INTERNATIONAL ORGANISATION FOR STANDARDISATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11 N13776
August 2013, Vienna, AT

	Source
	WG11

	Status
	Working Draft

	Title
	Working Draft 1 for Video Coding for Browsers (VCB)

	Editors
	Mohamad Raad, Harald Alvestrand, Lazar Bivolarsky

Contents

41
Introduction

2
Terms and definitions
4
2.1
AC coefficient
4
2.2
Altref frame
4
2.3
Backward prediction
4
2.4
Bidirectional inter decoded picture
4
2.5
Bidirectional prediction
4
2.6
Bitstream
4
2.6.1
Bitstream buffer
4
2.6.2
Bitstream order
5
2.6.3
Bit string
5
2.6.4
Block
5
2.6.5
Block scan
5
2.6.6
Byte
5
2.6.7
Byte alignment
5
2.6.8
Chroma
5
2.6.9
Coded picture
5
2.6.10
Compensation
5
2.6.11
Component
5
2.6.12
DC coefficient
5
2.6.13
Decode processing
5
2.6.14
Decoded picture
6
2.6.15
Decoded picture buffer
6
2.6.16
Decoder
6
2.6.17
Decoding order
6
2.6.18
Decoding process
6
2.6.19
Dequantization
6
2.6.20
Display order
6
2.6.21
Encoder
6
2.6.22
Encoding presentation
6
2.6.23
Encoding process
6
2.6.24
Flag
6
2.6.25
Forbidden
6
2.6.26
Forward prediction
6
2.6.27
Forward inter decoded picture
7
2.6.28
Frame
7
2.6.29
Golden frame
7
2.6.30
Inter coding
7
2.6.31
Inter prediction
7
2.6.32
Intra coding
7
2.6.33
Intra decoded picture
7
2.6.34
Intra prediction
7
2.6.35
Inverse transform
7
2.6.36
Key frame
7
2.6.37
Layer
7
2.6.38
Level
7
2.6.39
Luma
8
2.6.40
Macroblock
8
2.6.41
Macroblock address
8
2.6.42
Macroblock line
8
2.6.43
Macroblock position
8
2.6.44
Motion vector
8
2.6.45
Non-reference picture
8
2.6.46
Output order
8
2.6.47
Output processing
8
2.6.48
Output reorder delay
8
2.6.49
Parse
8
2.6.50
Partitioning
8
2.6.51
Picture reordering
9
2.6.52
Prediction
9
2.6.53
Prediction process
9
2.6.54
Prediction value
9
2.6.55
Profile
9
2.6.56
Quantized coefficient
9
2.6.57
Quantization parameter
9
2.6.58
Random access point
9
2.6.59
Random access
9
2.6.60
Raster scan
9
2.6.61
Reference index
9
2.6.62
Reference picture
9
2.6.63
Reserved
10
2.6.64
Residual
10
2.6.65
Run
10
2.6.66
Sample
10
2.6.67
Sample value
10
2.6.68
Sequence
10
2.6.69
Skipped macroblock
10
2.6.70
Source
10
2.6.71
Start code
10
2.6.72
Stuffing bits
10
2.6.73
Syntax element
10
2.6.74
Transform coefficient
10
2.6.75
Variable length coding
11
2.6.76
Width height ratio
11
2.6.77
X-profile decoder
11
3
Symbols and abbreviated terms
11
3.1
Conventions
11
3.1.1
Arithmetic operators
11
3.1.2
Logical operators
12
3.1.3
Relational operators
12
3.1.4
Bitwise operators
12
3.1.5
Assignment
13
3.1.6
Mathematical functions
13
4
Description of bitsteam syntax parsing process and decoding process
14
4.1
Method of describing bitstream syntax
14
4.2
Functions
15
4.2.1
byte_aligned()
16
4.2.2
next_bits(n)
16
4.2.3
byte_aligned_next_bits(n)
16
4.2.4
read_bits(n)
16
4.3
Descriptors
16
4.3.1
Bool(p)
16
4.3.2
Flag or F
16
4.3.3
Lit(n) or L(n)
16
4.3.4
SignedLit(n)
16
4.3.5
P(8)
17
4.3.6
P(7)
17
4.3.7
F? X
17
4.3.8
F? X:Y
17
4.3.9
B(p)? X or B(p)? X:Y
17
4.3.10
T
17
4.4
Bitstream syntax and semantics
18
4.4.1
Structure of coded video data
18
4.4.2
Frame Header
18
4.4.3
Uncompressed Data Chunk
18
4.4.4
Color Space and Pixel Type (Key Frames Only)
20
4.4.5
Segment-Based Adjustments
20
4.4.6
Loop Filter Type and Levels
21
4.4.7
Token Partition and Partition Data Offsets
21
4.4.8
Dequantization Indices
22
4.4.9
Refresh Golden Frame and Altref Frame
22
4.4.10
Refresh Last Frame Buffer
23
4.4.11
DCT Coefficient Probability Update
24
4.4.12
Remaining Frame Header Data (Non-Key Frame)
24
4.4.13
Remaining Frame Header Data (Key Frame)
24
4.4.14
Segment-Based Feature Adjustments
25
4.4.15
Key Frame Macroblock Prediction Records
25
4.4.16
Intraframe Prediction
33
4.4.17
DCT Coefficient Decoding
41
4.4.18
Token Probabilities
43
4.4.19
DCT and WHT Inversion and Macroblock Reconstruction
59
4.4.20
Loop Filter
65
4.4.21
Interframe Macroblock Prediction Records
73
4.4.22
Mode and Motion Vector Contexts
75
5
Bitstream syntax summary
92
5.1
Uncompressed Data Chunk
92
5.2
Frame Header
93
5.3
Macroblock Data
102

1 Introduction

This document describes the normative part of the Video Coding for Browsers (VCB) codec..

2 Terms and definitions
2.1 AC coefficient

Any transform coefficient whose frequency indexes are non-zero in at least one dimension.

2.2 Altref frame

Another prediction frame that can be used as an alternative to the most recent prediction frame and the golden frame.

2.3 Backward prediction

Predict current picture by using future pictures in the display order as reference pictures.

2.4 Bidirectional inter decoded picture

Decoded pictures using bidirectional prediction in inter prediction.

2.5 Bidirectional prediction

The process of predicting the current picture by the past reference pictures and future reference pictures in the display order.

2.6 Bitstream

The binary bit stream generated by encoding the frame.

2.6.1 Bitstream buffer

The buffer which stores the bitstream.

2.6.2 Bitstream order

The order in the bitstream where the encoded frame located, that is the same as the frame order in the decoding process.

2.6.3 Bit string

Ordered string with limited number of bits. The left most bit is the most significant bit (MSB), the right most bit is the least significant bit (LSB).

2.6.4 Block

An M(N sample value matrix or transform coefficient matrix (M columns and N rows).

2.6.5 Block scan

Specified serial ordering of quantized coefficients.

2.6.6 Byte

8-bit bit string.

2.6.7 Byte alignment

Starting from the first bit in the bitstream, one bit is byte aligned if the position of the bit is an integer multiple of eight.

2.6.8 Chroma

Sample value matrix or single sample value of one of the two colour difference signals.

Notes: symbols of chroma are Cr and Cb.

2.6.9 Coded picture

The representation of one picture after the encoding process.

2.6.10 Compensation

Obtaining the addition of the decoded residual and the corresponding prediction values.

2.6.11 Component

One of the three picture sample value matrices (one luma matrix and two chroma matrices) or its single sample value.
2.6.12 DC coefficient

A transform coefficient whose frequency indexes are zero in both dimensions

2.6.13 Decode processing

Including the analyzing processing and the decoding processing.

2.6.14 Decoded picture

The reconstructed picture out of the bitstream by the decoder.

2.6.15 Decoded picture buffer

The buffer used for saving the decoded pictures for prediction as well as output reordering and output timing.

2.6.16 Decoder

One embodiment of the decoding process.

2.6.17 Decoding order

The order of decoding frames, which depends on the relationship of inter prediction.

2.6.18 Decoding process

The process that derives decoded pictures from syntax elements.

2.6.19 Dequantization

The process in which transform coefficients are obtained after scaling the quantized coefficients.

2.6.20 Display order

The order of displaying decoded pictures.

2.6.21 Encoder

The realization of the encoding process.

2.6.22 Encoding presentation

The representation after the encoding process

2.6.23 Encoding process

The process that generates the bitstream conforms to the description in the current part.

Note: This part doesn’t specify the encoding process.

2.6.24 Flag

A binary variable.

2.6.25 Forbidden

Define some special syntax elements, which should not exist in the bitstream which conforms to the syntax defined in this part. The reason for forbidden is to avoid the pseudo initial code in the bitstream.

2.6.26 Forward prediction

The process of predicting the current picture by the past reference pictures in the display order.

2.6.27 Forward inter decoded picture

Decoded pictures using only forward prediction in inter prediction.

2.6.28 Frame

The representation of video signals in the space domain, Composed of one luma sample matrix (Y) and two chroma sample matrices (Cb and Cr).

2.6.29 Golden frame

A prediction frame that can be used as an alternative to the most recent prediction frame.

2.6.30 Inter coding

Coding one macroblock or picture using inter prediction.

2.6.31 Inter prediction

The process of deriving the prediction value for the current picture (or field) using previously decoded pictures (or fields).

2.6.32 Intra coding

Coding one macroblock or picture using intra prediction.

2.6.33 Intra decoded picture

The decoded picture using only intra prediction. If the I frame uses field coding, the first field can only use intra prediction.

2.6.34 Intra prediction

The process of deriving the prediction value for the current sample using previously decoded sample values in the same decoded picture (or field).

2.6.35 Inverse transform

The process in which transform coefficient matrix is transformed into spatial sample value matrix.

2.6.36 Key frame

An I-frame.

2.6.37 Layer

A part of a structured bitstream.

2.6.38 Level

A defined set of constraints on the values for the syntax elements and syntax element parameters under certain level

2.6.39 Luma

Sample value matrix or single sample value representing the luma signal.

2.6.40 Macroblock

Includes a 16(16 luma sample value block and its corresponding chroma sample value blocks.

2.6.41 Macroblock address

Starting from the upper left macroblock and numbering according to the order of raster scan, with an initial number 0.

2.6.42 Macroblock line

Consecutive macroblocks within the same vertical position that start from the left coded picture boundary to the right. The height of one macroblock line is 16 samples.

2.6.43 Macroblock position

The two-dimensional coordinates of one macroblock in a picture denoted by (x,y).The coordinate of the top left macroblock (x,y) is equal to (0,0); x is incremented by 1 for each macroblock column from left to right; y is incremented by 1 for each macroblock row from top to bottom.

2.6.44 Motion vector

A two-dimensional vector used for inter prediction which refers the current picture to the reference picture, the value of which provides the coordinate offsets between the current picture and the reference picture.

2.6.45 Non-reference picture

A picture not used for inter prediction of subsequent pictures in the decoding process

2.6.46 Output order

The order of outputting decoded pictures, which is the same as the display order.

2.6.47 Output processing

The process of deriving the output frame or field from the decoded picture.

2.6.48 Output reorder delay

The delay between the beginning of decoding one frame in the bitstream and the output of the decoded picture, which is caused by the difference between the display order and the decoding order.

2.6.49 Parse

The procedure of getting the syntax element from the bitstream.

2.6.50 Partitioning

The process of dividing a set into subsets such that each element in the set belong to only one of the subsets.

2.6.51 Picture reordering

The process of reordering the decoded pictures if the decoding order is different from the output order.

2.6.52 Prediction

The implementation of the prediction process.

2.6.53 Prediction process

The process of estimating the decoded sample value or data element using a predictor.

2.6.54 Prediction value

The value, which is the combination of the previously decoded sample values or data elements, used in the decoding process of the next sample value/data element.

2.6.55 Profile

A subset of syntax, semantics and algorithms defined in a part. It is intended that this part will have a single profile.

2.6.56 Quantized coefficient

Transform coefficients before dequantization.

2.6.57 Quantization parameter

The parameter that dequantizes the quantized coefficients in the decoding process.

2.6.58 Random access point

The point which can be accessed randomly in the bit-stream.

2.6.59 Random access

The ability to decode the bit-stream and restore the decoded picture from a point which is not the starting point.

2.6.60 Raster scan

Maps a two dimensional rectangular raster into a one dimensional raster, in which the entry of the one dimensional raster starts from the first row of the two dimensional raster, and the scanning then goes through the second row and the third row, and so on. Each raster row is scanned in the left to right order.

2.6.61 Reference index

The order indication of the reference frame in the frame buffer in the decoding process.

2.6.62 Reference picture

Picture for inter prediction of subsequent pictures in the decoding process.
2.6.63 Reserved

A special syntax element value which will be used to extend this part in the future.

2.6.64 Residual

The differences between the reconstructed samples and the corresponding prediction values.

2.6.65 Run

A number of data elements of the same value in the decoding process. On one hand, it means the number of zero coefficients before a non-zero coefficient in the block scan; on the other hand, it means the number of skipped macroblocks.

2.6.66 Sample

The basic elements that compose the picture.

2.6.67 Sample value

The amplitude value of a sample.

2.6.68 Sequence

The highest level syntax structure of coding bitstream, including one or several consecutive coded pictures.

2.6.69 Skipped macroblock

Macroblock without other encoding data except for the indicator “skipped”.

2.6.70 Source

The term describing the raw video clips or some of their attributes before the encoding process.

2.6.71 Start code

A 32-bit codeword which is unique in the whole bitstream. Start code has a lot of usages, one of which is to identify the start point of the syntax structure in the bitstream.

2.6.72 Stuffing bits

The bit string which is inserted into bit-stream during encoding process and should be aborted during the decoding process.

2.6.73 Syntax element

The analysis result of the data unit in the bitstream.

2.6.74 Transform coefficient

A scalar in the transform domain.

2.6.75 Variable length coding

A reversible entropy coding process, which distributes short codewords to the high-frequency symbols and distributes long codewords to the low-frequency symbols.

Note: These values should not exist in the bitstream which conforms to the syntax defined in this part.

Note: the symbol representing luma is Y.

2.6.76 Width height ratio

The ratio of the horizontal distance between columns to the vertical distance between rows of the luma samples in one frame.

Shown as [image: image2.png], where [image: image3.png] is the horizontal width and [image: image4.png] is the vertical height.

2.6.77 X-profile decoder

The decoder which is able to decode the bitstream which satisfies the specifications of a certain profile.

3 Symbols and abbreviated terms

BBV: Bitstream Buffer Verifier

CBR: Constant Bit Rate

LSB: Least Significant Bit

MB: Macroblock

MSB: Most Significant Bit

VBR: Variable Bit Rate

VLC: Variable Length Coding

3.1 Conventions

The mathematical operators and their precedence rules used to describe this Specification are similar to those used in the C programming language. However, operators of integer divisions with truncation and of rounding are specifically defined. If not specifically explained, numbering and counting begin from zero.

3.1.1 Arithmetic operators

+

Addition

–

Subtraction (as a binary operator) or negation (as a unary prefix operator)

×

Multiplication

ab

Exponential operation. a is raised to power of b. also it can represent superscript.

/

Integer division with truncation of the result toward zero. For example, 7/4 and –7/–4 are truncated to 1 and –7/4 and 7/–4 are truncated to –1.

[image: image5.wmf]b

a

Division in mathematical equations where no truncation or rounding is intended

[image: image6.wmf]å

=

b

a

i

i

f

)

(

The summation of the f (i) with i taking integral values from a up to, b (including b)
a % b

Remainder from division of a by b. both a and b are positive integers

3.1.2 Logical operators

a && b
Logical AND operation between a and b

a || b
Logical OR operation between a and b

!

Logical NOT operation

3.1.3 Relational operators

>

Greater than

>=

Greater than or equal to

<

Less than

<=

Less than or equal to

==

Equal to

!=

Not equal to

3.1.4 Bitwise operators

&

AND operation

|

OR operation

~

Negation operation

a >> b

Shift a in 2’s complement binary integer representation format to the right by b bit positions. This operator is only defined with b, a positive integer

a << b

Shift a in 2’s complement binary integer representation format to the left by b bit positions. This operator is only defined with b, a positive integer

3.1.5 Assignment

=

Assignment operator

++

 Increment, x++ is equivalent to x = x + 1. When this operator is used for an array index, the variable value is obtained before the auto increment operation

--

 Decrement, i.e. x– – is equivalent to x = x - 1. When this operator is used for an array index the variable value is obtained before the auto decrement operation

+=

 Addition assignment operator, for example x += 3 corresponds to

x = x + 3, x += (-3) is equivalent to x = x + (-3)

-=

 Subtraction assignment operator，for example x -= 3 corresponds to

x = x - 3, x -= (-3) is equivalent to x = x - (-3)

3.1.6 Mathematical functions

Abs(x) =[image: image7.wmf];0

;0

xx

xx

>=

ì

í

-<

î

 (3-1)
Ceil(x)
takes the smallest integer not smaller than x (3-2)

Clip1(x) = Clip3(0, 255, x)
 (3-3)

Clip3(a,b,c) =
[image: image8.wmf];

;

;else

aca

bcb

c

<

ì

ï

>

í

ï

î

 QUOTE

 (3-4)

Floor(x)
takes the biggest integer not bigger than x
 (3-5)

Log2(x)
logarithm number of x with base 2
 (3-6)

Log10(x)
logarithm number of x with base 10
 (3-7)

Median(x,y,z) = x + y + z – Min(x, Min(y, z)) – Max(x, Max(y, z)) (3-8)

Min(x, y) = [image: image10.wmf];

;

xxy

yxy

<=

ì

í

>

î

 (3-9)

Max(x, y) = [image: image11.wmf];

;

xxy

yxy

>=

ì

í

<

î

 (3-10)

Round(x) = Sign(x) (Floor(Abs(x) + 0.5)

 (3-11)

Sign(x) = [image: image12.wmf]î

í

ì

<

-

>=

0

1

0

1

x

x

 (3-12)

4 Description of bitsteam syntax parsing process and decoding process

4.1 Method of describing bitstream syntax
The description style of the syntax is similar to C programming language. Syntax elements in the bitstream are represented in bold type. Each syntax element is described by its name (all lower case letters with underscore characters) and one or two descriptors for its method of coded representation. The decoding process behaves according to the value of the syntax element and to the values of previously decoded syntax elements. When a value of a syntax element is used in the syntax tables or the text, it appears in regular (i.e. not bold) type.

In some cases the syntax tables may use the values of other variables derived from syntax elements values. Such variables appear in the syntax tables, or text, named by a mixture of lower case and upper case letter and without any underscore characters. Variables starting with an upper case letter are derived for the decoding of the current syntax structure and all depending on syntax structures. Variables starting with an upper case letter may be used in the decoding process for later syntax structures mentioning the originating syntax structure of the variable. Variables starting with a lower case letter are only used within the subclause from which they are derived.

The association of values and names is specified in the text. In some cases, “mnemonic” names for syntax element values or variable values are used interchangeably with their numerical values. The names are constructed from one or more groups of letters separated by an underscore character. Each group starts with an upper case letter and may contain more upper case letters.

Hexadecimal notation, indicated by prefixing the hexadecimal number by “0x”, may be used when the number of bits is an integer multiple of 4. For example, “0x1a” represents a bit-string “0001 1010”.

A value equal to 0 represents a FALSE condition in a test statement. The value TRUE is represented by any other value other than zero.

An example of pseudo bistream description syntax is shown below. When a syntax element appears, this means that a data element is read from the bitstream.
	
	type

	/* A statement can be a syntax element with associated descriptor or can be an expression used to specify its existence, type, and value, as in the following examples */
	

	syntax_element
	ue(v)

	conditioning statement
	

	
	

	/* A group of statements enclosed in brackets is a compound statement and is treated functionally as a single statement. */
	

	{
	

	
Statement
	

	
Statement
	

	
…
	

	}
	

	
	

	/* A “while” structure specifies that the statement is to be evaluated repeatedly while the condition remains true. */
	

	while (condition)
	

	
Statement
	

	
	

	/* A “do … while” structure executes the statement once, and then tests the condition. It repeatedly evaluates the statement while the condition remains true. */
	

	Do
	

	
Statement
	

	while (condition)
	

	
	

	/* An “if … else” structure tests the condition first. If it is true, the primary statement is evaluated. Otherwise, the alternative statement is evaluated. If the alternative statement is unnecessary to be evaluated, the “else” and corresponding alternative statement can be omitted. */
	

	if (condition)
	

	
primary statement
	

	Else
	

	
alternative statement
	

	
	

	/* A “for” structure evaluates the initial statement at the beginning then tests the condition. If it is true, the primary and subsequent statements are evaluated until the condition becomes false. */
	

	for (initial statement; condition; subsequent statement)
	

	
primary statement
	

Parse and decoding process are described using text and C-like pseudo language.

4.2 Functions

Functions used for syntax description are explained in this section. It is assumed that the decoder has a bitstream position indicator. This bitstream position indicator locates the position of the bit that is going to be read right next. A function consists of its name and a sequence of parameters inside of parentheses. A function may not have any parameters.

4.2.1 byte_aligned()

The function byte_aligned () returns TRUE if the current position is on a byte boundary. Otherwise, it returns FALSE.

4.2.2 next_bits(n)

The function returns the next n bits from the bitstream, MSB first. The current bitstream position indicator is not changed. If the remaining number of bits to be read are less than n, then it returns 0.

4.2.3 byte_aligned_next_bits(n)

If the current position of the bitstream is not byte aligned, returns n bits beginning from the next byte aligned position, MSB first. The current bitstream position indicator is not changed. If the current position of the bitstream is byte aligned, returns n bits from the current position, MSB first. The current bitstream position is not changed. If the remaining number of bits to be read is less than n, then returns 0.

4.2.4 read_bits(n)

This function returns n bits of the bitstream from the current position, MSB first. The bitstream position indicator advances n bits. If n is equal to 0, then returns 0. And the bitstream position indicator does not move.

Functions can be also used for describing the parsing process and the decoding process.

4.3 Descriptors

The descriptors below represent different parsing processes of syntax elements.

The descriptors below specify the parsing process of syntax elements.

4.3.1 Bool(p)

Bool with probability p/256 of being 0. Return value of read_bool(d, p) .This is also represented using B(p) in this document.

4.3.2 Flag or F

A one-bit flag (same thing as a B(128) or an L(1)). Abbreviated F. Return value of read_bool(d, 128).

4.3.3 Lit(n) or L(n)

Unsigned n-bit number encoded as n flags (a "literal"). Abbreviated L(n). The bits are read from high to low order. Return value of read_literal(d, n).

4.3.4 SignedLit(n)

Signed n-bit number encoded similarly to an L(n). Return value of read_signed_literal(d, n). These are rare.

4.3.5 P(8)

An 8-bit probability. No different from an L(8), but we sometimes use this notation to emphasize that a probability is being coded.

4.3.6 P(7)

A 7-bit specification of an 8-bit probability. Coded as an L(7) number x; the resulting 8-bit probability is x ? x << 1 : 1.

4.3.7 F? X

A flag that, if true, is followed by a piece of data X.

4.3.8 F? X:Y

A flag that, if true, is followed by X and, if false, is followed by Y. Also used to express a value where Y is an implicit default (not encoded in the data stream), as in F? P(8):255, which expresses an optional probability: If the flag is true, the probability is specified as an 8-bit literal, while if the flag is false, the probability defaults to 255.

4.3.9 B(p)? X or B(p)? X:Y

Variants of the above using a boolean indicator whose probability is not necessarily 128.

4.3.10 T

Tree-encoded value from a small alphabet. We often wish to encode something whose value is restricted to a small number of `possibilities (the alphabet).

This is done by representing the alphabet as the leaves of a small binary tree. The (non-leaf) nodes of the tree have associated probabilities p and correspond to calls to read_bool(d, p). We think of a zero as choosing the left branch below the node and a one as choosing the right branch.

Thus, every value (leaf) whose tree depth is x is decoded after exactly x calls to read_bool. A tree representing an encoding of an alphabet of n possible values always contains n-1 non-leaf nodes, regardless of its shape (this is easily seen by induction on n).

There are many ways that a given alphabet can be so represented. The choice of tree has little impact on datarate but does affect decoder performance. The trees used by VCB are chosen to (on average) minimize the number of calls to read_bool. This amounts to shaping the tree so that values that are more probable have smaller tree depth than do values that are less probable.

Readers familiar with Huffman coding will notice that, given an alphabet together with probabilities for each value, the associated Huffman tree minimizes the expected number of calls to read_bool.

Such readers will also realize that the coding method described here never results in higher datarates than does the Huffman method and, indeed, often results in much lower datarates. Huffman coding is, in fact, nothing more than a special case of this method in which each node probability is fixed at 128 (i.e., 1/2).

4.4 Bitstream syntax and semantics

4.4.1 Structure of coded video data

This section explains the structure of coded bitstream, relationships between layers and processing order. This Specification deals with coding of progressive sequences. A frame consists of three sample matrices of integers: a luminance sample matrix (Y), and two chrominance sample matrices (Cb and Cr).

4.4.2 Frame Header

The uncompressed data chunk at the start of each frame and at the first part of the first data partition contains information pertaining to the frame as a whole. We list the fields in the order of occurrence. Most of the header decoding occurs in the reference decoder file dixie.c.

4.4.3 Uncompressed Data Chunk

An element of each color sample matrix has integer value. The relationship between these Y, Cb and Cr components and the primary (analogue) Red, Green and Blue Signals, the chromaticity of these primaries and the transfer characteristics of the source frame may be specified in the bitstream. This information does not affect the decoding process.

The uncompressed data chunk comprises a common (for key frames and interframes) 3-byte frame tag that contains four fields, as follows:

1. A 1-bit frame type (0 for key frames, 1 for interframes).

2. A 3-bit version number (0 - 3 are defined as four different profiles with different decoding complexity; other values may be defined for future variants of this data format).

3. A 1-bit show_frame flag (0 when current frame is not for display, 1 when current frame is for display).

4. A 19-bit field containing the size of the first data partition in bytes.

The version number setting enables or disables certain features in the bitstream, as follows:

	Version
	Reconstruction Filter
	Loop Filter

	0
	Bicubic
	Normal

	1
	Bilinear
	Simple

	2
	Bilinear
	None

	3
	None
	None

	4
	Reserved for future use
	

The reference software also adjusts the loop filter based on version number, as per the table above. Version number 1 implies a "simple" loop filter, and version numbers 2 and 3 imply no loop filter. However, the "simple" filter setting in this context has no effect whatsoever on the decoding process, and the "no loop filter" setting only forces the reference encoder to set filter level equal to 0. Neither affects the decoding process. In decoding, the only loop filter settings that matter are those in the frame header.

For key frames, the frame tag is followed by a further 7 bytes of uncompressed data, as follows:

	Start code byte 0
	0x9d

	 Start code byte 1
	0x01

	 Start code byte 2
	0x2a

	 16 bits :
	(2 bits Horizontal Scale << 14) | Width (14 bits)

	 16 bits :
	(2 bits Vertical Scale << 14) | Height (14 bits)

Note that while each frame is encoded as a raster scan of 16x16 macroblocks, the frame dimensions are not necessarily evenly divisible by 16. In this case, write ew = 16 - (width & 15) and eh = 16 - (height & 15) for the excess width and height, respectively. Although they are encoded, the last ew columns and eh rows are not actually part of the image and should be discarded before final output. However, these "excess pixels" should be maintained in the internal reconstruction buffer used to predict ensuing frames.

The scaling specifications for each dimension are encoded as follows:

	 Value
	Scaling

	 0
	No up-scaling (the most common case).

	 1
	Upscale by 5/4.

	 2
	Upscale by 5/3.

	 3
	Upscale by 2.

Up-scaling does not affect the reconstruction buffer, which should be maintained at the encoded resolution. Any reasonable method of up-sampling (including any that may be supported by video hardware in the playback environment) may be used. Since scaling has no effect on decoding, we do not discuss it any further.

4.4.4 Color Space and Pixel Type (Key Frames Only)

Note that Information in this subsection does not appear in interframes.

	Field
	Value

	L(1)
	1-bit color space type specification

	L(1)
	1-bit pixel value clamping specification

The color space type bit is encoded as follows:

0 - YUV color space similar to the YCrCb color space defined in ITU-R Recommendation BT.601.

1 - Reserved for future use.

The pixel value clamping type bit is encoded as follows:

0 - Decoders are required to clamp the reconstructed pixel values to between 0 and 255 (inclusive).

1 - Reconstructed pixel values are guaranteed to be between 0 and 255; no clamping is necessary.

4.4.5 Segment-Based Adjustments

This subsection contains probability and value information for implementing segment adaptive adjustments to default decoder behavior. The data in this subsection is used in the decoding of the ensuing per-segment information and applies to the entire frame.

 When segment adaptive adjustments are enabled, each macroblock will be assigned a segment ID. Macroblocks with the same segment ID belong to the same segment and have the same adaptive adjustments over default baseline values for the frame. The adjustments can be quantizer level or loop filter strength.

The context for decoding this feature at the macroblock level is provided by a subsection in the frame header, which contains:

1. A segmentation_enabled flag that enables the feature for this frame if set to 1, and disables it if set to 0. The following fields occur if the feature is enabled.

2. L(1) indicates if the segment map is updated for the current frame (update_mb_segmentation_map).

3. L(1) indicates if the segment feature data items are updated for the current frame (update_segment_feature_data).

4. If Item 3 above (update_segment_feature_data) is 1, the following fields occur:

a. L(1), the mode of segment feature data (segment_feature_mode), can be absolute-value mode (0) or delta value mode (1).

b. Segment feature data items are decoded segment by segment for each segment feature. For every data item, a one-bit flag indicates whether the item is 0, or a non-zero value to be decoded. If the value is non-zero, then the value is decoded as a magnitude L(n), followed by a one-bit sign (L(1) -- 0 for positive and 1 for negative). The length n can be looked up from a pre-defined length table for all feature data.

c. If the L(1) flag as noted in Item 2 above is set to 1, the probabilities of the decoding tree for the segment map are decoded from the bitstream. Each probability is decoded with a one-bit flag indicating whether the probability is the default value of 255 (flag is set to 0), or an 8-bit value, L(8), from the bitstream.

4.4.6 Loop Filter Type and Levels

This specification supports two types of loop filters having different computational complexity. The following bits occur in the header to support the selection of the baseline type, strength, and sharpness behavior of the loop filter used for the current frame.

	Index
	Description

	L(1)
	filter_type

	L(6)
	loop_filter_level

	L(3)
	sharpness_level

The bitstream described in this specification enables the adjustment of the loop filter level based on a macroblock's prediction mode and reference frame. The per-macroblock adjustment is done through delta values against the default loop filter level for the current frame.

This subsection contains flag and value information for implementing per-macroblock loop filter level adjustment to default decoder behavior. The data in this section is used in the decoding of the ensuing per-macroblock information and applies to the entire frame.

L(1) is a one-bit flag indicating if the macroblock loop filter adjustment is on for the current frame, 0 means that such a feature is not supported in the current frame, and 1 means this feature is enabled for the current frame.

 Whether the adjustment is based on a reference frame or encoding mode, the adjustment of the loop filter level is done via a delta value against a baseline loop filter value. The delta values are updated for the current frame if an L(1) bit, mode_ref_lf_delta_update (in the reference software), takes the value 1. There are two groups of delta values: One group of delta values is for reference frame-based adjustments, and the other group is for mode-based adjustments. The number of delta values in the two groups is MAX_REF_LF_DELTAS and MAX_MODE_LF_DELTAS, respectively. For every value within the two groups, there is a one-bit L(1) to indicate if the particular value is updated. When one is updated (1), it is transmitted as a six-bit- magnitude L(6) followed by a one-bit sign flag (L(1) -- 0 for positive and 1 for negative).

4.4.7 Token Partition and Partition Data Offsets

This specification allows DCT coefficients to be packed into multiple partitions, besides the first partition with header and per-macroblock prediction information, so the decoder can perform parallel decoding in an efficient manner. A two-bit L(2) is used to indicate the number of coefficient data partitions within a compressed frame. The two bits are defined in the following table:

	Bit 1
	Bit 0
	Number of Partitions

	0
	0
	1

	0
	1
	2

	1
	0
	4

	1
	1
	8

Offsets are embedded in the bitstream to provide the decoder direct access to token partitions. If the number of data partitions is greater than 1, the size of each partition (except the last) is written in 3 bytes (24 bits). The size of the last partition is the remainder of the data not used by any of the previous partitions.

The partitioned data are consecutive in the bitstream, so the size can also be used to calculate the offset of each partition. The following pseudocode illustrates how the size/offset is defined by the three bytes in the bitstream.

Offset/size = (uint32)(byte0) + ((uint32)(byte1)<<8) + ((uint32)(byte2)<<16);

4.4.8 Dequantization Indices

All residue signals are specified via a quantized 4x4 DCT applied to the Y, U, V, or Y2 sub-blocks of a macroblock. Before inverting the transform, each decoded coefficient is multiplied by one of six dequantization factors, the choice of which depends on the plane (Y, chroma = U or V, Y2) and coefficient position (DC = coefficient 0, AC = coefficients 1-15). The six values are specified using 7-bit indices into six corresponding fixed tables.

The first 7-bit index gives the dequantization table index for Y-plane AC coefficients, called yac_qi. It is always coded and acts as a baseline for the other 5 quantization indices, each of which is represented by a delta from this baseline index. Pseudocode for reading the indices follows:

	yac_qi = L(7); /* Y ac index always specified */

	ydc_delta = F? delta(): 0; /* Y dc delta specified if flag is true */

	y2dc_delta = F? delta(): 0; /* Y2 dc delta specified if flag is true */

	 y2ac_delta = F? delta(): 0; /* Y2 ac delta specified if flag is true */

	 uvdc_delta = F? delta(): 0; /* chroma dc delta specified if flag is true */

	 uvac_delta = F? delta(): 0; /* chroma ac delta specified if flag is true */

Where delta() is the process to read 5 bits from the bitstream to determine a signed delta value:

	Index
	Description

	L(4)
	Magnitude of delta

	L(1)
	Sign of delta, 0 for positive and 1 for negative

4.4.9 Refresh Golden Frame and Altref Frame

For key frames, both the golden frame and the altref frame are refreshed/ replaced by the current reconstructed frame, by default. For non-key frames, two bits are used to indicate whether the two frame buffers are refreshed, using the reconstructed current frame:

	Index
	Description

	L(1)
	Whether golden frame is refreshed (0 for no, 1 for yes)

	L(1)
	Whether altref frame is refreshed (0 for no, 1 for yes)

When the flag for the golden frame is 0, 2 more bits in the bitstream are used to indicate whether the buffer (and which buffer) is copied to the golden frame, or if no buffer is copied:

	Index
	Description

	L(2)
	Buffer copy flag for golden frame buffer

Where:

· 0 means no buffer is copied to the golden frame

· 1 means last_frame is copied to the golden frame

· 2 means alt_ref_frame is copied to the golden frame

Similarly, when the flag for altref is 0, 2 bits in the bitstream are used to indicate which buffer is copied to alt_ref_frame:

	Index
	Description

	L(2)
	Buffer copy flag for altref frame buffer

Where:

· 0 means no buffer is copied to the altref frame

· 1 means last_frame is copied to the altref frame

· 2 means golden_frame is copied to the altref frame

Two bits are transmitted for ref_frame_sign_bias for golden_frame and alt_ref_frame, respectively.

	Index
	Description

	L(1)
	Sign bias flag for golden frame

	L(1)
	Sign bias flag for altref frame

These values are used to control the sign of the motion vectors when a golden frame or an altref frame is used as the reference frame for a macroblock.

4.4.10 Refresh Last Frame Buffer

One bit, L(1), is used to indicate if the last frame reference buffer is refreshed using the constructed current frame. On a key frame, this bit is overridden, and the last frame buffer is always refreshed.

4.4.11 DCT Coefficient Probability Update

This field contains updates to the probability tables used to decode DCT coefficients. For each of the probabilities in the tables, there is an L(1) flag indicating if the probability is updated for the current frame, and if the L(1) flag is set to 1, there follows an additional 8-bit value representing the new probability value. These tables are maintained across interframes but are of course replaced with their defaults at the beginning of every key frame.

4.4.12 Remaining Frame Header Data (Non-Key Frame)

	Index
	Description

	L(1)
	mb_no_skip_coeff. This flag indicates at the frame level if skipping of macroblocks with no non-zero coefficients is enabled. If it is set to 0, then prob_skip_false is not read and mb_skip_coeff is forced to 0 for all macroblocks.

	L(8)
	prob_skip_false = probability used for decoding a macroblock-level flag, which indicates if a macroblock has any non-zero coefficients. Only read if mb_no_skip_coeff is 1.

	L(8)
	prob_intra = probability that a macroblock is "intra" predicted (that is, predicted from the already-encoded portions of the current frame), as opposed to "inter" predicted (that is, predicted from the contents of a prior frame).

	L(8)
	prob_last = probability that an inter-predicted macroblock is predicted from the immediately previous frame, as opposed to the most recent golden frame or altref frame.

	L(8)
	prob_gf = probability that an inter-predicted macroblock is predicted from the most recent golden frame, as opposed to the altref frame.

	F
	If true, followed by four L(8)s updating the probabilities for the different types of intra-prediction for the Y plane. These probabilities correspond to the four interior nodes of the decoding tree for intra-Y modes in an interframe, that is, the even positions in the ymode_tree array given above.

	F
	If true, followed by three L(8)s updating the probabilities for the different types of intra-prediction for the chroma planes. These probabilities correspond to the even positions in the uv_mode_tree array given above.

	X
	Motion vector probability update.

Decoding of this portion of the frame header is handled in the reference decoder file dixie.c

4.4.13 Remaining Frame Header Data (Key Frame)

	Index
	Description

	L(1)
	mb_no_skip_coeff. This flag indicates at the frame level if skipping of macroblocks with no non-zero coefficients is enabled. If it is set to 0, then prob_skip_false is not read and mb_skip_coeff is forced to 0 for all macroblocks.

	L(8)
	prob_skip_false = Probability used for decoding a macroblock-level flag, which indicates if a macroblock has any non-zero coefficients. Only read if mb_no_skip_coeff is 1.

Decoding of this portion of the frame header is handled in the reference decoder file modemv.c.

The previous subsections describe the frame header. After the frame header is processed, all probabilities needed to decode the prediction and residue data are known and will not change until the next frame.

4.4.14 Segment-Based Feature Adjustments

Every macroblock may optionally override some of the default behaviors of the decoder. Specifically, segment-based adjustments are used to support changing quantizer level and loop filter level for a macroblock. When the segment-based adjustment feature is enabled for a frame, each macroblock within the frame is coded with a segment_id. This effectively segments all the macroblocks in the current frame into a number of different segments. Macroblocks within the same segment behave exactly the same for quantizer and loop filter level adjustments.

If both the segmentation_enabled and update_mb_segmentation_map flags of the frame header take a value of 1, the prediction data for each (intra- or inter-coded) macroblock begins with a specification of segment_id for the current macroblock. It is decoded using this simple tree

	const tree_index mb_segment_tree [2 * (4-1)] =

	{

	 2, 4, /* root: "0", "1" subtrees */

	 -0, -1, /* "00" = 0th value, "01" = 1st value */

	 -2, -3 /* "10" = 2nd value, "11" = 3rd value */

	 }

combined with a 3-entry probability table, mb_segment_tree_probs[3]. The macroblock's segment_id is used later in the decoding process to look into the segment_feature_data table and determine how the quantizer and loop filter levels are adjusted.

The decoding of segment_id, together with the parsing of intra-prediction modes (which is taken up next), is implemented in the reference decoder file modemv.c.

4.4.15 Key Frame Macroblock Prediction Records

 After specifying the features described above, the macroblock prediction record next specifies the prediction mode used for the macroblock.

4.4.15.1 mb_skip_coeff

The single bool flag is decoded using prob_skip_false if and only if mb_no_skip_coeff is set to 1 (see Sections 4.1.1.10). If mb_no_skip_coeff is set to 0, then this value defaults to 0.

4.4.15.2 Luma Modes

First comes the luma specification of type intra_mbmode, coded using the kf_ymode_tree, as described in Section 3.3.7.2 and repeated here for convenience:

	typedef enum

	 {

	 DC_PRED, /* predict DC using row above and column to the left */

	 V_PRED, /* predict rows using row above */

	 H_PRED, /* predict columns using column to the left */

	 TM_PRED, /* propagate second differences a la "True Motion" */

	 B_PRED, /* each Y subblock is independently predicted */

	 num_uv_modes = B_PRED, /* first four modes apply to chroma */

	 num_ymodes /* all modes apply to luma */

	 }

	 intra_mbmode;

	 const tree_index kf_ymode_tree [2 * (num_ymodes - 1)] =

	 {

	 -B_PRED, 2, /* root: B_PRED = "0", "1" subtree */

	 4, 6, /* "1" subtree has 2 descendant subtrees */

	 -DC_PRED, -V_PRED, /* "10" subtree: DC_PRED = "100", V_PRED = "101" */

	 -H_PRED, -TM_PRED /* "11" subtree: H_PRED = "110",TM_PRED = "111" */

	 };

For key frames, the Y mode is decoded using a fixed probability array as follows:

	const Prob kf_ymode_prob [num_ymodes - 1] = { 145, 156, 163, 128};

	Ymode = (intra_mbmode) treed_read(d, kf_ymode_tree, kf_ymode_prob);

d is of course the bool_decoder being used to read the first data partition.

If the Ymode is B_PRED, it is followed by a (tree-coded) mode for each of the 16 Y subblocks. The 10 subblock modes and their coding tree are as follows:

	typedef enum

	 {

	 B_DC_PRED, /* predict DC using row above and column to the left */

	 B_TM_PRED, /* propagate second differences a la "True Motion" */

	 B_VE_PRED, /* predict rows using row above */

	 B_HE_PRED, /* predict columns using column to the left */

	 B_LD_PRED, /* southwest (left and down) 45 degree diagonal prediction */

	 B_RD_PRED, /* southeast (right and down) "" */

	 B_VR_PRED, /* SSE (vertical right) diagonal prediction */

	 B_VL_PRED, /* SSW (vertical left) "" */

	 B_HD_PRED, /* ESE (horizontal down) "" */

	 B_HU_PRED, /* ENE (horizontal up) "" */

	 num_intra_bmodes

	 }

	 intra_bmode;

	 /* Coding tree for the above, with implied codings as comments */

	 const tree_index bmode_tree [2 * (num_intra_bmodes - 1)] =

	 {

	 -B_DC_PRED, 2, /* B_DC_PRED = "0" */

	 -B_TM_PRED, 4, /* B_TM_PRED = "10" */

	 -B_VE_PRED, 6, /* B_VE_PRED = "110" */

	 8, 12,

	 -B_HE_PRED, 10, /* B_HE_PRED = "11100" */

	 -B_RD_PRED, -B_VR_PRED, /* B_RD_PRED = "111010", B_VR_PRED = "111011" */

	 -B_LD_PRED, 14, /* B_LD_PRED = "111110" */

	 -B_VL_PRED, 16, /* B_VL_PRED = "1111110" */

	 -B_HD_PRED, -B_HU_PRED /* HD = "11111110", HU = "11111111" */

	 };

The first four modes are smaller versions of the similarly named 16x16 modes above, albeit with slightly different numbering. The last six "diagonal" modes are unique to luma subblocks.

4.4.15.3 Subblock Mode Contexts

The coding of subblock modes in key frames uses the modes already coded for the subblocks to the left of and above the subblock to select a probability array for decoding the current subblock mode. This is our first instance of contextual prediction, and there are several caveats associated with it:

1. The adjacency relationships between subblocks are based on the normal default raster placement of the subblocks.

2. The adjacent subblocks need not lie in the current macroblock. The subblocks to the left of the left-edge subblocks 0, 4, 8, and 12 are the right-edge subblocks 3, 7, 11, and 15, respectively, of the (already coded) macroblock immediately to the left. Similarly, the subblocks above the top-edge subblocks 0, 1, 2, and 3 are the bottom-edge subblocks 12, 13, 14, and 15 of the already-coded macroblock immediately above it.

3. For macroblocks on the top row or left edge of the image, some of the predictors will be non-existent. Such predictors are taken to have had the value B_DC_PRED, which, perhaps conveniently, takes the value 0 in the enumeration above. A simple management scheme for these contexts might maintain a row of above predictors and four left predictors. Before decoding the frame, the entire row is initialized to B_DC_PRED; before decoding each row of macroblocks, the four left predictors are also set to B_DC_PRED. After decoding a macroblock, the bottom four subblock modes are copied into the row predictor (at the current position, which then advances to be above the next macroblock), and the right four subblock modes are copied into the left predictor.

4. Many macroblocks will of course be coded using a 16x16 luma prediction mode. For the purpose of predicting ensuing subblock modes (only), such macroblocks derive a subblock mode, constant throughout the macroblock, from the 16x16 luma mode as follows: DC_PRED uses B_DC_PRED, V_PRED uses B_VE_PRED, H_PRED uses B_HE_PRED, and TM_PRED uses B_TM_PRED.

5. While interframes do use all the intra-coding modes described here and below, the subblock modes in an interframe are coded using a single constant probability array that does not depend on any context.

The dependence of subblock mode probability on the nearby subblock mode context is most easily handled using a three-dimensional constant array:

	const Prob kf_bmode_prob [num_intra_bmodes] [num_intra_bmodes] [num_intra_bmodes-1];

The outer two dimensions of this array are indexed by the already- coded subblock modes above and to the left of the current block, respectively. The inner dimension is a typical tree probability list whose indices correspond to the even indices of the bmode_tree above.The mode for the jth luma subblock is then

	Bmode = (intra_bmode) treed_read(d, bmode_tree, kf_bmode_prob [A] [L]);

Where the 4x4 Y subblock index j varies from 0 to 15 in raster order and A and L are the modes used above and to the left of the jth subblock. The contents of the kf_bmode_prob array are given in Section 4.1.3.5 .

4.4.15.4 Chroma Modes

After the Y mode (and optional subblock mode) specification comes the chroma mode. The chroma modes are a subset of the Y modes and are coded using the uv_mode_tree:

	const tree_index uv_mode_tree [2 * (num_uv_modes - 1)] =

	 {

	 -DC_PRED, 2, /* root: DC_PRED = "0", "1" subtree */

	 -V_PRED, 4, /* "1" subtree: V_PRED = "10", "11" subtree */

	 -H_PRED, -TM_PRED /* "11" subtree: H_PRED = "110", TM_PRED = "111" */

	 };

As for the Y modes (in a key frame), the chroma modes are coded using a fixed, contextless probability table:

	const Prob kf_uv_mode_prob [num_uv_modes - 1] = { 142, 114, 183};

	uv_mode = (intra_mbmode) treed_read(d, uv_mode_tree, kf_uv_mode_prob);

This completes the description of macroblock prediction coding for key frames. The coding of intra modes within interframes is similar, but not identical, to that described here (and in the reference code) for prediction modes and, indeed, for all tree-coded data in this specification.

4.4.15.5 Subblock Mode Probability Table

The fixed probability table used to decode subblock modes in key frames is given below:

	const Prob kf_bmode_prob [num_intra_bmodes] [num_intra_bmodes] [num_intra_bmodes-1] =

	 {

	 {

	 { 231, 120, 48, 89, 115, 113, 120, 152, 112},

	 { 152, 179, 64, 126, 170, 118, 46, 70, 95},

	 { 175, 69, 143, 80, 85, 82, 72, 155, 103},

	 { 56, 58, 10, 171, 218, 189, 17, 13, 152},

	 { 144, 71, 10, 38, 171, 213, 144, 34, 26},

	 { 114, 26, 17, 163, 44, 195, 21, 10, 173},

	 { 121, 24, 80, 195, 26, 62, 44, 64, 85},

	 { 170, 46, 55, 19, 136, 160, 33, 206, 71},

	 { 63, 20, 8, 114, 114, 208, 12, 9, 226},

	 { 81, 40, 11, 96, 182, 84, 29, 16, 36}

	 },

	{

	 { 134, 183, 89, 137, 98, 101, 106, 165, 148},

	 { 72, 187, 100, 130, 157, 111, 32, 75, 80},

	 { 66, 102, 167, 99, 74, 62, 40, 234, 128},

	 { 41, 53, 9, 178, 241, 141, 26, 8, 107},

	 { 104, 79, 12, 27, 217, 255, 87, 17, 7},

	 { 74, 43, 26, 146, 73, 166, 49, 23, 157},

	 { 65, 38, 105, 160, 51, 52, 31, 115, 128},

	 { 87, 68, 71, 44, 114, 51, 15, 186, 23},

	 { 47, 41, 14, 110, 182, 183, 21, 17, 194},

	 { 66, 45, 25, 102, 197, 189, 23, 18, 22}

	 },

	 {

	 { 88, 88, 147, 150, 42, 46, 45, 196, 205},

	 { 43, 97, 183, 117, 85, 38, 35, 179, 61},

	 { 39, 53, 200, 87, 26, 21, 43, 232, 171},

	 { 56, 34, 51, 104, 114, 102, 29, 93, 77},

	 { 107, 54, 32, 26, 51, 1, 81, 43, 31},

	 { 39, 28, 85, 171, 58, 165, 90, 98, 64},

	 { 34, 22, 116, 206, 23, 34, 43, 166, 73},

	 { 68, 25, 106, 22, 64, 171, 36, 225, 114},

	 { 34, 19, 21, 102, 132, 188, 16, 76, 124},

	 { 62, 18, 78, 95, 85, 57, 50, 48, 51}

	 },

	 {

	 { 193, 101, 35, 159, 215, 111, 89, 46, 111},

	 { 60, 148, 31, 172, 219, 228, 21, 18, 111},

	 { 112, 113, 77, 85, 179, 255, 38, 120, 114},

	 { 40, 42, 1, 196, 245, 209, 10, 25, 109},

	 { 100, 80, 8, 43, 154, 1, 51, 26, 71},

	 { 88, 43, 29, 140, 166, 213, 37, 43, 154},

	 { 61, 63, 30, 155, 67, 45, 68, 1, 209},

	 { 142, 78, 78, 16, 255, 128, 34, 197, 171},

	 { 41, 40, 5, 102, 211, 183, 4, 1, 221},

	 { 51, 50, 17, 168, 209, 192, 23, 25, 82}

	 },

	 {

	 { 125, 98, 42, 88, 104, 85, 117, 175, 82},

	 { 95, 84, 53, 89, 128, 100, 113, 101, 45},

	 { 75, 79, 123, 47, 51, 128, 81, 171, 1},

	 { 57, 17, 5, 71, 102, 57, 53, 41, 49},

	 { 115, 21, 2, 10, 102, 255, 166, 23, 6},

	 { 38, 33, 13, 121, 57, 73, 26, 1, 85},

	 { 41, 10, 67, 138, 77, 110, 90, 47, 114},

	 { 101, 29, 16, 10, 85, 128, 101, 196, 26},

	 { 57, 18, 10, 102, 102, 213, 34, 20, 43},

	 { 117, 20, 15, 36, 163, 128, 68, 1, 26}

	 },

	{

	 { 138, 31, 36, 171, 27, 166, 38, 44, 229},

	 { 67, 87, 58, 169, 82, 115, 26, 59, 179},

	 { 63, 59, 90, 180, 59, 166, 93, 73, 154},

	 { 40, 40, 21, 116, 143, 209, 34, 39, 175},

	 { 57, 46, 22, 24, 128, 1, 54, 17, 37},

	 { 47, 15, 16, 183, 34, 223, 49, 45, 183},

	 { 46, 17, 33, 183, 6, 98, 15, 32, 183},

	 { 65, 32, 73, 115, 28, 128, 23, 128, 205},

	 { 40, 3, 9, 115, 51, 192, 18, 6, 223},

	 { 87, 37, 9, 115, 59, 77, 64, 21, 47}

	 },

	 {

	 { 104, 55, 44, 218, 9, 54, 53, 130, 226},

	 { 64, 90, 70, 205, 40, 41, 23, 26, 57},

	 { 54, 57, 112, 184, 5, 41, 38, 166, 213},

	 { 30, 34, 26, 133, 152, 116, 10, 32, 134},

	 { 75, 32, 12, 51, 192, 255, 160, 43, 51},

	 { 39, 19, 53, 221, 26, 114, 32, 73, 255},

	 { 31, 9, 65, 234, 2, 15, 1, 118, 73},

	 { 88, 31, 35, 67, 102, 85, 55, 186, 85},

	 { 56, 21, 23, 111, 59, 205, 45, 37, 192},

	 { 55, 38, 70, 124, 73, 102, 1, 34, 98}

	 },

	 {

	 { 102, 61, 71, 37, 34, 53, 31, 243, 192},

	 { 69, 60, 71, 38, 73, 119, 28, 222, 37},

	 { 68, 45, 128, 34, 1, 47, 11, 245, 171},

	 { 62, 17, 19, 70, 146, 85, 55, 62, 70},

	 { 75, 15, 9, 9, 64, 255, 184, 119, 16},

	 { 37, 43, 37, 154, 100, 163, 85, 160, 1},

	 { 63, 9, 92, 136, 28, 64, 32, 201, 85},

	 { 86, 6, 28, 5, 64, 255, 25, 248, 1},

	 { 56, 8, 17, 132, 137, 255, 55, 116, 128},

	 { 58, 15, 20, 82, 135, 57, 26, 121, 40}

	 },

	 {

	 { 164, 50, 31, 137, 154, 133, 25, 35, 218},

	 { 51, 103, 44, 131, 131, 123, 31, 6, 158},

	 { 86, 40, 64, 135, 148, 224, 45, 183, 128},

	 { 22, 26, 17, 131, 240, 154, 14, 1, 209},

	 { 83, 12, 13, 54, 192, 255, 68, 47, 28},

	 { 45, 16, 21, 91, 64, 222, 7, 1, 197},

	 { 56, 21, 39, 155, 60, 138, 23, 102, 213},

	 { 85, 26, 85, 85, 128, 128, 32, 146, 171},

	 { 18, 11, 7, 63, 144, 171, 4, 4, 246},

	 { 35, 27, 10, 146, 174, 171, 12, 26, 128}

	 },

	{

	 { 190, 80, 35, 99, 180, 80, 126, 54, 45},

	 { 85, 126, 47, 87, 176, 51, 41, 20, 32},

	 { 101, 75, 128, 139, 118, 146, 116, 128, 85},

	 { 56, 41, 15, 176, 236, 85, 37, 9, 62},

	 { 146, 36, 19, 30, 171, 255, 97, 27, 20},

	 { 71, 30, 17, 119, 118, 255, 17, 18, 138},

	 { 101, 38, 60, 138, 55, 70, 43, 26, 142},

	 { 138, 45, 61, 62, 219, 1, 81, 188, 64},

	 { 32, 41, 20, 117, 151, 142, 20, 21, 163},

	 { 112, 19, 12, 61, 195, 128, 48, 4, 24}

	 }

	 };

4.4.16 Intraframe Prediction

Intraframe prediction uses already-coded macroblocks within the current frame to approximate the contents of the current macroblock. It applies to intra-coded macroblocks in an interframe and to all macroblocks in a key frame.

Relative to the current macroblock "M", the already-coded macroblocks include all macroblocks above M together with the macroblocks on the same row as, and to the left of, M, though at most four of these macroblocks are actually used: the block "A" directly above M, the blocks immediately to the left and right of A, and the block immediately to the left of M.

Each of the prediction modes (i.e., means of extrapolation from already-calculated values) uses fairly simple arithmetic on pixel values whose positions, relative to the current position, are defined by the mode.

The chroma (U and V) and luma (Y) predictions are independent of each other. The relative addressing of pixels applied to macroblocks on the upper row or left column of the frame will sometimes cause pixels outside the visible frame to be referenced. Usually such out-of-bounds pixels have an assumed value of 129 for pixels to the left of the leftmost column of the visible frame and 127 for pixels above the top row of the visible frame (including the special case of the pixel above and to the left of the top-left pixel in the visible frame).

Exceptions to this (associated to certain modes) will be noted below. The already-coded macroblocks referenced by intra-prediction have been "reconstructed", that is, have been predicted and residue- adjusted, but have not been loop- filtered. While it does process the edges between individual macroblocks and individual subblocks, loop filtering is applied to the frame as a whole, after all of the macroblocks have been reconstructed.

4.4.16.1 mb_skip_coeff

The single bool flag is decoded using prob_skip_false if and only if mb_no_skip_coeff is set to 1. If mb_no_skip_coeff is set to 0, then this value defaults to 0.

4.4.16.2 Chroma Prediction

The chroma prediction is a little simpler than the luma prediction, so we treat it first. Each of the chroma modes treats U and V identically; that is, the U and V prediction values are calculated in parallel, using the same relative addressing and arithmetic in each of the two planes.

The modes extrapolate prediction values using the 8-pixel row "A" lying immediately above the block (that is, the bottom chroma row of the macroblock immediately above the current macroblock) and the 8-pixel column "L" immediately to the left of the block (that is, the rightmost chroma column of the macroblock immediately to the left of the current macroblock).

Vertical prediction (chroma mode V_PRED) simply fills each 8-pixel row of the 8x8 chroma block with a copy of the "above" row (A). If the current macroblock lies on the top row of the frame, all 8 of the pixel values in A are assigned the value 127.

Similarly, horizontal prediction (H_PRED) fills each 8-pixel column of the 8x8 chroma block with a copy of the "left" column (L). If the current macroblock is in the left column of the frame, all 8 pixel values in L are assigned the value 129.

DC prediction (DC_PRED) fills the 8x8 chroma block with a single value. In the generic case of a macroblock lying below the top row and right of the leftmost column of the frame, this value is the average of the 16 (genuinely visible) pixels in the (union of the) above row A and left column L.

Otherwise, if the current macroblock lies on the top row of the frame, the average of the 8 pixels in L is used; if it lies in the left column of the frame, the average of the 8 pixels in A is used.

Note that the averages used in these exceptional cases are not the same as those that would be arrived at by using the out-of-bounds A and L values defined for V_PRED and H_PRED. In the case of the leftmost macroblock on the top row of the frame, the 8x8 block is simply filled with the constant value 128.

For DC_PRED, apart from the exceptional case of the top-left macroblock, we are averaging either 16 or 8 pixel values to get a single prediction value that fills the 8x8 block. The rounding is done as follows:

	int sum; /* sum of 8 or 16 pixels at (at least) 16-bit precision */

	 int shf; /* base 2 logarithm of the number of pixels (3 or 4) */

	 Pixel DCvalue = (sum + (1 << (shf-1))) >> shf;

Because the summands are all valid pixels, no "clamp" is necessary in the calculation of DCvalue.

 The remaining "True Motion" (TM_PRED) chroma mode gets its name from an older technique of video compression used by On2 Technologies, to which it bears some relation. In addition to the row "A" and column "L", TM_PRED uses the pixel "P" above and to the left of the chroma block.

The following table gives an example of how TM_PRED works:

	 P
	 A0
	 A1
	 A2
	 A3
	 A4
	 A5
	 A6
	 A7

	 L0
	 X00
	 X01
	 X02
	 X03
	 X04
	 X05
	 X06
	 X07

	 L1
	 X10
	 X11
	 X12
	 X13
	 X14
	 X15
	 X16
	 X17

	 L2
	 X20
	 X21
	 X22
	 X23
	 X24
	 X25
	 X26
	 X27

	 L3
	 X30
	 X31
	 X32
	 X33
	 X34
	 X35
	 X36
	 X37

	 L4
	 X40
	 X41
	 X42
	 X43
	 X44
	 X45
	 X46
	 X47

	 L5
	 X50
	 X51
	 X52
	 X53
	 X54
	 X55
	 X56
	 X57

	 L6
	 X60
	 X61
	 X62
	 X63
	 X64
	 X65
	 X66
	 X67

	 L7
	 X70
	 X71
	 X72
	 X73
	 X74
	 X75
	 X76
	 X77

Where P, As, and Ls represent reconstructed pixel values from previously coded blocks, and X00 through X77 represent predicted values for the current block. TM_PRED uses the following equation to calculate X_ij:

X_ij = L_i + A_j - P (i, j=0, 1, 2, 3)

The exact algorithm is as follows:

	void TMpred(

	 Pixel b[8][8], /* chroma (U or V) prediction block */

	 const Pixel A[8], /* row of already-constructed pixels above block */

	 const Pixel L[8], /* column of "" just to the left of block */

	 const Pixel P /* pixel just to the left of A and above L*/

) {

	 int r = 0; /* row */

	 do {

	 int c = 0; /* column */

	 do {

	 b[r][c] = clamp255(L[r]+ A[c] - P);

	 } while (++c < 8);

	 } while (++r < 8);

	 }

Note that the process could equivalently be described as propagating the vertical differences between pixels in L (starting from P), using the pixels from A to start each column.

An implementation of chroma intra-prediction may be found in the reference decoder file predict.c.

Unlike DC_PRED, for macroblocks on the top row or left edge, TM_PRED does use the out-of-bounds values of 127 and 129 (respectively) defined for V_PRED and H_PRED.

4.4.16.3 Luma Prediction

The prediction processes for the first four 16x16 luma modes (DC_PRED, V_PRED, H_PRED, and TM_PRED) are essentially identical to the corresponding chroma prediction processes described above, the only difference being that we are predicting a single 16x16 luma block instead of two 8x8 chroma blocks.

Thus, the row "A" and column "L" here contain 16 pixels, the DC prediction is calculated using 16 or 32 pixels (and shf is 4 or 5), and we of course fill the entire prediction buffer, that is, 16 rows (or columns) containing 16 pixels each. The reference implementation of 16x16 luma prediction is also in predict.c.

In the remaining luma mode (B_PRED), each 4x4 Y subblock is independently predicted using one of ten modes (listed, along with their encodings, in Section 4.1.3).

Also, unlike the full-macroblock modes already described, some of the subblock modes use prediction pixels above and to the right of the current subblock. In detail, each 4x4 subblock "B" is predicted using (at most) the 4-pixel column "L" immediately to the left of B and the 8-pixel row "A" immediately above B, consisting of the 4 pixels above B followed by the 4 adjacent pixels above and to the right of B, together with the single pixel "P" immediately to the left of A (and immediately above L).

For the purpose of subblock intra-prediction, the pixels immediately to the left and right of a pixel in a subblock are the same as the pixels immediately to the left and right of the corresponding pixel in the frame buffer "F". Vertical offsets behave similarly: The above row A lies immediately above B in F, and the adjacent pixels in the left column L are separated by a single row in F.

Because entire macroblocks (as opposed to their constituent subblocks) are reconstructed in raster-scan order, for subblocks lying along the right edge (and not along the top row) of the current macroblock, the four "extra" prediction pixels in A above and to the right of B have not yet actually been constructed.

Subblocks 7, 11, and 15 are affected. All three of these subblocks use the same extra pixels as does subblock 3 (at the upper right corner of the macroblock), namely the 4 pixels immediately above and to the right of subblock 3. Writing (R,C) for a frame buffer position offset from the upper left corner of the current macroblock by R rows and C columns, the extra pixels for all the right-edge subblocks (3, 7, 11, and 15) are at positions (-1,16), (-1,17), (-1,18), and (-1,19). For the rightmost macroblock in each macroblock row except the top row, the extra pixels shall use the same value as the pixel at position (-1,15), which is the rightmost visible pixel on the line immediately above the macroblock row. For the top macroblock row, all the extra pixels assume a value of 127.

The details of the prediction modes are most easily described in code.

	/* Result pixels are often averages of two or three predictor pixels. The following subroutines are used to calculate these averages. Because the arguments are valid pixels, no clamping is necessary. An actual implementation would probably use inline functions or macros. */

	 /* Compute weighted average centered at y w/adjacent x, z */

	 Pixel avg3(Pixel x, Pixel y, Pixel z) {

	 return (x + y + y + z + 2) >> 2;}

	 /* Weighted average of 3 adjacent pixels centered at p */

	 Pixel avg3p(const Pixel *p) { return avg3(p[-1], p[0], p[1]);}

	 /* Simple average of x and y */

	 Pixel avg2(Pixel x, Pixel y) { return (x + y + 1) >> 1;}

	 /* Average of p[0] and p[1] may be considered to be a synthetic pixel lying between the two, that is, one half-step past p. */

	 Pixel avg2p(const Pixel *p) { return avg2(p[0], p[1]);}

	 void subblock_intra_predict(

	 Pixel B[4][4], /* Y subblock prediction buffer */

	 const Pixel *A, /* A[0]...A[7] = above row, A[-1] = P */

	 const Pixel *L, /* L[0]...L[3] = left column, L[-1] = P */

	 intra_bmode mode /* enum is in Section 11.2 */

) {

	 Pixel E[9]; /* 9 already-constructed edge pixels */

	 E[0] = L[3]; E[1] = L[2]; E[2] = L[1]; E[3] = L[0];

	 E[4] = A[-1]; /* == L[-1] == P */

	 E[5] = A[0]; E[6] = A[1]; E[7] = A[2]; E[8] = A[3];

	 switch(mode) {

	 /* First four modes are similar to corresponding full-block modes. */

	 case B_DC_PRED:

	 {

	 int v = 4; /* DC sum/avg, 4 is rounding adjustment */

	 int i = 0; do { v += A[i] + L[i];} while (++i < 4);

	 v >>= 3; /* averaging 8 pixels */

	 i = 0; do { /* fill prediction buffer with constant DC value */

	int j = 0; do { B[i][j] = v;} while (++j < 4);

	 } while (++i < 4);

	 break;

	 }

	 case B_TM_PRED: /* just like 16x16 TM_PRED */

	 {

	 int r = 0; do {

	 int c = 0; do {

	 B[r][c] = clamp255(L[r] + A[c] - A[-1]);

	 } while (++c < 4);

	 } while (++r < 4);

	 break;

	 }

	 case B_VE_PRED: /* like 16x16 V_PRED except using averages */

	 {

	 int c = 0; do { /* all 4 rows = smoothed top row */

	 B[0][c] = B[1][c] = B[2][c] = B[3][c] = avg3p(A + c);

	 } while (++c < 4);

	 break;

	 }

	 case B_HE_PRED: /* like 16x16 H_PRED except using averages */

	 {

	 /* Bottom row is exceptional because L[4] does not exist */

	 int v = avg3(L[2], L[3], L[3]);

	 int r = 3; while (1) { /* all 4 columns = smoothed left column */

	 B[r][0] = B[r][1] = B[r][2] = B[r][3] = v;

	 if (--r < 0)

	 break;

	 v = avg3p(L + r); /* upper 3 rows use average 3 pixels */

	 }

	 break;

	 }

	 /* The remaining six "diagonal" modes subdivide the prediction buffer into diagonal lines. All the pixels on each line are assigned the same value; this value is (a smoothed or synthetic version of) an already-constructed predictor value lying on the same line. For clarity, in the comments, we express the positions of these predictor pixels relative to the upper left corner of the destination array B. These modes are unique to subblock prediction and have no full-block analogs. The first two use lines at +/- 45 degrees from horizontal (or, equivalently, vertical), that is, lines whose slopes are +/- 1. */

	 case B_LD_PRED: /* southwest (left and down) step = (-1, 1) or (1,-1) */

	 /* avg3p(A + j) is the "smoothed" pixel at (-1,j) */

	 B[0][0] = avg3p(A + 1);

	 B[0][1] = B[1][0] = avg3p(A + 2);

	 B[0][2] = B[1][1] = B[2][0] = avg3p(A + 3);

	 B[0][3] = B[1][2] = B[2][1] = B[3][0] = avg3p(A + 4);

	 B[1][3] = B[2][2] = B[3][1] = avg3p(A + 5);

	 B[2][3] = B[3][2] = avg3p(A + 6);

	 B[3][3] = avg3(A[6], A[7], A[7]); /* A[8] does not exist */

	 break;

	 case B_RD_PRED: /* southeast (right and down) step = (1,1) or (-1,-1) */

	 B[3][0] = avg3p(E + 1); /* predictor is from (2, -1) */

	 B[3][1] = B[2][0] = avg3p(E + 2); /* (1, -1) */

	 B[3][2] = B[2][1] = B[1][0] = avg3p(E + 3); /* (0, -1) */

	 B[3][3] = B[2][2] = B[1][1] = B[0][0] = avg3p(E + 4); /* (-1, -1) */

	 B[2][3] = B[1][2] = B[0][1] = avg3p(E + 5); /* (-1, 0) */

	 B[1][3] = B[0][2] = avg3p(E + 6); /* (-1, 1) */

	 B[0][3] = avg3p(E + 7); /* (-1, 2) */

	 break;

	 /* The remaining 4 diagonal modes use lines whose slopes are +/- 2 and +/- 1/2. The angles of these lines are roughly +/- 27 degrees from horizontal or vertical. Unlike the 45 degree diagonals, here we often need to "synthesize" predictor pixels midway between two actual predictors using avg2p(p), which we think of as returning the pixel "at" p[1/2]. */

	 case B_VR_PRED: /* SSE (vertical right) step = (2,1) or (-2,-1) */

	 B[3][0] = avg3p(E + 2); /* predictor is from (1, -1) */

	 B[2][0] = avg3p(E + 3); /* (0, -1) */

	 B[3][1] = B[1][0] = avg3p(E + 4); /* (-1, -1) */

	 B[2][1] = B[0][0] = avg2p(E + 4); /* (-1, -1/2) */

	 B[3][2] = B[1][1] = avg3p(E + 5); /* (-1, 0) */

	 B[2][2] = B[0][1] = avg2p(E + 5); /* (-1, 1/2) */

	 B[3][3] = B[1][2] = avg3p(E + 6); /* (-1, 1) */

	 B[2][3] = B[0][2] = avg2p(E + 6); /* (-1, 3/2) */

	B[1][3] = avg3p(E + 7); /* (-1, 2) */

	 B[0][3] = avg2p(E + 7); /* (-1, 5/2) */

	 break;

	 case B_VL_PRED: /* SSW (vertical left) step = (2,-1) or (-2,1) */

	 B[0][0] = avg2p(A); /* predictor is from (-1, 1/2) */

	 B[1][0] = avg3p(A + 1); /* (-1, 1) */

	 B[2][0] = B[0][1] = avg2p(A + 1); /* (-1, 3/2) */

	 B[1][1] = B[3][0] = avg3p(A + 2); /* (-1, 2) */

	 B[2][1] = B[0][2] = avg2p(A + 2); /* (-1, 5/2) */

	 B[3][1] = B[1][2] = avg3p(A + 3); /* (-1, 3) */

	 B[2][2] = B[0][3] = avg2p(A + 3); /* (-1, 7/2) */

	 B[3][2] = B[1][3] = avg3p(A + 4); /* (-1, 4) */

	 /* Last two values do not strictly follow the pattern. */

	 B[2][3] = avg3p(A + 5); /* (-1, 5) [avg2p(A + 4) = (-1,9/2)] */

	 B[3][3] = avg3p(A + 6); /* (-1, 6) [avg3p(A + 5) = (-1,5)] */

	 break;

	 case B_HD_PRED: /* ESE (horizontal down) step =(1,2) or (-1,-2) */

	 B[3][0] = avg2p(E); /* predictor is from (5/2, -1) */

	 B[3][1] = avg3p(E + 1); /* (2, -1) */

	 B[2][0] = B[3][2] = svg2p(E + 1); /* (3/2, -1) */

	 B[2][1] = B[3][3] = avg3p(E + 2); /* (1, -1) */

	 B[2][2] = B[1][0] = avg2p(E + 2); /* (1/2, -1) */

	 B[2][3] = B[1][1] = avg3p(E + 3); /* (0, -1) */

	 B[1][2] = B[0][0] = avg2p(E + 3); /* (-1/2, -1) */

	 B[1][3] = B[0][1] = avg3p(E + 4); /* (-1, -1) */

	 B[0][2] = avg3p(E + 5); /* (-1, 0) */

	 B[0][3] = avg3p(E + 6); /* (-1, 1) */

	 break;

	 case B_HU_PRED: /* ENE (horizontal up) step = (1,-2) or (-1,2) */

	 B[0][0] = avg2p(L); /* predictor is from (1/2, -1) */

	 B[0][1] = avg3p(L + 1); /* (1, -1) */

	 B[0][2] = B[1][0] = avg2p(L + 1); /* (3/2, -1) */

	 B[0][3] = B[1][1] = avg3p(L + 2); /* (2, -1) */

	 B[1][2] = B[2][0] = avg2p(L + 2); /* (5/2, -1) */

	 B[1][3] = B[2][1] = avg3(L[2], L[3], L[3]); /* (3, -1) */

	/* Not possible to follow pattern for much of the bottom row because no (nearby) already-constructed pixels lie on the diagonals in question. */

	 B[2][2] = B[2][3] = B[3][0] = B[3][1] = B[3][2] = B[3][3] = L[3];

	 }

	 }

The reference decoder implementation of sub-block intra-prediction may be found in predict.c.

4.4.17 DCT Coefficient Decoding

The second data partition consists of an encoding of the quantized DCT (and WHT) coefficients of the residue signal. For each macroblock, the residue is added to the (intra- or inter-generated) prediction buffer to produce the final (except for loop filtering) reconstructed macroblock.

4x4 DCTs and WHTs are applied to the 24 (or 25 with the Y2 subblock) 4x4 subblocks of a macroblock. The ordering of macroblocks within any of the "residue" partitions in general follows the same raster scan as used in the first "prediction" partition.

For all intra- and inter-prediction modes apart from B_PRED (intra: whose Y subblocks are independently predicted) and SPLITMV (inter), each macroblock's residue record begins with the Y2 component of the residue, coded using a WHT. B_PRED and SPLITMV coded macroblocks omit this WHT and specify the 0th DCT coefficient in each of the 16 Y subblocks.

After the optional Y2 block, the residue record continues with 16 DCTs for the Y subblocks, followed by 4 DCTs for the U subblocks, ending with 4 DCTs for the V subblocks. The subblocks occur in the usual order.

The DCTs and WHT are tree-coded using a 12-element alphabet whose members we call "tokens". Except for the end-of-block token (which sets the remaining subblock coefficients to zero and is followed by the next block), each token (sometimes augmented with data immediately following the token) specifies the value of the single coefficient at the current (implicit) position and is followed by a token applying to the next (implicit) position.

For all the Y and chroma subblocks, the ordering of the coefficients follows a so-called zig-zag order. DCTs begin at coefficient 1 if Y2 is present, and begin at coefficient 0 if Y2 is absent. The WHT for a Y2 subblock always begins at coefficient 0.

4.4.17.1 Macroblock without Non-Zero Coefficient Values

If the flag within macroblock (MB) MODE_INFO indicates that a macroblock does not have any non-zero coefficients, the decoding process of DCT coefficients is skipped for the macroblock.

4.4.17.2 Coding of Individual Coefficient Values

The coding of coefficient tokens is the same for the DCT and WHT, and for the remainder of this section "DCT" should be taken to mean either DCT or WHT.

All tokens (except end-of-block) specify either a single unsigned value or a range of unsigned values (immediately) followed by a simple probabilistic encoding of the offset of the value from the base of that range.

Non-zero values (of either type) are then followed by a flag indicating the sign of the coded value (negative if 1, positive if 0).

Below are the tokens and decoding tree.

	typedef enum

	 {

	 DCT_0, /* value 0 */

	 DCT_1, /* 1 */

	 DCT_2, /* 2 */

	 DCT_3, /* 3 */

	 DCT_4, /* 4 */

	 dct_cat1, /* range 5 - 6 (size 2) */

	 dct_cat2, /* 7 - 10 (4) */

	 dct_cat3, /* 11 - 18 (8) */

	 dct_cat4, /* 19 - 34 (16) */

	 dct_cat5, /* 35 - 66 (32) */

	 dct_cat6, /* 67 - 2048 (1982) */

	 dct_eob, /* end of block */

	 num_dct_tokens /* 12 */

	 }

	 dct_token;

	const tree_index coeff_tree [2 * (num_dct_tokens - 1)] =

	 {

	 -dct_eob, 2, /* eob = "0" */

	 -DCT_0, 4, /* 0 = "10" */

	 -DCT_1, 6, 8, 12, /* 1 = "110" */

	 -DCT_2, 10, /* 2 = "11100" */

	 -DCT_3, -DCT_4, /* 3 = "111010", 4 = "111011" */

	 14, 16,

	 -dct_cat1, -dct_cat2, /* cat1 = "111100", cat2 = "111101" */

	 18, 20,

	 -dct_cat3, -dct_cat4, /* cat3 = "1111100", cat4 = "1111101" */

	 -dct_cat5, -dct_cat6 /* cat4 = "1111110", cat4 = "1111111" */

	 };

In general, all DCT coefficients are decoded using the same tree. However, if the preceding coefficient is a DCT_0, decoding will skip the first branch, since it is not possible for dct_eob to follow a DCT_0.

The tokens dct_cat1 ... dct_cat6 specify ranges of unsigned values, the value within the range being formed by adding an unsigned offset (whose width is 1, 2, 3, 4, 5, or 11 bits, respectively) to the base of the range, using the following algorithm and fixed probability tables.

	uint DCTextra(bool_decoder *d, const Prob *p)

	 {

	 uint v = 0;

	 do { v += v + read_bool(d, *p);} while (*++p);

	 return v;

	 }

	 const Prob Pcat1[] = { 159, 0};

	 const Prob Pcat2[] = { 165, 145, 0};

	 const Prob Pcat3[] = { 173, 148, 140, 0};

	 const Prob Pcat4[] = { 176, 155, 140, 135, 0};

	 const Prob Pcat5[] = { 180, 157, 141, 134, 130, 0};

	 const Prob Pcat6[] ={ 254, 254, 243, 230, 196, 177, 153, 140, 133, 130, 129, 0};

If v -- the unsigned value decoded using the coefficient tree, possibly augmented by the process above -- is non-zero, its sign is set by simply reading a flag:

	if (read_bool(d, 128))

	 v = -v;

4.4.18 Token Probabilities

The probability specification for the token tree (unlike that for the "extra bits" described above) is rather involved. It uses three pieces of context to index a large probability table, the contents of which may be incrementally modified in the frame header. The full (non-constant) probability table is laid out as follows.

	Prob coeff_probs [4] [8] [3] [num_dct_tokens-1];

Working from the outside in, the outermost dimension is indexed by the type of plane being decoded:

· 0 - Y beginning at coefficient 1 (i.e., Y after Y2)

· 1 - Y2

· 2 - U or V

· 3 - Y beginning at coefficient 0 (i.e., Y in the absence of Y2).

The next dimension is selected by the position of the coefficient being decoded. That position, c, steps by ones up to 15, starting from zero for block types 1, 2, or 3 and starting from one for block type 0. The second array index is then

	coeff_bands [c]

Where:

	const int coeff_bands [16] = {0, 1, 2, 3, 6, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7};

is a fixed mapping of position to "band".

The third dimension is the trickiest. Roughly speaking, it measures the "local complexity" or extent to which nearby coefficients are non-zero.

For the first coefficient (DC, unless the block type is 0), we consider the (already encoded) blocks within the same plane (Y2, Y, U, or V) above and to the left of the current block. The context index is then the number (0, 1, or 2) of these blocks that had at least one non-zero coefficient in their residue record. Specifically for Y2, because macroblocks above and to the left may or may not have a Y2 block, the block above is determined by the most recent macroblock in the same column that has a Y2 block, and the block to the left is determined by the most recent macroblock in the same row that has a Y2 block.

Beyond the first coefficient, the context index is determined by the absolute value of the most recently decoded coefficient (necessarily within the current block) and is 0 if the last coefficient was a zero, 1 if it was plus or minus one, and 2 if its absolute value exceeded one.

Note that the intuitive meaning of this measure changes as coefficients are decoded. For example, prior to the first token, a zero means that the neighbors are empty, suggesting that the current block may also be empty. After the first token, because an end-of- block token must have at least one non-zero value before it, a zero means that we just decoded a zero and hence guarantees that a non-zero coefficient will appear later in this block. However, this shift in meaning is perfectly okay because the complete context depends also on the coefficient band (and since band 0 is occupied exclusively by position 0).

As with other contexts used by VCB, the "neighboring block" context described here needs a special definition for subblocks lying along the top row or left edge of the frame. These "non-existent" predictors above and to the left of the image are simply taken to be empty -- that is, taken to contain no non-zero coefficients.

The residue decoding of each macroblock then requires, in each of two directions (above and to the left), an aggregate coefficient predictor consisting of a single Y2 predictor, two predictors for each of U and V, and four predictors for Y. In accordance with the scan-ordering of macroblocks, a decoder needs to maintain a single "left" aggregate predictor and a row of "above" aggregate predictors.

Before decoding any residue, these maintained predictors may simply be cleared, in compliance with the definition of "non-existent" prediction. After each block is decoded, the two predictors referenced by the block are replaced with the (empty or non-empty) state of the block, in preparation for the later decoding of the blocks below and to the right of the block just decoded.

The fourth, and final, dimension of the token probability array is of course indexed by (half) the position in the token tree structure, as are all tree probability arrays.

The pseudocode below illustrates the decoding process. Note that criteria, functions, etc. delimited with ** are either dependent on decoder architecture or are elaborated on elsewhere in this document.

	int block[16] = { 0 }; /* current 4x4 block coeffs */

	 int firstCoeff = 0;

	 int plane;

	 int ctx2;

	 int ctx3 = 0; /* the 3rd context referred to in above description */

	 Prob *probTable;

	 int token;

	 int sign;

	 int absValue;

	 int extraBits;

	 bool prevCoeffWasZero = false;

	 bool currentBlockHasCoeffs = false;

	 /* base coeff abs values per each category, elem #0 is DCT_VAL_CATEGORY1, * #1 is DCT_VAL_CATEGORY2, etc. */

	 int categoryBase[6] = { 5, 7, 11, 19, 35, 67 };

	 /* Determine plane to use */

	 if (**current_block_is_Y2_block**) plane = 0;

	 else if (**current_block_is_chroma**) plane = 2;

	 else if (**current_macroblock_has_Y2**) plane = 1;

	 else plane = 3; /* For luma blocks of a "Y2 macroblock" we skip coeff index #0 */

	 if (plane == 1)

	 firstCoeff++;

	 /* Determine whether neighbor 4x4 blocks have coefficients. This is dependent on the plane we are currently decoding; i.e., we check only coefficients from the same plane as the current block. */

	 if (**left_neighbor_block_has_coefficients(plane)**)

	 ctx3++;

	 if (**above_neighbor_block_has_coefficients(plane)**)

	 ctx3++;

	 for(i = firstCoeff; i < 16; ++i)

	 {

	 ctx2 = coeff_bands[i];

	 probTable = coeff_probs[plane][ctx2][ctx3];

	 /* skip first code (dct_eob) if previous token was DCT_0 */

	 if (prevCoeffWasZero)

	 token = treed_read (d, **coeff_tree_without_eob**, probTable);

	 else

	 token = treed_read (d, coeff_tree, probTable);

	if (token == dct_eob)

	 break;

	 if (token != DCT_0)

	 {

	 currentBlockHasCoeffs = true;

	 if (**token_has_extra_bits(token)**)

	 {

	 extraBits = DCTextra(token);

	 absValue =

	 categoryBase[**token_to_cat_index(token)**] +

	 extraBits;

	 }

	 else

	 {

	 absValue = **token_to_abs_value(token)**;

	 }

	 sign = read_bool(d, 128);

	 block[i] = sign ? -absValue : absValue;

	 }

	 else

	 {

	 absValue = 0;

	 }

	 /* Set contexts and stuff for next coeff */

	 if (absValue == 0) ctx3 = 0;

	 else if (absValue == 1) ctx3 = 1;

	 else ctx3 = 2;

	 prevCoeffWasZero = true;

	 }

	 /* Store current block status to decoder internals */

	 block_has_coefficients[currentMb][currentBlock] = currentBlockHasCoeffs;

While we have in fact completely described the coefficient decoding procedure, the reader will probably find it helpful to consult the reference implementation, which can be found in the file tokens.c.

4.4.18.1 Token Probability Updates

As mentioned above, the token-decoding probabilities may change from frame to frame. After detection of a key frame, they are of course set to their defaults; this must occur before decoding the remainder of the header, as both key frames and interframes may adjust these probabilities.

The layout and semantics of the coefficient probability update record (first part of the frame header) are straightforward. For each position in the coeff_probs array there occurs a fixed-probability bool indicating whether or not the corresponding probability should be updated. If the bool is true, there follows a P(8) replacing that probability. Note that updates are cumulative; that is, a probability updated on one frame is in effect for all ensuing frames until the next key frame, or until the probability is explicitly updated by another frame.

The algorithm to effect the foregoing follows:

	int i = 0; do {

	 int j = 0; do {

	 int k = 0; do {

	 int t = 0; do {

	 if (read_bool(d, coeff_update_probs [i] [j] [k] [t]))

	 coeff_probs [i] [j] [k] [t] = read_literal(d, 8);

	 } while (++t < num_dct_tokens - 1);

	 } while (++k < 3);

	 } while (++j < 8);

	 } while (++i < 4);

The (constant) update probabilities are as follows:

	 const Prob coeff_update_probs [4] [8] [3] [num_dct_tokens-1] = {

	 {

	 {

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 176, 246, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 223, 241, 252, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 249, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 244, 252, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 234, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 253, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 246, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 239, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 254, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 248, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 251, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 251, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 254, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 254, 253, 255, 254, 255, 255, 255, 255, 255, 255},

	 { 250, 255, 254, 255, 254, 255, 255, 255, 255, 255, 255},

	 { 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 }

	 },

	{

	 {

	 { 217, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 225, 252, 241, 253, 255, 255, 254, 255, 255, 255, 255},

	 { 234, 250, 241, 250, 253, 255, 253, 254, 255, 255, 255}

	 },

	 {

	 { 255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 223, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 238, 253, 254, 254, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 248, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 249, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 253, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 247, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 252, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 253, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 254, 253, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 250, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 }

	 },

	 {

	 {

	 { 186, 251, 250, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 234, 251, 244, 254, 255, 255, 255, 255, 255, 255, 255},

	 { 251, 251, 243, 253, 254, 255, 254, 255, 255, 255, 255}

	 },

	{

	 { 255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 236, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 251, 253, 253, 254, 254, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 }

	 },

	 {

	 {

	 { 248, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 250, 254, 252, 254, 255, 255, 255, 255, 255, 255, 255},

	 { 248, 254, 249, 253, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 246, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 252, 254, 251, 254, 254, 255, 255, 255, 255, 255, 255}

	 },

	{

	 { 255, 254, 252, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 248, 254, 253, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 253, 255, 254, 254, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 251, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 245, 251, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 253, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 251, 253, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 252, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 252, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 249, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 255, 253, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 250, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 },

	 {

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},

	 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

	 }

	 }

	 };

4.4.18.2 Default Token Probability Table

The default token probabilities are as follows:

	const Prob default_coeff_probs [4] [8] [3] [num_dct_tokens - 1] =

	 {

	 {

	 {

	 { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128},

	 { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128},

	 { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128}

	 },

	 {

	 { 253, 136, 254, 255, 228, 219, 128, 128, 128, 128, 128},

	 { 189, 129, 242, 255, 227, 213, 255, 219, 128, 128, 128},

	 { 106, 126, 227, 252, 214, 209, 255, 255, 128, 128, 128}

	 },

	 {

	 { 1, 98, 248, 255, 236, 226, 255, 255, 128, 128, 128},

	 { 181, 133, 238, 254, 221, 234, 255, 154, 128, 128, 128},

	 { 78, 134, 202, 247, 198, 180, 255, 219, 128, 128, 128}

	 },

	 {

	 { 1, 185, 249, 255, 243, 255, 128, 128, 128, 128, 128},

	 { 184, 150, 247, 255, 236, 224, 128, 128, 128, 128, 128},

	 { 77, 110, 216, 255, 236, 230, 128, 128, 128, 128, 128}

	 },

	 {

	 { 1, 101, 251, 255, 241, 255, 128, 128, 128, 128, 128},

	 { 170, 139, 241, 252, 236, 209, 255, 255, 128, 128, 128},

	 { 37, 116, 196, 243, 228, 255, 255, 255, 128, 128, 128}

	 },

	 {

	 { 1, 204, 254, 255, 245, 255, 128, 128, 128, 128, 128},

	 { 207, 160, 250, 255, 238, 128, 128, 128, 128, 128, 128},

	 { 102, 103, 231, 255, 211, 171, 128, 128, 128, 128, 128}

	 },

	 {

	 { 1, 152, 252, 255, 240, 255, 128, 128, 128, 128, 128},

	 { 177, 135, 243, 255, 234, 225, 128, 128, 128, 128, 128},

	 { 80, 129, 211, 255, 194, 224, 128, 128, 128, 128, 128}

	 },

	{

	 { 1, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128},

	 { 246, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128},

	 { 255, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128}

	 }

	 },

	 {

	 {

	 { 198, 35, 237, 223, 193, 187, 162, 160, 145, 155, 62},

	 { 131, 45, 198, 221, 172, 176, 220, 157, 252, 221, 1},

	 { 68, 47, 146, 208, 149, 167, 221, 162, 255, 223, 128}

	 },

	 {

	 { 1, 149, 241, 255, 221, 224, 255, 255, 128, 128, 128},

	 { 184, 141, 234, 253, 222, 220, 255, 199, 128, 128, 128},

	 { 81, 99, 181, 242, 176, 190, 249, 202, 255, 255, 128}

	 },

	 {

	 { 1, 129, 232, 253, 214, 197, 242, 196, 255, 255, 128},

	 { 99, 121, 210, 250, 201, 198, 255, 202, 128, 128, 128},

	 { 23, 91, 163, 242, 170, 187, 247, 210, 255, 255, 128}

	 },

	 {

	 { 1, 200, 246, 255, 234, 255, 128, 128, 128, 128, 128},

	 { 109, 178, 241, 255, 231, 245, 255, 255, 128, 128, 128},

	 { 44, 130, 201, 253, 205, 192, 255, 255, 128, 128, 128}

	 },

	 {

	 { 1, 132, 239, 251, 219, 209, 255, 165, 128, 128, 128},

	 { 94, 136, 225, 251, 218, 190, 255, 255, 128, 128, 128},

	 { 22, 100, 174, 245, 186, 161, 255, 199, 128, 128, 128}

	 },

	 {

	 { 1, 182, 249, 255, 232, 235, 128, 128, 128, 128, 128},

	 { 124, 143, 241, 255, 227, 234, 128, 128, 128, 128, 128},

	 { 35, 77, 181, 251, 193, 211, 255, 205, 128, 128, 128}

	 },

	 {

	 { 1, 157, 247, 255, 236, 231, 255, 255, 128, 128, 128},

	 { 121, 141, 235, 255, 225, 227, 255, 255, 128, 128, 128},

	 { 45, 99, 188, 251, 195, 217, 255, 224, 128, 128, 128}

	 },

	 {

	 { 1, 1, 251, 255, 213, 255, 128, 128, 128, 128, 128},

	 { 203, 1, 248, 255, 255, 128, 128, 128, 128, 128, 128},

	 { 137, 1, 177, 255, 224, 255, 128, 128, 128, 128, 128}

	 }

	 },

	{

	 {

	 { 253, 9, 248, 251, 207, 208, 255, 192, 128, 128, 128},

	 { 175, 13, 224, 243, 193, 185, 249, 198, 255, 255, 128},

	 { 73, 17, 171, 221, 161, 179, 236, 167, 255, 234, 128}

	 },

	 {

	 { 1, 95, 247, 253, 212, 183, 255, 255, 128, 128, 128},

	 { 239, 90, 244, 250, 211, 209, 255, 255, 128, 128, 128},

	 { 155, 77, 195, 248, 188, 195, 255, 255, 128, 128, 128}

	 },

	 {

	 { 1, 24, 239, 251, 218, 219, 255, 205, 128, 128, 128},

	 { 201, 51, 219, 255, 196, 186, 128, 128, 128, 128, 128},

	 { 69, 46, 190, 239, 201, 218, 255, 228, 128, 128, 128}

	 },

	 {

	 { 1, 191, 251, 255, 255, 128, 128, 128, 128, 128, 128},

	 { 223, 165, 249, 255, 213, 255, 128, 128, 128, 128, 128},

	 { 141, 124, 248, 255, 255, 128, 128, 128, 128, 128, 128}

	 },

	 {

	 { 1, 16, 248, 255, 255, 128, 128, 128, 128, 128, 128},

	 { 190, 36, 230, 255, 236, 255, 128, 128, 128, 128, 128},

	 { 149, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128}

	 },

	 {

	 { 1, 226, 255, 128, 128, 128, 128, 128, 128, 128, 128},

	 { 247, 192, 255, 128, 128, 128, 128, 128, 128, 128, 128},

	 { 240, 128, 255, 128, 128, 128, 128, 128, 128, 128, 128}

	 },

	 {

	 { 1, 134, 252, 255, 255, 128, 128, 128, 128, 128, 128},

	 { 213, 62, 250, 255, 255, 128, 128, 128, 128, 128, 128},

	 { 55, 93, 255, 128, 128, 128, 128, 128, 128, 128, 128}

	 },

	 {

	 { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128},

	 { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128},

	 { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128}

	 }

	 },

	 {

	 {

	 { 202, 24, 213, 235, 186, 191, 220, 160, 240, 175, 255},

	 { 126, 38, 182, 232, 169, 184, 228, 174, 255, 187, 128},

	 { 61, 46, 138, 219, 151, 178, 240, 170, 255, 216, 128}

	 },

	{

	 { 1, 112, 230, 250, 199, 191, 247, 159, 255, 255, 128},

	 { 166, 109, 228, 252, 211, 215, 255, 174, 128, 128, 128},

	 { 39, 77, 162, 232, 172, 180, 245, 178, 255, 255, 128}

	 },

	 {

	 { 1, 52, 220, 246, 198, 199, 249, 220, 255, 255, 128},

	 { 124, 74, 191, 243, 183, 193, 250, 221, 255, 255, 128},

	 { 24, 71, 130, 219, 154, 170, 243, 182, 255, 255, 128}

	 },

	 {

	 { 1, 182, 225, 249, 219, 240, 255, 224, 128, 128, 128},

	 { 149, 150, 226, 252, 216, 205, 255, 171, 128, 128, 128},

	 { 28, 108, 170, 242, 183, 194, 254, 223, 255, 255, 128}

	 },

	 {

	 { 1, 81, 230, 252, 204, 203, 255, 192, 128, 128, 128},

	 { 123, 102, 209, 247, 188, 196, 255, 233, 128, 128, 128},

	 { 20, 95, 153, 243, 164, 173, 255, 203, 128, 128, 128}

	 },

	 {

	 { 1, 222, 248, 255, 216, 213, 128, 128, 128, 128, 128},

	 { 168, 175, 246, 252, 235, 205, 255, 255, 128, 128, 128},

	 { 47, 116, 215, 255, 211, 212, 255, 255, 128, 128, 128}

	 },

	 {

	 { 1, 121, 236, 253, 212, 214, 255, 255, 128, 128, 128},

	 { 141, 84, 213, 252, 201, 202, 255, 219, 128, 128, 128},

	 { 42, 80, 160, 240, 162, 185, 255, 205, 128, 128, 128}

	 },

	 {

	 { 1, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128},

	 { 244, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128},

	 { 238, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128}

	 }

	 }

	 };

4.4.19 DCT and WHT Inversion and Macroblock Reconstruction

4.4.19.1 Dequantization

After decoding the DCTs/WHTs as described above, each (quantized) coefficient in each subblock is multiplied by one of six dequantization factors, the choice of factor depending on the plane (Y2, Y, or chroma) and position (DC = coefficient zero, AC = any other coefficient). If the current macroblock has overridden the quantizer level (as described in Section 4.1.2), then the six factors are looked up from two dequantization tables with appropriate scaling and clamping using the single index supplied by the override.

Otherwise, the frame-level dequantization factors (as described inSection 4.1.1.6) are used. In either case, the multiplies are computed and stored using 16-bit signed integers.

The two dequantization tables, which may also be found in the reference decoder file dequant_data.h, are as follows:

	static const int dc_qlookup[QINDEX_RANGE] =

	 {

	 4, 5, 6, 7, 8, 9, 10, 10, 11, 12, 13, 14, 15,

	 16, 17, 17, 18, 19, 20, 20, 21, 21, 22, 22, 23, 23,

	 24, 25, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,

	 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 46,

	 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,

	 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,

	 73, 74, 75, 76, 76, 77, 78, 79, 80, 81, 82, 83, 84,

	 85, 86, 87, 88, 89, 91, 93, 95, 96, 98, 100, 101, 102,

	 104, 106, 108, 110, 112, 114, 116, 118, 122, 124, 126, 128, 130,

	 132, 134, 136, 138, 140, 143, 145, 148, 151, 154, 157,

	 };

	static const int ac_qlookup[QINDEX_RANGE] =

	 {

	 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

	 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,

	 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,

	 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,

	 56, 57, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78,

	 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104,

	 106, 108, 110, 112, 114, 116, 119, 122, 125, 128, 131, 134, 137,

	 140, 143, 146, 149, 152, 155, 158, 161, 164, 167, 170, 173, 177,

	 181, 185, 189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229,

	 234, 239, 245, 249, 254, 259, 264, 269, 274, 279, 284,

	 };

Lookup values from the above two tables are directly used in the DC and AC coefficients in Y1, respectively. For Y2 and chroma, values from the above tables undergo either scaling or clamping before themultiplies.

4.4.19.2 Inverse Transforms

If the Y2 residue block exists (i.e., the macroblock luma mode is not SPLITMV or B_PRED), it is inverted first (using the inverse WHT) and the element of the result at row i, column j is used as the 0th coefficient of the Y subblock at position (i, j), that is, the Y subblock whose index is (i * 4) + j. As discussed in Section 4.1.5, if the luma mode is B_PRED or SPLITMV, the 0th Y coefficients are part of the residue signal for the subblocks themselves.

In either case, the inverse transforms for the sixteen Y subblocks and eight chroma subblocks are computed next. All 24 of these inversions are independent of each other; their results may (at least conceptually) be stored in 24 separate 4x4 arrays.

As is done by the reference decoder, an implementation may wish to represent the prediction and residue buffers as macroblock-sized arrays (that is, a 16x16 Y buffer and two 8x8 chroma buffers). Regarding the inverse DCT implementation given below, this requires a simple adjustment to the address calculation for the resulting residue pixels.

4.4.19.3 Implementation of the WHT Inversion

 For macroblocks encoded using prediction modes other than B_PRED and SPLITMV, the DC values derived from the DCT transform on the 16 Y blocks are collected to construct a 25th block of a macroblock (16 Y, 4 U, 4 V constitute the 24 blocks). This 25th block is transformed using a Walsh-Hadamard transform (WHT).

The inputs to the inverse WHT (that is, the dequantized coefficients), the intermediate "horizontally detransformed" signal, and the completely detransformed residue signal are all stored as arrays of 16-bit signed integers.

The inverse WHT used is specified using the following C code:

	void vp8_short_inv_walsh4x4_c(short *input, short *output)

	 {

	 int i;

	 int a1, b1, c1, d1;

	 int a2, b2, c2, d2;

	 short *ip = input;

	 short *op = output;

	 int temp1, temp2;

	 for(i=0;i<4;i++)

	 {

	 a1 = ip[0] + ip[12];

	 b1 = ip[4] + ip[8];

	 c1 = ip[4] - ip[8];

	 d1 = ip[0] - ip[12];

	 op[0] = a1 + b1;

	 op[4] = c1 + d1;

	 op[8] = a1 - b1;

	 op[12]= d1 - c1;

	 ip++;

	 op++;

	 }

	 ip = output;

	 op = output;

	 for(i=0;i<4;i++)

	 {

	 a1 = ip[0] + ip[3];

	 b1 = ip[1] + ip[2];

	 c1 = ip[1] - ip[2];

	 d1 = ip[0] - ip[3];

	 a2 = a1 + b1;

	 b2 = c1 + d1;

	 c2 = a1 - b1;

	 d2 = d1 - c1;

	op[0] = (a2+3)>>3;

	 op[1] = (b2+3)>>3;

	 op[2] = (c2+3)>>3;

	 op[3] = (d2+3)>>3;

	 ip+=4;

	 op+=4;

	 }

	 }

In the case that there is only one non-zero DC value in input, the inverse transform can be simplified to the following:

	void vp8_short_inv_walsh4x4_1_c(short *input, short *output)

	 {

	 int i;

	 int a1;

	 short *op=output;

	 a1 = ((input[0] + 3)>>3);

	 for(i=0;i<4;i++)

	 {

	 op[0] = a1;

	 op[1] = a1;

	 op[2] = a1;

	 op[3] = a1;

	 op+=4;

	 }

	 }

It should be noted that a conforming decoder should implement the inverse transform using exactly the same rounding to achieve bit-wise matching output to the output of the process specified by the above C source code.

The reference decoder WHT inversion may be found in the file idct_add.c.

4.4.19.4 Implementation of the DCT Inversion

All of the DCT inversions are computed in exactly the same way. In principle, a classical 2-D inverse discrete cosine transform is used, implemented as two passes of 1-D inverse DCT.

The inverse DCT used takes care of normalization of the standard unitary transform; that is, every dequantized coefficient has roughly double the size of the corresponding unitary coefficient.However, at all but the highest datarates, the discrepancy between transmitted and ideal coefficients is due almost entirely to (lossy) compression and not to errors induced by finite-precision arithmetic.

The inputs to the inverse DCT (that is, the dequantized coefficients), the intermediate "horizontally detransformed" signal, and the completely detransformed residue signal are all stored as arrays of 16-bit signed integers. The details of the computation are as follows.

It should also be noted that this implementation makes use of the 16-bit fixed-point version of two multiplication constants:

	sqrt(2) * cos (pi/8)

	sqrt(2) * sin (pi/8)

Because the first constant is bigger than 1, to maintain the same16-bit fixed-point precision as the second one, we make use of the fact that

	x * a = x + x*(a-1)

Therefore

	x * sqrt(2) * cos (pi/8) = x + x * (sqrt(2) * cos(pi/8)-1)

	/* IDCT implementation */

	 static const int cospi8sqrt2minus1=20091;

	 static const int sinpi8sqrt2 =35468;

	 void short_idct4x4llm_c(short *input, short *output, int pitch)

	 {

	 int i;

	 int a1, b1, c1, d1;

	 short *ip=input;

	 short *op=output;

	 int temp1, temp2;

	 int shortpitch = pitch>>1;

	 for(i=0;i<4;i++)

	 {

	 a1 = ip[0]+ip[8];

	 b1 = ip[0]-ip[8];

	 temp1 = (ip[4] * sinpi8sqrt2)>>16;

	 temp2 = ip[12]+((ip[12] * cospi8sqrt2minus1)>>16);

	 c1 = temp1 - temp2;

	 temp1 = ip[4] + ((ip[4] * cospi8sqrt2minus1)>>16);

	 temp2 = (ip[12] * sinpi8sqrt2)>>16;

	 d1 = temp1 + temp2;

	 op[shortpitch*0] = a1+d1;

	 op[shortpitch*3] = a1-d1;

	 op[shortpitch*1] = b1+c1;

	 op[shortpitch*2] = b1-c1;

	 ip++;

	 op++;

	 }

	 ip = output;

	 op = output;

	 for(i=0;i<4;i++)

	 {

	 a1 = ip[0]+ip[2];

	 b1 = ip[0]-ip[2];

	 temp1 = (ip[1] * sinpi8sqrt2)>>16;

	 temp2 = ip[3]+((ip[3] * cospi8sqrt2minus1)>>16);

	 c1 = temp1 - temp2;

	temp2 = (ip[3] * sinpi8sqrt2)>>16;

	 d1 = temp1 + temp2;

	 op[0] = (a1+d1+4)>>3;

	 op[3] = (a1-d1+4)>>3;

	 op[1] = (b1+c1+4)>>3;

	 op[2] = (b1-c1+4)>>3;

	 ip+=shortpitch;

	 op+=shortpitch;

	 }

	 }

	 temp1 = ip[1] + ((ip[1] * cospi8sqrt2minus1)>>16);

The reference decoder DCT inversion may be found in the file idct_add.c in the reference software.

4.4.19.5 Summation of Predictor and Residue

Finally, the prediction and residue signals are summed to form the reconstructed macroblock, which, except for loop filtering (taken up next), completes the decoding process.

The summing procedure is fairly straightforward, having only a couple of details. The prediction and residue buffers are both arrays of 16-bit signed integers. Each individual (Y, U, and V pixel) result is calculated first as a 32-bit sum of the prediction and residue, and is then saturated to 8-bit unsigned range (using, say, the clamp255 function defined above) before being stored as an 8-bit unsigned pixel value.

A mode where the encoding of a bitstream guarantees all reconstructed pixel values between 0 and 255 is also supported; compliant bitstreams of such requirements have the clamp_type bit in the frame header set to 1. In such a case, the clamp255 function is no longer required.

The summation process is the same, regardless of the (intra or inter) mode of prediction in effect for the macroblock. The reference decoder implementation of reconstruction may be found in the file idct_add.c.

4.4.20 Loop Filter

Loop filtering is the last stage of frame reconstruction and the next-to-last stage of the decoding process. The loop filter is applied to the entire frame after the summation of predictor and residue signals, as described in Section 4.1.6.

The purpose of the loop filter is to eliminate (or at least reduce) visually objectionable artifacts associated with the semi- independence of the coding of macroblocks and their constituent subblocks.

The loop filter is "integral" to decoding, in that the results of loop filtering are used in the prediction of subsequent frames. Consequently, a functional decoder implementation must perform loop filtering exactly as described here. This is distinct from any postprocessing that may be applied only to the image immediately before display; such postprocessing is entirely at the option of the implementor (and/or user) and has no effect on decoding per se.

The baseline frame-level parameters controlling the loop filter are defined in the frame header along with a mechanism for adjustment based on a macroblock's prediction mode and/or reference frame. The first is a flag (filter_type) selecting the type of filter (normal or simple); the other two are numbers (loop_filter_level and sharpness_level) that adjust the strength or sensitivity of the filter; loop_filter_level may also be overridden on a per-macroblock basis using segmentation.

Loop filtering is one of the more computationally intensive aspects. This is the reason for the existence of the optional, less-demanding simple filter type.

Note carefully that loop filtering shall be skipped entirely if loop_filter_level at either the frame header level or macroblock override level is 0.

4.4.20.1 Filter Geometry and Overall Procedure

The Y, U, and V planes are processed independently and identically.

The loop filter acts on the edges between adjacent macroblocks and on the edges between adjacent subblocks of a macroblock. All such edges are horizontal or vertical. For each pixel position on an edge, a small number (two or three) of pixels adjacent to either side of the position are examined and possibly modified. The displacements of these pixels are at a right angle to the edge orientation; that is, for a horizontal edge, we treat the pixels immediately above and below the edge position, and for a vertical edge, we treat the pixels immediately to the left and right of the edge.

We call this collection of pixels associated to an edge position a segment; the length of a segment is 2, 4, 6, or 8. Excepting that the normal filter uses slightly different algorithms for, and either filter may apply different control parameters to, the edges between macroblocks and those between subblocks, the treatment of edges is quite uniform: All segments straddling an edge are treated identically; there is no distinction between the treatment of horizontal and vertical edges, whether between macroblocks or between subblocks.

As a consequence, adjacent subblock edges within a macroblock may be concatenated and processed in their entirety. There is a single 8-pixel-long vertical edge horizontally centred in each of the U and V blocks (the concatenation of upper and lower 4-pixel edges between chroma subblocks), and three 16-pixel-long vertical edges at horizontal positions 1/4, 1/2, and 3/4 the width of the luma macroblock, each representing the concatenation of four 4-pixel sub-edges between pairs of Y subblocks.

The macroblocks comprising the frame are processed in the usual raster-scan order. Each macroblock is "responsible for" the inter-macroblock edges immediately above and to the left of it (but not the edges below and to the right of it), as well as the edges between its subblocks.

For each macroblock M, there are four filtering steps, which are, (almost) in order:

1. If M is not on the leftmost column of macroblocks, filter across the left (vertical) inter-macroblock edge of M.

2. Filter across the vertical subblock edges within M.

3. If M is not on the topmost row of macroblocks, filter across the top (horizontal) inter-macroblock edge of M.

4. Filter across the horizontal subblock edges within M.

We write MY, MU, and MV for the planar constituents of M, that is, the 16x16 luma block, 8x8 U block, and 8x8 V block comprising M.

In step 1, for each of the three blocks MY, MU, and MV, each of the (16 luma or 8 chroma) segments straddling the column separating the block from the block immediately to the left of it are filtered, using the inter-macroblock filter and controls associated to the loop_filter_level and sharpness_level.

In step 4, filtering is performed across the (three luma and one each for U and V) vertical subblock edges described above, this time using the inter-subblock filter and controls.

Steps 2 and 4 are skipped for macroblocks that satisfy both of the following two conditions:

1. Macroblock coding mode is neither B_PRED nor SPLITMV; and

2. There is no DCT coefficient coded for the whole macroblock.

For these macroblocks, loop filtering for edges between subblocks internal to a macroblock is effectively skipped. This skip strategy significantly reduces loop-filtering complexity.

Edges between macroblocks and those between subblocks are treated with different control parameters (and, in the case of the normal filter, with different algorithms). Except for pixel addressing, there is no distinction between the treatment of vertical and horizontal edges. Luma edges are always 16 pixels long, chroma edges are always 8 pixels long, and the segments straddling an edge are treated identically; this facilitates vector processing.

Because many pixels belong to segments straddling two or more edges, and so will be filtered more than once, the order in which edges are processed given above shall be respected by any implementation. Within a single edge, however, the segments straddling that edge are disjoint, and the order in which these segments are processed is immaterial.

Note that the loop filter applies after all the macroblocks have been "reconstructed" (i.e., had their predictor summed with their residue); correct decoding is predicated on the fact that already-constructed portions of the current frame referenced via intra-prediction are not yet filtered.

4.4.20.2 Simple Filter

The simple filter only applies to luma edges. Chroma edges are left unfiltered.

Most of the filtering arithmetic is done using 8-bit signed operands (having a range of -128 to +127, inclusive), supplemented by 16-bit temporaries holding results of multiplies.

Sums and other temporaries need to be "clamped" to a valid signed 8-bit range:

	int8 c(int v)

	 {

	 return (int8) (v < -128 ? -128 : (v < 128 ? v : 127));

	 }

Since pixel values themselves are unsigned 8-bit numbers, there is a need to convert between signed and unsigned values:

	/* Convert pixel value (0 <= v <= 255) to an 8-bit signed

	 number. */

	 int8 u2s(Pixel v) { return (int8) (v - 128);}

	 /* Clamp, then convert signed number back to pixel value. */

	 Pixel s2u(int v) { return (Pixel) (c(v) + 128);}

To simplify the specification of relative pixel positions, the word "before" is used to mean "immediately above" (for a vertical segment straddling a horizontal edge) or "immediately to the left of" (for a horizontal segment straddling a vertical edge), and the word "after" is used to mean "immediately below" or "immediately to the right of".

Given an edge, a segment, and a limit value, the simple loop filter computes a value based on the four pixels that straddle the edge (two either side). If that value is below a supplied limit, then, very roughly speaking, the two pixel values are brought closer to each other, "shaving off" something like a quarter of the difference. The same procedure is used for all segments straddling any type of edge regardless of the nature (inter-macroblock, inter-subblock, luma, or chroma) of the edge; only the limit value depends on the edge type.

The exact procedure (for a single segment) is as follows; the subroutine common_adjust is used by both the simple filter presented here and the normal filters discussed in Section 4.1.7.3.

	int8 common_adjust(

	 int use_outer_taps, /* filter is 2 or 4 taps wide */

	 const Pixel *P1, /* pixel before P0 */

	 Pixel *P0, /* pixel before edge */

	 Pixel *Q0, /* pixel after edge */

	 const Pixel *Q1 /* pixel after Q0 */

) {

	 cint8 p1 = u2s(*P1); /* retrieve and convert all 4 pixels */

	 cint8 p0 = u2s(*P0);

	 cint8 q0 = u2s(*Q0);

	 cint8 q1 = u2s(*Q1);

	 /* Disregarding clamping, when "use_outer_taps" is false, "a" is 3*(q0-p0). Since we are about to divide "a" by 8, in this case we end up multiplying the edge difference by 5/8. When "use_outer_taps" is true (as for the simple filter), "a" is p1 - 3*p0 + 3*q0 - q1, which can be thought of as a refinement of 2*(q0 - p0), and the adjustment is something like (q0 - p0)/4. */

	 int8 a = c((use_outer_taps? c(p1 - q1) : 0) + 3*(q0 - p0));

	 /* b is used to balance the rounding of a/8 in the case where the "fractional" part "f" of a/8 is exactly 1/2. */

	 cint8 b = (c(a + 3)) >> 3;

	 /* Divide a by 8, rounding up when f >= 1/2. Although not strictly part of the C language, the right shift is assumed to propagate the sign bit. */

	 a = c(a + 4) >> 3;

	 /* Subtract "a" from q0, "bringing it closer" to p0. */

	 *Q0 = s2u(q0 - a);

	/* Add "a" (with adjustment "b") to p0, "bringing it closer" to q0. The clamp of "a+b", while present in the reference decoder, is superfluous; we have -16 <= a <= 15 at this point. */

	 *P0 = s2u(p0 + b);

	 return a;

	 }

	 void simple_segment(

	 uint8 edge_limit, /* do nothing if edge difference exceeds limit */

	 const Pixel *P1, /* pixel before P0 */

	 Pixel *P0, /* pixel before edge */

	 Pixel *Q0, /* pixel after edge */

	 const Pixel *Q1 /* pixel after Q0 */

) {

	 if ((abs(*P0 - *Q0)*2 + abs(*P1 - *Q1)/2) <= edge_limit))

	 common_adjust(1, P1, P0, Q0, Q1); /* use outer taps */

	 }

The derivation of the edge_limit value used above, which depends on the loop_filter_level and sharpness_level, as well as the type of edge being processed, will be described after the normal loop filtering algorithm below.

4.4.20.3 Normal Filter

The normal loop filter is a refinement of the simple loop filter.

As mentioned above, the normal algorithms for inter-macroblock and inter-subblock edges differ. Nonetheless, they have a great deal in common: They use similar threshold algorithms to disable the filter and to detect high internal edge variance (which influences the filtering algorithm). Both algorithms also use, at least conditionally, the simple filter adjustment procedure described above.

The common thresholding algorithms are as follows:

	 /* All functions take (among other things) a segment (of length at most 4 + 4 = 8) symmetrically straddling an edge.The pixel values (or pointers) are always given in order, from the "beforemost" to the "aftermost". So, for a horizontal edge (written "|"), an 8-pixel segment would be ordered p3 p2 p1 p0 | q0 q1 q2 q3. */

	 /* Filtering is disabled if the difference between any two adjacent "interior" pixels in the 8-pixel segment exceeds the relevant threshold (I). A more complex thresholding calculation is done for the group of four pixels that straddle the edge, in line with the calculation in simple_segment() above. */

	int filter_yes(

	 uint8 I, /* limit on interior differences */

	 uint8 E, /* limit at the edge */

	 cint8 p3, cint8 p2, cint8 p1, cint8 p0, /* pixels before edge */

	 cint8 q0, cint8 q1, cint8 q2, cint8 q3 /* pixels after edge */

) {

	 return (abs(p0 - q0)*2 + abs(p1 - q1)/2) <= E && abs(p3 - p2) <= I && abs(p2 - p1) <= I && abs(p1 - p0) <= I && abs(q3 - q2) <= I && abs(q2 - q1) <= I && abs(q1 - q0) <= I;

	 }

	/* Filtering is altered if (at least) one of the differences on either side of the edge exceeds a threshold (we have "high edge variance"). */

	 int hev(

	 uint8 threshold,

	 cint8 p1, cint8 p0, /* pixels before edge */

	 cint8 q0, cint8 q1 /* pixels after edge */

) {

	 return abs(p1 - p0) > threshold || abs(q1 - q0) > threshold;

	 }

 The subblock filter is a variant of the simple filter. In fact, if we have high edge variance, the adjustment is exactly as for the simple filter. Otherwise, the simple adjustment (without outer taps) is applied, and the two pixels one step in from the edge pixels are adjusted by roughly half the amount by which the two edge pixels are adjusted; since the edge adjustment here is essentially 3/8 the edge difference, the inner adjustment is approximately 3/16 the edge difference.

	void subblock_filter(

	 uint8 hev_threshold, /* detect high edge variance */

	 uint8 interior_limit, /* possibly disable filter */

	 uint8 edge_limit,

	 cint8 *P3, cint8 *P2, int8 *P1, int8 *P0, /* pixels before edge */

	 int8 *Q0, int8 *Q1, cint8 *Q2, cint8 *Q3 /* pixels after edge */

) {

	 cint8 p3 = u2s(*P3), p2 = u2s(*P2), p1 = u2s(*P1),

	 p0 = u2s(*P0);

	 cint8 q0 = u2s(*Q0), q1 = u2s(*Q1), q2 = u2s(*Q2),

	 q3 = u2s(*Q3);

	 if (filter_yes(interior_limit, edge_limit, q3, q2, q1, q0,

	 p0, p1, p2, p3))

	 {

	 const int hv = hev(hev_threshold, p1, p0, q0, q1);

	 cint8 a = (common_adjust(hv, P1, P0, Q0, Q1) + 1) >> 1;

	 if (!hv) {

	 *Q1 = s2u(q1 - a);

	 *P1 = s2u(p1 + a);

	 }

	 }

	 }

The inter-macroblock filter has potentially wider scope. If the edge variance is high, it performs the simple adjustment (using the outer taps, just like the simple filter and the corresponding case of the normal subblock filter). If the edge variance is low, we begin with the same basic filter calculation and apply multiples of it to pixel pairs symmetric about the edge; the magnitude of adjustment decays as we move away from the edge and six of the pixels in the segment are affected.

	void MBfilter(

	 uint8 hev_threshold, /* detect high edge variance */

	 uint8 interior_limit, /* possibly disable filter */

	 uint8 edge_limit,

	 cint8 *P3, int8 *P2, int8 *P1, int8 *P0, /* pixels before edge */

	 int8 *Q0, int8 *Q1, int8 *Q2, cint8 *Q3 /* pixels after edge */

) {

	 cint8 p3 = u2s(*P3), p2 = u2s(*P2), p1 = u2s(*P1), p0 = u2s(*P0);

	 cint8 q0 = u2s(*Q0), q1 = u2s(*Q1), q2 = u2s(*Q2), q3 = u2s(*Q3);

	 if (filter_yes(interior_limit, edge_limit, q3, q2, q1, q0, p0, p1, p2, p3))

	 {

	 if (!hev(hev_threshold, p1, p0, q0, q1))

	 {

	 /* Same as the initial calculation in "common_adjust", w is something like twice the edge difference */

	 const int8 w = c(c(p1 - q1) + 3*(q0 - p0));

	 /* 9/64 is approximately 9/63 = 1/7, and 1<<7 = 128 =2*64. So this a, used to adjust the pixels adjacent to the edge, is something like 3/7 the edge difference. */

	 int8 a = c((27*w + 63) >> 7);

	 *Q0 = s2u(q0 - a); *P0 = s2u(p0 + a);

	 /* Next two are adjusted by 2/7 the edge difference */

	 a = c((18*w + 63) >> 7);

	 *Q1 = s2u(q1 - a); *P1 = s2u(p1 + a);

	 /* Last two are adjusted by 1/7 the edge difference */

	 a = c((9*w + 63) >> 7);

	 *Q2 = s2u(q2 - a); *P2 = s2u(p2 + a);

	} else /* if hev, do simple filter */

	 common_adjust(1, P1, P0, Q0, Q1); /* using outer taps */

	 }

	 }

4.4.20.4 Calculation of Control Parameters

This sub-section shows how the thresholds supplied to the procedures above are derived from the two control parameters sharpness_level (an unsigned 3-bit number having maximum value 7) and loop_filter_level (an unsigned 6-bit number having maximum value 63).

While the sharpness_level is constant over the frame, individual macroblocks may override the loop_filter_level with one of four possibilities supplied in the frame header.

Both the simple and normal filters disable filtering if a value derived from the four pixels that straddle the edge (2 either side) exceeds a threshold / limit value.

	/* Luma and Chroma use the same inter-macroblock edge limit */

	uint8 mbedge_limit = ((loop_filter_level + 2) * 2) + interior_limit;

	 /* Luma and Chroma use the same inter-subblock edge limit */

	 uint8 sub_bedge_limit = (loop_filter_level * 2) + interior_limit;

The remaining thresholds are used only by the normal filters. The filter-disabling interior difference limit is the same for all edges (luma, chroma, inter-subblock, inter-macroblock) and is given by the following:

uint8 interior_limit = loop_filter_level;

	 if (sharpness_level)

	 {

	 interior_limit >>= sharpness_level > 4 ? 2 : 1;

	 if (interior_limit > 9 - sharpness_level)

	 interior_limit = 9 - sharpness_level;

	 }

	 if (!interior_limit)

	 interior_limit = 1;

Finally, the derivation of the high edge-variance threshold, which is also the same for all edge types is given below:

	uint8 hev_threshold = 0;

	 if (we_are_decoding_akey_frame) /* current frame is a key frame */

	 {

	 if (loop_filter_level >= 40)

	 hev_threshold = 2;

	 else if (loop_filter_level >= 15)

	 hev_threshold = 1;

	 }

	 else /* current frame is an interframe */

	 {

	 if (loop_filter_level >= 40)

	 hev_threshold = 3;

	 else if (loop_filter_level >= 20)

	 hev_threshold = 2;

	 else if (loop_filter_level >= 15)

	 hev_threshold = 1;

	 }

4.4.21 Interframe Macroblock Prediction Records

This sub-section describes the layout and semantics of the prediction records for macroblocks in an interframe.

After the feature specification (which is identical for intraframes and interframes), there comes a Bool(prob_intra), which indicates inter-prediction (i.e., prediction from prior frames) when true and intra-prediction (i.e., prediction from already-coded portions of the current frame) when false. The zero-probability prob_intra is set by field J of the frame header.

4.4.21.1 Intra-Predicted Macroblocks

For intra-prediction, the layout of the prediction data is essentially the same as the layout for key frames, although the contexts used by the decoding process are slightly different.

The "outer" Y mode here uses a different tree from that used in key frames, repeated here for convenience.

	const tree_index ymode_tree [2 * (num_ymodes - 1)] =

	 {

	 -DC_PRED, 2, /* root: DC_PRED = "0", "1" subtree */

	 4, 6, /* "1" subtree has 2 descendant subtrees */

	 -V_PRED, -H_PRED, /* "10" subtree: V_PRED = "100", H_PRED = "101" */

	 -TM_PRED, -B_PRED /* "11" subtree: TM_PRED = "110", B_PRED = "111" */

	 };

The probability table used to decode this tree is variable. As described in Section 4.1.3, it (along with the similarly treated UV table) can be updated by field J of the frame header. Similar to the coefficient-decoding probabilities, such updates are cumulative and affect all ensuing frames until the next key frame or explicit update. The default probabilities for the Y and UV tables are:

	Prob ymode_prob [num_ymodes - 1] = { 112, 86, 140, 37};

	 Prob uv_mode_prob [num_uv_modes - 1] = { 162, 101, 204};

These defaults must be restored after detection of a key frame. Just as for key frames, if the Y mode is B_PRED, there next comes an encoding of the intra_bpred mode used by each of the sixteen Y subblocks. These encodings use the same tree as does that for key frames but, in place of the contexts used in key frames, these encodings use the single fixed probability table.

	const Prob bmode_prob [num_intra_bmodes - 1] = {

	 120, 90, 79, 133, 87, 85, 80, 111, 151

	 };

Last comes the chroma mode, again coded using the same tree as that used for key frames, this time using the dynamic uv_mode_prob table described above. The calculation of the intra-prediction buffer is identical to that was described for key frames in Section 4.1.4.

4.4.21.2 Inter-Predicted Macroblocks

The next datum in the bitstream is then another bool, B(prob_last), selecting the reference frame. If 0, the reference frame is the previous frame (the last frame); if 1, another bool (prob_gf) selects the reference frame between the golden frame (0) and the altref frame (1). The probabilities prob_last and prob_gf are set in field J of the frame header.

Together with setting the reference frame, the purpose of inter-mode decoding is to set a motion vector for each of the sixteen Y subblocks of the current macroblock. These settings then define the calculation of the inter-prediction buffer (detailed later in this document).

While the net effect of inter-mode decoding is straightforward, the implementation is somewhat complex; the (lossless) compression achieved by this method justifies the complexity.

After the reference frame selector comes the mode (or motion vector reference) applied to the macroblock as a whole, coded using the following enumeration and tree. Setting mv_nearest = num_ymodes is a convenience that allows a single variable to unambiguously hold an inter- or intra-prediction mode.

	typedef enum

	 {

	 mv_nearest = num_ymodes, /* use "nearest" motion vector for entire MB */

	 mv_near, /* use "next nearest" "" */

	 mv_zero, /* use zero "" */

	 mv_new, /* use explicit offset from implicit "" */

	 mv_split, /* use multiple motion vectors */

	 num_mv_refs = mv_split + 1 - mv_nearest

	 }

	 mv_ref;

	 const tree_index mv_ref_tree [2 * (num_mv_refs - 1)] =

	 {

	 -mv_zero, 2, /* zero = "0" */

	 -mv_nearest, 4, /* nearest = "10" */

	 -mv_near, 6, /* near = "110" */

	 -mv_new, -mv_split /* new = "1110", split = "1111" */

	 };

4.4.22 Mode and Motion Vector Contexts

The probability table used to decode the mv_ref, along with three reference motion vectors used by the selected mode, is calculated via a survey of the already-decoded motion vectors in (up to) 3 nearby macroblocks.

The algorithm generates a sorted list of distinct motion vectors adjacent to the search site. The best_mv is the vector with the highest score. The mv_nearest is the non-zero vector with the highest score. The mv_near is the non-zero vector with the next highest score. The number of motion vectors coded using the SPLITMV mode is scored using the same weighting and is returned with the scores of the best, nearest, and near vectors.

The three adjacent macroblocks above, left, and above-left are considered in order. If the macroblock is intra-coded, no action is taken. Otherwise, the motion vector is compared to other previously found motion vectors to determine if it has been seen before, and if so contributes its weight to that vector; otherwise, it enters a new vector in the list. The above and left vectors have twice the weight of the above-left vector.

It is possible for macroblocks near the top or left edges of the image to reference blocks that are outside the visible image. A border of 1 macroblock filled with 0x0 motion vectors left of the left edge, and a border filled with 0, 0 motion vectors of 1 macroblocks above the top edge is used for these cases.

The calculation of reference vectors, probability table, and, finally, the inter-prediction mode itself is implemented as follows (the relevant file in the reference software is modemv.c):

	typedef union

	 {

	 unsigned int as_int;

	 MV as_mv;

	 } int_mv; /* facilitates rapid equality tests */

	 static void mv_bias(MODE_INFO *x,int refframe, int_mv *mvp,

	 int * ref_frame_sign_bias)

	 {

	 MV xmv;

	 xmv = x->mbmi.mv.as_mv;

	 if (ref_frame_sign_bias[x->mbmi.ref_frame] !=

	 ref_frame_sign_bias[refframe])

	 {

	 xmv.row*=-1;

	 xmv.col*=-1;

	 }

	 mvp->as_mv = xmv;

	 }

	void vp8_clamp_mv(MV *mv, const MACROBLOCKD *xd)

	 {

	 if (mv->col < (xd->mb_to_left_edge - LEFT_TOP_MARGIN))

	 mv->col = xd->mb_to_left_edge - LEFT_TOP_MARGIN;

	 else if (mv->col > xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN)

	 mv->col = xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN;

	

	 if (mv->row < (xd->mb_to_top_edge - LEFT_TOP_MARGIN))

	 mv->row = xd->mb_to_top_edge - LEFT_TOP_MARGIN;

	 else if (mv->row > xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN)

	 mv->row = xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN;

	 }

In the function vp8_find_near_mvs(), the vectors "nearest" and "near" are used by the corresponding modes.

The vector best_mv is used as a base for explicitly coded motion vectors.

The first three entries in the return value cnt are (in order) weighted census values for "zero", "nearest", and "near" vectors. The final value indicates the extent to which SPLITMV was used by the neighboring macroblocks. The largest possible "weight" value in each case is 5.

	void vp8_find_near_mvs

	 (

	 MACROBLOCKD *xd,

	 const MODE_INFO *here,

	 MV *nearest,

	 MV *near,

	 MV *best_mv,

	 int cnt[4],

	 int refframe,

	 int * ref_frame_sign_bias

)

	{

	 const MODE_INFO *above = here - xd->mode_info_stride;

	 const MODE_INFO *left = here - 1;

	 const MODE_INFO *aboveleft = above - 1;

	 int_mv near_mvs[4];

	 int_mv *mv = near_mvs;

	 int *cntx = cnt;

	 enum {CNT_ZERO, CNT_NEAREST, CNT_NEAR, CNT_SPLITMV};

	 /* Zero accumulators */

	 mv[0].as_int = mv[1].as_int = mv[2].as_int = 0;

	 cnt[0] = cnt[1] = cnt[2] = cnt[3] = 0;

	 /* Process above */

	 if (above->mbmi.ref_frame != INTRA_FRAME) {

	 if (above->mbmi.mv.as_int) {

	 (++mv)->as_int = above->mbmi.mv.as_int;

	 mv_bias(above, refframe, mv, ref_frame_sign_bias);

	 ++cntx;

	 }

	 *cntx += 2;

	 }

	 /* Process left */

	 if (left->mbmi.ref_frame != INTRA_FRAME) {

	 if (left->mbmi.mv.as_int) {

	 int_mv this_mv;

	 this_mv.as_int = left->mbmi.mv.as_int;

	 mv_bias(left, refframe, &this_mv, ref_frame_sign_bias);

	 if (this_mv.as_int != mv->as_int) {

	 (++mv)->as_int = this_mv.as_int;

	 ++cntx;

	 }

	 *cntx += 2;

	 } else

	 cnt[CNT_ZERO] += 2;

	 }

	 /* Process above left */

	 if (aboveleft->mbmi.ref_frame != INTRA_FRAME) {

	 if (aboveleft->mbmi.mv.as_int) {

	 int_mv this_mv;

	 this_mv.as_int = aboveleft->mbmi.mv.as_int;

	 mv_bias(aboveleft, refframe, &this_mv,

	 ref_frame_sign_bias);

	if (this_mv.as_int != mv->as_int) {

	 (++mv)->as_int = this_mv.as_int;

	 ++cntx;

	 }

	 *cntx += 1;

	 } else

	 cnt[CNT_ZERO] += 1;

	 }

	 /* If we have three distinct MVs ... */

	 if (cnt[CNT_SPLITMV]) {

	 /* See if above-left MV can be merged with NEAREST */

	 if (mv->as_int == near_mvs[CNT_NEAREST].as_int)

	 cnt[CNT_NEAREST] += 1;

	 }

	 cnt[CNT_SPLITMV] = ((above->mbmi.mode == SPLITMV)

	 + (left->mbmi.mode == SPLITMV)) * 2

	 + (aboveleft->mbmi.mode == SPLITMV);

	 /* Swap near and nearest if necessary */

	 if (cnt[CNT_NEAR] > cnt[CNT_NEAREST]) {

	 int tmp;

	 tmp = cnt[CNT_NEAREST];

	 cnt[CNT_NEAREST] = cnt[CNT_NEAR];

	 cnt[CNT_NEAR] = tmp;

	 tmp = near_mvs[CNT_NEAREST].as_int;

	 near_mvs[CNT_NEAREST].as_int = near_mvs[CNT_NEAR].as_int;

	 near_mvs[CNT_NEAR].as_int = tmp;

	 }

	 /* Use near_mvs[0] to store the "best" MV */

	 if (cnt[CNT_NEAREST] >= cnt[CNT_ZERO])

	 near_mvs[CNT_ZERO] = near_mvs[CNT_NEAREST];

	 /* Set up return values */

	 *best_mv = near_mvs[0].as_mv;

	 *nearest = near_mvs[CNT_NEAREST].as_mv;

	 *near = near_mvs[CNT_NEAR].as_mv;

	 vp8_clamp_mv(nearest, xd);

	 vp8_clamp_mv(near, xd);

	 vp8_clamp_mv(best_mv, xd);

	 }

The mv_ref probability table (mv_ref_p) is then derived from the census as follows:

	const int vp8_mode_contexts[6][4] =

	 {

	 { 7, 1, 1, 143, },

	 { 14, 18, 14, 107, },

	 { 135, 64, 57, 68, },

	 { 60, 56, 128, 65, },

	 { 159, 134, 128, 34, },

	 { 234, 188, 128, 28, },

	 }

	vp8_prob *vp8_mv_ref_probs(vp8_prob mv_ref_p[VP8_MVREFS-1],

	 int cnt[4])

	 {

	 mv_ref_p[0] = vp8_mode_contexts [cnt[0]] [0];

	 mv_ref_p[1] = vp8_mode_contexts [cnt[1]] [1];

	 mv_ref_p[2] = vp8_mode_contexts [cnt[2]] [2];

	 mv_ref_p[3] = vp8_mode_contexts [cnt[3]] [3];

	 return p;

	 }

Once mv_ref_p is established, the mv_ref is decoded as usual.

	mvr = (mv_ref) treed_read(d, mv_ref_tree, mv_ref_p);

For the first four inter-coding modes, the same motion vector is used for all the Y subblocks. The first three modes use an implicit motion vector.

	 Mode
	 Instruction

	 mv_nearest
	 Use the nearest vector returned by vp8_find_near_mvs.

	 mv_near
	 Use the near vector returned by vp8_find_near_mvs.

	 mv_zero
	 Use a zero vector; that is, predict the current macroblock from the corresponding macroblock in the prediction frame.

	 NEWMV
	 This mode is followed by an explicitly coded motion vector (the format of which is described in the next section) that is added (component-wise) to the best_mv reference vector returned by find_near_mvs and applied to all 16 subblocks.

4.4.22.1 Split Prediction

The remaining mode (SPLITMV) causes multiple vectors to be applied to the Y subblocks. It is immediately followed by a partition specification that determines how many vectors will be specified and how they will be assigned to the subblocks. The possible partitions, with indicated subdivisions and coding tree, are as follows.

	typedef enum

	 {

	 mv_top_bottom, /* two pieces {0...7} and {8...15} */

	 mv_left_right, /* {0,1,4,5,8,9,12,13} and {2,3,6,7,10,11,14,15} */

	 mv_quarters, /* {0,1,4,5}, {2,3,6,7}, {8,9,12,13}, {10,11,14,15} */

	 MV_16, /* every subblock gets its own vector {0} ... {15} */

	 mv_num_partitions

	 }

	 MVpartition;

	 const tree_index mvpartition_tree [2 * (mvnum_partition - 1)] =

	 {

	 -MV_16, 2, /* MV_16 = "0" */

	 -mv_quarters, 4, /* mv_quarters = "10" */

	 -mv_top_bottom, -mv_left_right /* top_bottom = "110", left_right = "111" */

	 };

The partition is decoded using a fixed, constant probability table:

	const Prob mvpartition_probs [mvnum_partition - 1] ={ 110, 111, 150};

	 part = (MVpartition) treed_read(d, mvpartition_tree, mvpartition_probs);

After the partition come two (for mv_top_bottom or mv_left_right), four (for mv_quarters), or sixteen (for MV_16) subblock inter-prediction modes. These modes occur in the order indicated by the partition layouts (given as comments to the MVpartition enum) and are coded as follows. (As was done for the macroblock-level modes, we offset the mode enumeration so that a single variable may unambiguously hold either an intra- or inter-subblock mode.)

Prior to decoding each subblock, a decoding tree context is chosen as illustrated in the code snippet below. The context is based on the immediate left and above subblock neighbors, and whether they are equal, are zero, or a combination of those.

	 typedef enum

	 {

	 LEFT4x4 = num_intra_bmodes, /* use already-coded MV to my left */

	 ABOVE4x4, /* use already-coded MV above me */

	 ZERO4x4, /* use zero MV */

	 NEW4x4, /* explicit offset from "best" */

	 num_sub_mv_ref

	 };

	 sub_mv_ref;

	const tree_index sub_mv_ref_tree [2 * (num_sub_mv_ref - 1)] =

	 {

	 -LEFT4X4, 2, /* LEFT = "0" */

	 -ABOVE4X4, 4, /* ABOVE = "10" */

	 -ZERO4X4, -NEW4X4 /* ZERO = "110", NEW = "111" */

	 };

	 /* Choose correct decoding tree context

	 * Function parameters are left subblock neighbor MV and above

	 * subblock neighbor MV */

	 int vp8_mvCont(MV *l, MV*a)

	 {

	 int lez = (l->row == 0 && l->col == 0); /* left neighbour is zero */

	 int aez = (a->row == 0 && a->col == 0); /* above neighbor is zero */

	 int lea = (l->row == a->row && l->col == a->col); /* left neighbor equals above neighbor */

	 if (lea && lez)

	 return SUBMVREF_LEFT_ABOVE_ZED; /* =4 */

	 if (lea)

	 return SUBMVREF_LEFT_ABOVE_SAME; /* =3 */

	 if (aez)

	 return SUBMVREF_ABOVE_ZED; /* =2 */

	 if (lez)

	 return SUBMVREF_LEFT_ZED; /* =1*/

	 return SUBMVREF_NORMAL; /* =0 */

	 }

	 /* Constant probabilities and decoding procedure. */

	 const Prob sub_mv_ref_prob [5][num_sub_mv_ref - 1] = {

	 { 147,136,18 },

	 { 106,145,1 },

	 { 179,121,1 },

	 { 223,1 ,34 },

	 { 208,1 ,1 }

	 };

	 sub_ref = (sub_mv_ref) treed_read(d, sub_mv_ref_tree, sub_mv_ref_prob[context]);

The first two sub-prediction modes simply copy the already-coded motion vectors used by the blocks above and to the left of the subblock at the upper left corner of the current subset (i.e., collection of subblocks being predicted). These prediction blocks need not lie in the current macroblock and, if the current subset lies at the top or left edges of the frame, need not lie in the frame. In this latter case, their motion vectors are taken to be zero, as are subblock motion vectors within an intra-predicted macroblock. Also, to ensure the correctness of prediction within this macroblock, all subblocks lying in an already-decoded subset of the current macroblock must have their motion vectors set.

ZERO4x4 uses a zero motion vector and predicts the current subset using the corresponding subset from the prediction frame.

NEW4x4 is exactly like NEWMV except that NEW4x4 is applied only to the current subset. It is followed by a two-dimensional motion vector offset (described in the next section) that is added to the best vector returned by the earlier call to find_near_mvs to form the motion vector in effect for the subset.

Parsing of both inter-prediction modes and motion vectors (described next) can be found in the reference decoder file modemv.c.

4.4.22.2 Motion Vector Decoding

As discussed above, motion vectors appear in two places in the datastream: applied to whole macroblocks in NEWMV mode and applied to subsets of macroblocks in NEW4x4 mode. The format of the vectors is identical in both cases.

Each vector has two pieces: a vertical component (row) followed by a horizontal component (column). The row and column use separate coding probabilities but are otherwise represented identically.

4.4.22.3 Coding of Each Component

Each component is a signed integer V representing a vertical or horizontal luma displacement of V quarter-pixels (and a chroma displacement of V eighth-pixels). The absolute value of V, if non-zero, is followed by a boolean sign. V may take any value between -1023 and +1023, inclusive.

The absolute value A is coded in one of two different ways according to its size. For 0 <= A <= 7, A is tree-coded, and for 8 <= A <=1023, the bits in the binary expansion of A are coded using independent boolean probabilities. The coding of A begins with a bool specifying which range is in effect.

Decoding a motion vector component then requires a 19-position probability table, whose offsets, along with the procedure used to decode components, are as follows:

	typedef enum

	 {

	 mvpis_short, /* short (<= 7) vs long (>= 8) */

	 MVPsign, /* sign for non-zero */

	 MVPshort, /* 8 short values = 7-position tree */

	 MVPbits = MVPshort + 7, /* 8 long value bits w/independent probs */

	 MVPcount = MVPbits + 10 /* 19 probabilities in total */

	 }

	 MVPindices;

	 typedef Prob MV_CONTEXT [MVPcount]; /* Decoding spec for a single component */

	 /* Tree used for small absolute values (has expected correspondence). */

	 const tree_index small_mvtree [2 * (8 - 1)] =

	 {

	 2, 8, /* "0" subtree, "1" subtree */

	 4, 6, /* "00" subtree, "01" subtree */

	 -0, -1, /* 0 = "000", 1 = "001" */

	 -2, -3, /* 2 = "010", 3 = "011" */

	 10, 12, /* "10" subtree, "11" subtree */

	 -4, -5, /* 4 = "100", 5 = "101" */

	 -6, -7 /* 6 = "110", 7 = "111" */

	 };

	 /* Read MV component at current decoder position, using supplied probs. */

	 int read_mvcomponent(bool_decoder *d, const MV_CONTEXT *mvc)

	 {

	 const Prob * const p = (const Prob *) mvc;

	int A = 0;

	 if (read_bool(d, p [mvpis_short])) /* 8 <= A <= 1023 */

	 {

	 /* Read bits 0, 1, 2 */

	 int i = 0;

	 do { A += read_bool(d, p [MVPbits + i]) << i;}

	 while (++i < 3);

	 /* Read bits 9, 8, 7, 6, 5, 4 */

	 i = 9;

	 do { A += read_bool(d, p [MVPbits + i]) << i;}

	 while (--i > 3);

	 /* We know that A >= 8 because it is coded long, so if A <= 15, bit 3 is one and is not explicitly coded. */

	 if (!(A & 0xfff0) || read_bool(d, p [MVPbits + 3]))

	 A += 8;

	 }

	 else /* 0 <= A <= 7 */

	 A = treed_read(d, small_mvtree, p + MVPshort);

	 return A && read_bool(r, p [MVPsign]) ? -A : A;

	 }

4.4.22.4 Probability Updates

The decoder should maintain an array of two MV_CONTEXTs for decoding row and column components, respectively. These MV_CONTEXTs should be set to their defaults every key frame. Each individual probability may be updated every interframe (by field J of the frame header) using a constant table of update probabilities. Each optional update is of the form B? P(7), that is, a bool followed by a 7-bit probability specification if true.

The updates remain in effect until the next key frame or until replaced via another update.

In detail, the probabilities should then be managed as follows:

	/* Never-changing table of update probabilities for each individual probability used in decoding motion vectors. */

	 const MV_CONTEXT vp8_mv_update_probs[2] =

	 {

	 {

	 237, 246, 253, 253, 254, 254, 254, 254, 254,

	 254, 254, 254, 254, 254, 250, 250, 252, 254, 254

	 },

	 {

	 231, 243, 245, 253, 254, 254, 254, 254, 254,

	 254, 254, 254, 254, 254, 251, 251, 254, 254, 254

	 }

	 };

	 /* Default MV decoding probabilities. */

	 const MV_CONTEXT default_mv_context[2] =

	 {

	 { // row

	 162, // is short

	 128, // sign

	 225, 146, 172, 147, 214, 39, 156, // short tree

	 128, 129, 132, 75, 145, 178, 206, 239, 254, 254 // long bits

	 },

	 { // same for column

	 164, // is short

	 128,

	 204, 170, 119, 235, 140, 230, 228,

	 128, 130, 130, 74, 148, 180, 203, 236, 254, 254 // long bits

	 }

	 };

	 /* Current MV decoding probabilities, set to above defaults every key frame. */

	 MV_CONTEXT mvc [2]; /* always row, then column */

	/* Procedure for decoding a complete motion vector. */

	 typedef struct { int16 row, col;} MV; /* as in previous section */

	 MV read_mv(bool_decoder *d)

	 {

	 MV v;

	 v.row = (int16) read_mvcomponent(d, mvc);

	 v.col = (int16) read_mvcomponent(d, mvc + 1);

	 return v;

	 }

	 /* Procedure for updating MV decoding probabilities, called every interframe with "d" at the appropriate position in the frame header. */

	 void update_mvcontexts(bool_decoder *d)

	 {

	 int i = 0;

	 do { /* component = row, then column */

	 const Prob *up = mv_update_probs[i]; /* update probs for component */

	 Prob *p = mvc[i]; /* start decode tbl "" */

	 Prob * const pstop = p + MVPcount; /* end decode tbl "" */

	 do {

	 if (read_bool(d, *up++)) /* update this position */

	 {

	 const Prob x = read_literal(d, 7);

	 *p = x? x<<1 : 1;

	 }

	 } while (++p < pstop); /* next position */

	 } while (++i < 2); /* next component */

	 }

This completes the description of the motion-vector decoding procedure and, with it, the procedure for decoding interframe macroblock prediction records.

4.4.22.5 Interframe Prediction

Given an inter-prediction specification for the current macroblock, that is, a reference frame together with a motion vector for each of the sixteen Y subblocks, we describe the calculation of the prediction buffer for the macroblock. Frame reconstruction is then completed via the previously described processes of residue summation (Section 4.1.6) and loop filtering (Section 4.1.7).

The management of inter-predicted subblocks and sub-pixel interpolation may be found in the reference decoder file predict.c.

4.4.22.6 Bounds on, and Adjustment of, Motion Vectors

Since each motion vector is differentially encoded from a neighboring block or macroblock and the only clamp is to ensure that the referenced motion vector represents a valid location inside a reference frame buffer, it is technically possible within this format for a block or macroblock to have arbitrarily large motion vectors, up to the size of the input image plus the extended border areas. For practical reasons, VCB imposes a motion vector size range limit of -4096 to 4095 full pixels, regardless of image size (the reference software defines 14 raw bits for width and height; 16383x16383 is the maximum possible image size). Bitstream-compliant encoders and decoders shall enforce this limit.

Because the motion vectors applied to the chroma subblocks have 1/8-pixel resolution, the synthetic pixel calculation detailed below, uses this resolution for the luma subblocks as well. In accordance, the stored luma motion vectors are all doubled, each component of each luma vector becoming an even integer in the range -2046 to +2046, inclusive.

The vector applied to each chroma subblock is calculated by averaging the vectors for the 4 luma subblocks occupying the same visible area as the chroma subblock in the usual correspondence; that is, the vector for U and V block 0 is the average of the vectors for the Y subblocks { 0, 1, 4, 5}, chroma block 1 corresponds to Y blocks { 2,3, 6, 7}, chroma block 2 to Y blocks { 8, 9, 12, 13}, and chroma block 3 to Y blocks { 10, 11, 14, 15}.

In detail, each of the two components of the vectors for each of the chroma subblocks is calculated from the corresponding luma vector components as follows:

	int avg(int c1, int c2, int c3, int c4)

	 {

	 int s = c1 + c2 + c3 + c4;

	 /* The shift divides by 8 (not 4) because chroma pixels have twice the diameter of luma pixels. The handling of negative motion vector components is slightly cumbersome because, strictly speaking, right shifts of negative numbers are not well-defined in C. */

	 return s >= 0 ? (s + 4) >> 3 : -((-s + 4) >> 3);

	 }

Furthermore, if the version number in the frame tag specifies only full-pel chroma motion vectors, then the fractional parts of both components of the vector are truncated to zero, as illustrated in the following pseudocode (assuming 3 bits of fraction for both luma and chroma vectors):

	x = x & (~7);

	 y = y & (~7);

Additional clamping is performed for NEWMV macroblocks, for which the final motion vector is clamped again after combining the "best" predictor and the differential vector decoded from the stream.

However, the secondary clamping is not performed for SPLITMV macroblocks, meaning that any subblock's motion vector within the SPLITMV macroblock may point outside the clamping zone. These non-clamped vectors are also used when determining the decoding tree context for subsequent subblocks' modes in the vp8_mvCont() function.

4.4.22.7 Prediction Subblocks

The prediction calculation for each subblock is then as follows. Temporarily disregarding the fractional part of the motion vector (that is, rounding "up" or "left" by right-shifting each component 3 bits with sign propagation) and adding the origin (upper left position) of the (16x16 luma or 8x8 chroma) current macroblock gives us an origin in the Y, U, or V plane of the predictor frame (either the golden frame or previous frame).

Considering that origin to be the upper left corner of a (luma or chroma) macroblock, we need to specify the relative positions of the pixels associated to that subblock, that is, any pixels that might be involved in the sub-pixel interpolation processes for the subblock.

4.4.22.8 Sub-Pixel Interpolation

The sub-pixel interpolation is effected via two one-dimensional convolutions. These convolutions may be thought of as operating on a two-dimensional array of pixels whose origin is the subblock origin, that is the origin of the prediction macroblock described above plus the offset to the subblock. Because motion vectors are arbitrary, so are these "prediction subblock origins".

The integer part of the motion vector is subsumed in the origin of the prediction subblock; the 16 (synthetic) pixels we need to construct are given by 16 offsets from the origin. The integer part of each of these offsets is the offset of the corresponding pixel from the subblock origin (using the vertical stride). To these integer parts is added a constant fractional part, which is simply the difference between the actual motion vector and its integer truncation used to calculate the origins of the prediction macroblock and subblock. Each component of this fractional part is an integer between 0 and 7, representing a forward displacement in eighths of a pixel.

It is these fractional displacements that determine the filtering process. If they both happen to be zero (that is, we had a "whole pixel" motion vector), the prediction subblock is simply copied into the corresponding piece of the current macroblock's prediction buffer. As discussed in Section 4.1.6, the layout of the macroblock's prediction buffer can depend on the specifics of the reconstruction implementation chosen. Of course, the vertical displacement between lines of the prediction subblock is given by the stride, as are all vertical displacements used here.

Otherwise, at least one of the fractional displacements is non-zero. We then synthesize the missing pixels via a horizontal, followed by a vertical, one-dimensional interpolation.

The two interpolations are essentially identical. Each uses a (at most) six-tap filter (the choice of which of course depends on the one-dimensional offset). Thus, every calculated pixel references at most three pixels before (above or to the left of) it and at most three pixels after (below or to the right of) it. The horizontal interpolation must calculate two extra rows above and three extra rows below the 4x4 block, to provide enough samples for the vertical interpolation to proceed.

 Depending on the reconstruction filter type given in the version number field in the frame tag, either a bicubic or a bilinear tap set is used. The exact implementation of subsampling is as follows:

	/* Filter taps taken to 7-bit precision. Because DC is always passed, taps always sum to 128. */

	 const int BilinearFilters[8][6] =

	 {

	 { 0, 0, 128, 0, 0, 0 },

	 { 0, 0, 112, 16, 0, 0 },

	 { 0, 0, 96, 32, 0, 0 },

	 { 0, 0, 80, 48, 0, 0 },

	 { 0, 0, 64, 64, 0, 0 },

	 { 0, 0, 48, 80, 0, 0 },

	 { 0, 0, 32, 96, 0, 0 },

	 { 0, 0, 16, 112, 0, 0 }

	 };

	 const int filters [8] [6] = { /* indexed by displacement */

	 { 0, 0, 128, 0, 0, 0 }, /* degenerate whole-pixel */

	 { 0, -6, 123, 12, -1, 0 }, /* 1/8 */

	 { 2, -11, 108, 36, -8, 1 }, /* 1/4 */

	 { 0, -9, 93, 50, -6, 0 }, /* 3/8 */

	 { 3, -16, 77, 77, -16, 3 }, /* 1/2 is symmetric */

	 { 0, -6, 50, 93, -9, 0 }, /* 5/8 = reverse of 3/8 */

	 { 1, -8, 36, 108, -11, 2 }, /* 3/4 = reverse of 1/4 */

	 { 0, -1, 12, 123, -6, 0 } /* 7/8 = reverse of 1/8 */

	 };

	/* One-dimensional synthesis of a single sample. Filter is determined by fractional displacement */

	 Pixel interp(

	 const int fil[6], /* filter to apply */

	 const Pixel *p, /* origin (rounded "before") in prediction area */

	 const int s /* size of one forward step "" */

) {

	 int32 a = 0;

	 int i = 0;

	 p -= s + s; /* move back two positions */

	 do {

	 a += *p * fil[i];

	 p += s;

	 } while (++i < 6);

	 return clamp255((a + 64) >> 7); /* round to nearest 8-bit value */

	 }

	 /* First do horizontal interpolation, producing intermediate buffer. */

	 void Hinterp(

	 Pixel temp[9][4], /* 9 rows of 4 (intermediate) destination values */

	 const Pixel *p, /* subblock origin in prediction frame */

	 int s, /* vertical stride to be used in prediction frame */

	 uint hfrac, /* 0 <= horizontal displacement <= 7 */

	 uint bicubic /* 1=bicubic filter, 0=bilinear */

) {

	 const int * const fil = bicubic ? filters [hfrac] :

	 BilinearFilters[hfrac];

	 int r = 0; do /* for each row */

	 {

	 int c = 0; do /* for each destination sample */

	 {

	 /* Pixel separation = one horizontal step = 1 */

	 temp[r][c] = interp(fil, p + c, 1);

	 }

	while (++c < 4);

	 }

	 while (p += s, ++r < 9); /* advance p to next row */

	 }

	 /* Finish with vertical interpolation, producing final results.

	 Input array "temp" is of course that computed above. */

	 void Vinterp(

	 Pixel final[4][4], /* 4 rows of 4 (final) destination values */

	 const Pixel temp[9][4],

	 uint vfrac, /* 0 <= vertical displacement <= 7 */

	 uint bicubic /* 1=bicubic filter, 0=bilinear */

) {

	 const int * const fil = bicubic ? filters [vfrac] :

	 BilinearFilters[vfrac];

	 int r = 0; do /* for each row */

	 {

	 int c = 0; do /* for each destination sample */

	 {

	 /* Pixel separation = one vertical step = width

	 of array = 4 */

	 final[r][c] = interp(fil, temp[r] + c, 4);

	 }

	 while (++c < 4);

	 }

	 while (++r < 4);

	 }

5 Bitstream syntax summary

This section presents the bitstream syntax in a tabular form. All the information elements have been introduced and explained in the previous sections but are collected here for a quick reference. Each syntax element is briefly described after the tabular representation. The meaning of each syntax element value is not repeated here.

5.1 Uncompressed Data Chunk

	 Frame Tag
	 Type

	 frame_tag
	 f(24)

	 if (key_frame) {
	

	 start_code
	 f(24)

	 horizontal_size_code
	 f(16)

	 vertical_size_code
	 f(16)

	 }
	

The 3-byte frame tag can be parsed as follows:

	unsigned char *c = pbi->source;

	unsigned int tmp;

	tmp = (c[2] << 16) | (c[1] << 8) | c[0];

	 key_frame = tmp & 0x1;

	 version = (tmp >> 1) & 0x7;

	 show_frame = (tmp >> 4) & 0x1;

	 first_part_size = (tmp >> 5) & 0x7FFFF;

Where:

· key_frame indicates whether the current frame is a key frame or not.

· version determines the bitstream version.

· show_frame indicates whether the current frame is meant to be displayed or not.

· first_part_size determines the size of the first partition (control partition), excluding the uncompressed data chunk.

The start_code is a constant 3-byte pattern having value 0x9d012a. The latter part of the uncompressed chunk (after the start_code) can be parsed as follows:

	unsigned char *c = pbi->source + 6;

	 unsigned int tmp;

	 tmp = (c[1] << 8) | c[0];

	 width = tmp & 0x3FFF;

	 horizontal_scale = tmp >> 14;

	 tmp = (c[3] << 8) | c[2];

	 height = tmp & 0x3FFF;

	 vertical_scale = tmp >> 14;

5.2 Frame Header

	 Frame Header
	 Type

	 if (key_frame) {
	

	 color_space
	 L(1)

	 clamping_type
	 L(1)

	 }
	

	 segmentation_enabled
	 L(1)

	 if (segmentation_enabled)
	

	 update_segmentation()
	

	 filter_type
	 L(1)

	 loop_filter_level
	 L(6)

	 sharpness_level
	 L(3)

	 mb_lf_adjustments()
	

	 log2_nbr_of_dct_partitions
	 L(2)

	 quant_indices()
	

	 if (key_frame)
	

	 refresh_entropy_probs
	 L(1)

	 else {
	

	 refresh_golden_frame
	 L(1)

	 refresh_alternate_frame
	 L(1)

	 if (!refresh_golden_frame)
	

	 copy_buffer_to_golden
	 L(2)

	 if (!refresh_alternate_frame)
	

	 copy_buffer_to_alternate
	 L(2)

	 sign_bias_golden
	 L(1)

	 sign_bias_alternate
	 L(1)

	 refresh_entropy_probs
	 L(1)

	 refresh_last
	 L(1)

	 }
	

	 token_prob_update()
	

	 mb_no_skip_coeff
	 L(1)

	 if (mb_no_skip_coeff)
	

	 prob_skip_false
	 L(8)

	 if (!key_frame) {
	

	 prob_intra
	 L(8)

	 prob_last
	 L(8)

	 prob_gf
	 L(8)

	 intra_16x16_prob_update_flag
	 L(1)

	 If (intra_16x16_prob_update_flag) {
	

	 for (i = 0; i < 4; i++)
	

	 intra_16x16_prob
	 L(8)

	 }
	

	 intra_chroma prob_update_flag
	 L(1)

	 if (intra_chroma_prob_update_flag) {
	

	 for (i = 0; i < 3; i++)
	

	 intra_chroma_prob
	 L(8)

	 }
	

	 mv_prob_update()
	

	 }
	

· color_space defines the YUV color space of the sequence.

· clamping_type specifies if the decoder is required to clamp the reconstructed pixel values.

· segmentation_enabled enables the segmentation feature for the current frame.

· filter_type determines whether the normal or the simple loop filter is used.

· loop_filter_level controls the deblocking filter.

· sharpness_level controls the deblocking filter.

· log2_nbr_of_dct_partitions determines the number of separate partitions containing the DCT coefficients of the macroblocks.

· refresh_entropy_probs determines whether updated token probabilities are used only for this frame or until further update

· refresh_golden_frame determines if the current decoded frame refreshes the golden frame.

· refresh_alternate_frame determines if the current decoded frame refreshes the alternate reference frame.

· copy_buffer_to_golden determines if the golden reference is replaced by another reference.

· copy_buffer_to_alternate determines if the alternate reference is replaced by another reference.

· sign_bias_golden controls the sign of motion vectors when the golden frame is referenced.

· sign_bias_alternate controls the sign of motion vectors when the alternate frame is referenced.

· refresh_last determines if the current decoded frame refreshes the last frame reference buffer.

· mb_no_skip_coeff enables or disables the skipping of macroblocks containing no non-zero coefficients.

· prob_skip_false indicates the probability that the macroblock is not skipped (flag indicating skipped macroblock is false).

· prob_intra indicates the probability of an intra macroblock.

· prob_last indicates the probability that the last reference frame is used for inter-prediction.

· prob_gf indicates the probability that the golden reference frame is used for inter-prediction.

· intra_16x16_prob_update_flag indicates if the branch probabilities used in the decoding of the luma intra-prediction mode are updated.

· intra_16x16_prob indicates the branch probabilities of the luma intra-prediction mode decoding tree

· intra_chroma_prob_update_flag indicates if the branch probabilities used in the decoding of the chroma intra-prediction mode are updated.

· intra_chroma_prob indicates the branch probabilities of the chroma intra-prediction mode decoding tree.

	 update_segmentation()
	 Type

	 update_mb_segmentation_map
	 L(1)

	 update_segment_feature_data
	 L(1)

	 if (update_segment_feature_data) {
	

	 segment_feature_mode
	 L(1)

	 for (i = 0; i < 4; i++) {
	

	 quantizer_update
	 L(1)

	 if (quantizer_update) {
	

	 quantizer_update_value
	 L(7)

	 quantizer_update_sign
	 L(1)

	 }
	

	 }
	

	 for (i = 0; i < 4; i++) {
	

	 loop_filter_update
	 L(1)

	 if (loop_filter_update) {
	

	 lf_update_value
	 L(6)

	 lf_update_sign
	 L(1)

	 }
	

	 }
	

	 }
	

	 if (update_mb_segmentation_map) {
	

	 for (i = 0; i < 3; i++) {
	

	 segment_prob_update
	 L(1)

	 if (segment_prob_update)
	

	 segment_prob
	 L(8)

	 }
	

	 }
	

· update_mb_segmentation_map determines if the MB segmentation map is updated in the current frame.

· update_segment_feature_data indicates if the segment feature data is updated in the current frame.

· segment_feature_mode indicates the feature data update mode, 0 for delta and 1 for the absolute value.

· quantizer_update indicates if the quantizer value is updated for the i^(th) segment.

· quantizer_update_value indicates the update value for the segment quantizer.

· quantizer_update_sign indicates the update sign for the segment quantizer.

· loop_filter_update indicates if the loop filter level value is updated for the i^(th) segment.

· lf_update_value indicates the update value for the loop filter level.

· lf_update_sign indicates the update sign for the loop filter level

· segment_prob_update indicates whether the branch probabilities used to decode the segment_id in the MB header are decoded from the stream or use the default value of 255.

· segment_prob indicates the branch probabilities of the segment_id decoding tree.

	 mb_lf_adjustments()
	 Type

	 loop_filter_adj_enable
	 L(1)

	 if (loop_filter_adj_enable) {
	

	 mode_ref_lf_delta_update
	 L(1)

	 if (mode_ref_lf_delta_update) {
	

	 for (i = 0; i < 4; i++) {
	

	 ref_frame_delta_update_flag
	 L(1)

	 if (ref_frame_delta_update_flag) {
	

	 delta_magnitude
	 L(6)

	 delta_sign
	 L(1)

	 }
	

	 }
	

	 for (i = 0; i < 4; i++) {
	

	 mb_mode_delta_update_flag
	 L(1)

	 if (mb_mode_delta_update_flag) {
	

	 delta_magnitude
	 L(6)

	 delta_sign
	 L(1)

	 }
	

	 }
	

	 }
	

	 }
	

· loop_filter_adj_enable indicates if the MB-level loop filter adjustment (based on the used reference frame and coding mode) is on for the current frame.

· mode_ref_lf_delta_update indicates if the delta values used in an adjustment are updated in the current frame.

· ref_frame_delta_update_flag indicates if the adjustment delta value corresponding to a certain used reference frame is updated

· delta_magnitude is the absolute value of the delta value

· delta_sign is the sign of the delta value

· mb_mode_delta_update_flag indicates if the adjustment delta value corresponding to a certain MB prediction mode is updated.

	 quant_indices()
	 Type

	 y_ac_qi
	 L(7)

	 y_dc_delta_present
	 L(1)

	 if (y_dc_delta_present) {
	

	 y_dc_delta_magnitude
	 L(4)

	 y_dc_delta_sign
	 L(1)

	 }
	

	 y2_dc_delta_present
	 L(1)

	 if (y2_dc_delta_present) {
	

	 y2_dc_delta_magnitude
	 L(4)

	 y2_dc_delta_sign
	 L(1)

	 }
	

	 y2_ac_delta_present
	 L(1)

	 if (y2_ac_delta_present) {
	

	 y2_ac_delta_magnitude
	 L(4)

	 y2_ac_delta_sign
	 L(1)

	 }
	

	 uv_dc_delta_present
	 L(1)

	 if (uv_dc_delta_present) {
	

	 uv_dc_delta_magnitude
	 L(4)

	 uv_dc_delta_sign
	 L(1)

	 }
	

	 uv_ac_delta_present
	 L(1)

	 if (uv_ac_delta_present) {
	

	 uv_ac_delta_magnitude
	 L(4)

	 uv_ac_delta_sign
	 L(1)

	 }
	

· y_ac_qi is the dequantization table index used for the luma AC coefficients (and other coefficient groups if no delta value is present)

· y_dc_delta_present indicates if the stream contains a delta value that is added to the baseline index to obtain the luma DC coefficient dequantization index.

· y_dc_delta_magnitude is the magnitude of the delta value.

· y_dc_delta_sign is the sign of the delta value.

· y2_dc_delta_present indicates if the stream contains a delta value that is added to the baseline index to obtain the Y2 block DC coefficient dequantization index.

· y2_ac_delta_present indicates if the stream contains a delta value that is added to the baseline index to obtain the Y2 block AC coefficient dequantization index.

· uv_dc_delta_present indicates if the stream contains a delta valuethat is added to the baseline index to obtain the chroma DC coefficient dequantization index.

· uv_ac_delta_present indicates if the stream contains a delta value that is added to the baseline index to obtain the chroma AC coefficient dequantization index.

	 token_prob_update()
	 Type

	 for (i = 0; i < 4; i++) {
	

	 for (j = 0; j < 8; j++) {
	

	 for (k = 0; k < 3; k++) {
	

	 for (l = 0; l < 11; l++) {
	

	 coeff_prob_update_flag
	 L(1)

	 if (coeff_prob_update_flag)
	

	 coeff_prob
	 L(8)

	 }
	

	 }
	

	 }
	

	 }
	

· coeff_prob_update_flag indicates if the corresponding branch probability is updated in the current frame.

· coeff_prob is the new branch probability.

	 mv_prob_update()
	 Type

	 for (i = 0; i < 2; i++) {
	

	 for (j = 0; j < 19; j++) {
	

	 mv_prob_update_flag
	 L(1)

	 if (mv_prob_update_flag)
	

	 prob
	 L(7)

	 }
	

	 }
	

· mv_prob_update_flag indicates if the corresponding MV decoding probability is updated in the current frame.

· prob is the updated probability.

5.3 Macroblock Data

	 Macroblock Data
	 Type

	 macroblock_header()
	

	 residual_data()
	

	 macroblock_header()
	 Type

	 if (update_mb_segmentation_map)
	

	 segment_id
	 T

	 if (mb_no_skip_coeff)
	

	 mb_skip_coeff
	 B(p)

	 if (!key_frame)
	

	 is_inter_mb
	 B(p)

	 if (is_inter_mb) {
	

	 mb_ref_frame_sel1
	 B(p)

	 if (mb_ref_frame_sel1)
	

	 mb_ref_frame_sel2
	 B(p)

	 mv_mode
	 T

	 if (mv_mode == SPLITMV) {
	

	 mv_split_mode
	 T

	 for (i = 0; i < numMvs; i++) {
	

	 sub_mv_mode
	 T

	 if (sub_mv_mode == NEWMV4x4) {
	

	 read_mvcomponent()
	

	 read_mvcomponent()
	

	 }
	

	 }
	

	 } else if (mv_mode == NEWMV) {
	

	 read_mvcomponent()
	

	 read_mvcomponent()
	

	 }
	

	 } else { /* intra mb */
	

	 intra_y_mode
	 T

	 if (intra_y_mode == B_PRED) {
	

	 for (i = 0; i < 16; i++)
	

	 intra_b_mode
	 T

	 }
	

	 intra_uv_mode
	 T

	 }
	

· segment_id indicates to which segment the macroblock belongs.

· mb_skip_coeff indicates whether the macroblock contains any coded coefficients or not.

· is_inter_mb indicates whether the macroblock is intra- or inter-coded.

· mb_ref_frame_sel1 selects the reference frame to be used; last frame (0), golden/alternate (1).

· mb_ref_frame_sel2 selects whether the golden (0) or alternate reference frame (1) is used.

· mv_mode determines the macroblock motion vector mode.

· mv_split_mode gives the macroblock partitioning specification and determines the number of motion vectors used (numMvs).

· sub_mv_mode determines the sub-macroblock motion vector mode for macroblocks coded using the SPLITMV motion vector mode.

· intra_y_mode selects the luminance intra-prediction mode.

· intra_b_mode selects the sub-macroblock luminance prediction mode for macroblocks coded using B_PRED mode .

· intra_uv_mode selects the chrominance intra-prediction mode.

	 residual_data()
	 Type

	 if (!mb_skip_coeff) {
	

	 if ((is_inter_mb && mv_mode != SPLITMV)
	

	 (!is_inter_mb && intra_y_mode != B_PRED))
	

	 residual_block() /* Y2 */
	

	 for (i = 0; i < 24; i++)
	

	 residual_block() /* 16 Y, 4 U, 4 V */
	

	 }
	

	 residual_block()
	 Type

	 for (i = firstCoeff; i < 16; i++) {
	

	 token
	 T

	 if (token == EOB) break;
	

	 if (token_has_extra_bits)
	

	 extra_bits
	 L(n)

	 if (coefficient != 0)
	

	 sign
	 L(1)

	 }
	

· firstCoeff is 1 for luma blocks of macroblocks containing Y2 subblock; otherwise 0

· token defines the value of the coefficient, the value range of the coefficient, or the end of block

· extra_bits determines the value of the coefficient within the value range defined by the token.

· sign indicates the sign of the coefficient.

	© ISO 2013 – All rights reserved
	1

	108
	© ISO 2012 – All rights reserved

	
	4

