© ISO/IEC 2013 – All rights reserved

 SET DDOrganization "© ISO/IEC 2013 – All rights reserved" © ISO/IEC 2013 – All rights reserved

 SET LibEnteteISO "ISO/IEC 14496-16:2011/PDAM 4" ISO/IEC 14496-16:2011/PDAM 4

 SET LIBTypeTitreISO " 63" 63

 SET DDTITLE4 "Part 16: Animation Framework eXtension (AFX), AMENDMENT 4: Pattern-based 3D mesh coding (PB3DMC)" Part 16: Animation Framework eXtension (AFX), AMENDMENT 4: Pattern-based 3D mesh coding (PB3DMC)

 SET DDTITLE3 "Information technology — Coding of audio-visual objects" Information technology — Coding of audio-visual objects

 SET DDTITLE2 "Élément introductif — Élément central — Partie 16: Titre de la partie" Élément introductif — Élément central — Partie 16: Titre de la partie

 SET DDTITLE1 "Information technology — Coding of audio-visual objects — Part 16: Animation Framework eXtension (AFX), AMENDMENT 4: Pattern-based 3D mesh coding (PB3DMC)" Information technology — Coding of audio-visual objects — Part 16: Animation Framework eXtension (AFX), AMENDMENT 4: Pattern-based 3D mesh coding (PB3DMC)

 SET DDDocLanguage "E" E

 SET DDWorkDocDate "2013-08-02" 2013-08-02

 SET DDDocStage "(30) Committee" (30) Committee

 SET DDOrganization3 "ISO/IEC" ISO/IEC

 SET DDOrganization1 "ISO/IEC J" ISO/IEC J

 SET DDBASEYEAR "2011" 2011

 SET DDAmno "4" 4

 SET DDDocSubType "Amendment" Amendment

 SET DDDocType "International Standard" International Standard

 SET DDpubYear "2013" 2013

 SET DDWorkDocNo "13795" 13795

 SET DDRefNoPart "ISO/IEC 14496" ISO/IEC 14496

 SET DDRefGen "ISO/IEC 14496‑16" ISO/IEC 14496‑16

 SET DDRefNum "ISO/IEC 14496-16/PDAM 4" ISO/IEC 14496-16/PDAM 4

 SET DDSCSecr ""

 SET DDSecr ""

 SET DDSCTitle "Coding of audio, picture, multimedia and hypermedia information" Coding of audio, picture, multimedia and hypermedia information

 SET DDTCTitle "Information technology" Information technology

 SET DDWGNum "11" 11

 SET DDSCNum "29" 29

 SET DDTCNum "1" 1

 SET LIBLANG " 2" 2

 SET libH2NAME "Heading 2,H2,H21,Œ©�o‚µ 2,뙥2,?c�o??E 2,h2,?c1,?c�o?ƒÊ 2,?2,Œ1,Œ2,Œ©2,...,Œ©_o‚µ 2,Œ©1,?c_o??E 2,2,Header 2,2nd level,DO NOT USE_h2,Œ©_o...,©1,Œ??©�o‚µ 2,¡¡¡¡¡¡ì¬¬«©2,¡¡¡¡¡¡ì?¬¬«1,¡¡¡¡¡¡¨¬¬¬«2,¡¡¡¡¡¡ì¬?¬«©2,¡¡¡¡¡¡¨¬¬¬«©_o‚µ 2,¡¡¡¡¡¡¨¬¬¬«©1,¡¡¡¡¡¡¨¬¬¬«©_" Heading 2,H2,H21,Œ©�o‚µ 2,뙥2,?c�o??E 2,h2,?c1,?c�o?ƒÊ 2,?2,Œ1,Œ2,Œ©2,...,Œ©_o‚µ 2,Œ©1,?c_o??E 2,2,Header 2,2nd level,DO NOT USE_h2,Œ©_o...,©1,Œ??©�o‚µ 2,¡¡¡¡¡¡ì¬¬

 SET libH1NAME "Heading 1" Heading 1

 SET LibDesc ""

 SET LibDescD ""

 SET LibDescE ""

 SET LibDescF ""

 SET NATSubVer "0" 0

 SET CENSubVer "2" 2

 SET ISOSubVer ""

 SET LIBVerMSDN "STD Version 2.1c2" STD Version 2.1c2

 SET LIBStageCode "30" 30

 SET LibRpl ""

 SET LibICS ""

 SET LIBFIL " 4" 4C:\Users\champelm\Documents\Standards\MPEG-3DGC\MPEG 105 - Vienna\ISO-IEC_14496-16_A4_(E).doc

 SET LIBDeFileName ""

 SET LIBNatFileName ""

 SET LIBFileOld ""

 SET LIBTypeTitreCEN ""

 SET LIBTypeTitreNAT ""

 SET LibEnteteCEN ""

 SET LibEnteteNAT ""

 SET LIBASynchroVF ""

 SET LIBASynchroVE ""

 SET LIBASynchroVD "" ISO/IEC JTC 1/SC 29 N 13795
Date: 2013-08-02
ISO/IEC 14496-16:2011/PDAM 4
ISO/IEC JTC 1/SC 29/WG 11
Secretariat: REF DDSecr * CHARFORMAT
Information technology — Coding of audio-visual objects — Part 16: Animation Framework eXtension (AFX), AMENDMENT 4: Pattern-based 3D mesh coding (PB3DMC)
Élément introductif — Élément central — Partie 16: Titre de la partie

Warning

This document is not an ISO International Standard. It is distributed for review and comment. It is subject to change without notice and may not be referred to as an International Standard.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Copyright notice

This ISO document is a working draft or committee draft and is copyright-protected by ISO. While the reproduction of working drafts or committee drafts in any form for use by participants in the ISO standards development process is permitted without prior permission from ISO, neither this document nor any extract from it may be reproduced, stored or transmitted in any form for any other purpose without prior written permission from ISO.

Requests for permission to reproduce this document for the purpose of selling it should be addressed as shown below or to ISO's member body in the country of the requester:

[Indicate the full address, telephone number, fax number, telex number, and electronic mail address, as appropriate, of the Copyright Manger of the ISO member body responsible for the secretariat of the TC or SC within the framework of which the working document has been prepared.]

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.
Contents
Page
ivForeword

Introduction
v
1
Scope
1
2
General compression approach
1
2.1
Identification of repetitive and symmetric structures in a 3D model
1
2.2
Two instance reconstruction modes
5
2.3
Reconstruction of instance transformation
6
2.4
Reconstruction of instance attributes
8
2.5
Reconstruction of texture image(s)
8
2.6
Reconstruction of unique part
9
2.7
Reconstruction of symmetric structures
10
2.8
Error Compensation
11
3
General structure of the compressed bitstream
13
4
Bitstream syntax and semantics
14
4.1
Conventions
14
4.2
PB3DMC_stream class
15
4.3
PB3DMC_stream_header class
15
4.4
3d_model_header class
17
4.5
PB3DMC_stream_data class
20
4.6
compr_uni_part_data class
21
4.7
compr_repeat_struc_data class
21
4.8
compr_sym_insta_data class
22
4.9
compr_insta_elementary_data class
23
4.10
compr_elem_insta_error_compen_data class
25
4.11
elem_insta_attribute_header class
25
4.12
has_available_attribute() function
27
4.13
compr_elem_insta_rotat_spherical class
27
4.14
compr_elem_insta_attribute_data class
28
4.15
compr_insta_grouped_data class
29
4.16
compr_insta_transl_data class
30
4.17
compr_insta_rotat_data class
31
4.18
compr_insta_attribute_data class
31
5
Decoding processing example
32
5.1
Decoding of texture
37
References
38

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

Amendment 4 to ISO/IEC 14496‑16:2011 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.

Introduction

In practical applications, many 3D models consist of a large number of connected components. And these multi-connected 3D models usually contain lots of repetitive structures in various transformations. In order to increase their efficiency, compression methods for 3D models should be able to extract the redundancy existing in the repetitive structures.
This document presents an efficient compression algorithm for multi-connected 3D models, by taking advantage of discovering repetitive structures in the input models. It allows discovering the structures repeating in various positions, orientations and scaling factors. Then the 3D model is organized into “pattern-instance” representation. A pattern is the representative geometry of the corresponding repetitive structure. The connected components belonging to a repetitive structure are called instances of the corresponding pattern and represented by the pattern ID and their transformation, i.e. the combination of reflection, translation, rotation and possible uniform scaling, with regards to the pattern. The instance transformation consists of four parts: reflection part, translation part, rotation part and possible scaling part.

The repetitive structure discovery based compression algorithm proposed here, PB3DMC, brings significant compression gain compared to the static 3D model compression algorithms provided by SC3DMC when 3D models present repetitive features. This document defines the compressed bitstream syntax and semantics for this repetitive structure discovery based compression approach.
Information technology — Coding of audio-visual objects — Part 16: Animation Framework eXtension (AFX), AMENDMENT 4: Pattern-based 3D mesh coding (PB3DMC)
1 Scope

In practical applications, many 3D models consist of a large number of connected components. And these multi-connected 3D models usually contain lots of repetitive structures in various transformations, as shown in Figure 1. In order to increase their efficiency, compression methods for this kind of 3D models should be able to extract the redundancy existing in the repetitive structures.

[image: image1.emf]
Figure 1 3D models with a large number of connected components and repetitive structures.
This document presents an efficient compression algorithm for multi-connected 3D models, by taking advantage of discovering repetitive structures in the input models. It allows discovering the structures repeating in various positions, orientations and scaling factors. Then the 3D model is organized into “pattern-instance” representation. A pattern is the representative geometry of the corresponding repetitive structure. The connected components belonging to a repetitive structure are called instances of the corresponding pattern and represented by the pattern ID and their transformation, i.e. the combination of reflection, translation, rotation and possible uniform scaling, with regards to the pattern. The instance transformation consists of four parts, reflection part, translation part, rotation part and possible scaling part.

The repetitive structure discovery based compression algorithm proposed here, PB3DMC, brings significant compression gain compared to the static 3D model compression algorithms provided by SC3DMC when 3D models present repetitive features. This document defines the compressed bitstream syntax and semantics for this repetitive structure discovery based compression approach.
2 General compression approach
2.1 Identification of repetitive and symmetric structures in a 3D model
This sections defines several terms that are used all across this document and presents the different steps that are used in order to identify repetitive structures.
There are two types of repetitive structures in 3D models:
· Unconnected repetitive structure: One unconnected repetitive structure consists of all the connected components which are invariant in various positions, orientations and scaling factors. One unconnected repetitive structure includes one pattern, which corresponds to one connected component in this structure, and all the other connected components are its instances.

· Connected repetitive structure: One connected repetitive structure consists of all the surface patches which are invariant in various positions, orientations and scaling factors. In other words, it is a repetitive structure that may be found within one connected component. Connected repetitive structure is sometimes also called symmetric structure. The current working draft uses both naming. Same as unconnected repetitive structure, one symmetric structure includes one pattern, which corresponds to one surface patch in this structure, and all the other surface patches are instances of the pattern.
PB3DMC discovery of the two types of repetitive structures is done in 4 steps as described below.

 Suppose the input 3D model is as shown in Figure 2.
[image: image2.png]
Figure 2 Input 3D model
STEP 1: Identification of unconnected repetitive structures and unique part.

The input 3D model is divided into two parts, the unconnected repetitive structures and the unique part which includes all those components that are not included in any unconnected repetitive structures. In Figure 2, clouds, leaves and houses on the right are all unconnected repetitive structures.
STEP 2: Choose patterns and instances within unconnected repetitive structures.
Following STEP1, for each unconnected repetitive structures, one pattern has to be chosen among all repetitions. Other repetitions become then instances of their related pattern. The input 3D model is then divided into three parts as follows

· The patterns of all unconnected repetitive structures (A), as shown in Figure 3.

· The instances of all unconnected repetitive structures (B), as shown in Figure 4.

· The unique part which is not included in any unconnected repetitive structures (C), as shown in Figure 5.
[image: image3.png]
Figure 3 A: The patterns of all unconnected repetitive structures

[image: image4.png]
Figure 4 B: The instances of all unconnected repetitive structures

[image: image5.png]
Figure 5 C: The unique part which is not included in any unconnected repetitive structures

As shown in Figure 6 below, part A (patterns of all unconnected repetitive structures) can be further divided into two types as follows.

· The patterns of unconnected repetitive structures which do not include any symmetric structures (D).
· The patterns of unconnected repetitive structures which include symmetric structures (E).

[image: image6.png]
Figure 6 A can be further divided into 2 types.
As shown in Figure 7, part C can be further divided into two types as follows.

· The unique part which is not included in any unconnected repetitive structures and which does not include unconnected repetitive structures and symmetric structures (F).
· The unique part which is not included in any unconnected repetitive structures and which includes symmetric structures (G).

[image: image7.png]
Figure 7 C can be further divided into 2 types.
STEP 3: Identification of symmetric structures.

Since instances will be coded with reference to their related patterns, symmetric structures are identified either within pattern or unique parts in the 3D model. Consequently, as shown in Figure 8, the input of STEP 3 is the input model except instances of all unconnected repetitive structures discovered in STEP 2.
[image: image8.png]
Figure 8 Input of STEP3 is the input model except
 instances of unconnected repetitive structure.
STEP 4: Choose patterns and instances within symmetric structures

Similarly to STEP2 on repetitive structures, STEP4 consists in choosing patterns and instances within symmetric structures. As shown in Figure 9, the following four types of data are defined:
· Patterns of all symmetric structures (H).
· Instances of all symmetric structures (I).
· The unique parts of those unique components which do not belong to any unconnected repetitive structures but have symmetric structures (J).

· The unique parts on those unconnected-repetitive-structure patterns including symmetric structures (K).
[image: image9.png]
[image: image10.png]
Figure 9 The result of STEP4.
2.2 Two instance reconstruction modes
While the bitstream needs to embed all the instance data, it also has to be efficient and address several applications where sometimes either bitstream size or decoding efficiency or error resilience matters the most.

Therefore, two options are proposed for how to reconstruct the data of one instance, i.e. its pattern ID (ID being the actual position of the patterns in the compressed bitstream of patterns, 1 for first pattern, 2 for second pattern, …), its reflection transformation part (F), its translation transformation part (T), its rotation transformation part (R) and its scaling transformation part (S), from the bitstream. Both of them have their own pros and cons.

Option (A) elementary instance data mode (ID, F, T, R, S, ID, F, T, R, S…): Using this mode, the pattern ID, reflection transformation part, translation transformation part, rotation transformation part and scaling transformation part of one instance are packed together in the bitstream.
Pros:

· It is error resilient. The decoder can recover from losing the transformation of some instances.

· On-line decoding. That means the instances can be decoded one by one during actual reading of the compressed bitstream. There is no need to wait for finishing reading the whole compressed bitstream.

· Higher codec speed.

· The codec needs no buffer.

Cons:

· Relative larger compressed 3D model size.

Option (B) grouped instance data mode (ID, ID, F, F, T, T, R, R, S, S): Using this mode, the pattern ID, reflection transformation part, translation transformation part, rotation transformation part and scaling transformation part of one instance are packed together in the bitstream.

Pros:

· Relative smaller compressed 3D model size.

Cons:

· The decoder is no longer error resilient.

· Off-line decoding. That means the decoder can only start decoding after reading the whole compressed bitstream.

· Lower codec speed.

· Buffer is necessary.

The bitstream definition includes both of the above two options. The encoder can choose the one which fits its application better.
Since instances may have larger reconstruction error than its related patterns (error being defined as the distance between the original component and the component restored from the pattern and instance transformation), some data fields of the bitstream are defined to denote the compressed instance reconstruction error to guarantee the decoded 3D model quality. Whether or not to record the decoding error of an instance is based on the quality requirement.
2.3 Reconstruction of instance transformation
The instance transformation is reconstructed from four parts, reflection part, rotation part, translation part, and possible scaling part.
· The reflection part is represented by a 1-bit flag.
· The rotation part is reconstructed from the three Euler angles (alpha, beta, gamma).
· The translation part is represented by a vector (x, y, z) (translation vector).
· The scaling part is represented by the uniform scaling factor S of the instance.

[image: image11.emf]First DivisionSecond DivisionThird Division

1111

00011111

00101101

01000001

10001010

--

0001-

00101000

1000-

--

-0010

 EMBED Visio.Drawing.11 [image: image12.emf]11

1111

01

01

01

01

10

10

10

10

1101

11

01

0110

10

10

0101

01

01

01

01

10

01

01

10

(a)

(b)

[image: image13.emf]First LaterSecond LayerThird Layer

1111

00011111

00101101

01000001

10001010

--

0001-

00101000

1000-

--

-0010

11110001111111010010000101000001101010000010100010000010

(c)
Figure 10 (a) A 2D example of space subdivision for quadtree construction. The number under each sub figure is the corresponding occupancy codes. (b) The red line illustrates the breadth first traversal of the binary tree. The occupancy codes of the tree nodes sorted according to the breadth first traversal construct the occupancy code sequence which describes the tree structure. (c) A 2D example of quadtree reconstruction process. For a predefined travsal order “top left-top right-bottom right-bottom left”, the input bitstream is decoded.
While using grouped instance transformation mode, all instance translation vectors are compressed by octree (OT) decomposition based compression algorithm which recursively subdivides the bounding box of all instance translation vectors in an octree data structure, as illustrated by the 2D example in Figure 10 (a). Each octree node subdivision is represented by the 8-bit long occupancy code, which uses a 1-bit flag to signify whether a child node is nonempty. An occupancy code sequence describing the octree is generated by breadth first traversing the octree, as illustrated by the 2D example in Figure 10 (b). To decode these instance translation vectors, the octree is reconstructed by breadth first traversing the octree from top to bottom, as shown in Figure 10 (c). First, the top layer is obtained by decoding the first long occupancy code. If there are any nodes at Layer i have more than one “1” in its occupancy code, e.g., “01100000”, the codec decodes necessary number of symbols to append as the children of such nodes. This process continues until all the leaf nodes have only one “1” or are the terminal code. The occupancy code sequence is decoded by dividing it into several intervals and decoded them with different probability models. Since instances may have extremely close translation vectors, which are called as duplicate translation vectors, some data fields of the bitstream are defined to denote these duplicate translation vectors.

Intentionally, the current proposal introduces limitations with regards to the number of duplicated leaf nodes and the number of duplications per duplicated leaf nodes (see 4.8). Should this limitation be reached for a particular instance, then that instance shall be coded as an unique component (see 1.5).
2.4 Reconstruction of instance attributes
In practical applications, besides geometry, 3D models usually have various attributes, such as normal, color and texture coordinates. Requiring instances have the same attributes of patterns will limit the number of repetitive structures can be discovered and decrease the compression ratio of PB3DMC. Thus only the geometry is checked during repetitive structure discovery and the instances may have attributes different from the corresponding pattern’s attributes. There are two reconstruction modes for instance attributes.
· Share attribute mode: The instance shares the pattern attribute data and doesn’t need data fields to represent its attributes.

· Specific attribute mode: The instance has its own attributes and need separate data fields to represent its attributes in the bitstream.
When the elementary instance data mode is used, one data field is defined to denote how to reconstruct the attributes of an instance from the bitstream. The attribute data of one instance (A) follows the other data of the instance, i.e. (ID, F, T, R, S, A, ID, F, T, R, S, A…). When the grouped instance data mode is used, all instances should either share the pattern attribute data or have their own attribute data. The instance data part of the bitstream is like (ID, ID, F, F, T, T, R, R, S, S, A, A).
2.5 Reconstruction of texture image(s)
It is expected that the repetitive structures in 3D models share texture image(s) / portion(s) as well as geometry, as shown in Figure 11. Given the geometric matching relationship between patterns and instances, the texture redundancy can be removed. Thus, the compression ratio can be further improved by removing the texture image redundancy with the help of geometric repetition information.
[image: image14.emf] [image: image15.png] [image: image16.png]
(a) (b) (c)
Figure 11 (a) The input 3D model with texture. (b) The original texture image containing many repeated parts. (c) The re-organized texture image after removing redundancy.
Let I and P denote the instance and the corresponding pattern respectively. Let Id and Pd denote the reconstructed I and P respectively. Two options for reconstructing the texture image(s)/portion(s) of Id are proposed.
a). Regular texture image reconstruction mode.
Id uses the reconstructed texture image (portion) indicated by the reconstructed texture coordinates of itself or Pd. There are 3 possible cases that could invoke this mode in the encoder side.
· I and P use the same texture coordinates.
· The texture image contents of I and P are extremely similar although they use different texture coordinates. In this case, the redundant portion of the texture image will be removed before compression and Id will reuse the texture coordinates of Pd.
· I and P use the different texture coordinates and their texture image contents are different. In this case, Id will have its own reconstructed texture coordinates.
b). Compensated texture image reconstruction mode.
The texture image(s)/portion(s) of Id is reconstructed from the texture image(s)/portion(s) indicated by the reconstructed texture coordinates of Id and Pd. This mode will be invoked at the encoder side if the texture content of I and P are similar but have non-ignorable difference. In this case, the corresponding texture image(s)/portion(s) indicated by the texture coordinates of I is updated to the difference from the texture content of P. The texture image(s)/portion(s) of Id is reconstructed by
[image: image18.png]
[image: image19.wmf]128

)

,

(

)

,

(

)

,

(

-

+

=

y

x

TEX

y

x

TEX

y

x

DeTEX

d

d

d

P

I

I

,
where
[image: image20.wmf])

,

(

y

x

DeTEX

d

I

is the reconstructed texture image of Id,
[image: image21.wmf])

,

(

y

x

TEX

d

I

 and
[image: image22.wmf])

,

(

y

x

TEX

d

P

are the texture image indicated by the reconstructed texture coordinates of Id and Pd.
Using the method described above, both the texture coordinates and texture images need to be modified. The details of bitstream definition related to texture coordinate decoding is described later in 4.11. The details of texture image decoding are out of the scope of this document.
2.6 Reconstruction of unique part
Unique part refers those components of the original model which are not repetitive. The components belonging to unique part are called as unique components. The unique components are reconstructed by translating the corresponding decoded components to the reconstructed positions of the original components.
Although the center of those components need to be compressed and outputted to the bitstream later, the rate-distortion performance will be optimized as the bounding box of those components could be much smaller (in most cases) and less quantization bits are required for the same coding error.
Especially, if there is no or not enough repetitive structures to guarantee the bitrates saving using the pattern-instance representation, all the components of the input 3D model will be regarded as unique part. Compared with using the raw representation, there still will be bitrates saving
2.7 Reconstruction of symmetric structures
As described before, there might be repetitive structures among various components and/or within one component. The former one is called as unconnected repetitive structures because any instance of this kind of repetitive structures doesn’t share boundaries with the other parts of the 3D model. The latter one is called as connected repetitive structures or symmetric structures because any instance of the symmetric structures shares boundaries with the other parts of the 3D model.
The boundary of an instance could be defined as consisting of vertices, triangles or other elements of the 3D model. Because of the unavoidable vertex position coding error introduced by most 3D model compression algorithms, using the same method to represent and compress symmetric structures might cause cracks on the boundaries of the decoded symmetric instances, as shown in Figure 12 (a) and (b). In order to avoid those cracks, stitching information should be recorded in the compressed bitstream for stitching the decoded symmetric instances and their adjacent parts in the 3D model. One example of the stitching information, as shown in Figure 12 (c), is the difference between the vertex positions recovered from different instances which correspond to the same vertex on the original 3D model.
[image: image23.png]
Figure 12 The crack on the common boundary of adjacent symmetric instances caused reconstruction during decoding and one example of the stitching information for removing the crack.
For one unconnected repetitive structure whose pattern consists of symmetric structures, there are two options to represent its instances. Let I and P denote the instance and the corresponding pattern respectively. Let PS denote the pattern of the symmetric structure belonging to P. For the sake of simplicity, suppose P has no unique part when represented by the instances of PS. Then I could be represented as:
· Option A: one instance of P, which is represented by instances of PS.
· Option B: instances of PS.
As instances of symmetric structures might decrease the quality of the decoded 3D model and need extra stitching information, option A is chosen to limit the number of symmetric instances.
Thus for the purpose of benefiting compression, discovering repetitive structures on the surface of a 3D model can be divided into two steps:
· First discover the unconnected repetitive structures,
· Then discover the symmetric structures on the surfaces of the patterns of the unconnected repetitive structures and the unique part.
As the result of the two-step repetitive structure discovery, the entire original 3D model is represented by
a) Patterns, which consist of the patterns of unconnected repetitive structures not including any symmetric structures (D), the patterns of symmetric structures (H), the unique parts on those unconnected-repetitive-structure patterns including symmetric structures (K), and the unique parts of those unique components which do not belong to any unconnected repetitive structures but have symmetric structures (J). All the objects here are indexed according to their actual position in the bitstream.
b) Instances of symmetric structure patterns (I) (only one pattern per symmetric structure), which are represented by the pattern IDs (actual position in the bitstream) and transformations from the symmetric patterns to instances.
c) Stitching information, which is used to stitch the decoded symmetric pattern instances and their adjacent parts on the decoded 3D model, which could be other decoded symmetric pattern instances or the two types of unique parts defined in a).
d) Instances of unconnected-repetitive-structure patterns (B).
e) Unique components (G), which do not belong to any unconnected repetitive structures and do not include any symmetric structures.
The decoder reconstructs the original 3D model as follows,
1)
Reconstruct the unique components, which do not belong to any unconnected repetitive structures and do not include any symmetric structures.
Reconstruct all patterns defined in a). All the patterns defined in a) are indexed according to their positions in the bitstream.

2)
Reconstruct all symmetric instances.
3)
Reconstruct all unconnected-repetitive-structure patterns and unique components which include symmetric structures, using the recovered patterns, symmetric instances and stitching information. Each unconnected-repetitive-structure pattern or unique component is indexed using the minimum index of its patterns defined in a).

4)
Reconstruct all unconnected-repetitive-structure instances.
2.8 Error Compensation
When reconstructing an instance by applying transformation matrix on the corresponding pattern, it may result in a larger reconstruction error than when directly decoding the corresponding component. Thus an error compensation mode may be used for compensating the reconstruction error of the vertices of those instances which suffer from large vertex reconstruction error. The reconstruction error of a vertex is defined as the distance between its original and reconstructed positions. As the amount of vertex reconstruction error to be encoded may vary drastically, different levels of quantization are used for different vertex reconstruction error according to its scale.
The information related with error compensation is recorded in three layers, i.e. the bitstream, instance and vertex layer, as shown in
Figure 13
.
At the bitstream header layer, an error compensation flag informs whether or not error compensation data is present in the bitstream. When this flag is set to 1 (true), a lookup table containing all, e.g. 3, numbers of quantization bits that can be used for error compensation follows.
At the instance layer, each instance has one flag to indicate whether or not error compensation data is present for at least one of its vertices. If no error compensation data is present in the whole bitstream (as indicated by the error compensation flag in the header layer), all these instance error compensation flags are omitted.
At the vertex layer, if the error compensation mode of its parent instance is activated, a Quantization Bits (QB) lookup table ID is present in order to indicate to the decoder the number of quantization bits used when encoding.
Informative note: The choice of a 3 values QB lookup table rather than directly recording the number of quantization bits for each vertex allows saving 3 bits per vertex (2 bits for QB lookup table entry Vs 5 bits for number of quantization bits). Since there are many vertex information entries in the bitstream, the introduction of such a look-up table helps saving significant bitrate.

All vertices of an instance in which at least one vertex has error compensation data contain QB lookup table ID. The QB lookup table allows using three different levels of quantization since the first ID (0) of the lookup table is reserved for vertices that do not have compensated reconstruction error.

 SHAPE * MERGEFORMAT

(a) bitstream

 SHAPE * MERGEFORMAT

(b) instance

 SHAPE * MERGEFORMAT

(c) vertex

Figure 13 The information related with error compensation is
the (a) bitstream, (b) instance and (c) vertex levels.
3 General structure of the compressed bitstream
The general structure of the compressed bitstream of PB3DMC is as shown in Figure 14.

[image: image27.emf]compr_repeat_struc_data

PB3DMC

stream

header

uni_part_bit

== 0 &&

repeat_stru

c_bit == 0?

N

compr_3d_model

_data

Y

compr_patt

ern_data

insta_trans_

elem_bit ==

1?

Y

compr_insta_el

ementary_data

N

compr_insta_g

rouped_data

compr_u

ni_part_

data

uni_part_

bit == 1?

Y

N

compr_rep

eat_struc_

data

repeat_st

ruc_bit

== 1?

Y

N

END

3D_mo

del_hea

der

sym_inst

ance_nu

m> 0?

Y

compr_sym

_insta_data

N

Figure 14 PB3DMC compressed bitstream. The block diagram in the bottom part is the detail explanation of the compr_repeat_struc_data block in the upper part.
The bitstream starts with the header buffer (PB3DMC_stream_header), which contains all the necessary information for decoding the compressed stream: information of whether or not there are unique part in the original model, information of whether or not there is at least one repetitive structure in the original model, information of whether or not the “grouped instance transformation mode” or “elementary instance transformation mode” is used in this bitstream, information of the original 3D model, information of the type of attributes instances may have, the 3D model compression method used for compressing geometry, connectivity and attributes of all 3D objects (patterns and other parts if necessary), etc.
If there is no unique part and repetitive structure in the original model (uni_part_bit == 0 && repeat_struc_bit == 0), the left part of the bitstream is the compressed input 3d model using the 3D model compression method indicated in PB3DMC_stream_header. Otherwise, the next part in the bitstream is the compressed result of all unique components if there are some. If there is at least one repetitive structure, the next data field is the compressed result of all patterns, which consist of the patterns of unconnected repetitive structures not including any symmetric structures, the patterns of symmetric structures, the unique parts on those unconnected-repetitive-structure patterns including symmetric structures, and the unique parts of those unique components which do not belong to any unconnected repetitive structures but have symmetric structures. If there is at least one symmetric structure, the next data field is the compressed transformation of all instances of symmetric structure patterns. Depending on which instance transformation packing mode is chosen in this bitstream, either compr_insta_grouped_data or compr_insta_elementary_data is the next part in the bitstream, which contains the compressed transformation of all instances of un-connected repetitive structures.
4 Bitstream syntax and semantics

4.1 Conventions
The mathematical operators used to describe this specification for repeated structure discovery based compression algorithm are similar to those used in the C programming language. However, integer divisions with truncation and rounding are specifically defined. Numbering and counting loops generally begin from zero.
In addition to the syntax functions, categories and descriptors already used in SC3DMC specification, the following two functions are used:
f(n): fixed-length coded bit string using n bits (written from left to right) for each symbol. n depends on the code length for each symbol

ec(v): entropy-coded (e.g., arithmetic coded) syntax element, including possibly configuration symbols.
4.2 PB3DMC_stream class

4.2.1 Syntax
	class PB3DMC_stream{
	Num. of Bits
	Descriptor

	
PB3DMC_stream_header
	
	

	
PB3DMC_stream_data
	
	

	}
	
	

4.2.2 Semantics
PB3DMC_stream_header: This data field contains the header buffer.

PB3DMC_stream_data: This data field contains the data buffer.
In the following definition, “symmetric instance” refers to the instance of symmetric structure patterns and “instance” refers to the instance of unconnected repetitive structures. Patterns consist of the patterns of unconnected repetitive structures not including any symmetric structures, the patterns of symmetric structures, the unique parts on those unconnected-repetitive-structure patterns including symmetric structures, and the unique parts of those unique components which do not belong to any unconnected repetitive structures but have symmetric structures.
4.3 PB3DMC_stream_header class

4.3.1 Syntax
	class PB3DMC_stream_header{
	Num. of Bits
	Descriptor

	
uni_part_bit
	1
	

	
repeat_struc_bit
	1
	

	
If(repeat_struc_bit == 1){
	
	

	

pattern_num
	8
	

	

If(pattern_num == 255){
	
	

	

pattern_num_2
	16
	

	

}
	
	

	

sym_instance_num
	16
	

	

instance_num
	16
	

	

If(instance_num == 65535){
	
	

	

instance_num_2
	32
	

	

}
	
	

	

insta_trans_elem_bit
	1
	

	

use_scaling_bit
	1
	

	
}
	
	

	
3d_model_compr_mode
	2
	

	
3d_model_header
	
	

	
if(repeat_struc_bit == 1){
	
	

	

QP_translation
	5
	

	

QP_rotation
	5
	

	

error_compen_enable_bit
	1
	

	

if (error_compen_enable_bit==’1’){
	
	

	

error_compen_QB_table[0..2]
	3*5
	

	

}
	
	

	
}
	
	

	
reserved_bits
	
	For byte alignment

	}
	
	

4.3.2 Semantics
uni_part_bit: This 1-bit unsigned integer indicates whether there is unique part, which does not belong to any unconnected repetitive structures and does not include any symmetric structures, in the 3d model. 0 means there is no unique part and 1 means there is unique part. Note that for those multi-connected 3D model without any repetitive structure, the entire input 3d model is regarded as unique part.
repeat_struc_bit: This 1-bit unsigned integer indicates whether or not there is at least one repetitive structure in the 3D model. 0 for no repetitive structure and 1 for repetitive structure.

uni_part_bit = 0 && repeat_struc_bit = 0 means the 3D model contains only one connected component and the original 3D model can be directly reconstructed from the left part of the bitstream.
pattern_num: This 8-bit unsigned integer indicates the number of all patterns if it is less than 255. The minimum value of pattern_num is 1.

pattern_num_2: This 16-bit unsigned integer indicates the number of all patterns if it is not less than 255. In this case, the total pattern number is (pattern_num_2 + 255)

sym_instance_num: This 16-bit unsigned integer indicates the number of all symmetric instances
instance_num: This 16-bit unsigned integer indicates the number of all instances if it is less than 65535. The minimum value of instance_num is 1.

instance_num_2: This 32-bit unsigned integer indicates the number of all instances if it is not less than 65535. In this case, the total instance number is (instance_num_2 + 65535)

insta_trans_elem_bit: This 1-bit unsigned integer indicates whether “grouped instance transformation mode” or “elementary instance transformation mode” is used in this bitstream. 0 for “grouped instance transformation mode” and 1 for “elementary instance transformation mode”.

use_scaling_bit: This 1-bit unsigned integer indicates whether instance transformation includes scaling factors. 1 for scaling factors being included in instance transformation and 0 for not. When the scaling factors of most instances equal 1.0, the instance transformation doesn’t include scaling factor. That means all instances must have the same size with the corresponding patterns.

3d_model_compr_mode: This 2-bit unsigned integer indicates the 3d model decoding method used to reconstruct patterns, unique part and the original 3D model itself if it includes no repetitive structures.

	3d_model_compr_mode
	Meaning

	0
	SC3DMC

	1
	3DMC Extension

	2 & 3
	ISO reserved

3d_model_header: This data field contains the 3D model header buffer.
QP_translation: This 5-bit unsigned integer indicates the quality parameter of instance translation. The minimum value of QP_Translation is 3 and maximum is 31. This is the global quality parameter for instance translation. It can be over written by the quality parameter for the translation of each individual instance. See section 4.8.
QP_rotation: This 5-bit unsigned integer indicates the quality parameter of instance rotation. The minimum value of QP_Rotation is 3 and maximum is 31. This is the global quality parameter for instance rotation. It can be over written by the quality parameter for the rotation of each individual instance. See section 4.8.
error_compen_enable_bit: This 1-bit unsigned integer indicates whether or not there are data fields of compressed coding error compensation data for some instances in the bitstream. 0 means there is no data field of compressed coding error compensation data of instances in the bitstream and 1 means there is at least one data field of compressed coding error compensation data for at least one instance in the bitstream.

error_compen_QB_table: This data field contains 3 pre-defined numbers of quantization bits for compensated reconstruction error, each of which is represented by one 5-bit unsigned integer.
4.4 3d_model_header class

4.4.1 Syntax
	class 3d_model_header{
	Num. of Bits
	Descriptor

	
ver_num
	32
	

	
tri_num
	32
	

	
default_coord_bbox
	1
	

	
If(default_coord_bbox==’0’){
	
	

	

coord_bbox
	6*32
	

	
}
	
	

	
QP_coord
	5
	

	
normal_binding
	
	

	
if(normal_binding != ‘not_found’){
	
	

	

default_normal_bbox
	1
	

	

QP_normal
	5
	

	
}
	
	

	
color_binding
	
	

	
if(color_binding != ‘not_found’){
	
	

	

default_color_bbox
	1
	

	

if(defalut_color_bbox==’0’){
	
	

	

color_bbox
	6*32
	

	

}
	
	

	

QP_color
	5
	

	
}
	
	

	
multi_texCoord_num
	5
	

	
if (multi_texCoord_num != 0){
	
	

	

for (i=0; i < multi_texCoord_num; i++){
	
	

	

texCoord_binding
	
	

	

default_texCoord_bbox
	1
	

	

if(default_texCoord_bbox==’0’){
	
	

	

texCoord_bbox
	4*32
	

	

}
	
	

	

QP_texCoord
	5
	

	

}
	
	

	
}
	
	

	
multi_attribute_num
	5
	

	
if (multi_attribut_num != 0){
	
	

	

for (i=0; i < multi_attribute_num; i++){
	
	

	

attribute_dim_num
	
	

	

attribute_binding
	
	

	

default_attribute_bbox
	1
	

	

if(default_attribute_bbox==’0’){
	
	

	

attribute_bbox
	2*attribute_dim_num*32
	

	

}
	
	

	

QP_attribute
	5
	

	

}
	
	

	
}
	
	

	}
	
	

4.4.2 Semantics
Lots of the following data fields are taken from the bitstream definition of 3DMC Extension [w11455]
ver_num: This 32-bit unsigned integer contains the number of vertices of the entire 3D model. This value can be used to verify the decoded 3D model.
tri_num: This 32-bit unsigned integer contains the number of triangles of the entire 3D model. This value can be used to verify the decoded 3D model.
default_coord_bbox: This 1-bit unsigned integer indicates whether a default bounding box is used for the entire 3D model’s geometry. 0 means using another bounding box and 1 means using the default bounding box. The default bounding box is defined as xmin=0.0, ymin=0.0, zmin=0.0, xmax=1.0, ymax=1.0, and zmax=1.0.

coord_bbox: This data field contains the bounding box of the entire 3D model’s geometry. The geometry bounding box is defined by (xmin, ymin, zmin, xmax, ymax, zmax).
QP_coord: This 5-bit unsigned integer indicates the quality parameter of the 3D model geometry. The minimum value of QP_coord is 3 and maximum is 31. If there is at least one repetitive structure, QP_coord is used as the number of quantization bits for the geometry of patterns.
normal_binding: This 2-bit unsigned integer indicates the binding of normals to the 3D model. The admissible values are described in the following table.
	normal_binding
	Binding

	0
	not_bound

	1
	bound_per_vertex

	2
	bound_per_face

	3
	bound_per_corner

default_normal_bbox: This 1-bit unsigned integer should always be ‘0’, which indicates that a default bounding box is used for the normal of the entire 3D model. The default bounding box of normal is defined as nxmin=0.0, nymin=0.0, nzmin=0.0, nxmax=1.0, nymax=1.0, and nzmax=1.0.

QP_normal: This 5-bit unsigned integer indicates the quality parameter of the 3D model normal. The minimum value of QP_normal is 3 and maximum is 31. If there is at least one repetitive structure, QP_normal is used as the number of quantization bits for the normal of patterns.
color_binding: This 2-bit unsigned integer indicates the binding of colors to the 3D model. The following table shows the admissible values.
	color_binding
	Binding

	0
	not_bound

	1
	bound_per_vertex

	2
	bound_per_face

	3
	bound_per_corner

default_color_bbox: This 1-bit unsigned integer indicates whether a default bounding box is used for the color of the entire 3D model. 0 means using another bounding box and 1 means using the default bounding box. The default bounding box is defined as rmin=0.0, gmin=0.0, bmin=0.0, rmax=1.0, gmax=1.0, and bmax=1.0.

color_bbox: This data field contains the bounding box of the color of the entire 3D model. The color bounding box is defined by (rmin, gmin, bmin, rmax, gmax, bmax).
QP_color: This 5-bit unsigned integer indicates the quality parameter of the color. The minimum value of QP_color is 3 and maximum is 31. If there is at least one repetitive structure, QP_color is used as the number of quantization bits for the color of patterns.
multi_texCoord_num: This 5-bit unsigned integer gives the number of texture coordinates per vertex/corner.
texCoord_binding: This 2-bit unsigned integer indicates the binding of texture coordinates to the 3D model. The following table shows the admissible values.
	texCoord_binding
	Binding

	0
	forbidden

	1
	bound_per_vertex

	2
	forbidden

	3
	bound_per_corner

default_texCoord_bbox: This 1-bit unsigned integer indicates whether a default bounding box is used for the texture coordinates. 0 means using another bounding box and 1 means using the default bounding box. The default bounding box is defined as umin=0.0, vmin=0.0, umax=1.0, and vmax=1.0.

texCoord_bbox: This data field contains the bounding box of the texture coordinate of the entire 3D model. The texture coordinate bounding box is defined by (umin, vmin, umax, vmax).
QP_texCoord: This 5-bit unsigned integer indicates the quality parameter of texture coordinates. The minimum value of QP_texCoord is 3 and maximum is 31. If there is at least one repetitive structure, QP_texCoord is used as the number of quantization bits for the texture coordinates of patterns.
multi_attribute_num: This 5-bit unsigned integer indicates the number of attributes per vertex/face/corner.
attribute_binding: This 2-bit unsigned integer indicates the binding of attributes to the 3D model. The following table shows the admissible values.
	attribute_binding
	Binding

	0
	forbidden

	1
	bound_per_vertex

	2
	bound_per_face

	3
	bound_per_corner

default_attribute_bbox: This 1-bit unsigned integer indicates whether a default bounding box is used for the attributes. 0 means using another bounding box and 1 means using the default bounding box. The default bounding box is defined as attribute_min[1..attribute_dim]=0.0, attribute_max[1..attribute_dim]=1.0.

attribute_bbox: This data field contains the bounding box of the attribute. The attribute bounding box is defined by (attribute_min[1..attribute_dim], attribute_max[1..attribute_dim]).
QP_attribute: This 5-bit unsigned integer indicates the quality parameter of the attribute. The minimum value of QP_attribute is 3 and maximum is 31. If there is at least one repetitive structure, QP_attribute is used as the number of quantization bits for the attribute of patterns.
4.5 PB3DMC_stream_data class

4.5.1 Syntax
	class PB3DMC_stream_data{
	Num. of bits
	Descriptor

	
if(uni_part_bit == 0 && repeat_struc_bit == 0) {
	
	

	

compr_3d_model_data
	
	

	
}
	
	

	
else{
	
	

	

if (uni_part_bit == 1){
	
	

	

compr_uni_part_data
	
	

	

}
	
	

	

if (repeat_struc_bit == 1){
	
	

	

compr_repeat_struc_data
	
	

	

}
	
	

	
}
	
	

	}
	
	

4.5.2 Semantics
compr_3d_model_data: This data field contains the compressed 3d model, which has only one connected component and could be reconstructed by the decoding method indicated by 3d_model_compr_mode.
compr_uni_part_data: This data field contains the compressed unique part data, which is defined as those components not belonging to any connected repetitive structures and not including any symmetric structures.
compr_repeat_struc_data: This data field contains the compressed repetitive structure data.
4.6 compr_uni_part_data class
4.6.1 Syntax
	class compr_uni_part_data{
	Num. of bits
	Descriptor

	
compr_uni_comp_data
	
	

	
compr_uni_comp_transl
	bit_num_uni_comp_transl()
	f(bit_num_uni_comp_transl())

	}
	
	

4.6.2 Semantics
compr_uni_comp_data: This data field contains the compressed geometry, connectivity and properties of all unique components, which are used to reconstruct all unique components by the decoding method indicated by 3d_model_compr_mode. All reconstructed unique components are translated to the positions decoded from compr_uni_comp_transl.

compr_uni_comp_transl: This data field contains the compressed translation vectors for all unique components. The unique component translation vectors are decoded by first de-quantization and then entropy decoding. This data field uses the same order of unique component with compr_uni_comp_data.
bit_num_uni_comp_transl(): This function computes the number of bits used for quantizing each unique component translation vector based on QP_coord.
4.7 compr_repeat_struc_data class

4.7.1 Syntax
	class compr_repeat_struc_data{
	Num. of bits
	Descriptor

	
compr_pattern_data
	
	

	
if(sym_instance_num > 0) {
	
	

	

compr_sym_insta_data
	
	

	

compr_stitch_data
	
	

	
}
	
	

	
compr_pattern_transl
	bit_num_pattern_transl()
	f(bit_num_pattern_transl())

	
if(insta_trans_elem_bit == 1){
	
	

	

compr_insta_elementary_data
	
	

	
}
	
	

	
else{
	
	

	

compr_insta_grouped_data
	
	

	
}
	
	

	}
	
	

4.7.2 Semantics
compr_pattern_data: This data field contains the compressed geometry, connectivity and attributes of all patterns, which is used to reconstruct all patterns by the decoding method indicated by 3d_model_compr_mode. Here patterns consist of the patterns of unconnected repetitive structures not including any symmetric structures, the patterns of symmetric structures, the unique parts on those unconnected-repetitive-structure patterns including symmetric structures, and the unique parts of those unique components which do not belong to any unconnected repetitive structures but have symmetric structures. All the reconstructed patterns will be translated to the positions reconstructed from compr_pattern_transl.
compr_sym_insta_data: This data field contains the compressed information of the symmetric instances.
compr_stitch_data: This data field contains the compressed data for stitching symmetric instances and their adjacent parts on the decoded 3D model.
compr_pattern_transl: This data field contains the compressed translation vectors for those components corresponding to the patterns of un-connected repetitive structures. The pattern translation vectors are reconstructed by first de-quantization and then entropy decoding. This data field uses the same order of patterns as compr_pattern_data.
compr_insta_elementary_data: This data field contains the compressed transformation data for all instances using the “elementary instance transformation mode”. It is compressed in a manner that is byte aligned.
compr_insta_grouped_data: This data field contains the compressed transformation data for all instances using the “grouped instance transformation mode”. It is compressed in a manner that is byte aligned.
bit_num_pattern_transl(): This function computes the number of bits used for quantizing translation vector of each pattern component based on QP_coord.
4.8 compr_sym_insta_data class

4.8.1 Syntax
	class compr_sym_insta_data{
	Num. of bits
	Descriptor

	
if(insta_trans_elem_bit == 1){
	
	

	

compr_sym_insta_elementary_data
	
	

	
}
	
	

	
else{
	
	

	

compr_sym_insta_grouped_data
	
	

	
}
	
	

	}
	
	

4.8.2 Semantics
compr_sym_insta_elementary_data: This data field contains the compressed transformation data for all symmetric instances using the “elementary instance transformation mode”. It is compressed in a manner that is byte aligned. The detail definition of compr_sym_insta_elementary_data is the same with compr_insta_elementary_data.
compr_sym_insta_grouped_data: This data field contains the compressed transformation data for all symmetric instances using the “grouped instance transformation mode”. It is compressed in a manner that is byte aligned. The detail definition of compr_sym_insta_grouped_data is the same with compr_insta_grouped_data.
4.9 compr_insta_elementary_data class

4.9.1 Syntax
	class compr_insta_elementary_data{
	Num. of bits
	Descriptor

	
insta_transl_bbox
	6*32
	

	
for (i = 0; i < numofInstance; i ++) {
	
	

	

elem_insta_QP_translation_flag
	1
	

	

elem_insta_QP_rotation_flag
	1
	

	

if(elem_insta_QP_translation_flag = 1){
	
	

	

elem_insta_QP_translation
	5
	

	

}
	
	

	

if(elem_insta_QP_rotation_floag == 1){
	
	

	

elem_insta_QP_rotation
	5
	

	

}
	
	

	

compr_elem_insta_patternID
	
	ec(v)

	

elem_insta_flip_flag
	1
	

	

elem_insta_reflection_flag
	1
	

	

elem_insta_attribute_header
	
	

	

compr_elem_insta_transl
	bit_num_insta_transl()
	f(bit_num_insta_transl())

	

compr_elem_insta_rotat_spherical
	
	

	

if (use_scaling_bit){
	
	

	

compr_elem_insta_scaling
	
	ec(v)

	

}
	
	

	

If (error_compen_enable_bit ==1){
	
	

	

elem_insta_error_compen_flag
	1
	

	

if(elem_insta_error_compen_flag == 1){
	
	

	

compr_elem_insta_error_compen_data
	
	

	

}
	
	

	

}
	
	

	

compr_elem_insta_attribute_data
	
	

	
}
	
	

	}
	
	

4.9.2 Semantics
insta_transl_bbox: This data field contains the bounding box of all translation vectors. The bounding box is defined by insta_transl_xmin, insta_transl_ymin, insta_transl_zmin, insta_transl_xmax, insta_transl_ymax, insta_transl_zmax
elem_insta_QP_translation_flag: This 1-bit unsigned integer indicates whether or not the ith instance has its own quality parameter for translation.
elem_insta_QP_rotation_flag: This 1-bit unsigned integer indicates whether or not the ith instance has its own quality parameter for rotation.
elem_insta_QP_translation: This 5-bit unsigned integer indicates the quality parameter of the translation vector of ith instance. The minimum value of elem_insta_QP_translation is 3 and maximum is 31.
elem_insta_QP_rotation: This 5-bit unsigned integer indicates the quality parameter of the rotation angles of ith instance. The minimum value of elem_insta_QP_rotation is 3 and maximum is 31.
compr_elem_insta_patternID: This data field contains the compressed pattern ID of ith instance.
elem_insta_filp_flag: This 1-bit unsigned integer indicates whether or not the ith instance is filpped compared with the corresponding pattern. A flipped instance means the instance triangle normals are in the opposite diection of the correspoonding pattern triangles. 0 means ith instance is not flipped and 1 ith instance is flipped.

[image: image28.png]
Figure 15 Example of flipped instance with regards to original pattern.
elem_insta_reflection_flag: This 1-bit unsigned integer indicates whether the transformation of ith instance includes reflection transformation along the coordinate axes. 0 means the transformation of ith instance doesn’t include reflection and 1 means the transformation of ith instance includes reflection.
elem_insta_attribute_header: This data field contains the attribute header of ith instance.
compr_elem_insta_transl: This data field contains the compressed translation vector of ith instance.

compr_elem_insta_rotat_spherical: This data field contains the compressed rotation transformation of ith instance in spherical mode.

compr_elem_insta_scaling: This data field contains the compressed scaling factor of ith instance.
elem_insta_error_compensate_flag: This 1-bit unsigned integer indicates whether or not the next part of the bitstream is the compressed coding error compensation data of ith instance. 0 means the next part of the bitstream is not the compressed coding error compensation data of ith instance and 1 means the next part of the bitstream is the compressed coding error compensation data of ith instance
compr_elem_insta_error_compen_data: This data field contains the compressed coding error compensation data of ith instance.
compr_elem_insta_attribute_data: This data field contains the compressed attribute data of ith instance.
bit_num_insta_transl(): This function computes the number of bits used for quantizing instance translation vectors based on QP_coord.
4.10 compr_elem_insta_error_compen_data class
4.10.1 Syntax
	class compr_elem_insta_error_compen_data{
	Num. of bits
	Descriptor

	
for(i = 0; i < numOfVertex; i ++) {
	
	

	

elem_compen_err_QB_id
	2
	

	

If (elem_compen_err_QB_id != 0) {
	
	

	

compr_ver_compen_err_data
	
	

	

}
	
	

	
}
	
	

	}
	
	

4.10.2 Semantics
elem_compen_err_QB_id: This 2-bit unsigned integer indicates the index of the number of quantization bits for the jth vertex of the instance in error_compen_QB_table. A 0 value means there is no error compensation for this vertex. A value of 1 refers to first entry in the error_compen_QB_table (2 for second and 3 for third).
compr_ver_compen_err_data: This data field contains the compressed compensated error of the jth vertex of the instance, which is the quantized x, y and z value of its reconstruction error in this order.
4.11 elem_insta_attribute_header class

4.11.1 Syntax
	class elem_insta_attribute_header {
	Num. of bits
	Descriptor

	
if (has_valid_attribute()){
	
	

	

elem_insta_share_pattern_attribute_bit
	1
	

	
}
	
	

	
if (has_available_attribute()) && elem_insta_share_pattern_attribute_bit==0){
	
	

	

if (normal_binding != ‘not_found’){
	
	

	

elem_insta_normal_compr_mode
	2
	

	

}
	
	

	

if(color_binding != ‘not_found’){
	
	

	

elem_insta_color_compr_mode
	2
	

	

}
	
	

	

if(multi_texCoord_num != 0){
	
	

	

for (i=0; i < multi_texCoord_num; i++){
	
	

	

elem_insta_texCoord_compr_mode
	2
	

	

}
	
	

	

}
	
	

	

if(multi_attribute_num != 0){
	
	

	

for (i=0; i<multi_attribute_num; i++){
	
	

	

elem_insta_attribute_compr_mode
	2
	

	

}
	
	

	

}
	
	

4.11.2 Semantics
elem_insta_share_pattern_attribute_bit: This 1-bit unsigned integer indicates whether or not the instance share all attributes with the corresponding pattern. 0 means the instance doesn’t share all attributes with the corresponding pattern and all or parts of its attributes needs to be compressed. 1 means the instance shares all attributes with the corresponding pattern.

elem_insta_normal_compr_mode: This 2-bit unsigned integer indicates the reconstruction mode of normal data of the instance. The following table shows its admissible values.
	elem_insta_normal_compr_mode
	Mode
	Meaning

	0
	share
	The instance shares normal data with the corresponding pattern.

	1
	no_pred
	The instance has its specific normal data which is reconstructed by de-quantization and entropy decoding, without prediction.

	2
	ISO reserved
	

	3
	ISO reserved
	

elem_insta_color_compr_mode: This 2-bit unsigned integer indicates the reconstruction mode of color data of the instance. The following table shows its admissible values.
	elem_insta_color_compr_mode
	Mode
	Meaning

	0
	share
	The instance shares color data with the corresponding pattern.

	1
	no_pred
	The instance has its specific color data which is reconstructed by de-quantization and entropy decoding, without prediction.

	2
	ISO reserved
	

	3
	ISO reserved
	

elem_insta_texCoord_compr_mode: This 2-bit unsigned integer indicates the reconstruction mode of texture image and texture coordinates of the instance. The lower bit indicates the reconstruction mode of the texture image of the instance. 0 means regular mode and 1 means compensated mode. The higher bit indicates the reconstruction mode of the texture coordinates of the instance. 0 means share mode and 1 means specific mode. The following table shows its admissible values.
	elem_insta_texCoord_compr_mode
	Mode
	Meaning

	0
	share
	The instance shares texture with the corresponding pattern.

	1
	ISO reserved
	

	2
	no_pred
	The instance has its specific texture coordinate data which is reconstructed by de-quantization and entropy decoding, without prediction. The texture of the reconstructed instance is to be obtained by decoding the texture coordinates from the bitsteam and mapping the texture image portion indicated by the decoded texture coordinates.

	3
	texture_residual
	The instance has its specific texture coordinate data which is reconstructed by de-quantization and entropy decoding, without prediction. The texture of the reconstructed instance is to be reconstructed by compensated mode using the texture of the corresponding pattern and the texture indicated by the reconstructed texture coordinates.

elem_insta_attribute_compr_mode: This 2-bit unsigned integer indicates the reconstruction mode of attribute data of the instance. The following table shows its admissible values.
	elem_insta_attribute_compr_mode
	Mode
	Meaning

	0
	share
	The instance shares attribute data with the corresponding pattern.

	1
	no_pred
	The instance has its specific attribute data which is reconstructed by de-quantization and entropy decoding, without prediction.

	2
	ISO reserved
	

	3
	ISO reserved
	

4.12 has_available_attribute() function
4.12.1 Syntax
	bool has_available_attribute(){

	
if(normal_binding != ‘not_found’ || color_binding != ‘not_found || multi_texCoord_num != 0 || multi_attribute_num != 0

	

return true;

	
else

	

return false;

	}

4.12.2 Semantics
This function decides whether or not there is some attribute data needs to be reconstructed.
4.13 compr_elem_insta_rotat_spherical class

4.13.1 Syntax
	class compr_elem_insta_rotat_spherical {
	Num. of bits
	Descriptor

	
compr_elem_insta_rotat_alpha
	bit_num_rotat_alpha()
	f(bit_num_rotat_alpha())

	
compr_elem_insta_rotat_beta
	bit_num_rotat_beta()
	f(bit_num_rotat_beta())

	
compr_elem_insta_rotat_gamma
	bit_num_rotat_gamma()
	f(bit_num_rotat_gamma()

	}
	
	

4.13.2 Semantics
The rotation of ith instance in spherical mode is represented by 3 angles, alpha, beta & gamma.

compr_elem_insta_rotat_alpha: This data field contains the compressed alpha of ith instance’s rotation.

compr_elem_insta_rotat_beta: This data field contains the compressed beta of ith instance’s rotation.

compr_elem_insta_rotat_gamma: This data field contains the compressed gamma of ith instance’s rotation.
bit_num_rotat_alpha(): This function adaptively computes the number of bits for the alpha value of ith instance’s rotation based on QP_coord and the scale of the corresponding pattern.
bit_num_rotat_beta(): This function computes the number of bits for the beta value of ith instance’s rotation based on QP_coord and the scale of the corresponding pattern.
bit_num_rotat_gamma(): This function computes the number of bits for the gamma value of ith instance’s rotation based on QP_coord and the scale of the corresponding pattern.
4.14 compr_elem_insta_attribute_data class

4.14.1 Syntax
	class compr_elem_insta_attribute_data {
	Num. of bits
	Descriptor

	
if (has_valid_attribute()) && elem_insta_share_pattern_attribute_bit==0){
	
	

	

if (normal_binding != ‘not_found’ && elem_insta_normal_compr_mode != ‘share’){
	
	

	

compr_elem_insta_normal_data
	
	

	

}
	
	

	

if (color_binding != ‘not_found’ && elem_insta_color_compr_mode != ‘share’){
	
	

	

compr_elem_insta_color_data
	
	

	

}
	
	

	

if(multi_texCoord_num != 0){
	
	

	

for (i=0; i < multi_texCoord_num; i++){
	
	

	

if(elem_insta_texCoord_compr_mode[i]!=’share’{
	
	

	

compr_elem_insta_texCoord_data
	
	

	

}
	
	

	

}
	
	

	

}
	
	

	

if(multi_attribute_num != 0){
	
	

	

for (i=0; i < multi_attribute_num; i++){
	
	

	

if(elem_insta_attribute_compr_mode[i]!=’share’{
	
	

	

compr_elem_insta_attribute_data
	
	

	

}
	
	

	

}
	
	

	

}
	
	

	
}
	
	

	}
	
	

4.14.2 Semantics
compr_elem_insta_normal_data: This data field contains the compressed normal of ith instance.
compr_elem_insta_color_data: This data field contains the compressed color of ith instance.
compr_elem_insta_texCoord_data: This data field contains the compressed texture coordinates of ith instance.
compr_elem_insta_attribute_data: This data field contains the compressed attribute data of ith instance.
4.15 compr_insta_grouped_data class

4.15.1 Syntax
	class compr_insta_grouped_data{
	Num. of bits
	Descriptor

	
elem_insta_QP_translation_flag[1..numofInstance]
	Number of instances
	

	
elem_insta_QP_rotation_flag[1..numofInstance]
	Number of instances
	

	
for (i = 0; i < numofInstance; i ++) {
	
	

	

if(elem_insta_QP_translation_flag[i] == 1){
	
	

	

elem_insta_QP_translation[i]
	5
	

	

}
	
	

	
}
	
	

	
for (i = 0; i < numofInstance; i ++) {
	
	

	

if(elem_insta_QP_rotation_flag[i] == 1){
	
	

	

elem_insta_QP_rotation[i]
	5
	

	

}
	
	

	
}
	
	

	
reserved_bits
	
	For byte alignment

	
compr_insta_patternID_header
	16
	

	
compr_insta_patternID_data
	
	ec(v)

	
insta_flip_flag_data
	Number of instances
	

	
insta_reflection_flag_data
	1 * Number of instances
	

	
compr_insta_transl_header
	16
	

	
compr_insta_transl_data
	
	

	
compr_insta_rotat_header
	16
	

	
compr_insta_rotat_data
	
	

	
if (use_scaling_bit){
	
	

	

compr_insta_scaling_header
	16
	

	

compr_insta_scaling_data
	
	ec(v)

	
}
	
	

	
If (error_compen_enable_bit == 1){
	
	

	

elem_insta_error_compen_flag[1..numofInstance]
	Number of instances
	

	

for (i = 0; i < numofInstance; i ++) {
	
	

	

if(elem_insta_error_compen_flag[i] == 1){
	
	

	

compr_elem_insta_error_compen_data
	
	

	

}
	
	

	

}
	
	

	
}
	
	

	
if(has_valid_attribute()){
	
	

	

compr_insta_attribute_header
	
	ec(v)

	

compr_insta_attribute_data
	
	

	
}
	
	

	
	
	

	}
	
	

4.15.2 Semantics
All the following data fields use the same instance order.
compr_insta_patternID_header: A 16-bit header for the compressed pattern IDs of all instances. This data field is unused when using fixed-length codec or entropy codec which can determine compressed bitstream length automatically for coding patternID_data.
compr_insta_patternID_data: This data field contains the compressed pattern IDs of all instances.
insta_flip_flag_data: This data field contains the flip flags of all instances. It is compressed in a manner that is byte aligned.
insta_reflection_flag_data: This data field contains the reflection flags of all instances. It is compressed in a manner that is byte aligned.

compr_insta_transl_header: A 16-bit header for the compressed translation vectors of all instances. This data field is unused when using fixed-length codec or entropy codec which can determine compressed bitstream length automatically for coding transl_data.

compr_insta_transl_data: This data field contains the compressed translation vectors of all instances.
compr_insta_rotat_header: A 16-bit header for the compressed rotation transformation parts of all instances. This data field is unused when using fixed-length codec or entropy codec which can determine compressed bitstream length automatically for coding rotat_data.

compr_insta_rotat_data: This data field contains the compressed rotation transformation parts of all instances. It is compressed in a manner that is byte aligned. See full description in 4.11.
compr_insta_scaling_header: A 16-bit header for the compressed scaling factors of all instances. This data field is unused when using entropy codec which can determine compressed bitstream length automatically for coding scaling_data.

compr_insta_scaling_data: This data field contains the compressed scaling factors of all instances.
compr_insta_attribute_header: This data field contains the compressed elem_insta_attribute_header data of all instances.
compr_insta_attribute_data: This data field contains the compressed attribute data of all instances.
4.16 compr_insta_transl_data class

4.16.1 Syntax
	class compr_insta_transl_data{
	Num. of bits
	Descriptor

	
grouped_insta_transl_bbox
	4*32
	

	
num_node
	24
	

	
num_dupli_leaf
	[[image: image30.png]
	

	
for (i = 0; i < num_dupli_leaf; i ++) {
	
	

	

dupli_leaf_id
	[[image: image32.png]
	

	

dupli_insta_transl_num_flag
	1
	

	

If(dupli_insta_transl_num_flag == 1){
	
	

	

num_dupli_insta_transl
	4
	

	

}
	
	

	
}
	
	

	
num_interval_bound
	4
	

	
for (i = 0; i < num_interval_bound; i ++) {
	
	

	

interval_bound_id
	[image: image34.png]
	

	
}

	
	

	
reserved_bits
	
	

	
occup_p0_symbols
	
	ec(occup_p0_symbols)

	
occup_p1_symbols
	
	ec(occup_p1_symbols)

	}
	
	

4.16.2 Semantics
grouped_insta_transl_bbox: This data field contains the center (3 floats) and the length (1 float) of the longest dimension of the translation vector data’s bounding box
num_node: This 16-bit unsigned integer indicates the number of octree nodes.
num_dupli_leaf: This data field contains the number of duplicate leaf nodes (octree leaf nodes containing duplicate instance translation vectors).

dupli_leaf_id: This data field contains the index of the ith duplicate leaf node in the breadth first traversal sequence of the octree.

dupli_insta_transl_num_flag: A 1-bit unsigned integer indicates whether or not there are at least 3 duplicate instance translation vectors in the corresponding leaf node. 0 means there are only 2 duplicate instance translation vectors in the corresponding leaf node and 1 means there are more than 2 duplicate instance translation vectors in the corresponding leaf node.

num_dupli_insta_transl: A 4-bit unsigned integer indicates the number of duplicate instance translation vectors that fall into the ith duplicate octree leaf node.

num_interval_bound: an 8-bit unsigned integer indicates the number of interval boundaries of the entire octree occupancy code sequence.

interval_bound_id: This data field contains index of the ith interval boundary.
reserved_bits: This data field contains some ISO reserved bits for the purpose of byte alignment

occup_p0_symbols : This data field contains occupancy codes of octree nodes that are reconstructed using universal set of alphabet.

occup_p1_symbols: This data field contains occupancy codes of octree nodes that are reconstructed using sub set of alphabet.
4.17 compr_insta_rotat_data class

4.17.1 Syntax
	class compr_insta_rotat_data {
	Num. of bits
	Descriptor

	
for (i = 0; i < numofInstance; i ++) {
	
	

	

compr_elem_insta_rotat_spherical
	
	

	
}
	
	

	}
	
	

4.18 compr_insta_attribute_data class

4.18.1 Syntax
	class compr_insta_attribute_data {
	Num. of bits
	Descriptor

	
if(normal_binding != ‘not_found’){
	
	

	

for (i = 0; i < numofInstance; i ++) {
	
	

	

if (elem_insta_share_pattern_attribute_bit[i]==0 && && elem_insta_normal_compr_mode[i] != ‘share’){
	
	

	

compr_elem_insta_normal_data
	
	

	

}
	
	

	

}
	
	

	
}
	
	

	
if(color_binding != ‘not_found’){
	
	

	

for (i = 0; i < numofInstance; i ++) {
	
	

	

if (elem_insta_share_pattern_attribute_bit[i]==0 && elem_insta_color_compr_mode[i] != ‘share’){
	
	

	

compr_elem_insta_color_data
	
	

	

}
	
	

	

}
	
	

	
}
	
	

	
if(multi_texCoord_num != 0){
	
	

	

for (i = 0; i < numofInstance; i ++) {
	
	

	

for (j=0; j < multi_texCoord_num; j++){
	
	

	

if(elem_insta_share_pattern_attribute_bit[i]==0 && elem_insta_texCoord_compr_mode[i][j]!=’share’{
	
	

	

compr_elem_insta_texCoord_data
	
	

	

}
	
	

	

}
	
	

	

}
	
	

	
}
	
	

	
if(multi_attribute_num != 0){
	
	

	

for (i = 0; i < numofInstance; i ++) {
	
	

	

for (j=0; j < multi_attribute_num; j++){
	
	

	

if(elem_insta_share_pattern_attribute_bit[i]==0 && elem_insta_attribute_compr_mode[i][j]!=’share’{
	
	

	

compr_elem_insta_attribute_data
	
	

	

}
	
	

	

}
	
	

	

}
	
	

	
}
	
	

	}
	
	

5 Decoding processing example
The whole decoding procedure may be implemented as below.
void PB3DMC_Decoder()
{
Read PB3DMC_stream_header;
if (uni_part_bit == 0 && repeat_struc_bit == 0)
{
Decode the 3D model using the decoder indicated by 3d_model_compr_mode;
}
else
{
 if (uni_part_bit == 1)

 {

Decode the unique part using the decoder indicated by 3d_model_compr_mode;

Separate different unique components by traversal based on connectivity;

Decode the translation vectors of unique components;

Reconstruct the unique part as defined in Error! Reference source not found. C) by translating all reconstructed unique components to their positions;

 }

 if (repeat_struc_bit == 1)

 {

Repeat_Struc_Decoder();

 }
}
}
void Repeat_Struc_Decoder ()
{

Decode all patterns defined in 2.7;

if (sym_instance_num > 0)

{

Decode all symmetric instances;

Decode all stitching information;

}
Reconstruct all unconnected-repetitive-structure patterns and unique components which include symmetric structures, using the recovered patterns, symmetric instances and stitching information;
Decode the translation vectors of all unconnected-repetitive-structure patterns and unique components which include symmetric structures;

Reconstruct those components corresponding to all unconnected-repetitive-structure patterns and unique components which include symmetric structures using the decoded translation vectors;

if (insta_trans_elem_bit == 1)

{

Instance_Elementary_Mode_Decoder();

}

else

{

Instance_Grouped_Mode_Decoder();

}
}
void Instance_Elementary_Mode_Decoder()
{

for (i = 0; i < numInstance; i ++)

{

Read elem_insta_QP_translation_flag;

Read elem_insta_QP_rotation_flag;

if(elem_insta_QP_translation_flag == 1)
{

Decode elem_QP_translation;
}
else
{

elem_QP_translation = QP_Translation;
}

if(elem_insta_QP_ rotation_flag == 1)
{

Decode elem_QP_ rotation;
}
else
{

elem_QP_ rotation = QP_ rotation;
}
Decode idPattern;
Read elem_insta_flip_flag;
Read elem_insta_reflection_flag;
Read elem_insta_attribute_header;
Decode instance translation vector by fixed length decoder whose parameter is QB_translation;
Decode Euler angles by fixed length decoder whose parameter is QB_rotation;
Recover rotation matrix using the decoded Euler angles;
if (using_scaling_bit == 1)

Decode scaling factor;
if (error_compen_enable_bit == 1)
{

Read elem_insta_error_compen_flag;

if (elem_insta_error_compen_flag == 1)

Decode error compensation data;
}
Recover the geometry of current instance by the pattern indicated by idPattern, recovered translation vector, recovered rotation matrix, reflection transformation if there is any, scaling factor if there is any, error compensation data if there is any;
if(elem_insta_flip_flag == 1)

Flip all triangles of current instance;
Decode the attribute data of current instance;
}
}
void Instance_Grouped_Mode_Decoder()
{

Read the elem_insta_QB_translation_flag of all instances;

Read the elem_insta_QB_rotation_flag of all instances;

Decode the elem_insta_QB_translation of those instances whose elem_insta_QB_translation_flag is 1;

Decode the elem_insta_QB_rotation of those instances whose elem_insta_QB_rotation _flag is 1;
Read compr_insta_patternID_header;

Decode pattern IDs of all instances;

Read the elem_insta_flip_flag of all instances;

Read the elem_insta_reflection_flag of all instances;
Read compr_insta_transl_header;

Decode translation vectors of all instances by octree decomposition based deocder;
Read compr_insta_rotat_header;

Decode the Euler angles of all instances;

Recover the rotation matrices of all instances;

if (use_scaling_bit == 1)

{

Read compr_insta_scaling_header;

Decode the scaling factors of all instances;

}

if (error_compen_enable_bit == 1)

{

Read elem_insta_error_compen_flag of all instances;

for (i = 0; i < numInstance; i ++)

{

if (the corresponding elem_insta_error_compen_flag is 1)

Decode the error compensation data for the current instances;

}

}

Recover the geometry of all instances by the recovered patterns, recovered translation vectors, recovered rotation matrices, reflection transformations if there are any, scaling factors if there are any, error compensation data if there is any;

Decode the attribute data of all instances if there is any;
}
5.1 Decoding of texture

[image: image35.emf]Decode mode flag

01

Mode Flag

10

00

Decode texture

coordinates

Decode texture

coordinates

Use the texture

specified by the

texture coordinates

Reconstruct the texture by

adding the difference to the

region of the pattern

End

Use the texture

specified by the

texture coordinates

Use texture coordi-

nates of the Pattern

Obtain the difference

specified by the

texture coordinates

Figure 16 The block diagram of instance texture image decoder
Figure 16 shows a flowchart of the decoder of instance texture image. The decoder maps the texture onto the reconstructed 3D model depending on the mode. In Mode 00 and Mode 10, the decoder obtains the texture coordinates by direct entropy decoding or copying from the pattern, and uses the specified texture content as normal. In Mode 01, however, the decoder obtains the texture regions of the pattern and the instance, and then reconstructs the texture of the instance by adding the pixel values in the regions. The reconstruction can be represented by
[image: image36.wmf]128

)

,

(

)

,

(

)

,

(

-

+

=

y

x

TEX

y

x

TEX

y

x

DeTEX

d

d

d

P

I

I

.
References
[w11455] Final text of ISO/IEC 14496-16 4th Edition. MPEG-3DGC. 93th MPEG meeting.
Error compensation flag

Lookup table of QBs for error compensation data

Y

N

Error compensation flag == true?

Instance error compensation flag

Compressed error compensation data of the instance

Y

N

Instance error compensation flag == true?

Error compensation QB table ID

Compressed error compensation data of the vertex

Y

N

Error compensation QB table ID != 0?

Document type: International Standard
Document subtype: Amendment
Document stage: (30) Committee
Document language: E
C:\Users\champelm\Documents\Standards\MPEG-3DGC\MPEG 105 - Vienna\ISO-IEC_14496-16_A4_(E).doc STD Version 2.1c2

_1436860252.unknown

_1436860254.unknown

_1436860256.vsd

compr_repeat_struc_data

PB3DMC_stream_header

uni_part_bit == 0 && repeat_struc_bit == 0?

N

compr_3d_model_data

Y

compr_pattern_data

insta_trans_elem_bit == 1?

Y

compr_insta_elementary_data

N

compr_insta_grouped_data

compr_uni_part_data

uni_part_bit == 1?

Y

N

compr_repeat_struc_data

repeat_struc_bit == 1?

Y

N

END

3D_model_header

sym_instance_num > 0?

Y

compr_sym_insta_data

N

_1436860257.vsd
Decode mode flag

01

Mode Flag

10

00

Decode texture coordinates

Decode texture coordinates

Use the texture specified by the texture coordinates

Obtain the difference specified by the texture coordinates

Reconstruct the texture by adding the difference to the region of the pattern

End

Use the texture specified by the texture coordinates

Use texture coordi-nates of the Pattern

_1436860258.unknown

_1436860255.unknown

_1436860253.unknown

_1436860250.vsd
11

11

11

01

01

01

01

10

10

10

10

11

01

11

01

01

10

10

10

01

01

01

01

01

01

10

01

01

10

_1436860251.vsd
First Later

Second Layer

Third Layer

1111

0001		1111
0010		1101

0100	0001
1000	1010

 -	 -
0001	 -

0010	1000
1000	 -

 -	 -
 - 0010

11110001111111010010000101000001101010000010100010000010

_1436860249.vsd
First Division

Second Division

Third Division

1111

0001		1111
0010		1101

0100	0001
1000	1010

 -	 -
0001	 -

0010	1000
1000	 -

 -	 -
 - 0010

