INTERNATIONAL ORGANISATION FOR STANDARDISATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND AUDIO
ISO/IEC JTC1/SC29/WG11 N13919
November 2013, Geneva, Switezerland
	Source
	JCT-3V

	Status
	Approved

	Title
	3D-AVC Test Model 8

	Author
	Dmytro Rusanovskyy, Fang-Chu Chen, Li Zhang, Teruhiko Suzuki

	[image: image114.png][image: image115.bmp][image: image116.png]Joint Collaborative Team on 3D Video Coding Extensions
of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11

6th Meeting: Geneva, CH, 25 Oct. – 1 Nov. 2013
	Document: JCT3V-F1003

	Title:
	3D-AVC Test Model 8

	Status:
	Output Document of JCT-3V

	Purpose:
	Test model description

	Author(s) or
Contact(s):
	Dmytro Rusanovskyy
Fang-Chu Chen
Li Zhang
Teruhiko Suzuki
	
Email:
	dmytro.rusanovskyy@ieee.org
fcchen@itri.org.tw
lizhang@qti.qualcomm.com
teruhikos@jp.sony.com

	Source:
	Editors

Abstract

This document serves as a source of general tutorial information on 3D-ATM Reference Test Model for MVC+D and 3D-AVC specifications and describes encoding operations.
	Contribution
	Status in TM doc

	JCT3V-F0172 AHG12: MVC+D reference software and conformance bitstreams update
	Done

	JCT3V-F0114 3D-CE3 related: A bug-fix for the disparity-based Skip and Direct modes in 3D-AVC
	N/A

	Bug-fix to support Up-Paired MVD (UpMVD) in MVC+D and 3D-AVC coding configurations

	N/A

Summary of adoptions for 3D-AVC (from JCT3V-F_Notes_dA) and their status in this document:

	Contribution
	Status in TM doc

	JCT3V-E0164 3D-CE2.a results on simplified disparity vector derivation in Skip/Direct mode

	Done

	JCT3V-E0035 CE7: Removal of texture-to-depth resolution ratio restrictions

	Done

	JCT3V-E0136 CE7: MB-level NBDV for 3D-AVC

	Done

	JCT3V-E0166 CE7-related / 3D-AVC: indication of depth sampling grid location and depth cropping rectangle and their impact on disparity derivation

	Done

	JCT3V-E0105 AHG8: Revision of Depth View Information SEI Message in 3D-AVC DT6

	Done

	JCT3V-E0137 AHG 4: Post Processing in interlace coding mode for MVC+D
	Done

Summary of adoptions for 3D-AVC (from JCT3V-E_Notes_d7) and their status in this document:

	Contribution
	Status in TM doc

	JCT3V-E0164 3D-CE2.a results on simplified disparity vector derivation in Skip/Direct mode

	TD

	JCT3V-E0035 CE7: Removal of texture-to-depth resolution ratio restrictions

	Done

	JCT3V-E0136 CE7: MB-level NBDV for 3D-AVC

	Done

	JCT3V-E0166 CE7-related / 3D-AVC: indication of depth sampling grid location and depth cropping rectangle and their impact on disparity derivation

	Done

	JCT3V-E0105 AHG8: Revision of Depth View Information SEI Message in 3D-AVC DT6

	Done

	JCT3V-E0137 AHG 4: Post Processing in interlace coding mode for MVC+D
	Done

Editing status

	General comments, bug-fix and editorial inputs
	Status in TM doc

	Section describing SEI messages is incomplete. Depth acquisition, representation, sampling SEI are missing.

	Done

Summary of adoptions for 3D-AVC (from JCT3V-D_Notes_d8) and their status in this document:

	Contribution
	Status in TM doc

	JCT3V-D0162 3D-CE1.a related: Harmonization of inter-view and view synthesis prediction in 3D-AVC [W. Su, D. Rusanovskyy, M. Hannuksela (Nokia)]

	Done

	JCT3V-D0107 3D-CE2.a: MB-level depth-to-DV conversion in ATM [J.-L. Lin, Y.-W. Chen, Y.-W. Huang, S. Lei (MediaTek), J.-Y. Lee, H-C. Wey, C. Kim (Samsung), G. Bang, W.-S. Cheong, N. Hur (ETRI), K.-Y. Kim, Y.- S. Heo, G.- H. Park (KHU)]

	Done

	JCT3V-D0115 Skip flag coding in 3D-AVC [J. Y. Lee, M. W. Park, B. Choi, H.-C. Wey, C. Kim, I. Kovliga, A. Fartukov, M. Mishurovskiy (Samsung)]
	Done

	JCT3V-D0161 3D-AVC: Coding of unpaired MVD data [L. Chen, D. Rusanovskyy, M. Hannuksela (Nokia)] - align HLS of MVC+D and 3D-AVC

	Done

Summary of adoptions for 3D-AVC (from JCT3V-C_Notes_d7) and their status in this document:

	Contribution
	Status in TM doc

	JCT3V-C0094: 3D-CE7.a Improved Nonlinear Depth Representation [I. Lim, H.-C. Wey, D.-S. Park (Samsung)]
	Done

	JCT3V-C0054: Simplifications for adaptive luminance compensation in 3D-AVC [J. Kang, Y. Chen, L. Zhang, M. Karczewicz(Qualcomm)]
	Done

	JCT3V-C0133: CE2.a: Results on simplification of the Inter-view candidate derivation [J.-L. Lin, Y.-W. Chen, Y.-W. Huang, S. Lei (MediaTek)]
	Done

	JCT3V-C0136: CE3.a related: Unconstrained inside-view motion prediction in 3D video coding [J.-L. Lin, Y.-W. Chen, Y.-W. Huang, S. Lei (MediaTek)]
	Done

	JCT3V-C0140: CE5.a related: Direct MVP derivation with reduced complexity [J.-L. Lin, Y.-W. Chen, Y.-W. Huang, S. Lei (MediaTek)]
	Done

Summary of adoptions for 3D-AVC (from JCT3V-B_Notes_d7) and their status in this document:

	Contribution
	Status in TM doc

	JCT3V-B0031: CE2.A results on inter-view coding with adaptive luminance compensation [M. Mishurovskiy, A. Fartukov, I. Kovliga, J. Lee (Samsung)]
	Done

	JCT3V-B0057: 3D-CE3.a related: On inside-view motion prediction for 3D-AVC (removal of dependency in IVMP) [L. Zhang, Y. Chen, L. He (Qualcomm)]
	Removed byJCT3V-C0136

	JCT3V-B0081: 3D-CE5.a: Unification of the depth to DV conversion [Jian-Liang Lin, Yi-Wen Chen, Yu-Wen Huang, Shawmin Lei (Mediatek)]
	Done

	JCT3V-B0149: CE5.a results on inter-view motion vector derivation using max disparity in skip and direct modes [J. Y. Lee, J. Lee, D.-S. Park (Samsung)] (partial search)
	Done

	JCT3V-B0079: 3D-CE5.a related: Draft text for the adopted simplified disparity vector derivation proposed in JCT3V-A0046 [Jian-Liang Lin, Yi-Wen Chen, Yu-Wen Huang, S. Lei (Mediatek)]
	Done

	JCT3V-B0150: 3DV-ATM: Simplified Calculations of Disparity [Lulu Chen (USTC), Dmytro Rusanovskyy, Miska M. Hannuksela (Nokia)]
	Done

	JCT3V-B0151: 3D-CE5.a related results on median-based skip and direct motion vector prediction [J. Y. Lee, J. Lee, D.-S. Park (Samsung)]
	Done

	JCT3V-B0153: 3D-CE5.a related results on temporal motion vector prediction in dependent view [J. Y. Lee, K.-J. Oh, J. Lee, D.-S. Park (Samsung)]
	Done

	JCT3V-B0033: AHG7 3D-AVC: Loss Detection of Depth Parameter Sets [M. M. Hannuksela (Nokia)] (SEI message)
	Included

	JCT3V-B0224: 3DV-ATM: Working draft text for B-VSP [D. Rusanovskyy, M.M. Hannuksela (Nokia)]
	Included

	JCT3V-B0094: 4x4 motion compensation for VSP (non CTC)
	Done

Summary of adoptions from earlier meetings that have not been included in this document:

	Contribution
	Status in TM doc

	JCT2-A0045/m25916: 3D-CE5.a results on motion vector competition-based Skip/Direct mode with explicit signaling (MediaTek)
	Done

	JCT2-A0046/m25917: 3D-CE5.a related: Simplification on the disparity vector derivation for AVC-based 3D video coding (MediaTek)
	Done

Summary of adoptions for MVC+D (from JCT3V-A_Notes_d5 and previous meetings)
	Contribution
	Status in TM doc

	MPEG2011/M24731: 3DV Technical Input: JMVC software integration of coding interlace texture with progressive depth based on WD on MVC extensions for inclusion of depth maps(Sony)
	Done

	JCT2-A0144

 HYPERLINK "http://phenix.it-sudparis.eu/jct2/doc_end_user/current_document.php?id=105" /

 HYPERLINK "http://phenix.int-evry.fr/mpeg/doc_end_user/current_document.php?id=39318&id_meeting=153" m26157 : 3DV technical input: JMVC software integration of coding interlace texture with interlace depth (ITRI)
	Done

Foreword

This document describes major operations of 3DV-ATM which serves as a reference test model for “MVC Extension for Inclusion of Depth Maps (MVC+D)” (JCT3V-C1001) and 3D-AVC (JCT3V-D1002) specifications. The document also provides an encoder-side description of 3D-AVC Test Model (3DV-ATM) software as well as a description of decoder-side post-processing tools.
3DV-ATM test model can be configured to follow two specifications:

1. “MVC+D” configuration corresponds to “MVC extension for inclusion of depth maps”.

This encoding configuration follows the specification of JCT-3V document JCT3V-C1001 and produces a complied bitstream. The method is invoking an independent second stream for the representation of a depth map as if it were monochrome video data, as well as high-level syntax signaling of the necessary information to express the interpretation of the depth data and its association with the video data. Interlace coding for texture or depth is supported for setero views. Macroblock-level changes to the AVC or MVC syntax, semantics and decoding processes are not considered.

2. “3D-AVC” configuration follows the specification of “AVC compatible video-plus-depth extension” as outlined in JCT-3V document JCT3V-D1002, also known as 3D-AVC.

The 3D-AVC specifies monoscopic H.264/AVC compatibility for a base texture view. For dependent (non-base) texture views and depth views, an advanced coding process defined that improves compression efficiency compare to the MVC+D specification.

The advanced coding tools do not support interlace coding.

It should be noted, that, except for the interlace coding, 3D-AVC specification is a superset of the MVC+D. That is, a decoder supporting 3D-AVC can also decode MVC+D bitstreams. This document describes coding operations of 3D-AVC, and a special note is given if the certain tool is applicable for MVC+D specification.

Table of Contents
1Abstract

81
Introduction

81.1
General Architecture of 3DV-ATM

91.2
Elementary coding units and coding order

101.3
Coding tools

121.4
Inter-component dependencies

121.4.1
Disparity vector derivation

121.4.1.1
Disparity vector derived from the same view

151.4.1.2
Neighbouring Block Disparity Vector (NBDV)

171.4.1.3
Depth-oriented Neighoburing Block Disparity Vector (DoNBDV)

171.4.2
Motion Information Inheritance

172
Baseline depth coding

172.1
Non-linear depth representation (NDR)

193
Common tools for enhanced depth and texture coding

193.1
Slice header prediction

204
Enhanced depth coding

204.1
Introduction

204.2
Depth Range Based Weighted Prediction (DRWP)

234.3
In-loop Joint inter-View Depth Filtering (JVDF)

254.4
Motion prediction from texture to depth

254.5
Depth Intra Prediction

254.5.1
Depth Intra Skip Prediction

274.5.2
Plane Segmentation based Intra Prediction (PSIP)

295
Enhanced texture coding

295.1
Introduction

305.2
In-loop view synthesis-based inter-view prediction (VSP)

315.2.1
Inter-view and VSP prediction in General MVP mode of 3D-AVC

325.2.2
VSP SKIP and Direct modes of 3D-AVC

325.3
Depth-based Motion Vector Prediction (DMVP)

325.3.1
Direction-Separated MVP (DS-MVP)

345.3.2
Disparity-based Skip and Direct modes

345.4
Adaptive Luminance Compensation (ALC)

385.5
Run-based Skip flag Arithmetic Coding (RSAC)

406
Interlace coding for texture and depth

427
Supplemental enhancement information

427.1
Gradual View Refresh (GVR)

437.2
Loss detection of depth parameter sets

447.3
Global View and Depth format for Depth View Info SEI message

447.3.1
Type-1 Global View and Depth format and system stucture

447.3.1.1
Generation of Global Depth View

457.3.1.2
Generation of Residual Texture View

477.3.1.3
View synthesis

487.3.2
Type-2 Global View and Depth format

497.3.2.1
Generation of Residual Depth

507.3.2.2
Generation of Residual View

517.3.2.3
View synthesis

527.4
SEI message on reference display information signaling

558
Encoding algorithms

558.1
Rate-distortion optimization through view synthesis distortion

578.2
Modified distortion metric for disparity estimation procedure for ALC

588.3
Search zone parameters for disparity estimation procedure for ALC

588.4
Rate-distortion optimization through ALC in the Skip mode

599
Post processing

599.1
Depth dilation filter

6010
Usage of 3D-ATM

62Annex A: List of Contributors

Introduction

1.1 General Architecture of 3DV-ATM

3DV-ATM codec is configurable for two coding modes, which are called “MVC+D” and “3D-AVC” in this document and follows MVC+D and 3D-AVC specifications respectively.

The “MVC+D” configuration provides H.264/MVC compatibility for texture views and implies that texture and depth map data is coded independently into a single coded bitstream. The difference of this configuration from H.264/MVC specification is limited to high level syntax and respective semantics as well as high-level decoder operation. Regarding interlace coding, different combinations of frame/field coding between texture and depth are defined.

The “3D-AVC” configuration provides H.264/AVC compatible solution for a texture view and implies joint coding of texture and depth map data into a single bitstream. In this configuration, the texture data of base views (H.264/AVC compatible) is utilized for coding of the associated depth map data, and depth map data of enhancement views is utilized for coding of associated texture views. In this document, coding operations of 3D-AVC configuration (3D-AVC) are described. When certain tools are applicable for MVC+D configuration, a special note is given.

High level flow charts of 3DV-ATM encoder and decoder are presented in Figure 1 and Figure 2 respectively. On the figures below, solid lines depict general data flow and dashed lines show control information signaling. Dashed line A specifies utilization of depth information for advanced texture coding, and dashed line B specifies utilization of texture information (its parameters) for advanced depth coding.

It should be noted, that coding tools associated with data flow “B” are currently not included in MVC+D nor in 3D-AVC specification text. However, these tools remain present in 3D-ATM for experiments.

In addition , 3DV-ATM includes pre-processing tool (Non-linear depth representation) and post-processing tools (Post-processing Dilatational Filtering) which are integral part of current 3DV system design but may be not a normative part of MVC+D and 3D-AVC specification text.

[image: image1.emf]3DV Encoder

Texture

Encoder

Depth

Encoder

A

3DV

bitstream

T

D

B

NDR

Figure 1. High-level flow chart of 3DV-ATM encoder

[image: image2.emf]3DV Decoder

Texture

Decoder

Depth

Dencoder

A

3DV

bitstream

T

D

B

PDFINDR

Figure 2. High-level flow chart of 3DV-ATM decoder
1.2 Elementary coding units and coding order

3DV-ATM specifies that all texture and depth map view components which describe 3D scene at a particular moment of time form an access unit. A coded view component is represented by one or more Network Abstraction Layer (NAL) units similarly to AVC/MVC. The data of a coded view component is not interleaved by any other coded view component, and the data for an access unit is not interleaved by any other access unit in the bitstream/decoding order. See Figure 3 for an example, where access unit t consisting of texture and depth view components (T0t, T1t, D0t, D1t) precede in bitstream and decoding order access unit t+1 consisting of texture and depth view components (T0t+1,T1t+1 ,D0t+1,D1t+1).

[image: image3.emf]View 0

View 1

Depth of view 0

Texture of view 0

T0tT0t+1T0t+2

T1tT1t+1T1t+2

D1tD1t+1D1t+2

D0tD0t+1D0t+2

Access unit

t

Access unit

t+1

Access unit coding order

Figure 3. Definition and coding order of access units
Each texture view component for the AVC/MVC-compatible views is coded before the respective depth view component. Each texture view component of enhanced texture views is coded after the respective depth view component. The texture and depth view components of the same access units are coded in view dependency order. Texture and depth view components can be ordered in any order with respect to each other as long as the ordering obeys the mentioned constraints. Examples of coding order for an access unit include but are not limited to the following:

· T0, T1, D0, D1, (two AVC/MVC compatible texture views)
· T0, D0, T1, D1…(two AVC/MVC compatible texture views)

· T0, D0, D1, T1… (one AVC compatible texture view, one enhanced texture view)

The respective order of texture and depth view components of the same view_id is indicated in the sequence parameter set. This indicated order controls the presence of certain syntax elements, such as flags for turning on/off texture-based coding tools for depth (e.g. IVMP).

1.3 Coding tools

The MVC+D and 3D-AVC configurations include the following baseline depth coding tools (for further information, see Section 2):

1. Non-linear depth representation

· Normative part of 3D-AVC spec

· None-normative part (SEI) of MVC+D

2. Reduced-resolution depth coding

The 3D-AVC configuration additionally includes the following coding tools which can be used for both enhanced depth views and enhanced texture views (for further information, see Section 3):

1. Slice header prediction

The 3D-AVC configuration additionally includes the following texture coding tools (for further information, see Section 5) applicable for dependent texture views:

1. In-loop Block-based View Synthesis Prediction (VSP)

2. Depth-based Motion Vector Prediction (DMVP)

3. Inter-view coding with Adaptive Luminance Compensation (ALC)

Note, that DMVP and VSP performs joint texture and depth coding, where samples of depth data are utilized for efficient coding of texture. This introduces an inter-component dependency, which is detailed in the Section 1.4.

MVC+D configuration additionally supports interlace coding for texture and depth component. (for further information, see Section 6)

Additionally, 3D-ATM includes the following non-normative tools and used by default with MVC+D and 3D-AVC configurations (for further information, see Sections 7, 8 and 9):

1. Gradual view refresh (GVR) for texture and depth coding

2. Rate-distortion optimization through View Synthesis Distortion (VSD)
3. Post-processing Dilation Filtering (PDF) for depth map
Additionally, 3D-ATM includes the following depth coding tools which are not included in the MVC+D nor in the 3D-AVC specification text and they are disabled by default. These tools are present in 3D-ATM software to provide experimental framework for development:

1. Depth-range-based weighted prediction (DRWP) for depth coding

2. In-loop Joint inter-View Depth Filtering (JVDF)

3. Motion prediction from texture to depth (a.k.a. Inside View Motion Prediction, IVMP)

4. Depth intra prediction: intra skip and plane segmentation based intra prediction

Note, that IVMP performs joint texture and depth coding, where parameters of coded texture (motion information) is utilized for efficient coding of depth data. This introduces an inter-component dependency, which is detailed in the Section 1.4.

1.4 Inter-component dependencies

Certain tools of 3D-AVC specification (VSP, DMVP) are performing joint coding of texture and depth and thus introduce inter-component dependencies, which are clarified in this section.

1.4.1 Disparity vector derivation
In current 3D-AVC design, flexible configurations of the decoding order are supported for depth and texture. For the base view, texture view component is always followed by the depth view component. For each non-base view, if the depth view component is followed by the texture view component, such a configuration is named depth-first coding order. Otherwise, it is named texture-first coding order. For depth-first and texture-first coding, different methods are applied to obtain disparity vectors (DV) which is used to identify a corresponding block in a reference view. The DV derivation methods applied to depth-first coding order is described in sub-section 1.4.1.1, and the DV derivation method applied to texture-first coding order is described in sub-section 1.4.1.2 and sub-section 1.4.1.3. The derived disparity vectors are utilized in DMVP and VSP.

1.4.1.1 Disparity vector derived from the same view

Under the depth-first coding order configuration, selected depth map samples from the corresponding depth view of currrent texture view are converted to disparity vectors and utilized by DMVP and VSP.

Disparity value D has a linear relationship with depth map value d as equation (1) shows:

[image: image4.wmf]÷

÷

ø

ö

ç

ç

è

æ

+

÷

÷

ø

ö

ç

ç

è

æ

-

-

×

×

=

far

far

near

Z

Z

Z

d

l

f

D

1

1

1

)

1

2

(

BitDepth

(1)
Depth to disparity conversion can be performed as in equation (1) and requires such camera parameters as Znear, Zfar, focal length f and translation between views l. This method preserves a floating point representation of information and thus provides a high accuracy. However, such high accuracy of representation may be considered as un-necessary complicated as it requires floating point representation.

Simplified Calculations of Disparity utilizes a linear model to establish correspondence between depth map value d and disparity D as it shown in (2):

D = (d * DisparityScale + DisparityOffset << BitDepth) + (1 << (log2Div – 1))) >> log2Div
 (2)
where d is a depth sample value derived by NDR lookup table as shown in Section 2.1.

DisparityScale is a scale factor, DisparityOffset is an offset value, BitDepth is equal to 8 and log2Div is a shift parameter that depends on the required accuracy of the disparity vectors. Parameters of conversion DisparityScale and DisparityOffset are transmitted within a bitstream with conventional variable length coding. For every pair of views (source view and target view) utilized in joint coding an independent set of parameters DisparityScale and DisparityOffset are transmitted.

To perform depth to disparity derivation (2), the association between block texture samples and depth samples of interest is established through 2 alternatives:

Maximal Out of Four Corners

Current disparity derivation method is utilized for VSP (specified in Section 5.2), DMVP (specified in Section 5.3) coding modes, and Disparity based Skip and Direct modes (specified in Section 5.3.2). For VSP, the disparity for currently coded texture block Cb vector is derived from block of depth map data d(Cb) associated with currently coded texture block Cb. For DVMP and Disparity based Skip and Direct modes, the disparity for currently coded texture block Cb vector is derived from block of depth map data d(Cb) associated with the macro block which currently coded texture block Cb belongs to. Depth map samples located at spatial coordinates of four corners (top-left, top-right, bottom-left, bottom-right) of the block of depth map data d(Cb) are compared against each other and maximal depth map value among them is converted to disparity value, as specified in equation (2).

3D-AVC allows flexible depth-to-texture resolution ratio, including but not limited to the reduced depth resolution equal to ½ of the luma texture resolution vertically and horizontally. The encoder can control the depth resolution relative to the luma texture resolution in the 3D-AVC sequence parameter set with horizontal and vertical multiplication factors as well as shift values.

Generally speaking, the disparity derivation using a maximum of the four corners is performed as follows:

A = d(Cb)dL,dT
B = d(Cb)dR,dT
A = d(Cb)dL,dB
B = d(Cb)dR,dB
d = max(A,B,C,D)

The top, bottom, left and right coordinates are derived from the horizontal and vertical multiplication factors (dHM and dVM) as well as shift values (dHS and dVS) as follows:

dL = x * dHM >> dHS
dT = y * dVM >> dVS
dR = (x + size_h) * dHM >> dHS
dB = (y + size_v) * dVM >> dVS

where size_h and size v are the block size of the luma texture block for which the disparity is derived.

3D-AVC also allows that

· the sampling grid location of a texture view component has a non-zero offset relative to the sampling grid location of the depth view component of the same view, and/or

· the sampling grids might have different heights or widths, and/or

· the cropping rectangle of the depth view component might differ from that of the texture view component of the same view.

This flexibility can be useful for example due to the following reasons:

1. The depth view might have been captured with a specific ranging sensor that can have a different focal length and field of view compared to those of the color image cameras.

2. If the depth views are generated using stereo matching from two input views, the depth view components contain only the part where the two views overlap (i.e. a disparity match is found in the stereo matching).

The encoder can indicate a cropping rectangle for depth views as well as horizontal and vertical sampling grid offsets between texture and depth view components of the same view in the 3D-AVC sequence parameter set. The sampling grid offset is taken into account when converting a texture block location to a depth block location and the depth coordinates are clipped to reside within the cropping rectangle of the depth view in the disparity derivation process.
Neighboring blocks based derivation

Another approach to derive disparity vector is utilized in Disparity based Skip and Direct modes (specified in Section 5.3.2). The disparity vector is derived from motion information of blocks neighboring to the current Cb block and from the associated block d(Cb) of depth data. The block naming convention utilized in this section is shown in Figure 4. The flowchart of derivation procedure is given in Figure 5.
Specifically,

· For the depth first coding order, the disparity vector is derived from the motion vectors of neighboring blocks A, B, and C (D). If only one of the neighboring blocks was coded with inter-view prediction, its motion vector is interpreted as disparity vector for current Cb. If multiple inter-view prediction vectors are available in blocks A, B, C (D), the disparity vector is derived as a median of available alternatives. If none of neighboring blocks A,B,C(D) was coded with inter-view prediction, derivation procedure specified above is utilized to derive disparity from depth map.

· For the texture first coding order, the disparity vector is set to the one derived from NBDV or DoNBDV process as described in sub-section 1.4.1.2 and sub-section 1.4.1.3, respectively.

[image: image5.emf]DBCA

disparity vectorCurrent block in

dependent view

Corresponding block in

base view

Central point

Figure 4. Naming convention utilized in neighboring blocks based disparity derivation

[image: image6.emf]Depth:Associatedwith CbMax disparity of CbBring MV In reference viewSkip/direct MV

Figure 5. Flow chart of inter-view MVP derivation for Skip/Direct mode
Figure 5. Disparity vector derivation procedure for Skip/Direct motion vector prediction

1.4.1.2 Neighbouring Block Disparity Vector (NBDV)

When texture-first coding order is applied, disparity vectors are derived from neighboring blocks instead of accessing the corresponding depth view. Neighbouring blocks located at pre-defined positions are checked in order, once a neighboring block contains a disparity motion vector (i.e., inter-view prediction is applied), the horizontal component of the disparity motion vector is identified to be a disparity vector with the vertical component set to 0, and the whole process terminates.

Spatial neighboring blocks

The spatial neighboring blocks that will be checked in AVC motion prediction process are checked in the order of A (left), B (above), C (above-right), and D (above-left) in the NBDV process. The spatial neighboring blocks are shown as in Figure 6.

[image: image7.png]
Figure 6. Spatial neighboring blocks for NBDV.

Temporal neighboring blocks

Blocks from up to two temporal reference pictures of the current picture are checked in order, RefPicList1[0] and RefPicList0[0] for B slices and RefPicList0[0] for P slices. Only one temporal block located at the bottom-right (BR) position of the co-located MB is checked for each selected reference picture, as shown in Figure 7.

[image: image8.jpg]
Figure 7. Temporal neighboring blocks used in NBDV.

Derived disparity vector

A single derived disparity vector, namely Dynamic derived Disparity Vector (DDV), is maintained for the whole slice and updated to be the output of NBDV after each non-Intra MB is decoded. During the NBDV process, if none of the temporal or spatial neighboring blocks has an available disparity motion vector, the DDV is set as the output of NBDV process.

Termination of the process

The above mentioned neighboring blocks and DDV are checked in order wherein emporal neighboring blocks are checked first and the spatial neighboring blocks are checked afterwards. Once a block contains an available disparity motion vector, the derivation process terminates.

1.4.1.3 Depth-oriented Neighoburing Block Disparity Vector (DoNBDV)

When accessing to base view depth is enabled (e.g., when VSP mode is enabled), disparity vector is further refined by the base view depth with the following steps:

1. A disparity vector is the derived by NBDV as described in 1.4.1.2.

2. The disparity vector is used to locate the corresponding depth block in the coded depth of the base view.

3. The maximum depth value of the four corner samples of the corresponding depth block is retrieved.

4. The maximum depth value is converted to the horizontal component of a disparity vector with equation (1) and the vertical component of the disparity vector is set to 0.

1.4.2 Motion Information Inheritance
Inside View Motion Prediction (see Section 4.4) requires motion information from coded texture to be available for coding of associated depth. In IVMP mode, the motion information resulting from texture data coding, including mb_type, sub_mb_type, reference indices and motion vectors of the co-located MB in texture view component is stored and reused by the depth view component of the same view.

2 Baseline depth coding
2.1 Non-linear depth representation (NDR)

The idea of NDR tool is to represent closer objects more accurately than the distant ones. This is attained by encoding of non-linearly mapped disparity, normalized in range 0..255, instead of generic depth map values. The depth map is nonlinearly mapped through forward lookup table at the preprocessing stage of encoder and inversely mapped back to original representation at the post-processing stage of decoder.

The decoded depth is transformed, with inverse lookup table, back to linear disparity in range 0..255. The exact shape of forward and inverse transforms is defined by means of line-segment-approximation in two-dimensional linear-disparity-to-nonlinear-disparity space. The first (0, 0) and the last (255, 255) nodes of the curve are predefined (Figure 8). Positions of additional nodes are defined in form of deviations (NonlinearDepthPoints[i]) from the straight-line curve. These deviations are uniformly distributed along the whole range of 0 to 255 diagonal, with spacing depending on the number of points (NonlinearDepthNum).

[image: image117.png][image: image118.bmp][image: image119.bmp][image: image120.bmp][image: image121.bmp][image: image9.emf]03264961281601922242560326496128160192224256

Figure 8. Piecewise linear segments for mapping of depth values in Non-linear Depth Representation tool. Arrows mark deviations from uniformly distributed points along straight mapping, which are signalled in the bitstream.

Encoder analyzes input depth map statistics and performs decision making on utilization of the NDR based on properties of original depth map histogram. Two parameters of depth map histogram, namely disparity_center and disparity_concentration are derived as following:

[image: image10.wmf]å

å

=

=

×

=

1,255

i

1,255

i

i)

histogram(

disparity_

i

i)

histogram(

disparity_

center

disparity_

(3)
where disparity_histogram(i) is a histogram of the current frame of depth map. And

[image: image11.wmf]histogram

base

inside

bins

 total

of

number

The

histogram

base

in

bins

effective

of

number

The

ion

concentrat

disparity_

=

(4)
where the effective bin is defined as the bin with more count than the threshold (heightⅹwidthⅹ0.002) and base histogram is defined as histogram ranging from the lowest effective bin and through the highest effective bin.

Following this, decision making on enabled NDR is performed as specified in (4):

if (disparity_center > 50 & disparity_concentration > 0.6)

Enables NDR;

nonlinear_depth_representation_enable_flag=1

else

Disable NDR;

nonlinear_depth_representation_enable_flag=0

end;

The rationale behind this decision making is that the dense disparity in histogram cannot be represented effectively in the non-linear representation. Because there is big quantization error during nonlinear mapping and nonlinear re-maping and this quantization error is more serious in the dense disparity. On the contrary, the sparse disparity can be represented effectively in non-uniform quantization and the quantization error is negligibly small. Therefore, not only the disparity center, but also the disparity concentration is considered in deciding NDR on/off decision.
In the 3D-AVC coding configuration, the flag nonlinear_depth_representation_enable_flag is signalled in the slice header of depth views (profile_idc=139) and defines decoding operations in coding loop. Parameters of piecewise linear model (nonlinear_depth_representation_num, nonlinear_depth_representation_model[i]) are signaled inside of the SPS of the depth component. Encoder/decoder performs conversion between NDR and original representation of depth for purposes of DMVP and VSP coding of dependent textures.
In the MVC+D configuration, NDR is applied at pre-processing and post-processing stage only and it is signaled through “Depth Representation SEI message”, specified in Section 7.

3 Common tools for enhanced depth and texture coding
3.1 Slice header prediction

This tool can be applied only for enhanced texture and depth view components.

There may be redundancy between the slice headers of depth view components and texture view components. This coding tool is used to avoid repetitive coding of the same syntax element values in the view components of the same access unit.

The slice header prediction mechanism enables copying values for the syntax elements in the following categories:

· Reference picture list related syntax elements

· Prediction weight table related syntax elements

· Decoded reference picture marking related syntax elements

· All other syntax elements of the slice header except first_mb_in_slice, slice_type, pic_parameter_set_id and slice_qp_delta

The syntax elements in each mentioned category can be selectively copied from an earlier slice header of the same access unit or included in the current slice header. The source of the syntax element values can be selected separately for each category from the following:

· The previous view component of the same type (texture or depth)

· The view component of an opposite type having the same view_id

· The first view component of the same type (texture or depth)

4 Enhanced depth coding
4.1 Introduction

Figure 9 shows processing flow for dependent depth views in 3DV-ATM. The processing modules which are marked in red indicate the changes in original H.264/AVC design.

For example, in the Motion Compensated Prediction (MCP) block is modified by introducing the DRWP (see Section 4.2). In the reference Frame Buffer, number of reference pictures is increased by introducing a virtual VSP frame (see Section 5.2) and decoded depth pictures are filtered with in-loop JVDF process (see Section 4.3).

[image: image12.emf]T

Frame

Buffer

z

-1

T

-1

QENC.

ME

VSP

+

+

ENC.

-

AVC coding scheme

X’

Q

-1

MCP

X

Y

E’

mv

Depth

Information

JVDF

Figure 9. Flow chart of depth map coding in 3DV-ATM
4.2 Depth Range Based Weighted Prediction (DRWP)

DRWP performs a non-linear compensation of the depth map inconsistency which is caused by use of different Znear/Zfar values in the conversion from the depth values z to the respective depth map samples v. This compensation process is described as follows.

For each depth map value v1 (was produced with Z1near/Z1far) we compute corresponding z depth value:

[image: image13.wmf]far

far

near

zl

zl

zl

v

1

)

1

1

(

255

1

z

1

+

-

=

(5)
Following this, we compute depth map value v2 representation for current depth value z and with new depth range (Z2near/Z2far):

[image: image14.wmf]ú

ú

ú

ú

û

ú

ê

ê

ê

ê

ë

ê

+

-

-

×

=

5

.

0

)

2

1

2

1

2

1

1

255

v

2

far

near

far

Z

Z

Z

z

(6)
To enable DRWP in 3DV-ATM, the compensation process was implemented as a form of weighted prediction as follows. Let us choose two sampling points of the remapping function whose difference is a power of two in the input sample values. The input sample values of these sampling points are denoted a and a + 2d, where d is a positive integer. The output sample values y1 and y2, respectively, for these sampling points should be as close as possible to integer values to avoid quantization error.

The output sample value y then becomes a linear function of the input sample value x:

[image: image16.png]

(7)
where round is a function returning the closest integer.

This function can be counted with integer arithmetic as follows:

[image: image18.png]

(8)
where >> denotes a right bit-shift operation.

When offset o is defined as

[image: image20.png]

(9)
and weight w is defined as

[image: image22.png]

(10)
this function becomes identical to explicit weighted prediction:

[image: image24.png]

(11)
If values y1 and y2 are indicated as fixed-point values Qf, where f represents the number of fractional bits, the quantization error in the depth map quantization rescaling may be reduced. The function then becomes

[image: image26.png]

(12)
The encoder and the decoder derive the values of a, d, y1, and y2 from the camera and view synthesis parameters included in the bitstream.

In 3DV-ATM, the use of DRWP is automatically enabled at the encoder and decoder sides when there is a difference in depth map range appearing in two consequent frames.

In 3DV-ATM, linear function of weighted prediction is expressed through a pair of values gradient (w) and offset (o), which computed as:

[image: image27.wmf]÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

è

æ

´

-

-

=

d

far

near

far

near

Z

Z

Z

Z

round

w

2

1

1

1

1

2

1

2

1

, [image: image28.wmf]÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

è

æ

-

-

=

far

near

far

far

Z

Z

Z

Z

round

o

1

1

1

1

1

1

2

1

(13)
The computed values of w and o are used as weights in AVC/MVC weighted prediction process. The encoder signals usage of the DRWP in the slice header.

In order to avoid potential rounding errors resulting from floating point arithmetic, the values of wX and oX (where X is 0 or 1, indicating reference picture list 0 or 1, respectively) are derived with the following fixed-point arithmetic version of the calculations above.

1. Initialize intermediate variables with default values

 scale_w=8;

2. Calculate variable W_factora:

temp1 = ZF2 - ZN2;

 temp2 = ZF2;

 x = (temp1 + (temp2 >> 1)) / temp2;

 sign = ((temp1 - x * temp2) < 0) ? -1 : 1;

 W_factora = (x<<scale_w);

 W_factora += (((temp1 - x * temp2) << scale_w) + sign * (temp2 >> 1)) / temp2;

3. Calculate variable W_factorb:

 temp1 = ZF1;

 temp2 = ZF1 – ZN1;

 x = (temp1 + (temp2 >> 1)) / temp2;

 sign = ((temp1 - x * temp2) < 0) ? -1 : 1;

 W_factorb = (x<<scale_w);

 W_factorb += (((temp1 - x * temp2) << scale_w) + sign * (temp2 >> 1)) / temp2;

4. Calculate variable W_factorc:

 temp1 = ZN1;

 temp2 = ZN2;

 x = (temp1 + (temp2 >> 1)) / temp2;

 sign = ((temp1 - x * temp2) < 0) ? -1 : 1;

 W_factorc = (x<<scale_w);

 W_factorc += (((temp1 - x * temp2) << scale_w) + sign * (temp2 >> 1)) / temp2;

5. Calculate variable wX:

 wX= (W_factora*W_factorb*W_factorc + (1<<(scale_w*3- logWD-1))) >> (scale_w*3- logWD);

 wX=Clip(-127,128,wX);

Variable oX is calculated through the following derivation process.

1. Initialize intermediate variable with default value:

 scale_o=8;

2. Calculate variable O_factora:

 O_factora=((ZN1<<(scale_o))+(ZF2>>1)) / ZF2;

3. Calculate variable O_factorb:

 temp1 = ZF1- ZF2;

 temp2 = ZF1- ZN1;

 sign= (temp1 < 0) ? -1 : 1;

 x = (temp1 + sign * (temp2 >> 1)) / temp2;

 sign = ((temp1 - x * temp2) < 0) ? -1 : 1;

 O_factorb = (x<<scale_o);

 O_factorb += (((temp1 - x * temp2) << scale_o) + sign * (temp2 >> 1)) / temp2;

4. Calculate variable o0:

 oX=(O_factora*O_factorb + (1<<(scale_o*2-8-1))) >> (scale_o*2-8);

 oX =Clip(-127,128, oX);

4.3 In-loop Joint inter-View Depth Filtering (JVDF)

Depth map images of available views are filtered jointly. The depth map of the currently processed view Vc is converted into the depth space (Z-space) as it shown in (5)

. Following this, depth map images of other available views (Va1, Va2) are converted to the depth space and projected to the currently processed view Vc. Projections create several estimates of the real depth value, which are averaged in order to produce a denoised estimate of the real depth value. Filtered depth value [image: image29.wmf]c

z

ˆ

 of current view Vc is produced through a weighted average with depth estimate values [image: image30.wmf]c

a

z

>

-

ˆ

 projected from an available views Va to a currently processed view Vc.
[image: image31.wmf]c

a

c

c

z

w

z

w

z

>

-

×

+

×

=

2

1

ˆ

(14)
where {w1, w2} are weighting factors or filter coefficients for the depth values of different views or view projections.

Filtering is applied if depth value estimates belong to a certain confidence interval, in other words, if the absolute difference between estimates is below a particular threshold (Th):

If |za→c – zc |<Th
, w1=w2=0.5

(15)

Otherwise, w1 = 1, w2 = 0

Figure 10 shows the coding of two depth map views with in-loop implementation of JVDF. The AVC coding algorithm is depicted within a dashed line box, marked in black color. The JVDF is depicted in the solid-line box marked in red color. The parameter Th is transmitted to the decoder within a sequence parameter set extension.

[image: image32.emf]JVDF

X1

T

T

-1

Q

Entropy

Encoder

ME

+

+

-

X2’

Q

-1

MCP

x1

mv

mv

Depth Map

View #1

X2

T

DPB

T

-1

Q

Entropy

Encoder

ME

+

+

-

X’

Q

-1

MCP

Y2

x2

mv

mv

Depth Map

View #2

View

projection

Weighted

average

Inverse view

projection

Control

Y1

Y1'

Y2'

DPB

Figure 10. In-loop JVDF of 2-view depth map coding.
4.4 Motion prediction from texture to depth

This tool can be applied only for depth view components for AVC/MVC compatible texture views.

Since the texture view component and its associated depth view component have similar object silhouette, they may have similar object movement, thus there is redundancy in their motion fields. Therefore, motion prediction from a texture view component to the associated depth view component is enabled as a new mode in the proposed codec. An Inside View Motion Prediction (IVMP) mode is enabled for an Inter coded MB only in depth view components. In IVMP mode, the motion information, including mb_type, sub_mb_type, reference indices and motion vectors of the co-located MB in texture view component is reused by the depth view component of the same view. A flag is signaled in each MB to indicate whether it uses the IVMP mode. As shown in Figure 11, the flag is true for the highlighted MB in the 4-th picture of the depth view and the motion vector of the co-located MB in the 4-th picture of the texture view (in red) is reused for the highlighted MB in the depth view component. Note that, in current implementation, IVMP mode applies only to non-anchor pictures.

[image: image33.emf]Texture View 0

Depth View 0

Figure 11. Motion prediction from texture to depth.
4.5 Depth Intra Prediction
Following two depth intra prediction tools are applied for depth view components.

4.5.1 Depth Intra Skip Prediction
Since the depth images have high spatial correlation, efficient high priority intra prediction can be useful for depth image coding. The depth intra skip prediction (DISP) is designed based on conventional intra 16x16 prediction. However, it uses the estimated prediction direction both at the encoder and decoder sides as well as does not encode any residual data. For the estimation of prediction direction, adjacent above and left lines are used. The number of changes (NOC) value of left line (NOC(L)) is calculated by

[image: image34.wmf]å

=

î

í

ì

+

=

+

¹

=

14

0

k

1])

eft_line[k

[k]

(left_line

,

0

1])

eft_line[k

[k]

(left_line

,

1

(k)

left_chage

(k),

left_chage

l

l

 (16)
NOC(A) is calculated in the same way. From the calculated NOC(L) and NOC(A), prediction direction is derived as follows.

Rule 1 and rule 2 in Figure 12 are defined as follows:

 SHAPE * MERGEFORMAT

 SHAPE * MERGEFORMAT

Figure 12. Flow diagram of estimation of prediction direction.
DISP is only applied for depth views and a flag to indicate the DISP mode is signaled in each macroblock. In addition, boundary strength (Bs) of deblocking filter is adjusted when current macroblock is coded as DISP mode.

4.5.2 Plane Segmentation based Intra Prediction (PSIP)

Since it is important to keep the quality of sharp edge in depth map, a new intra prediction scheme is designed to keep sharp edge boundary by assigning more bits for edge. The idea of PSIP is to segment each depth block into two regions, and apply different prediction for each segmented region.

For each N×N depth map block, as shown in Figure 13, it first segments its upper and left available pixels into two groups, and determine two representative values, P1, P2 by averaging each group of pixels. Then, each target pixels, Ci, are predicted by its closest representative value, i.e.,

 [image: image37.wmf]h

P

C

P

C

P

C

ˆ

h

i

j

i

j

i

"

-

£

-

=

when

 (17)
where [image: image38.wmf]i

C

ˆ

 is predicted pixel value.
[image: image39.png]
Figure 13. Example of k-region segmentation (k=2)
[image: image40.png]
Figure 14. Example of prediction map for Figure 13.
[image: image41.png]
Figure 15. Example of pattern table for 4×4 block.
During PSIP prediction, it is additionally required to encode the edge information, say, prediction map, which is NxN binary information as shown in Figure 14. In PSIP, each 1xN row (or 1 x N column) is coded according to the pre-determined pattern table as shown in Figure 15, where patterns with more than two bit-transitions are excluded. Finally, the difference between adjacent rows (or columns) is encoded, since difference value will be closed to 0. The difference is computed as

[image: image42.wmf]1

2

1

³

-

+

-

=

D

-

i

,

N

)

N

,

N

s

s

(

MOD

s

i

i

i

 (18)
where MOD indicates modulo operator, and si represents ith row (or column) pattern code (s0 means a pattern code for neighbourhood pixels).

5 Enhanced texture coding
5.1 Introduction

Figure 16 shows enhanced texture coding in 3DV-ATM. The processing modules which are marked in red indicate the novel coding tools of 3DV-ATM when compared to AVC/MVC.

Adaptive Luminance Compensation (ALC) provides additional compression gain by interview motion vector estimation followed by motion compensated prediction which includes a particular correction of luminance components of a reference block.

Run-based Skip flag Arithmetic Coding (RSAC) improves coding efficiency without any modifications of the CABAC engine by using run-length coding approach for compact representation of mb_skip_flag series in B-frames of the dependent views.

[image: image43.png]
Figure 16. Flow chart of enhanced texture coding in 3DV-ATM.
5.2 In-loop view synthesis-based inter-view prediction (VSP)

In-loop block-based View Synthesis Prediction (VSP) is supported in 3DV-ATM for enhanced texture coding. VSP utilizes backward warping (VSP), as illustrated below in Figure 17. In the example the following coding order is utilized: (T0, D0, D1, T1). Texture component T0 is a base view and T1 is dependent view coded with the VSP. Depth map components D0 and D1 are the depth maps associated with T0 and T1, respectively.

Following this, denote x and y are absolute spatial coordinates of the samples consisting of currently coded Cb within dependent texture view T1. Samples of synthesized reference block R(Cb) can be retrieved from a source image s(x,y) T0 with disparity vector D that is derived from depth data d(Cb) which is associated with Cb. Applying the vector D to spatial coordinates of Cb provides coordinates of source samples R(Cb) in view T0 :

[image: image45.png] QUOTE

 QUOTE [image: image46.png]
[image: image47.png]

(19)
In such implementation, residual signal r(Cb) predicted from the synthesised R(Cb) are derived with a tradition Motion Compensated Prediction (MCP) module where displacement (motion) vectors are replaced with disparity vectors.

[image: image49.png] QUOTE

 QUOTE [image: image50.png]
[image: image51.png]

(20)
Visualization of this process is shown in Figure 17
In the case of parallel camera arrangement which is assumed to be a common 3DV use case, different views of MVD data are rectified, thus vertical component of the displacement between different views is equal to zero and disparity D as a horizontal component of motion vector is sufficient to derive prediction signal R(Cb) as it is shown in (14), thus

[image: image53.png] QUOTE

 QUOTE [image: image54.png]
[image: image55.png]

(21)
Disparity vector value D is derived as described in Section 1.4.1. This derviation is performed at the encoder and decoder side through an identical process, thus no signalling is performed. The reference index RefIdx is transmitted to specify the image that serves as a source for B-VSP process.

[image: image56.emf]T1

Cb

T0

D1

d(Cb)

D

D

i

s

p

_

v

e

c

.

R(Cb)

VSP-Prediction

Figure 17. Visualization of view synthesis prediction based on backward warping.
When texture-first coding order is applied, the same procedure may be applied except that the disparity vector is directly obtained from the NBDV/Do-NBDV process instead of the one converted from the depth data d(Cb).

5.2.1 Inter-view and VSP prediction in General MVP mode of 3D-AVC
General motion vector prediction (MVP) mode of 3D-AVC is conceptually similar to General MVP mode in H.264/AVC. In this mode, for each Cb, encoder derives motion vector candidate which is utilized for predicting motion vector of the current Cb. The difference between current motion vector and predicted is coded and transmitted to the decoder side. This concept was originally designed for temporal prediction (TP) of H.264/AVC, and further extended to inter-view prediction (IVP) and VSP in H.264/MVC and VSP respectively. However, considering similarity in nature of IVP and VSP, these modes are coded jointly, as specified below.

For every coded block Cb, encoder performs motion estimation ME in inter-view reference picture. Produced motion vectors are predicted in General MVP mode and resulting residual of predicted samples and predicted motion vectors are utilized to estimate rate-distortion cost (CostIVP). Following this, encoder derives disparity vector for current Cb from associated depth map data d(Cb). Residual of sample prediction are utilized to estimates rate-distorition cost (CostVSP) for this coding mode. In this mode, disparity vectors are not coded, since decoder has available d(Cb). Prediction direction (IVP or VSP) which provides minimal rate-distortion cost is utilized for coding Cb and signaled to the decoder side as a 1-bit flag (b_vsp_flag) that follows reference index refIdx.

If the flag value is zero, residual motion vectors are calculated and coded in the bitstream and decoding/MC process for this partition is identical to the specified in H.264/AVC. If the flag is equal to 1, motion vectors are not signaled through the bitstream, instead they are derived from depth map samples associated with current motion partitioning as specified in Section 1.4.1. Figure 16 visualizes the concept.

[image: image57.emf]Q

-1

T

-1

+

MCP

Frame

Buffer

Read

b_vsp_flag

d(Cb)

Read MV

from

bitstream

Coded Cb

Derive

MV from

depth

b_vsp_flag = 1

No

Yes

Z

-1

Figure 18. Visualization of view synthesis prediction based on backward warping.

5.2.2 VSP SKIP and Direct modes of 3D-AVC

In addition to VSP specified in General MVP, 3D-AVC defines the VSP skip/direct modes. VSP skip/direct mode is signaled with two additional flags. First, a VSP skip flag is signaled to distinguish the VSP skip mode from the conventional skip one. The VSP skip flag can be placed ahead of or behind the conventional skip flag based on mode information of the neighboring blocks around the current block. Second, if an MB is signaled as the conventional or VSP direct mode, a direct type flag is further signaled whether a VSP frame is forced to be used as reference.

5.3 Depth-based Motion Vector Prediction (DMVP)

Depth-based motion vector prediction (DMVP) is a coding tool which utilizes the motion information of reference views or disparity vectors for further improving the accuracy of motion vector predictors.

The DMVP tool consists of two parts, direction-separated MVP for the Inter mode and disparity-based Skip and Direct modes, which are described next.

5.3.1 Direction-Separated MVP (DS-MVP)
Conventional median-based MVP of H.264/AVC is restricted to identical prediction directions of motion vector candidates. All available neighboring blocks are classified according to the direction of their prediction (temporal or inter-view).

Inter-view prediction

If the current block Cb, see Figure 16, uses an inter-view reference picture, all neighboring blocks which do not utilize inter-view prediction are marked as not-available for MVP. Motion vectors of the neighboring blocks marked as not-available are replaced with disparity vector derived from depth data associated with Cb or NBDV/DoNBDV instead of a zero motion vector and then considered in the median MVP of H.264/AVC. The disparity vector is derived as it specified in Section 1.4.1. The flowchart of this process is depicted in Figure 19.
Inter prediction

If Cb uses temporal prediction, neighboring blocks that used inter-view reference frames are marked as not-available for MVP. Motion vectors of the neighboring blocks marked as not-available are replaced with a motion vector of a corresponding block in a reference view. The corresponding block is derived by applying disparity vector D to the coordinates of the current texture block. The disparity vector is derived as it specified in Section 1.4.1. If corresponding block is not coded with inter-prediction (does not have motion information), a zero vector is considered. The flowchart of this process is depicted in Figure 20.
[image: image58.png]
Figure 19. Flow chart of inter-view prediction (for depth-first coding order).
[image: image59.png]
Figure 20. Flow chart of temporal prediction
5.3.2 Disparity-based Skip and Direct modes
In the Skip/Direct modes motion information is not coded, instead it is derived at both sides through an identical process. Motion information for coding of the current block Cb in Skip/Direct modes is derived from motion information of the corresponding block in the base view. The correspondence between Cb and corresponding block in the base view is established through a disparity vector which is applied at the central sample of block Cb. The MVP derivation for Skip/Direct modes is shown in, see Figure 4. A motion partition referenced by this vector in the base view provides motion information (reference index and motion vectors) for coding of the current Cb.

The disparity derivation procedure for this mode is specified in Section 1.4.1. and the flow chart of the motion information derivation is provided in Figure 5. If corresponding block in base view is not available, the direction-separated MVP derivation as described in Section 5.3.1 with reference index equal to zero is used.

5.4 Adaptive Luminance Compensation (ALC)

Adaptive luminance compensation (ALC) is a coding tool which suppresses local illumination changes between encoded macroblock and predicted blocks that belong to an interview reference frame. This technology covers several aspects: compensation model, luminance discrepancy estimation process, motion (disparity) vector derivation and signaling mechanism.

It’s well known that the majority of natural multi-view sequences and even some of synthesized multi-view sequences usually demonstrate inter-view mismatches in particular, local luminance discrepancy between object projections captured by adjacent cameras of 3D capturing system even if they are geometrically matched accurately. Suppressing of a luminance discrepancy allows increasing the quality of interview prediction of blocks. It decreases rate of residuals and results in PSNR increase of encoded frames.

Main stages of ALC technology are depicted in Figure 21. All inter macroblock modes in P-slices of depended views are checked with ALC enabled and disabled, then the best mode is chosen by RDO part of the encoder. The decoded image parts are used for ALC parameters calculation and for making correction. One-bit flag for each inter macroblock is signalled to indicate the usages of ALC, including macroblocks encoded in P-Skip mode, and that belongs to dependent views of texture component of multiview + depth video.

Because of ALC is applied for interview reference frames only, reference indexes are not presented in bitstream. Instead, motion vector prediction aligned for inter-view motion vector prediction is used for P_SKIP mode if ALC is turned on for the macroblock. In particular, If ALC tool is used, reference index refIdxL0 is derived as an interview picture that appears first in RefPicList0. The depth-based derivation process for median luma motion vector prediction in subclause J.8.3.1.8 of 3D-AVC specification is invoked for deriving motion vector prediction mvpL0 for P_Skip.

 [image: image60.jpg]
Figure 21. General scheme of mackroblock encoding in various macroblock modes with help of ALC technology.
The motion estimation process for ALC compensation is shown on Figure 22.

 SHAPE * MERGEFORMAT

Figure 22. Disparity vector search scheme for ALC-compensated block.
In order to perform motion estimation procedure that generates displacement (disparity) vector, “limited” search zone is defined based on an assumption that an input multiview video sequence is already rectified. In particular, search zone sizes are defined as follows:

· Search Zone Height is defined to be equal to 6 quarter pixel positions
· Search Zone Width is defined to be equal to 20 quarter pixel positions.
In order to provide higher precision of displacement vector determination so-called “Fast Full Search” might be used at the encoder side for ALC encoding modes.

To improve accuracy of disparity vector estimation, considering potential discrepancy of luminance between encoded and predicted blocks, it’s proposed to modify distortion metric from SAD to so-called MR_SAD4x4_DC. This change deals with encoder part only and is an informative component of ALC technology.

First, MR_SAD4x4 is defined as a sum of mean-removed SADs over all sub-blocks 4x4 comprising currently encoded block which sizes are (H, W):

[image: image62.wmf]å

å

=

=

=

=

=

=

=

=

+

+

+

+

+

+

+

+

+

-

-

=

´

4

/

,

4

/

0

,

0

3

;

3

0

;

0

4

,

4

4

,

4

]

4

,

4

,

[

4

]

4

,

4

,

[

4

4

4

_

W

m

H

k

m

k

j

i

j

i

x

y

DV

j

m

DV

i

k

j

m

i

k

DV

m

DV

k

R

M

R

m

k

X

M

X

SAD

MR

x

y

(22)

[image: image63.wmf]å

å

+

=

+

=

=

3

3

,

16

1

]

,

,

[

4

y

y

i

x

x

j

j

i

X

y

x

X

M

,

 (23)
Here: R – reference frame; X- encoded frame; H – height of an encoded block; W – width of an encoded block.

Then, taking into account possible DC differences, the following modification is being done, making distortion metric to be sensitive to both DC differences and mean-removed differences:

[image: image64.wmf]å

=

=

=

=

+

+

-

+

´

=

´

4

/

,

4

/

0

,

0

]

4

,

4

,

[

4

]

4

,

4

,

[

4

4

4

_

_

4

4

_

W

m

H

k

m

k

x

y

DV

m

DV

k

R

M

m

k

X

M

SAD

MR

DC

SAD

MR

.(24)
Experiments show that whereas complexity of the encoder is not increased due-to use of MR_SAD4x4_DC instead of SAD metric, compression gain may slightly go up.

ALC compensation is applicable for luma samples only. For each prediction mode to be tested in P-Slices of texture dependent views, a macroblock is divided into non-overlapped blocks referred further as predParti[x , y] with sizes (psx,psy), such that these non-overlapped blocks are ordered in a decoding order, and ALC is applied for each predParti[x, y] sequentially. To derive a weight factor, the template row and the template column (i.e., the above and the left templates) as shown in
Figure 23
, are selected. The template row length equals psx and the template column height equals psy . Table 1. below shows how block sizes are defined based on mb_type value:

Table 1: Parameters (psx and psy) definition of the width and height of the top and left regions for weights derivation.
	mb_type
	psx
	psy

	P_L0_16x16
	16
	16

	P_L0_L0_16x8
	16
	8

	P_L0_L0_8x16
	8
	16

	P_Skip
	16
	16

To perform ALC, for each predParti[x , y], weight factor W is calculated as follows:

1) Two intermediate variables Ref_Dec and Ref_Ref are calculated:

[image: image65.wmf][

]

[

]

[

]

[

]

[

]

[

]

[

]

[

]

[

]

[

]

[

]

[

]

å

å

å

å

=

=

=

=

î

í

ì

<

-

´

+

î

í

ì

<

-

´

+

=

î

í

ì

<

-

´

+

î

í

ì

<

-

´

+

=

psx

k

i

i

i

psy

m

i

i

i

psx

k

i

i

i

psy

m

i

i

i

otherwise

TH

k

k

k

otherwise

TH

m

m

m

otherwise

TH

k

k

k

otherwise

TH

m

m

m

..

1

..

1

i

..

1

..

1

i

,

0

UTRef

UTDec

,

1

UTRef

,

0

LTRef

LTDec

,

1

LTRef

1

Ref_Ref

,

,

0

UTRef

UTDec

,

1

UTDec

,

0

LTRef

LTDec

,

1

LTDec

1

Ref_Dec

 (25)
2) weight W is calculated as follows:

[image: image66.wmf](

)

î

í

ì

>>

+

´

<<

>>

==

>>

<<

=

otherwise

LogWDC

TH

CUT

TH

CUT

if

LogWDC

i

i

i

i

i

,

Ref_Ref

/

)

1

Ref_Ref

(

Ref_Dec

)

1

(

)

_

Ref_Dec

(

)

_

Ref_Ref

(

,

1

(

W

where “/” - is an integer division with rounding to zero, “>>” means arithmetic right shift, TH - is a predefined threshold that is set to be equal 30; CUT_TH – is another predefined threshold that is equal to 4.
Figure 23. Relative position of templates and block from the prediction area.
ALC is performed for all values of each predParti[x, y] of the macroblock (i=1..n). Predicted samples predPartALCi [x, y] are derived as follows:

predPartALCi [x, y] =Min(255, (predParti [x, y] * W + 2logWDC − 1) >> logWDC)

where logWDC is equal to 15.

Eventually, corrected blocks predPartALCi[x, y] are used for compensation of encoded (decoded) macroblock that spatially corresponds to predPartALCi[x, y].

For the practical reasons, ALC correction is not performed if [image: image67.wmf])

_

Ref_Dec

(

)

_

Ref_Ref

(

TH

CUT

TH

CUT

i

i

>>

==

>>

, meaning that pixels in a reference template area and decoded template area are quite similar. The same condition in the weight W calculation leads to W to be equal to [image: image68.wmf]LogWDC

<<

1

, that again means absence of ALC correction for the current block.
5.5 Run-based Skip flag Arithmetic Coding (RSAC)

3D video coding implemented by 3D-AVC adopts a few tools which increase quantity of skipped macroblocks. Experments showed that probability of skipped macroblock exceed 0.99 for B-slices of depended views. However, set of estimated probabilities for LPS used in CABAC is assigned as:

[image: image69.wmf](

)

5

.

0

,

5

.

0

01875

.

0

,

63

1

,

0

63

1

1

=

=

=

×

=

-

p

p

p

a

s

a

s

s

K

.

LPS of “mb_skip_flag” syntax element (it is used for indication skipped/non-skipped macroblock) is modeled by next estimated probabilities:

[image: image70.wmf])

01975

.

0

(

,

62

62

0

@

p

p

p

K

.

So maximum possible estimated probabilitity for MPS of “mb_skip_flag” is 0.98025. A difference between real occurrence probability of skipped macroblock and estimated probability that is used by CABAC wasn’t allow encode “mb_skip_flag” optimally.

To keep CABAC untouched and improve “mb_skip_flag” coding efficiency, in 3D-AVC is introduced a syntax element “mb_skip_run_type” for B-slices of depended views. The “mb_skip_run_type” is used for replacing runs of “mb_skip_flag” which equal 1 on condition that the context of “mb_skip_flag” is equal 2. An general scheme of “mb_skip_flag” encoding with help of “mb_skip_run_type” is shown in Figure 23.

[image: image71.emf]Start encoding of slice

Finish

Calculate ContextIndex

Encode

mb_skip_run_type = 1

Is it last

macroblock in the

slice?

Yes

No

Is ContextIndex of current

mb_skip_flag equal 2

YesNo

Run_len_val=0

Get first macroblock

Run_len_val = Run_len_val==0 ?

15 : Run_len_val-1

Is current

mb_skip_flag

equal 1?

Is Run_len_val

equal 0?

Yes

Yes

Encode

mb_skip_run_type = 0

Encode previous

15-Run_len_val

mb_skip_flag that were 1

Run_len_val=0

No

No

Is Run_len_val

equal 0?

Encode

mb_skip_run_type = 1

No

Yes

Is Run_len_val

equal 0?

Encode

mb_skip_run_type = 1

Yes

No

Encode current

mb_skip_flag that is 0

Run_len_val=0

Encode current

mb_skip_flag

Get next macroblock

Figure 24. The block diagram of the encoding algorithm of skip mode indication.
One value (1) of the “mb_skip_run_type” indicates a regular run of “mb_skip_flag” that equal 1. A length of the regular run can be determined at a decoder side without explicit signaling in a bitstream. The maximum length is set as 16. Also the length can be less than 16 when context of “mb_skip_flag” that followed the run of “mb_skip_flag” isn’t equal 2. An encoder puts the “mb_skip_run_type” with this value into the bitstream instead of several continuous “mb_skip_flag” which implies skipped macroblocks with contexts equal 2. Another value (0) of the “mb_skip_run_type” indicates an interrupted run. It means the length of the run can’t be determined by the decoder because “mb_skip_flag” that equals 0 is existed with the context equal 2 in the run. In this case the encoder puts the “mb_skip_run_type” with zero value; after the encoder encodes all “mb_skip_flag” of the interrupted run as usual.

6 Interlace coding for texture and depth

In the MVC+D configuration, interlace stereoscopic coding for texture or depth is supported. However, the support for texture interlace coding and depth interlace coding may be determined independently through encoder configuration. The allowed combinations are as follows:

A. Progressive texture plus progressive depth at same frame rate
B. Interlaced texture plus progressive depth (Texture field rate = 2x Depth frame rate)
C. Interlaced texture plus interlaced depth at same field rate.

With respect to combination A, a depth frame view component, with a particular view_id and POC, shall be present in the same access unit as the coded texture frame view component with the same view_id and POC, as show in Figure 24.
[image: image72.png]
Figure 25. Access unit format for frame texture and frame depth.
With respect to combination B, a depth frame view component, with a particular view_id and POC, shall be present in the access unit of the first field view component of complementary field pair of the texture view with the same view_id and POC, as shown in Figure 25. Although in the figure it is shown that the first field is the top field, the bottom field could also be packed as the first field.
[image: image73.png][image: image74.png]
Figure 26. Access unit format for field texture and frame depth.
With respect to combination C, a depth field view component, with a particular view_id and POC, shall be present in the same access unit as the coded texture field view component with the same view_id and POC , as show in Figure 26.
[image: image75.png][image: image76.png]
Figure 27. Access unit format for field texture and field depth.
Please note that MBAFF is not supported for depth coding, as specified in the specification. In addition, for successfully running interlace coding on ATM without the risk of memory crash, reference list reordering is not allowed in the software. Moreover, the GOP for full HD sequences (1920x1088 @ 50 fields per second) is suggested to set to 4, while GOP for HD sequences (1024x768 @ 60 fields per second) may be set to 8.

It should also be noted that on Windows system it is suggested to set the compiler to 64 bits to avoid memory overflow, especially for full HD sequences.

7 Supplemental enhancement information
7.1 Gradual View Refresh (GVR)

When decoding is started from a GVR point, a subset of the views can be accurately decoded, while the remaining views can be approximately reconstructed using view synthesis. Perfect reconstruction of all views can be reached at a subsequent random access point.

While no inter prediction is applied in IDR and anchor access units, GVR access units are coded in a manner that inter prediction is selectively enabled and hence compression improvement compared to IDR and anchor access units may be reached. The encoder selects which views are refreshed in a GVR access units and codes these view components in the GVR access unit without inter prediction, while the remaining non-refreshed views may use both inter and inter-view prediction. The selection of refreshed views is done in a manner that each view becomes refreshed within a reasonable period, which may depend on the targeted application but is typically up to few seconds at most. To allow decoders to detect the possibility of starting decoding, GVR access units may be indicated in the NAL unit header or slice header similarly to anchor access units.

Figure 28 presents a configuration of using GVR access units at every other random access point. It is assumed in Figure 28 that the frame rate is 30 Hz and random access points are coded every half a second. GVR access units refresh the base view only, while the non-base views are refreshed once per second with anchor access units.

[image: image77.emf]IDR

IDR

B

B

I

P

B

B

I

P

B

B

I

P

015830233845

...

...

...

...

...

...

...

...

...

...

...

...

...

...

[image: image78.emf]IDR

IDR

B

B

P

I

B

B

P

I

B

B

P

I

015830233845

...

...

...

...

...

...

...

...

...

...

...

...

...

...

IDRBPBPBP.....................

a)

b)

Figure 28. Examples of GVR access units (picture order count 15 and 45) coded at every other random access point; a) Two-view coding, b) Three-view coding with PIP inter-view prediction hierarchy.
When decoding is started from a GVR access unit, the texture and depth view components which do not use inter prediction are decoded, and the remaining “non-refreshed” views are approximately reconstructed using view synthesis (a.k.a. depth-image-based rendering, DIBR). Decoding of the non-refreshed views can be started at subsequent IDR, anchor, or GVR access units. Figure 29 presents an example of the decoder side operation when decoding is started at a GVR access unit of the bitstream presented in Figure 28a.

[image: image79.emf]IDR

IDR

B

B

IBI

P

B

B

I

P

015830233845

...

...

...

...

.........

...

...

...

...

...

DIBR

Frames not

received

DIBR......

Figure 29. Decoder operation when starting decoding from GVR access unit at picture order count 15.
The GVR functionality can be realized by including a recovery point SEI message into a 3DVC scalable nesting SEI message, in which the views that are refereshed are indicated.

7.2 Loss detection of depth parameter sets

Depth parameter sets convey information for the closest and farthest depth as well as parameters related to view synthesis prediction. While parameter sets enable loss-resilient transmission of parameters, for example through retransmission possibility, it is not possible to detect a loss of a depth parameter set without external means (e.g. loss detection provided by the systems layer) or using the constrained depth parameter set identifier SEI message. If the depth_parameter_set_id value of a lost depth parameter set NAL unit has been used previously by another depth parameter set NAL unit, the decoder would continue decoding using the previously received depth parameter set NAL unit. After that any reference to the parameter set ID value used in the lost parameter set NAL unit points to the previous parameter set NAL unit using the same ID value. Therefore wrong syntax element values would be used in the decoding process, which would be likely to result into clearly visible artifacts.

When present, the constrained depth parameter set identifier SEI message is associated with an IDR access unit and its semantics are valid for a coded video sequence. In the constrained depth parameter identifier SEI message the encoder specifies the value range of depth_parameter_set_id values with the max_dps_id syntax element. In other words, the value of depth_parameter_set_id included in the depth parameter set RBSP shall be in the range of 1 to max_dps_id, inclusive. Value 0 of depth_parameter_set_id is inferred to refer to the depth parameters provided in the active sequence parameter set.

The encoder also specifies a range of depth_parameter_set_id values that are considered “used” and indicates that range to the decoder in max_dps_id_diff. The range is relative to the greatest depth_parameter_set_id (in modulo sliding-window arithmetic) among activated depth parameter set NAL units and hence specifies a kind of a sliding window of valid depth_parameter_set_id values. Depth parameter set NAL units that have an depth_parameter_set_id value outside the sliding-window range are considered “unused” and a new depth parameter set NAL unit with the same depth_parameter_set_id value may be transmitted. Depth parameter set NAL units having an depth_parameter_set_id value in the “used” range must repeat the content of the previous depth parameter set NAL unit of the same depth_parameter_set_id value. It is recommended that encoders increment the depth_parameter_set_id value of activated depth parameter sets by 1. As depth_parameter_set_id values may wrap over, modulo arithmetic is used in determining the depth_parameter_set_id values within the sliding-window range. The depth_parameter_set_id constraint is “reset” at IDR access units.

7.3 Global View and Depth format for Depth View Info SEI message
Global View and Depth (GVD) format has two types according to the absence/existence of residual depth views, namely Type-1(residual_depth_flag=0) and Type-2(residual_depth_flag=1).
7.3.1 Type-1 Global View and Depth format and system stucture
Type-1 GVD codec consists of Global depth generator, Residual view generator, Core codec, and View synthesizer. Global view is a logical set of the Base texture view and Residual texture view, which is generated by Residual view generator. Core codec is 3D-AVC. Global depth generator generates, encodes and decodes a Base depth view from the input depth views. Then, Residual view generator generates a Residual texture view from the input texture views based on the decoded Global depth view. After that, Core codec encodes and decodes Base texture view, Residual texture view and un-coded Base depth view together but independently. View synthesizer synthesizes multiple views from the decoded Base texture view, Base depth view and Residual texture view.

[image: image80.emf]Core codec

(３D-AVC)

Global depth generatorBase depth viewResidual textureviewView synthesizerDepth views(D1,D2,D3,D4,D5)Texture views(V1,V2,V3,V4,V5)Decoded base texture view (V3)SynthesizedviewsResidual view generatorDecoded base depth viewBase texture view(V3)Decodedresidual textureDecoded base depthBase view(V1,V2, V4, V5)Camera parameters

Figure 30. Overview of system structure and data format for Type-1 Global View and Depth format
7.3.1.1 Generation of Global Depth View

Base depth view is a median of input depth views after projecting them to the center of the input views (if the number of views is even, i=2.5. otherwise, i=3) as shown in Figure 30. The depth value di(xi, y) in the input depth view is projected to the base depth values dbi(xbi, y) at Base depth view position according to the equation (26). Where f is the camera focal length. Bi is the baseline length measured from Base depth view (i=2.5 or i=3) to the input depth view (i=1, 2, 3, 4, 5). The holes in each projected depth map are inpainted with the smaller depth value in left or right of the hole. And then projected global depth maps are filtered by a sample-wise median filter yielding a global depth view db(x, y). Since the input depth views may include some depth errors, generated Base depth view increases the reliability.

[image: image81.wmf])}

,

(

)

,

(

)

,

(

)

,

(

)

,

(

{

)

,

(

)

,

(

)

,

(

)

5

,

4

,

3

,

2

,

1

(

)

,

(

)

1

1

(

255

5

4

3

2

1

y

x

d

y

x

d

y

x

d

y

x

d

y

x

d

median

y

x

d

y

x

d

y

x

x

d

uptp

i

Z

fB

y

x

d

Z

Z

fB

x

b

b

b

b

b

b

i

i

i

i

bi

far

i

i

i

far

near

i

i

+

+

+

+

=

=

D

+

=

+

-

=

D

 (26)
[image: image82.emf](D3)(D1)1/21/2Project, Hole-inpaintAverage and Sub -sampleBase depth view (Db)(D2)(D4)(D2.5)

 [image: image83.emf]1/2(D3)(D2)(D4)1/2Project, Hole-inpaintMedian and Sub-sampleBase depth view (Db)(D1)(D5)

(a) for even view case (b) for odd view case

Figure 31. Global depth (Base depth view) generation from the input depth views
Generated Base depth view is decimated to half horizontally and vertically leaving every first samples and then it is outputted to the Core codec. It is also encoded and decoded by a codec in Global depth generator, which function is same as the Core codec. The decoded base depth view is used by the Residual view generator.

7.3.1.2 Generation of Residual Texture View

Residual texture view is derived as illustrated in Figure 32, which shows the residual view generation for R2 and R4 of 3-view case (i=2, 3, 4). First, decoded Base depth view is up-sampled to the original size with non-linear edge-dilation filter. If contiguous two depth sample value difference is smaller than a threshold (=5, encoder dependent), simple 2-tap (0.5, 0.5) filter generates in-between pixels. If not, larger pixel value is copied. After that, the depth map is smoothed by 5x5 median filter, which smoothens slanted depth edges. And then it is projected to the non-base view position and the in-between sample view positions. Dis-occluded area and uncovered area in the projected depth map is inpainted with the smaller depth value on the left or right of the hole.

[image: image84.emf]Lefthole mask(M1)project, MergeLeftview(V2)Left residual (R1)Cut outCut outDown-sample,Stack

Decoded global depth

In-betweenhole masksRightholemask(M4)project, MergeRightview(V4)Right residual (R3)

Globaldepth (Dg’)

Get hole maskproject, Inpaint1/21/2project, InpaintprojecteddepthDown-sample,Stack1/2(D2.25)(D2.75)(D3.25)(D3.75)(D4.0’)Up-sampledilate(D2.0’)

Residual

(M2.0)(M2.25)(M2.5)(M2.75)(M3.25)(M3.5)(M3.75)(M4.0)

Left viewRight view

projecteddepth(D3.5)1/21/2(D2.5)(D3)(R2)(R4)

Figure 32. Residual view generation for R2 and R4 of 3-view case
Then, occlusion holes are detected by checking the depth map as follows. If the base view is on the right hand side of the currently checking depth map as shown in Figure 33, an occlusion hole exists where a foreground object (large depth value) exists on the right of the currently checked pixel. The pixel is in the occlusion hole or not is determined by the following steps.

(1) Start from the maximum disparity distance δ= (fB (1/Znear-1/Zfar), where f=focal length and B is the baseline length between the current depth view and the base texture view, compare two depth values of dx (x, y) and dx+δ(x+δ, y). If (dx+δ- dx) >gap (=8, encoder dependent), pixel (x, y) possibly be in an occlusion hole.

(2) If not, reduce δ by 1/16 and repeat step (1). This repetition detects skinny foreground objects like poles.

(3) If (dx+δ- dx) > th, pixel (x, y) is registered to the occlusion hole mask. th is given in the following equation. This condition saves artifacts caused by blurred depth edges.

[image: image85.wmf])

0

(

,

)

1

1

(

255

.

,

)

(

far

near

far

near

x

x

Z

fB

Z

fB

Z

Z

fB

th

hole

occlusion

in

is

x

th

d

d

if

-

£

£

-

=

³

-

+

d

d

d

 (27)
(4) When the pixel is possibly in an occlusion hole, further check the depth value of dx+ε(x+ε, y). ε is a disparity value of (dx+δ- dx) and given in the following equation.

[image: image86.wmf])

)(

1

1

(

255

x

x

far

near

d

d

Z

Z

fB

-

-

=

+

d

e

(28)
(5) If (dx+ε- dx) >= k*th, the pixel (x, y) is registered to the hole mask. Where k is 0.5 which saves the decay of depth edge.

(6) Uncovered area on the left edge of the depth map is also registered to the hole mask. This area is detected by checking the corresponding address of (x-Δ)≥0 in the base view, where Δ is given in equation (26).

(7) If the base view is in the left side of the currently checked depth map, the above steps are repeated by changing the (x+δ) to (x–δ), (x+ε) to (x–ε), and (x –Δ) ≥0 to (x+Δ)<width of picture.

[image: image87.emf]xx

Depth under check d

x

(x, y)Right neighbor depth d

x+δ

(x+δ, y)Depth map D2Base view V3

x

Corresponding pixel (x -Δ, y)Occlusionhole

Figure 33, Occlusion hole detection
This occlusion hole detection is repeated at four sample view points (D2.0, D2.25, D2.5, D2.75) for left residual view R2 and at another four sample view points (D3.25, D3.5, D3.75, D4.0) for right residual view R4. For the other residual views, the same operation is applied to view1 (R1) or view5 (R5) by changing the view IDs accordingly. For residual view1 (R1) generation, (X2, X2.25, X2.5, X2.75) (X=D, M, V) are replaced with (X1, X1.25, X1.5, X1.75). Fore residual view5 (R5) generation, (X3.25, X3.5, X3.75, X4) are replaced with (X4.25, X4.5, X4.75, X5).

These occlusion hole check ensures that the residual view covers all holes including pseudo common holes caused by the wrong depth values. Generated hole masks are projected to the nearest left view (V1 or V2) or the nearest right view (V4 or V5) and merged there. After that, they are dilated by 8 to increase the margin of residual views against the coding error. With the merged hole masks (M1, M2, M4 or M5), left residual (R1 or R2) and right residual (R4 or R5) are cut out from the left views (V1 or V2) and right views (V4 or V5). These residuals are down-sampled to half vertically and horizontally after filtered with a three-tap (1/4, 1/2, 1/4) low pass filter and then packed into a frame of Residual texture view from top-left (R2), bottom-left (R4), top-right (R1) to bottom-right (R5) order. The no-pixel area is paved with the average color value of the input views. Three pixels at the edge of no-pixel area are linearly smoothed to increase the coding efficiency.

7.3.1.3 View synthesis

Figure 34 illustrates view synthesis from decoded base texture view (V3), residual texture view (R2) and base depth view in 3-view case. Where target view is between view 2 and view 3. First, decoded base depth view is up-sampled (D3’) and projected to the target view (Dt) as the same manner as in the residual view generation process. Next, decoded base texture view (V3’) is projected to the target view (Vt) by the target depth map (Dt). During the projection, occlusion holes are detected and registered to the base hole mask (Mb) as same manner as in the residual generation process. Then, decoded residual texture view is separated to left and right residual texture views. They are up-sampled to the original size (R2’, R4’) with a two-tap (1/2, 1/2) filter by filling the no-pixel samples. The up-sampled residual texture view (R2’) is projected to the target view (Rt). The projection of base texture view (V3’) and residual texture view (R2’) is done by up-sampling chroma components to the original luma component size for a simplicity. View projection with sub-pixel accuracy is done by the interpolation from two contiguous pixels according to the mantissa of disparity value calculated from the target depth value.

Then, the base hole mask is dilated by one pixel to cover the mismatch between the depth map and texture. The residual projection is done only inside of the base hole mask, which accelerates the view synthesis speed. During the residual projection, occlusion holes are detected and registered to the residual hole mask (Mr) as well. After that, common holes are inpainted according to the residual hole mask. Then, each pixel on the both sides of the base hole mask edge and residual hole mask edge are filtered by three-tap (1/4, 1/2, 1/4) filter to reduce the hole edge contour if their difference is smaller than 20 (decoder dependent). Finally the target view is out-put as a synthesized view (St). Other target views including non-base views (V2, V4) are synthesized in the same manner.

[image: image88.emf]Base depth (D3’) Left targetdepth (Dt)ProjectLeft targetresidual (Rt)Over-write on holebase holemask (Mb)Hole detectDilate

Left synthesizedview (St)Decoded base depth viewDecodedResidual texture

Project, hole-inpaintLeft residual(R2’)ProjectLeft target view (Vt)1/2Up-sampleSeparateUp-sample1/2

Decoded base view(V3’)

1/2Up-sampleHoledetectresidual holemask (Mr)Common-hole-inpaint1/21/2Right residual(R4’)

Figure 34, Target view synthesis between residual texture view (R2) and base texture view (V3)
7.3.2 Type-2 Global View and Depth format
Figures 35 shows Type-2 GVD data converted from input MVD data for two or three viewpoints, where the parameters W and H show the width and height of input full-size texture view, respectively. Type-2 GVD data includes Residual depth besides Type-1 data.
Figure 36 shows Type-2 GVD codec for 3-view case (V1, V2, V3). The system consists of Residual depth generator in addition to Type-1 system. The codec is 3DV-AVC. Base depth generator is completely same as that of Type-1. Residual depth generator generates, encodes and decodes a residual depth view from the input depth views D1 and D3 and the decoded base depth D2. The residual depth view is encoded and decoded once in the residual depth generator. Then, residual view generator generates a residual view from the input multi-views based on the decoded base depth view and residual depth view. View synthesizer synthesizes multiple views from the decoded base view, base depth view, residual view and residual depth view.
[image: image89.jpg]
Figure 35, Type-2 GVD data format
[image: image90.jpg]
Figure 36, Overview of system structure for Type-2 Global View and Depth format of 3-view case
7.3.2.1 Generation of Residual Depth

Residual depth is derived in the following steps as well as illustrated in Figures 37.

(1)
Decoded base depth is up-sampled to the original size with the Type-1 depth up-sample filter.

(2)
Shift the up-sampled base depth to Left or Right views in the same manner as in the Type-1.

(3)
Dis-occluded areas or uncovered areas are detected from the shifted depth map and are registered to a hole mask for left or right residual depth, which are dilated by 4 pixels to add a margin to the residual depth.

(4)
By using the left or right hole mask that was obtained in (3), left depth or right depth is cut out to the left or right residual depths, respectively. The no-pixel area is paved with the average depth value of base depth.

(5)
The left or right residual depth that was obtained in (4) is down sampled to 1/4 vertically and 1/4 horizontally after filtering with a three-tap low pass filter and stacked to a frame. Finally, the residual depths are packed into a frame of quarter of the full frame size in the same order as Type-1 residual view.

Here, it should be noted that hole masks for residual depth are not transmitted to the receiver side but are reconstructed at the receiver side.

[image: image91.jpg]
Figure 37, Residual depth generation for 3 view case

7.3.2.2 Generation of Residual View

Type-2 residual view generation is described in the following steps as well as illustrated in Figures 38, which is similar to Type-1 residual view generation.

(1)
Decoded base depth and decoded residual depth are up-sampled to the original size as same as the residual depth generation process.

(2)
The up-sampled base depth is shifted to Left or Right view and hole masks for Left or Right residual depth are generated as same as the residual depth generation process.

(3)
The up-sampled base depth is also shifted to intermediate target viewpoints. Hole pixels in each shifted depth map are detected and are registered to a temporal hole mask, which is smoothed by 3x3 median filter and is dilated by 2 pixels. It should be noted that each depth map in intermediate viewpoint is not smoothed in this step yet.

(4)
Only the residual pixels of Residual Left or Right depth is shifted to each target viewpoint by using their residual hole masks. Only the pixels of depth map in intermediate viewpoint, which are considered hole pixels in the smoothed hole mask in (3), are filled with the shifted residual pixels.

(5)
The depth map that was obtained in (4) are smoothed by 3x3 median filter. Remaining hole pixels of the depth map are filled by inpainting with the smaller depth value between existing left and right pixels around the hole.

(6)
For each intermediate viewpoint, the pixels that were not filled with base depth but filled with residual depth or inpainting are backwardly warped to the left or right view. For each intermediate viewpoint, corresponding pixels in the left or right view are detected and are registered to a temporal hole mask for residual view. The temporal hole mask is smoothed by 3x3 median filter.

(7)
The hole masks that were obtained in (2) and (6) are merged and are dilated by 4 pixels to add a margin to the residual depth.

(8)
By using the hole mask that was obtained in (7), left or right view is cut out to left or right residual view, respectively. The no-pixel area is paved with the average value of base view.

(9)
The left or right residual view that was obtained in (8) is down sampled to half vertically and half horizontally after filtered with a three-tap low pass filter and stacked to a frame. Finally, the residual views are packed into a frame of the original frame size in the same order as Type-1 residual view.

Here, it should be noted that hole masks for residual views are not transmitted to the receiver side but are reconstructed at the receiver side.
[image: image92.jpg]
Figure 38. Residual view generation for 3 view case
7.3.2.3 View synthesis
At the decoder side, view synthesizer synthesizes target views including left and right views from decoded base view, base depth, residual view and residual depth. Figure 39 illustrates a case where target view is on the left of base view. The detail of view synthesis is described in below.

(1)
Decoded base depth is up-sampled and shifted to the target view as same manner as in the residual view generating process. Then, hole masks for target views are generated

(2)
Decoded residual depth is separated to those for non-base viewpoints. The residual depth in each non-base viewpoint is up-sampled and shifted to target views by using hole masks generated in (1) as same manner as in the residual view generating process.

(3)
Remaining hole pixels of target depths are filled by inpainting.

(4)
Decoded base view is backwardly projected to target views by using the target depth and the hole mask that were generated in (1).

(5)
Decoded residual view is separated to those for non-base viewpoints, which are up-sampled to the original size with simple two-tap filter. The up-sampled residual is backwardly projected to the target view by the target depth map generated in (2) and the hole mask generated in (1).

(6)
Common hole mask is created from the base hole mask and the residual hole mask. Common holes are inpainted according to the common hole mask. Then, two pixels on the both sides of base hole mask edge are filtered by three-tap filter to reduce the hole edge contour. Finally the target view is out-put as a synthesized view. The right target view is synthesized in the same manner.

[image: image93.jpg]
Figure 39. View Synthesis
7.4 SEI message on reference display information signaling
The idea that the screen adaptation is based on is summarized in the following. Let us first consider the case when the screen width and the viewing distance are scaled proportionally. Suppose that it is required to scale a screen width (W) with a scaling factor b. The viewing distance then also changes with the same factor b. This assumption is supported by an observation that the best viewing distance is usually set as the screen height times the constant multiplication factor (e.g. 3 in case of HD resolution). This constant factor can, however, be different for different classes of resolution (e.g. HD and SD. In this case the perceived depth should be adjusted relative to the screen width (size) in order to avoid changing the ratio between the spatial and the depth dimension in the scene.

Let the original parameter be Wd1 (display/screen width), zd1 (perceived depth relative to the display surface), D1 (viewing distance), and the new parameters be Wd2 (new screen width), zd2 (new perceived depth), d2 (new viewing distance). One should also note that by the screen size we mean the ”active part” of the screen, i.e. part of the screen that is used for displaying the 3D video sequence.

Our goal is to change the perceived depth when the screen size and the viewing distance change proportionally. Figure 1 illustrates the relationship between the perceived depth, the screen parallax (the distance between the points in the left and the right view that correspond to the same point in a 3D space), viewing distance and the inter-ocular distance (distance between the human eyes). One can see that when the viewing distance changes, the perceived depth of the point changes by the same factor as the viewing distance in case the screen parallax does not change. However, when the screen size changes, the screen parallax remains unchanged if the disparity (in the number of pixels) changes reciprocally to the scaling factor of the screen width. For example, if the screen size (width) and the viewing distance are scaled by a factor of two, showing the same video stereo-pair on a larger screen size would result in all sizes of the horizontal sizes of objects in the scene being increased by a factor of two. Therefore, the physical screen parallax for the same object would also increase by a factor of two. If we want to keep the physical screen parallax the same, the parallax in terms of the number of pixels should be decreased by a factor of two.

 SHAPE * MERGEFORMAT

Figure 40. Relationship between the screen width, viewing distance and the perceived depth.

In general, the screen parallax (in units of pixels) should change with a factor inversely proportional to the screen width in order to keep the perceived depth constant.

It can be also shown the disparity d (in units of pixels) of a point in 3D space can be found according to the following formula:

[image: image95.wmf])

1

1

(

z

z

f

tc

d

conv

-

×

×

=

where tc is the baseline distance, i.e. the distance between the two cameras that form a stereo-pair, f is the focal length, zconv is the z coordinate of the convergence point (plane) and z is the depth coordinate of the point in 3D space. Under the assumption that the depth from the camera and the convergence plane are constant, it follows the disparity (or parallax in unit of pixels) is proportional to the baseline distance.

In the formula above, the convergence plane distance zconv should stay the same in order for the relation between the parallax and the baseline scaling to hold. For that, the displacement of the principal point coordinate (or a sensor shift) should be adjusted. In the parallel camera setup this is typically done when changing the baseline distance. Therefore, changing the baseline distance between the cameras assumes also adjusting the sensor shift in order for the convergence plane to stay at the same distance which would ensure the same distribution of depth in the virtual space in front and behind the screen.

The same observation can be derived from Figure 2. One can see that when changing the baseline distance from tc1 to tc2, the disparity d related to point O (with reference to camera C0) changes from d1 to d2 with the ratio d1/d2 equal to tc1/tc2. Therefore, the screen parallax at the same screen width should also change with the same ratio as the baseline: p1/p2 = tc1/tc2.

[image: image96]
Figure 41. Dependency between change of camera baseline distance and change of disparity. C0, C1, and C2 are camera centers. tc1 and tc2 are baseline distances for camera 1 and camera 2 respectively. d1 and d2 are parallax values for point O in camera 1 and camera 2 respectively (relative to camera 0).
Therefore, the baseline distance should be adjusted reciprocally to the change in screen width relative to the reference screen width (provided that the viewing distance changes proportionally).

This contribution therefore proposes indicating the reference baseline (tcref), and signaling reference screen width (Wdref) and the reference viewing distance to the decoder. This would enable the view synthesis algorithm at the receiver to adjust the baseline (tc) for the chosen screen width (Wd) according to the following formula:

[image: image97.wmf]Wd

Wd

tc

tc

ref

ref

×

=

Also, in order to provide the correct scene position relative to the screen size, an additional shift for the reference screen may be signaled in case this shift was not signaled as a difference of principal point coordinates of two views. The additional horizontal shift, if present, and the sensor shift should also be scaled with the same scaling factor as the baseline distance in order to provide the same scene position relative to the screen size.
A new configuration file “3dv_reference_display.cfg” is added to 3D-ATM, which contains the reference display parameters, such as precision for reference baseline, display width and viewing distance as well as the values for these parameters. The parameters can be specified separately for a number of displays. The reference display configuration file name should be specified in the encoder config file with the “SEI_ReferenceDispayFile” parameter. The decoder is able to decode the reference displays SEI message and save its content into the specified file which can be specified in decoder.cfg.
8 Encoding algorithms

As the 3DV-ATM software is built on top of the JM reference software of the H.264/AVC, the encoding algorithms utilized in 3DV-ATM are identical to those implemented in the JM. Encoding side algorithms which are solely serving 3DV coding are described below.

8.1 Rate-distortion optimization through view synthesis distortion
The coding distortion in depth map does not linearly affect the synthesis distortion, and the impact of depth map distortions varies according to the corresponding texture information. For example, the same depth distortions on textured and textureless regions lead to different synthesis distortions. For efficient rate-distortion optimization of depth-enhanced 3D video coding, a new distortion function measuring the synthesized view distortion by analyzing view warping / rendering process is required.

In a conventional video coding system, one commonly used distortion function is the sum of squared differences (SSD), which is defined between original and encoded depth block as

[image: image98.wmf]å

Î

-

=

B

y

x

y

x

y

x

D

D

SSD

)

,

(

2

,

,

|

~

|

(29)
where D and [image: image99.wmf]D

~

 indicate the original and reconstructed depth map, respectively, and (x, y) means the pixel position in a (macro-) block B. However, the conventional SSD metric does not reflect the synthesized view distortion. Instead, the following new view synthesis distortion (VSD) metric is used in 3DV-ATM:

[image: image100.wmf][

]

å

ú

û

ù

ê

ë

é

-

+

-

×

-

×

×

=

+

-

)

,

(

2

,

1

,

,

1

.

.

,

|

~

~

|

|

~

~

|

|

~

|

2

1

y

x

y

x

y

x

y

x

y

x

y

x

y

x

C

C

C

C

D

D

VSD

a

(30)
where [image: image101.wmf]C

~

indicates the reconstructed texture, and α is proportional coefficient determined by the following equation

[image: image102.wmf]÷

÷

ø

ö

ç

ç

è

æ

-

×

×

=

far

near

Z

Z

L

f

1

1

255

a

 (31)
where f is the focal length, L is the baseline between the current and the rendered view, Znear and Zfar are the values of the nearest and farthest depth of the scene, respectively.

If the reconstructed texture is not available e.g. depth map is coded prior to texture view as in the enhanced texture coding of 3DV-ATM, then the original texture image is used instead of the reconstructed one. Since the original texture usually contains more details, the VSD function is modified as

[image: image103.wmf][

]

å

ú

û

ù

ê

ë

é

-

+

-

×

-

×

×

×

=

+

-

)

,

(

2

,

1

,

,

1

.

.

,

|

|

|

|

|

~

|

2

1

y

x

y

x

y

x

y

x

y

x

y

x

y

x

C

C

C

C

D

D

VSD

r

a

 (32)
where ρ is the ratio between original and decoded texture in base view as

[image: image104.wmf]å

å

-

-

-

-

=

|

|

|

~

~

|

,

1

,

,

1

,

I

y

x

I

y

x

I

y

x

I

y

x

C

C

C

C

r

 (33)
where CI represents the texture image in base-view (I-view).

When depth map is half resolution of texure, it is required to adjust the resolution to apply the above-mentioned VSD function. For more accurate distortion measure, each depth block candidate is up-sampled, by which VSD function in [image: image105.wmf]å

=

i

i

i

VSD

w

N

VSD

1

 (34) and [image: image106.wmf][

]

[

]

R

)

(

VSD

)

(

SSD

)

R

VSD

(

)

(

)

R

SSD

(

J

)

(

J

J

V

D

V

D

V

D

×

×

-

+

×

+

×

-

+

×

=

+

×

-

+

+

×

=

×

-

+

×

=

l

b

l

b

b

b

l

b

l

b

b

b

1

1

1

1

 (35) can be used without any modification
If the information of the synthesized view position is available at the encoder, VSD can be more accurately calculated by considering the rendering distortion for each view position, and averaging them as

[image: image107.wmf]å

=

i

i

i

VSD

w

N

VSD

1

 (36)
where wi indicates the weight factor describing how much the current view contributes the target rendered view, e.g., closer target view takes larger weight factor. Then, the objective cost function with VSD will be

[image: image108.wmf]R

VSD

J

V

V

l

+

=

 (37)
where lambda (λV) is adjustable value, since VSD takes different distortion domain. Finally, objective cost function for R-D mode decision will be obtained by the following equation

[image: image109.wmf][

]

[

]

R

)

(

VSD

)

(

SSD

)

R

VSD

(

)

(

)

R

SSD

(

J

)

(

J

J

V

D

V

D

V

D

×

×

-

+

×

+

×

-

+

×

=

+

×

-

+

+

×

=

×

-

+

×

=

l

b

l

b

b

b

l

b

l

b

b

b

1

1

1

1

 (38)
where β is provided as encoder configuration. In this way, the depth RDO is enhanced by considering the synthesis distortions. As can be seen from the presented equations, the new RDO method takes into account that the depth distortions in high-texture areas are generally more harmful than those in low-texture areas.
8.2 Modified distortion metric for disparity estimation procedure for ALC

In order to emphasize potential discrepancy of luminance between encoded and predicted blocks that finally means more accurate estimation, we proposed to modify distortion metric from SAD to Mean-Removed SAD4x4 (MR_SAD4x4) and Mean-Removed SAD4x4_DC (MR_SAD4x4_DC).

In particular, MR_SAD4x4 is defined as a sum of mean-removed SADs over all sub-blocks 4x4 included into encoded block with size (H, W):

[image: image110.wmf]å

å

=

=

=

=

=

=

=

=

+

+

+

+

+

+

+

+

+

-

-

=

´

4

/

,

4

/

0

,

0

3

;

3

0

;

0

4

,

4

4

,

4

]

4

,

4

,

[

4

]

4

,

4

,

[

4

4

4

_

W

m

H

k

m

k

j

i

j

i

x

y

DV

j

m

DV

i

k

j

m

i

k

DV

m

DV

k

R

M

R

m

k

X

M

X

SAD

MR

x

y

 (39)
[image: image111.wmf]4

]

,

,

[

4

3

3

,

>>

÷

÷

ø

ö

ç

ç

è

æ

=

å

å

+

=

+

=

y

y

i

x

x

j

j

i

X

y

x

X

M

,

(40)
Here: R – reference frame; X- encoded frame; H – height of an encoded block; W – width of an encoded block.

Slightly enhanced distortion metric that uses the difference between middle levels of encoded and reference blocks is refereed as MR_SAD4x4_DC and defined as:

[image: image112.wmf]å

=

=

=

=

+

+

-

+

´

=

´

4

/

,

4

/

0

,

0

]

4

,

4

,

[

4

]

4

,

4

,

[

4

4

4

_

_

4

4

_

W

m

H

k

m

k

x

y

DV

m

DV

k

R

M

m

k

X

M

SAD

MR

DC

SAD

MR

. (41)
Experiments show that whereas complexity of the encoder is not increased significantly in case of use MR_SAD4x4 or MR_SAD4x4_DC instead of SAD metric, compression gain slightly goes up that confirms use of such metrics in encoders. Nevertheless even standard SAD metric can be used effectively in order to define more or less accurate displacement vector.
8.3 Search zone parameters for disparity estimation procedure for ALC

In order to perform motion estimation procedure that generates inter-view motion vector, search zone is defined based on the assumption that multiview video sequence is already rectified. In particular, relatively narrow search zone is implemented that has several quarter-pixels height and several integer pixels width. Recommended values are 20 quarter pixels for horizontal direction and 6 quarter pixels for vertical direction.

8.4 Rate-distortion optimization through ALC in the Skip mode
Similar to all standard encoding modes supported by 3D-ATM, macroblock is encoded in each of ALC encoding modes if only it belongs to texture from any of dependent views. Then RD cost is calculated similar to that of standard encoding modes followed by comparison with the best RD cost and the best encoding mode determined so far.

Following order of checking inter prediction encoding modes, as defined in Table 2 is recommended:

Table 2: checking order of inter-coded modes when ALC is enabled
	No.
	Mode

	1
	P_Skip with ALC

	2
	P_Skip

	3
	P_L0_16x16

	4
	P_L0_L0_16x8

	5
	P_L0_L0_8x16

	6
	P_8x8, P_8x8ref0

	7
	PVSP_SKIP

	8
	P_L0_16x16 with ALC

	9
	P_L0_L0_16x8 with ALC

	10
	P_L0_L0_8x16 with ALC

9 Post processing

9.1 Depth dilation filter

After decoding process of depth data, depth is upsampled when the size of depth is smaller than texture resolution and then grey scale dilation filter is applied to the upsampled result (Figure 30). If resolution of decoded depth is same with texture resolution, dilation filter is applied without upsampling. Grey scale dilation can be done by taking maximum value of neighbouring pixels. Most synthesis artifacts are occurred in edge region where foreground and background are met. By applying dilation filter, foreground region of depth is extended to background regions, and synthesis artifact occurs out of boundary edge. Thus objective and subjective quality of view synthesis result is improved.

[image: image113.wmf]Upsampling

Grey scale

dilation

Decoded depth

Output depth

Figure 42. Depth dilation filtering in post process.
In case of interlace video, special care is taken so as not to mix pixels from different fields for calculations which involve vertical neighboring pixels. More specifically speaking, depth dilation filtering should be performed on a field by field basis.
Since depth dilation filter is an optional post processing tool, it can be turned on and off by setting the configuration file in encoder or decoder. It is to be noted that, when generating the conformance bitstreams, depth dilation filter is turned off.

10 Usage of 3D-ATM

3D-ATM codec is designed to encode texture and depth map components of MVD data jointly and encapsulate coded data into a signle bitstream. However, conceptually 3D-ATM consists of two parallel encoders, each of which is configured independently with two separate configuration file:

3dv_enc_30Hz_texture.cfg
3dv_enc_30Hz_depth.cfg
In encoder parametrs, texture encoder configuration shall always preceed the depth map configuration file:

“lencod.exe” -d 3dv_enc_texture.cfg –depd 3dv_enc_depth.cfg
Following configuring the encodes, input MVD data is specified for texture and depth separety with 3DVConfigFile parameter:

-p 3DVConfigFile parameter=3dv_texture_sequence.cfg
-depp 3dv_depth_sequence.cfg
When configuring encoder, configuration files describing texture setting shall preceed depth data configurations, see example below:

“lencod.exe” -d 3dv_enc_texture.cfg –depd 3dv_enc_depth.cfg –p 3DVConfigFile=“3dv_texture_sequence.cfg” –depp 3DVConfigFile= “3dv_deph_sequence.cfg”

Joint coding of texture and depth data is enabled with encoder parameter 3DVCoding=1. If 3DVCoding = 0, 3D-ATM encodes “texture only” and ignors depth configuration files.

3D-ATM codec can be configured either in MVC+D or 3D-AVC configuration with run-time parameters of the encoder. The major parameter is “CompatibilityCategory” which specifies bitstreams production being either H.264/MVC or H.264/AVC compatible. Example of the parameter is given below:
CompatibilityCategory=1 # 0: MVC-compatible 1:AVC-compatible

Number of coded views for each component of MVD data (texture or depth) is specified independently:

NumberOfViews = 3

Configuration of coded views are specified with encoding parameters 3DVCodingOrder which is provided in the *texture* configuration of encoder:

3DVCodingOrder = "T0D0D1D2T1T2"

To enable MVD data with un-paired texture and depth components, e.g. non-equal number of texture and depth views, these parameters should be specified accordingly. Exaple of such configuration is given below:

In *texture*.cfg:

NumberOfViews = 3

3DVCodingOrder = "T0D1D2T1T2"

In *depth*.cfg:

NumberOfViews = 2
Specifically for MVC+D coding, HP configuration files are provided for frame and field coding as the following:

For frame coding:

configs\3dv_enc_30Hz_depth _HP.cfg

configs\3dv_enc_30Hz_texture _HP.cfg

For field coding:

configs\3dv_enc_30Hz_depth_interlace_HP.cfg

configs\3dv_enc_30Hz_texture_interlace_HP.cfg

Example of command line for encoding progressive texture with progressive depth map:

lencod-R.exe -d "..\3dv_enc_30Hz_texture_HP.cfg" -depd "..\3dv_enc_30Hz_depth_HP.cfg" -p OutputFile="test_texture.264" -p 3DVConfigFile="..\3dv_texture_kendo.cfg" -depp 3DVConfigFile="..\3dv_depth_kendo.cfg" -p FramesToBeEncoded="300" -p QPISlice="41" -p QPPSlice="41" -p QPBSlice="41" -depp QPISlice="41" -depp QPPSlice="41" -depp QPBSlice="41" > HPC3S05R1.log

Example of command line for encoding interlace texture with interlace depth map:

lencod-R.exe -d "..\3dv_enc_30Hz_texture_interlace_HP.cfg" -depd "..\3dv_enc_30Hz_depth_interlace_HP.cfg" -p OutputFile="test_texture.264" -p 3DVConfigFile="..\3dv_texture_kendo.cfg" -depp 3DVConfigFile="..\3dv_depth_kendo.cfg" -p NumberOfViews=2 -p 3DVCodingOrder="T0D0D1T1" -depp NumberOfViews=2 -p FramesToBeEncoded="300" -p QPISlice="41" -p QPPSlice="41" -p QPBSlice="41" -depp QPISlice="41" -depp QPPSlice="41" -depp QPBSlice="41" > HPC2S05R1.log

Example of command line for encoding stereoscopic interlace texture with progressive depth map:

lencod-R.exe -d "..\3dv_enc_30Hz_texture_interlace_HP.cfg" -depd "..\3dv_enc_30Hz_depth_HP.cfg" -p OutputFile="test_texture.264" -p 3DVConfigFile="..\3dv_texture_kendo.cfg" -depp 3DVConfigFile="..\3dv_depth_kendo.cfg" -p NumberOfViews=2 –p 3DVCodingOrder="T0D0D1T1" -depp NumberOfViews=2 -p FramesToBeEncoded="300" -p QPISlice="41" -p QPPSlice="41" -p QPBSlice="41" -depp QPISlice="41" -depp QPPSlice="41" -depp QPBSlice="41" > HPC2S05R1.log

Annex A: List of Contributors

The following people, given in alphabetical order, have contributed to this document:

Fang-Chu Chen (Industrial Technology Research Institute)

Ying Chen (Qualcomm)

Alexey Fartukov (Samsung R&D Russia Institute)

Deliang Fu (Zhejiang University)

Miska M. Hannuksela (Nokia)

Igor Kovliga (Samsung R&D Russia Institute)

Jaejoon Lee (Samsung)

Jin Young Lee (Samsung)

Seok Lee (Samsung)

Mikhail Mishurovskiy (Samsung R&D Russia Institute)

Byung Tae Oh (Samsung)

Dmytro Rusanovskyy (Nokia)

Olgierd Stankiewicz (Poznan University of Technology)
Takanori Senoh (National Institute of Information and Communications technology)

Wenyi Su (University of Science and Technology of China)
Masayuki Tanimoto (Nagoya Industry Science Research Institute)

Dong Tian (Mitsubishi)
Lu Yu (Zhejiang University)

Li Zhang (Qualcomm)

Yin Zhao (Zhejiang University)
<Rule 1>

if (left MB = ver I16x16 mode & �above MB = ver I16x16 mode)

: vertical direction

else if(left MB = hor I16x16 mode & above MB = hor I16x16 mode)

: horizontal direction

else if(left[0] < up[0])

: vertical direction

else if(left[0] > up[0])

: horizontal direction

else

: DC direction

<Rule 2>

if (left MB = ver I16x16 mode & above MB = ver I16x16 mode)

: vertical direction

else if(left MB = hor I16x16 mode & above MB = hor I16x16 mode)

: horizontal direction

else if (left MB ≠ hor I16x16 mode & above MB = ver I16x16 mode)

: vertical direction

else if (left MB = hor I16x16 mode & above MB ≠ ver I16x16 mode)

: horizontal direction

else if (NOC(L) < NOC(A))

: vertical direction

else if (NOC(L) > NOC(A))

: horizontal direction

else if(abs(above[0] – above[15]) > abs(left[0] – left[15])

: vertical direction

else if(abs(left[0] – left[15]) > abs(above[0] – above[15])

: horizontal direction

else

: DC direction

Encoded Frame

Interview Reference Frame

Displacement Vector

2 x Search Zone Width

2 x Search Zone Height

Predicted block

Encoded block

 Decoded Frame

Interview Reference Frame

Decoded block correspond predParti

predParti

LT�Deci

UTDeci

LT�Refi

UTRefi

Motion Vector

screen

distance

between observer’s eyes

p

D1

D2

Zd2

Zd1

C2

C1

C0

d2

d1

tc1

tc2

O

_1447254047.unknown

_1447254051.vsd
T1

Cb

T0

D

D1

d(Cb)

VSP-Prediction

Disp_vec.

R(Cb)

_1447254053.unknown

_1447254054.unknown

_1447254055.unknown

_1447254052.vsd
�

Q-1

T-1

+

MCP

Frame Buffer

Read b_vsp_flag

Read MV from bitstream

d(Cb)

Coded Cb

Derive MV from depth

b_vsp_flag = 1

No

Yes

Z-1

_1447254049.unknown

_1447254050.unknown

_1447254048.unknown

_1447254045.vsd
3DV bitstream

3DV Decoder

Texture
Decoder

Depth
Dencoder

A

T

D

B

PDF

INDR

_1447254046.unknown

_1403625338.unknown

_1447254044.vsd
T

D

NDR

Texture
Encoder

Depth
Encoder

A

3DV Encoder

3DV
bitstream

B

_1403625337.unknown

