookmark: _Toc24878329][bookmark: _Toc24878352][bookmark: _Toc24878384][bookmark: _Toc24878416][bookmark: _Toc24878448][bookmark: _Toc24878473][bookmark: _Toc24878507][bookmark: _Toc24878541][bookmark: _Toc24878575][bookmark: _Toc24878592][bookmark: _Toc24881337][bookmark: _Toc24878601][bookmark: _Toc24878625][bookmark: _Toc24878649][bookmark: _Toc24878673][bookmark: _Toc24878693][bookmark: _Toc24878742][bookmark: _Toc24878749][bookmark: _Toc24878756][bookmark: _Toc24878778][bookmark: _Toc24878789][bookmark: _Toc24878800][bookmark: _Toc24878822][bookmark: _Toc24878833][bookmark: _Toc24878844][bookmark: _Toc24878855][bookmark: _Toc24878866][bookmark: _Toc24878877][bookmark: _Toc24878888][bookmark: _Toc24878899][bookmark: _Toc24878906][bookmark: _Toc24878913][bookmark: _Toc24878935][bookmark: _Toc24878946][bookmark: _Toc24878957][bookmark: _Toc24878979][bookmark: _Toc24878990][bookmark: _Toc24879001][bookmark: _Toc24879023][bookmark: _Toc24879034][bookmark: _Toc24879045][bookmark: _Toc24879067][bookmark: _Toc24879078][bookmark: _Toc24879089][bookmark: _Toc24879111][bookmark: _Toc24879122][bookmark: _Toc24879133][bookmark: _Toc24879144][bookmark: _Toc24881341][bookmark: _Toc24879150][bookmark: _Toc24879157][bookmark: _Toc24879179][bookmark: _Toc24879190][bookmark: _Toc24879201][bookmark: _Toc24879212][bookmark: _Toc24879223][bookmark: _Toc24879234][bookmark: _Toc24879245][bookmark: _Toc24879256][bookmark: _Toc24879267][bookmark: _Toc24879278][bookmark: _Toc24879289][bookmark: _Toc24879300][bookmark: _Toc24879311][bookmark: _Toc24879322][bookmark: _Toc24879344][bookmark: _Toc24879355][bookmark: _Toc24879366][bookmark: _Toc24879377][bookmark: _Toc24879388][bookmark: _Toc24879399][bookmark: _Toc24879410][bookmark: _Toc24879421][bookmark: _Toc24879432][bookmark: _Toc24879443][bookmark: _Toc24879454][bookmark: _Toc24879465][bookmark: _Toc24879476][bookmark: _Toc24879498][bookmark: _Toc24879509][bookmark: _Toc24879520][bookmark: _Toc24879531][bookmark: _Toc24879542][bookmark: _Toc24879553][bookmark: _Toc24879564][bookmark: _Toc24879575][bookmark: _Toc24879586][bookmark: _Toc24879597][bookmark: _Toc24879608][bookmark: _Toc24879619][bookmark: _Toc24879630][bookmark: _Toc24879641][bookmark: _Toc24879663][bookmark: _Toc24879674][bookmark: _Toc24879696][bookmark: _Toc24879707][bookmark: _Toc24879718][bookmark: _Toc24879729][bookmark: _Toc24879740][bookmark: _Toc24879751][bookmark: _Toc24879762][bookmark: _Toc24879773][bookmark: _Toc24879784][bookmark: _Toc24879795][bookmark: _Toc24879806][bookmark: _Toc24879817][bookmark: _Toc24879828][bookmark: _Toc24879839][bookmark: _Toc24881342][bookmark: _Toc24879845][bookmark: _Toc24879852][bookmark: _Toc24879874][bookmark: _Toc24879885][bookmark: _Toc24879896][bookmark: _Toc24879907][bookmark: _Toc24879918][bookmark: _Toc24879929][bookmark: _Toc24879940][bookmark: _Toc24879951][bookmark: _Toc24879962][bookmark: _Toc24879973][bookmark: _Toc24879984][bookmark: _Toc24879995][bookmark: _Toc24880006][bookmark: _Toc24880017][bookmark: _Toc24880039][bookmark: _Toc24880050][bookmark: _Toc24880061][bookmark: _Toc24880072][bookmark: _Toc24880083][bookmark: _Toc24880094][bookmark: _Toc24880105][bookmark: _Toc24880116][bookmark: _Toc24880127][bookmark: _Toc24880138][bookmark: _Toc24880149][bookmark: _Toc24880160][bookmark: _Toc24880171][bookmark: _Toc24880193][bookmark: _Toc24880204][bookmark: _Toc24880215][bookmark: _Toc24880226][bookmark: _Toc24880237][bookmark: _Toc24880248][bookmark: _Toc24880259][bookmark: _Toc24880270][bookmark: _Toc24880281][bookmark: _Toc24880292][bookmark: _Toc24880303][bookmark: _Toc24880314][bookmark: _Toc24880325][bookmark: _Toc24880336][bookmark: _Toc24880358][bookmark: _Toc24880369][bookmark: _Toc24880391][bookmark: _Toc24880402][bookmark: _Toc24880413][bookmark: _Toc24880424][bookmark: _Toc24880435][bookmark: _Toc24880446][bookmark: _Toc24880457][bookmark: _Toc24880468][bookmark: _Toc24880479][bookmark: _Toc24880490][bookmark: _Toc24880501][bookmark: _Toc24880512][bookmark: _Toc24880523][bookmark: _Toc24880534][bookmark: _Toc24881343][bookmark: _Toc24880540][bookmark: _Toc24880547][bookmark: _Toc24880569][bookmark: _Toc24880580][bookmark: _Toc24880591][bookmark: _Toc24880602][bookmark: _Toc24880613][bookmark: _Toc24880624][bookmark: _Toc24880635][bookmark: _Toc24880646][bookmark: _Toc24880657][bookmark: _Toc24880679][bookmark: _Toc24880690][bookmark: _Toc24880701][bookmark: _Toc24880712][bookmark: _Toc24880723][bookmark: _Toc24880734][bookmark: _Toc24880745][bookmark: _Toc24880756][bookmark: _Toc24880767][bookmark: _Toc24880789][bookmark: _Toc24880800][bookmark: _Toc24880811][bookmark: _Toc24880822][bookmark: _Toc24880833][bookmark: _Toc24880844][bookmark: _Toc24880855][bookmark: _Toc24880866][bookmark: _Toc24880877][bookmark: _Toc24880899][bookmark: _Toc24880910][bookmark: _Toc24880921][bookmark: _Toc24880932][bookmark: _Toc24880943][bookmark: _Toc24880954][bookmark: _Toc24880965][bookmark: _Toc24880976][bookmark: _Toc24880998][bookmark: _Toc24881009][bookmark: _Toc24881020][bookmark: _Toc24881031][bookmark: _Toc24881042][bookmark: _Toc24881053][bookmark: _Toc24881064][bookmark: _Toc24881075][bookmark: _Toc24881086][bookmark: _Toc33078907][bookmark: _Toc24881104][bookmark: _Toc33078912][bookmark: _Toc33078919][bookmark: _Toc24881112][bookmark: _Toc24881114][bookmark: _Toc24881115][bookmark: _Toc24881117][bookmark: _Toc33078928][bookmark: _Toc23248822][bookmark: _Toc23248830][bookmark: _Hlt168807772][bookmark: _Toc73966554][bookmark: _Toc330810998][bookmark: _Toc330812793][bookmark: _Toc327284572][bookmark: _Toc327290460][bookmark: _Toc327299505][bookmark: _Toc327299818][bookmark: _Toc29960185][bookmark: _Toc29972050][bookmark: _Toc29960222][bookmark: _Toc29972087][bookmark: _Toc331028443][bookmark: _Hlt22605870][bookmark: _Toc356148056][bookmark: _Toc339889442][bookmark: _Toc340052321][bookmark: _Toc332305078][bookmark: _Toc332305325][bookmark: _Toc332971307][bookmark: _Toc332979244][bookmark: _Toc332982075][bookmark: _Toc332982218][bookmark: _Toc333174121][bookmark: _Toc333174646][bookmark: _Toc332305079][bookmark: _Toc332305326][bookmark: _Toc332971308][bookmark: _Toc332979245][bookmark: _Toc332982076][bookmark: _Toc332982219][bookmark: _Toc333174122][bookmark: _Toc333174647][bookmark: _Toc332305107][bookmark: _Toc332305354][bookmark: _Toc332971336][bookmark: _Toc332979273][bookmark: _Toc332982104][bookmark: _Toc332982247][bookmark: _Toc333174150][bookmark: _Toc333174675][bookmark: _Toc348545556][bookmark: _Toc348629387][bookmark: _Toc356148080][bookmark: _Toc348545568][bookmark: _Toc348629399][bookmark: _Toc332305127][bookmark: _Toc332305374][bookmark: _Toc332971357][bookmark: _Toc332979294][bookmark: _Toc332982125][bookmark: _Toc332982268][bookmark: _Toc333174171][bookmark: _Toc333174696][bookmark: _Toc332305130][bookmark: _Toc332305377][bookmark: _Toc332971360][bookmark: _Toc332979297][bookmark: _Toc332982128][bookmark: _Toc332982271][bookmark: _Toc333174174][bookmark: _Toc333174699][bookmark: GoHere][bookmark: _Toc356148090][bookmark: _Toc348545581][bookmark: _Toc348629412][bookmark: _Toc339889494][bookmark: _Toc340052373][bookmark: _Toc356148110][bookmark: _Toc356148112][bookmark: _Toc358989205][bookmark: _Toc358990294][bookmark: _Toc358990517][bookmark: _Toc359074856][bookmark: _Toc359075007][bookmark: _Toc359083265][bookmark: _Toc363478540][bookmark: _Toc363478974][bookmark: _Toc363479110][bookmark: _Toc363586251][bookmark: _Toc363586394][bookmark: _Toc363586537][bookmark: _Toc363586680][bookmark: _Toc363646371][bookmark: _Toc363478542][bookmark: _Toc363478976][bookmark: _Toc363479112][bookmark: _Toc363586253][bookmark: _Toc363586396][bookmark: _Toc363586539][bookmark: _Toc363586682][bookmark: _Toc363646373][bookmark: _Toc363478543][bookmark: _Toc363478977][bookmark: _Toc363479113][bookmark: _Toc363586254][bookmark: _Toc363586397][bookmark: _Toc363586540][bookmark: _Toc363586683][bookmark: _Toc363646374][bookmark: _Toc363478545][bookmark: _Toc363478979][bookmark: _Toc363479115][bookmark: _Toc363586256][bookmark: _Toc363586399][bookmark: _Toc363586542][bookmark: _Toc363586685][bookmark: _Toc363646376][bookmark: _Toc363478547][bookmark: _Toc363478981][bookmark: _Toc363479117][bookmark: _Toc363586258][bookmark: _Toc363586401][bookmark: _Toc363586544][bookmark: _Toc363586687][bookmark: _Toc363646378][bookmark: _Toc363478990][bookmark: _Toc363479126][bookmark: _Toc363586267][bookmark: _Toc363586410][bookmark: _Toc363586553][bookmark: _Toc363586696][bookmark: _Toc363646387][bookmark: _Toc358989213][bookmark: _Toc358990302][bookmark: _Toc358990525][bookmark: _Toc359074864][bookmark: _Toc359075015][bookmark: _Toc359083273][bookmark: _Toc358989215][bookmark: _Toc358990304][bookmark: _Toc358990527][bookmark: _Toc359074866][bookmark: _Toc359075017][bookmark: _Toc359083275][bookmark: _Toc358989223][bookmark: _Toc358990312][bookmark: _Toc358990535][bookmark: _Toc359074874][bookmark: _Toc359075025][bookmark: _Toc359083283][bookmark: _Toc16578974][bookmark: _Ref19428341][bookmark: _Ref20133543][bookmark: _Ref20133547][bookmark: _Toc20134294][bookmark: _Ref34466446][bookmark: _Ref36115734][bookmark: _Ref36826652][bookmark: _Ref41631640][bookmark: _Ref70757751][bookmark: _Ref70758137][bookmark: _Toc77680435][bookmark: _Toc118289073][bookmark: _Ref170312053][bookmark: _Ref220342355][bookmark: _Toc226456596][bookmark: _Toc248045272][bookmark: _Ref276143000][bookmark: _Toc287363796][bookmark: _Toc311217227][bookmark: _Ref317098305][bookmark: _Ref317175078][bookmark: _Toc317198779][bookmark: _Ref330057451][bookmark: _Ref330057476][bookmark: _Toc341908432][bookmark: _Toc351367660]Add the following definitions to clause 3:
3.X	base bitstream partition: A bitstream partition that is also a conforming bitstream itself.
3.X	bitstream partition: A sequence of bits, in the form of a NAL unit stream or a byte stream, that is a subset of a bitstream according to a partitioning.
3.X	output layer set: A layer set that is associated with a set of target output layers.

Replace the definition of operation point in clause 3 with the following:
3.X	operation point: A bitstream that is created from another bitstream by operation of the sub-bitstream extraction process with the another bitstream, a target highest TemporalId, and a target layer identifier list as inputs, and that is associated with a set of target output layers.
NOTE 14 – If the target highest TemporalId of an operation point is equal to the greatest value of TemporalId in the layer set associated with the target layer identification list, the operation point is identical to the layer set. Otherwise it is a subset of the layer set.

Replace subclauses 7.4.2.4.2 with the following (with differences indicated in turquois):
7.4.2.4.2 [bookmark: _Ref57461487][bookmark: _Toc77680403][bookmark: _Toc226456557]Order of VPS, SPS and PPS RBSPs and their activation
This subclause specifies the activation process of VPSs, SPSs, and PPSs.
NOTE 1 – The VPS, SPS, and PPS mechanism decouples the transmission of infrequently changing information from the transmission of coded block data. VPSs, SPSs, and PPSs may, in some applications, be conveyed "out-of-band".
A PPS RBSP includes parameters that can be referred to by the coded slice segment NAL units of one or more coded pictures. Each PPS RBSP is initially considered not active for any layer at the start of the operation of the decoding process. At most one PPS RBSP is considered active for each layer at any given moment during the operation of the decoding process, and the activation of any particular PPS RBSP for a particular layer results in the deactivation of the previously-active PPS RBSP for the particular layer (if any).
One PPS RBSP may be the active PPS RBSP for more than one layer. When not explicitly specified, the layer a PPS RBSP is active for is inferred to be the current layer in the context where the active PPS RBSP is referred to.
When a PPS RBSP (with a particular value of pps_pic_parameter_set_id) is not active for a particular layer and it is referred to by a coded slice segment NAL unit (using a value of slice_pic_parameter_set_id equal to the pps_pic_parameter_set_id value) of the particular layer, it is activated for the particular layer. This PPS RBSP is called the active PPS RBSP for the particular layer until it is deactivated by the activation of another PPS RBSP for the particular layer. A PPS RBSP, with that particular value of pps_pic_parameter_set_id, shall be available to the decoding process prior to its activation, included in at least one access unit with TemporalId less than or equal to the TemporalId of the PPS NAL unit or provided through external means.
Any PPS NAL unit containing the value of pps_pic_parameter_set_id for the active PPS RBSP for a coded picture (and consequently for the layer containing the coded picture) shall have the same content as that of the active PPS RBSP for the coded picture, unless it follows the last VCL NAL unit of the coded picture and precedes the first VCL NAL unit of another coded picture.
An SPS RBSP includes parameters that can be referred to by one or more PPS RBSPs or one or more SEI NAL units containing an active parameter sets SEI message. Each SPS RBSP is initially considered not active for any layer at the start of the operation of the decoding process. At most one SPS RBSP is considered active for each layer at any given moment during the operation of the decoding process, and the activation of any particular SPS RBSP for a particular layer results in the deactivation of the previously-active SPS RBSP for the particular layer value of nuh_layer_id (if any).
One SPS RBSP may be the active SPS RBSP for more than one layer. When not explicitly specified, the layer an SPS RBSP is active for is inferred to be the current layer in the context where the active PPS RBSP is referred to.
When an SPS RBSP (with a particular value of sps_seq_parameter_set_id) is not already active for a particular layer and it is referred to by activation of a PPS RBSP (in which pps_seq_parameter_set_id is equal to the sps_seq_parameter_set_id value) referred to by the particular layer or is referred to by an SEI NAL unit containing an active parameter sets SEI message (in which one of the active_seq_parameter_set_id[i] values is equal to the sps_seq_parameter_set_id value), it is activated for the particular layer. This SPS RBSP is called the active SPS RBSP for the particular layer until it is deactivated by the activation of another SPS RBSP for the particular layer. An SPS RBSP, with that particular value of sps_seq_parameter_set_id, shall be available to the decoding process prior to its activation, included in at least one access unit with TemporalId equal to 0 or provided through external means. An activated SPS RBSP for the base layer shall remain active for the entire CVS.
NOTE 2 – Because an IRAP access unit with NoRaslOutputFlag equal to 1 begins a new CVS and an activated SPS RBSP must remain active for the entire CVS, an SPS RBSP can only be activated by an active parameter sets SEI message when the active parameter sets SEI message is part of an IRAP access unit with NoRaslOutputFlag equal to 1.
Any SPS NAL unit containing the value of sps_seq_parameter_set_id for the active SPS RBSP for the base layer for a CVS shall have the same content as that of the active SPS RBSP for the base layer for the CVS, unless it follows the last access unit of the CVS and precedes the first VCL NAL unit and the first SEI NAL unit containing an active parameter sets SEI message (when present) of another CVS.
A VPS RBSP includes parameters that can be referred to by one or more SPS RBSPs or one or more SEI NAL units containing an active parameter sets SEI message. Each VPS RBSP is initially considered not active at the start of the operation of the decoding process. At most one VPS RBSP is considered active at any given moment during the operation of the decoding process, and the activation of any particular VPS RBSP results in the deactivation of the previously-active VPS RBSP (if any).
When a VPS RBSP (with a particular value of vps_video_parameter_set_id) is not already active and it is referred to by activation of an SPS RBSP (in which sps_video_parameter_set_id is equal to the vps_video_parameter_set_id value), or is referred to by an SEI NAL unit containing an active parameter sets SEI message (in which active_video_parameter_set_id is equal to the vps_video_parameter_set_id value), it is activated. This VPS RBSP is called the active VPS RBSP until it is deactivated by the activation of another VPS RBSP. A VPS RBSP, with that particular value of vps_video_parameter_set_id, shall be available to the decoding process prior to its activation, included in at least one access unit with TemporalId equal to 0 or provided through external means. An activated VPS RBSP shall remain active for the entire CVS.
NOTE 3 – Because an IRAP access unit with NoRaslOutputFlag equal to 1 begins a new CVS and an activated VPS RBSP must remain active for the entire CVS, a VPS RBSP can only be activated by an active parameter sets SEI message when the active parameter sets SEI message is part of an IRAP access unit with NoRaslOutputFlag equal to 1.
Any VPS NAL unit containing the value of vps_video_parameter_set_id for the active VPS RBSP for a CVS shall have the same content as that of the active VPS RBSP for the CVS, unless it follows the last access unit of the CVS and precedes the first VCL NAL unit, the first SPS NAL unit, and the first SEI NAL unit containing an active parameter sets SEI message (when present) of another CVS.
NOTE 4 – If VPS RBSP, SPS RBSP, or PPS RBSP are conveyed within the bitstream, these constraints impose an order constraint on the NAL units that contain the VPS RBSP, SPS RBSP, or PPS RBSP, respectively. Otherwise (VPS RBSP, SPS RBSP, or PPS RBSP are conveyed by other means not specified in this Specification), they must be available to the decoding process in a timely fashion such that these constraints are obeyed.
All constraints that are expressed on the relationship between the values of the syntax elements and the values of variables derived from those syntax elements in VPSs, SPSs, and PPSs and other syntax elements are expressions of constraints that apply only to the active VPS RBSP, the active SPS RBSP for the base layer, and the active PPS RBSP for the base layer. If any VPS RBSP, SPS RBSP, and PPS RBSP is present that is never activated in the bitstream, its syntax elements shall have values that would conform to the specified constraints if it was activated by reference in an otherwise conforming bitstream.
During operation of the decoding process (see clause 8), the values of parameters of the active VPS, the active SPS for the base layer, and the active PPS RBSP for the base layer are considered in effect. For interpretation of SEI messages, the values of the active VPS RBSP, the active SPS RBSP for the base layer, and the active PPS RBSP for the base layer for the operation of the decoding process for the VCL NAL units of the coded picture in the same access unit are considered in effect unless otherwise specified in the SEI message semantics.

Replace clause 8, subclauses 8.1, 8.2, 8.3, 8.3.2, 8.3.3, and 8.3.3.1 with the following and add subclause 8.1.1 (with differences indicated in turquois):
8 [bookmark: _Toc373499513][bookmark: _Toc373832672]Decoding process
8.1 [bookmark: _Toc317198780][bookmark: _Toc341908433][bookmark: _Ref370807721][bookmark: _Ref372892398][bookmark: _Toc373499514][bookmark: _Toc373832673]General decoding process
Input to this process is a bitstream. Output of this process is a list of decoded pictures.
The variable TargetOptLayerSetIdx, which specifies the index to the list of the output layer sets specified by the VPS, of the target output layer set, is specified as follows:
–	If some external means, not specified in this Specification, is available to set TargetOptLayerSetIdx, TargetOptLayerSetIdx is set by the external means.
–	Otherwise, if the decoding process is invoked in a bitstream conformance test as specified in subclause C.1, TargetOptLayerSetIdx is set as specified in subclause C.1.
–	Otherwise, TargetOptLayerSetIdx is set equal to 0.
The variable TargetDecLayerSetIdx, the layer identifier list TargetOptLayerIdList, which specifies the list of nuh_layer_id values, in increasing order of nuh_layer_id values, of the pictures to be output, and the layer identifier list TargetDecLayerIdList, which specifies the list of nuh_layer_id values, in increasing order of nuh_layer_id values, of the NAL units to be decoded, are specified as follows:
[bookmark: TargetDecLayerIdList]	TargetDecLayerSetIdx = output_layer_set_idx_minus1[TargetOptLayerSetIdx] + 1
	lsIdx = TargetDecLayerSetIdx
	for(k = 0, j = 0; j < NumLayersInIdList[lsIdx]; j++) {
		TargetDecLayerIdList[j] = LayerSetLayerIdList[lsIdx][j]									(8‑1)
		if(output_layer_flag[lsIdx][j])
			TargetOptLayerIdList[k++] = LayerSetLayerIdList[lsIdx][j]
	}
The variable HighestTid, which identifies the highest temporal sub-layer to be decoded, is specified as follows:
–	If some external means, not specified in this Specification, is available to set HighestTid, HighestTid is set by the external means.
–	Otherwise, if the decoding process is invoked in a bitstream conformance test as specified in subclause C.1, HighestTid is set as specified in subclause C.1.
–	Otherwise, HighestTid is set equal to sps_max_sub_layers_minus1.
The sub-bitstream extraction process as specified in clause 10 is applied with the bitstream, HighestTid, and TargetDecLayerIdList as inputs, and the output is assigned to a bitstream referred to as BitstreamToDecode.
The decoding processes specified in the remainder of this subclause apply to each coded picture, referred to as the current picture and denoted by the variable CurrPic, in BitstreamToDecode.
Depending on the value of chroma_format_idc, the number of sample arrays of the current picture is as follows:
–	If chroma_format_idc is equal to 0, the current picture consists of 1 sample array SL.
–	Otherwise (chroma_format_idc is not equal to 0), the current picture consists of 3 sample arrays SL, SCb, SCr.
The decoding process for the current picture takes as inputs the syntax elements and upper-case variables from clause 7. When interpreting the semantics of each syntax element in each NAL unit, the term "the bitstream" (or part thereof, e.g. a CVS of the bitstream) refers to BitstreamToDecode (or part thereof).
When the current picture is an IRAP picture, the variable HandleCraAsBlaFlag is derived as specified in the following:
–	If some external means not specified in this Specification is available to set the variable HandleCraAsBlaFlag to a value for the current picture, the variable HandleCraAsBlaFlag is set equal to the value provided by the external means.
–	Otherwise, the variable HandleCraAsBlaFlag is set equal to 0.
When the current picture is an IRAP picture and has nuh_layer_id equal to 0, the following applies:
–	The variable NoClrasOutputFlag is specified as follows:
–	If the current picture is the first picture in the bitstream, NoClrasOutputFlag is set equal to 1.
–	Otherwise, if the current picture is a BLA picture or a CRA with HandleCraAsBlaFlag equal to 1, NoClrasOutputFlag is set equal to 1.
–	Otherwise, if the current picture is an IDR picture and cross_layer_bla_flag is equal to1, NoClrasOutputFlag is set equal to 1.
–	Otherwise, if some external means not specified in this Specification is available to set NoClrasOutputFlag, NoClrasOutputFlag is set by the external means.
–	Otherwise, NoClrasOutputFlag is set equal to 0.
–	When NoClrasOutputFlag is equal to 1, the variable LayerInitializedFlag[i] is set equal to 0 for all values of i from 0 to vps_max_layer_id, inclusive, and the variable FirstPicInLayerDecodedFlag[i] is set equal to 0 for all values of i from 1 to vps_max_layer_id, inclusive.
The decoding process is specified such that all decoders will produce numerically identical cropped decoded pictures. Any decoding process that produces identical cropped decoded pictures to those produced by the process described herein (with the correct output order or output timing, as specified) conforms to the decoding process requirements of this Specification.
When the current picture is an IRAP picture, the following applies:
–	If the current picture with a particular value of nuh_layer_id is an IDR picture, a BLA picture, the first picture with that particular value of nuh_layer_id in the bitstream in decoding order, or the first picture with that particular value of nuh_layer_id that follows an end of sequence NAL unit in decoding order, the variable NoRaslOutputFlag is set equal to 1.
–	Otherwise, if LayerInitializedFlag[nuh_layer_id] is equal to 0 and LayerInitializedFlag[refLayerId] is equal to 1 for all values of refLayerId equal to RefLayerId[nuh_layer_id][j], where j is in the range of 0 to NumDirectRefLayers[nuh_layer_id] – 1, inclusive, the variable NoRaslOutputFlag is set equal to 1.
–	Otherwise, the variable NoRaslOutputFlag is set equal to HandleCraAsBlaFlag.
When the current picture is an IRAP picture with NoRaslOutputFlag equal to 1 and one of the following conditions is true, LayerInitializedFlag[nuh_layer_id] is set equal to 1:
–	nuh_layer_id is equal to 0.
–	LayerInitializedFlag[nuh_layer_id] is equal to 0 and LayerInitializedFlag[refLayerId] is equal to 1 for all values of refLayerId equal to RefLayerId[nuh_layer_id][j], where j is in the range of 0 to NumDirectRefLayers[nuh_layer_id] – 1, inclusive.
When the current picture is a BLA picture that has nal_unit_type equal to BLA_W_LP or is a CRA picture, the following applies:
–	If some external means not specified in this Specification is available to set the variable UseAltCpbParamsFlag to a value, UseAltCpbParamsFlag is set equal to the value provided by the external means.
–	Otherwise, the value of UseAltCpbParamsFlag is set equal to 0.
Depending on the value of separate_colour_plane_flag, the decoding process is structured as follows:
–	If separate_colour_plane_flag is equal to 0, the following decoding process is invoked a single time with the current picture being the output.
–	Otherwise (separate_colour_plane_flag is equal to 1), the following decoding process is invoked three times. Inputs to the decoding process are all NAL units of the coded picture with identical value of colour_plane_id. The decoding process of NAL units with a particular value of colour_plane_id is specified as if only a CVS with monochrome colour format with that particular value of colour_plane_id would be present in the bitstream. The output of each of the three decoding processes is assigned to one of the 3 sample arrays of the current picture, with the NAL units with colour_plane_id equal to 0, 1, and 2 being assigned to SL, SCb, and SCr, respectively.
NOTE – The variable ChromaArrayType is derived as equal to 0 when separate_colour_plane_flag is equal to 1 and chroma_format_idc is equal to 3. In the decoding process, the value of this variable is evaluated resulting in operations identical to that of monochrome pictures (when chroma_format_idc is equal to 0).
When the current picture has nuh_layer_id equal to 0, the decoding process for a coded picture with nuh_layer_id equal to 0 as specified in subclause 8.1.1 is invoked.
1. [bookmark: _Ref373499510][bookmark: _Toc373499515][bookmark: _Toc373832674]Decoding process for a coded picture with nuh_layer_id equal to 0
The decoding process operates as follows for the current picture CurrPic:
1. The decoding of NAL units is specified in subclause 8.2.
2. The processes in subclause 8.3 specify the following decoding processes using syntax elements in the slice segment layer and above:
–	Variables and functions relating to picture order count are derived in subclause 8.3.1. This needs to be invoked only for the first slice segment of a picture.
–	The decoding process for RPS in subclause 8.3.2 is invoked, wherein reference pictures may be marked as "unused for reference" or "used for long-term reference". This needs to be invoked only for the first slice segment of a picture.
–	When the current picture is a BLA picture or is a CRA picture with NoRaslOutputFlag equal to 1, the decoding process for generating unavailable reference pictures specified in subclause 8.3.3 is invoked, which needs to be invoked only for the first slice segment of a picture.
–	PicOutputFlag is set as follows:
–	If the current picture is a RASL picture and NoRaslOutputFlag of the associated IRAP picture is equal to 1, PicOutputFlag is set equal to 0.
–	Otherwise, PicOutputFlag is set equal to pic_output_flag.
–	At the beginning of the decoding process for each P or B slice, the decoding process for reference picture lists construction specified in subclause 8.3.4 is invoked for derivation of reference picture list 0 (RefPicList0) and, when decoding a B slice, reference picture list 1 (RefPicList1).
3. The processes in subclauses 8.4, 8.5, 8.6, and 8.7 specify decoding processes using syntax elements in all syntax structure layers. It is a requirement of bitstream conformance that the coded slices of the picture shall contain slice segment data for every coding tree unit of the picture, such that the division of the picture into slices, the division of the slices into slice segments, and the division of the slice segments into coding tree units each form a partitioning of the picture.
4. [bookmark: _Toc16578976][bookmark: _Toc20134296][bookmark: _Ref24436508][bookmark: _Toc77680436][bookmark: _Toc118289074][bookmark: _Toc226456597][bookmark: _Toc248045273][bookmark: _Toc287363797][bookmark: _Toc311217228][bookmark: _Toc317198781][bookmark: _Toc341908434]After all slices of the current picture have been decoded, the decoded picture is marked as "used for short-term reference".
8.2 [bookmark: _Ref360895033][bookmark: _Toc373499516][bookmark: _Toc373832675]NAL unit decoding process
Inputs to this process are VCL NAL units of the current picture and their associated non-VCL NAL units.
Outputs of this process are the parsed RBSP syntax structures encapsulated within the NAL units of the access unit containing the current picture.
The decoding process for each NAL unit extracts the RBSP syntax structure from the NAL unit and then parses the RBSP syntax structure.
8.3 [bookmark: _Toc16578979][bookmark: _Ref19432149][bookmark: _Ref19432162][bookmark: _Toc20134299][bookmark: _Ref24436509][bookmark: _Toc77680437][bookmark: _Toc118289075][bookmark: _Toc226456598][bookmark: _Toc248045274][bookmark: _Toc287363798][bookmark: _Toc311217229][bookmark: _Toc317198782][bookmark: _Toc341908435][bookmark: _Toc373499517][bookmark: _Toc373832676]Slice decoding process
[bookmark: _Toc16578981][bookmark: _Ref19428535][bookmark: _Ref19429280][bookmark: _Ref19429573][bookmark: _Ref19431437][bookmark: _Toc20134301][bookmark: _Ref22887934][bookmark: _Ref26333761][bookmark: _Ref30320332][bookmark: _Ref31113220][bookmark: _Ref33085279][bookmark: _Ref33085282][bookmark: _Ref36860709][bookmark: _Ref59275470][bookmark: _Ref59277655][bookmark: _Toc77680438][bookmark: _Toc118289076][bookmark: _Ref171078802][bookmark: _Ref211401367][bookmark: _Ref220342402][bookmark: _Toc226456599][bookmark: _Toc248045275][bookmark: _Toc287363799][bookmark: _Toc311217230][bookmark: _Toc317198783][bookmark: _Ref330966619][bookmark: _Toc341908436][Ed. (CY): consider moving the remaining part of 8.3, the entire 8.1 and entire 8.2 to Annex F. To be confirmed before the action is taken.]
3. [bookmark: _Ref305961533][bookmark: _Toc317198784][bookmark: _Toc358292104][bookmark: _Toc373499518][bookmark: _Toc373832677]Decoding process for reference picture set
This process is invoked once per picture, after decoding of a slice header but prior to the decoding of any coding unit and prior to the decoding process for reference picture list construction for the slice as specified in subclause 8.3.4. This process may result in one or more reference pictures in the DPB being marked as "unused for reference" or "used for long-term reference".
NOTE 1 – The RPS is an absolute description of the reference pictures used in the decoding process of the current and future coded pictures. The RPS signalling is explicit in the sense that all reference pictures included in the RPS are listed explicitly.
A decoded picture in the DPB can be marked as "unused for reference", "used for short-term reference", or "used for long-term reference", but only one among these three at any given moment during the operation of the decoding process. Assigning one of these markings to a picture implicitly removes another of these markings when applicable. When a picture is referred to as being marked as "used for reference", this collectively refers to the picture being marked as "used for short-term reference" or "used for long-term reference" (but not both).
The variable currPicLayerId is set equal to nuh_layer_id of the current picture.
When the current picture is an IRAP picture with nuh_layer_id equal to 0 and NoClrasOutputFlag is equal to 1, all reference pictures with any value of nuh_layer_id currently in the DPB (if any) are marked as "unused for reference".
When the current picture is an IRAP picture with NoRaslOutputFlag equal to 1, all reference pictures with nuh_layer_id equal to currPicLayerId currently in the DPB (if any) are marked as "unused for reference".
Short-term reference pictures are identified by their PicOrderCntVal values. Long-term reference pictures are identified either by their PicOrderCntVal values or their slice_pic_order_cnt_lsb values.
Five lists of picture order count values are constructed to derive the RPS. These five lists are PocStCurrBefore, PocStCurrAfter, PocStFoll, PocLtCurr, and PocLtFoll, with NumPocStCurrBefore, NumPocStCurrAfter, NumPocStFoll, NumPocLtCurr, and NumPocLtFoll number of elements, respectively. The five lists and the five variables are derived as follows:
· If the current picture is an IDR picture, PocStCurrBefore, PocStCurrAfter, PocStFoll, PocLtCurr, and PocLtFoll are all set to be empty, and NumPocStCurrBefore, NumPocStCurrAfter, NumPocStFoll, NumPocLtCurr, and NumPocLtFoll are all set equal to 0.
· Otherwise, the following applies:
for(i = 0, j = 0, k = 0; i < NumNegativePics[CurrRpsIdx] ; i++)
	if(UsedByCurrPicS0[CurrRpsIdx][i])
		PocStCurrBefore[j++] = PicOrderCntVal + DeltaPocS0[CurrRpsIdx][i]
	else
		PocStFoll[k++] = PicOrderCntVal + DeltaPocS0[CurrRpsIdx][i]
NumPocStCurrBefore = j

for(i = 0, j = 0; i < NumPositivePics[CurrRpsIdx]; i++)
	if(UsedByCurrPicS1[CurrRpsIdx][i])
		PocStCurrAfter[j++] = PicOrderCntVal + DeltaPocS1[CurrRpsIdx][i]
	else
		PocStFoll[k++] = PicOrderCntVal + DeltaPocS1[CurrRpsIdx][i]
NumPocStCurrAfter = j
NumPocStFoll = k		(8‑2)
for(i = 0, j = 0, k = 0; i < num_long_term_sps + num_long_term_pics; i++) {
	pocLt = PocLsbLt[i]
	if(delta_poc_msb_present_flag[i])
		pocLt += PicOrderCntVal − 	DeltaPocMsbCycleLt[i] * MaxPicOrderCntLsb −
				PicOrderCntVal & (MaxPicOrderCntLsb − 1)
	if(UsedByCurrPicLt[i]) {
		PocLtCurr[j] = pocLt
		CurrDeltaPocMsbPresentFlag[j++] = delta_poc_msb_present_flag[i]
	} else {
		PocLtFoll[k] = pocLt
		FollDeltaPocMsbPresentFlag[k++] = delta_poc_msb_present_flag[i]
	}
}
NumPocLtCurr = j
NumPocLtFoll = k
where PicOrderCntVal is the picture order count of the current picture as specified in subclause 8.3.1.
NOTE 2 – A value of CurrRpsIdx in the range of 0 to num_short_term_ref_pic_sets − 1, inclusive, indicates that a candidate short-term RPS from the active SPS for the current layer is being used, where CurrRpsIdx is the index of the candidate short-term RPS into the list of candidate short-term RPSs signalled in the active SPS for the current layer. CurrRpsIdx equal to num_short_term_ref_pic_sets indicates that the short-term RPS of the current picture is directly signalled in the slice header.
For each i in the range of 0 to NumPocLtCurr − 1, inclusive, when CurrDeltaPocMsbPresentFlag[i] is equal to 1, it is a requirement of bitstream conformance that the following conditions apply:
· There shall be no j in the range of 0 to NumPocStCurrBefore − 1, inclusive, for which PocLtCurr[i] is equal to PocStCurrBefore[j].
· There shall be no j in the range of 0 to NumPocStCurrAfter − 1, inclusive, for which PocLtCurr[i] is equal to PocStCurrAfter[j].
· There shall be no j in the range of 0 to NumPocStFoll − 1, inclusive, for which PocLtCurr[i] is equal to PocStFoll[j].
· There shall be no j in the range of 0 to NumPocLtCurr − 1, inclusive, where j is not equal to i, for which PocLtCurr[i] is equal to PocLtCurr[j].
For each i in the range of 0 to NumPocLtFoll − 1, inclusive, when FollDeltaPocMsbPresentFlag[i] is equal to 1, it is a requirement of bitstream conformance that the following conditions apply:
· There shall be no j in the range of 0 to NumPocStCurrBefore − 1, inclusive, for which PocLtFoll[i] is equal to PocStCurrBefore[j].
· There shall be no j in the range of 0 to NumPocStCurrAfter − 1, inclusive, for which PocLtFoll[i] is equal to PocStCurrAfter[j].
· There shall be no j in the range of 0 to NumPocStFoll − 1, inclusive, for which PocLtFoll[i] is equal to PocStFoll[j].
· There shall be no j in the range of 0 to NumPocLtFoll − 1, inclusive, where j is not equal to i, for which PocLtFoll[i] is equal to PocLtFoll[j].
· There shall be no j in the range of 0 to NumPocLtCurr − 1, inclusive, for which PocLtFoll[i] is equal to PocLtCurr[j].
For each i in the range of 0 to NumPocLtCurr − 1, inclusive, when CurrDeltaPocMsbPresentFlag[i] is equal to 0, it is a requirement of bitstream conformance that the following conditions apply:
· There shall be no j in the range of 0 to NumPocStCurrBefore − 1, inclusive, for which PocLtCurr[i] is equal to (PocStCurrBefore[j] & (MaxPicOrderCntLsb − 1)).
· There shall be no j in the range of 0 to NumPocStCurrAfter − 1, inclusive, for which PocLtCurr[i] is equal to (PocStCurrAfter[j] & (MaxPicOrderCntLsb − 1)).
· There shall be no j in the range of 0 to NumPocStFoll − 1, inclusive, for which PocLtCurr[i] is equal to (PocStFoll[j] & (MaxPicOrderCntLsb − 1)).
· There shall be no j in the range of 0 to NumPocLtCurr − 1, inclusive, where j is not equal to i, for which PocLtCurr[i] is equal to (PocLtCurr[j] & (MaxPicOrderCntLsb − 1)).
For each i in the range of 0 to NumPocLtFoll − 1, inclusive, when FollDeltaPocMsbPresentFlag[i] is equal to 0, it is a requirement of bitstream conformance that the following conditions apply:
· There shall be no j in the range of 0 to NumPocStCurrBefore − 1, inclusive, for which PocLtFoll[i] is equal to (PocStCurrBefore[j] & (MaxPicOrderCntLsb − 1)).
· There shall be no j in the range of 0 to NumPocStCurrAfter − 1, inclusive, for which PocLtFoll[i] is equal to (PocStCurrAfter[j] & (MaxPicOrderCntLsb − 1)).
· There shall be no j in the range of 0 to NumPocStFoll − 1, inclusive, for which PocLtFoll[i] is equal to (PocStFoll[j] & (MaxPicOrderCntLsb − 1)).
· There shall be no j in the range of 0 to NumPocLtFoll − 1, inclusive, where j is not equal to i, for which PocLtFoll[i] is equal to (PocLtFoll[j] & (MaxPicOrderCntLsb − 1)).
· There shall be no j in the range of 0 to NumPocLtCurr − 1, inclusive, for which PocLtFoll[i] is equal to (PocLtCurr[j] & (MaxPicOrderCntLsb − 1)).
The variable NumPicTotalCurr is derived as specified in subclause 7.4.7.2. It is a requirement of bitstream conformance that the following applies to the value of NumPicTotalCurr:
· If currPicLayerId is equal to 0 and the current picture is a BLA or CRA picture, the value of NumPicTotalCurr shall be equal to 0.
· Otherwise, when the current picture contains a P or B slice, the value of NumPicTotalCurr shall not be equal to 0.
The RPS of the current picture consists of five RPS lists; RefPicSetStCurrBefore, RefPicSetStCurrAfter, RefPicSetStFoll, RefPicSetLtCurr and RefPicSetLtFoll. RefPicSetStCurrBefore, RefPicSetStCurrAfter, and RefPicSetStFoll are collectively referred to as the short-term RPS. RefPicSetLtCurr and RefPicSetLtFoll are collectively referred to as the long-term RPS.
NOTE 3 – RefPicSetStCurrBefore, RefPicSetStCurrAfter, and RefPicSetLtCurr contain all reference pictures that may be used for inter prediction of the current picture and one or more pictures that follow the current picture in decoding order. RefPicSetStFoll and RefPicSetLtFoll consist of all reference pictures that are not used for inter prediction of the current picture but may be used in inter prediction for one or more pictures that follow the current picture in decoding order.
The derivation process for the RPS and picture marking are performed according to the following ordered steps:
1. The following applies:
for(i = 0; i < NumPocLtCurr; i++)
	if(!CurrDeltaPocMsbPresentFlag[i])
		if(there is a reference picture picX in the DPB with PicOrderCntVal & (MaxPicOrderCntLsb − 1)
							equal to PocLtCurr[i] and nuh_layer_id equal to currPicLayerId)
			RefPicSetLtCurr[i] = picX
		else
			RefPicSetLtCurr[i] = "no reference picture"
	else
		if(there is a reference picture picX in the DPB with PicOrderCntVal equal to PocLtCurr[i]
							and nuh_layer_id equal to currPicLayerId)
			RefPicSetLtCurr[i] = picX
		else
			RefPicSetLtCurr[i] = "no reference picture"									(8‑3)
for(i = 0; i < NumPocLtFoll; i++)
	if(!FollDeltaPocMsbPresentFlag[i])
		if(there is a reference picture picX in the DPB with PicOrderCntVal & (MaxPicOrderCntLsb − 1)
							equal to PocLtFoll[i] and nuh_layer_id equal to currPicLayerId)
			RefPicSetLtFoll[i] = picX
		else
			RefPicSetLtFoll[i] = "no reference picture"
	else
		if(there is a reference picture picX in the DPB with PicOrderCntVal equal to PocLtFoll[i]
							and nuh_layer_id equal to currPicLayerId)
			RefPicSetLtFoll[i] = picX
		else
			RefPicSetLtFoll[i] = "no reference picture"
2. All reference pictures that are included in RefPicSetLtCurr or RefPicSetLtFoll and have nuh_layer_id equal to currPicLayerId are marked as "used for long-term reference".
3. The following applies:
for(i = 0; i < NumPocStCurrBefore; i++)
	if(there is a short-term reference picture picX in the DPB
			with PicOrderCntVal equal to PocStCurrBefore[i] and nuh_layer_id equal to currPicLayerId)
		RefPicSetStCurrBefore[i] = picX
	else
		RefPicSetStCurrBefore[i] = "no reference picture"
for(i = 0; i < NumPocStCurrAfter; i++)
	if(there is a short-term reference picture picX in the DPB
			with PicOrderCntVal equal to PocStCurrAfter[i] and nuh_layer_id equal to currPicLayerId)
		RefPicSetStCurrAfter[i] = picX
	else
		RefPicSetStCurrAfter[i] = "no reference picture"	(8‑4)
for(i = 0; i < NumPocStFoll; i++)
	if(there is a short-term reference picture picX in the DPB
			with PicOrderCntVal equal to PocStFoll[i] and nuh_layer_id equal to currPicLayerId)
		RefPicSetStFoll[i] = picX
	else
		RefPicSetStFoll[i] = "no reference picture"
4. All reference pictures in the DPB that are not included in RefPicSetLtCurr, RefPicSetLtFoll, RefPicSetStCurrBefore, RefPicSetStCurrAfter, or RefPicSetStFoll and have nuh_layer_id equal to currPicLayerId are marked as "unused for reference".
NOTE 4 – There may be one or more entries in the RPS lists that are equal to "no reference picture" because the corresponding pictures are not present in the DPB. Entries in RefPicSetStFoll or RefPicSetLtFoll that are equal to "no reference picture" should be ignored. An unintentional picture loss should be inferred for each entry in RefPicSetStCurrBefore, RefPicSetStCurrAfter, or RefPicSetLtCurr that is equal to "no reference picture".
NOTE 5 – A picture cannot be included in more than one of the five RPS lists.
It is a requirement of bitstream conformance that the RPS is restricted as follows:
· There shall be no entry in RefPicSetStCurrBefore, RefPicSetStCurrAfter, or RefPicSetLtCurr for which one or more of the following are true:
· The entry is equal to "no reference picture".
· The entry is a sub-layer non-reference picture and has TemporalId equal to that of the current picture.
· The entry is a picture that has TemporalId greater than that of the current picture.
· There shall be no entry in RefPicSetLtCurr or RefPicSetLtFoll for which the difference between the picture order count value of the current picture and the picture order count value of the entry is greater than or equal to 224.
· When the current picture is a TSA picture, there shall be no picture included in the RPS with TemporalId greater than or equal to the TemporalId of the current picture.
· When the current picture is an STSA picture, there shall be no picture included in RefPicSetStCurrBefore, RefPicSetStCurrAfter, or RefPicSetLtCurr that has TemporalId equal to that of the current picture.
· When the current picture is a picture that follows, in decoding order, an STSA picture that has TemporalId equal to that of the current picture, there shall be no picture that has TemporalId equal to that of the current picture included in RefPicSetStCurrBefore, RefPicSetStCurrAfter, or RefPicSetLtCurr that precedes the STSA picture in decoding order.
· When the current picture is a CRA picture, there shall be no picture included in the RPS that precedes, in decoding order, any preceding IRAP picture in decoding order (when present).
· When the current picture is a trailing picture, there shall be no picture in RefPicSetStCurrBefore, RefPicSetStCurrAfter, or RefPicSetLtCurr that was generated by the decoding process for generating unavailable reference pictures as specified in clause 8.3.3.
· When the current picture is a trailing picture, there shall be no picture in the RPS that precedes the associated IRAP picture in output order or decoding order.
· When the current picture is a RADL picture, there shall be no picture included in RefPicSetStCurrBefore, RefPicSetStCurrAfter, or RefPicSetLtCurr that is any of the following:
· A RASL picture
· A picture that was generated by the decoding process for generating unavailable reference pictures as specified in clause 8.3.3
· A picture that precedes the associated IRAP picture in decoding order
· When sps_temporal_id_nesting_flag is equal to 1, the following applies:
· Let tIdA be the value of TemporalId of the current picture picA.
· Any picture picB with TemporalId equal to tIdB that is less than or equal to tIdA shall not be included in RefPicSetStCurrBefore, RefPicSetStCurrAfter, or RefPicSetLtCurr of picA when there exists a picture picC that has TemporalId less than tIdB, follows picB in decoding order, and precedes picA in decoding order.
8.3.1 [bookmark: _Toc373499519][bookmark: _Ref371513891][bookmark: _Toc373499520][bookmark: _Toc373832678][bookmark: _Ref348033586]Decoding process for generating unavailable reference pictures
8.3.1.1 [bookmark: _Ref332047408][bookmark: _Toc351408786][bookmark: _Toc373499521][bookmark: _Toc373832679]General decoding process for generating unavailable reference pictures
This process is invoked once per coded picture when the current picture is a BLA picture or is a CRA picture with NoRaslOutputFlag equal to 1.
NOTE – This process is primarily specified only for the specification of syntax constraints for RASL pictures. The entire specification of the decoding process for RASL pictures associated with an IRAP picture that has NoRaslOutputFlag equal to 1 is included herein only for purposes of specifying constraints on the allowed syntax content of such RASL pictures. During the decoding process, any RASL pictures associated with an IRAP picture that has NoRaslOutputFlag equal to 1 may be ignored, as these pictures are not specified for output and have no effect on the decoding process of any other pictures that are specified for output. However, in HRD operations as specified in Annex C, RASL access units may need to be taken into consideration in derivation of CPB arrival and removal times.
When this process is invoked, the following applies:
· For each RefPicSetStFoll[i], with i in the range of 0 to NumPocStFoll − 1, inclusive, that is equal to "no reference picture", a picture is generated as specified in subclause 8.3.3.2, and the following applies:
· The value of PicOrderCntVal for the generated picture is set equal to PocStFoll[i].
· The value of PicOutputFlag for the generated picture is set equal to 0.
· The generated picture is marked as "used for short-term reference".
· RefPicSetStFoll[i] is set to be the generated reference picture.
· The value of nuh_layer_id for the generated picture is inferred to be equal to nuh_layer_id.
· For each RefPicSetLtFoll[i], with i in the range of 0 to NumPocLtFoll − 1, inclusive, that is equal to "no reference picture", a picture is generated as specified in subclause 8.3.3.2, and the following applies:
· The value of PicOrderCntVal for the generated picture is set equal to PocLtFoll[i].
· The value of slice_pic_order_cnt_lsb for the generated picture is inferred to be equal to (PocLtFoll[i] & (MaxPicOrderCntLsb – 1)).
· The value of PicOutputFlag for the generated picture is set equal to 0.
· The generated picture is marked as "used for long-term reference".
· RefPicSetLtFoll[i] is set to be the generated reference picture.
· The value of nuh_layer_id for the generated picture is inferred to be equal to nuh_layer_id.
[bookmark: _Ref363478675][bookmark: _Toc356148054][bookmark: _Toc248045502][bookmark: _Toc287363887][bookmark: _Toc311220035][bookmark: _Ref317176194][bookmark: _Toc317198933][bookmark: _Ref329772983][bookmark: _Ref329772992][bookmark: _Ref330980194][bookmark: _Toc349676420][bookmark: _Toc351367609][bookmark: _Toc358966722]
Replace Annex C with the following (with differences indicated in turquois):
C [bookmark: _Ref363646510][bookmark: _Toc373499522][bookmark: _Toc373832680]Annex C

Hypothetical reference decoder

(This annex forms an integral part of this Recommendation | International Standard)
C.1 [bookmark: _Toc317198877][bookmark: _Ref343023252][bookmark: _Ref343024208][bookmark: _Ref343024718][bookmark: _Ref343074744][bookmark: _Ref343161820][bookmark: _Ref348794313][bookmark: _Toc364083317][bookmark: _Toc373832681][bookmark: _Toc9042149][bookmark: _Toc12253740][bookmark: _Toc12684721][bookmark: _Toc12699181][bookmark: _Toc15444306][bookmark: _Ref19428481][bookmark: _Ref19432892][bookmark: _Toc20134513]General
This annex specifies the hypothetical reference decoder (HRD) and its use to check bitstream and decoder conformance.
Two types of bitstreams or bitstream subsets are subject to HRD conformance checking for this Specification. The first type, called a Type I bitstream, is a NAL unit stream containing only the VCL NAL units and NAL units with nal_unit_type equal to FD_NUT (filler data NAL units) for all access units in the bitstream. The second type, called a Type II bitstream, contains, in addition to the VCL NAL units and filler data NAL units for all access units in the bitstream, at least one of the following:
–	additional non-VCL NAL units other than filler data NAL units,
–	all leading_zero_8bits, zero_byte, start_code_prefix_one_3bytes, and trailing_zero_8bits syntax elements that form a byte stream from the NAL unit stream (as specified in Annex B).
Figure C‑1 shows the types of bitstream conformance points checked by the HRD.

[bookmark: _Ref33101618][bookmark: _Toc32860602][bookmark: _Toc77680711][bookmark: _Toc246350667][bookmark: _Toc287363914][bookmark: _Toc317198641][bookmark: _Toc364083426]Figure C‑1 – Structure of byte streams and NAL unit streams for HRD conformance checks

The syntax elements of non-VCL NAL units (or their default values for some of the syntax elements), required for the HRD, are specified in the semantic subclauses of clause 7, Annexes D and E.
Two types of HRD parameter sets (NAL HRD parameters and VCL HRD parameters) are used. The HRD parameter sets are signalled through the hrd_parameters() syntax structure, which may be part of the SPS syntax structure or the VPS syntax structure.
Multiple tests may be needed for checking the conformance of a bitstream, which is referred to as the bitstream under test. For each test, the following steps apply in the order listed:
1. An operation point under test, denoted as TargetOp, is selected by selecting a target output layer set identified by TargetOptLayerSetIdx and selecting a target highest TemporalId value HighestTid. The value of TargetOptLayerSetIdx shall be in the range of 0 to NumOutputLayerSets − 1, inclusive. The value of HighestTid shall be in the range of 0 to vps_max_sub_layers_minus1, inclusive. The variables TargetDecLayerSetIdx, TargetOptLayerIdList, and TargetDecLayerIdList are then derived as specified by Equation 8‑1. The operation point under test has OptLayerIdList equal to TargetOptLayerIdList, OpLayerIdList equal to TargetDecLayerIdList, and OpTid equal to HighestTid.
2. The sub-bitstream extraction process as specified in clause 10 is invoked with the bitstream under test, HighestTid, and TargetDecLayerIdList as inputs, and the output is assigned to BitstreamToDecode.
3. When both the vps_vui_bsp_hrd_parameters() syntax structure is present in the active VPS and num_bitstream_partitions[TargetDecLayerSetIdx] is greater than 1 or both a bitstream partition HRD parameters SEI message is present and the SEI message contains syntax element sei_num_bitstream_partitions_minus1[TargetDecLayerSetIdx] greater than 0, either the bitstream-specific CPB operation or the bitstream-partition-specific CPB operation is selected for a conformance test, and both CPB operations shall be tested for checking the conformance of a bitstream. When the bitstream-specific CPB operation is tested, the subsequent steps apply for the bitstream under test. When the bitstream-partition-specific CPB operation is tested, the subsequent steps apply to each bitstream partition of the bitstream under test, referred to as the bitstream partition under test. When the bitstream-partition-specific CPB operation is tested and the input to the HRD is a bitstream, the bitstream partitions are derived with the demultiplexing process for deriving a bitstream partition in subclause C.6.
4. [bookmark: _Ref343178728]The hrd_parameters() syntax structure and the sub_layer_hrd_parameters() syntax structure applicable to TargetOp are selected as follows:
–	If the bitstream-specific CPB operation is tested, the following applies:
–	If TargetDecLayerIdList contains all nuh_layer_id values present in the bitstream under test, the hrd_parameters() syntax structure in the active SPS for the base layer (or provided through an external means not specified in this Specification) is selected.
–	Otherwise, the hrd_parameters() syntax structure in the active VPS (or provided through some external means not specified in this Specification) that applies to TargetOp is selected.
–	Otherwise, the hrd_parameters() syntax structure is selected as follows:
–	Either one of the hrd_parameters() syntax structures in the following conditions can be selected, if both of the following conditions are true:
–	The vps_vui_bsp_hrd_parameters() syntax structure is present in the active VPS (or is available through some external means not specified in this Specification) and contains a hrd_parameters() syntax structure that applies to TargetOp and to the bitstream partition under test.
–	A bitstream partition HRD parameters SEI message that is included in a scalable nesting SEI message that applies to TargetOp and contains a hrd_parameters() syntax structure that applies to TargetOp and to the bitstream partition under test is present (or is available through some external means not specified in this Specification).
–	Otherwise, if the vps_vui_bsp_hrd_parameters() syntax structure is present in the active VPS (or is available through some external means not specified in this Specification) and contains a hrd_parameters() syntax structure that applies to TargetOp and the bitstream partition under test, that hrd_parameters() syntax structure is selected.
–	Otherwise, a hrd_parameters() syntax structure that applies to the bitstream partition under test in the bitstream partition HRD parameters SEI message that is included in a scalable nesting SEI message that applies to TargetOp shall be present (or shall be available through some external means not specified in this Specification) and is selected.
Within the selected hrd_parameters() syntax structure, if BitstreamToDecode is a Type I bitstream, the sub_layer_hrd_parameters(HighestTid) syntax structure that immediately follows the condition "if(vcl_hrd_parameters_present_flag)" is selected and the variable NalHrdModeFlag is set equal to 0; otherwise (BitstreamToDecode is a Type II bitstream), the sub_layer_hrd_parameters(HighestTid) syntax structure that immediately follows either the condition "if(vcl_hrd_parameters_present_flag)" (in this case the variable NalHrdModeFlag is set equal to 0) or the condition "if(nal_hrd_parameters_present_flag)" (in this case the variable NalHrdModeFlag is set equal to 1) is selected. When BitstreamToDecode is a Type II bitstream and NalHrdModeFlag is equal to 0, all non-VCL NAL units except filler data NAL units, and all leading_zero_8bits, zero_byte, start_code_prefix_one_3bytes, and trailing_zero_8bits syntax elements that form a byte stream from the NAL unit stream (as specified in Annex B), when present, are discarded from BitstreamToDecode, and the remaining bitstream is assigned to BitstreamToDecode.
5. [bookmark: _Ref349919179]An access unit associated with a buffering period SEI message (present in BitstreamToDecode or available through external means not specified in this Specification) applicable to TargetOp is selected as the HRD initialization point and referred to as access unit 0. An applicable buffering period SEI message is available through external means not specified in this Specification or is selected from access unit 0 as follows:
–	If the bitstream-specific CPB operation is tested, the following applies:
–	If TargetDecLayerIdList contains all nuh_layer_id values present in the bitstream under test, a non-nested buffering period SEI message is selected.
–	Otherwise, a buffering period SEI message included in the scalable nesting SEI message with bitstream_subset_flag equal to 1 and applicable to TargetOp is selected.
–	Otherwise, a buffering period SEI message included in the bitstream partition nesting SEI message applicable to the bitstream partition under test is selected.
6. For each access unit in BitstreamToDecode starting from access unit 0, the buffering period SEI message (present in BitstreamToDecode or available through external means not specified in this Specification) that is associated with the access unit and applies to TargetOp is selected, the picture timing SEI message (present in BitstreamToDecode or available through external means not specified in this Specification) that is associated with the access unit and applies to TargetOp is selected, and when SubPicHrdFlag is equal to 1 and sub_pic_cpb_params_in_pic_timing_sei_flag is equal to 0, the decoding unit information SEI messages (present in BitstreamToDecode or available through external means not specified in this Specification) that are associated with decoding units in the access unit and apply to TargetOp are selected as follows:
–	If the bitstream-specific CPB operation is tested, the following applies:
–	If TargetDecLayerIdList contains all nuh_layer_id values present in the bitstream under test, non-nested buffering period, picture timing and decoding unit information SEI messages are selected.
–	Otherwise, buffering period, picture timing and decoding unit information SEI messages included in the scalable nesting SEI message with bitstream_subset_flag equal to 1 and applicable to TargetOp are selected.
–	Otherwise, buffering period, picture timing and decoding unit information SEI messages included in the bitstream partition nesting SEI message and applicable to the bitstream partition under test are selected.
7. A value of SchedSelIdx is selected as follows:
–	If the bitstream-specific CPB operation is tested, the selected SchedSelIdx shall be in the range of 0 to cpb_cnt_minus1[HighestTid], inclusive, where cpb_cnt_minus1[HighestTid] is found in the sub_layer_hrd_parameters(HighestTid) syntax structure as selected above.
–	Otherwise (the bitstream-partition-specific CPB operation is tested), a SchedSelCombIdx is selected for the bitstream under test and used for each bitstream partition under test. The following applies:
–	If the vps_vui_bsp_hrd_parameters() syntax structure is present in the active VPS (or made available through external means not specified in this Specification) and contains the selected hrd_parameters() syntax structure that applies to TargetOp and the bitstream partition under test, the selected SchedSelCombIdx shall be in the range of 0 to num_bsp_sched_combinations[TargetDecLayerSetIdx] – 1, inclusive. and the selected SchedSelIdx shall be equal to bsp_comb_sched_idx[TargetDecLayerSetIdx][SchedSelCombIdx][j] where j is the index of the bitstream partition under test.
–	Otherwise, the selected SchedSelCombIdx shall be in the range of 0 to sei_num_bsp_sched_combinations_minus1[TargetDecLayerSetIdx], inclusive. and the selected SchedSelIdx shall be equal to sei_bsp_comb_sched_idx[TargetDecLayerSetIdx][SchedSelCombIdx][j] of the bitstream partition HRD parameters SEI message applicable to TargetOp where j is the index of the bitstream partition under test.
8. When the coded picture in access unit 0 has nal_unit_type equal to CRA_NUT or BLA_W_LP, and irap_cpb_params_present_flag in the selected buffering period SEI message is equal to 1, either of the following applies for selection of the initial CPB removal delay and delay offset:
–	If NalHrdModeFlag is equal to 1, the default initial CPB removal delay and delay offset represented by nal_initial_cpb_removal_delay[SchedSelIdx] and nal_initial_cpb_removal_offset[SchedSelIdx], respectively, in the selected buffering period SEI message are selected. Otherwise, the default initial CPB removal delay and delay offset represented by vcl_initial_cpb_removal_delay[SchedSelIdx] and vcl_initial_cpb_removal_offset[SchedSelIdx], respectively, in the selected buffering period SEI message are selected. The variable DefaultInitCpbParamsFlag is set equal to 1.
–	If NalHrdModeFlag is equal to 1, the alternative initial CPB removal delay and delay offset represented by nal_initial_alt_cpb_removal_delay[SchedSelIdx] and nal_initial_alt_cpb_removal_offset[SchedSelIdx], respectively, in the selected buffering period SEI message are selected. Otherwise, the alternative initial CPB removal delay and delay offset represented by vcl_initial_alt_cpb_removal_delay[SchedSelIdx] and vcl_initial_alt_cpb_removal_offset[SchedSelIdx], respectively, in the selected buffering period SEI message are selected. The variable DefaultInitCpbParamsFlag is set equal to 0, and the RASL access units associated with access unit 0 are discarded from BitstreamToDecode and the remaining bitstream is assigned to BitstreamToDecode.
9. [bookmark: _Ref343176600]For the bitstream-partition-specific CPB operation, SubPicHrdFlag is set equal to 1. For the bitstream-specific CPB operation, when sub_pic_hrd_params_present_flag in the selected hrd_parameters() syntax structure is equal to 1, the CPB is scheduled to operate either at the access unit level (in which case the variable SubPicHrdFlag is set equal to 0) or at the sub-picture level (in which case the variable SubPicHrdFlag is set equal to 1).
For each operation point under test when the bitstream-specific CPB operation is tested, the number of bitstream conformance tests to be performed is equal to n0 * n1 * (n2 * 2 + n3) * n4, where the values of n0, n1, n2, n3, and n4 are specified as follows:
–	n0 is derived as follows:
–	If BitstreamToDecode is a Type I bitstream, n0 is equal to 1.
–	Otherwise (BitstreamToDecode is a Type II bitstream), n0 is equal to 2.
–	n1 is equal to cpb_cnt_minus1[HighestTid] + 1.
–	n2 is the number of access units in BitstreamToDecode that each is associated with a buffering period SEI message applicable to TargetOp and for each of which both of the following conditions are true:
–	nal_unit_type is equal to CRA_NUT or BLA_W_LP for the VCL NAL units;
–	The associated buffering period SEI message applicable to TargetOp has irap_cpb_params_present_flag equal to 1.
–	n3 is the number of access units in BitstreamToDecode BitstreamToDecode that each is associated with a buffering period SEI message applicable to TargetOp and for each of which one or both of the following conditions are true:
–	nal_unit_type is equal to neither CRA_NUT nor BLA_W_LP for the VCL NAL units;
–	The associated buffering period SEI message applicable to TargetOp has irap_cpb_params_present_flag equal to 0.
–	n4 is derived as follows:
–	If sub_pic_hrd_params_present_flag in the selected hrd_parameters() syntax structure is equal to 0, n4 is equal to 1;
–	Otherwise, n4 is equal to 2.
When BitstreamToDecode is a Type II bitstream, the following applies:
–	If the sub_layer_hrd_parameters(HighestTid) syntax structure that immediately follows the condition "if(vcl_hrd_parameters_present_flag)" is selected, the test is conducted at the Type I conformance point shown in Figure C‑1, and only VCL and filler data NAL units are counted for the input bit rate and CPB storage.
–	Otherwise (the sub_layer_hrd_parameters(HighestTid) syntax structure that immediately follows the condition "if(nal_hrd_parameters_present_flag)" is selected), the test is conducted at the Type II conformance point shown in Figure C‑1, and all bytes of the Type II bitstream, which may be a NAL unit stream or a byte stream, are counted for the input bit rate and CPB storage.
NOTE 1 – NAL HRD parameters established by a value of SchedSelIdx for the Type II conformance point shown in Figure C‑1 are sufficient to also establish VCL HRD conformance for the Type I conformance point shown in Figure C‑1 for the same values of InitCpbRemovalDelay[SchedSelIdx], BitRate[SchedSelIdx], and CpbSize[SchedSelIdx] for the VBR case (cbr_flag[SchedSelIdx] equal to 0). This is because the data flow into the Type I conformance point is a subset of the data flow into the Type II conformance point and because, for the VBR case, the CPB is allowed to become empty and stay empty until the time a next picture is scheduled to begin to arrive. For example, when decoding a CVS conforming to one or more of the profiles specified in Annex A using the decoding process specified in clauses 2 through 10, when NAL HRD parameters are provided for the Type II conformance point that not only fall within the bounds set for NAL HRD parameters for profile conformance in item f) of subclause A.4.2 but also fall within the bounds set for VCL HRD parameters for profile conformance in item e) of subclause A.4.2, conformance of the VCL HRD for the Type I conformance point is also assured to fall within the bounds of item e) of subclause A.4.2.
All VPSs, SPSs and PPSs referred to in the VCL NAL units, and the corresponding buffering period, picture timing and decoding unit information SEI messages shall be conveyed to the HRD, in a timely manner, either in the bitstream (by non-VCL NAL units), or by other means not specified in this Specification.
In Annexes C, D, and E, the specification for "presence" of non-VCL NAL units that contain VPSs, SPSs, PPSs, buffering period SEI messages, picture timing SEI messages, or decoding unit information SEI messages is also satisfied when those NAL units (or just some of them) are conveyed to decoders (or to the HRD) by other means not specified in this Specification. For the purpose of counting bits, only the appropriate bits that are actually present in the bitstream are counted.
NOTE 2 – As an example, synchronization of such a non-VCL NAL unit, conveyed by means other than presence in the bitstream, with the NAL units that are present in the bitstream, can be achieved by indicating two points in the bitstream, between which the non‑VCL NAL unit would have been present in the bitstream, had the encoder decided to convey it in the bitstream.
When the content of such a non-VCL NAL unit is conveyed for the application by some means other than presence within the bitstream, the representation of the content of the non-VCL NAL unit is not required to use the same syntax as specified in this Specification.
NOTE 3 – When HRD information is contained within the bitstream, it is possible to verify the conformance of a bitstream to the requirements of this subclause based solely on information contained in the bitstream. When the HRD information is not present in the bitstream, as is the case for all "stand-alone" Type I bitstreams, conformance can only be verified when the HRD data are supplied by some other means not specified in this Specification.
For the bitstream-specific CPB operation, the HRD contains a coded picture buffer (CPB), an instantaneous decoding process, a decoded picture buffer (DPB) that contains a sub-DPB for each layer, and output cropping as shown in Figure C‑2.

[bookmark: _Ref33101619][bookmark: _Toc32860603][bookmark: _Toc77680712][bookmark: _Toc246350668][bookmark: _Toc287363915][bookmark: _Toc317198642][bookmark: _Toc364083427]Figure C‑2 – Bitstream-specific HRD buffer model

For the bitstream-partition-specific CPB operation, the HRD contains a bitstream demultiplexer (optionally present), two or more bitstream partition buffers (BPB), two or more instantaneous decoding processes, a decoded picture buffer (DPB) that contains a sub-DPB for each layer, and output cropping as shown in Figure C‑3.

[bookmark: _Ref372616949]Figure C‑3 – Bitstream-partition-specific HRD buffer model

For each bitstream conformance test, the CPB size (number of bits) for the bitstream-specific CPB operation and the BPB size for the bitstream-partition-specific CPB operation is CpbSize[SchedSelIdx] as specified in subclause E.3.3, where SchedSelIdx and the HRD parameters are specified above in this subclause. When a CVS conforming to one or more of the profiles specified in Annex A is decoded by applying the decoding process specified in clauses 2−10, the sub-DPB size (number of picture storage buffers) of the sub-DPB for the base layer is sps_max_dec_pic_buffering_minus1[HighestTid] + 1, where sps_max_dec_pic_buffering_minus1[HighestTid] is from the active SPS for the base layer. When a CVS conforming to one or more of the profiles specified in Annex G or H is decoded by applying the decoding process specified in clauses 2−10, Annex F, and Annex G or H, the sub-DPB size of the sub-DPB for a layer with nuh_layer_id equal to currLayerId is max_vps_dec_pic_buffering_minus1[TargetOptLayerSetIdx][currLayerId][HighestTid] + 1, where max_vps_dec_pic_buffering_minus1[TargetOptLayerSetIdx][currLayerId][HighestTid] + 1 is from the active VPS.
The variable SubPicHrdPreferredFlag is either specified by external means, or when not specified by external means, set equal to 0.
When the value of the variable SubPicHrdFlag has not been set by step 9 above in this subclause, it is derived as follows:
SubPicHrdFlag = SubPicHrdPreferredFlag && sub_pic_hrd_params_present_flag	(C‑1)
If SubPicHrdFlag is equal to 0, the HRD operates at access unit level and each decoding unit is an access unit. Otherwise the HRD operates at sub-picture level and each decoding unit is a subset of an access unit.
NOTE 4 – If the HRD operates at access unit level, each time a decoding unit that is an entire access unit is removed from the CPB. Otherwise (the HRD operates at sub-picture level), each time a decoding unit that is a subset of an access unit is removed from the CPB. In both cases, each time an entire decoded picture is output from the DPB, though the picture output time is derived based on the differently derived CPB removal times and the differently signalled DPB output delays.
The following is specified for expressing the constraints in this annex:
–	Each access unit is referred to as access unit n, where the number n identifies the particular access unit. Access unit 0 is selected per step 5 above. The value of n is incremented by 1 for each subsequent access unit in decoding order.
–	Each decoding unit is referred to as decoding unit m, where the number m identifies the particular decoding unit. The first decoding unit in decoding order in access unit 0 is referred to as decoding unit 0. The value of m is incremented by 1 for each subsequent decoding unit in decoding order.
NOTE 5 – The numbering of decoding units is relative to the first decoding unit in access unit 0.
–	Picture n refers to the coded picture or the decoded picture of access unit n.
The HRD operates as follows:
–	The HRD is initialized at decoding unit 0, with the CPB, each sub-DPB of the DPB, and each BPB being set to be empty (the sub-DPB fullness for each sub-DPB is set equal to 0).
NOTE 6 – After initialization, the HRD is not initialized again by subsequent buffering period SEI messages.
–	For the bitstream-specific CPB operation, data associated with decoding units that flow into the CPB according to a specified arrival schedule are delivered by the HSS. For the bitstream-partition-specific CPB operation, data associated with decoding units that flow into the BPB according to a specified arrival schedule are delivered by an HBPS.
–	When the bitstream-partition-specific CPB operation is used, each bitstream partition with index j is processed as specified in clause C.2 with the HSS replaced by the HPBS and with SchedSelIdx equal to bsp_comb_sched_idx[TargetDecLayerSetIdx][SchedSelCombIdx][j], if vps_vui_bsp_hrd_parameters() syntax structure is present in the active VPS or is available through some external means not specified in this Specification), or equal to sei_bsp_comb_sched_idx[TargetDecLayerSetIdx][SchedSelCombIdx][j] of the bitstream partition HRD parameters SEI message applicable to TargetOp, otherwise.
–	The data associated with each decoding unit are removed and decoded instantaneously by the instantaneous decoding process at the CPB removal time of the decoding unit.
–	Each decoded picture is placed in the DPB.
–	A decoded picture is removed from the DPB when it becomes no longer needed for inter prediction reference and no longer needed for output.
For each bitstream conformance test, the operation of the CPB and the BPB is specified in subclause C.2, the instantaneous decoder operation is specified in clauses 2 through 10, the operation of the DPB is specified in subclause C.3, and the output cropping is specified in subclause C.3.3 and subclause C.5.2.2.
HSS, HBPS and HRD information concerning the number of enumerated delivery schedules and their associated bit rates and buffer sizes is specified in subclauses E.2.2 and E.3.2. The HRD is initialized as specified by the buffering period SEI message specified in subclauses D.2.2 and D.3.2. The removal timing of decoding units from the CPB and output timing of decoded pictures from the DPB is specified using information in picture timing SEI messages (specified in subclauses D.2.3 and D.3.3) or in decoding unit information SEI messages (specified in subclauses D.2.21 and D.3.21). All timing information relating to a specific decoding unit shall arrive prior to the CPB removal time of the decoding unit.
The requirements for bitstream conformance are specified in subclause C.4, and the HRD is used to check conformance of bitstreams as specified above in this subclause and to check conformance of decoders as specified in subclause 11.
NOTE 7 – While conformance is guaranteed under the assumption that all picture-rates and clocks used to generate the bitstream match exactly the values signalled in the bitstream, in a real system each of these may vary from the signalled or specified value.
All the arithmetic in this annex is performed with real values, so that no rounding errors can propagate. For example, the number of bits in a CPB just prior to or after removal of a decoding unit is not necessarily an integer.
The variable ClockTick is derived as follows and is called a clock tick:
[bookmark: clocktick_eqn]ClockTick = vui_num_units_in_tick  vui_time_scale	(C‑2)
The variable ClockSubTick is derived as follows and is called a clock sub-tick:
ClockSubTick = ClockTick  (tick_divisor_minus2 + 2)	(C‑3)
C.2 [bookmark: _Ref34217458][bookmark: _Ref36829585][bookmark: _Toc77680609][bookmark: _Toc118289207][bookmark: _Toc226456810][bookmark: _Toc248045427][bookmark: _Toc287363878][bookmark: _Toc311220026][bookmark: _Toc317198878][bookmark: _Ref347274168][bookmark: _Toc364083318][bookmark: _Toc373832682][bookmark: _Toc32860488]Operation of coded picture buffer (CPB) and bitstream partition buffer (BPB)
C.2.1 [bookmark: _Toc364083319][bookmark: _Toc373832683][bookmark: _Toc32860489]General
The specifications in this subclause apply independently to each set of CPB parameters that is present and to both the Type I and Type II conformance points shown in Figure C‑1, and the set of CPB parameters is selected as specified in subclause C.1.
C.2.2 [bookmark: _Toc317198879][bookmark: _Ref349919287][bookmark: _Toc364083320][bookmark: _Toc373832684]Timing of decoding unit arrival
If SubPicHrdFlag is equal to 0, the variable subPicParamsFlag is set equal to 0, and the process in specified in the remainder of this subclause is invoked with a decoding unit being considered as an access unit, for derivation of the initial and final CPB arrival times for access unit n.
Otherwise (SubPicHrdFlag is equal to 1), the process in specified in the remainder of this subclause is first invoked with the variable subPicParamsFlag set equal to 0 and a decoding unit being considered as an access unit, for derivation of the initial and final CPB arrival times for access unit n, and then invoked with subPicParamsFlag set equal to 1 and a decoding unit being considered as a subset of an access unit, for derivation of the initial and final CPB arrival times for the decoding units in access unit n.
The variables InitCpbRemovalDelay[SchedSelIdx] and InitCpbRemovalDelayOffset[SchedSelIdx] are derived as follows:
–	If one or more of the following conditions are true, InitCpbRemovalDelay[SchedSelIdx] and InitCpbRemovalDelayOffset[SchedSelIdx] are set equal to the values of the buffering period SEI message syntax elements nal_initial_alt_cpb_removal_delay[SchedSelIdx] and nal_initial_alt_cpb_removal_offset[SchedSelIdx], respectively, when NalHrdModeFlag is equal to 1, or vcl_initial_alt_cpb_removal_delay[SchedSelIdx] and vcl_initial_alt_cpb_removal_offset[SchedSelIdx], respectively, when NalHrdModeFlag is equal to 0, where the buffering period SEI message syntax elements are selected as specified in subclause C.1:
–	Access unit 0 is a BLA access unit for which each coded picture has nal_unit_type equal to BLA_W_RADL or BLA_N_LP, and the value of irap_cpb_params_present_flag of the buffering period SEI message is equal to 1.
–	Access unit 0 is a BLA access unit for which each coded picture has nal_unit_type equal to BLA_W_LP or is a CRA access unit, and the value of irap_cpb_params_present_flag of the buffering period SEI message is equal to 1, and one or more of the following conditions are true:
–	UseAltCpbParamsFlag for access unit 0 is equal to 1.
–	DefaultInitCpbParamsFlag is equal to 0.
–	The value of subPicParamsFlag is equal to 1.
–	Otherwise, InitCpbRemovalDelay[SchedSelIdx] and InitCpbRemovalDelayOffset[SchedSelIdx] are set equal to the values of the buffering period SEI message syntax elements nal_initial_cpb_removal_delay[SchedSelIdx] and nal_initial_cpb_removal_offset[SchedSelIdx], respectively, when NalHrdModeFlag is equal to 1, or vcl_initial_cpb_removal_delay[SchedSelIdx] and vcl_initial_cpb_removal_offset[SchedSelIdx], respectively, when NalHrdModeFlag is equal to 0, where the buffering period SEI message syntax elements are selected as specified in subclause C.1.
The time at which the first bit of decoding unit m begins to enter the CPB is referred to as the initial arrival time initArrivalTime[m].
If the bitstream-specific CPB operation is used, decoding units are indexed in decoding order within the bitstream. Otherwise (the bitstream-partition-specific CPB operation is used), decoding units are indexed in decoding order with each bitstream partition.
The initial arrival time of decoding unit m is derived as follows:
–	If the decoding unit is decoding unit 0 (i.e. m = 0) and either the bitstream-specific CPB operation is used or the decoding unit belongs to the base bitstream partition, initArrivalTime[0] = 0.
–	Otherwise, if the decoding unit is decoding unit 0, the bitstream-partition-specific CPB operation is used, and the decoding unit does not belong to the base bitstream partition, initArrivalTime[0] is obtained from the bitstream partition initial arrival time SEI message applicable to TargetOp.
–	Otherwise, the following applies:
–	If cbr_flag[SchedSelIdx] is equal to 1, the initial arrival time for decoding unit m is equal to the final arrival time (which is derived below) of decoding unit m − 1, i.e.
[bookmark: taiEqualtoTafNminus1]if(!subPicParamsFlag)
	initArrivalTime[m] = AuFinalArrivalTime[m − 1]	(C‑4)
else
	initArrivalTime[m] = DuFinalArrivalTime[m − 1]
–	Otherwise (cbr_flag[SchedSelIdx] is equal to 0), the initial arrival time for decoding unit m is derived as follows:
[bookmark: tai_Eqn]if(!subPicParamsFlag)
	initArrivalTime[m] = Max(AuFinalArrivalTime[m − 1], initArrivalEarliestTime[m])	(C‑5)
else
	initArrivalTime[m] = Max(DuFinalArrivalTime[m − 1], initArrivalEarliestTime[m])
where initArrivalEarliestTime[m] is derived as follows:
–	The variable tmpNominalRemovalTime is derived as follows:
if(!subPicParamsFlag)
	tmpNominalRemovalTime = AuNominalRemovalTime[m] 	(C‑6)
else
	tmpNominalRemovalTime = DuNominalRemovalTime[m]
where AuNominalRemovalTime[m] and DuNominalRemovalTime[m] are the nominal CPB removal time of access unit m and decoding unit m, respectively, as specified in subclause C.2.3.
–	If decoding unit m is not the first decoding unit of a subsequent buffering period, initArrivalEarliestTime[m] is derived as follows:
initArrivalEarliestTime[m] = tmpNominalRemovalTime − (InitCpbRemovalDelay[SchedSelIdx]
		+ InitCpbRemovalDelayOffset[SchedSelIdx])  90000	(C‑7)
–	Otherwise (decoding unit m is the first decoding unit of a subsequent buffering period), initArrivalEarliestTime[m] is derived as follows:
initArrivalEarliestTime[m] = tmpNominalRemovalTime −
		(InitCpbRemovalDelay[SchedSelIdx]  90000)	(C‑8)
The final arrival time for decoding unit m is derived as follows:
if(!subPicParamsFlag)
		AuFinalArrivalTime[m] = initArrivalTime[m] + sizeInbits[m]  BitRate[SchedSelIdx]	(C‑9)
else
		DuFinalArrivalTime[m] = initArrivalTime[m] + sizeInbits[m]  BitRate[SchedSelIdx]
where sizeInbits[m] is the size in bits of decoding unit m, counting the bits of the VCL NAL units and the filler data NAL units for the Type I conformance point or all bits of the Type II bitstream for the Type II conformance point, where the Type I and Type II conformance points are as shown in Figure C‑1.
The values of SchedSelIdx, BitRate[SchedSelIdx], and CpbSize[SchedSelIdx] are constrained as follows:
–	If the content of the selected hrd_parameters() syntax structures for the access unit containing decoding unit m and the previous access unit differ, the HSS selects a value SchedSelIdx1 of SchedSelIdx from among the values of SchedSelIdx provided in the selected hrd_parameters() syntax structures for the access unit containing decoding unit m that results in a BitRate[SchedSelIdx1] or CpbSize[SchedSelIdx1] for the access unit containing decoding unit m. The value of BitRate[SchedSelIdx1] or CpbSize[SchedSelIdx1] may differ from the value of BitRate[SchedSelIdx0] or CpbSize[SchedSelIdx0] for the value SchedSelIdx0 of SchedSelIdx that was in use for the previous access unit.
–	Otherwise, the HSS continues to operate with the previous values of SchedSelIdx, BitRate[SchedSelIdx] and CpbSize[SchedSelIdx].
When the HSS selects values of BitRate[SchedSelIdx] or CpbSize[SchedSelIdx] that differ from those of the previous access unit, the following applies:
–	The variable BitRate[SchedSelIdx] comes into effect at the initial CPB arrival time of the current access unit.
–	The variable CpbSize[SchedSelIdx] comes into effect as follows:
–	If the new value of CpbSize[SchedSelIdx] is greater than the old CPB size, it comes into effect at the initial CPB arrival time of the current access unit.
–	Otherwise, the new value of CpbSize[SchedSelIdx] comes into effect at the CPB removal time of the current access unit.
C.2.3 [bookmark: _Ref317100505][bookmark: _Toc317198880][bookmark: _Ref330937524][bookmark: _Ref330937761][bookmark: _Toc364083321][bookmark: _Toc373832685]Timing of decoding unit removal and decoding of decoding unit
The variables InitCpbRemovalDelay[SchedSelIdx], InitCpbRemovalDelayOffset[SchedSelIdx], CpbDelayOffset, and DpbDelayOffset are derived as follows:
–	If one or more of the following conditions are true, CpbDelayOffset is set equal to the value of the buffering period SEI message syntax element cpb_delay_offset, DpbDelayOffset is set equal to the value of the buffering period SEI message syntax element dpb_delay_offset, and InitCpbRemovalDelay[SchedSelIdx] and InitCpbRemovalDelayOffset[SchedSelIdx] are set equal to the values of the buffering period SEI message syntax elements nal_initial_alt_cpb_removal_delay[SchedSelIdx] and nal_initial_alt_cpb_removal_offset[SchedSelIdx], respectively, when NalHrdModeFlag is equal to 1, or vcl_initial_alt_cpb_removal_delay[SchedSelIdx] and vcl_initial_alt_cpb_removal_offset[SchedSelIdx], respectively, when NalHrdModeFlag is equal to 0, where the buffering period SEI message containing the syntax elements is selected as specified in subclause C.1:
–	Access unit 0 is a BLA access unit for which each coded picture has nal_unit_type equal to BLA_W_RADL or BLA_N_LP, and the value of irap_cpb_params_present_flag of the buffering period SEI message is equal to 1.
–	Access unit 0 is a BLA access unit for which each coded picture has nal_unit_type equal to BLA_W_LP or is a CRA access unit, and the value of irap_cpb_params_present_flag of the buffering period SEI message is equal to 1, and one or more of the following conditions are true:
–	UseAltCpbParamsFlag for access unit 0 is equal to 1.
–	DefaultInitCpbParamsFlag is equal to 0.
–	Otherwise, InitCpbRemovalDelay[SchedSelIdx] and InitCpbRemovalDelayOffset[SchedSelIdx] are set equal to the values of the buffering period SEI message syntax elements nal_initial_cpb_removal_delay[SchedSelIdx] and nal_initial_cpb_removal_offset[SchedSelIdx], respectively, when NalHrdModeFlag is equal to 1, or vcl_initial_cpb_removal_delay[SchedSelIdx] and vcl_initial_cpb_removal_offset[SchedSelIdx], respectively, when NalHrdModeFlag is equal to 0, where the buffering period SEI message containing the syntax elements is selected as specified in subclause C.1, CpbDelayOffset and DpbDelayOffset are both set equal to 0.
The nominal removal time of the access unit n from the CPB is specified as follows:
–	If access unit n is the access unit with n equal to 0 (the access unit that initializes the HRD), the nominal removal time of the access unit from the CPB is specified by:
[bookmark: tr_Eqn]AuNominalRemovalTime[0] = InitCpbRemovalDelay[SchedSelIdx]  90000	(C‑10)
–	Otherwise, the following applies:
–	When access unit n is the first access unit of a buffering period that does not initialize the HRD, the following applies:
The nominal removal time of the access unit n from the CPB is specified by:
[bookmark: NominalRemovalTime]if(!concatenationFlag) {
	baseTime = AuNominalRemovalTime[firstPicInPrevBuffPeriod]
	tmpCpbRemovalDelay = AuCpbRemovalDelayVal
} else {
	baseTime = AuNominalRemovalTime[prevNonDiscardablePic]
	tmpCpbRemovalDelay =
		Max((auCpbRemovalDelayDeltaMinus1 + 1),	(C‑11)
			Ceil((InitCpbRemovalDelay[SchedSelIdx]  90000 +
				AuFinalArrivalTime[n − 1] − AuNominalRemovalTime[n − 1])  ClockTick))
}
AuNominalRemovalTime[n] = baseTime + ClockTick * (tmpCpbRemovalDelay − CpbDelayOffset)
where AuNominalRemovalTime[firstPicInPrevBuffPeriod] is the nominal removal time of the first access unit of the previous buffering period, AuNominalRemovalTime[prevNonDiscardablePic] is the nominal removal time of the preceding access unit in decoding order, each picture of which is with TemporalId equal to 0 that is not a RASL, RADL or sub-layer non-reference picture, AuCpbRemovalDelayVal is the value of AuCpbRemovalDelayVal derived according to au_cpb_removal_delay_minus1 in the picture timing SEI message, selected as specified in subclause C.1, associated with access unit n, and concatenationFlag and auCpbRemovalDelayDeltaMinus1 are the values of the syntax elements concatenation_flag and au_cpb_removal_delay_delta_minus1, respectively, in the buffering period SEI message, selected as specified in subclause C.1, associated with access unit n.
After the derivation of the nominal CPB removal time and before the derivation of the DPB output time of access unit n, the values of CpbDelayOffset and DpbDelayOffset are updated as follows:
–	If one or more of the following conditions are true, CpbDelayOffset is set equal to the value of the buffering period SEI message syntax element cpb_delay_offset, and DpbDelayOffset is set equal to the value of the buffering period SEI message syntax element dpb_delay_offset, where the buffering period SEI message containing the syntax elements is selected as specified in subclause C.1:
–	Access unit n is a BLA access unit for which each coded picture has nal_unit_type equal to BLA_W_RADL or BLA_N_LP, and the value of irap_cpb_params_present_flag of the buffering period SEI message is equal to 1.
–	Access unit n is a BLA access unit for which each coded picture has nal_unit_type equal to BLA_W_LP or is a CRA access unit, and the value of irap_cpb_params_present_flag of the buffering period SEI message is equal to 1, and UseAltCpbParamsFlag for access unit n is equal to 1.
–	Otherwise, CpbDelayOffset and DpbDelayOffset are both set equal to 0.
–	When access unit n is not the first access unit of a buffering period, the nominal removal time of the access unit n from the CPB is specified by:
AuNominalRemovalTime[n] = AuNominalRemovalTime[firstPicInCurrBuffPeriod] +
		ClockTick * (AuCpbRemovalDelayVal − CpbDelayOffset)	(C‑12)
where AuNominalRemovalTime[firstPicInCurrBuffPeriod] is the nominal removal time of the first access unit of the current buffering period, and AuCpbRemovalDelayVal is the value of AuCpbRemovalDelayVal derived according to au_cpb_removal_delay_minus1 in the picture timing SEI message, selected as specified in subclause C.1, associated with access unit n.
When SubPicHrdFlag is equal to 1, the following applies:
–	The variable duCpbRemovalDelayInc is derived as follows:
–	If sub_pic_cpb_params_in_pic_timing_sei_flag is equal to 0, duCpbRemovalDelayInc is set equal to the value of du_spt_cpb_removal_delay_increment in the decoding unit information SEI message, selected as specified in subclause C.1, associated with decoding unit m.
–	Otherwise, if du_common_cpb_removal_delay_flag is equal to 0, duCpbRemovalDelayInc is set equal to the value of du_cpb_removal_delay_increment_minus1[i] + 1 for decoding unit m in the picture timing SEI message, selected as specified in subclause C.1, associated with access unit n, where the value of i is 0 for the first num_nalus_in_du_minus1[0] + 1 consecutive NAL units in the access unit that contains decoding unit m, 1 for the subsequent num_nalus_in_du_minus1[1] + 1 NAL units in the same access unit, 2 for the subsequent num_nalus_in_du_minus1[2] + 1 NAL units in the same access unit, etc.
–	Otherwise, duCpbRemovalDelayInc is set equal to the value of du_common_cpb_removal_delay_increment_minus1 + 1 in the picture timing SEI message, selected as specified in subclause C.1, associated with access unit n.
–	The nominal removal time of decoding unit m from the CPB is specified as follows, where AuNominalRemovalTime[n] is the nominal removal time of access unit n:
–	If decoding unit m is the last decoding unit in access unit n, the nominal removal time of decoding unit m DuNominalRemovalTime[m] is set equal to AuNominalRemovalTime[n].
–	Otherwise (decoding unit m is not the last decoding unit in access unit n), the nominal removal time of decoding unit m DuNominalRemovalTime[m] is derived as follows:
if(sub_pic_cpb_params_in_pic_timing_sei_flag)
	DuNominalRemovalTime[m] = DuNominalRemovalTime[m + 1] −
		ClockSubTick * duCpbRemovalDelayInc	(C‑13)
else
	DuNominalRemovalTime[m] = AuNominalRemovalTime[n] −
		ClockSubTick * duCpbRemovalDelayInc
If SubPicHrdFlag is equal to 0, the removal time of access unit n from the CPB is specified as follows, where AuFinalArrivalTime[n] and AuNominalRemovalTime[n] are the final CPB arrival time and nominal CPB removal time, respectively, of access unit n:
if(!low_delay_hrd_flag[HighestTid] | | AuNominalRemovalTime[n] >= AuFinalArrivalTime[n])
	AuCpbRemovalTime[n] = AuNominalRemovalTime[n]
else				(C‑14)
	AuCpbRemovalTime[n] = AuNominalRemovalTime[n] + ClockTick *
		Ceil((AuFinalArrivalTime[n] − AuNominalRemovalTime[n])  ClockTick)
NOTE 1 – When low_delay_hrd_flag[HighestTid] is equal to 1 and AuNominalRemovalTime[n] is less than AuFinalArrivalTime[n], the size of access unit n is so large that it prevents removal at the nominal removal time.
Otherwise (SubPicHrdFlag is equal to 1), the removal time of decoding unit m from the CPB is specified as follows:
–	When the bitstream-specific CPB operation is used or when the current DU belongs to the base bitstream partition, the following applies:
if(!low_delay_hrd_flag[HighestTid] | | DuNominalRemovalTime[m] >= DuFinalArrivalTime[m])
	DuCpbRemovalTime[m] = DuNominalRemovalTime[m]
else			(C‑15)
	DuCpbRemovalTime[m] = DuFinalArrivalTime[m]
NOTE 2 – When low_delay_hrd_flag[HighestTid] is equal to 1 and DuNominalRemovalTime[m] is less than DuFinalArrivalTime[m], the size of decoding unit m is so large that it prevents removal at the nominal removal time.
–	When the bitstream-partition-specific CPB operation is used and cbr_flag[SchedSelIdx] is equal to 0, the following applies:
–	Let refDuCpbRemovalTime be equal to the CPB removal time of the previous DU preceding the current DU in decoding order (regardless of the bitstream partitions to which the previous DU and the current DU belong).
–	The variable DuCpbRemovalTime[m] is modified as follows:
DuCpbRemovalTime[m] = Max(DuCpbRemovalTime[m], refDuCpbRemovalTime)	(C‑16)
If SubPicHrdFlag is equal to 0, at the CPB removal time of access unit n, the access unit is instantaneously decoded.
Otherwise (SubPicHrdFlag is equal to 1), at the CPB removal time of decoding unit m, the decoding unit is instantaneously decoded, and when decoding unit m is the last decoding unit of access unit n, the following applies:
–	Access unit n is considered as decoded.
–	The final CPB arrival time of access unit n, i.e. AuFinalArrivalTime[n], is set equal to the final CPB arrival time of the last decoding unit in access unit n, i.e. DuFinalArrivalTime[m].
–	The nominal CPB removal time of access unit n, i.e. AuNominalRemovalTime[n], is set equal to the nominal CPB removal time of the last decoding unit in access unit n, i.e. DuNominalRemovalTime[m].
–	The CPB removal time of access unit n, i.e. AuCpbRemovalTime[m], is set equal to the CPB removal time of the last decoding unit in access unit n, i.e. DuCpbRemovalTime[m].
C.3 [bookmark: _Toc32860492][bookmark: _Ref34217484][bookmark: _Ref36741365][bookmark: _Toc77680612][bookmark: _Toc118289210][bookmark: _Toc226456813][bookmark: _Toc248045430][bookmark: _Toc287363881][bookmark: _Toc311220029][bookmark: _Toc317198881][bookmark: _Ref326740596][bookmark: _Ref326744124][bookmark: _Toc364083322][bookmark: _Toc373832686]Operation of the decoded picture buffer (DPB)
C.3.1 [bookmark: _Toc364083323][bookmark: _Toc373832687][bookmark: _Toc32860493][bookmark: _Ref34217515][bookmark: _Toc77680619][bookmark: _Toc118289215][bookmark: _Toc226456820][bookmark: _Toc248045437][bookmark: _Toc287363882][bookmark: _Toc311220030]General
The specifications in this subclause apply independently to each set of DPB parameters selected as specified in subclause C.1.
The decoded picture buffer consists of sub-DPBs, and each sub-DPB contains picture storage buffers for storage of decoded pictures of one layer only. Each of the picture storage buffers of a sub-DPB may contain a decoded picture that is marked as "used for reference" or is held for future output.
The following applies for all decoded access units:
–	If an access unit does not contain a picture at a target output layer and alt_output_layer_flag is equal to 1, the following ordered steps apply:
–	The list nonOutputLayerPictures is the list of pictures of the access unit with PicOutputFlag equal to 1 and with nuh_layer_id values that are included in the TargetDecLayerIdList and that are not on target output layers.
–	The picture with the highest nuh_layer_id value among the list nonOutputLayerPictures is removed from the list nonOutputLayerPictures.
–	PicOutputFlag for each picture that is included in the list nonOutputLayerPictures is set equal to 0.
–	Otherwise, PicOutputFlag for pictures that are not included in a target output layer is set equal to 0.
The processes specified in subclauses C.3.2, C.3.3 and C.3.4 are sequentially applied as specified below, and are applied independently for each layer, starting from the base layer, in increasing order of nuh_layer_id values of the layers in the bitstream. When these processes are applied for a particular layer, only the sub-DPB for the particular layer is affected. In the descriptions of these processes, the DPB refers to the sub-DPB for the particular layer, and the particular layer is referred to as the current layer.
NOTE – In the operation of output timing DPB, decoded pictures with PicOutputFlag equal to 1 in the same access unit are output consecutively in ascending order of the nuh_layer_id values of the decoded pictures.
Let picture n and the current picture be the coded picture or decoded picture of the access unit n for a particular value of nuh_layer_id, wherein n is a non-negative integer number. [Ed. (CY&YK): This probably is not a good definition of picture n especially if each picture is a DU. It is a temporary term defined only for DPB operations, further improvements are needed.]
C.3.2 [bookmark: _Toc364083324][bookmark: _Ref373336683][bookmark: _Ref373336836][bookmark: _Toc373832688]Removal of pictures from the DPB
When the current picture is not picture 0 in the current layer, the removal of pictures in the current layer from the DPB before decoding of the current picture, i.e. picture n, but after parsing the slice header of the first slice of the current picture, happens instantaneously at the CPB removal time of the first decoding unit of the current picture and proceeds as follows:
–	The decoding process for RPS as specified in subclause 8.3.2 is invoked.
–	When the current picture is an IRAP picture with NoRaslOutputFlag equal to 1, or the base layer picture in the current access unit is an IRAP picture with NoRaslOutputFlag equal to 1 and NoClrasOutputFlag is equal to 1, the following ordered steps are applied:
1.	The variable NoOutputOfPriorPicsFlag is derived for the decoder under test as follows:
–	If the current picture is a CRA picture with NoRaslOutputFlag equal to 1, NoOutputOfPriorPicsFlag is set equal to 1 (regardless of the value of no_output_of_prior_pics_flag).
–	Otherwise, if the current picture is an IRAP picture with NoRaslOutputFlag equal to 1 and the value of pic_width_in_luma_samples, pic_height_in_luma_samples, or sps_max_dec_pic_buffering_minus1[HighestTid] derived from the active SPS for the current layer is different from the value of pic_width_in_luma_samples, pic_height_in_luma_samples, or sps_max_dec_pic_buffering_minus1[HighestTid], respectively, derived from the SPS that was active for the current layer when decoding the preceding picture in the current layer, NoOutputOfPriorPicsFlag may (but should not) be set to 1 by the decoder under test, regardless of the value of no_output_of_prior_pics_flag.
NOTE – Although setting NoOutputOfPriorPicsFlag equal to no_output_of_prior_pics_flag is preferred under these conditions, the decoder under test is allowed to set NoOutputOfPriorPicsFlag to 1 in this case.
–	Otherwise, if the current picture is an IRAP picture with NoRaslOutputFlag equal to 1, NoOutputOfPriorPicsFlag is set equal to no_output_of_prior_pics_flag.
–	Otherwise (the current picture is not an IRAP picture with NoRaslOutputFlag equal to 1, the base layer picture in the current access unit is an IRAP picture with NoRaslOutputFlag equal to 1, and NoClrasOutputFlag is equal to 1), NoOutputOfPriorPicsFlag is set equal to 1.
2.	The value of NoOutputOfPriorPicsFlag derived for the decoder under test is applied for the HRD, such that when the value of NoOutputOfPriorPicsFlag is equal to 1, all picture storage buffers in the DPB are emptied without output of the pictures they contain, and the DPB fullness is set equal to 0.
–	When both of the following conditions are true for any pictures k in the DPB, all such pictures k in the DPB are removed from the DPB:
–	picture k is marked as "unused for reference"
–	picture k has PicOutputFlag equal to 0 or its DPB output time is less than or equal to the CPB removal time of the first decoding unit (denoted as decoding unit m) of the current picture n; i.e. DpbOutputTime[k] is less than or equal to CpbRemovalTime(m)
–	For each picture that is removed from the DPB, the DPB fullness is decremented by one.
C.3.3 [bookmark: _Toc364083325][bookmark: _Ref373336691][bookmark: _Ref373337767][bookmark: _Toc373832689]Picture output
The processes specified in this subclause happen instantaneously at the CPB removal time of access unit n, AuCpbRemovalTime[n].
When picture n has PicOutputFlag equal to 1, its DPB output time DpbOutputTime[n] is derived as follows, where the variable firstPicInBufferingPeriodFlag is equal to 1 if access unit n is the first access unit of a buffering period and 0 otherwise:
if(!SubPicHrdFlag) {
	DpbOutputTime[n] = AuCpbRemovalTime[n] + ClockTick * picDpbOutputDelay	(C‑17)
	if(firstPicInBufferingPeriodFlag)
		DpbOutputTime[n] −= ClockTick * DpbDelayOffset
} else
	DpbOutputTime[n] = AuCpbRemovalTime[n] + ClockSubTick * picSptDpbOutputDuDelay
where picDpbOutputDelay is the value of pic_dpb_output_delay in the picture timing SEI message associated with access unit n, and picSptDpbOutputDuDelay is the value of pic_spt_dpb_output_du_delay, when present, in the decoding unit information SEI messages associated with access unit n, or the value of pic_dpb_output_du_delay in the picture timing SEI message associated with access unit n when there is no decoding unit information SEI message associated with access unit n or no decoding unit information SEI message associated with access unit n has pic_spt_dpb_output_du_delay present.
NOTE – When the syntax element pic_spt_dpb_output_du_delay is not present in any decoding unit information SEI message associated with access unit n, the value is inferred to be equal to pic_dpb_output_du_delay in the picture timing SEI message associated with access unit n.
The output of the current picture is specified as follows:
–	If PicOutputFlag is equal to 1 and DpbOutputTime[n] is equal to AuCpbRemovalTime[n], the current picture is output.
–	Otherwise, if PicOutputFlag is equal to 0, the current picture is not output, but will be stored in the DPB as specified in subclause C.3.4.
–	Otherwise (PicOutputFlag is equal to 1 and DpbOutputTime[n] is greater than AuCpbRemovalTime[n]), the current picture is output later and will be stored in the DPB (as specified in subclause C.3.4) and is output at time DpbOutputTime[n] unless indicated not to be output by the decoding or inference of no_output_of_prior_pics_flag equal to 1 at a time that precedes DpbOutputTime[n].
When output, the picture is cropped, using the conformance cropping window specified in the active SPS for the layer containing the picture.
When picture n is a picture that is output and is not the last picture of the bitstream that is output, the value of the variable DpbOutputInterval[n] is derived as follows:
[bookmark: DeltaTo]DpbOutputInterval[n] = DpbOutputTime[nextPicInOutputOrder] − DpbOutputTime[n]	(C‑18)
where nextPicInOutputOrder is the picture that follows picture n in output order and has PicOutputFlag equal to 1.
C.3.4 [bookmark: _Toc364083326][bookmark: _Ref373336701][bookmark: _Ref373336745][bookmark: _Toc373832690]Current decoded picture marking and storage
The process specified in this subclause happens instantaneously at the CPB removal time of the last decoding unit of the current picture. [Ed. (MH): This change might not comply with version 1, because version 1 decoders would mark and store the base-layer picture at the CPB removal time of the AU, which can be later than the CPB removal time of the base-layer picture.]
The current decoded picture is stored in the DPB in an empty picture storage buffer, the DPB fullness is incremented by one, and the current picture is marked as "used for short-term reference".
C.4 [bookmark: _Toc364083327][bookmark: _Ref373337792][bookmark: _Ref373337954][bookmark: _Toc373832691]Bitstream conformance
A bitstream of coded data conforming to this Specification shall fulfil all requirements specified in this subclause.
The bitstream shall be constructed according to the syntax, semantics, and constraints specified in this Specification outside of this annex.
The first access unit in a bitstream shall be an IRAP access unit.
The bitstream is tested by the HRD for conformance as specified in subclause C.1.
Let currPicLayerId be equal to the nuh_layer_id of the current picture.
For each current picture, let the variables maxPicOrderCnt and minPicOrderCnt be set equal to the maximum and the minimum, respectively, of the PicOrderCntVal values of the following pictures with nuh_layer_id equal to currPicLayerId:
–	The current picture.
–	The previous picture in decoding order that has TemporalId equal to 0 and that is not a RASL picture, a RADL picture, or a sub-layer non-reference picture.
–	The short-term reference pictures in the RPS of the current picture.
–	All pictures n that have PicOutputFlag equal to 1, AuCpbRemovalTime[n] less than AuCpbRemovalTime[currPic], and DpbOutputTime[n] greater than or equal to AuCpbRemovalTime[currPic], where currPic is the current picture. [Ed. (CY): clarify the AuCpbRemovalTime of a picture to be that of the containing AU.]
All of the following conditions shall be fulfilled for each of the bitstream conformance tests:
1. For each access unit n, with n greater than 0, associated with a buffering period SEI message, let the variable deltaTime90k[n] be specified as follows:
deltaTime90k[n] = 90000 * (AuNominalRemovalTime[n] − AuFinalArrivalTime[n − 1])	(C‑19)
The value of InitCpbRemovalDelay[SchedSelIdx] is constrained as follows:
–	If cbr_flag[SchedSelIdx] is equal to 0, the following condition shall be true:
InitCpbRemovalDelay[SchedSelIdx] <= Ceil(deltaTime90k[n])	(C‑20)
–	Otherwise (cbr_flag[SchedSelIdx] is equal to 1), the following condition shall be true:
Floor(deltaTime90k[n]) <= 	InitCpbRemovalDelay[SchedSelIdx] <= Ceil(deltaTime90k[n])	(C‑21)
NOTE 1 – The exact number of bits in the CPB at the removal time of each picture may depend on which buffering period SEI message is selected to initialize the HRD. Encoders must take this into account to ensure that all specified constraints must be obeyed regardless of which buffering period SEI message is selected to initialize the HRD, as the HRD may be initialized at any one of the buffering period SEI messages.
2. A CPB overflow is specified as the condition in which the total number of bits in the CPB is greater than the CPB size. The CPB shall never overflow.
3. A CPB underflow is specified as the condition in which the nominal CPB removal time of decoding unit m DuNominalRemovalTime(m) is less than the final CPB arrival time of decoding unit m DuFinalArrivalTime(m) for at least one value of m. When low_delay_hrd_flag[HighestTid] is equal to 0, the CPB shall never underflow.
4. When SubPicHrdFlag is equal to 1, low_delay_hrd_flag[HighestTid] is equal to 1, and the nominal removal time of a decoding unit m of access unit n is less than the final CPB arrival time of decoding unit m (i.e. DuNominalRemovalTime[m] < DuFinalArrivalTime[m]), the nominal removal time of access unit n shall be less than the final CPB arrival time of access unit n (i.e. AuNominalRemovalTime[n] < AuFinalArrivalTime[n]).
5. When the bitstream-partition-specific CPB operation is used and cbr_flag[SchedSelIdx] is equal to 1, DuCpbRemovalTime[m] shall be greater than or equal to the CPB removal time of the previous DU preceding the current DU in decoding order (regardless of the bitstream partitions to which the previous DU and the current DU belong) for any decoding unit m in bitstream partitions with index greater than 0.
6. The nominal removal times of access units from the CPB (starting from the second access unit in decoding order) shall satisfy the constraints on AuNominalRemovalTime[n] and AuCpbRemovalTime[n] expressed in subclauses A.4.1 through A.4.2.
7. For each current picture, after invocation of the process for removal of pictures from the sub-DPB as specified in subclause C.3.2, the number of decoded pictures in the sub-DPB for the current layer, including all pictures n in the current layer that are marked as "used for reference", or that have PicOutputFlag equal to 1 and AuCpbRemovalTime[n] less than AuCpbRemovalTime[currPic], where currPic is the current picture, shall be less than or equal to sps_max_dec_pic_buffering_minus1[HighestTid] when currPicLayerId is equal to 0 or max_vps_dec_pic_buffering_minus1[TargetOptLayerSetIdx][currPicLayerId][HighestTid] when currPicLayerId is greater than 0.
8. All reference pictures shall be present in the DPB when needed for prediction. Each picture that has PicOutputFlag equal to 1 shall be present in the DPB at its DPB output time unless it is removed from the DPB before its output time by one of the processes specified in subclause C.3.
9. For each current picture, the value of maxPicOrderCnt − minPicOrderCnt shall be less than MaxPicOrderCntLsb / 2.
10. The value of DpbOutputInterval[n] as given by Equation C‑18, which is the difference between the output time of an access unit and that of the first access unit following it in output order and having PicOutputFlag equal to 1, shall satisfy the constraint expressed in subclause A.4.1 for the profile, tier and level specified in the bitstream using the decoding process specified in clauses 2 through 10. [Ed. (MH): This constraint has to be updated, since 1) it assumes a single profile-tier-level combination for a bitstream (as if the bitstream were a single-layer bitstream), and 2) it refers to the decoding process in clauses 2 to 10 (while now also the decoding process of extensions should somehow be referred to).]
11. For each current picture, when sub_pic_cpb_params_in_pic_timing_sei_flag is equal to 1, let tmpCpbRemovalDelaySum be derived as follows:
tmpCpbRemovalDelaySum = 0
for(i = 0; i < num_decoding_units_minus1; i++)	(C‑22)
	tmpCpbRemovalDelaySum += du_cpb_removal_delay_increment_minus1[i] + 1
The value of ClockSubTick * tmpCpbRemovalDelaySum shall be equal to the difference between the nominal CPB removal time of the current access unit and the nominal CPB removal time of the first decoding unit in the current access unit in decoding order.
12. [bookmark: _Ref34233092][bookmark: _Toc77680620][bookmark: _Toc118289216][bookmark: _Toc226456821][bookmark: _Toc248045438][bookmark: _Toc287363883][bookmark: _Toc311220031][bookmark: _Toc317198883]For any two pictures m and n in the same CVS, when DpbOutputTime[m] is greater than DpbOutputTime[n], the PicOrderCntVal of picture m shall be greater than the PicOrderCntVal of picture n.
NOTE 2 – All pictures of an earlier CVS in decoding order that are output are output before any pictures of a later CVS in decoding order. Within any particular CVS, the pictures that are output are output in increasing PicOrderCntVal order.
C.5 [bookmark: _Toc364083328][bookmark: _Toc373832692]Decoder conformance
C.5.1 [bookmark: _Toc364083329][bookmark: _Toc373832693]General
A decoder conforming to this Specification shall fulfil all requirements specified in this subclause.
A decoder claiming conformance to a specific profile, tier and level shall be able to successfully decode all bitstreams that conform to the bitstream conformance requirements specified in subclause C.4, in the manner specified in Annex A, provided that all VPSs, SPSs and PPSs referred to in the VCL NAL units, and appropriate buffering period and picture timing SEI messages are conveyed to the decoder, in a timely manner, either in the bitstream (by non-VCL NAL units), or by external means not specified in this Specification.
When a bitstream contains syntax elements that have values that are specified as reserved and it is specified that decoders shall ignore values of the syntax elements or NAL units containing the syntax elements having the reserved values, and the bitstream is otherwise conforming to this Specification, a conforming decoder shall decode the bitstream in the same manner as it would decode a conforming bitstream and shall ignore the syntax elements or the NAL units containing the syntax elements having the reserved values as specified.
There are two types of conformance that can be claimed by a decoder: output timing conformance and output order conformance.
To check conformance of a decoder, test bitstreams conforming to the claimed profile, tier and level, as specified in subclause C.4 are delivered by a hypothetical stream scheduler (HSS) both to the HRD and to the decoder under test (DUT). All cropped decoded pictures output by the HRD shall also be output by the DUT, each cropped decoded picture output by the DUT shall be a picture with PicOutputFlag equal to 1, and, for each such cropped decoded picture output by the DUT, the values of all samples that are output shall be equal to the values of the samples produced by the specified decoding process.
For output timing decoder conformance, the HSS operates as described above, with delivery schedules selected only from the subset of values of SchedSelIdx for which the bit rate and CPB size are restricted as specified in Annex A for the specified profile, tier and level, or with "interpolated" delivery schedules as specified below for which the bit rate and CPB size are restricted as specified in Annex A. The same delivery schedule is used for both the HRD and the DUT.
When the HRD parameters and the buffering period SEI messages are present with cpb_cnt_minus1[HighestTid] greater than 0, the decoder shall be capable of decoding the bitstream as delivered from the HSS operating using an "interpolated" delivery schedule specified as having peak bit rate r, CPB size c(r), and initial CPB removal delay (f(r)r) as follows:
 = (r − BitRate[SchedSelIdx − 1])  (BitRate[SchedSelIdx] − BitRate[SchedSelIdx − 1]),	(C‑23)
c(r) =  * CpbSize[SchedSelIdx] + (1 −   * CpbSize[SchedSelIdx − 1],	(C‑24)
f(r) = InitCpbRemovalDelay[SchedSelIdx] * BitRate[SchedSelIdx] +
		(1 −  InitCpbRemovalDelay[SchedSelIdx − 1] * BitRate[SchedSelIdx − 1]	(C‑25)
for any SchedSelIdx > 0 and r such that BitRate[SchedSelIdx − 1] <= r <= BitRate[SchedSelIdx] such that r and c(r) are within the limits as specified in Annex A for the maximum bit rate and buffer size for the specified profile, tier and level.
NOTE 1 – InitCpbRemovalDelay[SchedSelIdx] can be different from one buffering period to another and have to be re-calculated.
For output timing decoder conformance, an HRD as described above is used and the timing (relative to the delivery time of the first bit) of picture output is the same for both the HRD and the DUT up to a fixed delay.
For output order decoder conformance, the following applies:
–	The HSS delivers the bitstream BitstreamToDecode to the DUT "by demand" from the DUT, meaning that the HSS delivers bits (in decoding order) only when the DUT requires more bits to proceed with its processing.
NOTE 2 – This means that for this test, the coded picture buffer of the DUT could be as small as the size of the largest decoding unit.
–	A modified HRD as described below is used, and the HSS delivers the bitstream to the HRD by one of the schedules specified in the bitstream BitstreamToDecode such that the bit rate and CPB size are restricted as specified in Annex A. The order of pictures output shall be the same for both the HRD and the DUT.
–	The HRD CPB size is given by CpbSize[SchedSelIdx] as specified in subclause E.3.3, where SchedSelIdx and the HRD parameters are selected as specified in subclause C.1. The DPB size is given by sps_max_dec_pic_buffering_minus1[HighestTid] + 1. Removal time from the CPB for the HRD is the final bit arrival time and decoding is immediate. The operation of the DPB of this HRD is as described in subclauses C.5.2 through C.5.2.3.
C.5.2 [bookmark: _Toc256632243][bookmark: _Toc248045439][bookmark: _Toc226456822][bookmark: _Toc118289217][bookmark: _Toc77680621][bookmark: _Ref41705644][bookmark: _Toc317198884][bookmark: _Ref343184204][bookmark: _Toc364083330][bookmark: _Toc373832694]Operation of the output order DPB
C.5.2.1 [bookmark: _Toc364083331][bookmark: _Toc373832695][bookmark: _Ref34218584]General
The decoded picture buffer consists of sub-DPBs, and each sub-DPB contains picture storage buffers for storage of decoded pictures of one layer only. Each of the picture storage buffers of a sub-DPB contains a decoded picture that is marked as "used for reference" or is held for future output.
The process for output and removal of pictures from the DPB as specified in subclause C.5.2.2 is invoked, followed by the invocation of the process for picture decoding, marking, additional bumping, and storage as specified in subclause C.5.2.3. The "bumping" process is specified in subclause C.5.2.4 and is invoked as specified in subclauses C.5.2.2 and C.5.2.3.
These processes are applied independently for each layer, starting from the base layer, in increasing order of the nuh_layer_id values of the layers in the bitstream. When these processes are applied for a particular layer, only the sub-DPB for the particular layer is affected except for the "bumping" process, which may crop and output pictures, mark pictures as "not needed for output" and empty picture storage buffers for any layer.
NOTE – In the operation of output order DPB, same as in the operation of output timing DPB, decoded pictures with PicOutputFlag equal to 1 in the same access unit are also output consecutively in ascending order of the nuh_layer_id values of the decoded pictures.
Let picture n and the current picture be the coded picture or decoded picture of the access unit n for a particular value of nuh_layer_id, wherein n is a non-negative integer number.
When these processes are applied for a layer with nuh_layer_id equal to currLayerId, the variables MaxNumReorderPics, MaxLatencyIncreasePlus1, MaxLatencyPictures, and MaxDecPicBufferingMinus1 are derived as follows:
–	If a CVS conforming to one or more of the profiles specified in Annex G or H is decoded by applying the decoding process specified in clauses 2−10, Annex F, and Annex G or H, the following applies:
· MaxNumReorderPics is set equal to max_vps_num_reorder_pics[TargetOptLayerSetIdx][HighestTid] of the active VPS.
· MaxLatencyIncreasePlus1 is set equal to the value of the syntax element max_vps_latency_increase_plus1[TargetOptLayerSetIdx][HighestTid] of the active VPS,.
· MaxLatencyPictures is set equal to VpsMaxLatencyPictures[TargetOptLayerSetIdx][HighestTid] of the active VPS.
· MaxDecPicBufferingMinus1 is set equal to the value of the syntax element max_vps_dec_pic_buffering_minus1[TargetOptLayerSetIdx][currLayerId][HighestTid] of the active VPS.
[bookmark: _Toc256632246][bookmark: _Toc248045442][bookmark: _Toc226456825][bookmark: _Toc118289220][bookmark: _Toc77680624][bookmark: _Ref81126026][bookmark: _Ref306292151][bookmark: _Toc317198885][bookmark: _Ref343074962][bookmark: _Ref347102653][bookmark: _Toc364083332][bookmark: _Toc256632244][bookmark: _Toc248045440][bookmark: _Toc226456823][bookmark: _Toc118289218][bookmark: _Toc77680622][bookmark: _Ref81126005]–	Otherwise (a CVS conforming to one or more of the profiles specified in Annex A is decoded by applying the decoding process specified in clauses 2−10), the following applies:
· MaxNumReorderPics is set equal to sps_max_num_reorder_pics[HighestTid] of the active SPS for the base layer.
· MaxLatencyIncreasePlus1 is set equal to sps_max_latency_increase_plus1[HighestTid] of the active SPS for the base layer.
· MaxLatencyPictures is set equal to SpsMaxLatencyPictures[HighestTid] of the active SPS for the base layer.
· MaxDecPicBufferingMinus1 is set equal to sps_max_dec_pic_buffering_minus1[HighestTid] of the active SPS for the base layer.
C.5.2.2 [bookmark: _Ref373337078][bookmark: _Toc373832696]Output and removal of pictures from the DPB
When the current picture is not picture 0 in the current layer, the output and removal of pictures in the current layer from the DPB before the decoding of the current picture , i.e. picture n, but after parsing the slice header of the first slice of the current picture, happens instantaneously when the first decoding unit of the current picture is removed from the CPB and proceeds as follows:
–	The decoding process for RPS as specified in subclause 8.3.2 is invoked.
–	If the current picture is an IRAP picture with NoRaslOutputFlag equal to 1, or the base layer picture in the current access unit is an IRAP picture with NoRaslOutputFlag equal to 1 and NoClrasOutputFlag is equal to 1, the following ordered steps are applied:
1.	The variable NoOutputOfPriorPicsFlag is derived for the decoder under test as follows:
–	If the current picture is a CRA picture with NoRaslOutputFlag equal to 1, NoOutputOfPriorPicsFlag is set equal to 1 (regardless of the value of no_output_of_prior_pics_flag).
–	Otherwise, if the current picture is an IRAP picture with NoRaslOutputFlag equal to 1 and the value of pic_width_in_luma_samples, pic_height_in_luma_samples, or sps_max_dec_pic_buffering_minus1[HighestTid] derived from the active SPS for the current layer is different from the value of pic_width_in_luma_samples, pic_height_in_luma_samples, or sps_max_dec_pic_buffering_minus1[HighestTid], respectively, derived from the SPS that was active for the current layer when decoding the preceding picture in the current layer, NoOutputOfPriorPicsFlag may (but should not) be set to 1 by the decoder under test, regardless of the value of no_output_of_prior_pics_flag.
NOTE – Although setting NoOutputOfPriorPicsFlag equal to no_output_of_prior_pics_flag is preferred under these conditions, the decoder under test is allowed to set NoOutputOfPriorPicsFlag to 1 in this case.
–	Otherwise, if the current picture is an IRAP picture with NoRaslOutputFlag equal to 1, NoOutputOfPriorPicsFlag is set equal to no_output_of_prior_pics_flag.
–	Otherwise (the current picture is not an IRAP picture with NoRaslOutputFlag equal to 1, the base layer picture in the current access unit is an IRAP picture with NoRaslOutputFlag equal to 1, and NoClrasOutputFlag is equal to 1), NoOutputOfPriorPicsFlag is set equal to 1.
2.	The value of NoOutputOfPriorPicsFlag derived for the decoder under test is applied for the HRD as follows:
–	If NoOutputOfPriorPicsFlag is equal to 1, all picture storage buffers in the sub-DPB are emptied without output of the pictures they contain, and the sub-DPB fullness is set equal to 0.
–	Otherwise (NoOutputOfPriorPicsFlag is equal to 0), all picture storage buffers containing a picture that is marked as "not needed for output" and "unused for reference" are emptied (without output), and all non-empty picture storage buffers in the sub-DPB are emptied by repeatedly invoking the "bumping" process specified in subclause C.5.2.4, and the sub-DPB fullness is set equal to 0.
–	Otherwise, all picture storage buffers that contain a picture in the current layer and that are marked as "not needed for output" and "unused for reference" are emptied (without output). For each picture storage buffer that is emptied, the sub-DPB fullness is decremented by one. When one or more of the following conditions are true, the "bumping" process specified in subclause C.5.2.4 is invoked repeatedly while further decrementing the sub-DPB fullness by one for each additional picture storage buffer that is emptied, until none of the following conditions are true:
· The number of access units that contain at least one decoded picture in the DPB marked as "needed for output" is greater than MaxNumReorderPics.
· MaxLatencyIncreasePlus1 is not equal to 0 and there is at least one access units that contain at least one decoded picture in the DPB marked as "needed for output" for which the associated variable PicLatencyCount is greater than or equal to MaxLatencyPictures.
· The number of pictures in the current layer in the sub-DPB is greater than or equal to MaxDecPicBufferingMinus1 + 1.
C.5.2.3 [bookmark: _Toc347083759][bookmark: _Toc364083333][bookmark: _Ref373336972][bookmark: _Ref373338162][bookmark: _Toc373832697]Picture decoding, marking, additional bumping, and storage
The processes specified in this subclause happen instantaneously when the last decoding unit of picture n is removed from the CPB. [Ed. (MH): This change might not comply with version 1, because version 1 decoders would mark and store the base-layer picture at the CPB removal time of the AU, which can be later than the CPB removal time of the base-layer picture.]
PicOutputFlag is updated as follows:
–	If the current access unit does not contain a picture at a target output layer and alt_output_layer_flag is equal to 1, the following ordered steps apply:
–	The list nonOutputLayerPictures is the list of pictures of the access unit with PicOutputFlag equal to 1 and with nuh_layer_id values that are included in the TargetDecLayerIdList and that are not on target output layers.
–	The picture with the highest nuh_layer_id value among the list nonOutputLayerPictures is removed from the list nonOutputLayerPictures.
–	PicOutputFlag for each picture that is included in the list nonOutputLayerPictures is set equal to 0.
–	Otherwise, PicOutputFlag for pictures that are not included in a target output layer is set equal to 0.
When the current picture has PicOutputFlag equal to 1, for each picture in the current layer in the sub-DPB that is marked as "needed for output" and follows the current picture in output order, the associated variable PicLatencyCount is set equal to PicLatencyCount + 1.
The current picture is considered as decoded after the last decoding unit of the picture is decoded. The current decoded picture is stored in an empty picture storage buffer in the sub-DPB, and the following applies:
–	If the current decoded picture has PicOutputFlag equal to 1, it is marked as "needed for output" and its associated variable PicLatencyCount is set equal to 0.
–	Otherwise (the current decoded picture has PicOutputFlag equal to 0), it is marked as "not needed for output".
The current decoded picture is marked as "used for short-term reference".
When one or more of the following conditions are true, the "bumping" process specified in subclause C.5.2.4 is invoked repeatedly until none of the following conditions are true:
–	The number of access units that contain at least one decoded picture in the DPB marked as "needed for output" is greater than MaxNumReorderPics.
–	MaxLatencyIncreasePlus1 is not equal to 0 and there is at least one access units that contain at least one decoded picture in the DPB marked as "needed for output" for which the associated variable PicLatencyCount is greater than or equal to MaxLatencyPictures.
C.5.2.4 [bookmark: _Ref347083389][bookmark: _Toc364083334][bookmark: _Toc373832698]"Bumping" process
The "bumping" process consists of the following ordered steps:
1. The picture or pictures that are first for output are selected as the ones having the smallest value of PicOrderCntVal of all pictures in the DPB marked as "needed for output".
1. Each of these pictures is, in ascending nuh_layer_id order, cropped, using the conformance cropping window specified in the active SPS for the picture, the cropped picture is output, and the picture is marked as "not needed for output".
1. Each picture storage buffer that contains a picture marked as "unused for reference" and that was one of the pictures cropped and output is emptied.
C.6 [bookmark: _Ref372632240][bookmark: _Toc373832699]Demultiplexing process for deriving a bitstream partition
Inputs to this process are a bitstream, a layer identifier list bspLayerId[bspIdx] and the number of layer identifiers numBspLayerId in the layer index list bspLayerId[bspIdx].
Output of this process is a bitstream partition.
Let variable minBspLayerId be the smallest value of bspLayerId[bspIdx] with any value of bspIdx in the range of 0 to numBspLayerId – 1, inclusive.
The output bitstream partition consists of selected NAL units of the input bitstream in the same order as they appear in the input bitstream. The following NAL units of the input bitstream are omitted from the output bitstream partition, while the remaining NAL units of the input bitstream are included in the output bitstream partition:
–	Omit all NAL units that have a nuh_layer_id value other than bspLayerId[bspIdx] with any value of bspIdx in the range of 0 to numBspLayerId – 1, inclusive.
–	Omit all SEI NAL units containing a scalable nesting SEI message for which no derived nestingLayerIdList[i] contains any layer identifier value equal to bspLayerId[bspIdx] with any value of bspIdx in the range of 0 to numBspLayerId – 1, inclusive.
–	Omit all SEI NAL units containing a scalable nesting SEI message for which a derived nestingLayerIdList[i] contains a layer identifier value less than minBspLayerId.

Modify subclause D.1.1 as follows:
D [bookmark: _Toc363646323][bookmark: _Toc373499523][bookmark: _Toc373832700]Annex D

Supplemental enhancement information

(This annex forms an integral part of this Recommendation | International Standard)
D.1 [bookmark: _Toc373499524][bookmark: _Toc373832701]SEI payload syntax
D.1.1 [bookmark: _Toc373499525][bookmark: _Toc373832702]General SEI message syntax
Add rows enclosed by "...".

	sei_payload(payloadType, payloadSize) {
	Descriptor

		if(nal_unit_type = = PREFIX_SEI_NUT)
	

			if(payloadType = = 0)
	

			...
	

			else if(payloadType = = XXX)
	

				layers_not_present(payloadSize)
	

			else if(payloadType = = XXX)
	

				inter_layer_constrained_tile_sets(payloadSize)
	

			else if(payloadType = = XXX)
	

				bsp_nesting(payloadSize)
	

			else if(payloadType = = XXX)
	

				bsp_initial_arrival_time(payloadSize)
	

			else if(payloadType = = XXX)
	

				bsp_hrd(payloadSize)
	

			else if(payloadType = = XXX)
	

				three_dimensional_reference_displays_info(payloadSize)
	

			else if(payloadType = = XXX)
	

				depth_representation_info_sei(payloadSize)
	

			...
	

			else
	

				reserved_sei_message(payloadSize)
	

		else /* nal_unit_type = = SUFFIX_SEI_NUT */
	

			if(payloadType = = 3)
	

				filler_payload(payloadSize)
	

			...
	

			else
	

				reserved_sei_message(payloadSize)
	

		if(more_data_in_payload()) {
	

			if(payload_extension_present())
	

				reserved_payload_extension_data
	u(v)

			payload_bit_equal_to_one /* equal to 1 */
	f(1)

			while(!byte_aligned())
	

				payload_bit_equal_to_zero /* equal to 0 */
	f(1)

		}
	

	}
	

Modify subclause E.2.1 as follows:
E [bookmark: _Toc373499526][bookmark: _Toc373832703]Annex E

Video usability information

(This annex forms an integral part of this Recommendation | International Standard)
5. [bookmark: _Toc373499527][bookmark: _Toc373832704]VUI semantics
E.0.1 [bookmark: _Toc373499528][bookmark: _Toc373832705]VUI parameters semantics
The specifications in clause E.2.1 apply with the following modifications and additions.
video_signal_type_present_flag equal to 1 specifies that video_format, video_full_range_flag and colour_description_present_flag are present. video_signal_type_present_flag equal to 0, specifies that video_format, video_full_range_flag and colour_description_present_flag are not present. It is a requirement of bitstream conformance that, when nuh_layer_id is greater than 0, video_signal_type_present_flag shall be equal to 0.
When a current picture with nuh_layer_id layerIdCurr greater than 0 refers to an SPS containing the VUI parameter syntax structure, the values of video_format, video_full_range_flag, colour_primaries, transfer_characteristics, and matrix_coeffs are inferred as follows:
–	If the nuh_layer_id of the active SPS for the layer with nuh_layer_id equal to layerIdCurr is equal to 0, the values of video_format, video_full_range_flag, colour_primaries, transfer_characteristics, and matrix_coeffs are inferred to be equal to video_vps_format, video_full_range_vps_flag, colour_primaries_vps, transfer_characteristics_vps, and matrix_coeffs_vps, respectively, of the vps_video_signal_info_idx[j]-th video_signal_info() syntax structure in the active VPS where j is equal to LayerIdxInVps[layerIdCurr] and the values of video_format, video_full_range_flag, colour_primaries, transfer_characteristics, and matrix_coeffs of the active SPS for the layer with nuh_layer_id equal to layerIdCurr are ignored.
NOTE X – The values are inferred from the VPS when a non-base layer refers to an SPS that is also referred to by the base layer, in which case the SPS has nuh_layer_id equal to 0. For the base layer, the values of these parameters in the active SPS for the base layer apply.
–	Otherwise (the nuh_layer_id of the active SPS for the layer with nuh_layer_id equal to layerIdCurr is greater than zero), values of video_format, video_full_range_flag, colour_primaries, transfer_characteristics, and matrix_coeffs are inferred to be equal to video_vps_format, video_full_range_vps_flag, colour_primaries_vps, transfer_characteristics_vps, and matrix_coeffs_vps, respectively, of the vps_video_signal_info_idx[j]-th video_signal_info() syntax structure in the active VPS, where j is equal to LayerIdxInVps[layerIdCurr].
[Ed. (GT) Consider shortening duplicated inference specification above. What should happen when VPS VUI is not present?]
1. [bookmark: _Toc373499529][bookmark: _Toc373832706][bookmark: _Ref360893604]
Annex F

Common syntax, semantics and decoding processes for multi-layer video coding extensions
(This annex forms an integral part of this Recommendation | International Standard)
This annex specifies the common syntax, semantics and decoding processes for multi-layer video coding extensions.
6. [bookmark: _Toc303680795][bookmark: _Toc248045626][bookmark: _Toc226457159][bookmark: _Toc198881552][bookmark: _Ref198876696][bookmark: _Toc190849800][bookmark: _Toc140808416][bookmark: _Ref331513529][bookmark: _Toc373499530][bookmark: _Toc373832707]Scope
Common syntax, semantics and decoding processes for multi-layer video coding extensions are specified in this annex with reference made to clauses 2-9 and Annexes A-E and G.
F.1 [bookmark: _Toc303680796][bookmark: _Toc248045627][bookmark: _Toc226457160][bookmark: _Toc373499531][bookmark: _Toc373832708]Normative references
The specifications in clause 2 apply.
F.2 [bookmark: _Ref348089934][bookmark: _Toc373499532][bookmark: _Toc373832709]Definitions
For the purpose of this annex, the following definitions apply in addition to the definitions in clause 3. These definitions are either not present in clause 3 or replace definitions in clause 3.
[Ed. (YK&MH&CY): Definitions should be checked and potentially refined, including: BLA AU, IDR AU, CRA AU, output order, picture order count, RADL AU, RASL AU, (reference picture), STSA AU, TSA AU.]
F.3.1 access unit: A set of NAL units that are associated with each other according to a specified classification rule, are consecutive in decoding order, and contain the VCL NAL units of all coded pictures associated with the same output time and their associated non-VCL NAL units.
NOTE 1 – Pictures in the same access unit are associated with the same picture order count.
F.3.2 associated IRAP picture: The previous IRAP picture in decoding order within the same layer (if present).
F.3.3 auxiliary picture: A picture that has no normative effect on the decoding process of primary pictures.
F.3.4 base layer: A layer in which all VCL NAL units have nuh_layer_id equal to 0.
F.3.5 coded picture: A coded representation of a picture comprising VCL NAL units with a particular value of nuh_layer_id within an access unit and containing all coding tree units of the picture.
[Ed. (CY): consider defining picture by associating nuh_layer_id. In HEVC base, picture is defined as arrays of luma and chroma samples, however, it is often associated with other properties, e.g., coding tree units. So to be absolutely precise, it might be clearer and applicable to define picture as follows: picture: An array of luma samples in monochrome format or an array of luma samples and two corresponding arrays of chroma samples in 4:2:0, 4:2:2, and 4:4:4 colour format with the same value of nuh_layer_id.]
F.3.6 coded video sequence (CVS): A sequence of access units that consists, in decoding order, of an initial IRAP access unit, followed by zero or more access units that are not initial IRAP access units, including all subsequent access units up to but not including any subsequent access unit that is an initial IRAP access unit.
F.3.7 collocated sample: A sample TBD. [Ed. (GT) Maybe it is easier to define a collocated position and require collocated samples to have it?]
F.3.8 direct reference layer: A layer that may be used for inter-layer prediction of another layer.
F.3.9 indirect reference layer: A layer that is not a direct reference layer of another layer but is a direct reference layer of a layer that is a direct reference layer or indirect reference layer of a direct reference layer of the layer.
F.3.10 initial intra random access point (IRAP) access unit: An IRAP access unit in which the coded picture with nuh_layer_id equal to 0 has NoRaslOutputFlag equal to 1.
F.3.11 inter-layer prediction: A prediction in a manner that is dependent on data elements (e.g. sample values or motion vectors) of reference pictures with a different value of nuh_layer_id than that of the current picture.
F.3.12 intra random access point (IRAP) access unit: An access unit in which the coded picture with nuh_layer_id equal to 0 is an IRAP picture.
F.3.13 leading picture: A picture that is in the same layer as the associated IRAP picture and precedes the associated IRAP picture in output order.
F.3.14 non-base layer: A layer in which all VCL NAL units have the same nuh_layer_id value greater than 0.
F.3.15 picture order count: A variable that is associated with each picture and that uniquely identifies the associated picture among all pictures with the same value of nuh_layer_id in the CVS, and, when the associated picture is to be output from the decoded picture buffer, indicates the position of the associated picture in output order relative to the output order positions of the other pictures with the same value of nuh_layer_id in the same CVS that are to be output from the decoded picture buffer.
F.3.16 primary picture: a picture with a nuh_layer_id value such that AuxId[nuh_layer_id] is equal to 0.
F.3.17 reference layer picture: A picture in a direct reference layer which is used for inter-layer prediction of the current picture and is in the same access unit as the current picture.
F.3.18 reference picture list: A list of reference pictures that is used for inter prediction or inter-layer prediction of a P or B slice.
F.3.19 target output layer: A layer that is to be output.
F.3.20 trailing picture: A picture that is in the same layer as the associated IRAP picture and follows the associated IRAP picture in output order.
F.3.21 output time: A time when a decoded picture is to be output as specified in Annex C, if the timing information is present in the coded video sequence. [Ed.: Consider adding this definition in clause 3 of the main specification containing both version 1 and Annex F specifications.]
F.3.22 view: A sequence of pictures associated with the same value of ViewOrderIdx.
NOTE 2 – A view typically represents a sequence of pictures captured by one camera.
F.3 [bookmark: _Toc373499533][bookmark: _Toc373832710]Abbreviations
The specifications in clause 4 apply.
F.4 [bookmark: _Toc373499534][bookmark: _Toc373832711]Conventions
The specifications in clause 5 apply.
F.5 [bookmark: _Toc373499535][bookmark: _Toc373832712]Source, coded, decoded and output data formats, scanning processes, and neighbouring relationships
The specifications in clause 6 apply.
F.6 [bookmark: _Toc303680801][bookmark: _Toc248045632][bookmark: _Toc226457165][bookmark: _Ref220337191][bookmark: _Ref217305740][bookmark: _Ref360894127][bookmark: _Toc373499536][bookmark: _Toc373832713][bookmark: _Ref373835719]Syntax and semantics
This clause specifies syntax and semantics for CVSs that conform to one or more of the profiles specified in this annex.
F.6.1 [bookmark: _Toc303680802][bookmark: _Toc248045633][bookmark: _Toc226457166][bookmark: _Toc198881559][bookmark: _Toc190849807][bookmark: _Toc140808430][bookmark: _Ref348089982][bookmark: _Ref363159905][bookmark: _Toc373499537][bookmark: _Toc373832714]Method of specifying syntax in tabular form
The specifications in subclause 7.1 apply.
F.6.2 [bookmark: _Toc303680803][bookmark: _Toc248045634][bookmark: _Toc226457167][bookmark: _Toc198881560][bookmark: _Toc190849808][bookmark: _Toc140808431][bookmark: _Ref348089989][bookmark: _Ref363159910][bookmark: _Toc373499538][bookmark: _Toc373832715]Specification of syntax functions, categories, and descriptors
The specifications in subclause 7.2 apply.
F.6.3 [bookmark: _Ref363159917][bookmark: _Toc373499539][bookmark: _Toc373832716]Syntax in tabular form
F.6.3.1 [bookmark: _Ref348090062][bookmark: _Toc373499540][bookmark: _Toc373832717]NAL unit syntax
The specifications in subclause 7.3.1 apply.
F.6.3.1.1 General NAL unit syntax
The specifications in subclause 7.3.1.1 apply.
F.6.3.1.2 NAL unit header syntax
The specifications in subclause 7.3.1.2 apply.
F.6.3.2 [bookmark: _Ref363159828][bookmark: _Toc373499541][bookmark: _Toc373832718]Raw byte sequence payloads and RBSP trailing bits syntax
F.6.3.2.1 [bookmark: _Ref348090078]Video parameter set RBSP

	video_parameter_set_rbsp() {
	Descriptor

		vps_video_parameter_set_id
	u(4)

		vps_reserved_three_2bits
	u(2)

		vps_max_layers_minus1
	u(6)

		vps_max_sub_layers_minus1
	u(3)

		vps_temporal_id_nesting_flag
	u(1)

		vps_extension_offset //vps_reserved_0xffff_16bits
	u(16)

		profile_tier_level(1, vps_max_sub_layers_minus1)
	

		vps_sub_layer_ordering_info_present_flag
	u(1)

		for(i = (vps_sub_layer_ordering_info_present_flag ? 0 : vps_max_sub_layers_minus1);
			i <= vps_max_sub_layers_minus1; i++) {
	

			vps_max_dec_pic_buffering_minus1[i]
	ue(v)

			vps_max_num_reorder_pics[i]
	ue(v)

			vps_max_latency_increase_plus1[i]
	ue(v)

		}
	

		vps_max_layer_id
	u(6)

		vps_num_layer_sets_minus1
	ue(v)

		for(i = 1; i <= vps_num_layer_sets_minus1; i++)
	

			for(j = 0; j <= vps_max_layer_id; j++)
	

				layer_id_included_flag[i][j]
	u(1)

		vps_timing_info_present_flag
	u(1)

		if(vps_timing_info_present_flag) {
	

			vps_num_units_in_tick
	u(32)

			vps_time_scale
	u(32)

			vps_poc_proportional_to_timing_flag
	u(1)

			if(vps_poc_proportional_to_timing_flag)
	

				vps_num_ticks_poc_diff_one_minus1
	ue(v)

			vps_num_hrd_parameters
	ue(v)

			for(i = 0; i < vps_num_hrd_parameters; i++) {
	

				hrd_layer_set_idx[i]
	ue(v)

				if(i > 0)
	

					cprms_present_flag[i]
	u(1)

				hrd_parameters(cprms_present_flag[i], vps_max_sub_layers_minus1)
	

			}
	

		}
	

		vps_extension_flag
	u(1)

		if(vps_extension_flag) {
	

			while(!byte_aligned())
	

				vps_extension_alignment_bit_equal_to_one
	u(1)

			vps_extension()
	

			vps_extension2_flag
	u(1)

			if(vps_extension2_flag)
	

				while(more_rbsp_data())
	

					vps_extension_data_flag
	u(1)

		}
	

		rbsp_trailing_bits()
	

	}
	

F.6.3.2.1.1 Video parameter set extension syntax

	vps_extension() {
	Descriptor

		avc_base_layer_flag
	u(1)

		vps_vui_present_flag
	u(1)

		if(vps_vui_present_flag)
	

			vps_vui_offset
	u(16)

		splitting_flag
	u(1)

		for(i = 0, NumScalabilityTypes = 0; i < 16; i++) {
	

			scalability_mask_flag[i]
	u(1)

			NumScalabilityTypes += scalability_mask_flag[i]
	

		}
	

		for(j = 0; j < (NumScalabilityTypes − splitting_flag); j++)
	

			dimension_id_len_minus1[j]
	u(3)

		vps_nuh_layer_id_present_flag
	u(1)

		for(i = 1; i <= MaxLayersMinus1; i++) {
	

			if(vps_nuh_layer_id_present_flag)
	

				layer_id_in_nuh[i]
	u(6)

			if(!splitting_flag)
	

				for(j = 0; j < NumScalabilityTypes; j++)
	

					dimension_id[i][j]
	u(v)

		}
	

		view_id_len
	u(4)

		if(view_id_len > 0)
	

			for(i = 0; i < NumViews; i++)
	

				view_id_val[i]
	u(v)

		for(i = 1; i <= MaxLayersMinus1; i++)
	

			for(j = 0; j < i; j++)
	

				direct_dependency_flag[i][j]
	u(1)

		vps_sub_layers_max_minus1_present_flag
	u(1)

			if(vps_sub_layers_ max_minus1_present_flag)
	

				for(i = 0; i <= MaxLayersMinus1; i++)
	

					sub_layers_vps_max_minus1[i]
	u(3)

		max_tid_ref_present_flag
	u(1)

		if(max_tid_ref_present_flag)
	

			for(i = 0; i < MaxLayersMinus1; i++)
	

				for(j = i + 1; j <= MaxLayersMinus1; j++)
	

					if(direct_dependency_flag[j][i])
	

						max_tid_il_ref_pics_plus1[i][j]
	u(3)

		all_ref_layers_active_flag
	u(1)

		vps_number_layer_sets_minus1
	u(10)

		vps_num_profile_tier_level_minus1
	u(6)

		for(i = 1; i <= vps_num_profile_tier_level_minus1; i ++) {
	

			vps_profile_present_flag[i]
	u(1)

			if(!vps_profile_present_flag[i])
	

				profile_ref_minus1[i]
	u(6)

			profile_tier_level(vps_profile_present_flag[i], vps_max_sub_layers_minus1)
	

		}
	

		NumOutputLayerSets = vps_number_layer_sets_minus1 + 1
	

		more_output_layer_sets_than_default_flag
	u(1)

		if(more_output_layer_sets_than_default_flag) {
	

			num_add_output_layer_sets_minus1
	u(10)

			numOutputLayerSets += num_add_output_layer_sets_minus1 + 1
	

		}
	

		if(numOutputLayerSets > 1)
	

			default_one_target_output_layer_idc
	u(2)

		for(i = 1; i < numOutputLayerSets; i++) {
	

			if(i > vps_number_layer_sets_minus1) {
	

				output_layer_set_idx_minus1[i]
	u(v)

				lsIdx = output_layer_set_idx_minus1[i] + 1
	

				for(j = 0 ; j < NumLayersInIdList[lsIdx] − 1; j++)
	

					output_layer_flag[i][j]
	u(1)

			}
	

			profile_level_tier_idx[i]
	u(v)

		}
	

		if(vps_max_layers_minus1 > 0)
	

			alt_output_layer_flag
	u(1)

		rep_format_idx_present_flag
	u(1)

		if(rep_format_idx_present_flag)
	

			vps_num_rep_formats_minus1
	u(8)

		for(i = 0; i <= vps_num_rep_formats_minus1; i++)
	

			rep_format()
	

		if(rep_format_idx_present_flag)
	

			for(i = 1; i <= MaxLayersMinus1; i++)
	

				if(vps_num_rep_formats_minus1 > 0)
	

					vps_rep_format_idx[i]
	u(8)

		max_one_active_ref_layer_flag
	u(1)

		for(i = 1; i <= MaxLayersMinus1; i++)
	

			if(NumDirectRefLayers[layer_id_in_nuh[i]] = = 0)
	

				poc_lsb_not_present_flag[i]
	u(1)

		cross_layer_phase_alignment_flag
	u(1)

		dpb_size()
	

		direct_dep_type_len_minus2
	ue(v) [Ed. (JB): Should this be ue(v)?]

		default_direct_dependency_flag
	u(1)

		if(default_direct_dependency_flag)
	

			default_direct_dependency_type
	u(v)

		else {
	

			for(i = 1; i <= MaxLayersMinus1; i++)
	

				for(j = 0; j < i; j++)
	

					if(direct_dependency_flag[i][j])
	

						direct_dependency_type[i][j]
	u(v)

		}
	

		if(vps_vui_present_flag) {
	

			while(!byte_aligned())
	

				vps_vui_alignment_bit_equal_to_one
	u(1)

			vps_vui()
	

		}
	

	}
	

[bookmark: _Ref351039899]
F.6.3.2.1.2 [bookmark: _Ref360884668]Representation format syntax
[Ed. (YK): The syntax and semantics for rep_format(), dpb_size(), and vps_vui() should probably have one-level-higher section titles, similarly as profile_tier_level().]

	rep_format() {
	Descriptor

		pic_width_vps_in_luma_samples
	u(16)

		pic_height_vps_in_luma_samples
	u(16)

		chroma_and_bit_depth_vps_present_flag
	u(1)

		if(chroma_and_bit_depth_vps_present_flag) {
	

			chroma_format_vps_idc
	u(2)

			if(chroma_format_vps_idc = = 3)
	

				separate_colour_plane_vps_flag
	u(1)

			bit_depth_vps_luma_minus8
	u(4)

			bit_depth_vps_chroma_minus8
	u(4)

		}
	

	}
	

[bookmark: _Ref363160716]
F.6.3.2.1.3 DPB size syntax

	dpb_size() {
	

	[bookmark: GoHere2]	for(i = 1; i < NumOutputLayerSets; i++) {
	

			sub_layer_flag_info_present_flag[i]
	u(1)

			for(j = 0; j <= vps_max_sub_layers_minus1; j++) {
	

				if(j > 0 && sub_layer_flag_info_present_flag[i])
	

					sub_layer_dpb_info_present_flag[i][j]
	u(1)

				if(sub_layer_dpb_info_present_flag[i][j]) {
	

					for(k = 0; k < NumSubDpbs[i]; k++)
	

						max_vps_dec_pic_buffering_minus1[i][k][j]
	ue(v)

					max_vps_num_reorder_pics[i][j]
	ue(v)

					max_vps_latency_increase_plus1[i][j]
	ue(v)

				}
	

			}
	

		}
	

	}
	

F.6.3.2.1.4 VPS VUI syntax

	vps_vui(){
	Descriptor

		cross_layer_pic_type_aligned_flag
	u(1)

		if(!cross_layer_pic_type_aligned_flag)
	

			cross_layer_irap_aligned_flag
	u(1)

		bit_rate_present_vps_flag
	u(1)

		pic_rate_present_vps_flag
	u(1)

		if(bit_rate_present_vps_flag | | pic_rate_present_vps_flag)
	

			for(i = 0; i <= vps_number_layer_sets_minus1; i++)
	

				for(j = 0; j <= vps_max_sub_layers_minus1; j++) {
	

					if(bit_rate_present_vps_flag)
	

						bit_rate_present_flag[i][j]
	u(1)

					if(pic_rate_present_vps_flag)
	

						pic_rate_present_flag[i][j]
	u(1)

					if(bit_rate_present_flag[i][j]) {
	

						avg_bit_rate[i][j]
	u(16)

						max_bit_rate[i][j]
	u(16)

					}
	

					if(pic_rate_present_flag[i][j]) {
	

						constant_pic_rate_idc[i][j]
	u(2)

						avg_pic_rate[i][j]
	u(16)

					}
	

				}
	

		tiles_not_in_use_flag
	u(1)

		if(!tiles_not_in_use_flag) {
	

			for(i = 0; i <= MaxLayersMinus1; i++) {
	u(1)

				tiles_in_use_flag[i]
	

				if(tiles_in_use_flag[i])
	

					loop_filter_not_across_tiles_flag[i]
	u(1)

			}
	

			for(i = 1; i <= MaxLayersMinus1; i++)
	

				for(j = 0; j < NumDirectRefLayers[layer_id_in_nuh[i]]; j++) {
	

					layerIdx = LayerIdxInVps[RefLayerId[layer_id_in_nuh[i]][j]]
	

					if(tiles_in_use_flag[i] && tiles_in_use_flag[layerIdx])
	

						tile_boundaries_aligned_flag[i][j]
	u(1)

				}
	

		}
	

		wpp_not_in_use_flag
	

		if(!wpp_not_in_use_flag)
	

			for(i = 0; i <= MaxLayersMinus1; i++)
	

				wpp_in_use_flag[i]
	u(1)

		single_layer_for_non_irap_flag
	u(1)

		higher_layer_irap_skip_flag
	u(1)

		ilp_restricted_ref_layers_flag
	u(1)

		if(ilp_restricted_ref_layers_flag)
	

			for(i = 1; i <= MaxLayersMinus1; i++)
	

				for(j = 0; j < NumDirectRefLayers[layer_id_in_nuh[i]]; j++) {
	

					min_spatial_segment_offset_plus1[i][j]
	ue(v)

					if(min_spatial_segment_offset_plus1[i][j] > 0) {
	

						ctu_based_offset_enabled_flag[i][j]
	u(1)

						if(ctu_based_offset_enabled_flag[i][j])
	

							min_horizontal_ctu_offset_plus1[i][j]
	ue(v)

					}
	

				}
	

		video_signal_info_idx_present_flag
	u(1)

		if(video_signal_info_idx_present_flag)
	

			vps_num_video_signal_info_minus1
	u(4)

		for(i = 0; i <= vps_num_video_signal_info_minus1; i++)
	

			video_signal_info()
	

		if(video_signal_info_idx_present_flag && vps_num_video_signal_info_minus1 > 0)
	

			for(i = 1; i <= MaxLayersMinus1; i++)
	

				vps_video_signal_info_idx[i]
	u(4)

		vps_vui_bsp_hrd_present_flag
	u(1)

		if(vps_vui_bsp_hrd_present_flag)
	

			vps_vui_bsp_hrd_parameters()
	

	}
	

F.6.3.2.1.5 Video signal info syntax

	video_signal_info() {
	Descriptor

		video_vps_format
	u(3)

		video_full_range_vps_flag
	u(1)

		colour_primaries_vps
	u(8)

		transfer_characteristics_vps
	u(8)

		matrix_coeffs_vps
	u(8)

		}
	

F.6.3.2.1.6 VPS VUI bitstream partition HRD parameters syntax

	vps_vui_bsp_hrd_parameters(){
	Descriptor

		vps_num_bsp_hrd_parameters_minus1
	ue(v)

		for(i = 0; i <= vps_num_bsp_hrd_parameters_minus1; i++) {
	

			if(i > 0)
	

				bsp_cprms_present_flag[i]
	u(1)

			hrd_parameters(bsp_cprms_present_flag[i], vps_max_sub_layers_minus1)
	

		}
	

		for(h=1; h <= vps_num_layer_sets_minus1; h++) {
	

			num_bitstream_partitions[h]
	ue(v)

			for(i = 0; i < num_bitstream_partitions[h]; i++)
	

				for(j = 0; j <= vps_max_layers_minus1; j++)
	

					if(layer_id_included_flag[h][j])
	

						layer_in_bsp_flag[h][i][j]
	u(1)

			if(num_bitstream_partitions[h]) {
	

				num_bsp_sched_combinations[h]
	ue(v)

				for(i = 0; i < num_bsp_sched_combinations[h]; i++)
	

					for(j = 0; j < num_bitstream_partitions[h]; j++) {
	

						bsp_comb_hrd_idx[h][i][j]
	ue(v)

						bsp_comb_sched_idx[h][i][j]
	ue(v)

					}
	

			}
	

		}
	

	}
	

F.6.3.2.2 Sequence parameter set RBSP syntax

	[bookmark: _Ref348090097]seq_parameter_set_rbsp() {
	Descriptor

		sps_video_parameter_set_id
	u(4)

		if(nuh_layer_id = = 0) {
	

			sps_max_sub_layers_minus1
	u(3)

			sps_temporal_id_nesting_flag
	u(1)

			profile_tier_level(1, sps_max_sub_layers_minus1)
	

		}
	

		sps_seq_parameter_set_id
	ue(v)

		if(nuh_layer_id > 0) {
	

			update_rep_format_flag
	u(1)

			if(update_rep_format_flag)
	

				sps_rep_format_idx
	u(8)

		} else {
	

			chroma_format_idc
	ue(v)

			if(chroma_format_idc = = 3)
	

				separate_colour_plane_flag
	u(1)

			pic_width_in_luma_samples
	ue(v)

			pic_height_in_luma_samples
	ue(v)

		}
	

		conformance_window_flag
	u(1)

		if(conformance_window_flag) {
	

			conf_win_left_offset
	ue(v)

			conf_win_right_offset
	ue(v)

			conf_win_top_offset
	ue(v)

			conf_win_bottom_offset
	ue(v)

		}
	

		if(nuh_layer_id = = 0) {
	

			bit_depth_luma_minus8
	ue(v)

			bit_depth_chroma_minus8
	ue(v)

		}
	

		log2_max_pic_order_cnt_lsb_minus4
	ue(v)

		sps_sub_layer_ordering_info_present_flag
	u(1)

		for(i = (sps_sub_layer_ordering_info_present_flag ? 0 : sps_max_sub_layers_minus1);
			i <= sps_max_sub_layers_minus1; i++) {
	

			sps_max_dec_pic_buffering_minus1[i]
	ue(v)

			sps_max_num_reorder_pics[i]
	ue(v)

			sps_max_latency_increase_plus1[i]
	ue(v)

		}
	

		log2_min_luma_coding_block_size_minus3
	ue(v)

		log2_diff_max_min_luma_coding_block_size
	ue(v)

		log2_min_transform_block_size_minus2
	ue(v)

		log2_diff_max_min_transform_block_size
	ue(v)

		max_transform_hierarchy_depth_inter
	ue(v)

		max_transform_hierarchy_depth_intra
	ue(v)

		scaling_list_enabled_flag
	u(1)

		if(scaling_list_enabled_flag) {
	

			if(nuh_layer_id > 0)
	

				sps_infer_scaling_list_flag
	u(1)

			if(sps_infer_scaling_list_flag)
	

				sps_scaling_list_ref_layer_id
	u(6)

			else {
	

				sps_scaling_list_data_present_flag
	u(1)

				if(sps_scaling_list_data_present_flag)
	

					scaling_list_data()
	

			}
	

		}
	

		amp_enabled_flag
	u(1)

		sample_adaptive_offset_enabled_flag
	u(1)

		pcm_enabled_flag
	u(1)

		if(pcm_enabled_flag) {
	

			pcm_sample_bit_depth_luma_minus1
	u(4)

			pcm_sample_bit_depth_chroma_minus1
	u(4)

			log2_min_pcm_luma_coding_block_size_minus3
	ue(v)

			log2_diff_max_min_pcm_luma_coding_block_size
	ue(v)

			pcm_loop_filter_disabled_flag
	u(1)

		}
	

		num_short_term_ref_pic_sets
	ue(v)

		for(i = 0; i < num_short_term_ref_pic_sets; i++)
	

			short_term_ref_pic_set(i)
	

		long_term_ref_pics_present_flag
	u(1)

		if(long_term_ref_pics_present_flag) {
	

			num_long_term_ref_pics_sps
	ue(v)

			for(i = 0; i < num_long_term_ref_pics_sps; i++) {
	

				lt_ref_pic_poc_lsb_sps[i]
	u(v)

				used_by_curr_pic_lt_sps_flag[i]
	u(1)

			}
	

		}
	

		sps_temporal_mvp_enabled_flag
	u(1)

		strong_intra_smoothing_enabled_flag
	u(1)

		vui_parameters_present_flag
	u(1)

		if(vui_parameters_present_flag)
	

			vui_parameters()
	

		sps_extension_flag
[Ed. (GT): Syntax and semantics should be moved to base spec later.]
	u(1)

		if(sps_extension_flag) {
	

			for (i = 0; i < 8; i++)
	

				sps_extension_type_flag[i]
	u(1)

			if(sps_extension_type_flag[1])
	

				sps_multilayer_extension()
	

			if(sps_extension_type_flag[7])
	

				while(more_rbsp_data())
	

					sps_extension_data_flag
	u(1)

		}
	

		rbsp_trailing_bits()
	

	}
	

[bookmark: _Ref360884713]
F.6.3.2.2.1 Sequence parameter set multilayer extension syntax

	sps_multilayer_extension() {
	Descriptor

		inter_view_mv_vert_constraint_flag
	u(1)

		num_scaled_ref_layer_offsets
	ue(v)

		for(i = 0; i < num_scaled_ref_layer_offsets; i++) {
	

			scaled_ref_layer_id[i]
	u(6)

			scaled_ref_layer_left_offset[scaled_ref_layer_id[i]]
	se(v)

			scaled_ref_layer_top_offset[scaled_ref_layer_id[i]]
	se(v)

			scaled_ref_layer_right_offset[scaled_ref_layer_id[i]]
	se(v)

			scaled_ref_layer_bottom_offset[scaled_ref_layer_id[i]]
	se(v)

		}
	

	}
	

F.6.3.2.3 [bookmark: _Ref351058034][bookmark: _Ref363160723]Picture parameter set RBSP syntax

	[bookmark: _Ref348090111]pic_parameter_set_rbsp() {
	Descriptor

		pps_pic_parameter_set_id
	ue(v)

		pps_seq_parameter_set_id
	ue(v)

		dependent_slice_segments_enabled_flag
	u(1)

		output_flag_present_flag
	u(1)

		num_extra_slice_header_bits
	u(3)

		sign_data_hiding_enabled_flag
	u(1)

		cabac_init_present_flag
	u(1)

		num_ref_idx_l0_default_active_minus1
	ue(v)

		num_ref_idx_l1_default_active_minus1
	ue(v)

		init_qp_minus26
	se(v)

		constrained_intra_pred_flag
	u(1)

		transform_skip_enabled_flag
	u(1)

		cu_qp_delta_enabled_flag
	u(1)

		if(cu_qp_delta_enabled_flag)
	

			diff_cu_qp_delta_depth
	ue(v)

		pps_cb_qp_offset
	se(v)

		pps_cr_qp_offset
	se(v)

		pps_slice_chroma_qp_offsets_present_flag
	u(1)

		weighted_pred_flag
	u(1)

		weighted_bipred_flag
	u(1)

		transquant_bypass_enabled_flag
	u(1)

		tiles_enabled_flag
	u(1)

		entropy_coding_sync_enabled_flag
	u(1)

		if(tiles_enabled_flag) {
	

			num_tile_columns_minus1
	ue(v)

			num_tile_rows_minus1
	ue(v)

			uniform_spacing_flag
	u(1)

			if(!uniform_spacing_flag) {
	

				for(i = 0; i < num_tile_columns_minus1; i++)
	

					column_width_minus1[i]
	ue(v)

				for(i = 0; i < num_tile_rows_minus1; i++)
	

					row_height_minus1[i]
	ue(v)

			}
	

			loop_filter_across_tiles_enabled_flag
	u(1)

		}
	

		pps_loop_filter_across_slices_enabled_flag
	u(1)

		deblocking_filter_control_present_flag
	u(1)

		if(deblocking_filter_control_present_flag) {
	

			deblocking_filter_override_enabled_flag
	u(1)

			pps_deblocking_filter_disabled_flag
	u(1)

			if(!pps_deblocking_filter_disabled_flag) {
	

				pps_beta_offset_div2
	se(v)

				pps_tc_offset_div2
	se(v)

			}
	

		}
	

		if(nuh_layer_id > 0)
	

			pps_infer_scaling_list_flag
	u(1)

		if(pps_infer_scaling_list_flag)
	

			pps_scaling_list_ref_layer_id
	u(6)

		else {
	

			pps_scaling_list_data_present_flag
	u(1)

			if(pps_scaling_list_data_present_flag)
	

				scaling_list_data()
	

		}
	

		lists_modification_present_flag
	u(1)

		log2_parallel_merge_level_minus2
	ue(v)

		slice_segment_header_extension_present_flag
	u(1)

		pps_extension_flag
	u(1)

		if(pps_extension_flag)
	

			while(more_rbsp_data())
	

				pps_extension_data_flag
	u(1)

		rbsp_trailing_bits()
	

	}
	

[bookmark: _Ref363160740]
F.6.3.2.4 Supplemental enhancement information RBSP syntax
The specifications in subclause 7.3.2.4 apply.
F.6.3.2.5 [bookmark: _Ref348090122]Access unit delimiter RBSP syntax
The specifications in subclause 7.3.2.5 apply.
F.6.3.2.6 [bookmark: _Ref348090133]End of sequence RBSP syntax
The specifications in subclause 7.3.2.6 apply.
F.6.3.2.7 [bookmark: _Ref348090150]End of bitstream RBSP syntax
The specifications in subclause 7.3.2.7 apply.
F.6.3.2.8 [bookmark: _Ref348090167]Filler data RBSP syntax
The specifications in subclause 7.3.2.8 apply.
F.6.3.2.9 [bookmark: _Ref348090173]Slice segment layer RBSP syntax
The specifications in subclause 7.3.2.9 apply.
F.6.3.2.10 [bookmark: _Ref331449326]RBSP slice segment trailing bits syntax
The specifications in subclause 7.3.2.10 apply.
F.6.3.2.11 [bookmark: _Ref348090194]RBSP trailing bits syntax
The specifications in subclause 7.3.2.11 apply.
F.6.3.2.12 [bookmark: _Ref348090200]Byte alignment syntax
The specifications in subclause 7.3.2.12 apply.
F.6.3.3 [bookmark: _Ref348090209][bookmark: _Toc373499542][bookmark: _Toc373832719]Profile, tier and level syntax

	profile_tier_level(profilePresentFlag, maxNumSubLayersMinus1) {
	Descriptor

		if(profilePresentFlag) {
	

			general_profile_space
	u(2)

			general_tier_flag
	u(1)

			general_profile_idc
	u(5)

			for(j = 0; j < 32; j++)
	

				general_profile_compatibility_flag[j]
	u(1)

			general_progressive_source_flag
	u(1)

			general_interlaced_source_flag
	u(1)

			general_non_packed_constraint_flag
	u(1)

			general_frame_only_constraint_flag
	u(1)

			general_reserved_zero_44bits
	u(44)

		}
	

		general_level_idc
	u(8)

		for(i = 0; i < maxNumSubLayersMinus1; i++) {
	

			sub_layer_profile_present_flag[i]
	u(1)

			sub_layer_level_present_flag[i]
	u(1)

		}
	

		if(maxNumSubLayersMinus1 > 0)
	

			for(i = maxNumSubLayersMinus1; i < 8; i++)
	

				reserved_zero_2bits[i]
	u(2)

		for(i = 0; i < maxNumSubLayersMinus1; i++) {
	

			if(sub_layer_profile_present_flag[i]) {
	

				sub_layer_profile_space[i]
	u(2)

				sub_layer_tier_flag[i]
	u(1)

				sub_layer_profile_idc[i]
	u(5)

				for(j = 0; j < 32; j++)
	

					sub_layer_profile_compatibility_flag[i][j]
	u(1)

				sub_layer_progressive_source_flag[i]
	u(1)

				sub_layer_interlaced_source_flag[i]
	u(1)

				sub_layer_non_packed_constraint_flag[i]
	u(1)

				sub_layer_frame_only_constraint_flag[i]
	u(1)

				sub_layer_reserved_zero_44bits[i]
	u(44)

			}
	

			if(sub_layer_level_present_flag[i])
	

				sub_layer_level_idc[i]
	u(8)

		}
	

	}
	

[bookmark: _Ref348090211]
F.6.3.4 [bookmark: _Toc373499543][bookmark: _Toc373832720]Scaling list data syntax
The specifications in subclause 7.3.4 apply.
F.6.3.5 [bookmark: _Ref348090212][bookmark: _Toc373499544][bookmark: _Toc373832721]Supplemental enhancement information message syntax
The specifications in subclause 7.3.5 apply.
F.6.3.6 [bookmark: _Ref348090214][bookmark: _Toc373499545][bookmark: _Toc373832722]Slice segment header syntax
F.6.3.6.1 [bookmark: _Ref360884196]General slice segment header syntax

	slice_segment_header() {
	Descriptor

		first_slice_segment_in_pic_flag
	u(1)

		if(nal_unit_type >= BLA_W_LP && nal_unit_type <= RSV_IRAP_VCL23)
	

			no_output_of_prior_pics_flag
	u(1)

		slice_pic_parameter_set_id
	ue(v)

		if(!first_slice_segment_in_pic_flag) {
	

			if(dependent_slice_segments_enabled_flag)
	

				dependent_slice_segment_flag
	u(1)

			slice_segment_address
	u(v)

		}
	

		if(!dependent_slice_segment_flag) {
	

			i = 0
	

			if(num_extra_slice_header_bits > i) {
	

				i++
	

				discardable_flag
	u(1)

			}
	

			if(num_extra_slice_header_bits > i) {
	

				i++
	

				cross_layer_bla_flag
	u(1)

			}
	

			if(num_extra_slice_header_bits > i) {
	

				i++
	

				poc_reset_flag
	u(1)

			}
	

			for(i = 1; i < num_extra_slice_header_bits; i++)
	

				slice_reserved_flag[i]
	u(1)

			slice_type
	ue(v)

			if(output_flag_present_flag)
	

				pic_output_flag
	u(1)

			if(separate_colour_plane_flag = = 1)
	

				colour_plane_id
	u(2)

			if((nuh_layer_id > 0 && !poc_lsb_not_present_flag[LayerIdxInVPS[nuh_layer_id]])
					| | (nal_unit_type != IDR_W_RADL && nal_unit_type != IDR_N_LP))
	

				slice_pic_order_cnt_lsb
	u(v)

			if(nal_unit_type != IDR_W_RADL && nal_unit_type != IDR_N_LP) {
	

				short_term_ref_pic_set_sps_flag
	u(1)

				if(!short_term_ref_pic_set_sps_flag)
	

					short_term_ref_pic_set(num_short_term_ref_pic_sets)
	

				else if(num_short_term_ref_pic_sets > 1)
	

					short_term_ref_pic_set_idx
	u(v)

				if(long_term_ref_pics_present_flag) {
	

					if(num_long_term_ref_pics_sps > 0)
	

						num_long_term_sps
	ue(v)

					num_long_term_pics
	ue(v)

					for(i = 0; i < num_long_term_sps + num_long_term_pics; i++) {
	

						if(i < num_long_term_sps) {
	

							if(num_long_term_ref_pics_sps > 1)
	

								lt_idx_sps[i]
	u(v)

						} else {
	

							poc_lsb_lt[i]
	u(v)

							used_by_curr_pic_lt_flag[i]
	u(1)

						}
	

						delta_poc_msb_present_flag[i]
	u(1)

						if(delta_poc_msb_present_flag[i])
	

							delta_poc_msb_cycle_lt[i]
	ue(v)

					}
	

				}
	

				if(sps_temporal_mvp_enabled_flag)
	

					slice_temporal_mvp_enabled_flag
	u(1)

			}
	

			if(nuh_layer_id > 0 && !all_ref_layers_active_flag &&
						NumDirectRefLayers[nuh_layer_id] > 0) {
	

				inter_layer_pred_enabled_flag
	u(1)

				if(inter_layer_pred_enabled_flag && NumDirectRefLayers[nuh_layer_id] > 1) {
	

					if(!max_one_active_ref_layer_flag)
	

						num_inter_layer_ref_pics_minus1
	u(v)

					if(NumActiveRefLayerPics != NumDirectRefLayers[nuh_layer_id])
	

						for(i = 0; i < NumActiveRefLayerPics; i++)
	

							inter_layer_pred_layer_idc[i]
	u(v)

				}
	

			}
	

			if(sample_adaptive_offset_enabled_flag) {
	

				slice_sao_luma_flag
	u(1)

				slice_sao_chroma_flag
	u(1)

			}
	

			if(slice_type = = P | | slice_type = = B) {
	

				num_ref_idx_active_override_flag
	u(1)

				if(num_ref_idx_active_override_flag) {
	

					num_ref_idx_l0_active_minus1
	ue(v)

					if(slice_type = = B)
	

						num_ref_idx_l1_active_minus1
	ue(v)

				}
	

				if(lists_modification_present_flag && NumPicTotalCurr > 1)
	

					ref_pic_lists_modification()
	

				if(slice_type = = B)
	

					mvd_l1_zero_flag
	u(1)

				if(cabac_init_present_flag)
	

					cabac_init_flag
	u(1)

				if(slice_temporal_mvp_enabled_flag) {
	

					if(slice_type = = B)
	

						collocated_from_l0_flag
	u(1)

					if((collocated_from_l0_flag && num_ref_idx_l0_active_minus1 > 0) | |
					(!collocated_from_l0_flag && num_ref_idx_l1_active_minus1 > 0))
	

						collocated_ref_idx
	ue(v)

				}
	

				if((weighted_pred_flag && slice_type = = P) | |
				 (weighted_bipred_flag && slice_type = = B))
	

					pred_weight_table()
	

				five_minus_max_num_merge_cand
	ue(v)

			}
	

			slice_qp_delta
	se(v)

			if(pps_slice_chroma_qp_offsets_present_flag) {
	

				slice_cb_qp_offset
	se(v)

				slice_cr_qp_offset
	se(v)

			}
	

			if(deblocking_filter_override_enabled_flag)
	

				deblocking_filter_override_flag
	u(1)

			if(deblocking_filter_override_flag) {
	

				slice_deblocking_filter_disabled_flag
	u(1)

				if(!slice_deblocking_filter_disabled_flag) {
	

					slice_beta_offset_div2
	se(v)

					slice_tc_offset_div2
	se(v)

				}
	

			}
	

			if(pps_loop_filter_across_slices_enabled_flag &&
			(slice_sao_luma_flag | | slice_sao_chroma_flag | |
				!slice_deblocking_filter_disabled_flag))
	

				slice_loop_filter_across_slices_enabled_flag
	u(1)

		}
	

		if(tiles_enabled_flag | | entropy_coding_sync_enabled_flag) {
	

			num_entry_point_offsets
	ue(v)

			if(num_entry_point_offsets > 0) {
	

				offset_len_minus1
	ue(v)

				for(i = 0; i < num_entry_point_offsets; i++)
	

					entry_point_offset_minus1[i]
	u(v)

			}
	

		}
	

		if(slice_segment_header_extension_present_flag) {
	

			slice_segment_header_extension_length
	ue(v)

			for(i = 0; i < slice_segment_header_extension_length; i++)
	

				slice_segment_header_extension_data_byte[i]
	u(8)

		}
	

		byte_alignment()
	

	}
	

F.6.3.6.2 Reference picture list modification syntax
The specifications in subclause 7.3.6.2 apply.
F.6.3.6.3 Weighted prediction parameters syntax
The specifications in subclause 7.3.6.3 apply.
F.6.3.7 [bookmark: _Ref351058069][bookmark: _Toc373499546][bookmark: _Toc373832723][bookmark: _Ref348090232]Short-term reference picture set syntax
The specifications in subclause 7.3.7 apply.
F.6.3.8 [bookmark: _Ref351058099][bookmark: _Toc373499547][bookmark: _Toc373832724]Slice segment data syntax
F.6.3.8.1 General slice segment data syntax
The specifications in subclause 7.3.8.1 apply.
F.6.3.8.2 Coding tree unit syntax
The specifications in subclause 7.3.8.2 apply.
F.6.3.8.3 Sample adaptive offset syntax
The specifications in subclause 7.3.8.3 apply.
F.6.3.8.4 Coding quadtree syntax
The specifications in subclause 7.3.8.4 apply.
F.6.3.8.5 Coding unit syntax
The specifications in subclause 7.3.8.5 apply.
F.6.3.8.6 Prediction unit syntax
The specifications in subclause 7.3.8.6 apply.
F.6.3.8.7 PCM sample syntax
The specifications in subclause 7.3.8.7 apply.
F.6.3.8.8 Transform tree syntax
The specifications in subclause 7.3.8.8 apply.
F.6.3.8.9 Motion vector difference syntax
The specifications in subclause 7.3.8.9 apply.
F.6.3.8.10 Transform unit syntax
The specifications in subclause 7.3.8.10 apply.
F.6.3.8.11 Residual coding syntax
The specifications in subclause 7.3.8.11 apply.
F.6.4 [bookmark: _Toc373499548][bookmark: _Toc373832725]Semantics
F.6.4.1 [bookmark: _Ref351058589][bookmark: _Toc373499549][bookmark: _Toc373832726][bookmark: _Ref348090008][bookmark: _Ref348090335]General
F.6.4.2 [bookmark: _Ref351058186][bookmark: _Toc373499550][bookmark: _Toc373832727]NAL unit semantics
F.6.4.2.1 General NAL unit semantics
The specifications in subclause 7.4.2.1 apply.
F.6.4.2.2 NAL unit header semantics
The specifications in subclause 7.4.2.2 apply with following modifications and additions.
nal_unit_type specifies the type of RBSP data structure contained in the NAL unit as specified in Table 7 1.
When one picture picA of a layer layerA has nal_unit_type equal to TSA_N or TSA_R, each picture in the same access unit as picA in a direct or indirect reference layer of layerA shall have nal_unit_type equal to TSA_N or TSA_R.
When one picture picA of a layer layerA has nal_unit_type equal to STSA_N or STSA_R, each picture in the same access unit as picA in a direct or indirect reference layer of layerA shall have nal_unit_type equal to STSA_N or STSA_R.
nuh_layer_id specifies the identifier of the layer. The value of nuh_layer_id shall be in the range of 0 to 62, inclusive. The value of 63 may be specified in the future by ITU-T | ISO/IEC. Decoders shall ignore all data that follow the value 63 for nuh_layer_id in a NAL unit.
NOTE 3 – It is anticipated that in a future super multiview coding extension of this specification, the value of 63 for nuh_layer_id will be used to indicate an extended layer identifier.
When nal_unit_type is equal to AUD_NUT, the value of nuh_layer_id shall be equal to the minimum of the nuh_layer_id values of all VCL NAL units in the access unit.
When nal_unit_type is equal to VPS_NUT, the value of nuh_layer_id shall be equal to 0. Decoder shall ignore NAL units with nal_unit_type equal to VPS_NUT and nuh_layer_id greater than 0.
When nal_unit_type is equal to PPS_NUT and the NAL unit contains the active PPS for a layer layerA with nuh_layer_id equal to nuhLayerIdA, the value of nuh_layer_id shall be equal to 0, nuhLayerIdA, or the nuh_layer_id of a direct or indirect reference layer of layerA.
When nal_unit_type is equal to SPS_NUT and the NAL unit contains the active SPS for a layer layerA with nuh_layer_id equal to nuhLayerIdA, the value of nuh_layer_id shall be equal to 0, nuhLayerIdA, or the nuh_layer_id of a direct or indirect reference layer of layerA.
F.6.4.2.3 Encapsulation of an SODB within an RBSP (informative)
The specifications in subclause 7.4.2.3 apply.
F.6.4.2.4 Order of NAL units and association to coded pictures, access units, and coded video sequences
F.6.4.2.4.1 General
The specifications in subclause 7.4.2.4.1 apply with the following additions.
A coded picture with nuh_layer_id equal to nuhLayerIdA shall precede, in decoding order, all coded pictures with nuh_layer_id greater than nuhLayerIdA in the same access unit.
F.6.4.2.4.2 Order of VPS, SPS and PPS RBSPs and their activation
The specifications in subclause 7.4.2.4.2 apply with the following additions.
The contents of the hrd_parameters() syntax structure shall remain unchanged within a sequence of activated SPS RBSPs, in their activation order, from any activated SPS RBSP until the end of the bitstream or up to but excluding an SPS RBSP that is activated within the next access unit in which at least one of the following conditions is true:
· The access unit includes a picture for each nuh_layer_id value in TargetDecLayerIdList and each picture in the access unit is an IDR picture.
· The access unit includes an IRAP picture with nuh_layer_id equal to 0 for which NoClrasOutputFlag is equal to 1.
An activated VPS RBSP shall remain active until the end of the bitstream or until it is deactivated by another VPS RBSP in an access unit in which at least one of the following conditions is true:
· The access unit includes a picture for each nuh_layer_id value in TargetDecLayerIdList and each picture in the access unit is an IDR picture.
· The access unit includes an IRAP picture with nuh_layer_id equal to 0 for which NoClrasOutputFlag is equal to 1.
An activated SPS RBSP for a particular layer with nuh_layer_id greater than 0 shall remain active for a sequence of pictures in decoding order with that nuh_layer_id value starting from a picture, inclusive, that is an IRAP picture with NoRaslOutputFlag equal to 1 or for which FirstPicInLayerDecodedFlag[nuh_layer_id] is equal to 0, until the next picture, exclusive, that is an IRAP picture with NoRaslOutputFlag equal to 1 or for which FirstPicInLayerDecodedFlag[nuh_layer_id] is equal to 0.
Any SPS NAL unit containing the value of sps_seq_parameter_set_id for the active SPS RBSP for a particular non-base layer shall have the same content as that of the active SPS RBSP for the particular non-base layer unless it follows the last coded picture for which the active SPS RBSP for the particular non-base layer is required to be active for the particular non-base layer and precedes the first NAL unit that activates an SPS RBSP with the same value of seq_parameter_set_id.
During operation of the decoding process for NAL units of a non-base layer, the values of parameters of the active VPS RBSP, the active SPS RBSP for the non-base layer, and the active PPS RBSP for the non-base layer are considered in effect. For interpretation of SEI messages applicable to a coded picture of a non-base layer, the values of the active VPS RBSP, the active SPS RBSP for the non-base layer, and the active PPS RBSP for the non-base layer for the operation of the decoding process for the VCL NAL units of the coded picture are considered in effect unless otherwise specified in the SEI message semantics.
F.6.4.2.4.3 Order of access units and their association to CVS
The specifications in subclause 7.4.2.4.3 apply.
F.6.4.2.4.4 Order of NAL units and coded pictures and association to access units
The specifications in subclause 7.4.2.4.4 apply.
F.6.4.2.4.5 Order of VCL NAL units and association to coded pictures
The specifications in subclause 7.4.2.4.5 apply.
F.6.4.3 [bookmark: _Ref363159861][bookmark: _Toc373499551][bookmark: _Toc373832728]Raw byte sequence payloads, trailing bits, and byte alignment semantics
F.6.4.3.1 [bookmark: _Ref348090354]Video parameter set RBSP semantics
The specifications in subclause 7.4.3.1 apply with following modifications and additions:
· layerSetLayerIdList is replaced by LayerSetLayerIdList.
· numLayersInIdList is replaced by NumLayersInIdList.
· Replace "Each operation point is identified by the associated layer identifier list, denoted as OpLayerIdList, which consists of the list of nuh_layer_id values of all NAL units included in the operation point, in increasing order of nuh_layer_id values, and a variable OpTid, which is equal to the highest TemporalId of all NAL units included in the operation point." with "Each operation point is identified by the a list of nuh_layer_id values of all the pictures that are to be output, in increasing order of nuh_layer_id values, denoted as OptLayerIdList, and a variable OpTid, which is equal to the highest TemporalId of all NAL units included in the operation point. The layer identifier list associated with the list OptLayerIdList, denoted as OpLayerIdList, consists of the list of nuh_layer_id values of all NAL units included in the operation point, in increasing order of nuh_layer_id values.".
vps_max_layers_minus1 plus 1 specifies the maximum allowed number of layers in the CVS. vps_max_layers_minus1 shall be less than 63 in bitstreams conforming to this version of this Specification. The value of 63 for vps_max_layers_minus1 is reserved for future use by ITU-T | ISO/IEC. Although the value of vps_max_layers_minus1 is required to be less than 63 in this version of this Specification, decoders shall allow a value of vps_max_layers_minus1 equal to 63 to appear in the syntax.
NOTE 4 – It is anticipated that in a future super multiview coding extension of this specification, the value of 63 for vps_max_layers_minus1 will be used to indicate an extended number of layers.
The variable MaxLayersMinus1 is set equal to Min(62, vps_max_layers_minus1).
vps_max_layer_id specifies the maximum allowed value of nuh_layer_id of all NAL units in the CVS. vps_max_layer_id shall be less than 63 in bitstreams conforming to this version of this Specification. The value of 63 for vps_max_layer_id is reserved for future use by ITU-T | ISO/IEC. Although the value of vps_max_layer_id is required to be less than 63 in this version of this Specification, decoders shall allow a value of vps_max_layer_id equal to 63 to appear in the syntax.
vps_extension_offset specifies the byte offset, starting from the beginning of the VPS NAL unit, of the next set of fixed-length coded information starting from avc_base_layer_flag, when present, in the VPS NAL unit. When present, emulation prevention bytes that appear in the VPS NAL unit are counted for purposes of byte offset identification.
NOTE – VPS information for non-base layer or view starts from a byte-aligned position of the VPS NAL unit, with fixed-length coded information that is essential for session negotiation and/or capability exchange. The byte offset specified by vps_extension_offset would then help to locate and access those essential information in the VPS NAL unit without the need of entropy decoding, which may not be equipped with some network entities that may desire to access only the information in the VPS that is essential for session negotiation and/or capability exchange.
vps_extension_flag equal to 0 specifies that no vps_extension() syntax structure is present in the VPS RBSP syntax structure. vps_extension_flag equal to 1 specifies that the vps_extension() syntax structure is present in the VPS RBSP syntax structure. When MaxLayersMinus1 is greater than 0, vps_extension_flag shall be equal to 1.
vps_extension_alignment_bit_equal_to_one shall be equal to 1.
vps_extension2_flag equal to 0 specifies that no vps_extension_data_flag syntax elements are present in the VPS RBSP syntax structure. vps_extension2_flag shall be equal to 0 in bitstreams conforming to this version of this Specification. The value of 1 for vps_extension2_flag is reserved for future use by ITU‑T | ISO/IEC. Decoders shall ignore all data that follow the value 1 for vps_extension2_flag in a VPS NAL unit.
F.6.4.3.1.1 Video parameter set extension semantics
avc_base_layer_flag equal to 1 specifies that the base layer conforms to Rec. ITU-T H.264 | ISO/IEC 14496-10. avc_base_layer_flag equal to 0 specifies that the base layer conforms to this Specification.
[Ed. (YK): For possible support of base layer of other codecs, e.g. MPEG-2, a flag is not sufficient.]
When avc_base_layer_flag is equal to 1, in the Rec. ITU-T H.264 | ISO/IEC 14496-10 conforming base layer, after applying the Rec. ITU-T H.264 | ISO/IEC 14496-10 decoding process for reference picture lists construction the output reference picture lists refPicList0 and refPicList1 (when applicable) does not contain any pictures for which the TemporalId is greater than TemporalId of the coded picture. All sub-bitstreams of the Rec. ITU-T H.264 | ISO/IEC 14496-10 conforming base layer, that can be derived using the sub-bitstream extraction process as specified in Rec. ITUT H.264 | ISO/IEC 14496-10 subclause G.8.8.1 with any value for temporal_id as the input shall result in a set of CVSs, with each CVS conforming to one or more of the profiles specified in Rec. ITUT H.264 | ISO/IEC 14496-10 Annexes A, G and H.
vps_vui_present_flag equal to 1 specifies that the vps_vui() syntax structure is present in the VPS. vps_vui_present_flag equal to 0 specifies that the vps_vui() syntax structure is not present in the VPS.
vps_vui_offset specifies the byte offset, starting from the beginning of the VPS NAL unit, of the set of fixed-length coded information starting from bit_rate_present_vps_flag, when present, in the VPS NAL unit. When present, emulation prevention bytes that appear in the VPS NAL unit are counted for purposes of byte offset identification.
splitting_flag equal to 1 indicates that the dimension_id[i][j] syntax elements are not present and that the binary representation of the nuh_layer_id value in the NAL unit header are split into NumScalabilityTypes segments with lengths, in bits, according to the values of dimension_id_len_minus1[j] and that the values of dimension_id[LayerIdxInVps[nuh_layer_id]][j] are inferred from the NumScalabilityTypes segments. splitting_flag equal to 0 indicates that the syntax elements dimension_id[i][j] are present.
NOTE 1 – When splitting_flag is equal to 1, scalable identifiers can be derived from the nuh_layer_id syntax element in the NAL unit header by a bit masked copy. The respective bit mask for the i-th scalable dimension is defined by the value of the dimension_id_len_minus1[i] syntax element and dimBitOffset[i] as specified in the semantics of dimension_id_len_minus1[j].
scalability_mask_flag[i] equal to 1 indicates that dimension_id syntax elements corresponding to the i-th scalability dimension in Table F‑1 are present. scalability_mask_flag[i] equal to 0 indicates that dimension_id syntax elements corresponding to the i-th scalability dimension are not present.
[bookmark: _Ref342859264]Table F‑1 – Mapping of ScalabiltyId to scalability dimensions
	scalability mask
index
	Scalability dimension
	ScalabilityId mapping

	0
	Reserved
	

	1
	Multiview
	View Order Index

	2
	spatial/SNR scalability
	DependencyId

	3
	Auxiliary
	AuxId

	4-15
	Reserved
	

NOTE 2 – It is anticipated that in future 3D extensions of this Specification, scalability mask index 0 will be used to indicate depth maps. It is anticipated that in future scalability extensions of this Specification, scalability mask index 2 will be used to indicate spatial/SNR scalability.
dimension_id_len_minus1[j] plus 1 specifies the length, in bits, of the dimension_id[i][j] syntax element.
When splitting_flag is equal to 1, the following applies:
–	The variable dimBitOffset[0] is set equal to 0 and for j in the range of 1 to NumScalabilityTypes − 1 , inclusive, dimBitOffset[j] is derived as follows:

[bookmark: F]	(F‑1)
–	The value of dimension_id_len_minus1[NumScalabilityTypes − 1] is inferred to be equal to 5 − dimBitOffset[NumScalabilityTypes − 1].
–	The value of dimBitOffset[NumScalabilityTypes] is set equal to 6.
It is a requirement of bitstream conformance that when NumScalabilityTypes is greater than 0, dimBitOffset[NumScalabilityTypes − 1] shall be less than 6.
vps_nuh_layer_id_present_flag equal to 1 specifies that layer_id_in_nuh[i] for i from 0 to MaxLayersMinus1, inclusive, are present. vps_nuh_layer_id_present_flag equal to 0 specifies that layer_id_in_nuh[i] for i from 0 to MaxLayersMinus1, inclusive, are not present.
layer_id_in_nuh[i] specifies the value of the nuh_layer_id syntax element in VCL NAL units of the i-th layer. For i in the range of 0 to MaxLayersMinus1, inclusive, when layer_id_in_nuh[i] is not present, the value is inferred to be equal to i.
When i is greater than 0, layer_id_in_nuh[i] shall be greater than layer_id_in_nuh[i – 1].
For i from 0 to MaxLayersMinus1, inclusive, the variable LayerIdxInVps[layer_id_in_nuh[i]] is set equal to i.
dimension_id[i][j] specifies the identifier of the j-th present scalability dimension type of the i-th layer. The number of bits used for the representation of dimension_id[i][j] is dimension_id_len_minus1[j] + 1 bits.
Depending on splitting_flag, the following applies:
–	If splitting_flag is equal to 1, for i from 0 to MaxLayersMinus1, inclusive, and j from 0 to NumScalabilityTypes − 1, inclusive, dimension_id[i][j] is inferred to be equal to ((layer_id_in_nuh[i] & ((1 << dimBitOffset[j + 1]) − 1)) >> dimBitOffset[j]).
–	Otherwise (splitting_flag is equal to 0), for j from 0 to NumScalabilityTypes − 1, inclusive, dimension_id[0][j] is inferred to be equal to 0.
The variable ScalabilityId[i][smIdx] specifying the identifier of the smIdx-th scalability dimension type of the i-th layer, the variable ViewOrderIdx[layer_id_in_nuh[i]] specifying the view order index of the i-th layer, DependencyId[layer_id_in_nuh[i]] specifying the spatial/SNR scalability identifier of the i-th layer, and the variable ViewScalExtLayerFlag[layer_id_in_nuh[i]] specifying whether the i-th layer is a view scalability extension layer are derived as follows:
NumViews = 1
for(i = 0; i <= MaxLayersMinus1; i++) {
	lId = layer_id_in_nuh[i]
	for(smIdx= 0, j = 0; smIdx < 16; smIdx++)
		if(scalability_mask_flag[smIdx])
			ScalabilityId[i][smIdx] = dimension_id[i][j++]
	ViewOrderIdx[lId] = ScalabilityId[i][1]
	DependencyId [lId] = ScalabilityId[i][2]
	if(i > 0 && (ViewOrderIdx[lId] != ScalabilityId[i – 1][1]))
		NumViews++
	ViewScalExtLayerFlag[lId] = (ViewOrderIdx[lId] > 0)
	AuxId[lId] = ScalabilityId[i][3]
}
AuxId[lId] equal to 0 specifies the layer with nuh_layer_id equal to lId does not contain auxiliary pictures. AuxId[lId] greater than 0 specifies the type of auxiliary pictures in layer with nuh_layer_id equal to lId as specified in Table F‑2.
[bookmark: _Ref366745143][bookmark: _Ref373340294]Table F‑2 – Mapping of AuxId to the type of auxiliary pictures
	AuxId
	Name of AuxId
	Type of auxiliary pictures

	1
	AUX_ALPHA
	Alpha plane

	2
	AUX_DEPTH
	Depth picture

	4-127
	
	Reserved

	128-143
	
	Unspecified

	144-255
	
	Reserved

NOTE 3 – The interpretation of auxiliary pictures associated with AuxId in the range of 128 to 143, inclusive, is specified through means other than the AuxId value.
AuxId[lId] shall be in the range of 0 to 2, inclusive, or 128 to 143, inclusive, for bitstreams conforming to this version of this Specification. Although the value of AuxId[lId] shall be in the range of 0 to 2, inclusive, or 128 to 143, inclusive, in this version of this Specification, decoders shall allow values of AuxId[lId] in the range of 0 to 255, inclusive.
For an auxiliary picture with nuh_layer_id equal to nuhLayerIdA, an associated primary picture, if any, is the picture in the same access unit having AuxId[nuhLayerIdB] equal to 0 such that ScalabilityId[LayerIdxInVps[nuhLayerIdA]][j] is equal to ScalabilityId[LayerIdxInVps[nuhLayerIdB]][j] for all values of j in the range of 0 to 2, inclusive, and 4 to 15, inclusive.
It is a requirement of bitstream conformance that there shall be an associated primary picture for each auxiliary picture with AuxId[nuh_layer_id] equal to AUX_ALPHA.
NOTE 4 – It is not required that each auxiliary picture of each auxiliary picture type has an associated primary picture. For example, a layer with AuxId[nuh_layer_id] equal to AUX_DEPTH may represent a viewpoint of a range sensing camera, while the layers containing primary pictures may represent conventional cameras.
view_id_len specifies the length, in bits, of the view_id_val[i] syntax element. The value of view_id_len shall be greater than or equal to Ceil(Log2 (NumViews)). [Ed. (GT): Regarding that currently two different views are not required to have different view_id_val values the last constraint is not necessary.]
view_id_val[i] specifies the view identifier of the i-th view specified by the VPS. The length of the view_id_val[i] syntax element is view_id_len bits. When not present, the value of view_id_val[i] is inferred to be equal to 0.
For each layer with nuh_layer_id equal to nuhLayerId, the value ViewId[nuhLayerId] is set equal to view_id_val[ViewOrderIdx[nuhLayerId]].
direct_dependency_flag[i][j] equal to 0 specifies that the layer with index j is not a direct reference layer for the layer with index i. direct_dependency_flag[i][j] equal to 1 specifies that the layer with index j may be a direct reference layer for the layer with index i. When direct_dependency_flag[i][j] is not present for i and j in the range of 0 to MaxLayersMinus1, it is inferred to be equal to 0.
The variables NumDirectRefLayers[i] and RefLayerId[i][j] are derived as follows:
for(i = 0; i <= MaxLayersMinus1; i++) {
	iNuhLId = layer_id_in_nuh[i]
	NumDirectRefLayers[iNuhLId] = 0
	for(j = 0; j < i; j++)
		if(direct_dependency_flag[i][j])
			RefLayerId[iNuhLId][NumDirectRefLayers[iNuhLId]++] = layer_id_in_nuh[j]}
The variable NumRefLayers[i] is derived as follows:
–	NumRefLayers[i] is first initialized to 0 for all values of i in the range of 0 and 63, inclusive.
–	For each layer with nuh_layer_id equal to currLayerId, and for all values of j in the range of 0 to 63, inclusive, the variable recursiveRefLayerFlag[currLayerId][j] is first initialized to 0. The variable recursiveRefLayerFlag[currLayerId][j] is then modified using the function setRefLayerFlags(currLayerId), specified as follows:
for(j = 0; j < NumDirectRefLayers[currLayerId]; j++) {
	refLayerId = RefLayerId[currLayerId][j]
	recursiveRefLayerFlag[currLayerId][refLayerId] = 1
	for(k = 0; k <= 63; k++)
		recursiveRefLayerFlag[currLayerId][k] =
			recursiveRefLayerFlag[currLayerId][k] | recursiveRefLayerFlag[refLayerId][k]
}
–	NumRefLayers [i] is modified as follows:
for(i = 0; i <= vps_max_layers_minus1; i++) {
	iNuhLId = layer_id_in_nuh[i]
	setRefLayerFlags(iNuhLId)
	for(j = 0; j <= 63; j++)
		NumRefLayers[iNuhLId] += recursiveRefLayerFlag[iNuhLId][j]
}
It is a requirement of bitstream conformance that AuxId[RefLayerId[nuhLayerIdA][j]] for any values of nuhLayerIdA and j shall be equal to AuxId[nuhLayerIdA], when AuxId[nuhLayerIdA] is in the range of 0 to 2, inclusive.
NOTE 5 – In other words, no prediction takes place between layers with a different value of AuxId, when AuxId is in the range of 0 to 2, inclusive.
vps_sub_layers_max_minus1_present_flag equal to 1 specifies that the syntax elements sub_layers_vps_max_minus1[i] are present. vps_sub_layers_max_minus1_present_flag equal to 0 specifies that the syntax elements sub_layers_vps_max_minus1[i] are not present.
sub_layers_vps_max_minus1[i] plus 1 specifies the maximum number of temporal sub-layers that may be present in the CVS for the layer with nuh_layer_id equal to layer_id_in_nuh[i]. The value of sub_layers_vps_max_minus1[i] shall be in the range of 0 to vps_max_sub_layers_minus1, inclusive. When not present, sub_layers_vps_max_minus1[i] is inferred to be equal to vps_max_sub_layers_minus1.
max_tid_ref_present_flag equal to 1 specifies that the syntax element max_tid_il_ref_pics_plus1[i][j] is present. max_tid_ref_present_flag equal to 0 specifies that the syntax element max_tid_il_ref_pics_plus1[i][j] is not present.
max_tid_il_ref_pics_plus1[i][j] equal to 0 specifies that within the CVS non-IRAP pictures with nuh_layer_id equal to layer_id_in_nuh[i] are not used as reference for inter-layer prediction for pictures with nuh_layer_id equal to layer_id_in_nuh[j]. max_tid_il_ref_pics_plus1[i][j] greater than 0 specifies that within the CVS pictures with nuh_layer_id equal to layer_id_in_nuh[i] and TemporalId greater than max_tid_il_ref_pics_plus1[i][j] – 1 are not used as reference for inter-layer prediction for pictures with nuh_layer_id equal to layer_id_in_nuh[j]. When not present, max_tid_il_ref_pics_plus1[i][j] is inferred to be equal to 7.
all_ref_layers_active_flag equal to 1 specifies that for each picture referring to the VPS, the reference layer pictures that belong to all direct reference layers of the layer containing the picture and that might be used for inter-layer prediction as specified by the values of sub_layers_vps_max_minus1[i] and max_tid_il_ref_pics_plus1[i][j] are present in the same access unit as the picture and are included in the inter-layer reference picture set of the picture. all_ref_layers_active_flag equal to 0 specifies that the above restriction may or may not apply. [Ed. (GT): Consider renaming the syntax element, since not all reference layers are active anymore.]
vps_number_layer_sets_minus1 plus 1 specifies the number of layer sets that are specified by the VPS. The value of vps_number_layer_sets_minus1 shall be in the range of 0 to 1023, inclusive, and shall be equal to vps_num_layer_sets_minus1.
vps_num_profile_tier_level_minus1 plus 1 specifies the number of profile_tier_level() syntax structures in the VPS.
vps_profile_present_flag[i] equal to 1 specifies that the profile and tier information for layer set i is present in the i-th profile_tier_level() syntax structure. vps_profile_present_flag[i] equal to 0 specifies that profile and tier information is not present in the i-th profile_tier_level() syntax structure and is inferred.
profile_ref_minus1[i] specifies that the profile and tier information for the i-th profile_tier_level() syntax structure is inferred to be equal to the profile and tier information for the (profile _ref_minus1[i] + 1)-th layer set. The value of profile_ref_minus1[i] + 1 shall be less than or equal to i.
more_output_layer_sets_than_default_flag equal to 1 specifies that the number of output layer sets specified by the VPS is greater than vps_number_layer_sets_minus1 + 1. more_output_layer_sets_than_default_flag equal to 0 specifies that the number of output layer sets specified by the VPS is equal to vps_number_layer_sets_minus1 + 1.
[Ed. (MH): The value of more_output_layer_sets_than_default_flag may be restricted to be equal to 0 by an SHVC profile, such that the number of output layer sets is equal to the number of layer sets.]
num_add_output_layer_sets_minus1 plus 1 specifies the number of output layer sets in addition to the default output layer sets specified by the VPS. The default output layer sets refer to the first vps_number_layer_sets_minus1 + 1 output layer sets specified by the VPS. For the default output layer sets, either only the highest layer is a target output layer or all layers are target output layers.
default_one_target_output_layer_idc equal to 1 specifies that only the layer with the highest value of nuh_layer_id such that nuh_layer_id equal to nuhLayerIdA and AuxId[nuhLayerIdA] equal to 0 in each of the default output layer sets is a target output layer. default_one_target_output_layer_idc equal to 0 specifies that all layers in each of the default output layer sets are target output layers. default_one_target_output_layer_idc shall be equal to 0 or 1 in bitstreams conforming to this version of this Specification. Other values for default_one_target_output_layer_idc are reserved for future use by ITU-T | ISO/IEC. [Ed. GT: Should there be a default behaviour when reserved values appear?]
output_layer_set_idx_minus1[i] plus 1 specifies the index of the layer set for the i-th output layer set. The value of output_layer_set_idx_minus1[i] shall be in the range of 0 to vps_num_layer_sets_minus1 − 1, inclusive. The length of the output_layer_set_idx_minus1[i] syntax element is Ceil(Log2(vps_num_layer_sets_minus1)) bits.
The layer set for the i-th output layer set with i in the range of 0 to vps_num_layer_sets_minus1, inclusive, is inferred to be the i-th layer set.
The variable NumSubDpbs[i], specifying the number of sub-DPBs for the i-th output layer set, is set equal to NumLayersInIdList[i].
output_layer_flag[i][j] equal to 1 specifies that the j-th layer in the i-th output layer set is a target output layer. output_layer_flag[i][j] equal to 0 specifies that the j-th layer in the i-th output layer set is not a target output layer.
profile_level_tier_idx[i] specifies the index, into the list of profile_tier_level() syntax structures in the VPS, of the profile_tier_level() syntax structure that applies to i-th output layer set. The length of the profile_level_tier_idx[i] syntax element is Ceil(Log2(vps_num_profile_tier_level_minus1 + 1)) bits. The value of profile_level_tier_idx[0] is inferred to be equal to 0. The value of profile_level_tier_idx[i] shall be in the range of 0 to vps_num_profile_tier_level_minus1, inclusive.
[bookmark: _Ref348090365]alt_output_layer_flag affects picture output as specified in subclause F.13. [Ed. (GT) semantics should be more specific.]
NOTE 1 – When alt_output_layer_flag is equal to 0, pictures that are not at the target output layers are not output. When alt_output_layer_flag equal to 1 and a picture at the a target output layer is not present in an access unit, a picture with highest nuh_layer_id among those pictures of the access unit for which PicOutputFlag is equal to 1 and which are not among the target output layers is output.
rep_format_idx_present_flag equal to 1 specifies that the syntax elements vps_num_rep_formats_minus1 and vps_rep_format_idx[i] are present. rep_format_idx_present_flag equal to 0 specifies that the syntax elements vps_num_rep_formats_minus1 and vps_rep_format_idx[i] are not present.
vps_num_rep_formats_minus1 plus 1 specifies the number of the following rep_format() syntax structures in the VPS. When not present, the value of vps_num_rep_formats_minus1 is inferred to be equal to MaxLayersMinus1.
vps_rep_format_idx[i] specifies the index, into the list of rep_format() syntax structures in the VPS, of the rep_format() syntax structure that applies to the layer with nuh_layer_id equal to layer_id_in_nuh[i]. When not present, the value of vps_rep_format_idx[i] is inferred to be equal to (rep_format_idx_present_flag ? 0 : i). The value of vps_rep_format_idx[i] shall be in the range of 0 to vps_num_rep_formats_minus1, inclusive.
max_one_active_ref_layer_flag equal to 1 specifies that at most one picture is used for inter-layer prediction for each picture in the CVS. max_one_active_ref_layer_flag equal to 0 specifies that more than one picture may be used for inter-layer prediction for each picture in the CVS.
poc_lsb_not_present_flag[i] equal to 1 specifies that the slice_pic_order_cnt_lsb syntax element is not present in the slice headers of IDR pictures with nuh_layer_id equal to layer_id_in_nuh[i] in the CVS. poc_lsb_not_present_flag[i] equal to 0 specifies that slice_pic_order_cnt_lsb syntax element may or may not be present in the slice headers of IDR pictures with nuh_layer_id equal to layer_id_in_nuh[i] in the CVS. When not present, poc_lsb_not_present_flag[i] is inferred to be equal to 0.
cross_layer_phase_alignment_flag equal to 1 specifies that the locations of the luma sample grids of all layers are aligned at the center sample position of the pictures. cross_layer_phase_alignment_flag equal to 0 specifies that the locations of the luma sample grids of all layers are aligned at the top-left sample position of the pictures. [Ed. (MH): The semantics should be clarified. What are "the center sample position of the pictures" and "the top-left sample position of the pictures"?]
direct_dep_type_len_minus2 plus 2 specifies the number of bits of the direct_dependency_type[i][j] and the default_direct_dependency_type syntax elements. In bitstreams conforming to this version of this Specification the value of direct_dep_type_len_minus2 shall be equal 0. Although the value of direct_dep_type_len_minus2 shall be equal to 0 in this version of this Specification, decoders shall allow other values of direct_dep_type_len_minus2 in the range of 0 to 30, inclusive, to appear in the syntax.
default_direct_dependency_flag equal to 1 specifies that the syntax element direct_dependency_type[i][j] is not present and inferred from default_direct_dependency_type. default_direct_dependency_flag equal to 0 indicates that the syntax element direct_dependency_type[i][j] is present.
default_direct_dependency_type, when present, specifies the inferred value of direct_dependency_type[i][j]. The length of the default_direct_dependency_type syntax element is direct_dep_type_len_minus2 + 2 bits. Although the value of default_direct_dependency_type is required to be in the range of 0 to 2, inclusive, in this version of this Specification, decoders shall allow values of default_direct_dependency_type in the range of 3 to 232 − 2, inclusive, to appear in the syntax.
direct_dependency_type[i][j] indicates the type of dependency between the layer with nuh_layer_id equal layer_id_in_nuh[i] and the layer with nuh_layer_id equal to layer_id_in_nuh[j]. direct_dependency_type[i][j] equal to 0 indicates that the layer with nuh_layer_id equal to layer_id_in_nuh[j] is used for both inter-layer sample prediction and inter-layer motion prediction of the layer with nuh_layer_id equal layer_id_in_nuh[i]. direct_dependency_type[i][j] equal to 1 indicates that the layer with nuh_layer_id equal to layer_id_in_nuh[j] is used for inter-layer sample prediction but not for inter-layer motion prediction of the layer with nuh_layer_id equal layer_id_in_nuh[i]. direct_dependency_type[i][j] equal to 2 indicates that the layer with nuh_layer_id equal to layer_id_in_nuh[j] is used for inter-layer motion prediction but not for inter-layer sample prediction of the layer with nuh_layer_id equal layer_id_in_nuh[i]. The length of the direct_dependency_type[i][j] syntax element is direct_dep_type_len_minus2 + 2 bits. Although the value of direct_dependency_type[i][j] shall be in the range of 0 to 2, inclusive, in this version of this Specification, decoders shall allow values of direct_dependency_type[i][j] in the range of 3 to 232 − 2, inclusive, to appear in the syntax. When not present, the value of direct_dependency_type[i][j] is inferred to be equal to default_direct_dependency_type.
The variables VpsInterLayerSamplePredictionEnabled[i][j] and VpsInterLayerMotionPredictionEnabled[i][j] are derived as follows:
VpsInterLayerSamplePredictionEnabled[i][j] = direct_dependency_type[i][j] & 0x1 	(F‑2)
VpsInterLayerMotionPredictionEnabled[i][j] = direct_dependency_type[i][j] & 0x2	(F‑3)
 [Ed. (JB): May need to define semantic constraints associated with values of VpsInterLayerSamplePredictionEnabled[i][j] and VpsInterLayerMotionPredictionEnabled[i][j].]
[bookmark: _Ref357439354]vps_vui_alignment_bit_equal_to_one shall be equal to 1.
F.6.4.3.1.2 Representation format semantics
chroma_and_bit_depth_vps_present_flag equal to 1 specifies that the syntax elements, chroma_format_vps_idc, bit_depth_vps_luma_minus8, and bit_depth_vps_chroma_minus8 are present and that the syntax element separate_colour_plane_vps_flag might be present. chroma_and_bit_depth_vps_present_flag equal to 0 specifies that the syntax elements, chroma_format_vps_idc, separate_colour_plane_vps_flag, bit_depth_vps_luma_minus8, and bit_depth_vps_chroma_minus8 are not present and inferred from the previous rep_format() syntax structure in the VPS. The value of chroma_and_bit_depth_vps_present_flag of the first rep_format() syntax structure in the VPS shall be equal to 1.
pic_width_vps_in_luma_samples, pic_height_vps_in_luma_samples, chroma_format_vps_idc, separate_colour_plane_vps_flag, bit_depth_vps_luma_minus8, and bit_depth_vps_chroma_minus8 are used for inference of the values of the SPS syntax elements pic_width_in_luma_samples, pic_height_in_luma_samples, chroma_format_idc, separate_colour_plane_flag, bit_depth_luma_minus8, and bit_depth_chroma_minus8, respectively, for each SPS that refers to the VPS. When not present in the i-th rep_format() syntax structure in the VPS, the value of each of these syntax elements is inferred to be equal to the value of the corresponding syntax element in the (i − 1)-th rep_format() syntax structure in the VPS. For each of these syntax elements, all constraints, if any, that apply to the value of the corresponding SPS syntax element also apply. [Ed. (GT) Consider explicit constraints here.].
F.6.4.3.1.3 DPB size semantics
sub_layer_flag_info_present_flag[i] equal to 1 specifies that sub_layer_dpb_info_present_flag[i][j] is present for i in the range of 1 to vps_max_sub_layers_minus1, inclusive. sub_layer_flag_info_present_flag[i] equal to 0 specifies that, for each value of j greater than 0, sub_layer_dpb_info_present_flag[i][j] is not present and the value is inferred to be equal to 0.
sub_layer_dpb_info_present_flag[i][j] equal to 1 specifies that max_vps_dec_pic_buffering_minus1[i][k][j] is present for k in the range of 0 to NumSubDpbs[i] – 1, inclusive, for the j-th sub-layer, and max_vps_num_reorder_pics[i][j] and max_vps_latency_increase_plus1[i][j] are present for the j-th sub-layer. sub_layer_dpb_info_present_flag[i][j] equal to 0 specifies that the values of max_vps_dec_pic_buffering_minus1[i][k][j] are equal to max_vps_dec_pic_buffering_minus1[i][k][j − 1] for k in the range of 0 to NumSubDpbs[i] – 1, inclusive, and that the values max_vps_num_reorder_pics[i][j] and max_vps_latency_increase_plus1[i][j] are set equal to max_vps_num_reorder_pics[i][j ‑ 1] and max_vps_latency_increase_plus1[i][j ‑ 1], respectively. The value of sub_layer_dpb_info_present_flag[i][0] for any possible value of i is inferred to be equal to 1.
max_vps_dec_pic_buffering_minus1[i][k][j] plus 1 specifies the maximum required size of the k-th sub-DPB for the CVS in the i-th output layer set in units of picture storage buffers when HighestTid is equal to j. When j is greater than 0, max_vps_dec_pic_buffering_minus1[i][k][j] shall be greater than or equal to max_vps_dec_pic_buffering_minus1[i][k][j ‑ 1]. When max_vps_dec_pic_buffering_minus1[i][k][j] is not present for j in the range of 1 to vps_max_sub_layers_minus1 − 1, inclusive, it is inferred to be equal to max_vps_dec_pic_buffering_minus1[i][k][j ‑ 1].
max_vps_num_reorder_pics[i][j] specifies, when HighestTid is equal to j, the maximum allowed number of access units containing a picture with PicOutputFlag equal to 1 that can precede any access unit auA that contains a picture with PicOutputFlag equal to 1 in the i-th output layer set in the CVS in decoding order and follow the access unit auA that contains a picture with PicOutputFlag equal to 1 in output order. When max_vps_num_reorder_pics[i][j] is not present for j in the range of 1 to vps_max_sub_layers_minus1 – 1, inclusive, due to sub_layer_dpb_info_present_flag[i][j] being equal to 0, it is inferred to be equal to max_vps_num_reorder_pics[i][j ‑ 1].
max_vps_latency_increase_plus1[i][j] not equal to 0 is used to compute the value of VpsMaxLatencyPictures[i][j], which, when HighestTid is equal to j, specifies the maximum number of access units containing a picture with PicOutputFlag equal to 1 in the i-th output layer set that can precede any access unit auA that contains a picture with PicOutputFlag equal to 1 in the CVS in output order and follow the access unit auA that contains a picture with PicOutputFlag equal to 1 in decoding order. When max_vps_latency_increase_plus1[i][j] is not present for j in the range of 1 to vps_max_sub_layers_minus1 – 1, inclusive, due to sub_layer_dpb_info_present_flag[i][j] being equal to 0, it is inferred to be equal to max_vps_latency_increase_plus1[i][j ‑ 1].
When max_vps_latency_increase_plus1[i][j] is not equal to 0, the value of VpsMaxLatencyPictures[i][j] is specified as follows:
VpsMaxLatencyPictures[i][j] = max_vps_num_reorder_pics[i][j] +
	max_vps_latency_increase_plus1[i][j] ‑ 1	(F‑4)
When max_vps_latency_increase_plus1[i][j] is equal to 0, no corresponding limit is expressed. The value of max_vps_latency_increase_plus1[i][j] shall be in the range of 0 to 232 – 2, inclusive.
F.6.4.3.1.4 [bookmark: _Ref363161318]VPS VUI semantics
cross_layer_pic_type_aligned_flag equal to 1 specifies that within a CVS that refers to the VPS, all VCL NAL units that belong to an access unit have the same value of nal_unit_type. cross_layer_pic_type_aligned_flag equal to 0 specifies that within a CVS that refers to the VPS, all VCL NAL units in each access unit may or may not have the same value of nal_unit_type.
cross_layer_irap_aligned_flag equal to 1 specifies that IRAP pictures in the CVS are cross-layer aligned, i.e. when a picture pictureA of a layer layerA in an access unit is an IRAP picture, each picture pictureB in the same access unit that belongs to a direct reference layer of layerA or that belongs to a layer for which layerA is a direct reference layer of that layer is an IRAP picture and the VCL NAL units of pictureB have the same value of nal_unit_type as that of pictureA. cross_layer_irap_aligned_flag equal to 0 specifies that the above restriction may or may not apply. When not present, the value of cross_layer_irap_aligned_flag is inferred to be equal to 1. [Ed. (JB): Need to change the inference to be based on value of cross_layer_pic_type_aligned_flag, so that alignment is not inferred when the VPS VUI is not present.]
bit_rate_present_vps_flag equal to 1 specifies that the syntax element bit_rate_present_flag[i][j] is present. bit_rate_present_vps_flag equal to 0 specifies that the syntax element bit_rate_present_flag[i][j] is not present.
pic_rate_present_vps_flag equal to 1 specifies that the syntax element pic_rate_present_flag[i][j] is present. pic_rate_present_vps_flag equal to 0 specifies that the syntax element pic_rate_present_flag[i][j] is not present.
bit_rate_present_flag[i][j] equal to 1 specifies that the bit rate information for the j-th subset of the i-th layer set is present. bit_rate_present_flag[i] equal to 0 specifies that the bit rate information for the j-th subset of the i-th layer set is not present. The j-th subset of a layer set is the output of the sub-bitstream extraction process when it is invoked with the layer set, j, and the layer identifier list associated with the layer set as inputs. When not present, the value of bit_rate_present_flag[i][j] is inferred to be equal to 0.
pic_rate_present_flag[i][j] equal to 1 specifies that picture rate information for the j-th subset of the i-th layer set is present. pic_rate_present_flag[i][j] equal to 0 specifies that picture rate information for the j-th subset of the i-th layer set is not present. When not present, the value of pic_rate_present_flag[i][j] is inferred to be equal to 0.
avg_bit_rate[i][j] indicates the average bit rate of the j-th subset of the i-th layer set, in bits per second. The value is given by BitRateBPS(avg_bit_rate[i][j]) with the function BitRateBPS() being specified as follows:
BitRateBPS(x) = (x & (214 − 1)) * 10(2 + (x >> 14))		(F‑5)
The average bit rate is derived according to the access unit removal time specified in clause F.13. In the following, bTotal is the number of bits in all NAL units of the j-th subset of the i-th layer set, t1 is the removal time (in seconds) of the first access unit to which the VPS applies, and t2 is the removal time (in seconds) of the last access unit (in decoding order) to which the VPS applies. With x specifying the value of avg_bit_rate[i][j], the following applies:
–	If t1 is not equal to t2, the following condition shall be true:
(x & (214 − 1)) = = Round(bTotal ÷ ((t2 − t1) * 10(2 + (x >> 14))))	(F‑6)
–	Otherwise (t1 is equal to t2), the following condition shall be true:
(x & (214 − 1)) = = 0		(F‑7)
max_bit_rate_layer[i][j] indicates an upper bound for the bit rate of the j-th subset of the i-th layer set in any one-second time window of access unit removal time as specified in clause F.13. The upper bound for the bit rate in bits per second is given by BitRateBPS(max_bit_rate_layer[i][j]). The bit rate values are derived according to the access unit removal time specified in clause F.13. In the following, t1 is any point in time (in seconds), t2 is set equal to t1 + 1 ÷ 100, and bTotal is the number of bits in all NAL units of access units with a removal time greater than or equal to t1 and less than t2. With x specifying the value of max_bit_rate_layer[i][j], the following condition shall be obeyed for all values of t1:
(x & (214 − 1)) >= bTotal ÷ ((t2 − t1) * 10(2 + (x >> 14)))	(F‑8)
constant_pic_rate_idc[i][j] indicates whether the picture rate of the j-th subset of the i-th layer set is constant. In the following, a temporal segment tSeg is any set of two or more consecutive access units, in decoding order, of the j-th subset of the i-th layer set, auTotal(tSeg) is the number of access units in the temporal segment tSeg, t1(tSeg) is the removal time (in seconds) of the first access unit (in decoding order) of the temporal segment tSeg, t2(tSeg) is the removal time (in seconds) of the last access unit (in decoding order) of the temporal segment tSeg, and avgPicRate(tSeg) is the average picture rate in the temporal segment tSeg, and is specified as follows:
avgPicRate(tSeg) = = Round(auTotal(tSeg) * 256 ÷ (t2(tSeg) − t1(tSeg)))	(F‑9)
If the j-th subset of the i-th layer set only contains one or two access units or the value of avgPicRate(tSeg) is constant over all the temporal segments, the picture rate is constant; otherwise, the picture rate is not constant.
constant_pic_rate_idc[i][j] equal to 0 indicates that the picture rate of the j-th subset of the i-th layer set is not constant. constant_pic_rate_idc[i][j] equal to 1 indicates that the picture rate of the j-th subset of the i-th layer set is constant. constant_pic_rate_idc[i][j] equal to 2 indicates that the picture rate of the j-th subset of the i-th layer set may or may not be constant. The value of constant_pic_rate_idc[i][j] shall be in the range of 0 to 2, inclusive.
avg_pic_rate[i] indicates the average picture rate, in units of picture per 256 seconds, of the j-th subset of the layer set. With auTotal being the number of access units in the j-th subset of the i-th layer set, t1 being the removal time (in seconds) of the first access unit to which the VPS applies, and t2 being the removal time (in seconds) of the last access unit (in decoding order) to which the VPS applies, the following applies:
–	If t1 is not equal to t2, the following condition shall be true:
avg_pic_rate[i] = = Round(auTotal * 256 ÷ (t2 − t1))	(F‑10)
–	Otherwise (t1 is equal to t2), the following condition shall be true:
avg_pic_rate[i] = = 0		(F‑11)
tiles_not_in_use_flag equal to 1 indicates that the value of tiles_enabled_flag is equal to 0 for each PPS that is referred to by at least one picture referring to the VPS. tiles_not_in_use_flag equal to 0 indicates that such a restriction may or may not apply.
tiles_in_use_flag[i] equal to 1 indicates that the value of tiles_enabled_flag is equal to 1 for each PPS that is referred to by at least one picture of the i-th layer specified by the VPS. tiles_in_use_flag[i] equal to 0 indicates that such a restriction may or may not apply.
loop_filter_not_across_tiles_flag[i] equal to 1 indicates that the value of loop_filter_across_tiles_enabled_flag is equal to 0 for each PPS that is referred to by at least one picture of the i-th layer specified by the VPS. loop_filter_not_across_tiles_flag[i] equal to 0 indicates that such a restriction may or may not apply.
tile_boundaries_aligned_flag[i][j] equal to 1 indicates that, when any two samples of one picture of the i-th layer specified by the VPS belong to one tile, the two collocated samples, when both present in the picture of the j-th direct reference layer of the i-th layer, belong to one tile, and when any two samples of one picture of the i-th layer belong to different tiles, the two collocated samples, when both present in the picture of the j-th direct reference layer of the i-th layer belong to different tiles. tile_boundaries_aligned_flag equal to 0 indicates that such a restriction may or may not apply. When not present, the value of tile_boundaries_aligned_flag[i][j] is inferred to be equal to 0.
wpp_not_in_use_flag equal to 1 indicates that the value of entropy_coding_sync_enabled_flag is equal to 0 for each PPS that is referred to by at least one picture referring to the VPS. wpp_not_in_use_flag equal to 0 indicates that such a restriction may or may not apply.
wpp_in_use_flag[i] equal to 1 indicates that the value of entropy_coding_sync_enabled_flag is equal to 1 for each PPS that is referred to by at least one picture of the i-th layer specified by the VPS. wpp_in_use_flag[i] equal to 0 indicates that such a restriction may or may not apply.
[Ed. (YK): Define "collocated sample".]
single_layer_for_non_irap_flag equal to 1 indicates either that all the VCL NAL units of an access unit have the same nuh_layer_id value or that two nuh_layer_id values are used by the VCL NAL units of an access unit and the picture with the greater nuh_layer_id value is an IRAP picture. single_layer_for_non_irap_flag equal to 0 indicates that nuh_layer_id values may or may not be constrained beyond constraints specified in other parts of this Recommendation | International Standard. When single_layer_for_non_irap_flag is not present, it is inferred to be equal to 0.
higher_layer_irap_skip_flag equal to 1 indicates that for every IRAP picture that refer to the VPS, for which there is another picture in the same access unit with a lower value of nuh_layer_id, the following constraints apply:
–	For all slices of the IRAP picture:
· slice_type shall be equal to P.
· slice_sao_luma_flag and slice_sao_chroma_flag shall both be equal to 0.
· five_minus_max_num_merge_cand shall be equal to 4.
· weighted_pred_flag shall be equal to 0 in the PPS that is refered to by the slices.
–	For all coding units of the IRAP picture:
· cu_skip_flag[i][j] shall be equal to 1.
higher_layer_irap_skip_flag equal to 0 indicates that the above constraints may or may not apply.
When single_layer_for_non_irap_flag is equal to 0, higher_layer_irap_skip_flag shall be equal to 0. When higher_layer_irap_skip_flag is not present it is inferred to be equal to 0.
NOTE 2 – An encoder may set both single_layer_for_non_irap_flag and higher_layer_irap_skip_flag equal to 1 as an indication to a decoder that whenever there are two pictures in the same access unit, the one with the higher nuh_layer_id is an IRAP picture for which the decoded samples can be derived by applying the resampling process for inter layer reference pictures specified in subclause H.8.1.4 with the other picture as input.
ilp_restricted_ref_layers_flag equal to 1 indicates that additional restrictions on inter-layer prediction as specified below apply for each direct reference layer of each layer specified by the VPS. ilp_restricted_ref_layers_flag equal to 0 indicates that additional restrictions on inter-layer prediction may or may not apply.
[Ed. (YK): Consider using better syntax element names for min_spatial_segment_offset_plus1[i][j], ctu_based_offset_enabled_flag[i][j], and min_horizontal_ctu_offset_plus1[i][j].]
The variables refCtbLog2SizeY[i][j], refPicWidthInCtbsY[i][j], and refPicHeightInCtbsY[i][j] are set equal to CtbLog2SizeY, PicWidthInCtbsY, and PicHeightInCtbsY, respectively, of the j-th direct reference layer of the i-th layer.
min_spatial_segment_offset_plus1[i][j] indicates the spatial region, in each picture of the j-th direct reference layer of the i-th layer, that is not used for inter-layer prediction for decoding of any picture of the i-th layer, by itself or together with min_horizontal_ctu_offset_plus1[i][j], as specified below. The value of min_spatial_segment_offset_plus1[i][j] shall be in the range of 0 to refPicWidthInCtbsY[i][j] * refPicHeightInCtbsY[i][j], inclusive. When not present, the value of min_spatial_segment_offset_plus1[i][j] is inferred to be equal to 0.
ctu_based_offset_enabled_flag[i][j] equal to 1 specifies that the spatial region, in units of CTUs, in each picture of the j-th direct reference layer of the i-th layer, that is not used for inter-layer prediction for decoding of any picture of the i-th layer is indicated by min_spatial_segment_offset_plus1[i][j] and min_horizontal_ctu_offset_plus1[i][j] together. ctu_based_offset_enabled_flag[i][j] equal to 0 specifies that the spatial region, in units of slice segments, tiles, or CTU rows, in each picture of the j-th direct reference layer of the i-th layer, that is not used for inter-layer prediction for decoding of any picture of the i-th layer is indicated by min_spatial_segment_offset_plus1[i] only. When not present, the value of ctu_based_offset_enabled_flag[i] is inferred to be equal to 0.
min_horizontal_ctu_offset_plus1[i][j], when ctu_based_offset_enabled_flag[i][j] is equal to 1, indicates the spatial region, in each picture of the j-th direct reference layer of the i-th layer, that is not used for inter-layer prediction for decoding of any picture of the i-th layer, together with min_spatial_segment_offset_plus1[i][j], as specified below. The value of min_horizontal_ctu_offset_plus1[i][j] shall be in the range of 0 to refPicWidthInCtbsY[i][j], inclusive.
When ctu_based_offset_enabled_flag[i][j] is equal to 1, the variable minHorizontalCtbOffset[i][j] is derived as follows:
minHorizontalCtbOffset[i][j] = (min_horizontal_ctu_offset_plus1[i][j] > 0) ?	(F‑12)
							(min_horizontal_ctu_offset_plus1[i][j] – 1) : (refPicWidthInCtbsY[i][j] ‑ 1)
The variables curPicWidthInSamplesL[i], curPicHeightInSamplesL[i], curCtbLog2SizeY[i], curPicWidthInCtbsY[i], and curPicHeightInCtbsY[i] are set equal to PicWidthInSamplesL, PicHeightInSamplesL, CtbLog2SizeY, PicWidthInCtbsY, and PicHeightInCtbsY, respectively, of the i-th layer.
The variables refPicWidthInSamplesL[i][j], refPicHeightInSamplesL[i][j], refCtbLog2SizeY[i][j], refPicWidthInCtbsY[i][j], and refPicHeightInCtbsY[i][j] are set equal to PicWidthInSamplesL, PicHeightInSamplesL, CtbLog2SizeY, PicWidthInCtbsY, and PicHeightInCtbsY, respectively, of the j-th direct reference layer of the i-th layer.
The variables curScaledRefLayerLeftOffset[i][j], curScaledRefLayerTopOffset[i][j], curScaledRefLayerRightOffset[i][j] and curScaledRefLayerBottomOffset[i][j] are set equal to scaled_ref_layer_left_offset[j]<<1, scaled_ref_layer_top_offset[j]<<1, scaled_ref_layer_right_offset[j]<<1, scaled_ref_layer_bottom_offset [j]<<1, respectively, of the j-th direct reference layer of the i-th layer.
The variable colCtbAddr[i][j] that denotes the raster scan address of the collocated CTU, in a picture in the j-th direct reference layer of the i-th layer, of the CTU with raster scan address equal to ctbAddr in a picture of the i-th layer is derived as follows [Ed. (YK): Define "collocated CTU".]:
–	The variables (xP, yP) specifying the location of the top-left luma sample of the CTU with raster scan address equal to ctbAddr relative to top-left luma luma sample in a picture of the i-th layer are derived as follows:
xP = (ctbAddr % curPicWidthInCtbsY) << curCtbLog2SizeY	(F‑13)
yP = (ctbAddr / curPicWidthInCtbsY) << curCtbLog2SizeY	(F‑14)
–	The variables scaleFactorX[i][j] and scaleFactorY[i][j] are derived as follows:
curScaledRefLayerPicWidthInSamplesL[i][j] = curPicWidthInSamplesL[i] –
	curScaledRefLayerLeftOffset[i][j] – curScaledRefLayerRightOffset[i][j]	(F‑15)
curScaledRefLayerPicHeightInSamplesL[i][j] = curPicHeightInSamplesL[i] –
	curScaledRefLayerTopOffset[i][j] – curScaledRefLayerBottomOffset[i][j]	(F‑16)
scaleFactorX[i][j] = ((refPicWidthInSamplesL [i][j] << 16) +
(curScaledRefLayerPicWidthInSamplesL [i][j]>> 1))/curScaledRefLayerPicWidthInSamplesL [i][j]	(F‑17)
scaleFactorY[i][j] = ((refPicHeightInSamplesL [i][j] << 16) +
(curScaledRefLayerPicHeightInSamplesL >> 1)) / curScaledRefLayerPicHeightInSamplesL [i][j]	(F‑18)
[Ed. (JC): the global variables related to scaling factor were already defined in Annex H. It’s desired to move the definition to Annex F, e.g. at the semantics part of related syntax, so that the depulicated derivation process here can be deleted]
–	The variables (xCol[I][j], yCol xCol[I][j]) specifying the collocated luma sample location in a picture in the j-th direct reference layer of the luma sample location (xP, yP) in the i-th layer are derived as follows:
xCol[i][j] = Clip3(0, (refPicWidthInSamplesL[i][j]– 1), ((xP ‑ curScaledRefLayerLeftOffset[i][j]) * scaleFactorX[i][j] + (1 << 15)) >> 16))	(F‑19)
yCol[i][j] = Clip3(0 , (refPicHeightInSamplesL[i][j]– 1), ((yP ‑ curScaledRefLayerTopOffset[i][j]) * scaleFactorY[i][j] + (1 << 15)) >> 16))	(F‑20)
–	The variable colCtbAddr[i][j] is derived as follows:
xColCtb[i][j] = xCol[i][j] >> refCtbLog2SizeY[i][j]	(F‑21)
yColCtb[i][j] = yCol[i][j] >> refCtbLog2SizeY[i][j]	(F‑22)
colCtbAddr[i][j] = xColCtb[i][j] + (yColCtb[i][j] * refPicWidthInCtbsY[i][j])	(F‑23)
When min_spatial_segment_offset_plus1[i][j] is greater than 0, it is a requirement of bitstream conformance that the following shall apply:
· If ctu_based_offset_enabled_flag[i][j] is equal to 0, exactly one of the following applies:
· In each PPS referred to by a picture in the j-th direct reference layer of the i-th layer, tiles_enabled_flag is equal to 0 and entropy_coding_sync_enabled_flag is equal to 0, and the following applies:
· Let slice segment A be any slice segment of a picture of the i-th layer and ctbAddr be the raster scan address of the last CTU in slice segment A. Let slice segment B be the slice segment that belongs to the same access unit as slice segment A, belongs to the j-th direct reference layer of the i-th layer, and contains the CTU with raster scan address colCtbAddr[i][j]. Let slice segment C be the slice segment that is in the same picture as slice segment B and follows slice segment B in decoding order, and between slice segment B and that slice segment there are min_spatial_segment_offset_plus1[i] ‑ 1 slice segments in decoding order. When slice segment C is present, the syntax elements of slice segment A are constrained such that no sample or syntax elements values in slice segment C or any slice segment of the same picture following C in decoding order are used for inter-layer prediction in the decoding process of any samples within slice segment A.
· In each PPS referred to by a picture in the j-th direct reference layer of the i-th layer, tiles_enabled_flag is equal to 1 and entropy_coding_sync_enabled_flag is equal to 0, and the following applies:
· Let tile A be any tile in any picture picA of the i-th layer and ctbAddr be the raster scan address of the last CTU in tile A. Let tile B be the tile that is in the picture picB belonging to the same access unit as picA and belonging to the j-th direct reference layer of the i-th layer and that contains the CTU with raster scan address colCtbAddr[i][j]. Let tile C be the tile that is also in picB and follows tile B in decoding order, and between tile B and that tile there are min_spatial_segment_offset_plus1[i] ‑ 1 tiles in decoding order. When slice segment C is present, the syntax elements of tile A are constrained such that no sample or syntax elements values in tile C or any tile of the same picture following C in decoding order are used for inter-layer prediction in the decoding process of any samples within tile A.
· In each PPS referred to by a picture in the j-th direct reference layer of the i-th layer, tiles_enabled_flag is equal to 0 and entropy_coding_sync_enabled_flag is equal to 1, and the following applies:
· Let CTU row A be any CTU row in any picture picA of the i-th layer and ctbAddr be the raster scan address of the last CTU in CTU row A. Let CTU row B be the CTU row that is in the picture picB belonging to the same access unit as picA and belonging to the j-th direct reference layer of the i-th layer and that contains the CTU with raster scan address colCtbAddr[i][j]. Let CTU row C be the CTU row that is also in picB and follows CTU row B in decoding order, and between CTU row B and that CTU row there are min_spatial_segment_offset_plus1[i] ‑ 1 CTU rows in decoding order. When CTU row C is present, the syntax elements of CTU row A are constrained such that no sample or syntax elements values in CTU row C or row of the same picture following C are used for inter-layer prediction in the decoding process of any samples within CTU row A.
· Otherwise (ctu_based_offset_enabled_flag[i][j] is equal to 1), the following applies:
· The variable refCtbAddr[i][j] is derived as follows:
xOffset[i][j] = ((xColCtb[i][j] + minHorizontalCtbOffset[i][j]) > (refPicWidthInCtbsY[i][j] ‑ 1)) ?
(refPicWidthInCtbsY[i][j] ‑ 1 –xColCtb[i][j]) : (minHorizontalCtbOffset[i][j])	(F‑24)
yOffset[i][j] = (min_spatial_segment_offset_plus1[i][j] – 1) * refPicWidthInCtbsY[i][j]	(F‑25)
refCtbAddr[i][j] = colCtbAddr[i][j] + xOffset[i][j] + yOffset[i][j]	(F‑26)
· Let CTU A be any CTU in any picture picA of the i-th layer, and ctbAddr be the raster scan address ctbAddr of CTU A. Let CTU B be a CTU that is in the picture belonging to the same access unit as picA and belonging to the j-th direct reference layer of the i-th layer and that has raster scan address greater than refCtbAddr[i][j]. When CTU B is present, the syntax elements of CTU A are constrained such that no sample or syntax elements values in CTU B are used for inter-layer prediction in the decoding process of any samples within CTU A.
video_signal_info_idx_present_flag equal to 1 specifies that the syntax elements vps_num_video_signal_info_minus1, and vps_video_signal_info_idx[i] are present. video_signal_info_idx_present_flag equal to 0 specifies that the syntax elements vps_num_video_signal_info_minus1, and vps_video_signal_info_idx[i] are not present.
vps_num_video_signal_info_minus1 plus 1 specifies the number of the following video_signal_info() syntax structures in the VPS. When not present, the value of vps_num_video_signal_info_minus1 is inferred to be equal to MaxLayersMinus1.
vps_video_signal_info_idx[i] specifies the index, into the list of video_signal_info() syntax structures in the VPS, of the video_signal_info() syntax structure that applies to the layer with nuh_layer_id equal to layer_id_in_nuh[i]. When vps_video_signal_info_idx[i] is not present, vps_video_signal_info_idx[i] is inferred to be equal to (video_signal_info_idx_present_flag ? 0 : i). The value of vps_video_signal_info_idx[i] shall be in the range of 0 to vps_num_video_signal_info_minus1, inclusive.
vps_vui_bsp_hrd_present_flag equal to 0 specifies that no bitstream partition HRD parameters are present in the VPS VUI. vps_vui_bsp_hrd_present_flag equal to 1 specifies that bitstream partition HRD parameters are present in the VPS VUI.
F.6.4.3.1.5 Video signal info semantics
video_vps_format, video_full_range_vps_flag, colour_primaries_vps, transfer_characteristics_vps, matrix_coeffs_vps are used for inference of the values of the SPS VUI syntax elements video_format, video_full_range_flag, colour_primaries, transfer_characteristics, matrix_coeffs respectively, for each SPS that refers to the VPS.
For each of these syntax elements, all constraints, if any, that apply to the value of the corresponding SPS VUI syntax element also apply.
F.6.4.3.1.6 VPS VUI bitstream partition HRD parameters semantics
vps_num_bsp_hrd_parameters_minus1 plus 1 specifies the number of hrd_parameters() syntax structures present within the vps_vui_bsp_hrd_parameters() syntax structure.
bsp_cprms_present_flag[i] equal to 1 specifies that the HRD parameters that are common for all sub-layers are present in the i-th hrd_parameters() syntax structure in the vps_vui_bsp_hrd_parameters() syntax structure. bsp_cprms_present_flag[i] equal to 0 specifies that the HRD parameters that are common for all sub-layers are not present in the i-th hrd_parameters() syntax structure in the vps_vui_bsp_hrd_parameters() syntax structure and are derived to be the same as the (i − 1)-th hrd_parameters() syntax structure in the in the vps_vui_bsp_hrd_parameters() syntax structure. bsp_cprms_present_flag[0] is inferred to be equal to 1.
num_bitstream_partitions[h] specifies the number of bitstream partitions for which HRD parameters are specified for the layer set with index h.
layer_in_bsp_flag[h][i][j] specifies that the layer with index j is a part of bitstream partition with index i within the layer set with index h.
It is a requirement of bitstream conformance that bitstream partition with index j shall not include direct or indirect reference layers of any layers in bitstream partition i for any values of i and j in the range of 0 to num_bitstream_partitions[h] – 1, inclusive, such that i is less than j.
num_bsp_sched_combinations[h] specifies the number of combinations of delivery schedules and hrd_parameters() specified for bitstream partitions for the layer set with index h.
bsp_comb_hrd_idx[h][i][j] specifies the index of hrd_parameters() within the vps_vui_bsp_hrd_parameters() syntax structure used in the i-th combination of a delivery schedule and hrd_parameters() specified for the bitstream partition with index j and for the layer set with index h.
bsp_comb_sched_idx[h][i][j] specifies the index of a delivery schedule within the hrd_parameters() syntax structure with the index bsp_comb_hrd_idx[h][i][j] that is used in the i-th combination of a delivery schedule and hrd_parameters() specified for the bitstream partition with index j and for the layer set with index h.
F.6.4.3.2 Sequence parameter set RBSP semantics
The specifications in subclause 7.4.3.2 apply, with following additions and modifications.
NOTE 1 – All SPSs, regardless of the values of their nuh_layer_id, share the same value space for sps_seq_parameter_set_id. In other words, an SPS with nuh_layer_id equal to X and sps_seq_parameter_set_id equal to A would update the previously received SPS with nuh_layer_id not equal to X and sps_seq_parameter_set_id equal to A.
sps_max_sub_layers_minus1 plus 1 specifies the maximum number of temporal sub-layers that may be present in each CVS referring to the SPS. The value of sps_max_sub_layers_minus1 shall be in the range of 0 to 6, inclusive. When not present sps_max_sub_layers_minus1 is inferred to be equal to vps_max_sub_layers_minus1.
update_rep_format_flag equal to 1 specifies that sps_rep_format_idx is present and that the sps_rep_format_idx-th rep_format() syntax structures in the active VPS applies to the layers that refer to this SPS. update_rep_format_flag equal to 0 specifies that sps_rep_format_idx is not present. When not present, the value of update_rep_format_flag is inferred to be equal to 0.
sps_rep_format_idx specifies the index, into the list of rep_format() syntax structures in the VPS, of the rep_format() syntax structure that applies to the layers that refer to this SPS. When not present, the value of sps_rep_format_idx is inferred to be equal to 0. The value of sps_rep_format_idx shall be in the range of 0 to vps_num_rep_formats_minus1, inclusive. [Ed. (GT): Inferences to 0 seems not to be necessary. We might consider to infer it to vps_rep_format_idx[LayerIdxInVps[layerIdCurr]], when not present.].
When a current picture with nuh_layer_id layerIdCurr greater than 0 refers to an SPS, the values of chroma_format_idc, separate_colour_plane_flag, pic_width_in_luma_samples, pic_height_in_luma_samples, bit_depth_luma_minus8, and bit_depth_chroma_minus8 are inferred or constrained as follows:
–	The variable repFormatIdx is derived as follows:
–	If update_rep_format_flag is equal to 0, the variable repFormatIdx is set equal to vps_rep_format_idx[LayerIdxInVps[layerIdCurr]].
–	Otherwise, (update_rep_format_flag is equal to 1), the variable repFormatIdx is set equal to sps_rep_format_idx.
–	If the nuh_layer_id of the active SPS for the layer with nuh_layer_id equal to layerIdCurr is equal to 0, the values of chroma_format_idc, separate_colour_plane_flag, pic_width_in_luma_samples, pic_height_in_luma_samples, bit_depth_luma_minus8, and bit_depth_chroma_minus8 are inferred to be equal to chroma_format_vps_idc, separate_colour_plane_vps_flag, pic_width_vps_in_luma_samples, pic_height_vps_in_luma_samples, bit_depth_vps_luma_minus8, and bit_depth_vps_chroma_minus8, respectively, of the repFormatIdx-th rep_format() syntax structure in the active VPS and the values of chroma_format_idc, separate_colour_plane_flag, pic_width_in_luma_samples, pic_height_in_luma_samples, bit_depth_luma_minus8, and bit_depth_chroma_minus8 of the active SPS for the layer with nuh_layer_id equal to layerIdCurr are ignored.
NOTE 2 – The values are inferred from the VPS when a non-base layer refers to an SPS that is also referred to by the base layer, in which case the SPS has nuh_layer_id equal to 0. For the base layer, the values of these parameters in the active SPS for the base layer apply.
–	Otherwise (the nuh_layer_id of the active SPS for the layer with nuh_layer_id equal to layerIdCurr is greater than zero), the following applies:
–	The values of chroma_format_idc, separate_colour_plane_flag, pic_width_in_luma_samples, pic_height_in_luma_samples, bit_depth_luma_minus8, and bit_depth_chroma_minus8 are inferred to be equal to chroma_format_vps_idc, separate_colour_plane_vps_flag, pic_width_vps_in_luma_samples, pic_height_vps_in_luma_samples, bit_depth_vps_luma_minus8, and bit_depth_vps_chroma_minus8, respectively, of the repFormatIdx-th rep_format() syntax structure in the active VPS.
–	When update_rep_format_flag is equal to 1, it is a requirement of bitstream conformance that the value of chroma_format_idc, separate_colour_plane_flag, pic_width_in_luma_samples, pic_height_in_luma_samples, bit_depth_luma_minus8, or bit_depth_chroma_minus8 shall be less than or equal to chroma_format_vps_idc, separate_colour_plane_vps_flag, pic_width_vps_in_luma_samples, pic_height_vps_in_luma_samples, bit_depth_vps_luma_minus8, or bit_depth_vps_chroma_minus8, respectively, of the vps_rep_format_idx[j]-th rep_format() syntax structure in the active VPS, where j is equal to LayerIdxInVps[layerIdCurr].
chroma_format_idc specifies the chroma sampling relative to the luma sampling as specified in subclause 6.2. The value of chroma_format_idc shall be in the range of 0 to 3, inclusive. The value of chroma_format_idc shall be less than or equal to chroma_format_vps_idc. [Ed. (GT): These requirements seem to be redundant now. We should consider to remove them.]
It is a requirement of bitstream conformance that when AuxId[lId] is equal to AUX_ALPHA or AUX_DEPTH, chroma_format_idc shall be equal to 0 in the active SPS for the layer with nuh_layer_id equal to lId.
separate_colour_plane_flag equal to 1 specifies that the three colour components of the 4:4:4 chroma format are coded separately. separate_colour_plane_flag equal to 0 specifies that the colour components are not coded separately. When separate_colour_plane_flag is not present, it is inferred to be equal to 0. When separate_colour_plane_flag is equal to 1, the coded picture consists of three separate components, each of which consists of coded samples of one colour plane (Y, Cb, or Cr) and uses the monochrome coding syntax. In this case, each colour plane is associated with a specific colour_plane_id value. The value of separate_colour_plane_flag shall be less than or equal to separate_colour_plane_vps_flag
NOTE 3 – There is no dependency in decoding processes between the colour planes having different colour_plane_id values. For example, the decoding process of a monochrome picture with one value of colour_plane_id does not use any data from monochrome pictures having different values of colour_plane_id for inter prediction.
Depending on the value of separate_colour_plane_flag, the value of the variable ChromaArrayType is assigned as follows:
–	If separate_colour_plane_flag is equal to 0, ChromaArrayType is set equal to chroma_format_idc.
–	Otherwise (separate_colour_plane_flag is equal to 1), ChromaArrayType is set equal to 0.
pic_width_in_luma_samples specifies the width of each decoded picture in units of luma samples. pic_width_in_luma_samples shall not be equal to 0 and shall be an integer multiple of MinCbSizeY. The value of pic_width_in_luma_samples shall be less than or equal to pic_width_vps_in_luma_samples.
pic_height_in_luma_samples specifies the height of each decoded picture in units of luma samples. pic_height_in_luma_samples shall not be equal to 0 and shall be an integer multiple of MinCbSizeY. The value of pic_height_in_luma_samples shall be less than or equal to pic_height_vps_in_luma_samples.
bit_depth_luma_minus8 specifies the bit depth of the samples of the luma array BitDepthY and the value of the luma quantization parameter range offset QpBdOffsetY as follows:
BitDepthY	= 8 + bit_depth_luma_minus8		(F‑27)
QpBdOffsetY	= 6 * bit_depth_luma_minus8		(F‑28)
bit_depth_luma_minus8 shall be in the range of 0 to 6, inclusive. bit_depth_luma_minus8 shall be less than or equal to bit_depth_vps_luma_minus8.
bit_depth_chroma_minus8 specifies the bit depth of the samples of the chroma arrays BitDepthC and the value of the chroma quantization parameter range offset QpBdOffsetC as follows:
[bookmark: _Ref287008908]BitDepthC	= 8 + bit_depth_chroma_minus8		(F‑29)
QpBdOffsetC	= 6 * bit_depth_chroma_minus8		(F‑30)
bit_depth_chroma_minus8 shall be in the range of 0 to 6, inclusive. bit_depth_chroma_minus8 shall be less than or equal to bit_depth_vps_chroma_minus8.
sps_infer_scaling_list_flag equal to 1 specifies that the syntax elements of the scaling list data syntax structure of the SPS are inferred to be equal to those of the SPS that is active for the layer with nuh_layer_id equal to sps_scaling_list_ref_layer_id. sps_infer_scaling_list_flag equal to 0 specifies that the syntax elements of the scaling list data syntax structure are not inferred. When not present, the value of sps_infer_scaling_list_flag is inferred to be 0.
sps_scaling_list_ref_layer_id specifies the value of the nuh_layer_id of the layer for which the active SPS is associated with the same scaling list data as the current SPS.
The value of sps_scaling_list_ref_layer_id shall be in the range of 0 to 62, inclusive.
When avc_base_layer_flag is equal to 1, it is a requirement of bitstream conformance that the value of sps_scaling_list_ref_layer_id shall be greater than 0.
It is a requirement of bitstream conformance that, when an SPS with nuh_layer_id equal to nuhLayerIdA is active for a layer with nuh_layer_id equal to nuhLayerIdB and sps_infer_scaling_list_flag in the SPS is equal to 1, sps_infer_scaling_list_flag shall be equal to 0 for the SPS that is active for the layer with nuh_layer_id equal to sps_scaling_list_ref_layer_id. [Ed. (YK): This constraint is not necessarily needed. It would be nice to allow for all SPSs recursively infer the scaling list data from the lowest HEVC layer, when desirable, as that does not impose any additional decoder complexity anyway.]
It is a requirement of bitstream conformance that, when an SPS with nuh_layer_id equal to nuhLayerIdA is active for a layer with nuh_layer_id equal to nuhLayerIdB, the layer with nuh_layer_id equal to sps_scaling_list_ref_layer_id shall be a direct or indirect reference layer of the layer with nuh_layer_id equal to nuhLayerIdB.
sps_scaling_list_data_present_flag equal to 1 specifies that the scaling list data syntax structure is present in the SPS. sps_scaling_list_data_present_flag equal to 0 specifies that the scaling list data syntax structure is not present in the SPS. When not present, the value of sps_scaling_list_data_present_flag is inferred to be equal to 0.
sps_temporal_id_nesting_flag, when sps_max_sub_layers_minus1 is greater than 0, specifies whether inter prediction is additionally restricted for CVSs referring to the SPS. When vps_temporal_id_nesting_flag is equal to 1, sps_temporal_id_nesting_flag shall be equal to 1. When sps_max_sub_layers_minus1 is equal to 0, sps_temporal_id_nesting_flag shall be equal to 1. When not present sps_temporal_id_nesting_flag is inferred to be equal to vps_temporal_id_nesting_flag.
NOTE 4 – The syntax element sps_temporal_id_nesting_flag is used to indicate that temporal up-switching, i.e. switching from decoding up to any TemporalId tIdN to decoding up to any TemporalId tIdM that is greater than tIdN, is always possible in the CVS.
sps_extension_flag equal to 1 specifies that sps_extension_type_flag[i] for i in the range of 0 to 7, inclusive are present in the SPS RBSP syntax structure. sps_extension_flag equal to 0 specifies that sps_extension_flag[i] for i in the range of 0 to 7, inclusive are not present in the SPS RBSP syntax structure.
sps_extension_type_flag[i] shall be equal to 0, for i equal to 0 and in the range of 2 to 6, inclusive, in bitstreams conforming to this version of this Specification. The value of 1 for sps_extension_type_flag[i], for i equal to 0 and in the range of 2 to 6, inclusive, is reserved for future use by ITU-T | ISO/IEC. sps_extension_type_flag[1] equal to 1 specifies that the sps_multilayer_extension syntax structure is present. sps_extension_type_flag[1] equal to 0 specifies that the sps_multilayer_extension syntax structure is not present. sps_extension_type_flag[7] equal to 0 specifies that no sps_extension_data_flag syntax elements are present in the SPS RBSP syntax structure. sps_extension_type_flag[7] shall be equal to 0 in bitstreams conforming to this version of this Specification. The value of 1 for sps_extension_type_flag[7] is reserved for future use by ITU-T | ISO/IEC. Decoders shall ignore all sps_extension_data_flag syntax elements that follow the value 1 for sps_extension_type_flag[7] in an SPS NAL unit.
[Ed. (GT) constraints on sps_extension_type_flag for i equal to 0 and in the range of 2 to 6 should be removed when semantics are moved to the base spec]
F.6.4.3.2.1 [bookmark: _Ref363161717][bookmark: _Ref348090366]Sequence parameter set multilayer extension semantics
inter_view_mv_vert_constraint_flag equal to 1 specifies that vertical component of motion vectors used for inter-layer prediction are constrained in the CVS. When inter_view_mv_vert_constraint_flag is equal to 1, the vertical component of the motion vectors used for inter-layer prediction shall be equal to or less than 56 in units of luma samples. When inter_view_mv_vert_constraint_flag is equal to 0, no constraint for of the vertical component of the motion vectors used for inter-layer prediction is signalled by this flag. When not present, the inter_view_mv_vert_constraint_flag is inferred to be equal to 0.
num_scaled_ref_layer_offsets specifies the number of sets of scaled reference layer offset parameters that are present in the SPS. The value of num_scaled_ref_layer_offsets shall be in the range of 0 to 62, inclusive. [Ed. (JB): Should consider if this constraint should be further restricted. Is there a limit on the number of direct reference layers? (MH): If that is desirable, we should specify the range like this: "in the range of 0 to highestActiveLayerId, inclusive, where the variable highestActiveLayerId is equal to the greatest value of nuh_layer_id of any picture for which this SPS is the active SPS".]
The i-th scaled reference layer offset parameters specify the spatial correspondence of a picture referring to this SPS relative to an associated inter-layer picture with nuh_layer_id equal to scaled_ref_layer_id[i]. If the layer with nuh_layer_id equal to scaled_ref_layer_id[i] is a direct reference layer of the current picture, the associated inter-layer picture is the picture that is or could be included in the reference picture lists of the current picture. Otherwise, the associated inter-layer picture is any picture with nuh_layer_id equal to scaled_ref_layer_id[i]. [Ed. (MH): If the term associated inter-layer picture becomes needed in other parts of the specification too, move the definition to F.3.]
NOTE 1 – When spatial scalability is in use, the associated inter-layer picture is a resampled picture of a direct reference layer.
NOTE 2 – scaled_ref_layer_id[i] need not be among the direct reference layers for example when the spatial correspondence of an auxiliary picture to its associated primary picture is specified.
scaled_ref_layer_id[i] specifies the nuh_layer_id value of the associated inter-layer picture for which scaled_ref_layer_left_offset[i], scaled_ref_layer_top_offset[i], scaled_ref_layer_right_offset[i] and scaled_ref_layer_bottom_offset[i] are specified. The value of scaled_ref_layer_id[i] shall be less than the nuh_layer_id of any layer for which this SPS is the active SPS. [Ed. (MH): A constraint that scaled reference offsets shall not be used for Stereo Main profile was added in the profile specification.]
scaled_ref_layer_left_offset[scaled_ref_layer_id[i]] specifies the horizontal offset between the top-left luma sample of the associated inter-layer picture with nuh_layer_id equal to scaled_ref_layer_id[i] and the top-left luma sample of the current picture in units of two luma samples. When not present, the value of scaled_ref_layer_left_offset[scaled_ref_layer_id[i]] is inferred to be equal to 0.
scaled_ref_layer_top_offset[scaled_ref_layer_id[i]] specifies the vertical offset between the top-left luma sample of the associated inter-layer picture with nuh_layer_id equal to scaled_ref_layer_id[i] and the top-left luma sample of the current picture in units of two luma samples. When not present, the value of scaled_ref_layer_top_offset[scaled_ref_layer_id[i]] is inferred to be equal to 0.
scaled_ref_layer_right_offset[scaled_ref_layer_id[i]] specifies the horizontal offset between the bottom-right luma sample of the associated inter-layer picture with nuh_layer_id equal to scaled_ref_layer_id[i] and the bottom-right luma sample of the current picture in units of two luma samples. When not present, the value of scaled_ref_layer_right_offset[scaled_ref_layer_id[i]] is inferred to be equal to 0.
scaled_ref_layer_bottom_offset[scaled_ref_layer_id[i]] specifies the vertical offset between the bottom-right luma sample of the associated inter-layer picture with nuh_layer_id equal to scaled_ref_layer_id[i] and the bottom-right luma sample of the current picture in units of two luma samples. When not present, the value of scaled_ref_layer_bottom_offset[scaled_ref_layer_id[i]] is inferred to be equal to 0.
F.6.4.3.3 [bookmark: _Ref363161326]Picture parameter set RBSP semantics
The specifications in subclause 7.4.3.3 apply, with the following modifications:
NOTE – All PPSs, regardless of the values of their nuh_layer_id, share the same value space for pps_pic_parameter_set_id. In other words, a PPS with nuh_layer_id equal to X and pps_pic_parameter_set_id equal to A would update the previously received PPS with nuh_layer_id not equal to X and pps_pic_parameter_set_id equal to A.
num_extra_slice_header_bits specifies the number of extra slice header bits that are present in the slice header RBSP for coded pictures referring to the PPS. num_extra_slice_header_bits shall be in the range of 0 to 2, inclusive, in bitstreams conforming to this version of this Specification. Other values for num_extra_slice_header_bits are reserved for future use by ITU-T | ISO/IEC. However, decoders shall allow num_extra_slice_header_bits to have any value.
[bookmark: _Ref348090370]pps_infer_scaling_list_flag equal to 1 specifies that the syntax elements of the scaling list data syntax structure of the PPS are inferred to be equal to those of the PPS that is active for the layer with nuh_layer_id equal to pps_scaling_list_ref_layer_id. pps_infer_scaling_list_flag equal to 0 specifies that the syntax elements of the scaling list data syntax structure of the PPS are not inferred. When not present, the value of pps_infer_scaling_list_flag is inferred to be 0.
pps_scaling_list_ref_layer_id specifies the value of the nuh_layer_id of the layer for which the active PPS has the same scaling list data as the current PPS.
The value of pps_scaling_list_ref_layer_id shall be in the range of 0 to 62, inclusive.
When avc_base_layer_flag is equal to 1, it is a requirement of bitstream conformance that pps_scaling_list_ref_layer_id shall be greater than 0.
It is a requirement of bitstream conformance that, when a PPS with nuh_layer_id equal to nuhLayerIdA is active for a layer with nuh_layer_id equal to nuhLayerIdB and pps_infer_scaling_list_flag in the PPS is equal to 1, pps_infer_scaling_list_flag shall be equal to 0 for the PPS that is active for the layer with nuh_layer_id equal to pps_scaling_list_ref_layer_id.
It is a requirement of bitstream conformance that, when a PPS with nuh_layer_id equal to nuhLayerIdA is active for a layer with nuh_layer_id equal to nuhLayerIdB, the layer with nuh_layer_id equal to pps_scaling_list_ref_layer_id shall be a direct or indirect reference layer of the layer with nuh_layer_id equal to nuhLayerIdB.
pps_scaling_list_data_present_flag equal to 1 specifies that parameters are present in the PPS to modify the scaling lists specified by the active SPS. pps_scaling_list_data_present_flag equal to 0 specifies that the scaling list data used for the pictures referring to the PPS are inferred to be equal to those specified by the active SPS. When scaling_list_enabled_flag is equal to 0, the value of pps_scaling_list_data_present_flag shall be equal to 0. When scaling_list_enabled_flag is equal to 1, sps_scaling_list_data_present_flag is equal to 0, and pps_scaling_list_data_present_flag is equal to 0, the default scaling list data are used to derive the array ScalingFactor as described in the scaling list data semantics 7.4.5.
F.6.4.3.4 [bookmark: _Ref363161328]Supplemental enhancement information RBSP semantics
The specifications in subclause 7.4.3.4 apply.
F.6.4.3.5 [bookmark: _Ref348090372]Access unit delimiter RBSP semantics
The specifications in subclause 7.4.3.5 apply.
F.6.4.3.6 [bookmark: _Ref348090373]End of sequence RBSP semantics
The specifications in subclause 7.4.3.6 apply.
F.6.4.3.7 [bookmark: _Ref348090375]End of bitstream RBSP semantics
The specifications in subclause 7.4.3.7 apply.
F.6.4.3.8 [bookmark: _Ref348090378]Filler data RBSP semantics
The specifications in subclause 7.4.3.8 apply.
F.6.4.3.9 [bookmark: _Ref348090379]Slice segment layer RBSP semantics
The specifications in subclause 7.4.3.9 apply.
F.6.4.3.10 [bookmark: _Ref348090382]RBSP slice segment trailing bits semantics
The specifications in subclause 7.4.3.10 apply.
F.6.4.3.11 [bookmark: _Ref348090386]RBSP trailing bits semantics
The specifications in subclause 7.4.3.11 apply.
F.6.4.3.12 [bookmark: _Ref348090388]Byte alignment semantics
The specifications in subclause 7.4.3.12 apply.
F.6.4.4 [bookmark: _Ref348090389][bookmark: _Toc373499552][bookmark: _Toc373832729]Profile, tier and level semantics
The profile_tier_level() syntax structure provides profile, tier and level information used for a layer set. When the profile_tier_level() syntax structure is included in a vps_extension() syntax structure, the applicable layer set to which the profile_tier_level() syntax structure applies is specified by the corresponding lsIdx variable in the vps_extension() syntax structure. When the profile_tier_level() syntax structure is included in a VPS, but not in a vps_extension() syntax structure, the applicable layer set to which the profile_tier_level() syntax structure applies is the layer set specified by the index 0. When the profile_tier_level() syntax structure is included in an SPS, the layer set to which the profile_tier_level() syntax structure applies is the layer set specified by the index 0.
For interpretation of the following semantics, CVS refers to the CVS subset associated with the layer set to which the profile_tier_level() syntax structure applies.
When the syntax elements general_profile_space, general_tier_flag, general_profile_idc, general_profile_compatibility_flag[j], general_progressive_source_flag, general_interlaced_source_flag, general_non_packed_constraint_flag, general_frame_only_constraint_flag, general_reserved_zero_44bits are not present for the applicable layer set, they are inferred to be equal to the corresponding values of the layer set specified by the index (profile_layer_set_ref_minus1[lsIdx] +1).
When the syntax elements sub_layer_profile_space[i], sub_layer_tier_flag[i], sub_layer_profile_idc[i], sub_layer_profile_compatibility_flag[i][j], sub_layer_progressive_source_flag[i], sub_layer_interlaced_source_flag[i], sub_layer_non_packed_constraint_flag[i], sub_layer_frame_only_constraint_flag[i], sub_layer_reserved_zero_44bits[i] are not present for the applicable layer set, and they are present in or inferred for the layer set specified by the index (profile_layer_set_ref_minus1[lsIdx] +1) they are inferred to be equal to the corresponding values of the layer set specified by the index (profile_layer_set_ref_minus1[lsIdx] +1).
The specifications in subclause 7.4.4 apply, with following modifications.
general_tier_flag specifies the tier context for the interpretation of general_level_idc as specified in Annex A or subclause G.11 or subclause H.11.
general_profile_idc, when general_profile_space is equal to 0, indicates a profile to which the CVS conforms as specified in Annex A or in subclause G.11 or in subclause H.11. Bitstreams shall not contain values of general_profile_idc other than those specified in Annex A or subclause G.11 or subclause H.11. Other values of general_profile_idc are reserved for future use by ITU-T | ISO/IEC.
general_profile_compatibility_flag[j] equal to 1, when general_profile_space is equal to 0, indicates that the CVS conforms to the profile indicated by general_profile_idc equal to i as specified in Annex A or in subclause G.11 or in subclause H.11. When general_profile_space is equal to 0, general_profile_compatibility_flag[general_profile_idc] shall be equal to 1. The value of general_profile_compatibility_flag[j] shall be equal to 0 for any value of j that is not specified as an allowed value of general_profile_idc in Annex A or in subclause G.11 or in subclause H.11.
general_level_idc indicates a level to which the CVS conforms as specified in Annex A or subclause G.11 or subclause H.11. Bitstreams shall not contain values of general_level_idc other than those specified in Annex A or subclause G.11 or subclause H.11. Other values of general_level_idc are reserved for future use by ITU-T | ISO/IEC.
sub_layer_profile_present_flag[i] equal to 1, specifies that profile information is present in the profile_tier_level() syntax structure for the representation of the sub-layer with TemporalId equal to i. sub_layer_profile_present_flag[i] equal to 0 specifies that profile information is not present in the profile_tier_level() syntax structure for the representations of the sub-layer with TemporalId equal to i. When profilePresentFlag is equal to 0, sub_layer_profile_present_flag[i] shall be equal to 0.
F.6.4.5 [bookmark: _Ref348090392][bookmark: _Toc373499553][bookmark: _Toc373832730]Scaling list data semantics
The specifications in subclause 7.4.5 apply.
F.6.4.6 [bookmark: _Ref348090398][bookmark: _Toc373499554][bookmark: _Toc373832731]Supplemental enhancement information message semantics
The specifications in subclause 7.4.6 apply.
F.6.4.7 [bookmark: _Ref348090400][bookmark: _Toc373499555][bookmark: _Toc373832732]Slice segment header semantics
F.6.4.7.1 [bookmark: _Ref348090412]General slice segment header semantics
The specifications in subclause 7.4.7.1 apply with the following modifications and additions.
When present, the value of the slice segment header syntax elements slice_pic_parameter_set_id, pic_output_flag, no_output_of_prior_pics_flag, slice_pic_order_cnt_lsb, short_term_ref_pic_set_sps_flag, short_term_ref_pic_set_idx, num_long_term_sps, num_long_term_pics, slice_temporal_mvp_enabled_flag, discardable_flag, cross_layer_bla_flag, poc_reset_flag, inter_layer_pred_enabled_flag, and num_inter_layer_ref_pics_minus1 shall be the same in all slice segment headers of a coded picture. When present, the value of the slice segment header syntax elements lt_idx_sps[i], poc_lsb_lt[i], used_by_curr_pic_lt_flag[i], delta_poc_msb_present_flag[i], delta_poc_msb_cycle_lt[i], and inter_layer_pred_layer_idc[i] shall be the same in all slice segment headers of a coded picture for each possible value of i.
–	"When nal_unit_type has a value in the range of 16 to 23, inclusive (IRAP picture), slice_type shall be equal to 2." is replaced by "When nal_unit_type has a value in the range of 16 to 23 and nuh_layer_id is equal to 0, inclusive (IRAP picture), slice_type shall be equal to 2."
discardable_flag equal to 1 specifies that the coded picture is not used as a reference picture for inter prediction and is not used as an inter-layer reference picture in the decoding process of subsequent pictures in decoding order. discardable_flag equal to 0 specifies that the coded picture may be used as a reference picture for inter prediction and may be used as an inter-layer reference picture in the decoding process of subsequent pictures in decoding order. When not present, the value of discardable_flag is inferred to be equal to 0.
cross_layer_bla_flag equal to 1 affects the derivation of NoClrasOutputFlag as specified in clause 8.1. cross_layer_bla_flag shall be equal to 0 for pictures with nal_unit_type not equal to IDR_W_RADL or IDR_N_LP or with nuh_layer_id not equal to 0.
poc_reset_flag equal to 1 specifies that the derived picture order count for the current picture is equal to 0. poc_reset_flag equal to 0 specifies that the derived picture order count for the current picture may or may not be equal to 0. When not present, the value of poc_reset_flag is inferred to be equal to 0.
NOTE – When poc_reset_flag is equal to 1 in a base-layer picture, PicOrderCntVal is derived differently depending on whether the decoding process of subclause 8.3.1 or subclause F.8.3.1 is applied. Furthermore, when a base-layer picture with poc_reset_flag equal to 1 is prevTid0Pic according to subclause 8.3.1 or F.8.3.1, the variable prevPicOrderCntLsb is derived differently in subclauses 8.3.1 and F.8.3.1. In order to avoid PicOrderCntMsb to be updated incorrectly in one of the subclauses 8.3.1 or F.8.3.1, when prevTid0Pic is a base-layer picture with poc_reset_flag equal to 1 and either of the following conditions is true for prevPicOrderCntLsb derived with one of the subclauses 8.3.1 or F.8.3.1, the value of pic_order_cnt_lsb of prevTid0Pic shall be such that the same condition is true also for prevPicOrderCntLsb derived with the other one of the subclauses 8.3.1 or F.8.3.1:
–	(slice_pic_order_cnt_lsb < prevPicOrderCntLsb) &&
	((prevPicOrderCntLsb − slice_pic_order_cnt_lsb) >= (MaxPicOrderCntLsb / 2))
–	(slice_pic_order_cnt_lsb > prevPicOrderCntLsb) &&
	((slice_pic_order_cnt_lsb – prevPicOrderCntLsb) > (MaxPicOrderCntLsb / 2))
inter_layer_pred_enabled_flag equal to 1 specifies that inter-layer prediction may be used in decoding of the current picture. inter_layer_pred_enabled_flag equal to 0 specifies that inter-layer prediction is not used in decoding of the current picture.
num_inter_layer_ref_pics_minus1 plus 1 specifies the number of pictures that may be used in decoding of the current picture for inter-layer prediction. The length of the num_inter_layer_ref_pics_minus1 syntax element is Ceil(Log2(NumDirectRefLayers[nuh_layer_id])) bits. The value of num_inter_layer_ref_pics_minus1 shall be in the range of 0 to NumDirectRefLayers[nuh_layer_id] − 1, inclusive.
The variables numRefLayerPics and refLayerPicFlag[i] and refLayerPicIdc[j] are derived as follows:
for(i = 0, j = 0; i < NumDirectRefLayers[nuh_layer_id]; i++) {
	refLayerIdx = LayerIdxInVps[RefLayerId[nuh_layer_id][i]]
	refLayerPicFlag[i] = (sub_layers_vps_max_minus1[refLayerIdx] >= TemporalId) &&
					(max_tid_il_ref_pics_plus1[refLayerIdx][LayerIdxInVps[nuh_layer_id]] > TemporalId)
	if(refLayerPicFlag[i])
		refLayerPicIdc[j++] = i
}
numRefLayerPics = j
The variable NumActiveRefLayerPics is derived as follows:
if(nuh_layer_id = = 0 | | NumDirectRefLayers[nuh_layer_id] = = 0)
	NumActiveRefLayerPics = 0
else if(all_ref_layers_active_flag)
	NumActiveRefLayerPics = numRefLayerPics
else if(!inter_layer_pred_enabled_flag)
	NumActiveRefLayerPics = 0
else if(max_one_active_ref_layer_flag | | NumDirectRefLayers[nuh_layer_id] = = 1)
	NumActiveRefLayerPics = refLayerPicFlag[0] ? 1 : 0
else
	NumActiveRefLayerPics = num_inter_layer_ref_pics_minus1 + 1
All slices of a coded picture shall have the same value of NumActiveRefLayerPics.
inter_layer_pred_layer_idc[i] specifies the variable, RefPicLayerId[i], representing the nuh_layer_id of the i-th picture that may be used by the current picture for inter-layer prediction. The length of the syntax element inter_layer_pred_layer_idc[i] is Ceil(Log2(NumDirectRefLayers[nuh_layer_id])) bits. The value of inter_layer_pred_layer_idc[i] shall be in the range of 0 to NumDirectRefLayers[nuh_layer_id] − 1, inclusive. When not present, the value of inter_layer_pred_layer_idc[i] is inferred to be equal to refLayerPicIdc[i].
When i is greater than 0, inter_layer_pred_layer_idc[i] shall be greater than inter_layer_pred_layer_idc[i − 1].
The variables RefPicLayerId[i] for all values of i in the range of 0 to NumActiveRefLayerPics − 1, inclusive, are derived as follows:
for(i = 0, j = 0; i < NumActiveRefLayerPics; i++)
	RefPicLayerId[i] = RefLayerId[nuh_layer_id][inter_layer_pred_layer_idc[i]]
It is a requirement of bitstream conformance that for each value of i in the range of 0 to NumActiveRefLayerPics − 1, inclusive, either of the following two conditions shall be true:
–	The value of max_tid_il_ref_pics_plus1[LayerIdxInVps[RefPicLayerId[i]]][LayerIdxInVps[nuh_layer_id]] is greater than TemporalId.
–	The values of max_tid_il_ref_pics_plus1[LayerIdxInVps[RefPicLayerId[i]]][LayerIdxInVps[nuh_layer_id]] and TemporalId are both equal to 0 and the picture in the current access unit with nuh_layer_id equal to RefPicLayerId[i] is an IRAP picture.
F.6.4.7.2 [bookmark: _Ref348090415]Reference picture list modification semantics
The specifications in subclause 7.4.7.2 apply with following modifications.
–	Equation (7‑43) specifying the derivation of NumPicTotalCurr is replaced by:
NumPicTotalCurr = 0
for(i = 0; i < NumNegativePics[CurrRpsIdx]; i++)
	if(UsedByCurrPicS0[CurrRpsIdx][i])
		NumPicTotalCurr++
for(i = 0; i < NumPositivePics[CurrRpsIdx]; i++)		(F‑31)
	if(UsedByCurrPicS1[CurrRpsIdx][i])
		NumPicTotalCurr++
for(i = 0; i < num_long_term_sps + num_long_term_pics; i++)
	if(UsedByCurrPicLt[i])
		NumPicTotalCurr++
NumPicTotalCurr += NumActiveRefLayerPics
F.6.4.7.3 [bookmark: _Ref348090417]Weighted prediction parameters semantics
The specifications in subclause 7.4.7.3 apply.
F.6.4.8 [bookmark: _Toc350926526][bookmark: _Toc347485186][bookmark: _Ref351058442][bookmark: _Ref363159871][bookmark: _Toc373499556][bookmark: _Toc373832733][bookmark: _Ref348090407]Short-term reference picture set semantics
The specifications in subclause 7.4.8 apply.
F.6.4.9 [bookmark: _Ref351058473][bookmark: _Toc373499557][bookmark: _Toc373832734]Slice segment data semantics
F.6.4.9.1 General slice segment data semantics
The specifications in subclause 7.4.9.1 apply.
F.6.4.9.2 Coding tree unit semantics
The specifications in subclause 7.4.9.2 apply.
F.6.4.9.3 Sample adaptive offset semantics
The specifications in subclause 7.4.9.3 apply.
F.6.4.9.4 Coding quadtree semantics
The specifications in subclause 7.4.9.4 apply.
F.6.4.9.5 Coding unit semantics
The specifications in subclause 7.4.9.5 apply.
F.6.4.9.6 Prediction unit semantics
The specifications in subclause 7.4.9.6 apply.
F.6.4.9.7 PCM sample semantics
The specifications in subclause 7.4.9.7 apply.
F.6.4.9.8 Transform tree semantics
The specifications in subclause 7.4.9.8 apply.
F.6.4.9.9 Motion vector difference semantics
The specifications in subclause 7.4.9.9 apply.
F.6.4.9.10 Transform unit semantics
The specifications in subclause 7.4.9.10 apply.
F.6.4.9.11 Residual coding semantics
The specifications in subclause 7.4.9.11 apply.
F.7 [bookmark: _Toc373499558][bookmark: _Toc373832735]Decoding process
F.7.1 [bookmark: _Ref331522910][bookmark: _Ref360894978][bookmark: _Toc373499559][bookmark: _Toc373832736]General decoding process
The specifications in subclause 8.1 apply with following changes:
–	Replace the references to clause 7, clause 10, and subclause 8.1.1 with subclauses F.7, F.10, and F.8.1.1, respectively.
–	Add at the end of the subclause, add the following sentence:
When the current picture has nuh_layer_id greater than 0, the decoding process for a coded picture with nuh_layer_id greater than 0 as specified in subclause F.8.1.2 is invoked.
F.7.1.1 [bookmark: _Toc373499560][bookmark: _Toc373832737]Decoding process for a coded picture with nuh_layer_id equal to 0
The specifications in subclause 8.1.1 apply with the following changes:
–	Replace the references to subclauses 8.2, 8.3, 8.3.1, 8.3.2, 8.3.3, 8.3.4, 8.4, 8.5, 8.6, and 8.7 with subclauses F.8.2, F.8.3, F.8.3.1, F.8.3.2, F.8.3.3, F.8.3.4, F.8.4, F.8.5, F.8.6, and F.8.7, respectively.
F.7.1.2 [bookmark: _Toc373499561][bookmark: _Toc373832738][bookmark: _Ref373315357]Decoding process for a coded picture with nuh_layer_id greater than 0
The decoding process operates as follows for the current picture CurrPic.
–	For the decoding of the slice segment header of the first slice, in decoding order, of the current picture, the decoding process for starting the decoding of a coded picture with nuh_layer_id greater than 0 specified in subclause F.8.1.3 is invoked.
–	If ViewScalExtLayerFlag[nuh_layer_id] is equal to 1, the decoding process for a coded picture with nuh_layer_id greater than 0 specified in subclause G.8.1.1 is invoked. [Ed. (YK): It looks a bit odd to refer to Annex G here. Is this avoidable?] [Ed. (JC): The current design of the spec is to use annex F as the entry for decoding process of all multi-layer extensions. This design may not feasible for combined scalability. When a layer is both scalable layer and multi-view layer, the invoking process may have problem]
–	Otherwise, when DependencyId[nuh_layer_id] is greater than 0, the decoding process for a coded picture with nuh_layer_id greater than 0 specified in subclause H.8.1.1 is invoked.
–	After all slices of the current picture have been decoded, the decoding process for ending the decoding of a coded picture with nuh_layer_id greater than 0 specified in subclause F.8.1.4 is invoked.
F.7.1.3 [bookmark: _Ref343098647][bookmark: _Toc373499562][bookmark: _Toc373832739]Decoding process for starting the decoding of a coded picture with nuh_layer_id greater than 0
Each picture referred to in this subclause is a complete coded picture.
The decoding process operates as follows for the current picture CurrPic:
1. The decoding of NAL units is specified in subclause F.8.2.
2. The processes in subclause F.8.3 specify the following decoding processes using syntax elements in the slice segment layer and above:
–	Variables and functions relating to picture order count are derived in subclause F.8.3.1. This needs to be invoked only for the first slice segment of a picture. It is a requirement of bitstream conformance that PicOrderCntVal shall remain unchanged within an access unit.
–	The decoding process for RPS in subclause F.8.3.2 is invoked, wherein only reference pictures with a nuh_layer_id equal to that of CurrPic may be marked as "unused for reference" or "used for long-term reference" and any picture with a different value of nuh_layer_id is not marked. This needs to be invoked only for the first slice segment of a picture.
–	When FirstPicInLayerDecodedFlag[nuh_layer_id] is equal to 0, the decoding process for generating unavailable reference pictures specified in subclause F.8.1.5 is invoked, which needs to be invoked only for the first slice segment of a picture.
–	When FirstPicInLayerDecodedFlag[nuh_layer_id] is not equal to 0 and the current picture is an IRAP picture with NoRaslOutputFlag equal to 1, the decoding process for generating unavailable reference pictures specified in subclause F.8.3.3 is invoked, which needs to be invoked only for the first slice segment of a picture.
F.7.1.4 [bookmark: _Ref346382028][bookmark: _Toc373499563][bookmark: _Toc373832740]Decoding process for ending the decoding of a coded picture with nuh_layer_id greater than 0
PicOutputFlag is set as follows:
–	If LayerInitializedFlag[nuh_layer_id] is equal to 0, PicOutputFlag is set equal to 0.
–	Otherwise, if the current picture is a RASL picture and NoRaslOutputFlag of the associated IRAP picture is equal to 1, PicOutputFlag is set equal to 0.
–	Otherwise, PicOutputFlag is set equal to pic_output_flag.
The following applies:
–	If discardable_flag is equal to 1, the decoded picture is marked as "unused for reference".
–	Otherwise, the decoded picture is marked as "used for short-term reference".
When TemporalId is equal to HighestTid, the marking process for sub-layer non-reference pictures not needed for inter-layer prediction specified in subclause F.8.1.4.1 is invoked with latestDecLayerId equal to nuh_layer_id as input.
When FirstPicInLayerDecodedFlag[nuh_layer_id] is equal to 0, FirstPicInLayerDecodedFlag[nuh_layer_id] is set equal to 1.
F.7.1.4.1 [bookmark: _Ref343168794]Marking process for sub-layer non-reference pictures not needed for inter-layer prediction
Input to this process is:
–	a nuh_layer_id value latestDecLayerId
Output of this process is:
–	potentially updated marking as "unused for reference" for some decoded pictures
NOTE – This process marks pictures that are not needed for inter or inter-layer prediction as "unused for reference". When TemporalId is less than HighestTid, the current picture may be used for reference in inter prediction and this process is not invoked.
The variables numTargetDecLayers, and latestDecIdx are derived as follows:
–	numTargetDecLayers is set equal to the number of entries in TargetDecLayerIdList.
–	latestDecIdx is set equal to the value of i for which TargetDecLayerIdList[i] is equal to latestDecLayerId.
For i in the range of 0 to latestDecIdx, inclusive, the following applies for marking of pictures as "unused for reference":
–	Let currPic be the picture in the current access unit with nuh_layer_id equal to TargetDecLayerIdList[i].
–	When currPic is marked as "used for reference" and is a sub-layer non-reference picture, the following applies:
–	The variable currTid is set equal to the value of TemporalId of currPic.
–	The variable remainingInterLayerReferencesFlag is derived as specified in the following:
		remainingInterLayerReferencesFlag = 0
		iLidx = LayerIdxInVps[TargetDecLayerIdList[i]]
			for(j = latestDecIdx + 1; j < numTargetDecLayers; j++) {
				jLidx = LayerIdxInVps[TargetDecLayerIdList[j]]
				if(currTid <= (max_tid_il_ref_pics_plus1[iLidx][jLidx] –1))
					for(k = 0; k < NumDirectRefLayers[TargetDecLayerIdList[j]]; k++)
						if(TargetDecLayerIdList[i] = = RefLayerId[TargetDecLayerIdList[j]][k])
							remainingInterLayerReferencesFlag = 1
			}
–	When remainingInterLayerReferenceFlag is equal to 0, currPic is marked as "unused for reference".
F.7.1.5 [bookmark: _Ref363260402][bookmark: _Toc373499564][bookmark: _Toc373832741]Generation of unavailable reference pictures for pictures first in decoding order within a layer
This process is invoked for a picture with nuh_layer_id equal to layerId, when FirstPicInLayerDecodedFlag[layerId] is equal to 0.
NOTE – A cross-layer random access skipped (CL-RAS) picture is a picture with nuh_layer_id equal to layerId such that LayerInitializedFlag[layerId] is equal to 0 when the decoding process for starting the decoding of a coded picture with nuh_layer_id greater than 0 is invoked. The entire specification of the decoding process for CL-RAS pictures is included only for purposes of specifying constraints on the allowed syntax content of such CL-RAS pictures. During the decoding process, any CL-RAS pictures may be ignored, as these pictures are not specified for output and have no effect on the decoding process of any other pictures that are specified for output. However, in HRD operations as specified in Annex C, CL-RAS pictures may need to be taken into consideration in derivation of CPB arrival and removal times.
When this process is invoked, the following applies:
–	For each RefPicSetStCurrBefore[i], with i in the range of 0 to NumPocStCurrBefore – 1, inclusive, that is equal to “no-reference picture”, a picture is generated as specified in subclause 8.3.3.2, and the following applies:
–	The value of PicOrderCntVal for the generated picture is set equal to PocStCurrBefore[i].
–	The value of PicOutputFlag for the generated picture is set equal to 0.
–	The generated picture is marked as "used for short-term reference".
–	RefPicSetStCurrBefore[i] is set to be the generated reference picture.
–	The value of nuh_layer_id for the generated picture is set equal to nuh_layer_id.
–	For each RefPicSetStCurrAfter[i], with i in the range of 0 to NumPocStCurrAfter – 1, inclusive, that is equal to “no-reference picture”, a picture is generated as specified in subclause 8.3.3.2, and the following applies:
–	The value of PicOrderCntVal for the generated picture is set equal to PocStCurrAfter[i].
–	The value of PicOutputFlag for the generated picture is set equal to 0.
–	The generated picture is marked as "used for short-term reference".
–	RefPicSetStCurrAfter[i] is set to be the generated reference picture.
–	The value of nuh_layer_id for the generated picture is set equal to nuh_layer_id.
–	For each RefPicSetStFoll[i], with i in the range of 0 to NumPocStFoll − 1, inclusive, that is equal to "no reference picture", a picture is generated as specified in subclause 8.3.3.2, and the following applies:
–	The value of PicOrderCntVal for the generated picture is set equal to PocStFoll[i].
–	The value of PicOutputFlag for the generated picture is set equal to 0.
–	The generated picture is marked as "used for short-term reference".
–	RefPicSetStFoll[i] is set to be the generated reference picture.
–	The value of nuh_layer_id for the generated picture is set equal to nuh_layer_id.
–	For each RefPicSetLtCurr[i], with i in the range of 0 to NumPocLtCurr – 1, inclusive, that is equal to “no-reference picture”, a picture is generated as specified in subclause 8.3.3.2, and the following applies:
–	The value of PicOrderCntVal for the generated picture is set equal to PocLtCurr[i].
–	The value of slice_pic_order_cnt_lsb for the generated picture is inferred to be equal to (PocLtCurr[i] & (MaxPicOrderCntLsb – 1)).
–	The value of PicOutputFlag for the generated picture is set equal to 0.
–	The generated picture is marked as "used for long-term reference".
–	RefPicSetLtCurr[i] is set to be the generated reference picture.
–	The value of nuh_layer_id for the generated picture is set equal to nuh_layer_id.
–	For each RefPicSetLtFoll[i], with i in the range of 0 to NumPocLtFoll − 1, inclusive, that is equal to "no reference picture", a picture is generated as specified in subclause 8.3.3.2, and the following applies:
–	The value of PicOrderCntVal for the generated picture is set equal to PocLtFoll[i].
–	The value of slice_pic_order_cnt_lsb for the generated picture is inferred to be equal to (PocLtFoll[i] & (MaxPicOrderCntLsb – 1)).
–	The value of PicOutputFlag for the generated picture is set equal to 0.
–	The generated picture is marked as "used for long-term reference".
–	RefPicSetLtFoll[i] is set to be the generated reference picture.
–	The value of nuh_layer_id for the generated picture is set equal to nuh_layer_id.
F.7.2 [bookmark: _Ref373393356][bookmark: _Toc373499565][bookmark: _Toc373832742]NAL unit decoding process
The specifications in subclause 8.2 apply.
F.7.3 [bookmark: _Ref363319757][bookmark: _Toc373499566][bookmark: _Toc373832743]Slice decoding processes
F.7.3.1 [bookmark: _Ref363319686][bookmark: _Toc373499567][bookmark: _Toc373832744]Decoding process for picture order count
Output of this process is PicOrderCntVal, the picture order count of the current picture.
Picture order counts are used to identify pictures, for deriving motion parameters in merge mode and motion vector prediction, and for decoder conformance checking (see subclause C.5).
Each coded picture is associated with a picture order count variable, denoted as PicOrderCntVal.
If FirstPicInLayerDecodedFlag[nuh_layer_id] is equal to 0 or the current picture is an IRAP picture with NoRaslOutputFlag equal to 1, the variable PicOrderCntMsb is set equal to 0. [Ed. (MH): When the first picture in an enhancement layer is in an access unit which follows in decoding order and precedes in output order an initial IRAP access unit with NoClrasOutputFlag equal to 1, PicOrderCntVal of the first picture in the enhancement layer differs from the PicOrderCntVal of the base-layer picture in the same access unit.] [Ed. (MH): This derivation of PicOrderCntMsb equal to 0 imposes a constraint that the layer-wise start-up up to the highest layer must take place within a POC range of 0 to MaxPicOrderLsb – 1, inclusive.] Otherwise, PicOrderCntMsb is derived as follows:
· The variable prevPicOrderCntLsb is set equal to PrevPicOrderCnt[nuh_layer_id] & (MaxPicOrderCntLsb − 1).
· The variable prevPicOrderCntMsb is set equal to PrevPicOrderCnt[nuh_layer_id] − prevPicOrderCntLsb.
· PicOrderCntMsb is derived as follows:
if((slice_pic_order_cnt_lsb < prevPicOrderCntLsb) &&
		((prevPicOrderCntLsb − slice_pic_order_cnt_lsb) >= (MaxPicOrderCntLsb / 2)))
	PicOrderCntMsb = prevPicOrderCntMsb + MaxPicOrderCntLsb	(F‑32)
else if((slice_pic_order_cnt_lsb > prevPicOrderCntLsb) &&
		((slice_pic_order_cnt_lsb − prevPicOrderCntLsb) > (MaxPicOrderCntLsb / 2)))
	PicOrderCntMsb = prevPicOrderCntMsb − MaxPicOrderCntLsb
else
	PicOrderCntMsb = prevPicOrderCntMsb
PicOrderCntVal is derived as follows:
PicOrderCntVal = PicOrderCntMsb + slice_pic_order_cnt_lsb	(F‑33)
When poc_reset_flag is equal to 1, the following steps apply in the order listed:
· The PicOrderCntVal of each picture that is in the DPB and belongs to the same layer as the current picture is decremented by PicOrderCntVal.
· PrevPicOrderCnt[nuh_layer_id] is decremented by PicOrderCntVal.
· PicOrderCntVal is set equal to 0.
When the current picture is not a RASL picture, a RADL picture or a sub-layer non-reference picture, and the current picture has TemporalId equal to 0, PrevPicOrderCnt[nuh_layer_id] is set equal to PicOrderCntVal.
The value of PicOrderCntVal shall be in the range of −231 to 231 − 1, inclusive. In one CVS, the PicOrderCntVal values for any two coded pictures in the same layer shall not be the same.
The function PicOrderCnt(picX) is specified as follows:
PicOrderCnt(picX) = PicOrderCntVal of the picture picX	(F‑34)
The function DiffPicOrderCnt(picA, picB) is specified as follows:
DiffPicOrderCnt(picA, picB) = PicOrderCnt(picA) − PicOrderCnt(picB)	(F‑35)
The bitstream shall not contain data that result in values of DiffPicOrderCnt(picA, picB) used in the decoding process that are not in the range of −215 to 215 − 1, inclusive.
NOTE – Let X be the current picture and Y and Z be two other pictures in the same sequence, Y and Z are considered to be in the same output order direction from X when both DiffPicOrderCnt(X, Y) and DiffPicOrderCnt(X, Z) are positive or both are negative.
F.7.3.2 [bookmark: _Ref363319770][bookmark: _Toc373499568][bookmark: _Toc373832745]Decoding process for reference picture set
The specifications in subclause 8.3.2 apply with the following changes:
· Replace the references to subclauses 7.4.7.2, 8.3.1, 8.3.3, and 8.3.4 to subclauses F.7.4.7.2, F.8.3.1, F.8.3.3, and F.8.3.4, respectively.
F.7.3.3 [bookmark: _Toc373499569][bookmark: _Toc373499604][bookmark: _Toc373499614][bookmark: _Toc373499616][bookmark: _Toc373499629][bookmark: _Toc373499633][bookmark: _Toc373499637][bookmark: _Ref373399028][bookmark: _Toc373499638][bookmark: _Toc373832746][bookmark: _Ref316823342][bookmark: _Toc364083218][bookmark: _Ref373317388]Decoding process for generating unavailable reference pictures
The specifications in subclause 8.3.3 apply.
F.7.3.4 [bookmark: _Toc373499639][bookmark: _Toc373832747]Decoding process for reference picture lists construction
The specifications in subclause 8.3.4 apply.
F.7.3.5 [bookmark: _Ref373399097][bookmark: _Toc373499640][bookmark: _Toc373832748]Decoding process for collocated picture and no backward prediction flag
The specifications in subclause 8.3.5 apply.
F.7.4 [bookmark: _Ref373399155][bookmark: _Toc373499641][bookmark: _Toc373832749]Decoding process for coding units coded in intra prediction mode
The specifications in subclause 8.4 apply.
F.7.5 [bookmark: _Ref360894666][bookmark: _Toc373499642][bookmark: _Toc373832750]Decoding process for coding units coded in inter prediction mode
The specifications in subclause 8.5 apply with the following additions.
The variable currLayerId is set equal to nuh_layer_id of the current decoded picture
[bookmark: _GoBack]It is a requirement of bitstream conformance that when the reference picture represented by the variable refIdxLX and derived by invoking the subclause 8.5.3.2, for X being replaced by either 0 or 1, is an inter-layer reference picture, VpsInterLayerSamplePredictionEnabled[LayerIdxInVps[currLayerId]][LayerIdxInVps[rLId]] shall be equal to 1, where rLId is set equal to nuh_layer_id of the inter-layer picture.
It is a requirement of bitstream conformance when the collocated picture colPic, used for temporal motion vector prediction and derived by invoking the subclause 8.5.3.2.7, is an inter-layer reference picture, VpsInterLayerMotionPredictionEnabled[LayerIdxInVps[currLayerId]][LayerIdxInVps[rLId]] shall be equal to 1, where rLId is set equal to nuh_layer_id of the inter-layer picture.
F.7.6 [bookmark: _Ref373399172][bookmark: _Toc373499643][bookmark: _Toc373832751]Scaling, transformation and array construction process prior to deblocking filter process
The specifications in subclause 8.6 apply.
F.7.7 [bookmark: _Ref373399174][bookmark: _Toc373499644][bookmark: _Toc373832752]In-loop filter process
The specifications in subclause 8.7 apply.
F.8 [bookmark: _Ref373399205][bookmark: _Toc373499645][bookmark: _Toc373832753]Parsing process
The specifications in clause 9 apply.
F.9 [bookmark: _Ref373399232][bookmark: _Toc373499646][bookmark: _Toc373832754]Specification of bitstream subsets
The specifications in clause 10 apply.
F.10 [bookmark: _Toc373499647][bookmark: _Toc373832755](Void)
F.11 [bookmark: _Ref348357790][bookmark: _Toc373499648][bookmark: _Toc373832756]Byte stream format
The specifications in Annex B apply.
F.12 [bookmark: _Ref348357793][bookmark: _Toc373499649][bookmark: _Toc373832757]Hypothetical reference decoder
The specifications in Annex C and its subclauses apply.
F.13 [bookmark: _Ref348357799][bookmark: _Toc373499650][bookmark: _Toc373832758]SEI messages
The specifications in Annex D together with the extensions and modifications specified in this subclause apply.
[Ed. (CY): to check the semantics in D.3 and that in F.14.2 to make them align with the AU definition.]
F.13.1 [bookmark: _Toc190849834][bookmark: _Toc198881594][bookmark: _Ref210021484][bookmark: _Toc221286691][bookmark: _Toc373499651][bookmark: _Toc373832759]SEI message syntax
F.13.1.1 [bookmark: _Toc226457147][bookmark: _Toc248045614][bookmark: _Toc288343354][bookmark: _Toc373499652][bookmark: _Toc373832760]Layers not present SEI message syntax

	layers_not_present(payloadSize) {
	Descriptor

		lp_sei_active_vps_id
	u(4)

		for(i = 0; i <= MaxLayersMinus1; i++)
	

			layer_not_present_flag[i]
	u(1)

	}	
	

F.13.1.2 [bookmark: _Toc373499653][bookmark: _Toc373832761]Inter-layer constrained tile sets SEI message syntax

	inter_layer_constrained_tile_sets(payloadSize) {
	Descriptor

		il_all_tiles_exact_sample_value_match_flag
	u(1)

		il_one_tile_per_tile_set_flag
	u(1)

		if(!il_one_tile_per_tile_set_flag) {
	

			il_num_sets_in_message_minus1
	ue(v)

			if(il_num_sets_in_message_minus1)
	

				skipped_tile_set_present_flag
	u(1)

			numSignificantSets = il_num_sets_in_message_minus1
											– skipped_tile_set_present_flag + 1
	

			for(i = 0; i < numSignificantSets; i++) {
	

				ilcts_id[i]
	ue(v)

				il_num_tile_rects_in_set_minus1[i]
	ue(v)

				for(j = 0; j <= il_num_tile_rects_in_set_minus1[i]; j++) {
	

					il_top_left_tile_index[i][j]
	ue(v)

					il_bottom_right_tile_index[i][j]
	ue(v)

				}
	

				ilc_idc[i]
	u(2)

				if (!il_all_tiles_exact_sample_value_match_flag)
	

					il_exact_sample_value_match_flag[i]
	u(1)

			}
	

		} else
	

			all_tiles_ilc_idc
	u(2)

	}
	

F.13.1.3 [bookmark: _Toc373499654][bookmark: _Toc373832762]Bitstream partition nesting SEI message syntax

	bsp_nesting(payloadSize) {
	Descriptor

		bsp_idx
	ue(v)

		while(!byte_aligned())
	

			bsp_nesting_zero_bit /* equal to 0 */
	u(1)

		do
	

			sei_message()
	

		while(more_rbsp_data())
	

	}
	

F.13.1.4 [bookmark: _Toc373499655][bookmark: _Toc373832763]Bitstream partition initial arrival time SEI message syntax

	bsp_initial_arrival_time(payloadSize) {
	Descriptor

		if(NalHrdBpPresentFlag)
	

			for(i = 0; i < SchedCombCnt; i++)
	

				nal_initial_arrival_delay[i]
	u(v)

		else
	

			for(i = 0; i < SchedCombCnt; i++)
	

				vcl_initial_arrival_delay[i]
	u(v)

	}
	

F.13.1.5 [bookmark: _Toc373499656][bookmark: _Toc373832764]Bitstream partition HRD parameters SEI message syntax

	bsp_hrd(payloadSize) {
	Descriptor

		sei_num_bsp_hrd_parameters_minus1
	ue(v)

		for(i = 0; i <= sei_num_bsp_hrd_parameters_minus1; i++) {
	

			if(i > 0)
	

				sei_bsp_cprms_present_flag[i]
	u(1)

			hrd_parameters(sei_bsp_cprms_present_flag[i],
			nesting_max_temporal_id_plus1[0] – 1)
	

		}
	

		for(h=0; h <= nesting_num_ops_minus1; h++) {
	

			lsIdx = nesting_op_idx[h]
	

			sei_num_bitstream_partitions_minus1[lsIdx]
	ue(v)

			for(i = 0; i <= sei_num_bitstream_partitions_minus1[lsIdx]; i++)
	

				for(j = 0; j <= vps_max_layers_minus1; j++)
	

					if(layer_id_included_flag[nesting_op_idx[lsIdx]][j])
	

						sei_layer_in_bsp_flag[lsIdx][i][j]
	u(1)

			sei_num_bsp_sched_combinations_minus1[lsIdx]
	ue(v)

			for(i = 0; i <= sei_num_bsp_sched_combinations_minus1[lsIdx]; i++)
	

				for(j = 0; j <= sei_num_bitstream_partitions_minus1[lsIdx]; j++) {
	

					sei_bsp_comb_hrd_idx[lsIdx][i][j]
	ue(v)

					sei_bsp_comb_sched_idx[lsIdx][i][j]
	ue(v)

				}
	

		}
	

	}
	

F.13.2 [bookmark: _Toc373499657][bookmark: _Toc373832765]SEI message semantics
[bookmark: _Toc348897735]Table F‑3 – Persistence scope of SEI messages (informative)
	SEI message
	Persistence scope

	Layers not present
	The access unit containing the SEI message and up to but not including the next access unit, in decoding order, that contains a layers not present SEI message or the end of the CVS, whichever is earlier in decoding order

	Inter-layer constrained tile sets
	The CVS containing the SEI message

	Bitstream partition nesting
	Depending on the nested SEI messages. Each nested SEI
message has the same persistence scope as if the SEI message
was not nested

	Bitstream partition initial arrival time
	The remainder of the bitstream partition (specified by the containing bitstream partition nesting SEI message)

	Bitstream partition HRD parameters
	The CVS containing the SEI message

[bookmark: _Ref348357812]
The constraints of bitstream conformance specified in clause D.3.1 apply with the following additions.
Let prevVclNalUnitInAu of an SEI NAL unit or an SEI message be the preceding VCL NAL unit in decoding order, if any, in the same access unit, and nextVclNalUnitInAu of an SEI NAL unit or an SEI message be the next VCL NAL unit in decoding order, if any, in the same access unit. It is a requirement of bitstream conformance that the following restrictions apply:
–	When a bitstream partition HRD parameters SEI message contained in a scalable nesting SEI message is present in an access unit, the scalable nesting SEI message shall not follow any other SEI message that follows the prevVclNalUnitInAu of the scalable nesting SEI message and precedes the nextVclNalUnitInAu of the scalable nesting SEI message, other than an active parameter sets SEI message, a non-nested buffering period SEI message, a non-nested picture timing SEI message, a non-nested decoding unit information SEI message, a scalable nesting SEI message including a buffering period SEI message, a picture timing SEI message or a decoding unit information SEI message, or another scalable nesting SEI message that contains a bitstream partition HRD parameters SEI message.
–	When a buffering period SEI message, a picture timing SEI message, a decoding unit information SEI message or a bitstream partition initial arrival time SEI message is present in a bitstream partition nesting SEI message contained in a scalable nesting SEI message, the scalable nesting SEI message shall not follow any other SEI message that follows the prevVclNalUnitInAu of the scalable nesting SEI message and precedes the nextVclNalUnitInAu of the scalable nesting SEI message, other than an active parameter sets SEI message, a non-nested buffering period SEI message, a non-nested picture timing SEI message, a non-nested decoding unit information SEI message, a scalable nesting SEI message including a buffering period SEI message, a picture timing SEI message or a decoding unit information SEI message, a scalable nesting SEI message including a bitstream partition HRD parameters SEI message, or another scalable nesting SEI message that contains a bitstream partition nesting SEI message including a buffering period SEI message, a picture timing SEI message, a decoding unit information SEI message or a bitstream partition initial arrival time SEI message.
F.13.2.1 [bookmark: _Toc373499658][bookmark: _Toc373832766]Layers not present SEI message semantics
The layers not present SEI message provides a mechanism for signalling that VCL NAL units of particular layers indicated by the VPS are not present in a particular set of access units.
The target access units are defined as the set of access units starting from the access unit containing the layers not present SEI message up to but not including the next access unit, in decoding order, that contains a layers not present change SEI message or the end of the CVS, whichever is earlier in decoding order.
When present, the layers not present SEI message applies to the target access units.
A layers not present SEI message shall not be included in a scalable nesting SEI message.
A layers not present SEI message shall not be included in an SEI NAL unit with TemporalId greater than 0.
lp_sei_active_vps_id identifies the active VPS of the CVS containing the layers not present SEI message. The value of lp_sei_active_vps_id shall be equal to the value of vps_video_parameter_set_id of the active VPS for the VCL NAL units of the access unit containing the SEI message.
layer_not_present_flag[i] equal to 1 indicates that there are no VCL NAL units with nuh_layer_id equal to layer_id_in_nuh[i] present in the target access units. layer_not_present_flag[i] equal to 0 indicates that there may or may not be VCL NAL units with nuh_layer_id equal to layer_id_in_nuh[i] present in the target access units.
When layer_not_present_flag[i] is equal to 0 and i is greater than 0, layer_not_present_flag[LayerIdxInVps[RefLayerId[layer_id_in_nuh[i]][j]]] shall be equal to 0 for all values of j in the range of 0 to NumDirectRefLayers[layer_id_in_nuh[i]] − 1, inclusive.
F.13.2.2 [bookmark: _Toc373499659][bookmark: _Toc373832767][bookmark: _Ref355956448]Inter-layer constrained tile sets SEI message semantics
The scope of the inter-layer constrained tile sets SEI message is the complete CVS. When an inter-layer tile sets SEI message is present in any access unit of a CVS, it shall be present for the first access unit of the CVS in decoding order and may also be present for other access units of the CVS.
The inter-layer constrained tile sets SEI message shall not be present for a layer when tiles_enabled_flag is equal to 0 for any PPS that is active for the layer.
The inter-layer constrained tile sets SEI message shall not be present for a layer unless every PPS that is active for the layer has tile_boundaries_aligned_flag equal to 1 or fulfills the conditions that would be indicated by tile_boundaries_aligned_flag being equal to 1.
The presence of the inter-layer tile sets SEI message indicates that the inter-layer inter prediction process is constrained such that no sample value outside each identified tile set, and no sample value at a fractional sample position that is derived using one or more sample values outside the identified tile set, is used for inter prediction of any sample within the identified tile set.
NOTE 1 – When loop filtering and resampling filter is applied across tile boundaries, inter-layer prediction of any samples within an inter-layer constrained tile set that refers to samples within 8 samples from an inter-layer constrained tile set boundary that is not also a picture boundary may result in propagation of mismatch error. An encoder can avoid such potential error propagation by avoiding the use of motion vectors that cause such references.
When more than one inter-layer constrained tile sets SEI message is present within the access units of a CVS, they shall contain identical content.
The number of inter-layer constrained tile sets SEI messages in each access unit shall not exceed 5.
il_all_tiles_exact_sample_value_match_flag equal to equal to 1 indicates that, within the CVS, when the coding tree blocks that are outside of any identified tile are not decoded and the boundaries of the identified tile is treated as picture boundaries for purposes of the decoding process, the value of each sample in the identified tile would be exactly the same as the value of the sample that would be obtained when all the coding tree blocks of all pictures in the CVS are decoded. il_all_tiles_exact_sample_value_match_flag equal to 0 indicates that, within the CVS, when the coding tree blocks that are outside of any identified tile are not decoded and the boundaries of the identified tile is treated as picture boundaries for purposes of the decoding process, the value of each sample in the identified tile may or may not be exactly the same as the value of the same sample when all the coding tree blocks of all pictures in the CVS are decoded.
il_one_tile_per_tile_set_flag equal to 1 indicates that each inter-layer constrained tile set contains one tile, and il_num_sets_in_message_minus1 is not present. When il_one_tile_per_tile_set_flag is equal to zero, tile sets are signalled explicitly.
il_num_sets_in_message_minus1 plus 1 specifies the number of inter-layer tile sets identified in the SEI message. The value of il_num_sets_in_message_minus1 shall be in the range of 0 to 255, inclusive.
skipped_tile_set_present_flag equal to 1 indicates that, within the CVS, the tile set consists of those remaining tiles that are not included in any earlier tile sets in the same message and all the prediction blocks that are inside the identified tile set having nuh_layer_id equal to ictsNuhLayerId are inter-layer predicted from inter-layer reference pictures with nuh_layer_id equal to RefLayerId[ictsNuhLayerId][NumDirectRefLayers[ictsNuhLayerId] – 1] and no residual_coding syntax structure is present in any transform unit of the identified tile set, where ictsNuhLayerId is the value of nuh_layer_id of this message. skipped_tile_set_present_flag equal to 0 does not indicate a bitstream constraint within the CVS. When not present, the value of skipped_tile_set_present_flag is inferred to be equal to 0.
ilcts_id[i] contains an identifying number that may be used to identify the purpose of the i-th identified tile set (for example, to identify an area to be extracted from the coded video sequence for a particular purpose). The value of ilcts_id[i] shall be in the range of 0 to 232 − 2, inclusive.
Values of ilcts_id[i] from 0 to 255 and from 512 to 231 − 1 may be used as determined by the application. Values of ilcts_id[i] from 256 to 511 and from 231 to 232 − 2 are reserved for future use by ITU-T | ISO/IEC. Decoders encountering a value of ilcts_id[i] in the range of 256 to 511 or in the range of 231 to 232 − 2 shall ignore (remove from the bitstream and discard) it.
il_num_tile_rects_in_set_minus1[i] plus 1 specifies the number of rectangular regions of tiles in the i-th identified inter-layer constrained tile set. The value of il_num_tile_rects_in_set_minus1[i] shall be in the range of 0 to (num_tile_columns_minus1 + 1) * (num_tile_rows_minus1 + 1) − 1, inclusive.
il_top_left_tile_index[i][j] and il_bottom_right_tile_index[i][j] identify the tile position of the top-left tile and the tile position of the bottom-right tile in a rectangular region of the i-th identified inter-layer constrained tile set, respectively, in tile raster scan order.
il_exact_sample_value_match_flag[i] equal to 1 indicates that, within the CVS, when the coding tree blocks that do not belong to the inter-layer constrained tile set are not decoded and the boundaries of the inter-layer constrained tile set are treated as picture boundaries for purposes of the decoding process, the value of each sample in the inter-layer constrained tile set would be exactly the same as the value of the sample that would be obtained when all the coding tree blocks of all pictures in the coded video sequence are decoded. il_exact_sample_value_match_flag[i] equal to 0 indicates that, within the CVS, when the coding tree blocks that are outside of the i-th identified inter-layer constrained tile set are not decoded and the boundaries of the inter-layer constrained tile set are treated as picture boundaries for purposes of the decoding process, the value of each sample in the identified tile set may or may not be exactly the same as the value of the same sample when all the coding tree blocks of the picture are decoded.
NOTE 2 – It should be feasible to use il_exact_sample_value_match_flag equal to 1 when using certain combinations of loop_filter_across_tiles_enabled_flag, pps_loop_filter_across_slices_enabled_flag, pps_deblocking_filter_disabled_flag, slice_loop_filter_across_slices_enabled_flag, slice_deblocking_filter_disabled_flag, sample_adaptive_offset_enabled_flag, slice_sao_luma_flag, and slice_sao_chroma_flag.
ilc_idc[i] equal to 1 indicates that, within the CVS, no samples outside of the i-th identified tile set and no samples at a fractional sample position that is derived using one or more samples outside of the i-th identified tile set are used for inter-layer prediction of any sample within the i-th identified tile set with nuh_layer_id equal to ictsNuhLayerId, where ictsNuhLayerId is the value of nuh_layer_id of this message. ilc_idc[i][j] equal to 2 indicates that, within the CVS, no prediction block in the i-th identified tile set with nuh_layer_id equal to ictsNuhLayerId is predicted from an inter-layer reference picture. ilc_idc[i] equal to 0 indicates that, within the CVS, the inter-layer prediction process may or may not be constrained for the prediction block in the i-th identified tile set having nuh_layer_id equal to ictsNuhLayerId. The value of ilc_idc[i] equal to 3 is reserved.
all_tiles_ilc_idc equal to 1 indicates that, within the CVS, no sample value outside of each identified tile and no sample value at a fractional sample position that is derived using one or more samples outside of the identified tile is used for inter-layer prediction of any sample within the identified tile with nuh_layer_id equal to ictsNuhLayerId, where ictsNuhLayerId is the value of nuh_layer_id of this message. all_tiles_ilc_idc equal to 2 indicates that, within the CVS, no prediction block in each identified tile with nuh_layer_id equal to ictsNuhLayerId is predicted from an inter-layer reference picture. all_tiles_ilc_idc equal to 0 indicates that, within the CVS, the inter-layer prediction process may or may not be constrained for the tile having nuh_layer_id equal to ictsNuhLayerId. The value of all_tiles_ilc_idc equal to 3 is reserved.
F.13.2.3 [bookmark: _Toc373499660][bookmark: _Toc373832768][bookmark: _Ref363585405]Bitstream partition nesting SEI message semantics
The bitstream partition nesting SEI message provides a mechanism to associate SEI messages with a bitstream partition of a layer set.
When present, this SEI message shall be contained within a scalable nesting SEI message. When this SEI message is contained in a scalable nesting SEI message, it shall be the only nested SEI message. In the scalable nesting SEI message containing this SEI message bitstream_subset_flag shall be equal to 1, nesting_op_flag is equal to 1, default_op_flag shall be equal to 0 and nesting_num_ops_minus1 shall be equal to 0. The nuh_layer_id of the SEI NAL unit shall be equal to the highest value within the list nestingLayerIdList[0].
A bitstream partition nesting SEI message contains one or more SEI messages.
bsp_idx specifies the bitstream partition index to which the contained SEI message apply as follows:
–	If vps_vui_bsp_hrd_present_flag is equal to 1, bsp_idx is an index among the bitstream partitions specified for the layer set with index nesting_op_idx[0] in the vps_vui_bsp_hrd_parameters() syntax structure.
–	Otherwise, an associated bitstream partition HRD parameters SEI message shall be present. The associated bitstream partition HRD parameter SEI message for the bitstream partition nesting SEI message is the preceding bitstream partition HRD parameters SEI message, in decoding order, that is nested in a scalable nesting SEI message with nesting_op_idx[i] that, with any value of i in the range of 0 to nesting_num_ops_minus1 of the scalable nesting SEI message containing the bitstream partition HRD parameters SEI message, is equal to nesting_op_idx[0] of the scalable nesting SEI message containing the bitstream partition nesting SEI message. It is a requirement of bitstream conformance that when bitstream partition nesting SEI message is present, it shall have an associated bitstream partition HRD message within the same coded video sequence. bsp_idx is an index among the bitstream partitions specified in the associated bitstream partition HRD parameters SEI message.
F.13.2.4 [bookmark: _Toc373499661][bookmark: _Toc373832769]Bitstream partition initial arrival time SEI message semantics
The bitstream partition initial arrival time SEI message specifies the initial arrival times to be used in the bitstream-partition-specific CPB operation.
When present, this SEI message shall be contained within bitstream partition nesting SEI message that is contained in a scalable nesting SEI message. The same bitstream partition SEI message shall also contain a buffering period SEI message.
nal_initial_arrival_delay[i] specifies the initial arrival time for the i-th schedule combination of the bitstream partition to which this SEI message applies, when NAL HRD parameters are in use.
vcl_initial_arrival_delay[i] specifies the initial arrival time for the i-th schedule combination of the bitstream partition to which this SEI message applies, when VCL HRD parameters are in use.
F.13.2.5 [bookmark: _Toc373499662][bookmark: _Toc373832770]Bitstream partition HRD parameters SEI message semantics
The bitstream partition HRD parameters SEI message specifies HRD parameters for bitstream-partition-specific CPB operation.
When present, this SEI message shall be contained within a scalable nesting SEI message in an initial IRAP access unit. When this SEI message is contained in a scalable nesting SEI message, it shall be the only nested SEI message. In the scalable nesting SEI message containing this SEI message, bitstream_subset_flag shall be equal to 1, nesting_op_flag shall be equal to 1 and default_op_flag shall be equal to 0. The nuh_layer_id of the SEI NAL unit shall be equal to the highest value within the lists nestingLayerIdList[h] with h in the range of 0 to nesting_num_ops_minus1, inclusive.
sei_num_bsp_hrd_parameters_minus1 plus 1 specifies the number of hrd_parameters() syntax structures present within this SEI message.
sei_bsp_cprms_present_flag[i] equal to 1 specifies that the HRD parameters that are common for all sub-layers are present in the i-th hrd_parameters() syntax structure in this SEI message. sei_bsp_cprms_present_flag[i] equal to 0 specifies that the HRD parameters that are common for all sub-layers are not present in the i-th hrd_parameters() syntax structure in this SEI message and are derived to be the same as the (i − 1)-th hrd_parameters() syntax structure in the in this SEI message. sei_bsp_cprms_present_flag[0] is inferred to be equal to 1.
For the subsequent syntax elements of this SEI message, the variable lsIdx is set equal to nesting_op_idx[h].
sei_num_bitstream_partitions_minus1[lsIdx] plus 1 specifies the number of bitstream partitions for which HRD parameters are specified for the layer set with index nesting_op_idx[h].
sei_layer_in_bsp_flag[lsIdx][i][j] specifies that the layer with index j is a part of bitstream partition with index i within the layer set with index lsIdx.
It is a requirement of bitstream conformance that bitstream partition with index j shall not include direct or indirect reference layers of any layers in bitstream partition i for any values of i and j in the range of 0 to sei_num_bitstream_partitions_minus1[h], inclusive, such that i is less than j.
sei_num_bsp_sched_combinations_minus1[lsIdx] plus 1 specifies the number of combinations of delivery schedules and hrd_parameters() specified for bitstream partitions for the layer set with index lsIdx.
sei_bsp_comb_hrd_idx[lsIdx][i][j] specifies the index of hrd_parameters() within this SEI message used in the i-th combination of a delivery schedule and hrd_parameters() specified for the bitstream partition with index j and for the layer set with index lsIdx.
sei_bsp_comb_sched_idx[lsIdx][i][j] specifies the index of a delivery schedule within the hrd_parameters() syntax structure with the index sei_bsp_comb_hrd_idx[lsIdx][i][j] that is used in the i-th combination of a delivery schedule and hrd_parameters() specified for the bitstream partition with index j and for the layer set with index lsIdx.
F.14 [bookmark: _Ref373340820][bookmark: _Toc373499663][bookmark: _Toc373832771]Video usability information
F.14.1 [bookmark: _Toc373499664][bookmark: _Toc373832772]General
The specifications in clause E.1 apply.
F.14.2 [bookmark: _Toc373499665][bookmark: _Toc373832773]VUI syntax
The specifications in clause E.2 apply.
F.14.3 [bookmark: _Toc373499666][bookmark: _Toc373832774]VUI semantics
F.14.3.1 [bookmark: _Toc373499667][bookmark: _Toc373832775]VUI parameters semantics
The specifications in clause E.3.1 apply with the following modifications and additions.
vui_timing_info_present_flag equal to 1 specifies that vui_num_units_in_tick, vui_time_scale, vui_poc_proportional_to_timing_flag, and vui_hrd_parameters_present_flag are present in the vui_parameters() syntax structure. vui_timing_info_present_flag equal to 0 specifies that vui_num_units_in_tick, vui_time_scale, vui_poc_proportional_to_timing_flag, and vui_hrd_parameters_present_flag are not present in the vui_parameters() syntax structure. It is a requirement of bitstream conformance that, when nuh_layer_id is greater than 0, vui_timing_info_present_flag shall be equal to 0.
F.14.3.2 [bookmark: _Toc373499668][bookmark: _Toc373832776]HRD parameters semantics
The specifications in clause E.3.2 apply.
F.14.3.3 [bookmark: _Toc373499669][bookmark: _Toc373832777]Sub-layer HRD parameters semantics
The specifications in clause E.3.3 apply.
1. [bookmark: _Ref348033633][bookmark: _Toc356824313][bookmark: _Toc356148114][bookmark: _Toc373832778]
Annex H

Syntax, semantics and decoding processes for scalable extension

(This annex forms an integral part of this Recommendation | International Standard)
This annex specifies syntax, semantics and decoding processes,for scalable exetnsion that use the syntax, semantics, and decoding process specified in clauses 2-9 and Annex A-F.
G.1 [bookmark: _Toc357439288][bookmark: _Toc356824314][bookmark: _Toc356148115][bookmark: _Toc348629434][bookmark: _Toc351367661][bookmark: _Toc373832779]Scope
Decoding process and bitstreams conforming to this annex are completely specified in this annex with reference made to clauses 2-9 and Annexes A-F.
G.2 [bookmark: _Toc357439289][bookmark: _Toc356824315][bookmark: _Toc356148116][bookmark: _Toc348629435][bookmark: _Toc351367662][bookmark: _Toc373832780]Normative references
The specifications in clause 2 apply.
G.3 [bookmark: _Toc357439290][bookmark: _Toc356824316][bookmark: _Toc356148117][bookmark: _Toc348629436][bookmark: _Toc351367663][bookmark: _Toc373832781]Definitions
[bookmark: _Toc357439291][bookmark: _Toc356824317][bookmark: _Toc356148118][bookmark: _Toc348629437][bookmark: _Toc351367664]The specifications in clause F.3 apply.
G.4 [bookmark: _Toc373832782]Abbreviations
The specifications in clause 4 apply.
G.5 [bookmark: _Toc357439292][bookmark: _Toc356824318][bookmark: _Toc356148119][bookmark: _Toc348629438][bookmark: _Toc351367665][bookmark: _Toc373832783]Conventions
The specifications in clause 5 apply.
G.6 [bookmark: _Toc357439293][bookmark: _Toc356824319][bookmark: _Toc356148120][bookmark: _Toc348629439][bookmark: _Toc351367666][bookmark: _Toc373832784]Source, coded, decoded and output data formats, scanning processes, and neighbouring relationships
G.6.1 [bookmark: _Ref364437398][bookmark: _Toc373832785]Derivation process for reference layer sample location
The specification in clause 6 and all its subclauses apply with the following additions.
[bookmark: _Toc357439294][bookmark: _Toc356824320]Input to this process is a luma location (xP, yP) relative to the top-left luma sample of the current picture.
Output of this process is a luma location (xRef, yRef) relative to the top-left luma sample of the reference layer picture.
The variables xRef and yRef are derived as follows:
xRef = ((xP ‑ ScaledRefLayerLeftOffset) * ScaleFactorX + (1 << 15)) >> 16	(H‑1)
yRef = ((yP ‑ ScaledRefLayerTopOffset) * ScaleFactorY + (1 << 15)) >> 16	(H‑2)
G.6.2 [bookmark: _Toc351667785][bookmark: _Ref351668463][bookmark: _Ref351668475][bookmark: _Ref364437312][bookmark: _Ref364437331][bookmark: _Toc373832786]Derivation process for reference layer sample location used in resampling
Inputs to this process are
–	a variable cIdx specifying the color component index,
–	a sample location (xP, yP) relative to the top-left sample of the color component of the current picture specified by cIdx.
Output of this process is a sample location (xRef16, yRef16) specifying the reference layer sample location in units of 1/16-th sample relative to the top-left sample of the reference layer picture.
The variables offsetX and offsetY are derived as follows:
offsetX = ScaledRefLayerLeftOffset / ((cIdx = = 0) ? 1 : SubWidthC)	(H‑3)
offsetY = ScaledRefLayerTopOffset / ((cIdx = = 0) ? 1 : SubHeightC)	(H‑4)
The variables phaseX, phaseY, addX and addY are derived as follows:
phaseX = (cIdx = = 0) ? (cross_layer_phase_alignment_flag << 1) : cross_layer_phase_alignment_flag	(H‑5)
phaseY = (cIdx = = 0) ? (cross_layer_phase_alignment_flag << 1) : cross_layer_phase_alignment_flag + 1					(H‑6)
addX = (ScaleFactorX * phaseX + 2) >> 2		(H‑7)
addY = (ScaleFactorY * phaseY + 2) >> 2		(H‑8)
The variables xRef16 and yRef16 are derived as follows:
xRef16 = (((xP – offsetX) * ScaleFactorX + addX + (1 << 11)) >> 12) – (phaseX << 2)	(H‑9)
yRef16 = (((yP – offsetY) * ScaleFactorY + addY + (1 << 11)) >> 12) – (phaseY << 2)	(H‑10)
G.7 [bookmark: _Toc356148121][bookmark: _Toc348629440][bookmark: _Toc351367667][bookmark: _Toc373832787]Syntax and semantics
The specifications in subclause F.7 and all its subclauses apply.
G.8 [bookmark: _Toc351057968][bookmark: _Toc351335564][bookmark: _Toc351057980][bookmark: _Toc351335576][bookmark: _Toc357439316][bookmark: _Toc356824342][bookmark: _Toc356148143][bookmark: _Toc348629460][bookmark: _Toc351367691][bookmark: _Toc373832788]Decoding processes
G.8.1 [bookmark: _Toc347485200][bookmark: _Toc348629495][bookmark: _Toc348630649][bookmark: _Toc348631607][bookmark: _Toc348631886][bookmark: _Toc348632154][bookmark: _Toc348632894][bookmark: _Toc348633151][bookmark: _Toc351667809][bookmark: _Toc373832789][bookmark: _Ref346393708][bookmark: _Ref351062399][bookmark: _Toc357439317][bookmark: _Toc356824343][bookmark: _Toc356148144][bookmark: _Toc348629461][bookmark: _Toc351367692]General decoding process
The specifications of subclause F.8.1 apply.
[bookmark: _Ref373775286][bookmark: _Toc373832790]Decoding process for a coded picture with nuh_layer_id greater than 0
The decoding process operates as follows for the current picture CurrPic:
1. The decoding of NAL units is specified in subclause 8.2.
2. The processes in subclause H.8.1.2 and H.8.3.4 specify the following decoding processes using syntax elements in the slice segment layer and above:
–	Prior to decoding the first slice of the current picture, subclause H.8.1.2 is invoked.
–	At the beginning of the decoding process for each P or B slice, the decoding process for reference picture lists construction specified in subclause H.8.3.4 is invoked for derivation of reference picture list 0 (RefPicList0), and when decoding a B slice, reference picture list 1 (RefPicList1).
3. The processes in subclauses H.8.4, H.8.5, H.8.6, and H.8.7 specify decoding processes using syntax elements in all syntax structure layers. It is a requirement of bitstream conformance that the coded slices of the picture shall contain slice segment data for every coding tree unit of the picture, such that the division of the picture into slices, the division of the slices into slice segments, and the division of the slice segments into coding tree units each form a partitioning of the picture.
4. After all slices of the current picture have been decoded, the marking process for ending the decoding of a coded picture with nuh_layer_id greater than 0 specified in subclause H.8.1.3 is invoked.
[bookmark: _Toc351335582][bookmark: _Ref346526853][bookmark: _Toc357439318][bookmark: _Toc356824344][bookmark: _Toc356148145][bookmark: _Toc348629462][bookmark: _Toc351367693][bookmark: _Toc373832791][bookmark: _Ref346440968]Decoding process for inter-layer reference picture set
Outputs of this process are updated lists of inter-layer reference pictures RefPicSetInterLayer0 and RefPicSetInterLayer1 and the variables NumActiveRefLayerPics0 and NumActiveRefLayerPics1.
The variable currLayerId is set equal to nuh_layer_id of the current decoded picture
The lists RefPicSetInterLayer0 and RefPicSetInterLayer1 are first emptied, NumActiveRefLayerPics0 and NumActiveRefLayerPics1 are set equal to 0 and the following applies:
for(i = 0; i < NumActiveRefLayerPics; i++) {
	if(there is a picture picX in the DPB that is in the same access unit as the current picture and has
		nuh_layer_id equal to RefPicLayerId[i]) {
		an interlayer reference picture rsPic is derived by invoking the subclause H.8.1.4 with picX and
			RefPicLayerId[i] given as inputs
		if((ViewId[nuh_layer_id] <= ViewId[0] &&
									ViewId[nuh_layer_id] <= ViewId[RefPicLayerId[i]]) | |
			(ViewId[nuh_layer_id] >= ViewId[0] &&
									ViewId[nuh_layer_id] >= ViewId[RefPicLayerId[i]])) {
			RefPicSetInterLayer0[NumActiveRefLayerPics0] = rsPic
			RefPicSetInterLayer0[NumActiveRefLayerPics0++] is marked as "used for long-term reference"
		} else {
			RefPicSetInterLayer1[NumActiveRefLayerPics1] = rsPic
			RefPicSetInterLayer1[NumActiveRefLayerPics1++] is marked as "used for long-term reference"
		}
	} else
		RefPicSetInterLayer0[NumActiveRefLayerPics0++] = "no reference picture"
}
[bookmark: _Ref346872782][bookmark: _Ref346528291]There shall be no entry equal to "no reference picture" in RefPicSetInterLayer0 or RefPicSetInterLayer1.
NOTE – For the profiles defined in Annex H, RefPicSetInterLayer1 is always empty since the value of ViewId[i] is equal to zero for all layers.
If the current picture is a RADL picture, there shall be no entry in the RefPicSetInterLayer0 or RefPicSetInterLayer1 that is a RASL picture.
NOTE – An access unit may contain both RASL and RADL pictures.
[bookmark: _Ref355956155][bookmark: _Toc357439319][bookmark: _Toc356824345][bookmark: _Toc356148146][bookmark: _Toc348629463][bookmark: _Toc351367694][bookmark: _Toc373832792]Marking process for ending the decoding of a coded picture with nuh_layer_id greater than 0
Output of this process is:
–	a potentially updated marking as "used for short-term reference" for some decoded pictures.
The following applies.
for(i = 0; i < NumActiveRefLayerPics0; i++)
	RefPicSetInterLayer0[i] is marked as "used for short-term reference"
for(i = 0; i < NumActiveRefLayerPics1; i++)
	RefPicSetInterLayer1[i] is marked as "used for short-term reference"
[bookmark: _Ref371062231][bookmark: _Ref371062289][bookmark: _Ref371062302][bookmark: _Ref371072921][bookmark: _Toc373832793][bookmark: _Toc357439320][bookmark: _Toc356824346]Resampling process for inter layer reference pictures
Input to this process is:
–	a decoded reference layer picture rlPic
–	a variable rLId specifies the layer id of reference layer picture .
Output of this process is	the resampled reference layer picture rsPic.
The variables PicWidthInSamplesY and PicHeightInSamplesY are set equal to pic_width_in_luma_samples and pic_height_in_luma_samples, respectively.
The variables RefLayerPicWidthInSamplesY and RefLayerPicHeightInSamplesY are set equal to the width and height of the decoded reference layer picture rlPic in units of luma samples, respectively. The variables RefLayerBitDepthY and RefLayerBitDepthC are set equal to BitDepthY and BitDepthC of the decoded reference layer picture rlPic, respectively.
The variables PicWidthInSamplesC, PicHeightInSamplesC, RefLayerPicWidthInSamplesC, and RefLayerPicHeightInSamplesC are derived as follows:
PicWidthInSamplesC = PicWidthInSamplesY / subWidthC	(H‑11)
PicHeightInSamplesC = PicHeightInSamplesY / subHeightC	(H‑12)
RefLayerPicWidthInSamplesC = RefLayerPicWidthInSamplesY / subWidthC	(H‑13)
RefLayerPicHeightInSamplesC = RefLayerPicHeightInSamplesY / subHeightC	(H‑14)
The variable currLayerId is set equal to nuh_layer_id of the current picture..
The variables ScaledRefLayerLeftOffset, ScaledRefLayerTopOffset, ScaledRefLayerRightOffset and ScaledRefLayerBottomOffset are derived as follows:
ScaledRefLayerLeftOffset = scaled_ref_layer_left_offset[rLId] << 1	(H‑15)
ScaledRefLayerTopOffset = scaled_ref_layer_top_offset[rLId] << 1	(H‑16)
ScaledRefLayerRightOffset = scaled_ref_layer_right_offset[rLId] << 1	(H‑17)
ScaledRefLayerBottomOffset = scaled_ref_layer_bottom_offset[rLId] << 1	(H‑18)
The variables ScaledRefLayerPicWidthInSamplesY and ScaledRefLayerPicHeightInSamplesY are derived as follows:
ScaledRefLayerPicWidthInSamplesY = PicWidthInSamplesY –
			ScaledRefLayerLeftOffset – ScaledRefLayerRightOffset	(H‑19)
ScaledRefLayerPicHeightInSamplesY = PicHeightInSamplesY –
			ScaledRefLayerTopOffset – ScaledRefLayerBottomOffset	(H‑20)
 The variables ScaleFactorX and ScaleFactorY are derived as follows:
ScaleFactorX = ((RefLayerPicWidthInSamplesY << 16) + (ScaledRefLayerPicWidthInSamplesY >> 1)) /
		ScaledRefLayerPicWidthInSamplesY		(H‑21)
ScaleFactorY = ((RefLayerPicHeightInSamplesY << 16) + (ScaledRefLayerPicHeightInSamplesY >> 1)) /
		ScaledRefLayerPicHeightInSamplesY		(H‑22)
The following steps are applied to derive the resampled inter layer reference picture rsPic.
–	if PicWidthInSamplesY is equal to RefLayerPicWidthInSamplesY, PicHeightInSamplesY is equal to RefLayerPicHeightInSamplesY, the values of ScaledRefLayerLeftOffset, ScaledRefLayerTopOffset, ScaledRefLayerRightOffset and ScaledRefLayerBottomOffset are all equal to 0, RefLayerBitDepthY is equal to BitDepthY, and RefLayerBitDepthC is equal to BitDepthC.
· rsPic is set equal to rlPic.
–	otherwise, rsPic is derived as follows:
· The PicOrderCntVal value of rsPic is set equal to the PicOrderCntVal value of rlPic.
· When VpsInterLayerSamplePredictionEnabled[LayerIdxInVps[currLayerId]][LayerIdxInVps[rLId]] is equal to 1, the picture sample resampling process as specified in subclause H.8.1.4.1 is invoked with the sample arrays, rlPicSampleL, rlPicSampleCb and rlPicSampleCr, of the reference layer picture rlPic as inputs, and with the sample arrays of the resampled picture rsPic as outputs.
· When VpsInterLayerMotionPredictionEnabled[LayerIdxInVps[currLayerId]][LayerIdxInVps[rLId]] is equal to 1, the following steps apply:
· A single slice rsSlice of the resampled picture rsPic is generated as follows:
· The values of slice_type, num_ref_idx_l0_active_minus1 and num_ref_idx_l1_active_minus1 for the generated slice rsSlice are inferred to be equal to the slice_type, num_ref_idx_l0_active_minus1 and num_ref_idx_l1_active_minus1, respectively, of the first slice in rlPic
· When rsSlice is a P or B slice, for i in the range of 0 to num_ref_idx_l0_active_minus1 of rsSlice, inclusive, the reference picture with index i in reference picture list 0 of rsSlice is set equal to reference picture with index i in reference picture list 0 of the first slice of rlPic
· When rsSlice is a B slice, for i in the range of 0 to num_ref_idx_l1_active_minus1 of rsSlice, inclusive, the reference picture with index i in reference picture list 1 of rsSlice is set equal to reference picture with index i in reference picture list 1 of the first slice of rlPic
NOTE: When the resampled picture is used as collocated picture for temporal motion vector prediction, all slices of rlPic are constrained to have the same values of slice_type, num_ref_idx_l0_active_minus1 and num_ref_idx_l1_active_minus1.
· The picture motion field resampling process as specified in subclause H.8.1.4.2 is invoked with reference layer picture rlPic and its motion field data including an array rlPredMode specifying the prediction modes of the reference layer picture, two arrays rlRefIdxLX specifying the reference indices of the reference layer picture, two arrays rlMvLX specifying the luma motion vectors of the reference layer picture and two arrays rlPredFlagLX specifying the prediction list utilization flags of the reference layer picture, with X = 0,1 as inputs, and with the motion field data of the resampled picture rsPic as output.
[bookmark: _Ref348598889]Resampling process of picture sample values
Inputs to this process are:
–	a (RefLayerPicWidthInSamplesY) x (RefLayerPicHeightInSamplesY) array rlPicSampleL of luma samples,
–	a (RefLayerPicWidthInSamplesC) x (RefLayerPicHeightInSamplesC) array rlPicSampleCb of chroma samples of the component Cb,
–	a (RefLayerPicWidthInSamplesC) x (RefLayerPicHeightInSamplesC) array rlPicSampleCr of chroma samples of the component Cr.
Outputs of this process are:
–	a (PicWidthInSamplesY) x (PicHeightInSamplesY) array rsPicSampleL of luma samples,
–	a (PicWidthInSamplesC) x (PicHeightInSamplesC) array rsPicSampleCb of chroma samples of the component Cb,
–	a (PicWidthInSamplesC) x (PicHeightInSamplesC) array rsPicSampleCr of chroma samples of the component Cr.
The luma sample array rsPicSampleL is derived by invoking the luma sample resampling process specified in subclause H.8.1.4.1.1 with the reference luma sample array rlPicSampleL given as input.
The chroma sample array rsPicSampleCb of the chroma component Cb is derived by invoking the chroma sample resampling process specified in subclause H.8.1.4.1.2 with the reference chroma sample array rlPicSampleCb given as input.
The chroma sample array rsPicSampleCr of the chroma component Cr is derived by invoking the chroma sample resampling process specified in subclause H.8.1.4.1.2 with the reference sample array rlPicSampleCr given as input.
[bookmark: _Ref348598872]Resampling process of luma sample values
Input to this process is the reference luma sample array rlPicSampleL.
Output of this process is the resampled luma sample array rsPicSampleL.
The variables leftStartL, rightEndL, topStartL, and bottomEndL are derived as follows:
leftStartL = ScaledRefLayerLeftOffset
rightEndL = PicWidthInSamplesY – ScaledRefLayerRightOffset
topStartL = ScaledRefLayerTopOffset
bottomEndL = PicHeightInSamplesY – ScaledRefLayerBottomOffset
The luma samples rsPicSampleL [xP][yP] with (xP = 0 ... PicWidthInSamplesY – 1, yP = 0 ... PicHeightInSamplesY – 1) are derived by invoking the luma sample interpolation process specified in subclause H.8.1.4.1.3 with rlPicSampleL and luma sample location (Clip3(leftStartL, rightEndL – 1, xP), Clip3(topStartL, bottomEndL – 1, yP)) given as inputs and rsPicSampleL[xP][yP] as output.
[bookmark: _Ref348037885]Resampling process of chroma sample values
Input to this process is the reference chroma sample array rlPicSampleC,
Output of this process is the resampled chroma sample array rsPicSampleC.
The variables leftStartC, rightEndC, topStartC, and bottomEndC are derived as follows:
leftStartC = ScaledRefLayerLeftOffset / SubWidthC
rightEndC = (PicWidthInSamplesY– ScaledRefLayerRightOffset) / SubWidthC
topStartC = ScaledRefLayerTopOffset / SubHeightC
bottomEndC = (PicHeightInSamplesY– ScaledRefLayerBottomOffset) / SubHeightC
The chroma samples rsPicSampleC[xPC][yPC] with (xPC = 0 ... PicWidthInSamplesC – 1, yPC = 0 ... PicHeightInSamplesC – 1) are derived by invoking the chroma sample interpolation process specified in subclause H.8.1.4.1.4 with rlPicSampleC and chroma sample location (Clip3(leftStartC, rightEndC ‑ 1, xPC), Clip3(topStartC, bottomEndC – 1, yPC)) given as inputs and rsPicSampleC[xPC][yPC] as output.
[bookmark: _Ref347127882]Luma sample interpolation process
Inputs to this process are
–	the luma reference sample array rlPicSampleL,
–	a luma sample location (xP, yP) relative to the top-left luma sample of the current picture.
Output of this process is a interpolated luma sample value intLumaSample.
Table H‑1 specifies the 8-tap filter coefficients fL[p, x] with p = 0 ... 15 and x = 0 ... 7 used for the luma resampling process.
[bookmark: _Ref351654170][bookmark: _Ref351655790]Table H‑1 – 16-phase luma resampling filter
	phase p
	interpolation filter coefficients

	
	fL[p, 0]
	fL[p, 1]
	fL[p, 2]
	fL[p, 3]
	fL[p, 4]
	fL[p, 5]
	fL[p, 6]
	fL[p, 7]

	0
	0
	0
	0
	64
	0
	0
	0
	0

	1
	0
	1
	−3
	63
	4
	−2
	1
	0

	2
	−1
	2
	−5
	62
	8
	−3
	1
	0

	3
	−1
	3
	−8
	60
	13
	−4
	1
	0

	4
	−1
	4
	−10
	58
	17
	−5
	1
	0

	5
	−1
	4
	−11
	52
	26
	−8
	3
	−1

	6
	−1
	3
	−9
	47
	31
	−10
	4
	−1

	7
	−1
	4
	−11
	45
	34
	−10
	4
	−1

	8
	−1
	4
	−11
	40
	40
	−11
	4
	−1

	9
	−1
	4
	−10
	34
	45
	−11
	4
	−1

	10
	−1
	4
	−10
	31
	47
	−9
	3
	−1

	11
	−1
	3
	−8
	26
	52
	−11
	4
	−1

	12
	0
	1
	−5
	17
	58
	−10
	4
	−1

	13
	0
	1
	−4
	13
	60
	−8
	3
	−1

	14
	0
	1
	−3
	8
	62
	−5
	2
	−1

	15
	0
	1
	−2
	4
	63
	−3
	1
	0

The value of the interpolated luma sample IntLumaSample is derived by applying the following ordered steps:
1. The derivation process for reference layer sample location used in resampling as specified in subclause H.6.2 is invoked with cIdx equal to 0 and luma sample location (xP, yP) given as the inputs and (xRef16, yRef16) in units of 1/16-th sample as output.
2. The variables xRef and xPhase are derived as follows:
xRef = (xRef16 >> 4)	(H‑23)
xPhase = (xRef16) % 16	(H‑24)
3. The variables yRef and yPhase are derived as follows:
yRef = (yRef16 >> 4)	(H‑25)
yPhase = (yRef16) % 16	(H‑26)
4. The variables shift1, shift2 and offset are derived as follows:
shift1 = RefLayerBitDepthY – 8	(H‑27)
shift2 = 20 – BitDepthY	(H‑28)
offset = 1 << (shift2 – 1)	(H‑29)
5. The sample value tempArray[n] with n = 0 … 7, is derived as follows:
yPosRL = Clip3(0, RefLayerPicHeightInSamplesY – 1, yRef + n – 1) 	(H‑30)
refW = RefLayerPicWidthInSamplesY
tempArray[n] = (fL[xPhase, 0] * rlPicSampleL[Clip3(0, refW – 1, xRef – 3), yPosRL] +
	fL[xPhase, 1] * rlPicSampleL[Clip3(0, refW – 1, xRef – 2), yPosRL] +
	fL[xPhase, 2] * rlPicSampleL[Clip3(0, refW – 1, xRef – 1), yPosRL] +
	fL[xPhase, 3] * rlPicSampleL[Clip3(0, refW – 1, xRef), yPosRL] +
	fL[xPhase, 4] * rlPicSampleL[Clip3(0, refW – 1, xRef + 1), yPosRL] +	(H‑31)
	fL[xPhase, 5] * rlPicSampleL[Clip3(0, refW – 1, xRef + 2), yPosRL] +
	fL[xPhase, 6] * rlPicSampleL[Clip3(0, refW – 1, xRef + 3), yPosRL] +
	fL[xPhase, 7] * rlPicSampleL[Clip3(0, refW – 1, xRef + 4), yPosRL]) >> shift1
6. The interpolated luma sample value intLumaSample is derived as follows:
intLumaSample = (fL[yPhase, 0] * tempArray [0] +	
	fL[yPhase, 1] * tempArray [1] +	
	fL[yPhase, 2] * tempArray [2] +	
	fL[yPhase, 3] * tempArray [3] +	
	fL[yPhase, 4] * tempArray [4] +	(H‑32)
	fL[yPhase, 5] * tempArray [5] +	
	fL[yPhase, 6] * tempArray [6] +	
	fL[yPhase, 7] * tempArray [7] + offset) >> shift2
intLumaSample = Clip3(0, (1 << BitDepthY) – 1 , intLumaSample)	(H‑33)
[bookmark: _Ref347151884]Chroma sample interpolation process
Inputs to this process are:
–	the chroma reference sample array rlPicSampleC,
–	a chroma sample location (xPC, yPC) relative to the top-left chorma sample of the current picture.
Output of this process is a interpolated chroma sample value intChromaSample.
Table H‑2 specifies the 4-tap filter coefficients fC[p, x] with p = 0 ... 15 and x = 0 ... 3 used for the chroma resampling process.
[bookmark: _Ref351656607]Table H‑2 – 16-phase chroma resampling filter
	phase p
	interpolation filter coefficients

	
	fC[p, 0]
	fC[p, 1]
	fC[p, 2]
	fC[p, 3]

	0
	0
	64
	0
	0

	1
	−2
	62
	4
	0

	2
	−2
	58
	10
	−2

	3
	−4
	56
	14
	−2

	4
	−4
	54
	16
	−2

	5
	−6
	52
	20
	−2

	6
	−6
	46
	28
	−4

	7
	−4
	42
	30
	−4

	8
	−4
	36
	36
	−4

	9
	−4
	30
	42
	−4

	10
	−4
	28
	46
	−6

	11
	−2
	20
	52
	−6

	12
	−2
	16
	54
	−4

	13
	−2
	14
	56
	−4

	14
	−2
	10
	58
	−2

	15
	0
	4
	62
	−2

The value of the interpolated chroma sample value intChromaSample is derived by applying the following ordered steps:
1. The derivation process for reference layer sample location in resampling as specified in subclause H.6.2 is invoked with cIdx and chroma sample location (xPC, yPC) given as the inputs and (xRef16, yRef16) in units of 1/16-th sample as output.
2. The variables xRef and xPhase are derived as follows:
xRef = (xRef16 >> 4)	(H‑34)
xPhase = (xRef16) % 16	(H‑35)
3. The variables yRef and yPhase are derived as follows:
yRef = (yRef16 >> 4)	(H‑36)
yPhase = (yRef16) % 16	(H‑37)
4. The variables shift1, shift2 and offset are derived as follows:
shift1 = RefLayerBitDepthC – 8	(H‑38)
shift2 = 20 – BitDepthC	(H‑39)
offset =1 << (shift2 – 1)	(H‑40)
5. The sample value tempArray[n] with n = 0 … 3, is derived as follows:
yPosRL = Clip3(0 , RefLayerPicHeightInSamplesC – 1, yRef + n – 1)	(H‑41)
refWC = RefLayerPicWidthInSamplesC	(H‑42)
tempArray[n] = (fC[xPhase, 0] * rlPicSampleC[Clip3(0, refWC – 1, xRef – 1), yPosRL] +
	fC[xPhase, 1] * rlPicSampleC[Clip3(0, refWC – 1, xRef), yPosRL] +
	fC[xPhase, 2] * rlPicSampleC[Clip3(0, refWC – 1, xRef + 1), yPosRL] +	(H‑43)
	fC[xPhase, 3] * rlPicSampleC[Clip3(0, refWC – 1, xRef + 2), yPosRL]) >> shift1
6. The interpolated chroma sample value intChromaSample is derived as follows:
intChromaSample = (fC[yPhase, 0] * tempArray [0] +
	fC[yPhase, 1] * tempArray [1] +
	fC[yPhase, 2] * tempArray [2] +	(H‑44)
	fC[yPhase, 3] * tempArray [3] + offset) >> shift2
intChromaSample = Clip3(0, (1 << BitDepthC) – 1 , intChromaSample)	(H‑45)
[bookmark: _Ref364437164]Resampling process of picture motion field
Inputs to this process are:
–	the decoded reference layer picture rlPic,
–	a (RefLayerPicWidthInSamplesY) x (RefLayerPicHeightInSamplesY) array rlPredMode specifies the prediction modes of the reference layer picture,
–	two (RefLayerPicWidthInSamplesY) x (RefLayerPicHeightInSamplesY) arrays rlRefIdxLX specify the reference indices of the reference layer picture, with X = 0,1,
–	two (RefLayerPicWidthInSamplesY) x (RefLayerPicHeightInSamplesY) arrays rlMvLX specify the luma motion vectors of the reference layer picture, with X = 0,1,
–	two (RefLayerPicWidthInSamplesY) x (RefLayerPicHeightInSamplesY) arrays rlPredFlagLX specify the prediction list utilization flags of the reference layer picture, with X = 0,1.
Outputs of this process are:
–	a (PicWidthInSamplesY) x (PicHeightInSamplesY) array predMode specifies the prediction modes of the resampled picture,
–	two (PicWidthInSamplesY) x (PicHeightInSamplesY) arrays refIdxLX specify the reference indexes of the resampled picture, with X = 0,1,
–	two (PicWidthInSamplesY) x (PicHeightInSamplesY) arrays mvLX specify the luma motion vectors of the resampled picture, with X = 0,1,
· two (PicWidthInSamplesY) x (PicHeightInSamplesY) arrays predFlagLX specify the prediction list utilization flags of the resampled picture, with X = 0,1.

The motion data of each 16 x 16 prediction block of the resampled picture are derived by applying the following ordered steps with xPb = 0 ... ((PicWidthInSamplesY + 15) >> 4) − 1 and yPb = 0 … ((PicHeightInSamplesY + 15) >> 4) – 1:
–	The top-left luma sample location of the (16 x 16) prediction block xP and yP are set equal to (xPb << 4) and (yPb << 4), respectively,
–	The variables predMode[xP][yP], refIdxLX[xP][yP], mvLX[xP][yP] and predFlagLX[xP][yP], with X = 0,1, are derived by invoking inter layer motion parameters derivation process specified in subclause H.8.1.4.2.1 with the luma location (xP, yP), rlPredMode, rlRefIdxLX, rlMvLX and rlPredFlagLX, with X = 0,1, given as input.
[bookmark: _Ref348599073]Derivation process for inter layer motion parameters
Inputs to this process are
–	a luma location (xP, yP) specifying the top-left sample of the current luma prediction block relative to the top-left luma sample of the resampled picture,
–	the reference layer prediction mode array rlPredMode,
–	the reference layer reference index arrays rlRefIdxL0 and rlRefIdxL1,
–	the reference layer motion vector arrays rlMvL0 and rlMvL1,
–	the reference layer prediction list utilization flag arrays rlPredFlagL0 and rlPredFlagL1.
Outputs of this process are
–	a derived prediction mode predMode[xP][yP],
–	two derived motion vectors mvL0 and mvL1[xP][yP]
–	two derived reference indices refIdxL0 and refIdxL1[xP][yP]
–	two derived prediction list utilization flags predFlagL0 and predFlagL1[xP][yP].
predMode[xP][yP], mvLX[xP][yP], refIdxLX[xP][yP], and predFlagLX[xP][yP], with X = 0, 1, are derived as follows:
1. The center location (xPCtr, yPCtr) of the luma prediction block is derived as follows:
[bookmark: OLE_LINK6][bookmark: OLE_LINK7]xPCtr = xP + 8		(H‑44)
yPCtr = yP + 8		(H‑45)
2. The derivation process for reference layer luma sample location specified in subclause H.6.1 is invoked with luma location (xPCtr, yPCtr) given as the inputs and (xRef, yRef) as output.
3. The collocated position (xRL, yRL) is derived as follows:
xRL = ((xRef + 4) >> 4) << 4		(H‑46)
yRL = ((yRef + 4) >> 4) << 4		(H‑47)
4. The prediction mode predMode[xP][yP] is derived as follows:
· If (xRL < 0) or (xRL >= RefLayerPicWidthInSamplesY) or (yRL < 0) or (yRL >= RefLayerPicHeightInSamplesY), predMode[xP][yP] is set equal to MODE_INTRA.
· Otherwise, the following applies:
predMode[xP][yP] = rlPredMode[xRL][yRL]	(H‑48)
5. mvL0[xP][yP], mvL1[xP][yP], refIdxL0[xP][yP], refIdxL1[xP][yP], predFlagL0[xP][yP] and predFlagL1[xP][yP] are derived as follows:
· If predMode[xP][yP] is equal to MODE_INTER, the following applies
· For each X = 0, 1, the following applies:
· refIdxLX[xP][yP] and predFlagLX[xP][yP] are derived as follows:
refIdxLX[xP][yP] = rlRefIdxLX[xRL][yRL]	(H‑49)
predFlagLX[xP][yP] = rlPredFlagLX[xRL][yRL]	(H‑50)
· [bookmark: OLE_LINK469][bookmark: OLE_LINK470][bookmark: OLE_LINK461][bookmark: OLE_LINK462][bookmark: OLE_LINK82][bookmark: OLE_LINK439][bookmark: OLE_LINK440]mvLX[xP][yP][0] is derived as follows:
· If ScaledRefLayerPicWidthInSamplesY is not equal to RefLayerPicWidthInSamplesY, the following applies:
[bookmark: OLE_LINK463][bookmark: OLE_LINK464][bookmark: OLE_LINK465][bookmark: OLE_LINK466][bookmark: OLE_LINK74][bookmark: OLE_LINK75][bookmark: OLE_LINK447][bookmark: OLE_LINK448][bookmark: OLE_LINK72][bookmark: OLE_LINK73]scaleFactorMVX = Clip3(−4096, 4095, ((ScaledRefLayerPicWidthInSamplesY << 8) + (RefLayerPicWidthInSamplesY >> 1)) / RefLayerPicWidthInSamplesY)	(H‑51)
[bookmark: OLE_LINK87][bookmark: OLE_LINK88]mvLX[xP][yP][0] = Clip3(−32768, 32767, Sign(scaleFactorMVX *
rlMvLX[xRL][yRL][0]) * ((Abs (scaleFactorMVX * rlMvLX[xRL][yRL][0])
 + 127) >> 8)) 		(H‑52)
· Otherwise, the following applies:
mvLX[xP][yP][0] = rlMvLX[xRL][yRL][0] 	(H‑53)
· mvLX[xP][yP][1] is derived as follows:
· If ScaledRefLayerPicHeightInSamplesY is not equal to RefLayerPicHeightInSamplesY, the following applies:
scaleFactorMVY = Clip3(−4096, 4095, ((ScaledRefLayerPicHeightInSamplesY << 8) + (RefLayerPicHeightInSamplesY >> 1)) / RefLayerPicHeightInSamplesY)	(H‑54)
mvLX[xP][yP][1] = Clip3(−32768, 32767, Sign(scaleFactorMVY *
rlMvLX[xRL][yRL][1]) * ((Abs (scaleFactorMVY * rlMvLX[xRL][yRL][1])
 + 127) >> 8))		(H‑55)
· Otherwise, the following applies:
mvLX[xP][yP][1] = rlMvLX[xRL][yRL][1] 	(H‑56)
· Otherwise (predMode[xP][yP] is equal to MODE_INTRA), the following applies:
· both components of mvL0[xP][yP] and mvL1[xP][yP] are set to 0, refIdxL0[xP][yP] and refIdxL1[xP][yP] are set to –1, predFlagL0[xP][yP] and predFlagL1[xP][yP] are set to 0.

G.8.2 [bookmark: _Toc356148147][bookmark: _Toc348629464][bookmark: _Toc351367695][bookmark: _Toc373832794]NAL unit decoding process
[bookmark: _Ref351062409][bookmark: _Toc357439321][bookmark: _Toc356824347][bookmark: _Toc356148148][bookmark: _Toc348629466][bookmark: _Toc351367696]The specification in subclause 8.2 apply.
G.8.3 [bookmark: _Toc373832795]Slice decoding processes
G.8.3.1 [bookmark: _Toc363646430][bookmark: _Toc373832796]Decoding process for picture order count
The specifications in subclause F.8.3.1 apply.
G.8.3.2 [bookmark: _Toc350926544][bookmark: _Toc363646431][bookmark: _Toc373832797]Decoding process for reference picture set
The specifications in subclause F.8.3.2 apply.
G.8.3.3 [bookmark: _Toc363646432][bookmark: _Toc373832798]Decoding process for generating unavailable reference pictures
The specifications in subclause F.8.3.3 apply.
G.8.3.4 [bookmark: _Ref361089034][bookmark: _Toc363646433][bookmark: _Toc373832799]Decoding process for reference picture lists construction
[bookmark: _Toc360899811][bookmark: _Toc360900055][bookmark: _Toc361055005][bookmark: _Toc361058682][bookmark: _Toc361058839][bookmark: _Toc361058985][bookmark: _Toc361059130][bookmark: _Toc361059340][bookmark: _Toc361059486][bookmark: _Toc361059632][bookmark: _Toc361059778][bookmark: _Toc361063269][bookmark: _Toc361063417][bookmark: _Toc361063563][bookmark: _Toc361063713][bookmark: _Toc361063859][bookmark: _Toc361064005][bookmark: _Toc361064152][bookmark: _Toc361066251][bookmark: _Toc361066397][bookmark: _Toc361066544][bookmark: _Toc361066690][bookmark: _Toc361066835][bookmark: _Toc361154682][bookmark: _Toc360899817][bookmark: _Toc360900061][bookmark: _Toc361055011][bookmark: _Toc361058688][bookmark: _Toc361058845][bookmark: _Toc361058991][bookmark: _Toc361059136][bookmark: _Toc361059346][bookmark: _Toc361059492][bookmark: _Toc361059638][bookmark: _Toc361059784][bookmark: _Toc361063275][bookmark: _Toc361063423][bookmark: _Toc361063569][bookmark: _Toc361063719][bookmark: _Toc361063865][bookmark: _Toc361064011][bookmark: _Toc361064158][bookmark: _Toc361066257][bookmark: _Toc361066403][bookmark: _Toc361066550][bookmark: _Toc361066696][bookmark: _Toc361066841][bookmark: _Toc361154688][bookmark: _Toc360899818][bookmark: _Toc360900062][bookmark: _Toc361055012][bookmark: _Toc361058689][bookmark: _Toc361058846][bookmark: _Toc361058992][bookmark: _Toc361059137][bookmark: _Toc361059347][bookmark: _Toc361059493][bookmark: _Toc361059639][bookmark: _Toc361059785][bookmark: _Toc361063276][bookmark: _Toc361063424][bookmark: _Toc361063570][bookmark: _Toc361063720][bookmark: _Toc361063866][bookmark: _Toc361064012][bookmark: _Toc361064159][bookmark: _Toc361066258][bookmark: _Toc361066404][bookmark: _Toc361066551][bookmark: _Toc361066697][bookmark: _Toc361066842][bookmark: _Toc361154689][bookmark: _Toc360899821][bookmark: _Toc360900065][bookmark: _Toc361055015][bookmark: _Toc361058692][bookmark: _Toc361058849][bookmark: _Toc361058995][bookmark: _Toc361059140][bookmark: _Toc361059350][bookmark: _Toc361059496][bookmark: _Toc361059642][bookmark: _Toc361059788][bookmark: _Toc361063279][bookmark: _Toc361063427][bookmark: _Toc361063573][bookmark: _Toc361063723][bookmark: _Toc361063869][bookmark: _Toc361064015][bookmark: _Toc361064162][bookmark: _Toc361066261][bookmark: _Toc361066407][bookmark: _Toc361066554][bookmark: _Toc361066700][bookmark: _Toc361066845][bookmark: _Toc361154692][bookmark: _Toc360899823][bookmark: _Toc360900067][bookmark: _Toc361055017][bookmark: _Toc361058694][bookmark: _Toc361058851][bookmark: _Toc361058997][bookmark: _Toc361059142][bookmark: _Toc361059352][bookmark: _Toc361059498][bookmark: _Toc361059644][bookmark: _Toc361059790][bookmark: _Toc361063281][bookmark: _Toc361063429][bookmark: _Toc361063575][bookmark: _Toc361063725][bookmark: _Toc361063871][bookmark: _Toc361064017][bookmark: _Toc361064164][bookmark: _Toc361066263][bookmark: _Toc361066409][bookmark: _Toc361066556][bookmark: _Toc361066702][bookmark: _Toc361066847][bookmark: _Toc361154694][bookmark: _Toc360899825][bookmark: _Toc360900069][bookmark: _Toc361055019][bookmark: _Toc361058696][bookmark: _Toc361058853][bookmark: _Toc361058999][bookmark: _Toc361059144][bookmark: _Toc361059354][bookmark: _Toc361059500][bookmark: _Toc361059646][bookmark: _Toc361059792][bookmark: _Toc361063283][bookmark: _Toc361063431][bookmark: _Toc361063577][bookmark: _Toc361063727][bookmark: _Toc361063873][bookmark: _Toc361064019][bookmark: _Toc361064166][bookmark: _Toc361066265][bookmark: _Toc361066411][bookmark: _Toc361066558][bookmark: _Toc361066704][bookmark: _Toc361066849][bookmark: _Toc361154696]This process is invoked at the beginning of the decoding process for each P or B slice.
Reference pictures are addressed through reference indices as specified in subclause 8.5.3.3.2. A reference index is an index into a reference picture list. When decoding a P slice, there is a single reference picture list RefPicList0. When decoding a B slice, there is a second independent reference picture list RefPicList1 in addition to RefPicList0.
At the beginning of the decoding process for each slice, the reference picture lists RefPicList0 and, for B slices, RefPicList1 are derived as follows:
The variable NumRpsCurrTempList0 is set equal to Max(num_ref_idx_l0_active_minus1 + 1, NumPicTotalCurr) and the list RefPicListTemp0 is constructed as follows:
rIdx = 0
while(rIdx < NumRpsCurrTempList0) {
	for(i = 0; i < NumPocStCurrBefore && rIdx < NumRpsCurrTempList0; rIdx++, i++)
		RefPicListTemp0[rIdx] = RefPicSetStCurrBefore[i]
	for(i = 0; i < NumActiveRefLayerPics0; rIdx++, i++)
		RefPicListTemp0[rIdx] = RefPicSetInterLayer0[i]
	for(i = 0; i < NumPocStCurrAfter && rIdx < NumRpsCurrTempList0; rIdx++, i++)	(H‑57)
		RefPicListTemp0[rIdx] = RefPicSetStCurrAfter[i]
	for(i = 0; i < NumPocLtCurr && rIdx < NumRpsCurrTempList0; rIdx++, i++)
		RefPicListTemp0[rIdx] = RefPicSetLtCurr[i]
	for(i = 0; i < NumActiveRefLayerPics1; rIdx++, i++)
		RefPicListTemp0[rIdx] = RefPicSetInterLayer1[i]
}
The list RefPicList0 is constructed as follows:
for(rIdx = 0; rIdx <= num_ref_idx_l0_active_minus1; rIdx++)			(H‑58)
		RefPicList0[rIdx] = ref_pic_list_modification_flag_l0 ? RefPicListTemp0[list_entry_l0[rIdx]] :
																			RefPicListTemp0[rIdx]
When the slice is a B slice, the variable NumRpsCurrTempList1 is set equal to Max(num_ref_idx_l1_active_minus1 + 1, NumPicTotalCurr) and the list RefPicListTemp1 is constructed as follows:
rIdx = 0
while(rIdx < NumRpsCurrTempList1) {
	for(i = 0; i < NumPocStCurrAfter && rIdx < NumRpsCurrTempList1; rIdx++, i++)
		RefPicListTemp1[rIdx] = RefPicSetStCurrAfter[i]
	for(i = 0; i< NumActiveRefLayerPics1; rIdx++, i++)
		RefPicListTemp1[rIdx] = RefPicSetInterLayer1[i]
	for(i = 0; i < NumPocStCurrBefore && rIdx < NumRpsCurrTempList1; rIdx++, i++)	(H‑59)
		RefPicListTemp1[rIdx] = RefPicSetStCurrBefore[i]
	for(i = 0; i < NumPocLtCurr && rIdx < NumRpsCurrTempList1; rIdx++, i++)
		RefPicListTemp1[rIdx] = RefPicSetLtCurr[i]
	for(i = 0; i< NumActiveRefLayerPics0; rIdx++, i++)
		RefPicListTemp1[rIdx] = RefPicSetInterLayer0[i]
}
When the slice is a B slice, the list RefPicList1 is constructed as follows:
for(rIdx = 0; rIdx <= num_ref_idx_l1_active_minus1; rIdx++)			(H‑60)
		RefPicList1[rIdx] = ref_pic_list_modification_flag_l1 ? RefPicListTemp1[list_entry_l1[rIdx]] :
																			RefPicListTemp1[rIdx]
NOTE – Because motion vectors from inter layer reference pictures are constrained to be zero motion only, an SHVC encoder should disable temporal motion vector prediction for the current picture, by setting slice_temporal_mvp_enabled_flag to zero, when only inter-layer reference pictures exist in the reference picture lists of all slices in the current picture. This avoids the need to send any additional syntax elements such as collocated_from_l0_flag and collocated_ref_idx. [Ed. (JC && YY): Consider finding a better location for this note, for example in the semantics part of slice_temporal_mvp_enabled_flag.]
G.8.3.5 Decoding process for collocated picture and no backward prediction flag
The specifications in subclause F.8.3.5 apply.
G.8.4 [bookmark: _Toc357439326][bookmark: _Toc356824352][bookmark: _Toc356148153][bookmark: _Toc348629471][bookmark: _Toc351367701][bookmark: _Ref364437014][bookmark: _Toc373832800]Decoding process for coding units coded in intra prediction mode
The specifications in subclause F.8.4 apply.
G.8.5 [bookmark: _Toc357439327][bookmark: _Toc356824353][bookmark: _Toc356148154][bookmark: _Toc348629472][bookmark: _Toc351367702][bookmark: _Ref364437022][bookmark: _Toc373832801]Decoding process for coding units coded in inter prediction mode
The specifications in subclause F.8.5 apply with the following addtions.
It is a requirement of bitstream conformance that, for X being replaced by either 0 or 1, the variables mvLX[0] and mvLX[1] as an output of the subclause 8.5.3.1 shall be equal to 0 if the value of refIdxLX as an output of the subclause 8.5.3.1 corresponds to an inter-layer reference picture. That is, in any conformant bitstream, for X being replaced by either 0 or 1, upon invoking the decoding process in subclause 8.5.3.1, the values of the syntax elements merge_idx, mvp_lX_flag, ref_idx_lX, MvdLX, and mvd_l1_zero_flag shall always result in zero values for mvLX[0] and mvLX[1] when the value of refIdxLX of the reference picture list RefPicListX indicates an inter-layer reference picture.
It is a requirement of bitstream conformance that the collocated picture colPic, used for temporal motion vector prediction and derived by invoking the subclause 8.5.3.2.7, shall not be an inter-layer reference picture if the reference layer picture is coded using two or more slice segments, and any of the following conditions is true:
· The slice segment header syntax element slice_type of at least one of the slice segments of the reference layer picture is different from the slice segment header syntax element slice_type of another slice segment of the reference layer picture;
· The slice segment header syntax element, num_ref_idx_lX_active_minus1, for X being replaced by either 0 or 1, of at least one of the slice segments of the reference layer picture is different from the slice segment header syntax element num_ref_idx_lX_active_minus1, for X being replaced by either 0 or 1, of another slice segment of the reference layer picture.
· The reference picture list, RefPicListX[i], for X being replaced by either 0 or 1, of at least one of the slice segments of the reference layer picture is different from the reference picture list RefPicListX[i], for X being replaced by either 0 or 1, of another slice segment of the reference layer picture.
G.8.6 [bookmark: _Toc357439328][bookmark: _Toc356824354][bookmark: _Toc356148155][bookmark: _Toc348629473][bookmark: _Toc351367703][bookmark: _Ref364437029][bookmark: _Toc373832802]Scaling, transformation and array construction process prior to deblocking filter process
The specifications in subclause F.8.6 apply.
G.8.7 [bookmark: _Toc357439329][bookmark: _Toc356824355][bookmark: _Toc356148156][bookmark: _Toc348629474][bookmark: _Toc351367704][bookmark: _Ref364437036][bookmark: _Toc373832803]In-loop filter process
The specifications in subclause F.8.7 apply.
G.9 [bookmark: _Toc357439330][bookmark: _Toc356824356][bookmark: _Toc356148157][bookmark: _Toc348629475][bookmark: _Toc351367705][bookmark: _Toc373832804]Parsing process
The specifications in clause F.9 apply.
G.10 [bookmark: _Toc357439331][bookmark: _Toc356824357][bookmark: _Toc356148158][bookmark: _Toc348629476][bookmark: _Toc351367706][bookmark: _Toc373832805]Specification of bitstream subsets
The specifications in clause F.10 apply.
G.11 [bookmark: _Ref348007252][bookmark: _Toc357439332][bookmark: _Toc356824358][bookmark: _Toc356148159][bookmark: _Toc348629477][bookmark: _Toc351367707][bookmark: _Toc373832806]Profiles, tiers, and levels
G.11.1 [bookmark: _Toc357439333][bookmark: _Toc356824359][bookmark: _Toc356148160][bookmark: _Toc348629478][bookmark: _Toc351367708][bookmark: _Toc373832807]Profiles
[bookmark: _Toc357439334][bookmark: _Toc356824360][bookmark: _Toc356148161][bookmark: _Toc348629479][bookmark: _Toc351367709][bookmark: _Toc373832808]General
TBD.
[bookmark: _Toc373832809][bookmark: _Toc356824362][bookmark: _Toc356148163]Scalable Main profile
Bitstreams containing output layer sets conforming to the Scalable Main profile shall obey the following constraints, with layerSetIdx being the layer set for an output layer set conforming to the Scalable Main profile:
[bookmark: _Toc357439336]–	The base layer bitstream, which is derived by invoking the sub-bitstream extraction process as specified in subclause F.10 with tIdTarget equal 7 and with TargetDecLayerIdList containing only one nuh_layer_id value that is equal to 0 as inputs, shall obey the following constraints:
–	The base layer bitstream shall obey all constraints of the Main profile specified in subclause A.3.2.
–	SPSs of the base layer bitstream should have general_profile_idc equal to 1 or general_profile_compatibility_flag[1] equal to 1. [Ed. (JB): Should we add this “should” condition? I copied the language from SVC. Shall this ‘should’ be a ‘shall’]
–	The sub-bitstream that is derived by invoking the sub-bitstream extraction process as specified in subclause F.10 with tIdTarget equal 7 and with TargetDecLayerIdList containing the nuh_layer_id values of the layer set with the index layerSetIdx shall obey the following constraints:
–	All active SPSs and active layer SPSs for the sub-bitstream shall have chroma_format_idc equal to 1 only.
–	All active SPSs and active layer SPSs for the sub-bitstream shall have bit_depth_luma_minus8 equal to 0 only.
–	All active SPSs and active layer SPSs shall have bit_depth_chroma_minus8 equal to 0 only.
–	CtbLog2SizeY derived from any active SPS or active layer SPS for the sub-bitstream shall be in the range of 4 to 6, inclusive.
–	The picture resampling process of picture sample values as specified in subclause H.8.1.4.1 shall not be invoked more than once for decoding of each particular picture and the resampling process of picture motion field as specified in subclause H.8.1.4.2 shall not be invoked more than once for decoding of each particular picture with nuh_layer_id included in the layer set layerSetIdx. When both picture sample values and picture motion field resampling processes are invoked for decoding of a particular picture, they shall be applied to the same reference layer picture.
–	ScalabilityId[j][smIdx] shall be equal to 0 for any smIdx value not equal to 2 and for any value of j for which layer_id_included_flag[layerSetIdx][j] is equal to 1.
–	For a layer with layer id iNuhLId equal to any of nuh_layer_id included in the layer set layerSetIdx, the value of NumRefLayers[iNuhLId], which specifies the total number of direct and indirect dependent layers and is derived as in F.7.4.3.1, shall be less than or equal to 7.
–	All active SPSs shall have sps_extension_type_flag[i] equal to 0 only for i equal to 0, and in the range of 2 to 6, inclusive.
G.11.2 [bookmark: _Toc348629482][bookmark: _Toc351367712][bookmark: _Toc373832810]Tiers and levels
TBD
G.12 [bookmark: _Toc357439337][bookmark: _Toc356824363][bookmark: _Toc356148164][bookmark: _Toc348629483][bookmark: _Toc351367713][bookmark: _Toc373832811]Byte stream format
The specifications in subclause F.12 apply.
G.13 [bookmark: _Toc357439338][bookmark: _Toc356824364][bookmark: _Toc356148165][bookmark: _Toc348629484][bookmark: _Toc351367714][bookmark: _Toc373832812]Hypothetical reference decoder
The specifications in subclause F.13 and its subclauses apply.
G.14 [bookmark: _Toc357439339][bookmark: _Toc356824365][bookmark: _Toc356148166][bookmark: _Toc348629485][bookmark: _Toc351367715][bookmark: _Toc373832813]SEI messages
The specifications in Annex D and subclause F.14 and its subclauses apply.
G.15 [bookmark: _Toc356148169][bookmark: _Toc357439344][bookmark: _Toc356824370][bookmark: _Toc356148173][bookmark: _Toc348629486][bookmark: _Toc351367716][bookmark: _Toc373832814]Video usability information
The specifications in Annex F.15 apply.

	Draft Rec. ITU-T H.265 (201x E)	80
79	Draft Rec. ITU-T H.265 (201x E)
image1.emf
Byte stream format

encapsulation

(see Annex B)

Type II HRD

conformance point when

not using

byte stream format

Type I HRD

conformance point

Type II HRD

conformance point when

using

byte stream format

VCL NAL units

Filler data NAL units

Non -VCL NAL units other

than filler data NAL units

oleObject1.bin
Type II HRD
conformance point when using
byte stream format

VCL NAL units

Filler data NAL units

Non -VCL NAL units other than filler data NAL units

Byte stream format encapsulation
(see Annex B)

Type II HRD
conformance point when not using
byte stream format

Type I HRD conformance point

image2.emf
Coded picture buffer (CPB)

Decoding process

(instantaneous)

Decoded picture buffer (DPB)

Output cropping

Hypothetical stream scheduler

(HSS)

Reference

pictures

Type I or Type II bitstream

Decoding units

Decoded decoding units

Pictures

Output cropped pictures

oleObject2.bin
Coded picture buffer (CPB)

Decoding process (instantaneous)

image3.emf
Hypothetical

bitstream partition

scheduler (HBPS)1

Bitstream partition

buffer(BPB)0

Decoding process

(instantaneous)

Output cropping

Decoded picture

buffer (DPB)

Type I or type II

bitstreampartition 1

DUs

Pictures

Reference

pictures

Output cropped pictures

Bitstream partition

buffer (BPB) 1

...

Decoding process

(instantaneous)

DUs

Decoded

DUs

Reference

pictures

...

Hypothetical

bitstream partition

scheduler (HBPS)0

Type I or type II

bitstreampartition 0

...

...

Bitstream

demultiplexer

(optionally present)

Type I or type II

bitstreampartition 1

Type I or type II

bitstreampartition 0

oleObject3.bin
Hypothetical
bitstream partition scheduler (HBPS) 1

Bitstream partition buffer (BPB) 0

Decoding process (instantaneous)

Output cropping

Decoded picture buffer (DPB)

Type I or type II  bitstream partition 1

DUs

Pictures

Hypothetical
bitstream partition scheduler (HBPS) 0

image4.wmf
(

)

å

-

=

+

=

1

j

0

dimIdx

1

x]

us1[dimId

id_len_min

dimension_

et[j]

dimBitOffs

oleObject4.bin

