© ISO/IEC 2012 – All rights reserved

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION

ORGANISATION INTERNATIONALE NORMALISATION

ISO/IEC JTC 1/SC 29/WG 11

CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC 1/SC 29/WG 11 N13606
April, 2013, Inchon, KR
	Source:
	3DG

	Title:
	WD of the 2nd Edition of ISO/IEC 23000-13, Augmented Reality Application Format

	Editor
	Marius Preda, B.S. Choi, Minsu Anh

FINAL COMMITTEE DRAFT

 SET DDOrganization "© ISO/IEC 2012 – All rights reserved" © ISO/IEC 2012 – All rights reserved

 SET LibEnteteISO "ISO/IEC FCD 23000-13" ISO/IEC FCD 23000-13

 SET LIBTypeTitreISO " 63" 63

 SET DDTITLE4 "Part 13: Augmented reality application format" Part 13: Augmented reality application format

 SET DDTITLE3 "Information technology — Multimedia application format (MPEG-A)" Information technology — Multimedia application format (MPEG-A)

 SET DDTITLE2 "Technologies de l'information — Format des applications multimedias — Partie 13: Format pour les Applications de Realité Augmentée" Technologies de l'information — Format des applications multimedias — Partie 13: Format pour les Applications de Realité Augmentée

 SET DDTITLE1 "Information technology — Multimedia application format (MPEG-A) — Part 13: Augmented reality application format" Information technology — Multimedia application format (MPEG-A) — Part 13: Augmented reality application format

 SET DDDocLanguage "E" E

 SET DDWorkDocDate "2012-10-19" 2012-10-19

 SET DDDocStage "(40) Enquiry" (40) Enquiry

 SET DDOrganization3 "ISO/IEC" ISO/IEC

 SET DDOrganization1 "ISO/IEC J" ISO/IEC J

 SET DDBASEYEAR ""

 SET DDAmno ""

 SET DDDocSubType ""

 SET DDDocType "International Standard" International Standard

 SET DDWorkDocNo """"

 SET DDpubYear "2012" 2012

 SET DDRefNoPart "ISO/IEC 23000" ISO/IEC 23000

 SET DDRefGen "ISO/IEC 23000‑13" ISO/IEC 23000‑13

 SET DDRefNum "ISO/IEC FCD 23000-13" ISO/IEC FCD 23000-13

 SET DDSCSecr ""

 SET DDSecr ""

 SET DDSCTitle "Coding of audio, picture, multimedia and hypermedia information" Coding of audio, picture, multimedia and hypermedia information

 SET DDTCTitle "Information technology" Information technology

 SET DDWGNum "11" 11

 SET DDSCNum "29" 29

 SET DDTCNum "1" 1

 SET LIBLANG " 2" 2

 SET libH2NAME "Titre 2;h2;H2;H21;Œ©�o‚µ 2;?c�o??E 2;뙥2;?c1;?c�o?ƒÊ 2;?2;Œ1;Œ2;Œ©1;Œ©2;Œ©_o‚µ 2;2;Header 2;2nd level;DO NOT USE_h2;título 2;mobil-heading2;UNDERRUBRIK 1-2;Sub-section;?c_o??E 2;...;Œ©_o..." Titre 2;h2;H2;H21;Œ©�o‚µ 2;?c�o??E 2;뙥2;?c1;?c�o?ƒÊ 2;?2;Œ1;Œ2;Œ©1;Œ©2;Œ©_o‚µ 2;2;Header 2;2nd level;DO NOT USE_h2;título 2;mobil-heading2;UNDERRUBRIK 1-2;Sub-section;?c_o??E 2;...;Œ©_o...

 SET libH1NAME "Titre 1" Titre 1

 SET LibDesc ""

 SET LibDescD ""

 SET LibDescE ""

 SET LibDescF ""

 SET NATSubVer "0" 0

 SET CENSubVer "2" 2

 SET ISOSubVer ""

 SET LIBVerMSDN "STD Version 2.1c2" STD Version 2.1c2

 SET LIBStageCode "40" 40

 SET LibRpl ""

 SET LibICS ""

 SET LIBFIL " 4" 4

 SET LIBEnFileName "C:\users\frisca\My Projects\ISO\2012.10@Shanghai\output\Final\w13182 ARAF DIS.doc" C:\users\frisca\My Projects\ISO\2012.10@Shanghai\output\Final\w13182 ARAF DIS.doc

 SET LIBFrFileName ""

 SET LIBDeFileName ""

 SET LIBNatFileName ""

 SET LIBFileOld ""

 SET LIBTypeTitreCEN ""

 SET LIBTypeTitreNAT ""

 SET LibEnteteCEN ""

 SET LibEnteteNAT ""

 SET LIBASynchroVF ""

 SET LIBASynchroVE ""

 SET LIBASynchroVD ""

 SET DDEditionNo "" ISO/IEC JTC 1/SC 29
Date: 2012-10-19
ISO/IEC DIS 23000-13
ISO/IEC JTC 1/SC 29/WG 11
Secretariat:
Information technology — Multimedia application format (MPEG-A) — Part 13: Augmented reality application format
Technologies de l'information — Format des applications multimedias — Partie 13: Format pour les Applications de Realité Augmentée

Warning
This document is not an ISO International Standard. It is distributed for review and comment. It is subject to change without notice and may not be referred to as an International Standard.
Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Copyright notice

This ISO document is a Draft International Standard and is copyright-protected by ISO. Except as permitted under the applicable laws of the user's country, neither this ISO draft nor any extract from it may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, photocopying, recording or otherwise, without prior written permission being secured.
Requests for permission to reproduce should be addressed to either ISO at the address below or ISO's member body in the country of the requester.
ISO copyright office
Case postale 56 (CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Reproduction may be subject to royalty payments or a licensing agreement.
Violators may be prosecuted.
Sommaire

1INTERNATIONAL ORGANIZATION FOR STANDARDIZATION

11
Scope

12
Normative references

13
Terms, definitions, and abbreviated terms

13.1
Terms and definitions

23.2
Abbreviated terms

24
ARAF Components

24.1
ARAF principle and context

34.2
ARAF Scene Description

54.2.1
Elementary media

344.2.2
Programming information

354.2.3
User interactivity

434.2.4
Scene related information (spatial and temporal relationships)

684.2.5
Dynamic and animated scene

724.2.6
Communication and compression

824.2.7
Terminal

834.3
ARAF for Sensors and Actuators

834.3.1
Usage of InputSensor and Script Nodes

874.3.2
Access to local camera sensor

874.3.3
Usage of OutputActuator and Script Nodes

894.4
ARAF compression

90Annex A (informative) Map related Prototypes Implementation

110Annex B (informative) SimpleAugmentationRegion Prototype Implementation

Foreword
ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of the joint technical committee is to prepare International Standards. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.
ISO/IEC 23000‑13 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.
This second/third/... edition cancels and replaces the first/second/... edition (), [clause(s) / subclause(s) / table(s) / figure(s) / annex(es)] of which [has / have] been technically revised.
ISO/IEC 23000 consists of the following parts, under the general title Information technology — Multimedia application format (MPEG-A):
· Part 13: Augmented reality application format
· Part [n]:
· Part [n+1]:
· Part 13: Augmented reality application format
· Part [n]:
· Part [n+1]:
· Part 13: Augmented reality application format
· Part [n]:
· Part [n+1]:
· Part 1: Purpose for multimedia application formats
· Part 2: MPEG music player application format
· Part 3: MPEG photo player application format
· Part 4: Musical slide show application format
· Part 5: Media streaming application format
· Part 6: Professional archival application format
· Part 7: Open access application format
· Part 8: Portable videor application format
· Part 9: Digital Multimedia Broadcasting application format
· Part 10: Video surveillance application format
· Part 11: Stereoscopic video application format
· Part 12: Interactive music application format
· Part 13: Augmented Reality Application Format
Introduction
Augmented Reality (AR) applications refer to a view of a real-world environment (RWE) whose elements are augmented by content, such as graphics or sound, in a computer driven process. Augmented Reality Application Format (ARAF) is a collection of a subset of the ISO/IEC 14496-11 (MPEG-4 part 11) Scene Description and Application Engine standard, combined with other relevant MPEG standards (e.g. ISO/IEC 23005 - MPEG-V), designed to enable the consumption of 2D/3D multimedia content. Consequently, ISO/IEC 23000-13 focuses not on client or server procedures but on the data formats used to provide an augmented reality presentation.
Information technology — Multimedia application format (MPEG-A) — Part 13: Augmented reality application format
1 Scope
This part of ISO/IEC 23000 specifies:
· Scene description elements for representing AR content
· Mechanisms to connect to local and remote sensors and actuators
· Mechanisms to integrated compressed medias (image, audio, video, graphics)
· Mechanisms to connect to remote resources such as maps and compressed medias
2 Normative references
The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
ISO/IEC 14496-1, Information technology — Coding of audio-visual objects — Part 1: Systems
ISO/IEC 14496-3:2009, Information technology — Coding of audio-visual objects — Part 3: Audio
ISO/IEC 14496-11:201X, Information technology — Coding of audio-visual objects — Part 11: Scene description and application engine
ISO/IEC 14496-16:2011, Information technology — Coding of audio-visual objects — Part 16: Animation Framework eXtension (AFX)
ISO/IEC 23005-5:2011, Information technology — Media context and control — Part 5: Data formats for interaction devices
ISO/IEC 14772-1:1997, Information technology — Computer graphics and image processing — The Virtual Reality Modeling Language — Part 1: Functional specification and UTF-8 encoding
ISO/IEC 10646-1:2012, Information technology — Universal Multiple-Octet Coded Character Set (UCS) — Part 1: Architecture and Basic Multilingual Plane
ISO/IEC 8859-1:1998, Information technology — 8-bit single-byte coded graphic character sets — Part 1: Latin alphabet No.1
3 Terms, definitions, and abbreviated terms
Terms and definitions
For the purposes of this document, the terms and definitions are defined in ISO/IEC 23000-1:2012 Multimedia Application Format, Part 14 Augmented Reality Reference Model.
Abbreviated terms
For the purposes of this International Standard, the following abbreviated terms apply.
AR

Augmented Reality
URI

Uniform Resource Identifier
URL

Uniform Resource Locator
URN

Uniform Resource Name
4 ARAF Components
ARAF principle and context
Augmented Reality (AR) applications refer to a view of a real-world environment whose elements are augmented by content, such as graphics or sound, in a computer driven process. Figure 1 illustrates two real and virtual cameras and the composition of a real image and graphics objects.

	[image: image1.png]

	Figure 1 — Simplified illustration of the AR principle

The Augmented Reality Application Format (ARAF) is an extension of a subset of the MPEG-4 part 11 Scene Description and Application Engine standard, combined with other relevant MPEG standards (MPEG-4, MPEG-V), designed to enable the consumption of 2D/3D multimedia content as depicted in Figure 2.

An ARAF, available as a file or stream, is interpreted by a device, called ARAF device. The nodes of the ARAF scene point to different sources of multimedia content such as 2D/3D image, 2D/3D audio, 2D/3D video, 2D/3D graphics and sensor/sensory information sources/sinks that are either remote or/and local.
[image: image2.png]
Figure 2 — The ARAF context
ARAF Scene Description
To describe the multimedia scene ARAF is based on ISO/IEC 14496-11 (MPEG-4 Part 11 BIFS) which at its turn is based on ISO/IEC 14772-1:1997 (VRML97). About two hundreds nodes are standardized in MPEG-4 BIFS and VRML, allowing various kinds of scenes to be constructed. ARAF is referring to a subset of MPEG-4 BIFS nodes for scene description as presented below.
	Category
	Sub-category
	Node, Prototypes / Elements name in MPEG-4 BIFS / XMT

	Elementary media
	Audio
	AudioSource

	
	
	Sound

	
	
	Sound2D

	
	Image and video
	ImageTexture

	
	
	MovieTexture

	
	Textual information
	FontStyle

	
	
	Text

	
	Graphics
	Appearance

	
	
	Color

	
	
	LineProperties

	
	
	LinearGradient

	
	
	Material

	
	
	Material2D

	
	
	Rectangle

	
	
	Shape

	
	
	SBVCAnimationV2

	
	
	SBBone

	
	
	SBSegment

	
	
	SBSite

	
	
	SBSkinnedModel

	
	
	MorphShape

	
	
	Coordinate

	
	
	TextureCoordinate

	
	
	Normal

	
	
	IndexedFaceSet

	
	
	IndexedLineSet

	Programming information
	
	Script

	User interactivity
	
	InputSensor

	
	
	OutputActuator

	
	
	SphereSensor

	
	
	TimeSensor

	
	
	TouchSensor

	
	
	MediaSensor

	
	
	PlaneSensor

	Scene related information (spatial and temporal relationships)
	
	AugmentationRegion

	
	
	SimpleAugmentationRegion

	
	
	Background

	
	
	Background2D

	
	
	CameraCalibration

	
	
	Group

	
	
	Inline

	
	
	Layer2D

	
	
	Layer3D

	
	
	Layout

	
	
	NavigationInfo

	
	
	OrderedGroup

	
	
	ReferenceSignal

	
	
	ReferenceSignalLocation

	
	
	Switch

	
	
	Transform

	
	
	Transform2D

	
	
	Viewpoint

	
	
	Viewport

	
	
	Form

	Dynamic and animated scene
	
	OrientationInterpolator

	
	
	ScalarInterpolator

	
	
	CoordinateInterpolator

	
	
	ColorInterpolator

	
	
	PositionInterpolator

	
	
	Valuator

	Communication and compression
	
	BitWrapper

	
	
	MediaControl

	
	Maps
	Map

	
	
	MapOverlay

	
	
	MapMarker

	Terminal
	
	TermCap

All the above listed elements are specified in MPEG-4 Part 11. However, to facilitate the implementation of ARAF content, the current document contains the XML syntax as well as the semantics and functionality.
MPEG-4 Part 11 describes a scene with a hierarchical structure that can be represented as a graph. Nodes of the graph build up various types of objects, such as audio video, image, graphic, text, etc. Furthermore, to ensure the flexibility, a new, user-defined type of node derived from a parent one can also be defined on demand by using the Proto method.
In general, nodes expose a set of parameters, through which aspects of their appearance and behavior can be controlled. By setting these values, scene designers have a tool to force a scene-reconstruction at clients’ terminals to adhere to their intention in a predefined manner. In more complicated scenario, the structure of BIFS nodes is not necessarily static; nodes can be added or removed from the scene graph arbitrarily.
Certain types of nodes called sensors, such as TimeSensor, TouchSensor, can interact with users and generate appropriate triggers, which are transmitted to others nodes by routing mechanism, causing changes in state of these receiving nodes. They are bases for the dynamic behavior of a multimedia content supported by MPEG-4.
The maximum flexibility in the programmable feature of MPEG-4 scene is carried out with the Script node. By routing mechanism to Event In valueIn attribute of Script node, the associated function (defined in its URL attribute) with the same name Event In valueIn () will be triggered. The behavior of this function is user-defined, i.e. scene-designer can freely process some computations, and then sets the values for every Event Out valueOut attribute, which consecutively affect the states of other nodes linked to them.
Direct manipulation of nodes’ states is also possible in MPEG-4 Part 11: the Field field attribute can refer to any node in the scene; through this link, all attributes of the contacted node will be exposed to direct setting and modifying operators within the Script node. The syntax of the language used to implement the function of Script node is ECMAScript [ISO/IEC DIS 16262 Information technology - ECMAScript: A general purpose, cross-platform programming language].
ARAF supports the definition and reusability of complex objects by using the MPEG-4 PROTO mechanism. The PROTO statement creates its own nodes by defining a configurable object prototype; it can integrate any other node from the scene graph.
The following table indicates the MPEG-4 Part 11 nodes that are included in ARAF. For each node, it is specified the version of the standard when it was published.
Elementary media
Audio
The following audio related nodes are used in ARAF: AudioSource, Sound, Sound2D.
AudioSource
XSD Description
<complexType name="AudioSourceType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

<element name="children" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SFAudioNodeType" minOccurs="0" maxOccurs="unbounded"/>

</complexType>

</element>

</all>

<attribute name="url" type="xmta:MFUrl" use="optional"/>

<attribute name="pitch" type="xmta:SFFloat" use="optional" default="1"/>

<attribute name="speed" type="xmta:SFFloat" use="optional" default="1"/>

<attribute name="startTime" type="xmta:SFTime" use="optional" default="0"/>

<attribute name="stopTime" type="xmta:SFTime" use="optional" default="0"/>

<attribute name="numChan" type="xmta:SFInt32" use="optional" default="1"/>

<attribute name="phaseGroup" type="xmta:MFInt32" use="optional"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="AudioSource" type="xmta:AudioSourceType"/>
Functionality and semantics
As defined in ISO/IEC 14496-11 (BIFS), section 7.2.2.15.
This node is used to add sound to a BIFS scene. See ISO/IEC 14496-3 for information on the various audio tools available for coding sound.
The addChildren eventIn specifies a list of nodes that shall be added to the children field. The removeChildren eventIn specifies a list of nodes that shall be removed from the children field.
The children field allows buffered AudioBuffer or AdvancedAudioBuffer data to be used as sound samples within a structured audio decoding process. Only AudioBuffer and AdvancedAudioBuffer nodes shall be children to an AudioSource node, and only in the case where url indicates a structured audio bitstream. The pitch field controls the playback pitch for the structured audio, the parametric speech (HVXC) and the parametric audio (HILN) decoder. It is specified as a ratio, where 1 indicates the original bitstream pitch, values other than 1 indicate pitch-shifting by the given ratio. This field is available through the getttune() core opcode in the structured audio decoder (see ISO/IEC 14496-3, section 5). To adjust the pitch of other decoder types, use the AudioFX node with an appropriate effects orchestra.
The speed field controls the playback speed for the structured audio decoder (see ISO/IEC 14496-3, section 5), the parametric speech (HVXC) and the parametric audio (HILN) decoder. It is specified as a ratio, where 1 indicates the original speed; values other than 1 indicate multiplicative time-scaling by the given ratio (i.e. 0.5 specifies twice as fast). The value of this field shall be made available to the structured audio decoder indicated by the url field. ISO/IEC 14496-3, section 5.7.3.3.6, list item 8, describe the use of this field to control the structured audio decoder. To adjust the speed of other decoder types, use the AudioFX node with an appropriate effects orchestra (see ISO/IEC 14496-3, section 5.9.14.4).
The startTime and stopTime exposedFields and their effects on the AudioSource node are described in 7.1.1.1.6.2. The numChan field describes how many channels of audio are in the decoded bitstream.
Sound
XSD Description
<complexType name="SoundType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

<element name="source" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SFAudioNodeType" minOccurs="0"/>

</complexType>

</element>

</all>

<attribute name="direction" type="xmta:SFVec3f" use="optional" default="0 0 1"/>

<attribute name="intensity" type="xmta:SFFloat" use="optional" default="1"/>

<attribute name="location" type="xmta:SFVec3f" use="optional" default="0 0 0"/>

<attribute name="maxBack" type="xmta:SFFloat" use="optional" default="10"/>

<attribute name="maxFront" type="xmta:SFFloat" use="optional" default="10"/>

<attribute name="minBack" type="xmta:SFFloat" use="optional" default="1"/>

<attribute name="minFront" type="xmta:SFFloat" use="optional" default="1"/>

<attribute name="priority" type="xmta:SFFloat" use="optional" default="0"/>

<attribute name="spatialize" type="xmta:SFBool" use="optional" default="true"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="Sound" type="xmta:SoundType"/>
Functionality and semantics
As defined in ISO/IEC 14496-11 (BIFS), section 7.2.2.116.
The Sound node is used to attach sound to a scene, thereby giving it spatial qualities and relating it to the visual content of the scene. The Sound node relates an audio BIFS sub-graph to the rest of an audio-visual scene. By using this node, sound may be attached to a group, and spatialized or moved around as appropriate for the spatial transforms above the node. By using the functionality of the audio BIFS nodes, sounds in an audio scene dscribed using ISO/IEC 14496-11 may be filtered and mixed before being spatially composited into the scene. The semantics of this node are as defined in ISO/IEC 14472-1:1997, section 6.42, with the following exceptions and additions.
The source field allows the connection of an audio sub-graph containing the sound. The spatialize field determines whether the Sound shall be spatialized. If this flag is set, the sound shall be presented spatially according to the local coordinate system and current listeningPoint, so that it apparently comes from a source located at the location point, facing in the direction given by direction. The exact manner of spatialization is implementation-dependant, but implementators are encouraged to provide the maximum sophistication possible depending on terminal resources. If there are multiple channels of sound output from the child sound, they may or may not be spatialized, according to the phaseGroup properties of the child, as follows. Any individual channels, that is, channels not phase-related to other channels, are summed linearly and then spatialized. Any phase-grouped channels are not spatialized, but passed through this node unchanged. The sound presented in the scene is thus a single spatialized sound, represented by the sum of the individual channels, plus an “ambient” sound represented by mapping all the remaining channels into the presentation system as described in ISO/IEC 14496-11, section 7.1.1.2.13.2.2. If the spatialize field is not set, the audio channels from the child are passed through unchanged, and the sound presented in the scene due to this node is an “ambient” sound represented by mapping all the audio channels output by the child into the presentation system as described in ISO/IEC 14496-11, section 7.1.1.2.13.2.2.
As with the visual objects in the scene, the Sound node may be included as a child or descendant of any of the grouping or transform nodes. For each of these nodes, the sound semantics are as follows. Affine transformations presented in the grouping and transform nodes affect the apparant spatialization position of spatialized sound. They have no effect on “ambient” sounds. If a particular grouping or transform node has multiple Sound nodes as descendants, then they are combined for presentation as follows. Each of the Sound nodes may be producing a spatialized sound, a multichannel ambient sound, or both. For all of the spatialized sounds in descendant nodes, the sounds are linearly combined through simple summation from presentation. For multichannel ambient sounds, the sounds are linearly combined channel-by-channel for presentation.
Sound2D
XSD Description
<complexType name="Sound2DType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

<element name="source" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SFAudioNodeType" minOccurs="0"/>

</complexType>

</element>

</all>

<attribute name="intensity" type="xmta:SFFloat" use="optional" default="1"/>

<attribute name="location" type="xmta:SFVec2f" use="optional" default="0 0"/>

<attribute name="spatialize" type="xmta:SFBool" use="optional" default="true"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="Sound2D" type="xmta:Sound2DType"/>
Functionality and semantics
As defined in ISO/IEC 14496-11 (BIFS), section 7.2.2.117.
The Sound2D node relates an audio BIFS sub-graph to the other parts of a 2D audio-visual scene. It shall not be used in 3D contexts. By using this node, sound may be attached to a group of visual nodes. By using the functionality of the audio BIFS nodes, sounds in an audio scene may be filtered and mixed before being spatially composed into the scene.
The intensity field adjusts the loudness of the sound. Its value ranges from 0.0 to 1.0, and this value specifies a factor that is used during the playback of the sound. The location field specifies the location of the sound in the 2D scene. The source field connects the audio source to the Sound2D node. The spatialize field specifies whether the sound shall be spatialized on the 2D screen. If this flag is set, the sound shall be spatialized with the maximum sophistication possible. The 2D sound is spatialized assuming a distance of one meter between the user and a 2D scene of size 2m x 1.5m, giving the minimum and maximum azimuth angles of –45° and +45°, and the minimum and maximum elevation angles of -37° and +37 °. The same rules for multichannel audio spatialization apply to the Sound2D node as to the Sound (3D) node. Using the phaseGroup flag in the AudioSource node it is possible to determine whether the channels of the source sound contain important phase relations, and that spatialization at the terminal should not be performed.
As with the visual objects in the scene (and for the Sound node), the Sound2D node may be included as a child or descendant of any of the grouping or transform nodes. For each of these nodes, the sound semantics are as follows. Affine transformations presented in the grouping and transform nodes affect the apparent spatialization position of spatialized sound.
If a transform node has multiple Sound2D nodes as descendants, then they are combined for presentation. If Sound and Sound2D nodes are both used in a scene, all shall be treated the same way according to these semantics.
Image and video
The following image and video related nodes are used in ARAF: ImageTexture, MovieTexture.
ImageTexture
XSD Description
<complexType name="ImageTextureType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

</all>

<attribute name="url" type="xmta:MFUrl" use="optional"/>

<attribute name="repeatS" type="xmta:SFBool" use="optional" default="true"/>

<attribute name="repeatT" type="xmta:SFBool" use="optional" default="true"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="ImageTexture" type="xmta:ImageTextureType"/>
Functionality and semantics
As defined in ISO/IEC 14772-1:1997, section 6.22.
The ImageTexture node defines a texture map by specifying an image file and general parameters for mapping to geometry. Texture maps are defined in a 2D coordinate system (s, t) that ranges from [0.0, 1.0] in both directions. The bottom edge of the image corresponds to the S-axis of the texture map, and left edge of the image corresponds to the T-axis of the texture map. The lower-left pixel of the image corresponds to s=0, t=0, and the top-right pixel of the image corresponds to s=1, t=1.
The texture is read from the URL specified by the url field. When the url field contains no values ([]), texturing is disabled. Browsers shall support the JPEG and PNG image file formats. In addition, browsers may support other image formats (e.g. CGM) which can be rendered into a 2D image. Support for the GIF format is also recommended (including transparency).
The repeatS and repeatT fields specify how the texture wraps in the S and T directions. If repeatS is TRUE (the default), the texture map is repeated outside the [0.0, 1.0] texture coordinate range in the S direction so that it fills the shape. If repeatS is FALSE, the texture coordinates are clamped in the S direction to lie within the [0.0, 1.0] range. The repeatT field is analogous to the repeatS field.
MovieTexture
XSD Description
<complexType name="MovieTextureType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

</all>

<attribute name="loop" type="xmta:SFBool" use="optional" default="false"/>

<attribute name="speed" type="xmta:SFFloat" use="optional" default="1"/>

<attribute name="startTime" type="xmta:SFTime" use="optional" default="0"/>

<attribute name="stopTime" type="xmta:SFTime" use="optional" default="0"/>

<attribute name="url" type="xmta:MFUrl" use="optional"/>

<attribute name="repeatS" type="xmta:SFBool" use="optional" default="true"/>

<attribute name="repeatT" type="xmta:SFBool" use="optional" default="true"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="MovieTexture" type="xmta:MovieTextureType"/>
Functionality and semantics
As defined in ISO/IEC 14496-11 (BIFS), section 7.2.2.86.
The loop, startTime, and stopTime exposedFields and the isActive eventOut, and their effects on the MovieTexture node, are described in ISO/IEC 14496-11, section 7.1.1.1.6.2. The speed exposedField controls playback speed. It does not affect the delivery of the stream attached to the MovieTexture node. For streaming media, value of speed other than 1 shall be ignored.
A MovieTexture shall display frame or VOP 0 if speed is 0. For positive values of speed, the frame or VOP that an active MovieTexture will display at time now corresponds to the frame or VOP at movie time (i.e., in the movie’s local time base with frame or VOP 0 at time 0, at speed = 1): fmod (now - startTime, duration/speed) If speed is negative, then the frame or VOP to display is the frame or VOP at movie time: duration + fmod(now - startTime, duration/speed). A MovieTexture node is inactive before startTime is reached. If speed is non-negative, then the first VOP shall be used as texture, if it is already available. If speed is negative, then the last VOP shall be used as texture, if it is already available.
When a MovieTexture becomes inactive, the VOP corresponding to the time at which the MovieTexture became inactive shall persist as the texture. The speed exposedField indicates how fast the movie shall be played. A speed of 2 indicates the movie plays twice as fast. Note that the duration_changed eventOut is not affected by the speed exposedField. set_speed events shall be ignored while the movie is playing.
Textual information
The following text related nodes are used in ARAF: FontStyle, Text.
FontStyle
XSD Description
<complexType name="FontStyleType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

</all>

<attribute name="family" type="xmta:MFString" use="optional" default=""SERIF""/>

<attribute name="horizontal" type="xmta:SFBool" use="optional" default="true"/>

<attribute name="justify" type="xmta:MFString" use="optional" default=""BEGIN""/>

<attribute name="language" type="xmta:SFString" use="optional" default=""""/>

<attribute name="leftToRight" type="xmta:SFBool" use="optional" default="true"/>

<attribute name="size" type="xmta:SFFloat" use="optional" default="1"/>

<attribute name="spacing" type="xmta:SFFloat" use="optional" default="1"/>

<attribute name="style" type="xmta:SFString" use="optional" default=""PLAIN""/>

<attribute name="topToBottom" type="xmta:SFBool" use="optional" default="true"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="FontStyle" type="xmta:FontStyleType"/>
Functionality and semantics
As defined in ISO/IEC 14772-1:1997, section 6.20.
The FontStyle node defines the size, family, and style used for Text nodes, as well as the direction of the text strings and any language-specific rendering techniques used for non-English text.
The size field specifies the nominal height, in the local coordinate system of the Text node, of glyphs rendered and determines the spacing of adjacent lines of text. Values of the size field shall be greater than zero.
The spacing field determines the line spacing between adjacent lines of text. The distance between the baseline of each line of text is (spacing × size) in the appropriate direction (depending on other fields described below). Values of the spacing field shall be non-negative.
Font attributes are defined with the family and style fields. The browser shall map the specified font attributes to an appropriate available font as described below.
The family field contains a case-sensitive MFString value that specifies a sequence of font family names in preference order. The browser shall search the MFString value for the first font family name matching a supported font family. If none of the string values matches a supported font family, the default font family "SERIF" shall be used. All browsers shall support at least "SERIF" (the default) for a serif font such as Times Roman; "SANS" for a sans-serif font such as Helvetica; and "TYPEWRITER" for a fixed-pitch font such as Courier. An empty family value is identical to ["SERIF"].
The style field specifies a case-sensitive SFString value that may be "PLAIN" (the default) for default plain type; "BOLD" for boldface type; "ITALIC" for italic type; or "BOLDITALIC" for bold and italic type. An empty style value ("") is identical to "PLAIN".
The horizontal, leftToRight, and topToBottom fields indicate the direction of the text. The horizontal field indicates whether the text advances horizontally in its major direction (horizontal = TRUE, the default) or vertically in its major direction (horizontal = FALSE). The leftToRight and topToBottom fields indicate direction of text advance in the major (characters within a single string) and minor (successive strings) axes of layout. Which field is used for the major direction and which is used for the minor direction is determined by the horizontal field.
For horizontal text (horizontal = TRUE), characters on each line of text advance in the positive X direction if leftToRight is TRUE or in the negative X direction if leftToRight is FALSE. Characters are advanced according to their natural advance width. Each line of characters is advanced in the negative Y direction if topToBottom is TRUE or in the positive Y direction if topToBottom is FALSE. Lines are advanced by the amount of size × spacing.
For vertical text (horizontal = FALSE), characters on each line of text advance in the negative Y direction if topToBottom is TRUE or in the positive Y direction if topToBottom is FALSE. Characters are advanced according to their natural advance height. Each line of characters is advanced in the positive X direction if leftToRight is TRUE or in the negative X direction if leftToRight is FALSE. Lines are advanced by the amount of size × spacing.
The justify field determines alignment of the above text layout relative to the origin of the object coordinate system. The justify field is an MFString which can contain 2 values. The first value specifies alignment along the major axis and the second value specifies alignment along the minor axis, as determined by the horizontal field. An empty justify value ("") is equivalent to the default value. If the second string, minor alignment, is not specified, minor alignment defaults to the value "FIRST". Thus, justify values of "", "BEGIN", and ["BEGIN" "FIRST"] are equivalent.
The major alignment is along the X-axis when horizontal is TRUE and along the Y-axis when horizontal is FALSE. The minor alignment is along the Y-axis when horizontal is TRUE and along the X-axis when horizontal is FALSE. The possible values for each enumerant of the justify field are "FIRST", "BEGIN", "MIDDLE", and "END". For major alignment, each line of text is positioned individually according to the major alignment enumerant. For minor alignment, the block of text representing all lines together is positioned according to the minor alignment enumerant.
The language field specifies the context of the language for the text string. Due to the multilingual nature of the ISO/IEC 10646-1:1993, the language field is needed to provide a proper language attribute of the text string. The format is based on RFC 1766: language[_territory].
The value for the language tag is based on ISO 639:1988 (e.g., 'zh' for Chinese, 'jp' for Japanese, and 'sc' for Swedish.) The territory tag is based on ISO 3166:1993 country codes (e.g., 'TW' for Taiwan and 'CN' for China for the 'zh' Chinese language tag). If the language field is empty (""), local language bindings are used.
The semantics of the FontStyle node are the ones specified above (ISO/IEC 14772-1:1997, section 6.20), with the exception that the field types are exposedField and the semantics of the size and spacing fields are as follows.
The size field defines the size of the EM box of a font (The EM is a relative measure of the height of the glyphs in a font defined in a device- and resolution-independent font design units). This value corresponds to the distance between two adjacent baselines of unadjusted text, set in a particular font. The value of the size field is conveyed using the same metric units that are used for a scene description. If a scene uses pixel-based metrics, the value of the size field is specified in pixels, otherwise it specifies the size in meters.
The spacing field defines the distance between two adjacent lines of text as the product of size and spacing. Special fonts provided in a font data stream can be accessed using the following syntax:
“OD:<odid>;FSID:<fsid>”, where :
- <odid> is the numeric value of the objectDescriptorID of the associated font data stream,
- <fsid> is the numeric value of the requested font subset as conveyed by fontSubsetID within the associated font data stream.
Text
XSD Description
<complexType name="TextType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

<element name="fontStyle" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SFFontStyleNodeType" minOccurs="0"/>

</complexType>

</element>

</all>

<attribute name="string" type="xmta:MFString" use="optional"/>

<attribute name="length" type="xmta:MFFloat" use="optional"/>

<attribute name="maxExtent" type="xmta:SFFloat" use="optional" default="0"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="Text" type="xmta:TextType"/>
Functionality and semantics
As defined in ISO/IEC 14772-1:1997, section 6.47.
The Text node specifies a two-sided, flat text string object positioned in the Z=0 plane of the local coordinate system based on values defined in the fontStyle field (see ISO/IEC 14772-1:1997, section 6.20, FontStyle). Text nodes may contain multiple text strings specified using the UTF-8 encoding as specified by ISO 10646-1:1993 (see 2.[UTF8]). The text strings are stored in the order in which the text mode characters are to be produced as defined by the parameters in the FontStyle node.
The text strings are contained in the string field. The fontStyle field contains one FontStyle node that specifies the font size, font family and style, direction of the text strings, and any specific language rendering techniques used for the text.
The maxExtent field limits and compresses all of the text strings if the length of the maximum string is longer than the maximum extent, as measured in the local coordinate system. If the text string with the maximum length is shorter than the maxExtent, then there is no compressing. The maximum extent is measured horizontally for horizontal text (FontStyle node: horizontal=TRUE) and vertically for vertical text (FontStyle node: horizontal=FALSE). The maxExtent field shall be greater than or equal to zero.
The length field contains an MFFloat value that specifies the length of each text string in the local coordinate system. If the string is too short, it is stretched (either by scaling the text or by adding space between the characters). If the string is too long, it is compressed (either by scaling the text or by subtracting space between the characters). If a length value is missing (for example, if there are four strings but only three length values), the missing values are considered to be 0. The length field shall be greater than or equal to zero.
Specifying a value of 0 for both the maxExtent and length fields indicates that the string may be any length.
· ISO 10646-1:1993 Character Encodings
Characters in ISO 10646 (see 2.[UTF8]) are encoded in multiple octets. Code space is divided into four units, as follows:
+-------------+-------------+-----------+------------+
| Group-octet | Plane-octet | Row-octet | Cell-octet |
+-------------+-------------+-----------+------------+
ISO 10646-1:1993 allows two basic forms for characters:
a. UCS-2 (Universal Coded Character Set-2). This form is also known as the Basic Multilingual Plane (BMP). Characters are encoded in the lower two octets (row and cell).
b. UCS-4 (Universal Coded Character Set-4). Characters are encoded in the full four octets.
In addition, three transformation formats (UCS Transformation Format or UTF) are accepted: UTF-7, UTF-8, and UTF-16. Each represents the nature of the transformation: 7-bit, 8-bit, or 16-bit. UTF-7 and UTF-16 are referenced in 2.[UTF8].
UTF-8 maintains transparency for all ASCII code values (0...127). It allows ASCII text (0x0..0x7F) to appear without any changes and encodes all characters from 0x80.. 0x7FFFFFFF into a series of six or fewer bytes.
If the most significant bit of the first character is 0, the remaining seven bits are interpreted as an ASCII character. Otherwise, the number of leading 1 bits indicates the number of bytes following. There is always a zero bit between the count bits and any data.
The first byte is one of the following. The X indicates bits available to encode the character:
 0XXXXXXX only one byte 0..0x7F (ASCII)
 110XXXXX two bytes Maximum character value is 0x7FF
 1110XXXX three bytes Maximum character value is 0xFFFF
 11110XXX four bytes Maximum character value is 0x1FFFFF
 111110XX five bytes Maximum character value is 0x3FFFFFF
 1111110X six bytes Maximum character value is 0x7FFFFFFF
All following bytes have the format 10XXXXXX.
As a two byte example, the symbol for a register trade mark is ® or 174 in ISO Latin-1 (see ISO/IEC 8859-1:2012). It is encoded as 0x00AE in UCS-2 of ISO 10646. In UTF-8, it has the following two byte encoding: 0xC2, 0xAE.
· Appearance
Textures are applied to text as follows. The texture origin is at the origin of the first string, as determined by the justification. The texture is scaled equally in both S and T dimensions, with the font height representing 1 unit. S increases to the right, and T increases up.
4.14, Lighting model, has details on VRML lighting equations and how Appearance, Material and textures interact with lighting.
The Text node does not participate in collision detection.
Graphics
The following graphics related nodes are used in ARAF: Appearance, Color, LineProperties, LinearGradient, Material, Material2D, Rectangle, Shape, SBVCAnimationV2, SBBone, SBSegment, SBSite, SBSkinnedModel, MorphShape, Coordinate, TextureCoordinate, Normal, IndexedFaceSet, IndexedLineSet.
Appearance
XSD Description
<complexType name="AppearanceType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

<element name="material" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SFMaterialNodeType" minOccurs="0"/>

</complexType>

</element>

<element name="texture" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SFTextureNodeType" minOccurs="0"/>

</complexType>

</element>

<element name="textureTransform" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SFTextureTransformNodeType" minOccurs="0"/>

</complexType>

</element>

</all>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="Appearance" type="xmta:AppearanceType"/>
Functionality and semantics
As defined in ISO/IEC 14772-1:1997, section 6.3.
The Appearance node specifies the visual properties of geometry. The value for each of the fields in this node may be NULL. However, if the field is non-NULL, it shall contain one node of the appropriate type.
The material field, if specified, shall contain a Material node. If the material field is NULL or unspecified, lighting is off (all lights are ignored during rendering of the object that references this Appearance) and the unlit object colour is (1, 1, 1). Details of the VRML lighting model are in 4.14, Lighting model.
The texture field, if specified, shall contain one of the various types of texture nodes (ImageTexture, MovieTexture, or PixelTexture). If the texture node is NULL or the texture field is unspecified, the object that references this Appearance is not textured.
The textureTransform field, if specified, shall contain a TextureTransform node. If the textureTransform is NULL or unspecified, the textureTransform field has no effect.
Additional specification - ISO/IEC 14496-11 (BIFS), section 7.2.2.6.2.
The material field, if non-NULL, shall contain either a Material node or a Material2D node depending on the type of geometry node used in the geometry field of the Shape node that contains the Appearance node. The list below shows the geometry nodes that require a Material node, those that require a Material2D node and those where either may apply:
· Material2D only: Circle, Curve2D, IndexedFaceSet2D, IndexedLineSet2D, PointSet2D, Rectangle;
· Material only: Box, Cone, Cylinder, ElevationGrid, Extrusion, IndexedFaceSet, IndexedLineSet, PointSet, Sphere;
· Material2D or Material: Bitmap, Text.
Inside a Shape node in a 2D context, if no Appearance and therefore no Material2D is defined, the default values and behavior of the Material2D node shall be used. In a 3D context, the default behavior is specified in ISO/IEC14772-1 (the object is unlit and has color 1 1 1).
Color
XSD Description
<complexType name="ColorType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

</all>

<attribute name="color" type="xmta:MFColor" use="optional"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="Color" type="xmta:ColorType"/>
Functionality and semantics
As specified in ISO/IEC 14772-1:1997, section 6.9.
This node defines a set of RGB colours to be used in the fields of another node.
Color nodes are only used to specify multiple colours for a single geometric shape, such as colours for the faces or vertices of an IndexedFaceSet. A Material node is used to specify the overall material parameters of lit geometry. If both a Material node and a Color node are specified for a geometric shape, the colours shall replace the diffuse component of the material.
RGB or RGBA textures take precedence over colours; specifying both an RGB or RGBA texture and a Color node for geometric shape will result in the Color node being ignored.
LineProperties
XSD Description
<complexType name="LinePropertiesType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

</all>

<attribute name="lineColor" type="xmta:SFColor" use="optional" default="0 0 0"/>

<attribute name="lineStyle" type="xmta:SFInt32" use="optional" default="0"/>

<attribute name="width" type="xmta:SFFloat" use="optional" default="1"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="LineProperties" type="xmta:LinePropertiesType"/>
Functionality and semantics
As defined in ISO/IEC 14496-11 (BIFS), section 7.2.2.75.2.
The LineProperties node specifies line parameters used in 2D and 3D rendering.
The lineColor field specifies the color with which to draw the lines and outlines of 2D geometries.
The lineStyle field shall contain the line style type to apply to lines. The allowed values are:
	lineStyle
	Description

	0
	solid

	1
	dash

	2
	dot

	3
	dash-dot

	4
	dash-dash-dot

	5
	dash-dot-dot

The terminal shall draw each line style in a manner that is distiguishable from each other line style. The width field determines the width, in the local coordinate system, of rendered lines. The width is not subject to the local transformation. The cap and join style to be used are as follows. The wide lines should end with a square form flush with the end of the lines.
LinearGradient
XSD Description
<complexType name="LinearGradientType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

<element name="transform" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SF3DNodeType" minOccurs="0"/>

</complexType>

</element>

</all>

<attribute name="endPoint" type="xmta:SFVec2f" use="optional" default="1 0"/>

<attribute name="key" type="xmta:MFFloat" use="optional"/>

<attribute name="keyValue" type="xmta:MFColor" use="optional"/>

<attribute name="opacity" type="xmta:MFFloat" use="optional" default="1"/>

<attribute name="spreadMethod" type="xmta:SFInt32" use="optional" default="0"/>

<attribute name="startPoint" type="xmta:SFVec2f" use="optional" default="0 0"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="LinearGradient" type="xmta:LinearGradientType"/>
Functionality and semantics
As defined in ISO/IEC 14496-11 (BIFS), section 7.2.2.76.2.
The LinearGradient node is a texture ode that generates a texture procedurally. startPoint and endPoint define the gradient vector, in percentage of the bounds of the object.
key represents a location along the gradient vector, expressed in percentage of its length. At each location, an RGB color is specified in keyValue. Opacity for each color value can be specified. By default, colors are 100% opaque. One value of opacity can be specified meaning all color values have the same opacity, else an opacity must be specified for each color value.
transform is an optional parameter that defines how the coordinate system of the gradient can be transformed from the gradient coordinate system onto the target coordinate system. By default, the gradient coordinate system is the same as the object it is applied to. This allows effects such as skewing the gradient.
Only a 2D Transformation node (e.g. Transform2D, TransformMatrix2D) can be present here.
spreadMethod can be pad (0), reflect (1), or repeat (2). It indicates what happens if the gradient starts or ends inside the bounds of the object. Pad means that the last color is used, reflect says to reflect the gradient pattern start-to-end, end-to-start, … repeatedly until the target object is filled, and repeat says to repeat the gradient pattern start-to-end, start-to-end, … until the target object is filled.
opacity for each color value can be specified. By default, colors are 100% opaque. One value of opacity can be specifed meaning all color values have the same opacity, else an opacity must be specified for each color value.
Material
XSD Description
<complexType name="MaterialType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

</all>

<attribute name="ambientIntensity" type="xmta:SFFloat" use="optional" default="0.2"/>

<attribute name="diffuseColor" type="xmta:SFColor" use="optional" default="0.8 0.8 0.8"/>

<attribute name="emissiveColor" type="xmta:SFColor" use="optional" default="0 0 0"/>

<attribute name="shininess" type="xmta:SFFloat" use="optional" default="0.2"/>

<attribute name="specularColor" type="xmta:SFColor" use="optional" default="0 0 0"/>

<attribute name="transparency" type="xmta:SFFloat" use="optional" default="0"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="Material" type="xmta:MaterialType"/>
Functionality and semantics
As specified in ISO/IEC 14772-1:1997, section 6.27.
The Material node specifies surface material properties for associated geometry nodes and is used by the VRML lighting equations during rendering. All of the fields in the Material node range from 0.0 to 1.0.
The fields in the Material node determine how light reflects off an object to create colour:
a. The ambientIntensity field specifies how much ambient light from light sources this surface shall reflect. Ambient light is omnidirectional and depends only on the number of light sources, not their positions with respect to the surface. Ambient colour is calculated as ambientIntensity × diffuseColor.
b. The diffuseColor field reflects all VRML light sources depending on the angle of the surface with respect to the light source. The more directly the surface faces the light, the more diffuse light reflects.
c. The emissiveColor field models "glowing" objects. This can be useful for displaying pre-lit models (where the light energy of the room is computed explicitly), or for displaying scientific data.
d. The specularColor and shininess fields determine the specular highlights (e.g., the shiny spots on an apple). When the angle from the light to the surface is close to the angle from the surface to the viewer, the specularColor is added to the diffuse and ambient colour calculations. Lower shininess values produce soft glows, while higher values result in sharper, smaller highlights.
e. The transparency field specifies how "clear" an object is, with 1.0 being completely transparent, and 0.0 completely opaque.
Material2D
XSD Description
<complexType name="Material2DType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

<element name="lineProps" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SFLinePropertiesNodeType" minOccurs="0"/>

</complexType>

</element>

</all>

<attribute name="emissiveColor" type="xmta:SFColor" use="optional" default="0.8 0.8 0.8"/>

<attribute name="filled" type="xmta:SFBool" use="optional" default="false"/>

<attribute name="transparency" type="xmta:SFFloat" use="optional" default="0"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="Material2D" type="xmta:Material2DType"/>
Functionality and semantics
As defined in ISO/IEC 14496-11 (BIFS), section 7.2.2.80.2.
The Material2D node specifies the characteristics of a rendered 2D Shape. Material2D shall be used as the material field of an Appearance node in certain circumstances (see ISO/IEC 14496-11, section 7.2.2.6.2). The emissiveColor field specifies the color of the 2D Shape. If the shape is not filled, the interior is not drawn. The filled field specifies whether rendered nodes are filled or drawn using lines. This field affects IndexedFaceSet2D, Circle and Rectangle nodes. If the rendered node is not filled the line shall be drawn centered on the rendered node outline. That means that half the line will fall inside the rendered node, and the other half outside.
The lineProps field contains information about line rendering in the form of a LineProperties node. When filled is true, if lineProps is null, no outline is drawn; if lineProps is non-null, an outline is drawn using lineProps information. When filled is false and lineProps is null, an outline is drawn with default width (1), default style (solid) and as line color the emissive color of the Material2D. When filled is false and lineProps is defined, line color, width and style are taken from the lineProps node. See ISO/IEC 14496-11, section 7.2.2.75 for more information on LineProperties.
The transparency field specifies the transparency of the 2D Shape and applies both to the filled interior as well as to the outline when drawn. The part of the line which lies outside of the geometry shall not be sensitive to pointer activity. When mapping texture onto a geometry and an outline is to be drawn, the texture shall first mapped onto the geometry, where the geometry dimensions are those without an outline. Then after the geometry is textured the outline shall be drawn.
Rectangle
XSD Description
<complexType name="RectangleType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

</all>

<attribute name="size" type="xmta:SFVec2f" use="optional" default="2 2"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="Rectangle" type="xmta:RectangleType"/>
Functionality and semantics
As defined in ISO/IEC 14496-11 (BIFS), section 7.2.2.110.2.
This node specifies a rectangle centered at (0,0) in the local coordinate system. The size field specifies the horizontal and vertical size of the rendered rectangle.
Shape
XSD Description
<complexType name="ShapeType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

<element name="appearance" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SFAppearanceNodeType" minOccurs="0"/>

</complexType>

</element>

<element name="geometry" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SFGeometryNodeType" minOccurs="0"/>

</complexType>

</element>

</all>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="Shape" type="xmta:ShapeType"/>
Functionality and semantics
As specified in ISO/IEC 14772-1:1997, section 6.41.
The Shape node has two fields, appearance and geometry, which are used to create rendered objects in the world. The appearance field contains an Appearance node that specifies the visual attributes (e.g., material and texture) to be applied to the geometry. The geometry field contains a geometry node. The specified geometry node is rendered with the specified appearance nodes applied.
4.14, Lighting model, contains details of the VRML lighting model and the interaction between Appearance nodes and geometry nodes.
If the geometry field is NULL, the object is not drawn.
SBVCAnimationV2
XSD Description
<complexType name="SBVCAnimationV2Type">

<all>

<element ref="xmta:IS" minOccurs="0"/>

<element name="virtualCharacters" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SF3DNodeType" minOccurs="0" maxOccurs="unbounded"/>

</complexType>

</element>

</all>

<attribute name="activeUrlIndex" type="xmta:MFInt32" use="optional"/>

<attribute name="loop" type="xmta:SFBool" use="optional" default="false"/>

<attribute name="speed" type="xmta:SFFloat" use="optional" default="1"/>

<attribute name="startTime" type="xmta:SFTime" use="optional" default="0"/>

<attribute name="stopTime" type="xmta:SFTime" use="optional" default="0"/>

<attribute name="transitionTime" type="xmta:SFFloat" use="optional" default="0"/>

<attribute name="url" type="xmta:MFUrl" use="optional"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="SBVCAnimationV2" type="xmta:SBVCAnimationV2Type"/>
Functionality and semantics
As specified in ISO/IEC 14496-16:2006, section 4.7.1.7.
This node is an extension of the SBVCAnimation node and the added functionality consists in streaming control and animation data collection. The BBA stream can be controlled as a elementary media stream, and can be used in connection with the MediaControl node.
The virtualCharacters field specifies a list of SBSkinnedModel nodes. The length of the list can be 1 or greater.
The url field refers to the BBA stream which contains encoded animation data related to the SBSkinnedModel nodes from the virtualCharacters list and is used for outband bitstreams. The animation will be extracted from the first element of the animation URL list and if the case when it is not available the following element will be used.
The loop, startTime, and stopTime exposedFields and the isActive eventOut, and their effects on the SBVCAnimationV2 node, are similar with the ones described by VRML specifications (ISO/IEC 14772-1:1997) for AudioClip, MovieTexture, and TimeSensor nodes and are described as follows.
The values of the exposedFields are used to determine when the node becomes active or inactive.
The SBVCAnimationV2 node can execute for 0 or more cycles. A cycle is defined by field data within the node. If, at the end of a cycle, the value of loop is FALSE, execution is terminated. Conversely, if loop is TRUE at the end of a cycle, a time-dependent node continues execution into the next cycle. A time-dependent node with loop TRUE at the end of every cycle continues cycling forever if startTime >= stopTime, or until stopTime if startTime < stopTime.
The SBVCAnimationV2 node generates an isActive TRUE event when it becomes active and generates an isActive FALSE event when it becomes inactive. These are the only times at which an isActive event is generated. In particular, isActive events are not sent at each tick of a simulation.
The SBVCAnimationV2 node is inactive until its startTime is reached. When time now becomes greater than or equal to startTime, an isActive TRUE event is generated and the SBVCAnimationV2 node becomes active (now refers to the time at which the player is simulating and displaying the virtual world). When a SBVCAnimationV2 node is read from a mp4 file and the ROUTEs specified within the mp4 file have been established, the node should determine if it is active and, if so, generate an isActive TRUE event and begin generating any other necessary events. However, if a SBVCAnimationV2 node would have become inactive at any time before the reading of the mp4 file, no events are generated upon the completion of the read.
An active SBVCAnimationV2 node will become inactive when stopTime is reached if stopTime > startTime. The value of stopTime is ignored if stopTime <= startTime. Also, an active SBVCAnimationV2 node will become inactive at the end of the current cycle if loop is FALSE. If an active SBVCAnimationV2 node receives a set_loop FALSE event, execution continues until the end of the current cycle or until stopTime (if stopTime > startTime), whichever occurs first. The termination at the end of cycle can be overridden by a subsequent set_loop TRUE event.
Any set_startTime events to an active SBVCAnimationV2 node are ignored. Any set_stopTime event where stopTime <= startTime sent to an active SBVCAnimationV2 node is also ignored. A set_stopTime event where startTime < stopTime <= now sent to an active SBVCAnimationV2 node results in events being generated as if stopTime has just been reached. That is, final events, including an isActive FALSE, are generated and the node becomes inactive. The stopTime_changed event will have the set_stopTime value.
A SBVCAnimationV2 node may be restarted while it is active by sending a set_stopTime event equal to the current time (which will cause the node to become inactive) and a set_startTime event, setting it to the current time or any time in the future. These events will have the same time stamp and should be processed as set_stopTime, then set_startTime to produce the correct behaviour.
The speed exposedField controls playback speed. It does not affect the delivery of the stream attached to the SBVCAnimationV2 node. For streaming media, value of speed other than 1 shall be ignored.
A SBVCAnimationV2 shall display first frame if speed is 0. For positive values of speed, the frame that an active SBVCAnimationV2 will display at time now corresponds to the frame at animation time (i.e., in the animation’s local time base with frame 0 at time 0, at speed = 1):
 fmod (now - startTime, duration/speed)
If speed is negative, then the frame to display is the frame at animation time:
 duration + fmod(now - startTime, duration/speed).
When a SBVCAnimationV2 becomes inactive, the frame corresponding to the time at which the SBVCAnimationV2 became inactive shall persist. The speed exposedField indicates how fast the movie shall be played. A speed of 2 indicates the animation plays twice as fast. Note that the duration_changed eventOut is not affected by the speed exposedField. set_speed events shall be ignored while the animation is playing.
An event shall be generated via the duration_changed field whenever a change is made to the startTime or stopTime fields. An event shall also be triggered if these fields are changed simultaneously, even if the duration does not actually change.
activeUrlIndex allows to select or to combine specific animation resource referred in the url[] field. When this field is instantiated the behavior of the url[] field changes from the alternative selection into a combined selection. In the case of alternative mode, if the first resource in the url[] field is not available, the second one will be used, and so on. In the combined mode the following cases can occur:
(1) activeUrlIndex has one field: the resource from url[] that has this index is used for animation. When the activeUrlIndex is updated a transition between to the old animation (frame) and the new one is performed. The transition use linear interpolation for translation, center and scale and SLERP for spherical data as rotation and scaleOrientation. The time of transition is specified by using the transitionTime field.
(2) activeUrlIndex has several fields: a composition between the two resources is performed by the terminal: for the bones that are common in two or more resources a mean procedure has to be applied. The mean is computed by using linear interpolation for translation, center and scale and SLERP for spherical data as rotation and scaleOrientation.
In all the cases, when a transition between two animation resources is needed, when the transitionTime is not zero, a interpolation must be performed by the player. The transitionTime is specified in miliseconds.
SBBone
XSD Description
<complexType name="SBBoneType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

<element name="children" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SF3DNodeType" minOccurs="0" maxOccurs="unbounded"/>

</complexType>

</element>

</all>

<attribute name="boneID" type="xmta:SFInt32" use="optional" default="0"/>

<attribute name="center" type="xmta:SFVec3f" use="optional" default="0 0 0"/>

<attribute name="endpoint" type="xmta:SFVec3f" use="optional" default="0 0 1"/>

<attribute name="falloff" type="xmta:SFInt32" use="optional" default="1"/>

<attribute name="ikChainPosition" type="xmta:SFInt32" use="optional" default="0"/>

<attribute name="ikPitchLimit" type="xmta:MFFloat" use="optional"/>

<attribute name="ikRollLimit" type="xmta:MFFloat" use="optional"/>

<attribute name="ikTxLimit" type="xmta:MFFloat" use="optional"/>

<attribute name="ikTyLimit" type="xmta:MFFloat" use="optional"/>

<attribute name="ikTzLimit" type="xmta:MFFloat" use="optional"/>

<attribute name="ikYawLimit" type="xmta:MFFloat" use="optional"/>

<attribute name="rotation" type="xmta:SFRotation" use="optional" default="0 0 1 0"/>

<attribute name="rotationOrder" type="xmta:SFInt32" use="optional" default="0"/>

<attribute name="scale" type="xmta:SFVec3f" use="optional" default="1 1 1"/>

<attribute name="scaleOrientation" type="xmta:SFRotation" use="optional" default="0 0 1 0"/>

<attribute name="sectionInner" type="xmta:MFFloat" use="optional"/>

<attribute name="sectionOuter" type="xmta:MFFloat" use="optional"/>

<attribute name="sectionPosition" type="xmta:MFFloat" use="optional"/>

<attribute name="skinCoordIndex" type="xmta:MFInt32" use="optional"/>

<attribute name="skinCoordWeight" type="xmta:MFFloat" use="optional"/>

<attribute name="translation" type="xmta:SFVec3f" use="optional" default="0 0 0"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="SBBone" type="xmta:SBBoneType"/>
Functionality and semantics
As specified in 14496-1:2002 6.8.1.1.2.
SBBone node specifies data related to one bone from the skeleton.
The boneID field is a unique identifier which allows that the bone to be addressed at animation run-time.
The center field specifies a translation offset from the origin of the local coordinate system.
The translation field specifies a translation to the bone coordinate system.
The rotation field specifies a rotation of the bone coordinate system.
The scale field specifies a non-uniform scale of the bone coordinate system. scale values shall be greater than zero.
The scaleOrientation specifies a rotation of the bone coordinate system before the scale (to specify scales in arbitrary orientations). The scaleOrientation applies only to the scale operation.
The possible geometric 3D transformation consists of (in order): 1) (possibly) non-uniform scale about an arbitrary point, 2) a rotation about an arbitrary point and axis and 3) a translation.
The rotationOrder field specifies the rotation order when deals with the decomposition of the rotation in respect with system coordinate axes.
Two ways of specifying the influence region of the bone are allowed:
The skinCoordIndex field contains a list of indices of all skin vertices affected by the current bone. Mostly, the skin influence region of bone will contain vertices from the 3D neighborhood of the bone, but special cases of influence are also accepted.
The skinCoordWeight field contains a list of weights (one per vertex listed in skinCoordIndex) that measures the contribution of the current bone to the vertex in question. The length skinCoordIndex is equal with the length of skinCoordWeight. The sum of all skinCoordWeight related to the same vertex must be 1.
The endpoint field specifies the bone 3D end point and is used to compute the bone length.
The sectionInner field is a list of inner influence region radii for different sections.
The sectionOuter field is a list of outer influence region radii for different sections.
The sectionPosition field is a list of positions of all the sections defined by the designer.
The falloff field specifies the function between the amplitude affectedness and distance: -1 for x3, 0 for x2, 1 for x, 2 for sinx, 3 for x1/2 and 4 for x1/3.
The two schemes can be used independently or in combination, in which case the individual vertex weights take precedence.
The ikChainPosition field specifies the position of the bone in the kinematics chain. If the bone is the root of the IK chain then ikChainPosition=1. In this case, when applying IK scheme, only the orientation of the bone is changed. If the bone is last in the kinematics chain ikChainPosition=2. In this case, the animation stream has to include the desired position of the bone (X, Y and Z world coordinates). If ikChainPosition=3 the bone belongs to the IK chain but is not the first or the last one in the chain. In this case, position and orientation of the bone are computed by the IK procedure. Finally, if the bone does not belong to any IK chain (ikChainPosition=0), it is necessary to transmit the bone local transformation in order to animate the bone. If an animation stream contains motion information about a bone which has ikChainPosition 1, this information will be ignored. If an animation stream contains motion information about a bone which has ikChainPosition 3, this means that the animation producer wants to ensure the orientation of the bone and the IK solver will use this value as a constrain.
The ikYawLimit field consists in a pair of min/max values which limit the bone rotation with respect to the X axis.
The ikPitchLimit field consists in a pair of min/max values which limit the bone rotation with respect to the Y axis.
The ikRollLimit field consists in a pair of min/max values which limit the bone rotation with respect to the Z axis.
The ikTxLimit field consists in a pair of min/max values which limit the bone translation in the X direction.
The ikTyLimit field consists in a pair of min/max values which limit the bone translation in the Y direction.
The ikTzLimit field consists in a pair of min/max values which limit the bone translation in the Z direction.
The SBBone node is used as a building block to describe the hierarchy of the articulated model by attaching one or more child objects. The children field has the same semantic as used in BIFS Erreur ! Source du renvoi introuvable.; the absolute geometric transformation of any child of a bone is obtained through a composition with the bone-parent transformation.

SBSegment

XSD Description

<complexType name="SBSegmentType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

<element name="children" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SF3DNodeType" minOccurs="0" maxOccurs="unbounded"/>

</complexType>

</element>

</all>

<attribute name="centerOfMass" type="xmta:SFVec3f" use="optional" default="0 0 0"/>

<attribute name="mass" type="xmta:SFFloat" use="optional" default="0"/>

<attribute name="momentsOfInertia" type="xmta:MFVec3f" use="optional" default="0 0 0 0 0 0 0 0 0"/>

<attribute name="name" type="xmta:SFString" use="optional" default=""""/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="SBSegment" type="xmta:SBSegmentType"/>
Functionality and semantics
As specified in 14496-1:2002 6.8.1.2.2.
The name field must be present, so that the SBSegment can be identified at runtime. Each SBSegment should have a DEF name that matches the name field for that Segment, but with a distinguishing prefix in front of it.
The mass field is the total mass of the segment.
The centerOfMass field is the location within the segment of its center of mass. Note that a zero value was chosen for the mass in order to give a clear indication that no mass value is available.
The momentsOfInertia field contains the moment of inertia matrix. The first three elements are the first row of the 3x3 matrix, the next three elements are the second row, and the final three elements are the third row.
The children field can be any object attached at this level of the skeleton, including a SBSkinnedModel.
An SBSegment node is a grouping node especially introduced to address two issues:
a. The first one is to the requirement to separate different parts from the skinned model into deformation-independent parts. Between two deformation-independent parts the geometrical transformation of one of them do not imply skin deformations on the other. This is essential for run-time animation optimization. The SBSegment node may contain as a child an SBSkinnedModel node (see the SBSkinnedModel node description below). Portions of the model which are not part of the seamless mesh can be attached to the skeleton hierarchy by using an SBSegment node;
b. The second deals with the requirement to attach standalone 3D objects at different parts of the skeleton hierarchy. For example, a ring can be attached to a finger; the ring geometry and attributes are defined outside of skinned model but the ring will have the same local geometrical transformation as the attached bone.
SBSite
XSD Description
<complexType name="SBSiteType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

<element name="children" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SF3DNodeType" minOccurs="0" maxOccurs="unbounded"/>

</complexType>

</element>

</all>

<attribute name="center" type="xmta:SFVec3f" use="optional" default="0 0 0"/>

<attribute name="name" type="xmta:SFString" use="optional" default=""""/>

<attribute name="rotation" type="xmta:SFRotation" use="optional" default="0 0 1 0"/>

<attribute name="scale" type="xmta:SFVec3f" use="optional" default="1 1 1"/>

<attribute name="scaleOrientation" type="xmta:SFRotation" use="optional" default="0 0 1 0"/>

<attribute name="translation" type="xmta:SFVec3f" use="optional" default="0 0 0"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="SBSite" type="xmta:SBSiteType"/>
Functionality and semantics
As specified in 14496-1:2002 6.8.1.3.2
The center field specifies a translation offset and can be used to compute a bone length. The rotation field specifies a rotation of the coordinate system of the SBSite node.
The scale field specifies a non-uniform scale of the SBSite node coordinate system and the scale values must be greater than zero.
The scaleOrientation specifies a rotation of the coordinate system of the SBSite node before the scale thus allowing a scale at an arbitrary orientation. The scaleOrientation applies only to the scale operation.
The translation field specifies a translation of the coordinate system of the SBSite node.
The children field is used to store any object that can be attached to the SBSegment node.
The SBSite node can be used for three purposes. The first is to define an "end effector", i.e. a location which can be used by an inverse kinematics system. The second is to define an attachment point for accessories such as clothing. The third is to define a location for a virtual camera in the reference frame of a SBSegment node.
SBSite nodes are stored within the children field of an SBSegment node. The SBSite node is a specialized grouping node that defines a coordinate system for nodes in its children field that is relative to the coordinate systems of its parent node. The reason a SBSite node is considered a specialized grouping node is that it can only be defined as a child of a SBSegment node.
SBSkinnedModel
XSD Description
<complexType name="SBSkinnedModelType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

<element name="bones" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SFSBBoneNodeType" minOccurs="0" maxOccurs="unbounded"/>

</complexType>

</element>

<element name="muscles" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SFSBMuscleNodeType" minOccurs="0" maxOccurs="unbounded"/>

</complexType>

</element>

<element name="segments" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SFSBSegmentNodeType" minOccurs="0" maxOccurs="unbounded"/>

</complexType>

</element>

<element name="sites" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SFSBSiteNodeType" minOccurs="0" maxOccurs="unbounded"/>

</complexType>

</element>

<element name="skeleton" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SF3DNodeType" minOccurs="0" maxOccurs="unbounded"/>

</complexType>

</element>

<element name="skin" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SF3DNodeType" minOccurs="0" maxOccurs="unbounded"/>

</complexType>

</element>

<element name="skinCoord" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SFCoordinateNodeType" minOccurs="0"/>

</complexType>

</element>

<element name="skinNormal" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SFNormalNodeType" minOccurs="0"/>

</complexType>

</element>

<element name="weighsComputationSkinCoord" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SF3DNodeType" minOccurs="0"/>

</complexType>

</element>

</all>

<attribute name="center" type="xmta:SFVec3f" use="optional" default="0 0 0"/>

<attribute name="name" type="xmta:SFString" use="optional" default=""""/>

<attribute name="rotation" type="xmta:SFRotation" use="optional" default="0 0 1 0"/>

<attribute name="scale" type="xmta:SFVec3f" use="optional" default="1 1 1"/>

<attribute name="scaleOrientation" type="xmta:SFRotation" use="optional" default="0 0 1 0"/>

<attribute name="translation" type="xmta:SFVec3f" use="optional" default="0 0 0"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="SBSkinnedModel" type="xmta:SBSkinnedModelType"/>
Functionality and semantics
As specified in 14496-16:2011 section 4.5.2.1.2.
The SBSkinnedModel node is the top of the hierarchy of Skin&Bones related nodes and contains the definition parameters for the entire seamless model or of a seamless part of the model.
The name field specify the name of the skinned model allowing easily identification at the animation run-time.
The center field specifies a translation offset from the origin of the local coordinate system.
The translation field specifies a translation of the coordinate system.
The rotation field specifies a rotation of the coordinate system
The scale field specifies a non-uniform scale of the coordinate system. scale values shall be greater than zero.
The scaleOrientation specifies a rotation of the coordinate system before the scale (to specify scales in arbitrary orientations). The scaleOrientation applies only to the scale operation.
The skinCoord contains the 3d coordinates of all vertices of the seamless model.
The skin consists of a collection of shapes that share the same skinCoord. This mechanism allows considering the model as a continuous mesh and, in the same time, to attach different attributes (like color, texture) to different parts of the model.
The skeleton field specifies the root of the bones hierarchy.
The bones fields consist in the lists of all bones previously defined as SBBone node.
The segments fields consist in the lists of all bones previously defined as SBSegment node.
The sites fields consist in the lists of all bones previously defined as SBSites node. The muscles fields consist in the lists of all bones previously defined as SBMuscle node.
The weighsComputationSkinCoord field describes a specific static position of the skinned model. In many cases the static position of the articulated model defined by skinCoord and skin fields is not appropriate to compute the influence region of a bone. In this case the weighsComputationSkinCoord field allows specifying the skinned model vertices in a more appropriate static posture. This posture will be used just during the initialization stage and ignored during the animation. All the skeleton transformations are related to the posture defined by skinCoord field.
MorphShape
XSD Description
<complexType name="MorphShapeType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

<element name="baseShape" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SF3DNodeType" minOccurs="0"/>

</complexType>

</element>

<element name="targetShapes" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SF3DNodeType" minOccurs="0" maxOccurs="unbounded"/>

</complexType>

</element>

</all>

<attribute name="morphID" type="xmta:SFInt32" use="optional" default="0"/>

<attribute name="weights" type="xmta:MFFloat" use="optional"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="MorphShape" type="xmta:MorphShapeType"/>
Functionality and semantics
As specified in ISO/IEC 14496-16:2006, section 4.3.6.
morphID - a unique identifier between 0 and 1023 which allows that the morph to be addressed at animation run-time.
baseShape – a Shape node that represent the base mesh. The geometry field of the baseShape can be any geometry supported by ISOIEC 14496 (e.g. IndexedFaceSet, IndexedLineSet, SolidRep).
targetShapes – a vector of Shapes nodes representing the shape of the target meshes. The tool used for definig an appearance and a geometry of a target shape must be the same as the tool used for defining the appearance and the geometry of the base shape (e.g. if the baseShape is defined by using IndexedFaceSet, all the target shapes must be defined by using IndexedFaceSet).
weights – a vector of integers of the same size as the targetShapes. The morphed shape is obtained according to the following formula:

[image: image3.wmf]å

=

-

+

=

n

i

i

i

w

B

T

B

M

1

*

)

(

with

M –morphed shape,
B – base shape,
Ti – target shape i,
Wi – weight of the Ti.
The morphing is performed for all the components of the Shape (Appearance and Geometry) that have different values in the base shape and the target shapes (e.g. if the base shape and the target shapes are definined by using IndexedFaceSet and the coord field contains different values in the base shape and in the target geometries, the coord component of the morph shape is obtained by using previous equation applied to the coord field. Note that the size of the coord field must be the same for the base shapes and the target shapes).
If the shapes (base and targets) are defined by using IndexedFaceSet, a tipical decoder should support morphing of the following geometry components: coord, normals, color, texCoord.
Coordinate
XSD Description
<complexType name="CoordinateType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

</all>

<attribute name="point" type="xmta:MFVec3f" use="optional"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="Coordinate" type="xmta:CoordinateType"/>
Functionality and semantics
As specified in ISO/IEC 14772-1:1997, section 6.12.
This node defines a set of 3D coordinates to be used in the coord field of vertex-based geometry nodes including IndexedFaceSet, IndexedLineSet, and PointSet.
TextureCoordinate
XSD Description
<complexType name="TextureCoordinateType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

</all>

<attribute name="point" type="xmta:MFVec2f" use="optional"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="TextureCoordinate" type="xmta:TextureCoordinateType"/>
Functionality and semantics
As specified in ISO/IEC 14772-1:1997, section 6.48.
The TextureCoordinate node specifies a set of 2D texture coordinates used by vertex-based geometry nodes (e.g., IndexedFaceSet and ElevationGrid) to map textures to vertices. Textures are two dimensional colour functions that, given an (s, t) coordinate, return a colour value colour(s, t). Texture map values (ImageTexture, MovieTexture, and PixelTexture) range from [0.0, 1.0] along the S-axis and T-axis. However, TextureCoordinate values, specified by the point field, may be in the range (-[image: image4.png],[image: image5.png]). Texture coordinates identify a location (and thus a colour value) in the texture map. The horizontal coordinate s is specified first, followed by the vertical coordinate t.
If the texture map is repeated in a given direction (S-axis or T-axis), a texture coordinate C (s or t) is mapped into a texture map that has N pixels in the given direction as follows:
 Texture map location = (C - floor(C)) × N
If the texture map is not repeated, the texture coordinates are clamped to the 0.0 to 1.0 range as follows:
 Texture map location = N, if C > 1.0,
 = 0.0, if C < 0.0,
 = C × N, if 0.0 <= C <= 1.0.
Normal
XSD Description
<complexType name="NormalType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

</all>

<attribute name="vector" type="xmta:MFVec3f" use="optional"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="Normal" type="xmta:NormalType"/>
Functionality and semantics
As specified in ISO/IEC 14772-1:1997, section 6.30.
This node defines a set of 3D surface normal vectors to be used in the vector field of some geometry nodes (e.g., IndexedFaceSet and ElevationGrid). This node contains one multiple-valued field that contains the normal vectors. Normals shall be of unit length.
IndexedFaceSet
XSD Description
<complexType name="IndexedFaceSetType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

<element name="color" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SFColorNodeType" minOccurs="0"/>

</complexType>

</element>

<element name="coord" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SFCoordinateNodeType" minOccurs="0"/>

</complexType>

</element>

<element name="normal" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SFNormalNodeType" minOccurs="0"/>

</complexType>

</element>

<element name="texCoord" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SFTextureCoordinateNodeType" minOccurs="0"/>

</complexType>

</element>

</all>

<attribute name="ccw" type="xmta:SFBool" use="optional" default="true"/>

<attribute name="colorIndex" type="xmta:MFInt32" use="optional"/>

<attribute name="colorPerVertex" type="xmta:SFBool" use="optional" default="true"/>

<attribute name="convex" type="xmta:SFBool" use="optional" default="true"/>

<attribute name="coordIndex" type="xmta:MFInt32" use="optional"/>

<attribute name="creaseAngle" type="xmta:SFFloat" use="optional" default="0"/>

<attribute name="normalIndex" type="xmta:MFInt32" use="optional"/>

<attribute name="normalPerVertex" type="xmta:SFBool" use="optional" default="true"/>

<attribute name="solid" type="xmta:SFBool" use="optional" default="true"/>

<attribute name="texCoordIndex" type="xmta:MFInt32" use="optional"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="IndexedFaceSet" type="xmta:IndexedFaceSetType"/>
Functionality and semantics
As specified in ISO/IEC 14772-1:1997, section 6.23
The IndexedFaceSet node represents a 3D shape formed by constructing faces (polygons) from vertices listed in the coord field. The coord field contains a Coordinate node that defines the 3D vertices referenced by the coordIndex field. IndexedFaceSet uses the indices in its coordIndex field to specify the polygonal faces by indexing into the coordinates in the Coordinate node. An index of "-1" indicates that the current face has ended and the next one begins. The last face may be (but does not have to be) followed by a "-1" index. If the greatest index in the coordIndex field is N, the Coordinate node shall contain N+1 coordinates (indexed as 0 to N). Each face of the IndexedFaceSet shall have:
a. at least three non-coincident vertices;
b. vertices that define a planar polygon;
c. vertices that define a non-self-intersecting polygon.
Otherwise, the results are undefined.
The IndexedFaceSet node is specified in the local coordinate system and is affected by the transformations of its ancestors.
Descriptions of the coord, normal, and texCoord fields are provided in the Coordinate, Normal, and TextureCoordinate nodes, respectively.
Details on lighting equations and the interaction between color field, normal field, textures, materials, and geometries are provided in ISO/IEC 14772-1:1997, section 4.14, Lighting model.
If the color field is not NULL, it shall contain a Color node whose colours are applied to the vertices or faces of the IndexedFaceSet as follows:
a. If colorPerVertex is FALSE, colours are applied to each face, as follows:
· If the colorIndex field is not empty, then one colour is used for each face of the IndexedFaceSet. There shall be at least as many indices in the colorIndex field as there are faces in the IndexedFaceSet. If the greatest index in the colorIndex field is N, then there shall be N+1 colours in the Color node. The colorIndex field shall not contain any negative entries.
· If the colorIndex field is empty, then the colours in the Color node are applied to each face of the IndexedFaceSet in order. There shall be at least as many colours in the Color node as there are faces.
b. If colorPerVertex is TRUE, colours are applied to each vertex, as follows:
· If the colorIndex field is not empty, then colours are applied to each vertex of the IndexedFaceSet in exactly the same manner that the coordIndex field is used to choose coordinates for each vertex from the Coordinate node. The colorIndex field shall contain at least as many indices as the coordIndex field, and shall contain end-of-face markers (-1) in exactly the same places as the coordIndex field. If the greatest index in the colorIndex field is N, then there shall be N+1 colours in the Color node.
· If the colorIndex field is empty, then the coordIndex field is used to choose colours from the Color node. If the greatest index in the coordIndex field is N, then there shall be N+1 colours in the Color node.
If the color field is NULL, the geometry shall be rendered normally using the Material and texture defined in the Appearance node (see ISO/IEC 14772-1:1997, section 4.14, Lighting model, for details).
If the normal field is not NULL, it shall contain a Normal node whose normals are applied to the vertices or faces of the IndexedFaceSet in a manner exactly equivalent to that described above for applying colours to vertices/faces (where normalPerVertex corresponds to colorPerVertex and normalIndex corresponds to colorIndex). If the normal field is NULL, the browser shall automatically generate normals, using creaseAngle to determine if and how normals are smoothed across shared vertices (see ISO/IEC 14772-1:1997, section 4.6.3.5, Crease angle field).
If the texCoord field is not NULL, it shall contain a TextureCoordinate node. The texture coordinates in that node are applied to the vertices of the IndexedFaceSet as follows:
a. If the texCoordIndex field is not empty, then it is used to choose texture coordinates for each vertex of the IndexedFaceSet in exactly the same manner that the coordIndex field is used to choose coordinates for each vertex from the Coordinate node. The texCoordIndex field shall contain at least as many indices as the coordIndex field, and shall contain end-of-face markers (-1) in exactly the same places as the coordIndex field. If the greatest index in the texCoordIndex field is N, then there shall be N+1 texture coordinates in the TextureCoordinate node.
b. If the texCoordIndex field is empty, then the coordIndex array is used to choose texture coordinates from the TextureCoordinate node. If the greatest index in the coordIndex field is N, then there shall be N+1 texture coordinates in the TextureCoordinate node.
If the texCoord field is NULL, a default texture coordinate mapping is calculated using the local coordinate system bounding box of the shape. The longest dimension of the bounding box defines the S coordinates, and the next longest defines the T coordinates. If two or all three dimensions of the bounding box are equal, ties shall be broken by choosing the X, Y, or Z dimension in that order of preference. The value of the S coordinate ranges from 0 to 1, from one end of the bounding box to the other. The T coordinate ranges between 0 and the ratio of the second greatest dimension of the bounding box to the greatest dimension.
Some restrictions specified in ISO/IEC 14496-11 (BIFS), section 7.2.2.66.2
The IndexedFaceSet node represents a 3D polygon mesh formed by constructing faces (polygons) from points specified in the coord field. If the coordIndex field is not NULL, IndexedFaceSet uses the indices in its coordIndex field to specify the polygonal faces by connecting together points from the coord field. An index of -1 shall indicate that the current face has ended and the next one begins. The last face may be followed by a -1. IndexedFaceSet shall be specified in the local coordinate system and shall be affected by parent transformations. The coord field specifies the vertices of the face set and is specified by Coordinate node. If the coordIndex field is not NULL, the indices of the coordIndex field shall be used to specify the faces by connecting together points from the coord field. An index of -1 shall indicate that the current face has ended and the next one begins.
The last face may be followed by a -1. If the coordIndex field is NULL, the vertices of the coord field are laid out in their respective order to specify one face. If the color field is NULL and there is a Material node defined for the Appearance affecting this IndexedFaceSet, then the emissiveColor of the Material node shall be used to draw the faces.
In order to use 3D Mesh Coding (3DMC) with the IndexedFaceSet node, the use3DMeshCoding flag in BIFSv2Config should be set to TRUE, as described in ISO/IEC 14496-11, section 8.5.3.2 This will require every IndexedFaceSet node in that elementary stream to be coded with 3DMC. Note that 3DMC does not support the use of DEF and USE within the fields of IndexedFaceSet. Also, an empty IndexedFaceSet should not be included in a stream where use3DmeshCoding flag is set to TRUE. A scene with both 3DMC coded and BIFS coded IndexedFaceSet nodes can be created by sending the compressed and uncompressed nodes in separate streams.This can be done with an Inline node or by sending separate elementary streams in the same object descriptor. The latter approach has the advantage of keeping the nodes in the same name space, see the example in ISO/IEC 14496-11, section 7.8 (3D Mesh Coding in BIFS scenes).
IndexedLineSet
XSD Description
<complexType name="IndexedLineSetType">
 <all>

<element ref="xmta:IS" minOccurs="0"/>

<element name="color" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SFColorNodeType" minOccurs="0" />

</complexType>

</element>

<element name="coord" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SFCoordinateNodeType" minOccurs="0" />

</complexType>

</element>
 </all>
 <attribute name="colorIndex" type="xmta:MFInt32" use="optional"/>
 <attribute name="colorPerVertex" type="xmta:SFBool" use="optional" default="true"
/>
 <attribute name="coordIndex" type="xmta:MFInt32" use="optional"/>
 <attributeGroup ref="xmta:DefUseGroup"/>
 </complexType>
 <element name="IndexedLineSet" type="xmta:IndexedLineSetType"/>
Functionality and semantics
As specified in ISO/IEC 14772-1:1997, section 6.24
The IndexedLineSet node represents a 3D geometry formed by constructing polylines from 3D vertices specified in the coord field. IndexedLineSet uses the indices in its coordIndex field to specify the polylines by connecting vertices from the coord field. An index of "-1" indicates that the current polyline has ended and the next one begins. The last polyline may be (but does not have to be) followed by a "-1". IndexedLineSet is specified in the local coordinate system and is affected by the transformations of its ancestors.
The coord field specifies the 3D vertices of the line set and contains a Coordinate node.
Lines are not lit, are not texture-mapped, and do not participate in collision detection. The width of lines is implementation dependent and each line segment is solid (i.e., not dashed).
If the color field is not NULL, it shall contain a Color node. The colours are applied to the line(s) as follows:
a. If colorPerVertex is FALSE:

1. If the colorIndex field is not empty, one colour is used for each polyline of the IndexedLineSet. There shall be at least as many indices in the colorIndex field as there are polylines in the IndexedLineSet. If the greatest index in the colorIndex field is N, there shall be N+1 colours in the Color node. The colorIndex field shall not contain any negative entries.
2. If the colorIndex field is empty, the colours from the Color node are applied to each polyline of the IndexedLineSet in order. There shall be at least as many colours in the Color node as there are polylines.
b. If colorPerVertex is TRUE:
1. If the colorIndex field is not empty, colours are applied to each vertex of the IndexedLineSet in exactly the same manner that the coordIndex field is used to supply coordinates for each vertex from the Coordinate node. The colorIndex field shall contain at least as many indices as the coordIndex field and shall contain end-of-polyline markers (-1) in exactly the same places as the coordIndex field. If the greatest index in the colorIndex field is N, there shall be N+1 colours in the Color node.
2. If the colorIndex field is empty, the coordIndex field is used to choose colours from the Color node. If the greatest index in the coordIndex field is N, there shall be N+1 colours in the Color node.
If the color field is NULL and there is a Material defined for the Appearance affecting this IndexedLineSet, the emissiveColor of the Material shall be used to draw the lines. Details on lighting equations as they affect IndexedLineSet nodes are described in ISO/IEC 14772-1:1997 Section 4.14, Lighting model.
Programming information

The following programming related node is used in ARAF: Script.
Script
XSD Description
<complexType name="ScriptType">

<sequence>

<element ref="xmta:field" minOccurs="0" maxOccurs="unbounded"/>

<element ref="xmta:IS" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

<attribute name="url" type="xmta:MFScript" use="optional"/>

<attribute name="directOutput" type="xmta:SFBool" use="optional" default="false"/>

<attribute name="mustEvaluate" type="xmta:SFBool" use="optional" default="false"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="Script" type="xmta:ScriptType"/>
Functionality and semantics
As defined in ISO/IEC 14772-1:1998, section 6.40
The Script node is used to program behaviour in a scene. Script nodes typically
· signify a change or user action;
· receive events from other nodes;
· contain a program module that performs some computation;
· effect change somewhere else in the scene by sending events.
Each Script node has associated programming language code, referenced by the url field, that is executed to carry out the Script node's function. That code is referred to as the "script" in the rest of this description. Details on the url field can be found in ISO/IEC 14772-1:1997, section 4.5, VRML and the World Wide Web.
Browsers are not required to support any specific language. Detailed information on scripting languages is described in ISO/IEC 14772-1:1997, section 4.12, Scripting. Browsers supporting a scripting language for which a language binding is specified shall adhere to that language binding.
Sometime before a script receives the first event it shall be initialized (any language-dependent or user-defined initialize() is performed). The script is able to receive and process events that are sent to it. Each event that can be received shall be declared in the Script node using the same syntax as is used in a prototype definition:
 eventIn type name
The type can be any of the standard VRML fields (as defined in ISO/IEC 14772-1:1997, section 5, Field and event reference). Name shall be an identifier that is unique for this Script node.
The Script node is able to generate events in response to the incoming events. Each event that may be generated shall be declared in the Script node using the following syntax:
 eventOut type name
With the exception of the url field, exposedFields are not allowed in Script nodes.
If the Script node's mustEvaluate field is FALSE, the browser may delay sending input events to the script until its outputs are needed by the browser. If the mustEvaluate field is TRUE, the browser shall send input events to the script as soon as possible, regardless of whether the outputs are needed. The mustEvaluate field shall be set to TRUE only if the Script node has effects that are not known to the browser (such as sending information across the network). Otherwise, poor performance may result.
Once the script has access to a VRML node (via an SFNode or MFNode value either in one of the Script node's fields or passed in as an eventIn), the script is able to read the contents of that node's exposed fields. If the Script node's directOutput field is TRUE, the script may also send events directly to any node to which it has access, and may dynamically establish or break routes. If directOutput is FALSE (the default), the script may only affect the rest of the world via events sent through its eventOuts. The results are undefined if directOutput is FALSE and the script sends events directly to a node to which it has access.
A script is able to communicate directly with the VRML browser to get information such as the current time and the current world URL. This is strictly defined by the API for the specific scripting language being used.
The location of the Script node in the scene graph has no affect on its operation. For example, if a parent of a Script node is a Switch node with whichChoice set to "-1" (i.e., ignore its children), the Script node continues to operate as specified (i.e., it receives and sends events).
User interactivity
The following user interactivity related nodes are used in ARAF: InputSensor, SphereSensor, TimeSensor, TouchSensor, MediaSensor, PlaneSensor.
InputSensor
XSD Description
<complexType name="InputSensorType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

<element ref="xmta:buffer" minOccurs="0"/>

</all>

<attribute name="enabled" type="xmta:SFBool" use="optional" default="true"/>

<attribute name="url" type="xmta:MFUrl" use="optional" default=""""/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="InputSensor" type="xmta:InputSensorType"/>
Functionality and semantics
As defined in ISO/IEC 14496-11 (BIFS), section 7.2.2.71.2.
The InputSensor node is used to add entry points for user inputs into a BIFS scene. It allows user events to trigger updates of the value of a field or the value of an element of a multiple field of an existing node.
Input devices are modelled as devices that generate frames of user input data. A device data frame (DDF) consists in a list of values of any of the allowed types for node fields. Values from DDFs are used to update the scene. For example, the DDF definition for a simple mouse is:
MouseDataFrame [
SFVec2f cursorPosition
SFBool singleButtonDown
]
NOTE — The encoding of the DDF is implementation-dependent. Devices may send only complete DDF or sometimes subsets of DDF as well.The buffer field is a buffered bit string which contains a list of BIFS-Commands in the form of a CommandFrame (see ISO/IEC 14496-11, section 8.6.2). Allowed BIFS-Commands are the following: FieldReplacement (see ISO/IEC 14496-11, section 8.6.21), IndexedValueReplacement (see ISO/IEC 14496-11, section 8.6.22) and NodeDeletion with a NULL node argument (see ISO/IEC 14496-11, section 8.7.3.2). The buffer shall contain a number of BIFSCommands that matches the number of fields in the DDF definition for the attached device. The type of the field replaced by the nth command in the buffer shall match the type of the nth field in the DDF definition.
The url field specifies the data source to be used (see ISO/IEC 14496-11, section 7.1.1.2.7.1). The url field shall point to a stream of type UserInteractionStream, which “access units” are DDFs. When the enabled is set to TRUE, upon reception of a DDF, each value (in the order of the DDF definition) is placed in the corresponding replace command according to the DDF definition, and then the replace command is executed. These updates are not time-stamped; they are executed at the time of the event, assuming a zero-decoding time. It is not required that all the replace commands be executed when the buffer is executed. Each replace command in the buffer can be independently triggered depending on the data present in the current DDF. Moreover, the presence in the buffer field of a NodeDeletion command at the nth position indicates that the value of the DDF corresponding to the nth field of the DDF definition shall be ignored.
The eventTime eventOut carrying the current time is generated after a DDF has been processed.
OutputActuator
XSD Description

<ProtoDeclare name="OutputActuator" locations="org:mpeg:outputactuator">
<field name="enabled" type="Boolean" vrml97Hint="exposedField" booleanValue="TRUE"/>

<field name="url" type="Strings" vrml97Hint="exposedField" stringArrayValue= ""/>
<!—Any number of eventIn fields!-->
</ProtoDeclare>
BIFS Textual Description

EXTERNPROTO OutputActuator [

exposedField
SFBool

enabled

TRUE

exposedField
MFString
url

[]
Any number of the following may then follow:
eventIn
 eventType
eventName
]”"org:mpeg:outputactuator"
Functionality and semantics

The OutputActuator proto is used to communicate between the scene and the MPEG-V actuator. How to map these commands to the physical device is out of the scope of this standard. It should be noted that the device interprets the command and produces the effect immediately when the command is received. The proto definition of OutputActuator is described below.
The OutputActuator PROTO can receive variable number of events that in turn generate device data frames (DDFs) that are sent to the actuator. Each eventIn corresponds to one filed in the DDF and has the same type. The DDF is generated as soon as the eventIn is received.

The url field specifies the device to be controled.
Only if the enabled field is TRUE then the DDFs are generated.
The mandatory input events of the OutputActuator interface are as follows:

· LightActuator should have a SFFloat and a SFColor input events that represent the intensity respectively the color of the light.
· VibrationActuator should have a SFFloat eventIn representing the intensity of the vibration.
· TactileActuator should have an MFFloat input event that is a list of intensities of the touch.
SphereSensor
XSD Description
<complexType name="SphereSensorType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

</all>

<attribute name="autoOffset" type="xmta:SFBool" use="optional" default="true"/>

<attribute name="enabled" type="xmta:SFBool" use="optional" default="true"/>

<attribute name="offset" type="xmta:SFRotation" use="optional" default="0 1 0 0"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="SphereSensor" type="xmta:SphereSensorType"/>
Functionality and semantics
As specified in ISO/IEC 14772-1:1997, section 6.44.
The SphereSensor node maps pointing device motion into spherical rotation about the origin of the local coordinate system. The SphereSensor node uses the descendent geometry of its parent node to determine whether it is liable to generate events.
The enabled exposed field enables and disables the SphereSensor node. If enabled is TRUE, the sensor reacts appropriately to user events. If enabled is FALSE, the sensor does not track user input or send events. If enabled receives a FALSE event and isActive is TRUE, the sensor becomes disabled and deactivated, and outputs an isActive FALSE event. If enabled receives a TRUE event the sensor is enabled and ready for user activation.
The SphereSensor node generates events when the pointing device is activated while the pointer is indicating any descendent geometry nodes of the sensor's parent group. See ISO/IEC 14772-1:1997, section 4.6.7.5, Activating and manipulating sensors, for details on using the pointing device to activate the SphereSensor.
Upon activation of the pointing device (e.g., mouse button down) over the sensor's geometry, an isActive TRUE event is sent. The vector defined by the initial point of intersection on the SphereSensor's geometry and the local origin determines the radius of the sphere that is used to map subsequent pointing device motion while dragging. The virtual sphere defined by this radius and the local origin at the time of activation is used to interpret subsequent pointing device motion and is not affected by any changes to the sensor's coordinate system while the sensor is active. For each position of the bearing, a rotation_changed event is sent which corresponds to the sum of the relative rotation from the original intersection point plus the offset value. trackPoint_changed events reflect the unclamped drag position on the surface of this sphere. When the pointing device is deactivated and autoOffset is TRUE, offset is set to the last rotation_changed value and an offset_changed event is generated. See ISO/IEC 14772-1:1997, section 4.6.7.4, Drag sensors, for more details.
When the sensor generates an isActive TRUE event, it grabs all further motion events from the pointing device until it is released and generates an isActive FALSE event (other pointing-device sensors shall not generate events during this time). Motion of the pointing device while isActive is TRUE is termed a "drag". If a 2D pointing device is in use, isActive events will typically reflect the state of the primary button associated with the device (i.e., isActive is TRUE when the primary button is pressed and FALSE when it is released). If a 3D pointing device (e.g., wand) is in use, isActive events will typically reflect whether the pointer is within (or in contact with) the sensor's geometry.
While the pointing device is activated, trackPoint_changed and rotation_changed events are output. trackPoint_changed events represent the unclamped intersection points on the surface of the invisible sphere. If the pointing device is dragged off the sphere while activated, browsers may interpret this in a variety of ways (e.g., clamp all values to the sphere or continue to rotate as the point is dragged away from the sphere). Each movement of the pointing device while isActive is TRUE generates trackPoint_changed and rotation_changed events.
TimeSensor
XSD Description
<complexType name="TimeSensorType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

</all>

<attribute name="cycleInterval" type="xmta:SFTime" use="optional" default="1"/>

<attribute name="enabled" type="xmta:SFBool" use="optional" default="true"/>

<attribute name="loop" type="xmta:SFBool" use="optional" default="false"/>

<attribute name="startTime" type="xmta:SFTime" use="optional" default="0"/>

<attribute name="stopTime" type="xmta:SFTime" use="optional" default="0"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="TimeSensor" type="xmta:TimeSensorType"/>
Functionality and semantics
As specified in ISO/IEC 14772-1:1997, section 6.50.
TimeSensor nodes generate events as time passes. TimeSensor nodes can be used for many purposes including:
driving continuous simulations and animations;
controlling periodic activities (e.g., one per minute);
initiating single occurrence events such as an alarm clock.
The TimeSensor node contains two discrete eventOuts: isActive and cycleTime. The isActive eventOut sends TRUE when the TimeSensor node begins running, and FALSE when it stops running. The cycleTime eventOut sends a time event at startTime and at the beginning of each new cycle (useful for synchronization with other time-based objects). The remaining eventOuts generate continuous events. The fraction_changed eventOut, an SFFloat in the closed interval [0,1], sends the completed fraction of the current cycle. The time eventOut sends the absolute time for a given simulation tick.
If the enabled exposedField is TRUE, the TimeSensor node is enabled and may be running. If a set_enabled FALSE event is received while the TimeSensor node is running, the sensor performs the following actions:
· evaluates and sends all relevant outputs;
· sends a FALSE value for isActive;
· disables itself.
Events on the exposedFields of the TimeSensor node (e.g., set_startTime) are processed and their corresponding eventOuts (e.g., startTime_changed) are sent regardless of the state of the enabled field. The remaining discussion assumes enabled is TRUE.
The loop, startTime, and stopTime exposedFields and the isActive eventOut and their effects on the TimeSensor node are discussed in detail in 4.6.9, Time-dependent nodes. The "cycle" of a TimeSensor node lasts for cycleInterval seconds. The value of cycleInterval shall be greater than zero.
A cycleTime eventOut can be used for synchronization purposes such as sound with animation. The value of a cycleTime eventOut will be equal to the time at the beginning of the current cycle. A cycleTime eventOut is generated at the beginning of every cycle, including the cycle starting at startTime. The first cycleTime eventOut for a TimeSensor node can be used as an alarm (single pulse at a specified time).
When a TimeSensor node becomes active, it generates an isActive = TRUE event and begins generating time, fraction_changed, and cycleTime events which may be routed to other nodes to drive animation or simulated behaviours. The behaviour at read time is described below. The time event sends the absolute time for a given tick of the TimeSensor node (time fields and events represent the number of seconds since midnight GMT January 1, 1970).
fraction_changed events output a floating point value in the closed interval [0, 1]. At startTime the value of fraction_changed is 0. After startTime, the value of fraction_changed in any cycle will progress through the range (0.0, 1.0]. At startTime + × cycleInterval, for N = 1, 2, ..., that is, at the end of every cycle, the value of fraction_changed is 1.
Let now represent the time at the current simulation tick. Then the time and fraction_changed eventOuts can then be computed as:
 time = now
 temp = (now - startTime) / cycleInterval
 f = fractionalPart(temp)
 if (f == 0.0 && now > startTime) fraction_changed = 1.0
 else fraction_changed = f
where fractionalPart(x) is a function that returns the fractional part, (that is, the digits to the right of the decimal point), of a nonnegative floating point number.
A TimeSensor node can be set up to be active at read time by specifying loop TRUE (not the default) and stopTime less than or equal to startTime (satisfied by the default values). The time events output absolute times for each tick of the TimeSensor node simulation. The time events shall start at the first simulation tick greater than or equal to startTime. time events end at stopTime, or at startTime + × cycleInterval for some positive integer value of N, or loop forever depending on the values of the other fields. An active TimeSensor node shall stop at the first simulation tick when now >= stopTime > startTime.
No guarantees are made with respect to how often a TimeSensor node generates time events, but a TimeSensor node shall generate events at least at every simulation tick. TimeSensor nodes are guaranteed to generate final time and fraction_changed events. If loop is FALSE at the end of the Nth cycleInterval and was TRUE at startTime + M × cycleInterval for all 0 < M < N, the final time event will be generated with a value of (startTime + N × cycleInterval) or stopTime (if stopTime > startTime), whichever value is less. If loop is TRUE at the completion of every cycle, the final event is generated as evaluated at stopTime (if stopTime > startTime) or never.
An active TimeSensor node ignores set_cycleInterval and set_startTime events. An active TimeSensor node also ignores set_stopTime events for set_stopTime less than or equal to startTime. For example, if a set_startTime event is received while a TimeSensor node is active, that set_startTime event is ignored (the startTime field is not changed, and a startTime_changed eventOut is not generated). If an active TimeSensor node receives a set_stopTime event that is less than the current time, and greater than startTime, it behaves as if the stopTime requested is the current time and sends the final events based on the current time (note that stopTime is set as specified in the eventIn).
A TimeSensor read from a VRML file shall generate isActive TRUE, time and fraction_changed events if the sensor is enabled and all conditions for a TimeSensor to be active are met.
TouchSensor
XSD Description
<complexType name="TouchSensorType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

</all>

<attribute name="enabled" type="xmta:SFBool" use="optional" default="true"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="TouchSensor" type="xmta:TouchSensorType"/>
Functionality and semantics
As specified in ISO/IEC 14772-1:1997, section 6.51.
A TouchSensor node tracks the location and state of the pointing device and detects when the user points at geometry contained by the TouchSensor node's parent group. A TouchSensor node can be enabled or disabled by sending it an enabled event with a value of TRUE or FALSE. If the TouchSensor node is disabled, it does not track user input or send events.
The TouchSensor generates events when the pointing device points toward any geometry nodes that are descendants of the TouchSensor's parent group. See ISO/IEC 14772-1:1997, section 4.6.7.5, Activating and manipulating sensors, for more details on using the pointing device to activate the TouchSensor.
The isOver eventOut reflects the state of the pointing device with regard to whether it is pointing towards the TouchSensor node's geometry or not. When the pointing device changes state from a position such that its bearing does not intersect any of the TouchSensor node's geometry to one in which it does intersect geometry, an isOver TRUE event is generated. When the pointing device moves from a position such that its bearing intersects geometry to one in which it no longer intersects the geometry, or some other geometry is obstructing the TouchSensor node's geometry, an isOver FALSE event is generated. These events are generated only when the pointing device has moved and changed `over' state. Events are not generated if the geometry itself is animating and moving underneath the pointing device.
As the user moves the bearing over the TouchSensor node's geometry, the point of intersection (if any) between the bearing and the geometry is determined. Each movement of the pointing device, while isOver is TRUE, generates hitPoint_changed, hitNormal_changed and hitTexCoord_changed events. hitPoint_changed events contain the 3D point on the surface of the underlying geometry, given in the TouchSensor node's coordinate system. hitNormal_changed events contain the surface normal vector at the hitPoint. hitTexCoord_changed events contain the texture coordinates of that surface at the hitPoint. The values of hitTexCoord_changed and hitNormal_changed events are computed as appropriate for the associated shape.
If isOver is TRUE, the user may activate the pointing device to cause the TouchSensor node to generate isActive events (e.g., by pressing the primary mouse button). When the TouchSensor node generates an isActive TRUE event, it grabs all further motion events from the pointing device until it is released and generates an isActive FALSE event (other pointing-device sensors will not generate events during this time). Motion of the pointing device while isActive is TRUE is termed a "drag." If a 2D pointing device is in use, isActive events reflect the state of the primary button associated with the device (i.e., isActive is TRUE when the primary button is pressed and FALSE when it is released). If a 3D pointing device is in use, isActive events will typically reflect whether the pointing device is within (or in contact with) the TouchSensor node's geometry.
The eventOut field touchTime is generated when all three of the following conditions are true:
· The pointing device was pointing towards the geometry when it was initially activated (isActive is TRUE).
· The pointing device is currently pointing towards the geometry (isOver is TRUE).
· The pointing device is deactivated (isActive FALSE event is also generated).
In a 2D context, there are restrictions on the SFVec3f eventOuts:
· hitNormal_changed always returns [0.0, 0.0, 1.0]
· hitPoint_changed always has 0.0 as Z coordinate.
MediaSensor
XSD Description
<complexType name="MediaSensorType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

</all>

<attribute name="url" type="xmta:MFUrl" use="optional"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="MediaSensor" type="xmta:MediaSensorType"/>
Functionality and semantics
As defined in ISO/IEC 14496-11 (BIFS), section 7.2.2.71.2.
The MediaSensor node monitors the availability and presentation status of one or more stream objects.
The url field identifies a list of stream objects monitored by the MediaSensor node. All the stream objects in the url field shall belong to the same media stream. A stream object is considered to be available when any of its composition units is available in the composition buffer and is due for composition at that time. A stream object is considered to be no longer available when it is paused or stopped. A stream object is considered to “become available” when it “is available” for the first time. When there are several monitored stream objects available at the same time, the fields in the MediaSensor convey information about the stream object that became available last. If the stream that last became available becomes inactive, the MediaSensor node shall convey information about the first active stream in its url field. The isActive event sends a TRUE value each time one of the monitored stream objects referred by the url field becomes available, and a FALSE value when all of them become not available. Whenever a new composition unit is due for composition, a mediaCurrentTime event is sent and indicates the media time of that composition unit within the stream object.
The streamObjectStartTime event conveys the start of the stream object within a stream, relative to media time zero of the whole stream. The mediaDuration event conveys the duration of the stream object in seconds. It is set to –1 if this duration is unknown. The info event conveys information about the stream object that is currently monitored. Its first element identifies the stream object using the same syntax as in the url field.
The streamObjectStartTime, mediaDuration and info events are triggered when any stream object in the url field becomes available.
PlaneSensor
XSD Description
<complexType name="PlaneSensorType">
 <all>

<element ref="xmta:IS" minOccurs="0"/>
 </all>
 <attribute name="autoOffset" type="xmta:SFBool" use="optional" default="true"
/>
 <attribute name="enabled" type="xmta:SFBool" use="optional" default="true"
/>
 <attribute name="maxPosition" type="xmta:SFVec2f" use="optional" default="-1 -1"
/>
 <attribute name="minPosition" type="xmta:SFVec2f" use="optional" default="0 0"
/>
 <attribute name="offset" type="xmta:SFVec3f" use="optional" default="0 0 0"
/>
 <attributeGroup ref="xmta:DefUseGroup"/>
 </complexType>
 <element name="PlaneSensor" type="xmta:PlaneSensorType"/>
Functionality and semantics
As specified in ISO/IEC 14772-1:1997, section 6.34.
The PlaneSensor node maps pointing device motion into two-dimensional translation in a plane parallel to the Z=0 plane of the local coordinate system. The PlaneSensor node uses the descendent geometry of its parent node to determine whether it is liable to generate events.
The enabled exposedField enables and disables the PlaneSensor. If enabled is TRUE, the sensor reacts appropriately to user events. If enabled is FALSE, the sensor does not track user input or send events. If enabled receives a FALSE event and isActive is TRUE, the sensor becomes disabled and deactivated, and outputs an isActive FALSE event. If enabled receives a TRUE event, the sensor is enabled and made ready for user activation.
The PlaneSensor node generates events when the pointing device is activated while the pointer is indicating any descendent geometry nodes of the sensor's parent group. See ISO/IEC 14772-1:1997 Section 4.6.7.5, Activating and manipulating sensors, for details on using the pointing device to activate the PlaneSensor.
Upon activation of the pointing device (e.g., mouse button down) while indicating the sensor's geometry, an isActive TRUE event is sent. Pointer motion is mapped into relative translation in the tracking plane, (a plane parallel to the sensor's local Z=0 plane and coincident with the initial point of intersection). For each subsequent movement of the bearing, a translation_changed event is output which corresponds to the sum of the relative translation from the original intersection point to the intersection point of the new bearing in the plane plus the offset value. The sign of the translation is defined by the Z=0 plane of the sensor's coordinate system. trackPoint_changed events reflect the unclamped drag position on the surface of this plane. When the pointing device is deactivated and autoOffset is TRUE, offset is set to the last translation_changed value and an offset_changed event is generated. More details are provided in See ISO/IEC 14772-1:1997 Section 4.6.7.4, Drag sensors.
When the sensor generates an isActive TRUE event, it grabs all further motion events from the pointing device until it is deactivated and generates an isActive FALSE event. Other pointing-device sensors shall not generate events during this time. Motion of the pointing device while isActive is TRUE is referred to as a "drag." If a 2D pointing device is in use, isActive events typically reflect the state of the primary button associated with the device (i.e., isActive is TRUE when the primary button is pressed, and is FALSE when it is released). If a 3D pointing device (e.g., wand) is in use, isActive events typically reflect whether the pointer is within or in contact with the sensor's geometry.
minPosition and maxPosition may be set to clamp translation_changed events to a range of values as measured from the origin of the Z=0 plane. If the X or Y component of minPosition is greater than the corresponding component of maxPosition, translation_changed events are not clamped in that dimension. If the X or Y component of minPosition is equal to the corresponding component of maxPosition, that component is constrained to the given value. This technique provides a way to implement a line sensor that maps dragging motion into a translation in one dimension.
While the pointing device is activated and moved, trackPoint_changed and translation_changed events are sent. trackPoint_changed events represent the unclamped intersection points on the surface of the tracking plane. If the pointing device is dragged off of the tracking plane while activated (e.g., above horizon line), browsers may interpret this in a variety ways (e.g., clamp all values to the horizon). Each movement of the pointing device, while isActive is TRUE, generates trackPoint_changed and translation_changed events.
Further information about this behaviour can be found in See ISO/IEC 14772-1:1997 Section 4.6.7.3, Pointing-device sensors, See ISO/IEC 14772-1:1997 Section 4.6.7.4, Drag sensors, and See ISO/IEC 14772-1:1997 Section 4.6.7.5, Activating and manipulating sensors.
Scene related information (spatial and temporal relationships)

The following scene related nodes are used in ARAF: AugmentationRegion, Background, Background2D, CameraCalibration, Group, Inline, Layer2D, Layer3D, Layout, NavigationInfo, OrderedGroup, ReferenceSignal, ReferenceSignalLocation, Switch, Transform, Transform2D, Viewpoint, Viewport, Form.
AugmentationRegion
XSD Description
<ProtoDeclare name="AugmentationRegion" locations="org:mpeg:augmentationregion">
 <field name="source" type="Strings" vrml97Hint="exposedField" stringArrayValue=""/>
 <field name="region" type="Vector3Array" vrml97Hint="exposedField" vector3ArrayValue=""/>
 <field name="arProvider" type="Strings" vrml97Hint="exposedField" stringArrayValue=""/>
 <field name="enabled" type="Boolean" vrml97Hint="exposedField" booleanValue="false"/>
 <field name="translation" type="Vector3Array" vrml97Hint="exposedField" Vector3ArrayValue=""/>
<field name="rotation" type="Rotations" vrml97Hint="exposedField" rotationArrayValue=""/>
<field name="scale" type="Vector3" vrml97Hint="exposedField" Vector3Value="1 1 1"/>
 <field name="onTranslationChanged" type="Boolean" vrml97Hint="eventOut"/>
<field name="onRotationChanged" type="Boolean" vrml97Hint="eventOut"/>
<field name="onScaleChanged" type="Boolean" vrml97Hint="eventOut"/>
 <field name="onARProviderChanged" type="Boolean" vrml97Hint="eventOut"/>
 <field name="onError" type="Integer" vrml97Hint="eventOut"/>
</ProtoDeclare>
BIFS Textual Description
EXTERNPROTO AugmentationRegion[

exposedField
MFString
source

[]

exposedField
MFVec3f
region

[]

exposedField
MFString
arProvider

[]

exposedField
SFBool

enabled

FALSE

exposedField
MFVec3f
translation

[]

exposedField
MFRotation rotation

[]

exposedField
SFVec3f
scale

1, 1, 1

eventOut
SFBool
onTranslationChanged

eventOut
SFBool
onRotationChanged

eventOut
SFBool
onScaleChanged

eventOut
SFBool onARProviderChanged

eventOut
SFInt32 onError
] "org:mpeg:AugmentationRegion”
Functionality and semantics
The AugmentationRegion prototype provides the parameters of a static or animated 2D or 3D region related to a natural media. A virtual object can therefore be composed with the natural media and contained inside the region.
The exposed field source specifies the media source where the augmentation will be realized. The source media could be 2D or 3D
The exposed field region specifies a 2D or 3D shape by means of x, y, z array of points relative to the source coordinate system. The order of the points is sequencely along the contour. Note that when used with 2D source media, the z component of 3D vector is discarded.
The exposed field arProvider specifies the URI where the virtual object is available.
The exposed field enabled specifies whether the augmentation is performed. When it is set to FALSE, the augmentation region should not be displayed.
The exposed field translation specifies the translation of the region. The valid values are the ones that are enabled by the onTranslationChanged mask. Note that when used with 2D source media, the z component of 3D vector is discarded.
The exposed field rotation specifies the rotation of the region. The valid values are the ones that are enabled by the onRotationChanged mask. Note that when used with 2D source media, the z component of 3D vector is discarded.
The exposed field scale specifies the scale of the region. The valid values are the ones that are enabled by the onScaleChanged mask. Note that when used with 2D source media, the z component of 3D vector is discarded.
The event out onTranslationChanged is set each time the translation of the region is to be performed.
The event out onRotationChanged is set each time the rotation of the region is to be performed.
The event out onScaleChanged is set each time the scale of the region is to be performed.
 The event out onARProviderChanged is set each time the AR provider is changed.
The event out onError is set when an error occurs in the augmentation process. Currently the following error codes are defined:
· 0 - No error.
· 1 – the url for arProvider is not providing a valid virtual object.
· 2 - Unspecified error.
SimpleAugmentationRegion
XSD Description
<ProtoDeclare name="SimpleAugmentationRegion" locations="org:mpeg:SimpleAugmentationRegion">
<field name="ARLabel"

type="String"

vrml97Hint="exposedField" stringValue=""/>
<field name="ARType"

type="Integer"

vrml97Hint="exposedField" integerValue="-1"/>
<field name="AR2DRegion"

type="Vector2Array"
vrml97Hint="exposedField" vector2ArrayValue =""/>
<field name="ARTranslation"
type="Vector2Array"
vrml97Hint="exposedField" vector2ArrayValue =""/>
<field name="ARTimestampStart"type="Floats"

vrml97Hint="exposedField" floatArrayValue=""/>

<field name="ARTimestampEnd"
type="Floats"

vrml97Hint="exposedField" floatArrayValue=""/>
<field name="AREnabled"

type="Boolean"
vrml97Hint="exposedField" booleanValue="false"/>
<field name="mediaTime"

type="Integer"
vrml97Hint="eventIn"/>
</ProtoDeclare>
BIFS Textual Description

PROTO SimpleAugmentationRegion [

exposedField
SFString
ARLabel

"ar_default"

exposedField
SFInt32
ARType

-1

exposedField
MFVec2f
AR2DRegion

[]

exposedField
MFFloat
ARTimestampStart
[]

exposedField
MFFloat
ARTimestampEnd
[]

exposedField
MFVec2f
ARTranslation

[]

exposedField
SFBool

AREnabled

FALSE

eventIn

SFTime
mediaTime
] "org:mpeg:SimpleAugmentationRegion"
Functionality and semantics

ARLabel specifies the label of the augmented region. The label can be displayed along with the augmented region itself.
ARType stores an integer value which represents the type of the augmented region. This field can be used to group all the augmented regions of the same type. Multiple regions can be easily controlled (display/hide) this way.
AR2DRegion specifies an array of 2D vectors. Each pair of values represents the width and the height of the augmented region at a given timestamp of the media.
ARTranslation specifies an array of 2D vectors. Each pair of values represents the 2D coordinates of the augmented region at a given timestamp of the media.
ARTimestampStart stores an array of time values relative to the mediaCurrentTime in order for the proto to know when the augmented region is active. The length of the ARTimestampStart must be the same with the length of the AR2DRegion array field and ARTranslation array field as the augmented region has a size and a translation at a given timestamp.
ARTimestampEnd stores an array of time values relative to the mediaCurrentTime. Each timestamp value of ARTimestampStart array has an associated timestamp value in ARTimestampEnd array. This value controls for how long the augmented region will be active.
Remarks:
· a ARTimestampEnd value cannot be smaller than its corresponding value.
· the next value of ARTimestampStart must be greater than the current ARTimestampEnd value.
· each ARTimestampStart value has a corresponding value in ARTimestampEnd therefore the lengths of the arrays must be the same.
AREnabled is a boolean value which can activate the augmented region. While not activated the region should not be displayed.
mediaTime is a input event of the AR proto. Each augmented region instance must be linked to the media time of the target stream in order to compare the timestamp values of the ARTimestamp field with the current media time. When the condition is satisfied the corresponding region is augmented, if active.
Obs: ARTimestampEnd is an optional field. If not specified, the augmented region is active one frame. The functionality of ARTimestampStart remains the same.
Background
XSD Description
<complexType name="BackgroundType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

</all>

<attribute name="groundAngle" type="xmta:MFFloat" use="optional"/>

<attribute name="groundColor" type="xmta:MFColor" use="optional"/>

<attribute name="backUrl" type="xmta:MFUrl" use="optional"/>

<attribute name="bottomUrl" type="xmta:MFUrl" use="optional"/>

<attribute name="frontUrl" type="xmta:MFUrl" use="optional"/>

<attribute name="leftUrl" type="xmta:MFUrl" use="optional"/>

<attribute name="rightUrl" type="xmta:MFUrl" use="optional"/>

<attribute name="topUrl" type="xmta:MFUrl" use="optional"/>

<attribute name="skyAngle" type="xmta:MFFloat" use="optional"/>

<attribute name="skyColor" type="xmta:MFColor" use="optional" default="0 0 0"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="Background" type="xmta:BackgroundType"/>
Functionality and semantics
As specified in ISO/IEC 14772-1:1997, section 6.5.
The Background node is used to specify a colour backdrop that simulates ground and sky, as well as a background texture, or panorama, that is placed behind all geometry in the scene and in front of the ground and sky. Background nodes are specified in the local coordinate system and are affected by the accumulated rotation of their ancestors as described below.
Background nodes are bindable nodes as described in 4.6.10, Bindable children nodes. There exists a Background stack, in which the top-most Background on the stack is the currently active Background. To move a Background to the top of the stack, a TRUE value is sent to the set_bind eventIn. Once active, the Background is then bound to the browsers view. A FALSE value sent to set_bind removes the Background from the stack and unbinds it from the browser's view. More detail on the bind stack is described in 4.6.10, Bindable children nodes.
The backdrop is conceptually a partial sphere (the ground) enclosed inside of a full sphere (the sky) in the local coordinate system with the viewer placed at the centre of the spheres. Both spheres have infinite radius and each is painted with concentric circles of interpolated colour perpendicular to the local Y-axis of the sphere. The Background node is subject to the accumulated rotations of its ancestors' transformations. Scaling and translation transformations are ignored. The sky sphere is always slightly farther away from the viewer than the ground partial sphere causing the ground to appear in front of the sky where they overlap.
The skyColor field specifies the colour of the sky at various angles on the sky sphere. The first value of the skyColor field specifies the colour of the sky at 0.0 radians representing the zenith (i.e., straight up from the viewer). The skyAngle field specifies the angles from the zenith in which concentric circles of colour appear. The zenith of the sphere is implicitly defined to be 0.0 radians, the natural horizon is at [image: image6.png]/2 radians, and the nadir (i.e., straight down from the viewer) is at [image: image7.png]radians. skyAngle is restricted to non-decreasing values in the range [0.0, [image: image8.png]]. There shall be one more skyColor value than there are skyAngle values. The first colour value is the colour at the zenith, which is not specified in the skyAngle field. If the last skyAngle is less than pi, then the colour band between the last skyAngle and the nadir is clamped to the last skyColor. The sky colour is linearly interpolated between the specified skyColor values.
The groundColor field specifies the colour of the ground at the various angles on the ground partial sphere. The first value of the groundColor field specifies the colour of the ground at 0.0 radians representing the nadir (i.e., straight down from the user). The groundAngle field specifies the angles from the nadir that the concentric circles of colour appear. The nadir of the sphere is implicitly defined at 0.0 radians. groundAngle is restricted to non-decreasing values in the range [0.0, [image: image9.png]/2]. There shall be one more groundColor value than there are groundAngle values. The first colour value is for the nadir which is not specified in the groundAngle field. If the last groundAngle is less than [image: image10.png]/2, the region between the last groundAngle and the equator is non-existant. The ground colour is linearly interpolated between the specified groundColor values.
The backUrl, bottomUrl, frontUrl, leftUrl, rightUrl, and topUrl fields specify a set of images that define a background panorama between the ground/sky backdrop and the scene's geometry. The panorama consists of six images, each of which is mapped onto a face of an infinitely large cube contained within the backdrop spheres and centred in the local coordinate system. The images are applied individually to each face of the cube. On the front, back, right, and left faces of the cube, when viewed from the origin looking down the negative Z-axis with the Y-axis as the view up direction, each image is mapped onto the corresponding face with the same orientation as if the image were displayed normally in 2D (backUrl to back face, frontUrl to front face, leftUrl to left face, and rightUrl to right face). On the top face of the cube, when viewed from the origin looking along the +Y-axis with the +Z-axis as the view up direction, the topUrl image is mapped onto the face with the same orientation as if the image were displayed normally in 2D. On the bottom face of the box, when viewed from the origin along the negative Y-axis with the negative Z-axis as the view up direction, the bottomUrl image is mapped onto the face with the same orientation as if the image were displayed normally in 2D.
Background2D
XSD Description
<complexType name="Background2DType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

</all>

<attribute name="backColor" type="xmta:SFColor" use="optional" default="0 0 0"/>

<attribute name="url" type="xmta:MFUrl" use="optional"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="Background2D" type="xmta:Background2DType"/>
Functionality and semantics
As defined in ISO/IEC 14496-11 (BIFS), section 7.2.2.18.2.
There exists a Background2D stack, in which the top-most background is the current active background one. The Background2D node allows a background to be displayed behind a 2D scene. The functionality of this node can also be accomplished using other nodes, but use of this node may be more efficient in some implementations. If set_bind is set to TRUE the Background2D is moved to the top of the stack.If set_bind is set to FALSE, the Background2D is removed from the stack so the previous background which is contained in the stack is on top again.
The isBound event is sent as soon as the backdrop is put at the top of the stack, so becoming the current backdrop. The url field specifies the data source to be used (see ISO/IEC 14496-11 , section 7.1.1.2.7.1). The backColor field specifies a colour to be used as the background. This is not a geometry node. The top-left corner of the image is mapped to the top-left corner of the Layer2D and the right-bottom corner of the image is stretched to the right-bottom corner of the Layer2D, regardless of the current transformation. Scaling and/or rotation do not have any effect on this node. The background image will always exactly fill the entire Layer2D, regardless of Layer2D size, without tiling or cropping.
When a Background2D node is included in a 3D context, that is in a Group, Layer3D, or CompositeTexture3D node, then it shall be rendered behind all other geometries and be scaled to fit in the enclosing frame. For Group node, this frame is the whole scene. For Layer3D and CompositeTexture3D the background image is scaled to fit in the frame of the node.
CameraCalibration PROTO
XSD Description
<ProtoDeclare name="CameraCalibration" locations="org:mpeg:cameracalibration">
 <field name="source" type="Strings" vrml97Hint="exposedField" stringArrayValue=""/>
 <field name="enabled" type="Boolean" vrml97Hint="exposedField" booleanValue="false"/>
 <field name="startTime" type="Time" vrml97Hint="exposedField" timeValue="0"/>
 <field name="timeBetweenSnapshots" type="Time" vrml97Hint="exposedField" timeValue="4"/>
 <field name="snapshotsCount" type="Integer" vrml97Hint="exposedField" intValue="10"/>
 <field name="boardSize" type="Vector2" vrml97Hint="exposedField" vector2Value="8 5"/>
 <field name="onStatus" type="Integer" vrml97Hint="eventOut"/>
</ProtoDeclare>
BIFS Textual Description
EXTERNPROTO CameraCalibration[

exposedField
MFString
source

[]

exposedField
SFBool
enabled

FALSE

exposedField
SFTime
startTime

0

exposedField
SFTime
timeBetweenSnapshots
4

exposedField
SFInt32
snapshotCount

6

exposedField
SFVec2f
boardSize

8 5

eventOut

SFInt32
onStatus
] "org:mpeg:CameraCalibration"
Functionality and semantics
The exposed field source specifies the URL for the camera for which the calibration is performed.
The exposed field enabled specifies whether the calibration algorithm is executed.
The exposed field startTime specifies at which scene time the calibration algorithm should start running.
The exposed field timeBetweenSnapshots specifies the time between each taken snapshot in seconds.
The exposed field snapshotCount specifies the number of snapshots that will be taken during the calibration procedure.
The exposed field boardSize specifies the number of cross points on the chessboard that is used for calibration.
The eventOut field onStatus outputs the current status of the calibration process as defined below
· 1: a snapshot was taken
· 2: calibration was succesful
· -1 calibration was unsuccesful
Group
XSD Description
<complexType name="GroupType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

<element name="children" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SF3DNodeType" minOccurs="0" maxOccurs="unbounded"/>

</complexType>

</element>

</all>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="Group" type="xmta:GroupType"/>
Functionality and semantics
The semantics of the Group node are specified in ISO/IEC 14772-1:1997, section 6.21. ISO/IEC 14496-1 does not support the bounding box parameters (bboxCenter and bboxSize).
Where multiple sub-graphs containing audio content (i.e. Sound nodes) occur as children of a Group node, the sounds shall be combined as described in ISO/IEC 14772-1:1997, section 7.2.2.116.
As specified in ISO/IEC 14772-1:1997, section 6.21. a Group node contains children nodes without introducing a new transformation. It is equivalent to a Transform node containing an identity transform.
More details on the children, addChildren, and removeChildren fields and eventIns can be found in ISO/IEC 14772-1:1997, section 4.6.5, Grouping and children nodes.
The bboxCenter and bboxSize fields specify a bounding box that encloses the Group node's children. This is a hint that may be used for optimization purposes. The results are undefined if the specified bounding box is smaller than the actual bounding box of the children at any time. A default bboxSize value, (-1, -1, -1), implies that the bounding box is not specified and, if needed, is calculated by the browser. A description of the bboxCenter and bboxSize fields is contained in ISO/IEC 14772-1:1997, section 4.6.4, Bounding boxes.
Inline
XSD Description
<complexType name="InlineType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

</all>

<attribute name="url" type="xmta:MFUrl" use="optional"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="Inline" type="xmta:InlineType"/>
Functionality and semantics
As specified in ISO/IEC 14772-1:1997, section 6.25.
The Inline node is a grouping node that reads its children data from a location in the World Wide Web. Exactly when its children are read and displayed is not defined (e.g. reading the children may be delayed until the Inline node's bounding box is visible to the viewer). The url field specifies the URL containing the children. An Inline node with an empty URL does nothing.
Each specified URL shall refer to a valid VRML file that contains a list of children nodes, prototypes, and routes at the top level as described in 4.6.5, Grouping and children nodes. The results are undefined if the URL refers to a file that is not VRML or if the VRML file contains non-children nodes at the top level.
If multiple URLs are specified, the browser may display a URL of a lower preference VRML file while it is obtaining, or if it is unable to obtain, the higher preference VRML file.
The results are undefined if the contents of the URL change after it has been loaded.
The bboxCenter and bboxSize fields specify a bounding box that encloses the Inline node's children. This is a hint that may be used for optimization purposes. The results are undefined if the specified bounding box is smaller than the actual bounding box of the children at any time. A default bboxSize value, (-1, -1, -1), implies that the bounding box is not specified and if needed shall be calculated by the browser.
Layer2D
XSD Description
<complexType name="Layer2DType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

<element name="children" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SF2DNodeType" minOccurs="0" maxOccurs="unbounded"/>

</complexType>

</element>

<element name="background" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SFBackground2DNodeType" minOccurs="0"/>

</complexType>

</element>

<element name="viewport" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SFViewportNodeType" minOccurs="0"/>

</complexType>

</element>

</all>

<attribute name="size" type="xmta:SFVec2f" use="optional" default="-1 -1"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="Layer2D" type="xmta:Layer2DType"/>
Functionality and semantics
As defined in ISO/IEC 14496-11 (BIFS), section 7.2.2.72.2.
The Layer2D node is a transparent rendering rectangle region on the screen where a 2D scene is drawn. The rectangle always faces the viewer of the scene. Layer2D and Layer3D nodes enable the composition of multiple 2D and 3D scenes. EXAMPLE: This allows users to have 2D interfaces to a 2D scene, or 3D interfaces to a 2D scene, or to view a 3D scene from different viewpoints in the same scene.
The addChildren eventIn specifies a list of 2D nodes that shall be added to the Layer2D’s children field. The removeChildren eventIn specifies a list of 2D nodes that shall be removed from the Layer2D's children field. The children field may contain any 2D children nodes that define a 2D scene. Layer nodes are considered to be 2D objects within the scene. The layering of the 2D and 3D layers is specified by any relevant transformations in the scene graph. The Layer2D node is composed with its center at the origin of the local coordinate system and shall not be present in 3D contexts (see ISO/IEC 14496-11, section 7.1.1.2.1).
The size parameter shall be a floating point number that expresses the width and height of the layer in the units of the local coordinate system. In case of a layer at the root of the hierarchy, the size is expressed in terms of the default 2D coordinate system (see ISO/IEC 14496-11, section 7.1.1.2.2). A size of -1 in either direction, means that the Layer2D node is not specified in size in that direction, and that the size is adjusted to the size of the parent layer, or the global rendering area dimension if the layer is on the top of the hierarchy. In the case where a 2D scene or object is shared between several Layer2D nodes, the behaviours are defined exactly as for objects that are multiply referenced using the DEF/USE mechanism. A sensor triggers an event whenever the sensor is triggered in any of the Layer2D in which it is contained. The behaviors triggered by the shared sensors as well as other behaviors that apply on objects shared between several layers apply on all layers containing these objects.
A Layer2D stores the stack of bindable children nodes that can affect the children scene of the layer. All relevant bindable children nodes have a corresponding exposedField in the Layer2D node. During presentation, these fields take the value of the currently bound bindable children node for the scene that is a child of the Layer2D node. Initially, the bound bindable children node is the corresponding field value of the Layer2D node if it is defined. If the field is undefined, the first bindable children node defined in the child scene will be bound. When the binding mechanism of the bindable children node is used (set_bind field set to TRUE), all the parent layers containing this node set the corresponding field to the current bound node value. It is therefore possible to share scenes across layers, and to have different bound nodes active, or to trigger a change of bindable children node for all layers containing a given bindable children node. For 2D scenes, the background field specifies the bound Background2D node. The viewport field is reserved for future extensions for 2D scenes.
All the 2D objects contained in a single Layer2D node form a single composed object. This composed object is considered by other elements of the scene to be a single object. In other words, if a Layer2D node, A, is the parent of two objects, B and C, layered one on top of the other, it will not be possible to insert a new object, D, between B and C unless D is added as a child of A.
Layers are transparent to user input if the background field is set to NULL. If the background field is specified, any transparent part of the background will also let user input through to lower layers.
Layer3D
XSD Description
<complexType name="Layer3DType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

<element name="children" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SF3DNodeType" minOccurs="0" maxOccurs="unbounded"/>

</complexType>

</element>

<element name="background" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SFBackground3DNodeType" minOccurs="0"/>

</complexType>

</element>

<element name="fog" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SFFogNodeType" minOccurs="0"/>

</complexType>

</element>

<element name="navigationInfo" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SFNavigationInfoNodeType" minOccurs="0"/>

</complexType>

</element>

<element name="viewpoint" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SFViewpointNodeType" minOccurs="0"/>

</complexType>

</element>

</all>

<attribute name="size" type="xmta:SFVec2f" use="optional" default="-1 -1"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="Layer3D" type="xmta:Layer3DType"/>
Functionality and semantics
As defined in ISO/IEC 14496-11 (BIFS), section 7.2.2.73.2.
The Layer3D node is a transparent, rectangular rendering region where a 3D scene is drawn. The Layer3D node may be composed in the same manner as any other 2D node. It represents a rectangular region on the screen facing the viewer. The basic Layer3D semantics are identical to those for Layer2D (see ISO/IEC 14496-11, section 7.2.2.72) but with 3D (rather than 2D) children. In general, Layer3D nodes shall not be present in 3D co-ordinate systems. The permitted exception to this in when a Layer3D node is the "top" node that begins a 3D scene or context (see ISO/IEC 14496-11, section 7.1.1.2.1).
The following fields specify bindable children nodes for Layer3D:
· background for Background and Background2D nodes
· fog for Fog nodes
· navigationInfo for NavigationInfo nodes
· viewpoint for Viewpoint nodes
The viewpoint field can be used to allow the viewing of the same scene with several viewpoints.
NOTE — The rule for transparency to behaviors is also true for navigation in Layer3D. Authors should carefully design the various Layer3D nodes in a given scene to take account of navigation. Overlapping several Layer3D with navigation turned on may trigger strange navigation effects which are difficult to control by the user. Unless it is a feature of the content, navigation can be easily turned off using the NavigationInfo type field, or Layer3D’s can be designed not to be superimposed.
Layout
XSD Description
<complexType name="LayoutType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

<element name="children" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SF2DNodeType" minOccurs="0" maxOccurs="unbounded"/>

</complexType>

</element>

</all>

<attribute name="wrap" type="xmta:SFBool" use="optional" default="false"/>

<attribute name="size" type="xmta:SFVec2f" use="optional" default="-1 -1"/>

<attribute name="horizontal" type="xmta:SFBool" use="optional" default="true"/>

<attribute name="justify" type="xmta:MFString" use="optional" default=""BEGIN""/>

<attribute name="leftToRight" type="xmta:SFBool" use="optional" default="true"/>

<attribute name="topToBottom" type="xmta:SFBool" use="optional" default="true"/>

<attribute name="spacing" type="xmta:SFFloat" use="optional" default="1"/>

<attribute name="smoothScroll" type="xmta:SFBool" use="optional" default="false"/>

<attribute name="loop" type="xmta:SFBool" use="optional" default="false"/>

<attribute name="scrollVertical" type="xmta:SFBool" use="optional" default="true"/>

<attribute name="scrollRate" type="xmta:SFFloat" use="optional" default="0"/>

<attribute name="scrollMode" type="xmta:SFInt32" use="optional" default="0"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="Layout" type="xmta:LayoutType"/>
Functionality and semantics
As defined in ISO/IEC 14496-11 (BIFS), section 7.2.2.74.2
The Layout node specifies the placement (layout) of its children in various alignment modes as specified. For text children, this is by their fontStyle fields, and for non-text children by the fields horizontal, justify, leftToRight, topToBottom and spacing present in this node. It also provides the functionality of scrolling its children horizontally or vertically.
The children field shall specify a list of nodes that are to be arranged. Note that the children’s position is implicit and that order is important. The wrap field specifies whether children are allowed to wrap to the next row (or column in vertical alignment cases) after the edge of the layout frame is reached. If wrap is set to TRUE, children that would be positioned across or past the frame boundary are wrapped (vertically or horizontally) to the next row or column. If wrap is set to FALSE, children are placed in a single row or column that is clipped if it is larger than the layout. When wrap is TRUE, if text objects larger than the layout frame need to be placed, these texts shall be broken down into pieces that are smaller than the layout. The preferred places for breaking text are spaces, tabs, hyphens, carriage returns and line feeds. When there is no such character in the texts to be broken, the texts shall be broken at the last character that is entirely placed in the layout frame.
The size field specifies the width and height of the layout frame.
The horizontal, justify, leftToRight, topToBottom and spacing fields have the same meaning as in the FontStyle node (see ISO/IEC 14496-11, section 7.2.2.61).
The scrollRate field specifies the time needed in seconds to scroll the layout in the given direction. For example, a layout of 200x100 pixels scrolling vertically with a scrollRate value of 2 will translate its objects vertically of 100/2 times the simulation frame duration in seconds (eg, 1.65 pixels at 30 fps). When scrollRate is zero, then there is no scrolling and the remaining scroll-related fields are ignored.
The smoothScroll field selects between smooth and line-by-line/character-by-character scrolling of children. When TRUE, smooth scroll is applied.
The loop field specifies continuous looping of children when set to TRUE. When loop is FALSE, child nodes that have scrolled out of the scroll layout frame will be deleted. When loop is TRUE, then the set of children scrolls continuously, wrapping around when they have scrolled out of the layout area. If the set of children is smaller than the layout area, some empty space will be scrolled with the children. If the set of children is bigger than the layout area, then only some of the children will be displayed at any point in time. When scrollVertical is TRUE and loop is TRUE and scrollRate is negative (top-to-bottom scrolling), then the bottom-most object will reappear on top of the layout frame as soon as the topmost object has scrolled entirely into the layout frame. The scrollVertical field specifies whether the scrolling is done vertically or horizontally. When set to TRUE, the scrolling rate shall be interpreted as a vertical scrolling rate and a positive rate shall be interpreted as scrolling towards the top. When set to FALSE, the scrolling rate shall be interpreted as a horizontal scrolling rate and a positive rate shall mean scrolling to the right. Objects are placed one by one, in the order they are given in the children list. Text objects are placed according to the horizontal, justify, leftToRight, topToBottom and spacing fields of their FontStyle node. Other objects are placed according to the same fields of the Layout node. The reference point for the placement of an object is the reference point as left by the placement of the previous object in the list. In the case of vertical alignment, objects may be placed with respect to their top, bottom, center or baseline. The baseline of non-text objects is the same as their bottom. Spacing shall be coherent only within sequences of objects with the same orientation (same value of horizontal field).
The notions of top edge, bottom edge, base line, vertical center, left edge, right edge, horizontal center, line height and row width shall have a single meaning over coherent sequences of objects. This means that over a sequence of objects where horizontal is TRUE, topToBottom is TRUE and spacing has the same value, then the vertical size of the lines is computed as follows:
· maxAscent is the maximum of the ascent on all text objects.
· maxDescent is the maximum of the descent on all text objects.
· maxHeight is the maximum height of non-text objects.
If the minor mode in the justify field of the layout is FIRST (baseline alignment), then the non-text objects shall be aligned on the baseline, which means the vertical size of the line is: size = max(maxAscent, maxHeight) + maxDescent
If the minor mode in the justify field of the layout is any other value, then the non-text objects shall be aligned with respect to the top, bottom or center, which means the size of the line is: size = max(maxAscent+maxDescent, maxHeight)
The first line is placed with its top edge flush to the top edge of the layout; the base line is placed maxAscent units lower, and the bottom edge is placed maxDescent units lower. The center line is in the middle, between the top and bottom edges. The top edges of subsequent lines are placed at regular intervals of value spacing size.
The other cases can be inferred from the above description. When the orientation is vertical, then the baseline, ascent and descent are not useful for the computation of the width of the rows. All objects only have a width. Column size is the maximum width over all objects.
NavigationInfo
XSD Description
<complexType name="NavigationInfoType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

</all>

<attribute name="avatarSize" type="xmta:MFFloat" use="optional" default="0.25 0.75 0.75"/>

<attribute name="headlight" type="xmta:SFBool" use="optional" default="true"/>

<attribute name="speed" type="xmta:SFFloat" use="optional" default="1"/>

<attribute name="type" type="xmta:MFString" use="optional" default=""WALK""/>

<attribute name="visibilityLimit" type="xmta:SFFloat" use="optional" default="0"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="NavigationInfo" type="xmta:NavigationInfoType"/>
Functionality and semantics
As specified in ISO/IEC 14772-1:1997, section 6.29.
The NavigationInfo node contains information describing the physical characteristics of the viewer's avatar and viewing model. NavigationInfo node is a bindable node (see ISO/IEC 14772-1:1997, section 4.6.10, Bindable children nodes). Thus, there exists a NavigationInfo node stack in which the top-most NavigationInfo node on the stack is the currently bound NavigationInfo node. The current NavigationInfo node is considered to be a child of the current Viewpoint node regardless of where it is initially located in the VRML file. Whenever the current Viewpoint nodes changes, the current NavigationInfo node shall be re-parented to it by the browser. Whenever the current NavigationInfo node changes, the new NavigationInfo node shall be re-parented to the current Viewpoint node by the browser.
If a TRUE value is sent to the set_bind eventIn of a NavigationInfo node, the node is pushed onto the top of the NavigationInfo node stack. When a NavigationInfo node is bound, the browser uses the fields of the NavigationInfo node to set the navigation controls of its user interface and the NavigationInfo node is conceptually re-parented under the currently bound Viewpoint node. All subsequent scaling changes to the current Viewpoint node's coordinate system automatically change aspects (see below) of the NavigationInfo node values used in the browser (e.g., scale changes to any ancestors' transformations). A FALSE value sent to set_bind pops the NavigationInfo node from the stack, results in an isBound FALSE event, and pops to the next entry in the stack which shall be re-parented to the current Viewpoint node. ISO/IEC 14772-1:1997, section 4.6.10, Bindable children nodes, has more details on binding stacks.
The type field specifies an ordered list of navigation paradigms that specify a combination of navigation types and the initial navigation type. The navigation type of the currently bound NavigationInfo node determines the user interface capabilities of the browser. For example, if the currently bound NavigationInfo node's type is "WALK", the browser shall present a WALK navigation user interface paradigm (see below for description of WALK). Browsers shall recognize and support at least the following navigation types: "ANY", "WALK", "EXAMINE", "FLY", and "NONE".
If "ANY" does not appear in the type field list of the currently bound NavigationInfo, the browser's navigation user interface shall be restricted to the recognized navigation types specified in the list. In this case, browsers shall not present a user interface that allows the navigation type to be changed to a type not specified in the list. However, if any one of the values in the type field are "ANY", the browser may provide any type of navigation interface, and allow the user to change the navigation type dynamically. Furthermore, the first recognized type in the list shall be the initial navigation type presented by the browser's user interface.
ANY navigation specifies that the browser may choose the navigation paradigm that best suits the content and provide a user interface to allow the user to change the navigation paradigm dynamically. The results are undefined if the currently bound NavigationInfo's type value is "ANY" and Viewpoint transitions (see ISO/IEC 14772-1:1997, section 6.53, Viewpoint) are triggered by the Anchor node (see ISO/IEC 14772-1:1997, section 6.2, Anchor) or the loadURL()scripting method (see ISO/IEC 14772-1:1997, section 4.12.10, Browser script interface).
WALK navigation is used for exploring a virtual world on foot or in a vehicle that rests on or hovers above the ground. It is strongly recommended that WALK navigation define the up vector in the +Y direction and provide some form of terrain following and gravity in order to produce a walking or driving experience. If the bound NavigationInfo's type is "WALK", the browser shall strictly support collision detection (see ISO/IEC 14772-1:1997, section 6.8, Collision).
FLY navigation is similar to WALK except that terrain following and gravity may be disabled or ignored. There shall still be some notion of "up" however. If the bound NavigationInfo's type is "FLY", the browser shall strictly support collision detection (see ISO/IEC 14772-1:1997,section 6.8, Collision).
EXAMINE navigation is used for viewing individual objects and often includes (but does not require) the ability to spin around the object and move the viewer closer or further away.
NONE navigation disables and removes all browser-specific navigation user interface forcing the user to navigate using only mechanisms provided in the scene, such as Anchor nodes or scripts that include loadURL().
If the NavigationInfo type is "WALK", "FLY", "EXAMINE", or "NONE" or a combination of these types (i.e., "ANY" is not in the list), Viewpoint transitions (see ISO/IEC 14772-1:1997,section 6.53, Viewpoint) triggered by the Anchor node (see ISO/IEC 14772-1:1997,section 6.2, Anchor) or the loadURL()scripting method (see ISO/IEC 14772-1:1997,section 4.12.10, Browser script interface) shall be implemented as a jump cut from the old Viewpoint to the new Viewpoint with transition effects that shall not trigger events besides the exit and enter events caused by the jump.
Browsers may create browser-specific navigation type extensions. It is recommended that extended type names include a unique suffix (e.g., HELICOPTER_mydomain.com) to prevent conflicts. Viewpoint transitions (see ISO/IEC 14772-1:1997, section 6.53, Viewpoint) triggered by the Anchor node (see ISO/IEC 14772-1:1997,section 6.2, Anchor) or the loadURL()scripting method (see ISO/IEC 14772-1:1997,section 4.12.10, Browser script interface) are undefined for extended navigation types. If none of the types are recognized by the browser, the default "ANY" is used. These strings values are case sensitive ("any" is not equal to "ANY").
The speed field specifies the rate at which the viewer travels through a scene in metres per second. Since browsers may provide mechanisms to travel faster or slower, this field specifies the default, average speed of the viewer when the NavigationInfo node is bound. If the NavigationInfo type is EXAMINE, speed shall not affect the viewer's rotational speed. Scaling in the transformation hierarchy of the currently bound Viewpoint node (see above) scales the speed; parent translation and rotation transformations have no effect on speed. Speed shall be non-negative. Zero speed indicates that the avatar's position is stationary, but its orientation and field of view may still change. If the navigation type is "NONE", the speed field has no effect.
The avatarSize field specifies the user's physical dimensions in the world for the purpose of collision detection and terrain following. It is a multi-value field allowing several dimensions to be specified. The first value shall be the allowable distance between the user's position and any collision geometry (as specified by a Collision node) before a collision is detected. The second shall be the height above the terrain at which the browser shall maintain the viewer. The third shall be the height of the tallest object over which the viewer can move. This allows staircases to be built with dimensions that can be ascended by viewers in all browsers. The transformation hierarchy of the currently bound Viewpoint node scales the avatarSize. Translations and rotations have no effect on avatarSize.
For purposes of terrain following, the browser maintains a notion of the down direction (down vector), since gravity is applied in the direction of the down vector. This down vector shall be along the negative Y-axis in the local coordinate system of the currently bound Viewpoint node (i.e., the accumulation of the Viewpoint node's ancestors' transformations, not including the Viewpoint node's orientation field).
Geometry beyond the visibilityLimit may not be rendered. A value of 0.0 indicates an infinite visibility limit. The visibilityLimit field is restricted to be greater than or equal to zero.
The speed, avatarSize and visibilityLimit values are all scaled by the transformation being applied to the currently bound Viewpoint node. If there is no currently bound Viewpoint node, the values are interpreted in the world coordinate system. This allows these values to be automatically adjusted when binding to a Viewpoint node that has a scaling transformation applied to it without requiring a new NavigationInfo node to be bound as well. The results are undefined if the scale applied to the Viewpoint node is non-uniform.
The headlight field specifies whether a browser shall turn on a headlight. A headlight is a directional light that always points in the direction the user is looking. Setting this field to TRUE allows the browser to provide a headlight, possibly with user interface controls to turn it on and off. Scenes that enlist precomputed lighting (e.g., radiosity solutions) can turn the headlight off. The headlight shall have intensity = 1, color = (1 1 1), ambientIntensity = 0.0, and direction = (0 0 -1).
It is recommended that the near clipping plane be set to one-half of the collision radius as specified in the avatarSize field (setting the near plane to this value prevents excessive clipping of objects just above the collision volume, and also provides a region inside the collision volume for content authors to include geometry intended to remain fixed relative to the viewer). Such geometry shall not be occluded by geometry outside of the collision volume.
OrderedGroup
XSD Description
<complexType name="OrderedGroupType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

<element name="children" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SF3DNodeType" minOccurs="0" maxOccurs="unbounded"/>

</complexType>

</element>

</all>

<attribute name="order" type="xmta:MFFloat" use="optional"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="OrderedGroup" type="xmta:OrderedGroupType"/>
Functionality and semantics
As defined in ISO/IEC 14496-11 (BIFS), section 7.2.2.90.2.
The OrderedGroup node controls the visual layering order of its children. When used as a child of a Layer2D node, it allows the control of which shapes obscure others. When used as a child of a Layer3D node, it allows content creators to specify the rendering order of elements of the scene that have identical z values. This allows conflicts between coplanar or close polygons to be resolved.
The addChildren eventIn specifies a list of objects that shall be added to the OrderedGroup node. The removeChildren eventIn specifies a list of objects that shall be removed from the OrderedGroup node. The children field is the current list of objects contained in the OrderedGroup node. When the order field is empty (the default) children are layered in order, first child to last child, with the last child being rendered last. If the order field contains values, one value is assigned to each child. Entries in the order field array match the child in the corresponding element of the children field array. The child with the lowest order value is rendered before all others. The remaining children are rendered in increasing order. The child corresponding to the highest order value is rendered last. If there are more children than entries in the order field, those children that do not have a drawing order are drawn in the order in which they appear in the children field, but after the ones that have an entry in the order field. If there are more order entries than children, the excess order entries are ignored.
Since 2D shapes have no z value, this is the sole determinant of the visual ordering of the shapes. However, when the OrderedGroup node is used with 3D shapes, its ordering mechanism shall be used in place of the natural z order of the shapes themselves. The resultant image shall show the shape with the highest order value on top, regardless of its z value. However, the resultant z-buffer contains a z value corresponding to the shape closest to the viewer at that pixel. The order shall be used to specify which geometry should be drawn first, to avoid conflicts between coplanar or close polygons.
NOTE — Content authors must use this functionality carefully since, depending on the Viewpoint, 3D shapes behind a given object in the natural z order may appear in front of this object.
ReferenceSignal
XSD Description
<ProtoDeclare name="ReferenceSignal" locations="org:mpeg:referencesignal">
 <field name="source" type="Strings" vrml97Hint="exposedField" stringArrayValue=""/>
 <field name="referenceResources" type="Strings" vrml97Hint="exposedField" stringArrayValue=""/>
<field name="enabled" type="Boolean" vrml97Hint="exposedField" booleanValue="false"/>
<field name="detectionRegion" type="Vector2Array" vrml97Hint="exposedField" vector2ArrayValue=""/>
 <field name="detectionHints" type="Strings" vrml97Hint="exposedField" stringArrayValue=""/>
 <field name="onInputDetected" type="Integer" vrml97Hint="eventOut"/>
 <field name="onError" type="Integer" vrml97Hint="eventOut"/>
</ProtoDeclare>
BIFS Textual Description
EXTERNPROTO ReferenceSignal[

exposedField
MFString
source

[]

exposedField
MFString
referenceResources
[]

exposedField
SFBool

enabled

FALSE

exposedFiedl
MFVec2f
detectionRegion

[]

exposedField
MFString
detectionHints

[]

eventOut

MFInt32
onInputDetected

eventOut

SFInt32
onError
] "org:mpeg:referenceSignal"
Functionality and semantics
The ReferenceSignal prototype provides signal detection capabilities in a scene.
The exposed field source specifies the media source or signal where the detection will be realized.
The exposed field referenceResources specifies the resource that needs to be detected by analyzing the the source field.
The exposed field enabled specifies whether the detection algorithm should be running or not.
The exposed field detectionRegion specifies a 2D region for searching Reference Signal by means of x, y array of points relative to the source coordinate system. This restricts searching area for the detection algorithm in order to reduce processing burden.
The exposed field detectionHints is used to describe some features of the resource that is to be detected. This is used by the detection algorithm in order to optimize the detection process. Examples of detection hints are keywords such as "textured image", "image with edges".
The event out onInputDetected is set each time the detection algorithm is executed. It consists in a list specifying a detection mask for each media in the referenceResources field. Value 0 for the mask means that the resource was not detected. Value 1 means that the resource was detected.
The event out onError is set when an error occurs in the detection algorithm. Currently the following error codes are defined:
· 0 - No error.
· 1 - Unspecified error.
ReferenceSignalLocation
XSD Description
<ProtoDeclare name="ReferenceSignalLocation" locations="org:mpeg:referencesignallocation">
 <field name="source" type="Strings" vrml97Hint="exposedField" stringArrayValue=""/>
 <field name="referenceResources" type="Strings" vrml97Hint="exposedField" stringArrayValue=""/>
 <field name="enabled" type="Boolean" vrml97Hint="exposedField" booleanValue="false"/>
<field name="detectionRegion" type="Vector2Array" vrml97Hint="exposedField" vector2ArrayValue=""/>
 <field name="detectionHints" type="Strings" vrml97Hint="exposedField" stringArrayValue=""/>
 <field name="translation" type="Vector3Array" vrml97Hint="exposedField" Vector3ArrayValue=""/>
 <field name="rotation" type="Rotations" vrml97Hint="exposedField" rotationArrayValue=""/>
 <field name="onInputDetected" type="Integer" vrml97Hint="eventOut"/>
 <field name="onTranslationChanged" type="Integer" vrml97Hint="eventOut"/>
 <field name="onRotationChanged" type="Integer" vrml97Hint="eventOut"/>
 <field name="onError" type="Integer" vrml97Hint="eventOut"/>
</ProtoDeclare>
BIFS Textual Description
EXTERNPROTO ReferenceSignalLocation[

exposedField
MFString
source

[]

exposedField
MFString
referenceResources
[]

exposedField
SFBool

enabled

FALSE

exposedField
MFVec2f
detectionRegion

[]

exposedField
MFString
detectionHints

[]

exposedField
MFVec3f
translation

[]

exposedField
MFRotation
rotation

[]

eventOut
MFInt32
onInputDetected

eventOut
MFInt32
onTranslationChanged

eventOut
MFInt32
onRotationChanged

eventOut
SFInt32
onError
] "org:mpeg:referenceSignalLocation"

Functionality and semantics
The ReferenceSignalLocation prototype provides signal detection capabilities in a scene and computes the registration matrix of the signal (e.g. 3D geometric transformation for an image).
The exposed field source specifies the media source or signal where the detection will be realized.
The exposed field referenceResources specifies the resource that needs to be detected by analyzing the the source field. The resource can be a media of any type supported by the MP4RA (MPEG-4 Registration Authority) or an MPEG-V signal.
The exposed field enabled specifies whether the detection algorithm should be running or not.
The exposed field detectionRegion specifies a 2D region for searching Reference Signal by means of x, y array of points relative to the source coordinate system. This restricts searching area for the detection algorithm in order to reduce processing burden.
The exposed field detectionHints is used to describe some features of the resource that is to be detected. This is used by the detection algorithm in order to optimize the detection process. Examples of detection hints are keywords such as "textured image", "image with edges".
The exposed field translation specifies the 3D translation of the detected media/signal. The valid values are the ones that are enabled by the onTranslationChanged mask.
The exposed field rotation specifies the 3D rotation of the detected media/signal. The valid values are the ones that are enabled by the onRotationChanged mask.
The event out onInputDetected is set each time the detection algorithm is executed. It consists in a list specifying a detection mask for each media in the referenceResources field. Value 0 for the mask means that the resource was not detected. Value 1 means that the resource was detected.
The event out onTranslationChanged is set each time the registration algorithm is executed and a translation of the referenceResources is detected. This fiels is a array specifying if the translation has changed for each media/signals from referenceResources.
The event out onRotationChanged is set each time the registration algorithm is executed and a rotation of the referenceResources is detected. This fiels is a array specifying if the rotation has changed for each media/signals from referenceResources.
The event out onError is set when an error occurs in the detection algorithm. Currently the following error codes are defined:
· 0 - No error.
· 1 - Camera calibration matrix is not present for the current camera.
· 2 - Unspecified error.
ReferenceDescription
XSD Description

<ProtoDeclare name="ReferenceDescription" locations="org:mpeg:referencedescription">

<field name="source" type="Strings" vrml97Hint="exposedField" stringArrayValue=""/>

<field name="referenceDescriptors" type="Strings" vrml97Hint="exposedField" stringArrayValue=""/>
<field name="descriptorType" type="Strings" vrml97Hint="exposedField" stringArrayValue=""/>

<field name="enabled" type="Boolean" vrml97Hint="exposedField" booleanValue="false"/>

<field name="onInputDetected" type="Integer" vrml97Hint="eventOut"/>

<field name="onError" type="Integer" vrml97Hint="eventOut"/>

</ProtoDeclare>

BIFS Textual Description

EXTERNPROTO ReferenceDescription[

exposedField
MFString
source

[]

exposedField
MFString
referenceDescriptors
[]

exposedField
MFString
descriptorType

[]

exposedField
SFBool

enabled

FALSE

eventOut

MFInt32
onInputDetected

eventOut

SFInt32
onError

] "org:mpeg:referencedescription"
Functionality and semantics

The ReferenceDescription prototype provides signal detection capabilities in a scene.

The exposed field source specifies the media source or signal where the detection will be realized.

The exposed field referenceDescriptors specifies the resource that needs to be detected by analyzing the the source field.
The exposed field descriptorType specifies the type of the descriptor to be used. If the descriptor type is “CDVS” then the descriptors are the ones specified in XXX.
The exposed field enabled specifies whether the detection algorithm should be running or not.
The event out onInputDetected is set each time the detection algorithm is executed. It consists in a list specifying a detection mask for each media in the referenceDescriptors field. Value 0 for the mask means that the resource was not detected. Value 1 means that the resource was detected.

The event out onError is set when an error occurs in the detection algorithm. Currently the following error codes are defined:

· 0 - No error.

· 1 - Unspecified error.

ReferenceDescriptionLocation
XSD Description

<ProtoDeclare name="ReferenceDescriptionLocation" locations="org:mpeg:referencedescriptionlocation">

 <field name="source" type="Strings" vrml97Hint="exposedField" stringArrayValue=""/>

 <field name="referenceDescriptors" type="Strings" vrml97Hint="exposedField" stringArrayValue=""/>

 <field name="enabled" type="Boolean" vrml97Hint="exposedField" booleanValue="false"/>
 <field name="translation" type="Vector3Array" vrml97Hint="exposedField" Vector3ArrayValue=""/>

 <field name="rotation" type="Rotations" vrml97Hint="exposedField" rotationArrayValue=""/>

 <field name="onInputDetected" type="Integer" vrml97Hint="eventOut"/>

 <field name="onTranslationChanged" type="Integer" vrml97Hint="eventOut"/>

 <field name="onRotationChanged" type="Integer" vrml97Hint="eventOut"/>

 <field name="onError" type="Integer" vrml97Hint="eventOut"/>

</ProtoDeclare>

BIFS Textual Description

EXTERNPROTO ReferenceDescriptionLocation[

exposedField
MFString

source

[]

exposedField
MFString

referenceDescriptors
[]

exposedField
SFBool

enabled

FALSE

exposedField
MFVec3f

translation

[]

exposedField
MFRotation
rotation

[]

eventOut

MFInt32

onInputDetected

eventOut

MFInt32

onTranslationChanged

eventOut

MFInt32

onRotationChanged

eventOut

SFInt32

onError

] "org:mpeg:referencedescriptionlocation"

Functionality and semantics

The ReferenceDescriptionLocation prototype provides signal detection capabilities in a scene and computes the registration matrix of the signal (e.g. 3D geometric transformation for an image).

The exposed field source specifies the media source or signal where the detection will be realized.

The exposed field referenceDescriptors specifies the resource that needs to be detected by analyzing the the source field. The resource can be a media of any type supported by the MP4RA (MPEG-4 Registration Authority) or an MPEG-V signal.

The exposed field enabled specifies whether the detection algorithm should be running or not.
The exposed field translation specifies the 3D translation of the detected media/signal. The valid values are the ones that are enabled by the onTranslationChanged mask.

The exposed field rotation specifies the 3D rotation of the detected media/signal. The valid values are the ones that are enabled by the onRotationChanged mask.

The event out onInputDetected is set each time the detection algorithm is executed. It consists in a list specifying a detection mask for each media in the referenceDescriptors field. Value 0 for the mask means that the resource was not detected. Value 1 means that the resource was detected.

The event out onTranslationChanged is set each time the registration algorithm is executed and a translation of the referenceDescriptors is detected. This fiels is a array specifying if the translation has changed for each media/signals from referenceDescriptors.

The event out onRotationChanged is set each time the registration algorithm is executed and a rotation of the referenceDescriptors is detected. This fiels is a array specifying if the rotation has changed for each media/signals from referenceDescriptors.
The event out onError is set when an error occurs in the detection algorithm. Currently the following error codes are defined:

· 0 - No error.

· 1 - Camera calibration matrix is not present for the current camera.

· 2 - Unspecified error.

Switch
XSD Description
<complexType name="SwitchType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

<element name="choice" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SF3DNodeType" minOccurs="0" maxOccurs="unbounded"/>

</complexType>

</element>

</all>

<attribute name="whichChoice" type="xmta:SFInt32" use="optional" default="-1"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="Switch" type="xmta:SwitchType"/>
Functionality and semantics
As specified in ISO/IEC 14772-1:1997, section 6.46.
The Switch grouping node traverses zero or one of the nodes specified in the choice field.
ISO/IEC 14772-1:1997, section 4.6.5, Grouping and children nodes, describes details on the types of nodes that are legal values for choice.
The whichChoice field specifies the index of the child to traverse, with the first child having index 0. If whichChoice is less than zero or greater than the number of nodes in the choice field, nothing is chosen.
All nodes under a Switch continue to receive and send events regardless of the value of whichChoice. For example, if an active TimeSensor is contained within an inactive choice of an Switch, the TimeSensor sends events regardless of the Switch's state.
With the following restriction specified in ISO/IEC 14496-11 (BIFS), section 7.2.2.122.2:
If some of the child sub-graphs contain audio content (i.e., the subgraphs contain Sound nodes), the child sounds are switched on and off according to the value of the whichChoice field. That is, only sound that corresponds to Sound nodes in the whichChoice’th subgraph of this node are played. The others are muted.
Transform
XSD Description
<complexType name="TransformType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

<element name="children" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SF3DNodeType" minOccurs="0" maxOccurs="unbounded"/>

</complexType>

</element>

</all>

<attribute name="center" type="xmta:SFVec3f" use="optional" default="0 0 0"/>

<attribute name="rotation" type="xmta:SFRotation" use="optional" default="0 0 1 0"/>

<attribute name="scale" type="xmta:SFVec3f" use="optional" default="1 1 1"/>

<attribute name="scaleOrientation" type="xmta:SFRotation" use="optional" default="0 0 1 0"/>

<attribute name="translation" type="xmta:SFVec3f" use="optional" default="0 0 0"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="Transform" type="xmta:TransformType"/>
Functionality and semantics
As specified in ISO/IEC 14772-1:1997, section 6.52.
The Transform node is a grouping node that defines a coordinate system for its children that is relative to the coordinate systems of its ancestors. See ISO/IEC 14772-1:1997, section 4.4.4, Transformation hierarchy, and ISO/IEC 14772-1:1997, section 4.4.5, Standard units and coordinate system, for a description of coordinate systems and transformations.
ISO/IEC 14772-1:1997, section 4.6.5, Grouping and children nodes, provides a description of the children, addChildren, and removeChildren fields and eventIns.
The bboxCenter and bboxSize fields specify a bounding box that encloses the children of the Transform node. This is a hint that may be used for optimization purposes. The results are undefined if the specified bounding box is smaller than the actual bounding box of the children at any time. A default bboxSize value, (-1, -1, -1), implies that the bounding box is not specified and, if needed, shall be calculated by the browser. The bounding box shall be large enough at all times to enclose the union of the group's children's bounding boxes; it shall not include any transformations performed by the group itself (i.e., the bounding box is defined in the local coordinate system of the children). The results are undefined if the specified bounding box is smaller than the true bounding box of the group. A description of the bboxCenter and bboxSize fields is provided in ISO/IEC 14772-1:1997, section 4.6.4, Bounding boxes.
The translation, rotation, scale, scaleOrientation and center fields define a geometric 3D transformation consisting of (in order):
· a (possibly) non-uniform scale about an arbitrary point;
· a rotation about an arbitrary point and axis;
· a translation.
The center field specifies a translation offset from the origin of the local coordinate system (0,0,0). The rotation field specifies a rotation of the coordinate system. The scale field specifies a non-uniform scale of the coordinate system. scale values shall be greater than zero. The scaleOrientation specifies a rotation of the coordinate system before the scale (to specify scales in arbitrary orientations). The scaleOrientation applies only to the scale operation. The translation field specifies a translation to the coordinate system.
As specified in ISO/IEC 14496-11 (BIFS), section 7.2.2.131.2:
If some of the child subgraphs contain audio content (i.e., the subgraphs contain Sound nodes), the child sounds are transformed and mixed as follows. If each of the child sounds is a spatially presented sound, the Transform node applies to the local coordinate system of the Sound nodes to alter the apparent spatial location and direction. If the children are not spatially presented but have equal numbers of channels, the Transform node has no effect on the childrens’ sounds. If the children are not spatially presented but have equal numbers of channels, the Transform node has no effect on the childrens’ sounds. The child sounds are summed equally to produce the audio output at this node. If some children are spatially presented and some not, or all children do not have equal numbers of channels, the semantics are not defined.
Transform2D
XSD Description
<complexType name="Transform2DType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

<element name="children" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SF2DNodeType" minOccurs="0" maxOccurs="unbounded"/>

</complexType>

</element>

</all>

<attribute name="center" type="xmta:SFVec2f" use="optional" default="0 0"/>

<attribute name="rotationAngle" type="xmta:SFFloat" use="optional" default="0"/>

<attribute name="scale" type="xmta:SFVec2f" use="optional" default="1 1"/>

<attribute name="scaleOrientation" type="xmta:SFFloat" use="optional" default="0"/>

<attribute name="translation" type="xmta:SFVec2f" use="optional" default="0 0"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="Transform2D" type="xmta:Transform2DType"/>
Functionality and semantics
As specified in ISO/IEC 14496-11 (BIFS), section 7.2.2.132.2
The Transform2D node allows the translation, rotation and scaling of its 2D children objects. The rotation field specifies a rotation of the child objects, in radians, which occurs about the point specified by center. The scale field specifies a 2D scaling of the child objects. The scaling operation takes place following a rotation of the 2D coordinate system that is specified, in radians, by the scaleOrientation field. The rotation of the co-ordinate system is notional and purely for the purpose of applying the scaling and is undone before any further actions are performed. No permanent rotation of the co-ordinate system is implied.
The translation field specifies a 2D vector which translates the child objects. The scaling, rotation and translation are applied in the following order: scale, rotate, translate. The children field contains a list of zero or more children nodes which are grouped by the Transform2D node. The addChildren and removeChildren eventIns are used to add or remove child nodes from the children field of the node. Children are added to the end of the list of children and special note should be taken of the implications of this for implicit drawing orders.
If some of the child subgraphs contain audio content (i.e., the subgraphs contain Sound nodes), the child sounds are transformed and mixed as follows. If each of the child sounds is a spatially presented sound, the Transform2D node applies to the local coordinate system of the Sound2D nodes to alter the apparent spatial location and direction. If the children are not spatially presented but have equal numbers of channels, the Transform2D node has no effect on the childrens’ sounds. After any such transformation, the combination of sounds is performed as described in ISO/IEC 14496-11, section 7.2.2.117.2.
If the children are not spatially presented but have equal numbers of channels, the Transform node has no effect on the children’s sounds. The child sounds are summed equally to produce the audio output at this node. If some children are spatially presented and some not, or all children do not have equal numbers of channels, the semantics are not defined.
Viewpoint
XSD Description
<complexType name="ViewpointType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

</all>

<attribute name="fieldOfView" type="xmta:SFFloat" use="optional" default="0.785398"/>

<attribute name="jump" type="xmta:SFBool" use="optional" default="true"/>

<attribute name="orientation" type="xmta:SFRotation" use="optional" default="0 0 1 0"/>

<attribute name="position" type="xmta:SFVec3f" use="optional" default="0 0 10"/>

<attribute name="description" type="xmta:SFString" use="optional" default=""""/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="Viewpoint" type="xmta:ViewpointType"/>
Functionality and semantics
As specified in ISO/IEC 14772-1:1997, section 6.53.
The Viewpoint node defines a specific location in the local coordinate system from which the user may view the scene. Viewpoint nodes are bindable children nodes (see ISO/IEC 14772-1:1997, section 4.6.10, Bindable children nodes) and thus there exists a Viewpoint node stack in the browser in which the top-most Viewpoint node on the stack is the currently active Viewpoint node. If a TRUE value is sent to the set_bind eventIn of a Viewpoint node, it is moved to the top of the Viewpoint node stack and activated. When a Viewpoint node is at the top of the stack, the user's view is conceptually re-parented as a child of the Viewpoint node. All subsequent changes to the Viewpoint node's coordinate system change the user's view (e.g., changes to any ancestor transformation nodes or to the Viewpoint node's position or orientation fields). Sending a set_bind FALSE event removes the Viewpoint node from the stack and produces isBound FALSE and bindTime events. If the popped Viewpoint node is at the top of the viewpoint stack, the user's view is re-parented to the next entry in the stack. More details on binding stacks can be found in ISO/IEC 14772-1:1997, section 4.6.10, Bindable children nodes. When a Viewpoint node is moved to the top of the stack, the existing top of stack Viewpoint node sends an isBound FALSE event and is pushed down the stack.
An author can automatically move the user's view through the world by binding the user to a Viewpoint node and then animating either the Viewpoint node or the transformations above it. Browsers shall allow the user view to be navigated relative to the coordinate system defined by the Viewpoint node (and the transformations above it) even if the Viewpoint node or its ancestors' transformations are being animated.
The bindTime eventOut sends the time at which the Viewpoint node is bound or unbound. This can happen:
a. during loading;
b. when a set_bind event is sent to the Viewpoint node;
c. when the browser binds to the Viewpoint node through its user interface described below.
The position and orientation fields of the Viewpoint node specify relative locations in the local coordinate system. Position is relative to the coordinate system's origin (0,0,0), while orientation specifies a rotation relative to the default orientation. In the default position and orientation, the viewer is on the Z-axis looking down the -Z-axis toward the origin with +X to the right and +Y straight up. Viewpoint nodes are affected by the transformation hierarchy.
Navigation types (see ISO/IEC 14772-1:1997, section 6.29, NavigationInfo) that require a definition of a down vector (e.g., terrain following) shall use the negative Y-axis of the coordinate system of the currently bound Viewpoint node. Likewise, navigation types that require a definition of an up vector shall use the positive Y-axis of the coordinate system of the currently bound Viewpoint node. The orientation field of the Viewpoint node does not affect the definition of the down or up vectors. This allows the author to separate the viewing direction from the gravity direction.
The jump field specifies whether the user's view "jumps" to the position and orientation of a bound Viewpoint node or remains unchanged. This jump is instantaneous and discontinuous in that no collisions are performed and no ProximitySensor nodes are checked in between the starting and ending jump points. If the user's position before the jump is inside a ProximitySensor the exitTime of that sensor shall send the same timestamp as the bind eventIn. Similarly, if the user's position after the jump is inside a ProximitySensor the enterTime of that sensor shall send the same timestamp as the bind eventIn. Regardless of the value of jump at bind time, the relative viewing transformation between the user's view and the current Viewpoint node shall be stored with the current Viewpoint node for later use when un-jumping (i.e., popping the Viewpoint node binding stack from a Viewpoint node with jump TRUE). The following summarizes the bind stack rules (see ISO/IEC 14772-1:1997, section 4.6.10, Bindable children nodes) with additional rules regarding Viewpoint nodes (displayed in boldface type):
a. During read, the first encountered Viewpoint node is bound by pushing it to the top of the Viewpoint node stack. If a Viewpoint node name is specified in the URL that is being read, this named Viewpoint node is considered to be the first encountered Viewpoint node. Nodes contained within Inline nodes, within the strings passed to the Browser.createVrmlFromString() method, or within files passed to the Browser.createVrmlFromURL() method (see ISO/IEC 14772-1:1997, section 4.12.10, Browser script interface) are not candidates for the first encountered Viewpoint node. The first node within a prototype instance is a valid candidate for the first encountered Viewpoint node. The first encountered Viewpoint node sends an isBound TRUE event.
b. When a set_bind TRUE event is received by a Viewpoint node,
· If it is not on the top of the stack: The relative transformation from the current top of stack Viewpoint node to the user's view is stored with the current top of stack Viewpoint node. The current top of stack node sends an isBound FALSE event. The new node is moved to the top of the stack and becomes the currently bound Viewpoint node. The new Viewpoint node (top of stack) sends an isBound TRUE event. If jump is TRUE for the new Viewpoint node, the user's view is instantaneously "jumped" to match the values in the position and orientation fields of the new Viewpoint node.
· If the node is already at the top of the stack, this event has no affect.
c. When a set_bind FALSE event is received by a Viewpoint node in the stack, it is removed from the stack. If it was on the top of the stack,
· it sends an isBound FALSE event,
· the next node in the stack becomes the currently bound Viewpoint node (i.e., pop) and issues an isBound TRUE event,
· if its jump field value is TRUE, the user's view is instantaneously "jumped" to the position and orientation of the next Viewpoint node in the stack with the stored relative transformation of this next Viewpoint node applied.
d. If a set_bind FALSE event is received by a node not in the stack, the event is ignored and isBound events are not sent.
e. When a node replaces another node at the top of the stack, the isBound TRUE and FALSE events from the two nodes are sent simultaneously (i.e., with identical timestamps).
f. If a bound node is deleted, it behaves as if it received a set_bind FALSE event (see c.).
The jump field may change after a Viewpoint node is bound. The rules described above still apply. If jump was TRUE when the Viewpoint node is bound, but changed to FALSE before the set_bind FALSE is sent, the Viewpoint node does not un-jump during unbind. If jump was FALSE when the Viewpoint node is bound, but changed to TRUE before the set_bind FALSE is sent, the Viewpoint node does perform the un-jump during unbind.
Note that there are two other mechanisms that result in the binding of a new Viewpoint:
a. An Anchor node's url field specifies a "#ViewpointName".
b. A script invokes the loadURL() method and the URL argument specifies a "#ViewpointName".
Both of these mechanisms override the jump field value of the specified Viewpoint node (#ViewpointName) and assume that jump is TRUE when binding to the new Viewpoint. The behaviour of the viewer transition to the newly bound Viewpoint depends on the currently bound NavigationInfo node's type field value (see ISO/IEC 14772-1:1997, section 6.29, NavigationInfo).
The fieldOfView field specifies a preferred minimum viewing angle from this viewpoint in radians. A small field of view roughly corresponds to a telephoto lens; a large field of view roughly corresponds to a wide-angle lens. The field of view shall be greater than zero and smaller than [image: image11.png]. The value of fieldOfView represents the minimum viewing angle in any direction axis perpendicular to the view. For example, a browser with a rectangular viewing projection shall have the following relationship:

 display width tan(FOVhorizontal/2)
 -------------- = -----------------
 display height tan(FOVvertical/2)
where the smaller of display width or display height determines which angle equals the fieldOfView (the larger angle is computed using the relationship described above). The larger angle shall not exceed [image: image12.png]and may force the smaller angle to be less than fieldOfView in order to sustain the aspect ratio.

The description field specifies a textual description of the Viewpoint node. This may be used by browser-specific user interfaces. If a Viewpoint's description field is empty it is recommended that the browser not present this Viewpoint in its browser-specific user interface.
The URL syntax ".../scene.wrl#ViewpointName" specifies the user's initial view when loading "scene.wrl" to be the first Viewpoint node in the VRML file that appears as DEF ViewpointName Viewpoint {...}. This overrides the first Viewpoint node in the VRML file as the initial user view, and a set_bind TRUE message is sent to the Viewpoint node named "ViewpointName". If the Viewpoint node named "ViewpointName" is not found, the browser shall use the first Viewpoint node in the VRML file (i.e. the normal default behaviour). The URL syntax "#ViewpointName" (i.e. no file name) specifies a viewpoint within the existing VRML file. If this URL is loaded (e.g. Anchor node's url field or loadURL() method is invoked by a Script node), the Viewpoint node named "ViewpointName" is bound (a set_bind TRUE event is sent to this Viewpoint node).
The results are undefined if a Viewpoint node is bound and is the child of an LOD, Switch, or any node or prototype that disables its children. If a Viewpoint node is bound that results in collision with geometry, the browser shall perform its self-defined navigation adjustments as if the user navigated to this point (see ISO/IEC 14772-1:1997, section 6.8, Collision).
Viewport
XSD Description
<complexType name="ViewportType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

</all>

<attribute name="position" type="xmta:SFVec2f" use="optional" default="0 0"/>

<attribute name="size" type="xmta:SFVec2f" use="optional" default="-1 -1"/>

<attribute name="orientation" type="xmta:SFFloat" use="optional" default="0"/>

<attribute name="alignment" type="xmta:MFInt32" use="optional" default="0 0"/>

<attribute name="fit" type="xmta:SFInt32" use="optional" default="0"/>

<attribute name="description" type="xmta:SFString" use="optional" default=""""/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="Viewport" type="xmta:ViewportType"/>
Functionality and semantics
As specified in ISO/IEC 14496-11 (BIFS), section 7.2.2.137.2
A Viewport node can be placed in the viewport field of a Layer2D or CompositeTexture2D node or in the scene tree as a 2D node. It defines a new viewport and implicitly establishes a new local coordinate system. The bounds of the new viewport are defined by the size and position field. The new local coordinate system’s origin is at the center of the parent node in the parent’s local coordinate system.
The orientation field specifies the rotation which is applied to the viewport in the parent node’s local coordinate system with respect to the X-axis. Viewport nodes are bindable nodes (see ISO/IEC 14496-11, section 7.1.1.2.14) and thus there exists a Viewport node stack which follows the same rules than other bindable nodes (e.g. Background2D).
The description field specifies a textual description of the Viewport node. The alignment and fit fields specify how the viewing area is mapped to the rendering area of the parent node (i.e. Layer2D, CompositeTexture2D, or the 2D top-node).
If the fit field is set to 0, the viewing area is scaled to fit the rendering area without preserving the aspect ratio. If the fit field is set to 1, the viewing area is scaled preserving the aspect ratio to fit entirely inside the rendering area. The scaling operation is performed possibly after rotation as specified by the orientation field. If the fit field is set the 2, the viewing area is scaled preserving the aspect ratio to cover entirely the rendering area. The scaling operation is performed possibly after rotation as specified by the orientation field.
The alignement field is an MFInt32 field that contains two values. The first value specifies alignment along the X-axis and the second value specifies alignment along the Y-axis. The first value belongs to the following set of SFInt32: -1, 0, 1. The second value belongs to the following set of SFInt32: -1, 0, 1. An empty alignement field is equivalent to the default value. When the fit field is set to 0, the alignment field is ignored.
Form
XSD Description
<complexType name="FormType">
 <all>

<element ref="xmta:IS" minOccurs="0"/>

<element name="children" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SF2DNodeType" minOccurs="0" maxOccurs="unbounded"/>

</complexType>

</element>
 </all>
 <attribute name="size" type="xmta:SFVec2f" use="optional" default="-1 -1"
/>
 <attribute name="groups" type="xmta:MFInt32" use="optional"/>
 <attribute name="constraints" type="xmta:MFString" use="optional"/>
 <attribute name="groupsIndex" type="xmta:MFInt32" use="optional"/>
 <attributeGroup ref="xmta:DefUseGroup"/>
 </complexType>
 <element name="Form" type="xmta:FormType"/>
Functionality and semantics
As specified in ISO-14496-11 section 7.2.2.62.2
The Form node specifies the placement of its children according to relative alignment and distribution constraints. Distribution spreads objects regularly, with an equal spacing between them.
The children field shall specify a list of nodes that are to be arranged. The children’s position is implicit and order is important.
The size field specifies the width and height of the layout frame.
The groups field specifies the list of groups of objects on which the constraints can be applied. The children of the Form node are numbered from 1 to n, 0 being reserved for a reference to the form itself. A group is a list of child indices, terminated by a -1.
The constraints and the groupsIndex fields specify the list of constraints. One constraint is constituted by a constraint type from the constraints field, coupled with a set of group indices terminated by a –1 contained in the groupsIndex field. There shall be as many strings in constraints as there are –1-terminated sets in groupsIndex. The n-th constraint string shall be applied to the n-th set in the groupsIndex field. A value of 0 in the groupsIndex field references the form node itself, otherwise a groupsIndex field value is a 1-based index into the group field.
Constraints belong to two categories: alignment and distribution constraints.
Groups referred to in the tables below are groups whose indices appear in the list following the constraint type. When rank is mentioned, it refers to the rank in that list.
The semantics of the <s>, when present in the name of a constraint, is the following. It shall be a number, integer when the scene uses pixel metrics, and float otherwise, which specifies the space mentioned in the semantics of the constraint.
In case the form itself is specified in alignment constraint (group index 0), the form rectangle shall be used as the base of the alignment computation and other groups in the constraint list shall be aligned as specified by the constraint
Dynamic and animated scene
The following animation related nodes are used in ARAF: OrientationInterpolator, ScalarInterpolator, CoordinateInterpolator, ColorInterpolator, PositionInterpolator, Valuator.
OrientationInterpolator
XSD Description
<complexType name="OrientationInterpolatorType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

</all>

<attribute name="key" type="xmta:MFFloat" use="optional"/>

<attribute name="keyValue" type="xmta:MFRotation" use="optional"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>
<element name="OrientationInterpolator" type="xmta:OrientationInterpolatorType"/>
Functionality and semantics
As specified in ISO/IEC 14772-1:1997, section 6.32.
The OrientationInterpolator node interpolates among a list of rotation values specified in the keyValue field. These rotations are absolute in object space and therefore are not cumulative. The keyValue field shall contain exactly as many rotations as there are keyframes in the key field.
An orientation represents the final position of an object after a rotation has been applied. An OrientationInterpolator interpolates between two orientations by computing the shortest path on the unit sphere between the two orientations. The interpolation is linear in arc length along this path. The results are undefined if the two orientations are diagonally opposite.
If two consecutive keyValue values exist such that the arc length between them is greater than [image: image13.png], the interpolation will take place on the arc complement. For example, the interpolation between the orientations (0, 1, 0, 0) and (0, 1, 0, 5.0) is equivalent to the rotation between the orientations (0, 1, 0, 2[image: image14.png]) and (0, 1, 0, 5.0).

ScalarInterpolator

XSD Description

<complexType name="ScalarInterpolatorType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

</all>

<attribute name="key" type="xmta:MFFloat" use="optional"/>

<attribute name="keyValue" type="xmta:MFFloat" use="optional"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="ScalarInterpolator" type="xmta:ScalarInterpolatorType"/>
Functionality and semantics
As specified in ISO/IEC 14772-1:1997, section 6.39.
This node linearly interpolates among a list of SFFloat values. This interpolator is appropriate for any parameter defined using a single floating point value. Examples include width, radius, and intensity fields. The keyValue field shall contain exactly as many numbers as there are keyframes in the key field.
CoordinateInterpolator
XSD Description
<complexType name="CoordinateInterpolatorType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

</all>

<attribute name="key" type="xmta:MFFloat" use="optional"/>

<attribute name="keyValue" type="xmta:MFVec3f" use="optional"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="CoordinateInterpolator" type="xmta:CoordinateInterpolatorType"/>
Functionality and semantics
As specified in ISO/IEC 14772-1:1997, section 6.13.
This node linearly interpolates among a list of MFVec3f values. The number of coordinates in the keyValue field shall be an integer multiple of the number of keyframes in the key field. That integer multiple defines how many coordinates will be contained in the value_changed events.
ColorInterpolator
XSD Description
<complexType name="ColorInterpolatorType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

</all>

<attribute name="key" type="xmta:MFFloat" use="optional"/>

<attribute name="keyValue" type="xmta:MFColor" use="optional"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="ColorInterpolator" type="xmta:ColorInterpolatorType"/>
Functionality and semantics
As specified in ISO/IEC 14772-1:1997, section 6.10.
This node interpolates among a list of MFColor key values to produce an SFColor (RGB) value_changed event. The number of colours in the keyValue field shall be equal to the number of keyframes in the key field. The keyValue field and value_changed events are defined in RGB colour space. A linear interpolation using the value of set_fraction as input is performed in HSV space. The results are undefined when interpolating between two consecutive keys with complementary hues.
PositionInterpolator
XSD Description
<complexType name="PositionInterpolatorType">
 <all>

<element ref="xmta:IS" minOccurs="0"/>
 </all>
 <attribute name="key" type="xmta:MFFloat" use="optional"/>
 <attribute name="keyValue" type="xmta:MFVec3f" use="optional"/>
 <attributeGroup ref="xmta:DefUseGroup"/>
 </complexType>
 <element name="PositionInterpolator" type="xmta:PositionInterpolatorType"/>
Functionality and semantics
As specified in ISO/IEC 14772-1:1996 section 6.37
The PositionInterpolator node linearly interpolates among a list of 3D vectors. The keyValue field shall contain exactly as many values as in the key field.
See ISO/IEC 14772-1:1997 Section 4.6.8, Interpolator nodes, contains a more detailed discussion of interpolators.
Valuator

XSD Description

<complexType name="ValuatorType">
 <all>

<element ref="xmta:IS" minOccurs="0"/>
 </all>
 <attribute name="Factor1" type="xmta:SFFloat" use="optional" default="1"
/>
 <attribute name="Factor2" type="xmta:SFFloat" use="optional" default="1"
/>
 <attribute name="Factor3" type="xmta:SFFloat" use="optional" default="1"
/>
 <attribute name="Factor4" type="xmta:SFFloat" use="optional" default="1"
/>
 <attribute name="Offset1" type="xmta:SFFloat" use="optional" default="0"
/>
 <attribute name="Offset2" type="xmta:SFFloat" use="optional" default="0"
/>
 <attribute name="Offset3" type="xmta:SFFloat" use="optional" default="0"
/>
 <attribute name="Offset4" type="xmta:SFFloat" use="optional" default="0"
/>
 <attribute name="Sum" type="xmta:SFBool" use="optional" default="false"
/>
 <attributeGroup ref="xmta:DefUseGroup"/>
 </complexType>
 <element name="Valuator" type="xmta:ValuatorType"/>
Functionality and semantics
As specified in ISO 14496-11 section 7.2.2.135.1
The Valuator node serves as a simple type casting method. It can receive events of multiple types. On reception of such an event, eventOuts of many different types can be generated. Both the eventIn and the eventOut values can be single field (SF) or multiple field (MF) types. In addition, the possible eventIn and eventOut types include both scalar types, like SFBool, and vector types, like SFVec2f.
Each component of the (possibly vector) eventOut value is calculated from the corresponding component of the (possibly vector) eventIn value with the following relationship:
output.i = factor.i * input.i + offset.i
All values specified in the above equation are floating point values.
input.i is the value of the ith component of the eventIn type and output.i is the value of the ith component of one of the eventOut types specified in the node inteface. input.i shall be extended by zeros for all components i that do not exist in the input type (e.g., input.z=0.0 in case an SFVec2f is cast to an SFVec3f).
factor.i and offset.i are the exposedField values for the ith component of the vectorial calculation. In the special case of a scalar input type (e.g. SFBool, SFInt32) that is cast to a vectorial output type (e.g. SFVec2f), for all components i of output.i, input.i shall take the value of the scalar input type, after appropriate type conversion.
Depending on the number of dimensions of the data type, there may be one up to four input values. For example an eventIn of type SFRotation will require four input paths but SFInt32 will only require the first input path. Each input path operates identically.
Each input value is converted to a floating-point value using a simple typecasting rule as illustrated in the above table. After conversion, the values are multiplied by the corresponding factor.i value and added to the corresponding offset.i value as specified above. Depending on whether the summer is enabled, either the summed value or the individual values are presented at the output. The summer sums all 4 computed input paths independent of the number of dimensions of the eventIn type.
Simple typecasting conversion from other data types to float
	From
	Conversion to float

	Integer
	Direct conversion (1 to 1.0)

	Boolean
	True – 1.0
False – 0.0

	Double
	Truncate to 32-bit precision

	String
	Convert if the content of the string represensts an int, float or a double value. ‘Boolean’ string values “true” and “false” are converted to 1.0 and 0.0 respectively. Any other string is converted to 0.0.

Simple typecasting conversion from float to other data types
	To
	Conversion from float

	Integer
	Truncate floating point.eg (1.11 to 1)

	Boolean
	0.0 to false. Any other values to true.

	Double
	Direct conversion

	String
	Convert to a string representing the float

For conversion of data types to and from strings the values of multiple valued data types, such as SFColor, are separated by spaces.
Depending on the dimension of the eventOut type, the corresponding number of output values are computed and converted to the output types according to Table 36 and as detailed below.
If the eventIn is of an SF type then an eventOut for an MF type shall consist of just one element, i.e., the MF type collapses to a SF type.
If the eventIn is of an MF type then an eventOut for an SF type shall be created by using the first element of the MF input only.
If the eventIn is of an MF type then an eventOut for an MF type shall be created by using each element of the MF input to generate one element of the MF output type, respecting the order of the elements in the eventIn MF type.
If the eventIn is of SFTime type then the conversion to string format shall be in the format “hh:mm:ss” where ‘hh’, ‘mm’, ‘ss’ are respectively hours, minutes and seconds of the input SFTime value.
EXAMPLE: The Valuator node can be seen as an event type adapter. One use of this node is the modification of the SFInt32 whichChoice field of a Switch node by an event. There is no interpolator or sensor node with a SFInt32 eventOut. Thus, if a two-state button is described with a Switch containing the description of each state in choices 0 and 1. The triggering event of any type can be routed to a Valuator node whose SFInt32 field is routed to the whichChoice field of the Switch.
SFVec4f fields cannot be routed to Valuator node.
Communication and compression
The following communication and compression related nodes are used in ARAF: BitWrapper, MediaControl.
BitWrapper
XSD Description
<complexType name="BitWrapperType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

<element name="node" form="qualified" minOccurs="0">

<complexType>

<group ref="xmta:SFWorldNodeType" minOccurs="0"/>

</complexType>

</element>

</all>

<attribute name="type" type="xmta:SFInt32" use="optional" default="0"/>

<attribute name="url" type="xmta:MFUrl" use="optional"/>

<attribute name="buffer" type="xmta:SFString" use="optional" default=""""/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="BitWrapper" type="xmta:BitWrapperType"/>
Functionality and semantics
As specified in ISO/IEC 14496-11 (BIFS), section 7.2.2.23.2
A node may have a dedicated node compression scheme. This compressed representation may be carried in the BIFS stream or in a separate stream.
The node field contains the node that has a compressed representation. The BitWrapper node can be used in lieu and place of the node it wraps. The type field indicates which node compression scheme must be used, 0 being the default. It is envisioned that future node compression schemes may be developed for the same node. For this specification, AFX object code table of ISO/IEC 14496-1 defines the default schemes.
The compressed representation is carried either in a separate stream or within the scene stream. The url field indicates the stream that contains the compressed representation and the buffer field contains the compressed representation when carried within the scene. When the compressed representation is carried in separate streams by using url field, node decoders must be configured.
In the object descriptor stream, a node decoder is indicated in the DecoderConfig descriptor for streamType 0x03, objectTypeIndication 0x05, and code defined in AFX object code table of ISO/IEC 14496-1. The decoder is configured with a AFXConfig descriptor.
Note that buffer is an array of 8-bit values. It shall not be interpreted as a UTF-8 string. For in-band scenario, compressed media stream is transmitted within a scene description stream through buffer field.
For out-band scenario, compressed media stream is transmitted outside scene description stream through url field. It is used when the specific node requires upstream to send a specific information to a server.
MediaControl
XSD Description
<complexType name="MediaControlType">

<all>

<element ref="xmta:IS" minOccurs="0"/>

</all>

<attribute name="url" type="xmta:MFUrl" use="optional"/>

<attribute name="mediaStartTime" type="xmta:SFTime" use="optional" default="-1"/>

<attribute name="mediaStopTime" type="xmta:SFTime" use="optional" default="1.7976931348623157E308"/>

<attribute name="mediaSpeed" type="xmta:SFFloat" use="optional" default="1"/>

<attribute name="loop" type="xmta:SFBool" use="optional" default="false"/>

<attribute name="preRoll" type="xmta:SFBool" use="optional" default="true"/>

<attribute name="mute" type="xmta:SFBool" use="optional" default="false"/>

<attribute name="enabled" type="xmta:SFBool" use="optional" default="true"/>

<attributeGroup ref="xmta:DefUseGroup"/>

</complexType>

<element name="MediaControl" type="xmta:MediaControlType"/>
Functionality and semantics
As specified in ISO/IEC 14496-11 (BIFS), section 7.2.2.84.2
The MediaControl node controls the play back and, hence, delivery of a media stream referenced by a media node. The MediaControl node allows selection of a time interval within one or more stream objects for play back, modification of the playback direction and speed, as well as pre-rolling and muting of the stream.
A media node may be used with or without an associated MediaControl node. A media node for which no MediaControl node is present shall behave as if a MediaControl node for that media stream were present in the scene, with default values set.
The url field contains a reference to one or more stream objects (“OD:n#segment” or “OD:n”), called the controlled stream objects, all of which must belong to the same media stream. This media stream is called the controlled stream. When any media node referring to a media stream in its url field is active, the associated media stream is said to be active.
Note – This means that the controlled stream becomes active exactly when some media node pointing to it becomes active. The controlled stream becomes inactive, when all media nodes referring to it become inactive. When a controlled media stream becomes active, the associated controlled stream objects in the url field of the MediaControl node shall be played sequentially.
The mediaStartTime and mediaStopTime fields define the time interval, in media time, of each controlled stream object to be played back. If media time of the media stream is undefined, selection of a time interval of the controlled stream object for play back is not supported. In that case the mediaStartTime and mediaStopTime fields shall be ignored. The following values have special meaning for mediaStartTime and mediaStopTime:
· 0 indicates the beginning of the controlled stream object
· -1 indicates the media time of the controlled stream object when the associated media node becomes active.
· +I, or any value greater than the duration of the controlled stream object indicates its end.
Semantics of mediaStartTime and mediaStopTime depend on the delivery scenario. Semantics in case of delivery scenarios that permit seeking: Play back of the controlled stream object shall start at mediaStartTime of the first controlled media object when the controlled stream becomes active. When the controlled stream becomes inactive and then active again, then if mediaStartTime is –1 the stream starts playing from the point where it was last stopped. Otherwise the first controlled stream object in the url field restarts playing from mediaStartTime. If the loop field is TRUE, all the controlled stream objects are played in a loop, each in the range mediaStartTime to mediaStopTime while the controlled stream is active. If mediaStartTime is –1, each stream object will start from the beginning.
In all delivery scenarios, play back of the controlled stream object shall occur only in the range defined by mediaStartTime and mediaStopTime. Outside this range the play back shall be muted. The loop field shall be ignored in delivery scenarios that do not permit seeking. The mediaSpeed is a requested multiplication factor to the normal speed of each controlled stream object. Negative values for mediaSpeed request that the controlled stream object plays backward from mediaStartTime to mediaStopTime. When this field is zero, the controlled stream shall be paused.
NOTE — All streams, independent of speed, are only played in the range defined by mediaStartTime and mediaStopTime. When mediaSpeed < 0, the stream object can only be played if the server reassigns time stamps to be increasing from mediaStopTime to mediaStartTime.
If mediaSpeed > 0 (forward play back) and mediaStopTime < mediaStartTime, then the controlled stream object will play until the end.
If mediaSpeed < 0 (backward play back) and mediaStopTime > mediaStartTime, then the controlled stream object will play to the beginning.
In these equations, the special value –1 is substituted by the actual value of media time that it represents. There is no requirement that a delivery service supports specific ranges of mediaSpeed other than mediaSpeed = 1. Media content shall comply with maximum and average bit rates specified for the stream, irrespective of the value of the mediaSpeed field.
If the preRoll field is set to TRUE the controlled stream should be pre-rolled in order to be ready to start instantly when the controlled stream becomes active. All streams that are associated to the same object time base as the stream that is pre-rolled should also be pre-rolled. If the delivery scenario does not permit seeking, preRoll = TRUE means that the controlled stream object should be delivered and recently received access units should be stored in the decoding buffer in order to enable instantaneous play back when the media node becomes active.
Note – Play back of stream objects in media nodes that are not controlled by MediaControl or where preRoll is FALSE may suffer an unspecified startup delay if play back is requested by an unpredictable action (e.g. user interaction, script).
The isPreRolled event sends a TRUE value when the controlled stream object has completed pre-rolling. If the mute field is set to TRUE, the stream objects in the url field are not rendered when they are played. However, their media clock is not stopped. For visual streams, whether natural video or synthetic such as animation streams or Inline nodes, mute means that the visual texture remains unchanged; for audio streams, the audio is not played.
If the enabled field is set to TRUE the MediaControl node controls the stream object it refers to. More than one MediaControl node may be used to control a stream object within the same stream. At most one of these MediaControl nodes shall be enabled at any time. If one of these MediaControl nodes becomes enabled, the enabled field of all other MediaControl nodes that refer to the same stream shall automatically be set to FALSE.
If the enabled field is set to FALSE the MediaControl node shall cease to control the play back and muting of the controlled stream object, however, preRoll shall still be evaluated. If the controlled stream object is playing when enabled is set to FALSE and no other MediaControl node takes control of the stream, the stream object shall continue playing as if it were still controlled by the disabled MediaControl node. Only one MediaControl node shall refer to any of the set of media streams that are associated to a single object time base.
Note – MediaControl affects the OTB of the controlled stream and therefore affects all the streams that are associated to the same OTB. Therefore changing play position, speed or direction of one stream will correspondingly affect all the active streams that are associated to the same OTB.
Support for Maps
MAPS are supported in ARAF by three PROTOs: Map, MapOverlay and MapMarker. As for other elements in the scene, the node interface and the functionality and semantics are normative. Annex A presents an informative implementation of the two PROTOs.
Map proto
XSD Description
<ProtoDeclare name="Map" locations="org:mpeg:map">
 <field name="name" type="String" vrml97Hint="exposedField" stringValue=""/>
 <field name="addOverlays" type="Nodes" vrml97Hint="eventIn"/>
 <field name="removeOverlays" type="Nodes" vrml97Hint="eventIn"/>
 <field name="translate" type="Vector2" vrml97Hint="eventIn"/>
 <field name="mapGPSCenter" type="Vector2" vrml97Hint="exposedField" vector2Value="0 0"/>
 <field name="zoomIn" type="Boolean" vrml97Hint="eventIn"/>
 <field name="zoomOut" type="Boolean" vrml97Hint="eventIn"/>
 <field name="overlays" type="Nodes" vrml97Hint="exposedField">
 <nodes></nodes>
 </field>
 <field name="mode" type="Strings" vrml97Hint="exposedField" stringArrayValue="ROADMAP"/>
 <field name="provider" type="Strings" vrml97Hint="exposedField" stringArrayValue="ANY"/>
 <field name="mapSize" type="Vector2" vrml97Hint="exposedField" vector2Value="0 0"/>
field name="mapTranslation" type="Vector2" vrml97Hint="exposedField" vector2Value="768 768"/>
 <field name="mapWidth" type="Float" vrml97Hint="exposedField" floatValue="0"/>
 <field name="zoomLevel" type="Integer" vrml97Hint="exposedField" integerValue="0"/>
</ProtoDeclare>
BIFS Textual Description

EXTERNPROTO Map [
 exposedField
SFString
name

""

 exposedField
SFVec2f
mapTranslation
0.0 0.0
 exposedField
SFVec2f
mapGPSCenter

0.0 0.0

exposedField
MFNode
overlays

[]

 exposedField
MFString
mode

["ROADMAP"]
 exposedField
MFString
provider

["ANY"]
 exposedField
SFVec2f
mapSize

0.0 0.0

 exposedField
SFFloat
mapWidth

0

 exposedField
SFInt32
zoomLevel

0
 eventIn

MFNode
addOverlays
 eventIn

MFNode
removeOverlays
 eventIn

SFVec2f
translate
 eventIn

SFBool
zoomIn
 eventIn

SFBool
zoomOut
]"org:mpeg:map"
Functionality and semantics
The Map node provides map display capabilites to a scene. The node detects pointer device dragging and enables the dragging of the map image. The dragging operation changes the mapGPSCenter corresponding to the drag operation and translates all the associated Map items along with the image as a single unit.
The name field of the map specifies a unique name of the MAP instance. As multiple MAP instances can coexist in the same scene, this field allows the identification of a specific MAP node by name.
mapTranslation specifies a (x,y) translation in the local coordinate system of the Map image instance. Obs: mapTranslation does not modify the Map GPS center position or any other GPS related value.

addOverlays specifies one or more MapOverlay nodes that shall be added to the Map overlays field. The MapOverlay instances are inserted after the already existing ones.
removeOverlays specifies one or more MapOverlay nodes that shall be removed from the Map overlays field. If a MapOverlay instance is not found, its removal fails silently. Removing a MapOverlay implies the deletion of all the MapMarkers already attached to the indicated MapOverlay instance.
translate specifies a translation that is to be applied to the Map image. The values are represented in the local coordinate system of the Map node. The event also modifies the mapGPSCenter field.
mapGPSCenter specifies the GPS position (latitude, longitude) of the Map center.
zoomIn increases the zoomLevel of the Map by one.
zoomOut decreases the zoomLevel of the Map by one.
mapSize is a 2D vector which specifies the width and the height of the map image.
zoomLevel represents the resolution of the current view. The minimal value of zoom level is 0, while the maximal value is defined by the map provider depending on its capabilities. Zoom level 0 encompasses the entire earth. Each succeeding zoom level doubles the precision in both horizontal and vertical dimensions.
mapWidth represents the length in meters on the longitude axis of the desired visible map. The client calculates the maximum zoom level that contains the desired map and sets that value in the zoomLevel field. If mapWidth is set to 0, then the zoomLevel field values is used.
provider specifies the desired map provider to be used. The provider field is a multi-value field enabling designers to specify fallback map providers in the case the desired one is not supported by the client. The “ANY“ choice allows the client to select its provider.
mode specifies the type of map that is to be displayed. The possible values are: “SATELLITE“, “PLANE“ , “ROADMAP“ and “TERRAIN“. Satellite mode should display map images that are practically shot from a vertical viewpoint, usually by a satellite. Plane mode should display map images that are taken by an angle close to 45°, usually shoot by an airplane. Map should display images that are vector drawings of streets, buildings and other similar features. Terrain mode should display images that represent physical relief map image, showing terrain and vegetation.
If multiple values are specified in the map field, then the resulting image should be a combination of all desired modes as long as they are supported by the map provider. If a certain combination is not supported, then the map view falls back to the closest supported one.
Obs:
1. The map “image” is made up by a 3x3 matrix of tile images. These should be automatically computed once the mapSize and the mapGPSCenter are set.
2. The compass and the player icon are optional (having them invisible does not affect the scene).
Map overlay proto
XSD Description
<ProtoDeclare name="MapOverlay" locations="org:mpeg:mapoverlay">
<field name="name" type="String" vrml97Hint="exposedField" stringValue = ""/>
<field name="visible" type="Boolean" vrml97Hint="exposedField" booleanValue = "TRUE"/>
<field name="enabled" type="Boolean" vrml97Hint="exposedField" booleanValue = "TRUE"/>
<field name="clickable" type="Boolean" vrml97Hint="exposedField" booleanValue = "TRUE"/>
<field name="children" type="Nodes" vrml97Hint="exposedField">

<nodes></nodes>

</field>

<field name="keywords" type="Strings" vrml97Hint="exposedField stringArrayValue=""/>
<field name="addOverlayItems" type="Nodes" vrml97Hint="eventIn"/>
<field name="removeOverlayItems" type="Nodes" vrml97Hint="eventIn"/>
</ProtoDeclare>

BIFS Textual Description
EXTERNPROTO MapOverlay [

exposedField
SFString
name

""

exposedField
SFBool
visible
TRUE

exposedField
SFBool
enabled
TRUE

exposedField
SFBool
clickable
TRUE

exposedField
MFNode

children
[]

exposedField
MFString
keywords
[]

eventIn

MFNode

addOverlayItems

eventIn

MFNode

removeOverlayItems
]"org:mpeg:mapoverlay"

Semantics
A MapOverlay instance acts like a container for any number of items of the same type (MapMarkers) that should be added to the Map. It also provides an easy way of executing a specified action on all the items it contains at a time, as indicated below.
The name field specifies a unique name of the Overlay instance that may be used to identify a specific overlay item for further actions.
The visible field is a Boolean value which specifies if the MapOverlay instance is visible on the Map. This field is used to display/hide all the items (MapMarker instances) of the current MapOverlay instance at a time.
The enabled field is a Boolean value which specifies if all the MapMarkers of the current overlay are enabled or not. An enabled MapMarker will output an event each time the player enters/exits the area “covered” by it. This value can be set using the MapMarker position field. Review the semantics of the MapMarker PROTO, section 4.2.6.3.3.3 for detailes.
The clickable field specifies if all the MapMarkers of a given MapOverlay are clickable or not. A clickable MapMarker can be tapped by the user. When tapped, “onClick” output event is triggered by the corresponding MapMarker instance. Review the semantics of the MapMarker PROTO, section 4.2.6.3.3.3 for detailes.
children is a list of MapMarker instances. The list contains all the items that have been already added to the current MapOverlay instance.
The keywords field specifies a semantic description of the specific MapOverlay node (e.g. "restaurant", "museum", etc.).
addOverlayItems is an input event which can recieve one or multiple MapMarker instances to be added to the MapOverlay children field. If the children field is not empty the specified MapMarker instances are inserted after the ones that already exist.
removeOverlayItems is an input event that removes the specified MapMarker instances from its children field. If a MapMarker instance is not found among the children of the MapOverlay, the removal of the unknown MapMarker instance fails silently.
OBS:

Visible, clickable and enabled fields may give wrong information about the corresponding MapMarker fields. If, for example, the visible field of the MapOverlay has been used to set all the MapMarkers visible but in the meantime one or more MapMarkers have been individually set invisible (using their own visible field) then the MapOverlay visible field (which is still TRUE) will give false information that all the MapMarkers are still visible. The same rule applies to clickable and enabled fields. Writing a new value to any of these fields will set the new value to all the MapMarker instances no matter their previous value of the specified field. Therefore the user should be careful only when reading any of these fields.

addOverlayItems and removeOverlayItems are input events of type MFNode but adding or removing a single MapMarker instance at a time should be also valid.

Map marker proto
XSD Description
<ProtoDeclare name="MapMarker" locations="org:mpeg:mapmarker">

<field name="name" type="String" vrml97Hint="exposedField" stringValue = ""/>

<field name="visible" type="Boolean" vrml97Hint="exposedField" booleanValue = "TRUE"/>

<field name="enabled" type="Boolean" vrml97Hint="exposedField" booleanValue = "TRUE"/>

<field name="clickable" type="Boolean" vrml97Hint="exposedField" booleanValue = "TRUE"/>

<field name="position" type="Vector3" vrml97Hint="exposedField" vector3Value = "0 0 0"/>

<field name="rotation" type="Rotation" vrml97Hint="exposedField" rotationValue="0 0 1 0"/>

<field name="markerShape" type="Nodes" vrml97Hint="exposedField"
<nodes></nodes>

<field>

<field name="keywords" type="Strings" vrml97Hint="exposedField stringArrayValue=""/>

<field name="doClick" type="Boolean" vrml97Hint="eventIn"/>

<field name="setPlayerGPS" type="Vector2" vrml97Hint="eventIn"/>
<field name="setMapGPSCenter" type="Vector2" vrml97Hint="eventIn"/>
<field name="setMapZoomLevel" type="Integer" vrml97Hint="eventIn"/>

<field name="onClick" type="Boolean" vrml97Hint="eventOut"/>

<field name="onPlayerAround" type="Boolean" vrml97Hint="eventOut"/>

<field name="onPlayerLeft" type="Boolean" vrml97Hint="eventOut"/>
</ProtoDeclare>
BIFS Textual Description

EXTERNPROTO MapMarker [

exposedField
SFString
name

""
exposedField
SFVec3f

position

0 0 0
exposedField
SFRotation
rotation

0 0 1 0exposedField
SFBool

clickable

TRUE
exposedField
SFBool

visible

TRUE
exposedField
SFBool

enabled

TRUE
exposedField
MFNode

markerShape

[]
exposedField
MFString

keywords

[]
eventIn

SFBool

doClick
eventIn

SFVec2f
setPlayerGPS
eventIn

SFVec2f
setMapGPSCenter
eventIn

SFInt32
setMapZoomLevel
eventOut

SFBool

onClick
eventOut

SFBool

onPlayerAround
eventOut

SFBool

onPlayerLeft
]"org:mpeg:mapmarker"
Functionality and semantics
The MapMarker proto allows creating marker instances that may be used to represent additional information placed on the Map at a specified GPS position. In order for a MapMarker to be overlaid on the map a MapOverlay instance is needed. The visual representation of a MapMarker can be any 2D or 3D object (e.g.: an image, a video, a sphere, a complex 3D graphical object, etc).
name specifies a unique name of the MapMarker instance. It helps identifying a specific MapMarker instance for further actions.
The visible field stores a Boolean value which specifies if the MapMarker node is visible on the map or not. A MapMarker is considered to be visible when its corresponding appearance node is displayed over the Map image instance.
The clickable field stores a Boolean value which specifies if the MapMarker node is clickable. A clickable MapMarker instance has an active TouchSensor attached that generates a TRUE Boolean output event, “onClick”, when tapped.
enabled specifies if the MapMarker is enabled. An enabled MapMarker generates two Boolean output events always TRUE (onPlayerAround, onPlayerLeft) each time the player enters/exits the area covered by the MapMarker. This area is a circle centered in the MapMarker GPS position with a specified radius.
position is a 3D vector that specifies the GPS location of the MapMarker and the radius of the circle the MapMarker is active on as follows: first value of the vector is the latitude, the second is the longitude and the third is the radius which can also be ignored and set to 0 if the MapMarker should not have an active zone.
rotation specifies an arbitrary rotation of the marker. The first three values specify a normalized rotation axis vector about which the rotation takes place whilst the forth value specifies the amount of right-handed rotation about that axis in radians.

The keywords field specifies a semantic description of the specific MapOverlay node (e.g. "restaurant", "museum", etc.).
markerShape is a list of nodes representing the visual appearance of the current MapMarker instance that should be overlaid on the Map image if its visible field is TRUE.
doClick input event simulates a click action on the MapMarker visual representation.

setPlayerGPS is a 2D vector eventIn representing the current GPS location of the player, the latitude respectively the longitude. The player GPS position should be used to compute the distance between the MapMarker and the player. Based on the computed distance onPlayerAround and onPlayerLeft output events are triggered whenever the distance conditions are fulfilled.
setMapZoomLevel represents the current zoom level of the Map. The zoom level of the Map is needed to compute the (x, y) coordinates of the MapMarker in the local coordinate system of the Map instance.
setMapGPSCenter is a 2D vector input event specifying the GPS position of the Map center. Beside the zoomLevel (described above), the GPS center of the Map is also required in order to compute the location of the MapMarker in the current coordinate system of the Map instance.
Note:

Each MapMarker has to be attached to a MapOverlay. There has to be at least one MapOverlay attached to the Map instance in order to be able to add and eventually display MapMarkers on the Map. Review Map PROTO (Section 4.2.6.3.1) and MapOverlay PROTO (Section 4.2.6.3.2) for details.
Map player proto

XSD Description

<ProtoDeclare name="MapPlayer" locations="org:mpeg:mapplayer">
<field name="name" type="String" vrml97Hint="exposedField" stringValue = ""/>

<field name="visible" type="Boolean" vrml97Hint="exposedField" booleanValue = "TRUE"/>

<field name="position" type="Vector2" vrml97Hint="exposedField" vector2Value = "0 0"/>

<field name="playerShape" type="Nodes" vrml97Hint="exposedField">

<nodes></nodes>

<field>
<field name="setMapGPSCenter" type="Vector2" vrml97Hint="eventIn"/>

<field name="setMapZoomLevel" type="Integer" vrml97Hint="eventIn"/>
</ProtoDeclare>
BIFS Textual Description

EXTERNPROTO MapPlayer [

exposedField
SFString
name

""
exposedField
SFVec2f
position

0 0

exposedField
SFBool
visible
TRUE

exposedField
MFNode

playerShape

[]
eventIn
SFInt32

setMapZoomLevel

eventIn
SFVec2f

setMapGPSCenter
]” org:mpeg:mapplayer”
Functionality and semantics

The MapPlayer proto allows creating a visual representation of the player on the Map. The player location on the Map is represented by the real GPS position of the device. Each location change (GPS position) of the device should also affect the player location on the Map. The visual representation of a MapPlayer can be any 2D/3D object (e.g.: an image, a video, a sphere, a complex 3D graphical object, etc).
name specifies a unique name of the MapPlayer instance. It helps identifying a specific MapPlayer instance for further actions. The name may be useful in a multiplayer application. A standalone application should not have more than one MapPlayer instance.
position is a 2D vector that specifies the GPS location of the MapPlayer.

The visible field stores a Boolean value which specifies if the MapPlayer node is visible on the map or not. A MapPlayer is considered to be visible when its corresponding appearance node is displayed over the Map image instance.

playerShape is a list of nodes representing the visual appearance of the MapPlayer instance that should be overlaid on the Map. The playerShape should be displayed on the Map only when “visible” is TRUE.
is a list of nodes representing the visual appearance of the current MapMarker instance that should be overlaid on the Map image if its visible field is TRUE.

setMapZoomLevel represents the current zoom level of the Map. The zoom level of the Map is needed to compute the (x, y) coordinates of the MapPlayer in the local coordinate system of the Map instance.

setMapGPSCenter is a 2D vector input event specifying the GPS position of the Map center. Beside the zoomLevel (described above), the GPS center of the Map is also required in order to compute the location of the MapPlayer in the current coordinate system of the Map instance.

Note: The MapPlayer logic should automatically compute the player translation in the local coordinate system of the Map instance whenever the GPS location of the device changes. The recommended way of adding a MapPlayer instance to a Map is using a dedicated MapOverlay. The MapPlayer is nothing else but a special marker that has a slightly different behavior than an ordinary MapMarker (Section 4.2.6.3.3).
Map example

MAP {

name

"firstMap"

mapTranslation
0 0

mapSize

768 768

mapGPSCenter

48.625252 2.442515

zoomLevel

19

overlays
[

DEF AngryCatOverlay MapOverlay {

name "AngryCatOverlay"

children [

DEF AngryCat1 MARKER {

name "AngryCat1"

markerShape [USE AC_MARKER]

position 48.625240 2.442301 5

clickable FALSE

enabled TRUE

visible TRUE

}

DEF AngryCat2 MARKER {

name "AngryCat2"

markerShape [USE AC_MARKER]

position 48.625006 2.442843 5

clickable FALSE

enabled TRUE

visible TRUE

}

DEF AngryCat3 MARKER {

name "AngryCat3"

markerShape [USE AC_MARKER]

position 48.624974, 2.442407 5

clickable FALSE

enabled TRUE

visible TRUE

}

DEF AngryCat4 MARKER {

name "AngryCat4"

markerShape [USE AC_MARKER]

position 48.624974, 2.443407 5

clickable FALSE

enabled TRUE

visible TRUE

}

]

}

DEF SleepyCatOverlay MapOverlay {

name "SleepyCatOverlay"

children [

DEF SleepyCat1 MARKER {

name "SleepyCat1"

markerShape [USE SC_MARKER]

position 48.625540 2.442501 5

clickable FALSE

enabled TRUE

visible TRUE

}

DEF SleepyCat2 MARKER {

name "SleepyCat2"

markerShape [USE SC_MARKER]

position 48.625306 2.442243 5

clickable FALSE

enabled TRUE

visible TRUE

}

DEF SleepyCat3 MARKER {

name "SleepyCat3"

markerShape [USE SC_MARKER]

position 48.624774, 2.442707 5

clickable FALSE

enabled TRUE

visible TRUE

}

]

}

DEF CheeseOverlay MapOverlay {

name "CheeseOverlay"

children [

DEF CheesePiece1 MARKER {

name "CheesePiece1"

markerShape [USE CHEESE_MARKER]

position 48.625352 2.442455 5

clickable FALSE

enabled TRUE

visible TRUE

}

DEF CheesePiece2 MARKER {

name "CheesePiece2"

markerShape [USE CHEESE_MARKER]

position 48.625822 2.442365 5

clickable FALSE

enabled TRUE

visible TRUE

}

DEF CheesePiece3 MARKER {

name "CheesePiece3"

markerShape [USE CHEESE_MARKER]

position 48.625552 2.442015 5

clickable FALSE

enabled TRUE

visible TRUE

}

]

}

]

}
Terminal

The following terminal related node is used in ARAF: TermCap.

TermCap

XSD Description

<complexType name="TermCapType">
 <all>

<element ref="xmta:IS" minOccurs="0"/>
 </all>
 <attribute name="capability" type="xmta:SFInt32" use="optional" default="0"
/>
 <attributeGroup ref="xmta:DefUseGroup"/>
 </complexType>
 <element name="TermCap" type="xmta:TermCapType"/>
Functionality and semantics

As defined in ISO/IEC 14496-11 (BIFS), section 7.2.2.125.
The TermCap node is used to query the resources of the terminal. By ROUTEing the result to a Switch node, simple adaptive content may be authored using BIFS.
When this node is instantiated, the value of the capability field shall be examined by the system and the value eventOut generated to indicate the associated system capability. The value eventOut is updated and generated whenever an evaluate eventIn is received.
The capability field specifies a terminal resource to query. The semantics of the value field vary depending on the value of this field. The capabilities which may be queried are:
	0
	Frame rate

	1
	Color depth

	2
	Screen size

	3
	Graphics hardware

	32
	Audio output format

	33
	Maximum audio sampling rate

	34
	Spatial audio capability

	64
	CPU load

	65
	Memory load

ARAF for Sensors and Actuators
The data captured from sensors or used to command actuators in ARAF are based on ISO/IEC 23005-5 Data formats for interaction devices (MPEG-V Part 5).
MPEG-V provides an architecture and specifies associated information representations to enable the representation of the context and to ensure interoperability between virtual worlds. Concerning ARAF, MPEG-V specifies the interaction between the virtual world and the real world by implementing support for accessing different input/output devices, e.g. sensors, actuators, vision and rendering, robotics.
ARAF supports two manners to connect the scene to the sensor/actuators. A first manner is by using the InputSensor and OutputActuator nodes. The second manner is based on dedicate nodes in the scene graph that maps directly the sensor/actuator (e.g. the CameraSensor PROTO).
Usage of InputSensor and Script Nodes
The InputSensor node is used to receive the MPEG-V sensor data in a scene or to transmit data to MPEG-V actuators from the scene. It should be noted that the data is pushed in the scene and it is applied immediately when received. Figure 3 represents the architecture for accessing MPEG-V sensor data in ARAF scenes.
	[image: image15.png]

	Figure 3 — Diagram of the architecture for accessing MPEG-V sensor data

As specified in ISO/IEC 14496-1, in order to add new devices for the InputSensor node it is necessary to define:
· The content of the Device Data Frame (DDF) definition: this sets the order and type of the data coming from the device and then mandates the content of the InputSensor buffer.
· deviceName string which will designate the new device.
· Optional devSpecInfo of UIConfig
Orientation Sensor
The definition of MPEG-V Orientation Sensor DDF is the following:
MPEGVOrientationSensorType [

SFVec3F angles
]
The angles are specified as Euler angles as defined in ISO/IEC 23005-5. The deviceName is “MPEG-V:siv: OrientationSensorType”. The UIConfig.devSpecInfo contains one 32 bit integer specifying the desired refresh frame-rate for the sensor.
Position Sensor
The definition of MPEG-V Position Sensor DDF is the following:
MPEGVPositionSensorType [

SFVec3F position
]
The position is specified in meters. The deviceName is “MPEG-V:siv: PositionSensorType”. The UIConfig.devSpecInfo contains one 32 bit integer specifying the desired refresh frame-rate for the sensor.
Acceleration Sensor
The definition of MPEG-V Acceleration Sensor DDF is the following:
MPEGVAccelerationSensorType [

SFVec3F acceleration
]
The deviceName is “MPEG-V:siv: AccelerationSensorType”. The UIConfig.devSpecInfo contains one 32 bit integer specifying the desired refresh frame-rate for the sensor.
Angular Velocity
The definition of MPEG-V Angular Velocity Sensor DDF is the following:
MPEGVAngularVelocitySensorType [

SFVec3F AngularVelocity
]
The deviceName is “MPEG-V:siv: AngularVelocitySensorType”. The UIConfig.devSpecInfo contains one 32 bit integer specifying the desired refresh frame-rate for the sensor.
Global Position System Sensor
The definition of MPEG-V Global Position System Sensor DDF is the following:
MPEGVGPSSensorType [

SFVec2F location
]
The deviceName is “MPEG-V:siv:GPSSensorType”. The UIConfig.devSpecInfo contains one 32 bit integer specifying the desired refresh frame-rate for the sensor.
Altitude Sensor
The definition of MPEG-V Altitude Sensor DDF is the following:
MPEGVAltitudeSensorType [

SFFloat altitude
]
The deviceName is “MPEG-V:siv:AltitudeSensorType”. The UIConfig.devSpecInfo contains one 32 bit integer specifying the desired refresh frame-rate for the sensor.
Geomagnetic Sensor
The definition of MPEG-V Geomagnetic Sensor DDF is the following:
MPEGVGeomagneticSensorType [

SFVec3F geomagnetic
]
The deviceName is “MPEG-V:siv: GeomagneticSensorType”. The UIConfig.devSpecInfo contains one 32 bit integer specifying the desired refresh frame-rate for the sensor.
Example of integrating sensors in the ARAF scene
In the following example, it is shown how the InputSensor and Script node can be used to access MPEG-V sensors.
DEF SCRIPT Script {

eventIn SFVec3f updateOrientation

. . . .

url ["javascript:

function updateOrientation(rot)

{

if (objrot.children.length == 0)

return;

Azimuth = rot.x;

Pitch = rot.y;

Roll = rot.z;

conv = 3.14/180/2;

c1 = Math.cos(Azimuth * conv);

s1 = Math.sin(Azimuth * conv);

c2 = Math.cos(Pitch * conv);

s2 = Math.sin(Pitch * conv);

c3 = Math.cos(Roll * conv);

s3 = Math.sin(Roll * conv);

c1c2 = c1*c2;

s1s2 = s1*s2;

w = c1c2*c3 - s1s2*s3;

x = c1c2*s3 + s1s2*c3;

y = s1*c2*c3 + c1*s2*s3;

z = c1*s2*c3 - s1*c2*s3;

angle = 2 * Math.acos(w);

norm = x*x + y*y + z*z;

if (norm < 0.001) {

x = 1;

y = z = 0;

}

else {

norm = Math.sqrt(norm);

x /= norm;

y /= norm;

z /= norm;

}

objrot.rotation = new SFRotation(x, z, y, angle);

}

. . . .

"]
}

DEF ORIENT_SENS InputSensor {

url [50]

buffer {

REPLACE SCRIPT.updateOrientation BY 0 0 0

}
}
Where "url [50]" is the object descriptor for the orientation sensor defined as follows:
ObjectDescriptor {

objectDescriptorID 50

esDescr [

ES_Descriptor {

ES_ID 50

decConfigDescr DecoderConfigDescriptor {

streamType 10

decSpecificInfo UIConfig {

deviceName "MPEG-V:siv:OrientationSensorType"

}

}

}

]
}
Access to local camera sensor
The camera frames are directly accessed by the ARAF player. Figure 5 presents the diagram for accessing the camera video stream.
	[image: image16.png]

	Figure 5 - Diagram of the architecture for accessing the camera frames

Two following are defined:
a. An URN for the camera in order to initialize the input stream;
· For the back camera of the device: hw://camera/back;
· For the front camera of the device: hw://camera/front.
b. A type of video stream that doesn’t need to be decoded (RAW decoder). As specified in ISO/IEC 14496-1:2012 the following decoder specific info for the RAW decoder is defined:
class RAWVideoConfig extends DecoderSpecificInfo : bit(8) tag=DecSpecificInfoTag {
unsigned int(16)
width;
unsigned int(16)
height;
unsigned int(8)
bit_depth;
unsigned int(32)
stride;
unsigned int(32)
coding4CC;
unsigned int(8)
fps;
unsigned int(1)
use_frame_packing;
unsigned int(7)
frame_packing;
}
Usage of OutputActuator and Script Nodes
The OutputActuator proto is used to transmit data to MPEG-V actuators from the scene. It should be noted that the data produced by the scene is applied immediately when received by the actuators. Figure 4 represents the architecture for commanding MPEG-V actuators from the ARAF scenes.
[image: image17.png]
Figure 4 — Diagram of the architecture for commanding MPEG-V actuators
In order to add new devices the same mechanism is used as for InputSensor therefore it is necessary to define:
· The content of the Device Data Frame (DDF) definition: this sets the order and type of the data sent to the device and then mandates the content of the OutputActuator buffer.
· deviceName string which will designate the new device.
· Optional devSpecInfo of UIConfig
Light Actuator
The definition of MPEG-V Light Actuator DDF is the following:
MPEGVLightActuatorType [

SFFloat intensity

SFColor color
]
The deviceName is “MPEG-V:siv:LightActuatorType”. The light actuator will keep its current state (intensity and color) as long as a new command is not initiated.
Vibration Actuator
The definition of MPEG-V Vibration Actuator DDF is the following:
MPEGVVibrationActuatorType [

SFFloat intensity
]
The deviceName is “MPEG-V:siv:VibrationActuatorType”. The vibration actuator will keep its current state (intensity) as long as a new command is not initiated.
Tactile Actuator
The definition of MPEG-V Tactile Actuator DDF is the following:
MPEGVTactileActuatorType [

MFFloat intensity
]
The deviceName is “MPEG-V:siv:TactileActuatorType”. The tactile actuator will keep its current state (intensity) as long as a new command is not initiated.
Flash Actuator
The definition of MPEG-V Flash Actuator DDF is the following:

MPEGVFlashActuatorType[

SFFloat intensity

SFColor color

SFFloat frequency

]

The deviceName is “MPEG-V:siv:FlashActuatorType”. The flash actuator will keep its current state (intensity, color, and frequency) as long as a new command is not initiated.

Heating Actuator
The definition of MPEG-V Heating Actuator DDF is the following:

MPEGVHeatingActuatorType[

SFFloat intensity

]

The deviceName is “MPEG-V:siv:HeatingActuatorType”. The heating actuator will keep its current state (intensity) as long as a new command is not initiated.

Cooling Actuator
The definition of MPEG-V Cooling Actuator DDF is the following:

MPEGVCoolingActuatorType[

SFFloat intensity

]

The deviceName is “MPEG-V:siv:CoolingActuatorType”. The cooling actuator will keep its current state (intensity) as long as a new command is not initiated.

Wind Actuator
The definition of MPEG-V Wind Actuator DDF is the following:

MPEGVWindActuatorType[

SFFloat intensity

]

The deviceName is “MPEG-V:siv:WindActuatorType”. The wind actuator will keep its current state (intensity) as long as a new command is not initiated.

Sprayer Actuator
The definition of MPEG-V Sprayer Actuator DDF is the following:

MPEGVSprayerActuatorType[

SFFloat intensity

SFInt32 sprayingType

]

The deviceName is “MPEG-V:siv:SprayerActuatorType”. The sprayer actuator will keep its current state (sprayingType and intensity) as long as a new command is not initiated.

Scent Actuator
The definition of MPEG-V Scent Actuator DDF is the following:

MPEGVScentActuatorType[

SFFloat intensity

SFInt32 scent

]

The deviceName is “MPEG-V:siv:ScentActuatorType”. The scent actuator will keep its current state (scent and intensity) as long as a new command is not initiated.

Fog Actuator
The definition of MPEG-V Fog Actuator DDF is the following:

MPEGVFogActuatorType[

SFFloat intensity

]

The deviceName is “MPEG-V:siv:FogActuatorType”. The fog actuator will keep its current state (intensity) as long as a new command is not initiated.

Rigid Body Motion Actuator
The definition of MPEG-V Rigid Body Motion Actuator DDF is the following:

MPEGVRigidBodyMotionActuatorType[

MFVec3f direction

MFVec3f speed

MFVec3f acceleration

MFVec3f angle

MFVec3f angleSpeed

MFVec3f angleAcceleration

]

The deviceName is “MPEG-V:siv:RigidBodyMotionActuatorType”. The rigid body motion actuator will keep its current state (direction, speed, acceleration, angle, angleSpeed, and angleAcceleration) as long as a new command is not initiated. Each multi-valued field contains 3D values for X, Y, and Z component. The following table shows the mapping between the fields of DDF and the fields of MPEG-V:siv:RigidBodyMotionActuatorType.

Mapping between DDF and MPEG-V Rigid Body Motion Actuator Type
	MPEGVRigidBodyMotionActuatorType
	MPEG-V:siv:RigidBodyMotionActuatorType

	direction[0]
	directionX of MoveTowardType

	direction[1]
	directionY of MoveTowardType

	direction[2]
	directionZ of MoveTowardType

	speed[0]
	speedX of MoveTowardType

	speed[1]
	speedY of MoveTowardType

	speed[2]
	speedZ of MoveTowardType

	acceleration[0]
	accelerationX of MoveTowardType

	acceleration[1]
	accelerationY of MoveTowardType

	acceleration[2]
	accelerationZ of MoveTowardType

	angle[0]
	pitchAngle of InclineType

	angle[1]
	yawAngle of InclineType

	angle[2]
	rollAngle of InclineType

	angleSpeed[0]
	pitchSpeed of InclineType

	angleSpeed[1]
	yawSpeed of InclineType

	angleSpeed[2]
	rollSpeed of InclineType

	angleAcceleration[0]
	pitchAcceleration of InclineType

	angleAcceleration[1]
	yawAcceleration of InclineType

	angleAcceleration[2]
	rollAcceleration of InclineType

Kinesthetic Actuator
The definition of MPEG-V Kinesthetic Actuator DDF is the following:

MPEGVKinetheticActuatorType[

MFVec3f position

MFVec3f orientation

MFVec3f force

MFVec3f torque

]

The deviceName is “MPEG-V:siv:KinestheticActuatorType”. The kinesthetic actuator will keep its current state (position, orientation, force, and torque) as long as a new command is not initiated. Each multi-valued field contains 3D values for X, Y, and Z component.

ARAF compression

ARAF supports compressed media representation as specified by the following set of MPEG/JPEG standards:

	Media Type
	Compression tool name
	Reference standard

	Image
	JPEG
	ISO/IEC 10918

	
	JPEG2000
	ISO/IEC 15444

	Video
	Visual
	ISO/IEC 14496-2

	
	Advanced Video Coding
	ISO/IEC 14496-10

	Audio
	MP3
	ISO/IEC-11172-3

	
	Advanced Audio Coding
	ISO/IEC 14496-3

	3D Graphics
	Scalable Complexity Mesh Coding
	ISO/IEC 14496-16

	
	Bone-based Animation
	ISO/IEC 14496-16

	Scenes
	BIFS
	ISO/IEC 14496-11

Annex A
(informative)
SEQ aaa \h

SEQ table \r0\h

SEQ figure \r0\h
Map related Prototypes Implementation
PROTO MapMarker [

exposedField SFString
name

""

exposedField SFVec3f
position

0 0 0

exposedField SFBool
clickable

TRUE

exposedField SFBool
visible

TRUE

exposedField SFBool
enabled

TRUE

exposedField MFNode
markerShape

[]

eventIn
SFBool

doClick

eventIn

SFVec2f

setPlayerGPS

eventIn

SFVec2f

setMapGPSCenter

eventIn

SFInt32

setMapZoomLevel

eventOut
SFBool

onClick

eventOut
SFString
onPlayerAround

eventOut
SFString
onPlayerLeft

]
{

DEF MARKER_SW Switch {

whichChoice 0

choice [

Transform2D {

children [

DEF TS TouchSensor {}

DEF MARKER_NODE Transform2D {

translation 0 0

children IS markerShape

}

]

}

]

}

DEF UI_MARKER_SCRIPT Script {

field

SFNode
script

USE UI_MARKER_SCRIPT

field

SFNode
main_sw

USE MARKER_SW

field

SFNode
markerNode

USE MARKER_NODE

field

SFNode

ts

USE TS

eventIn
SFString
setName

IS name

eventIn

SFVec3f
setPosition

IS position

eventIn
SFBool
setVisible

IS visible

eventIn

SFBool

setClickable

IS clickable

eventIn

SFBool

setEnable

IS enabled

eventIn
MFNode

setMarkerShape

IS markerShape

eventIn

SFInt32
updateZoomLevel

IS setMapZoomLevel

eventIn

SFVec2f
updateMapGPSCenter
IS setMapGPSCenter

eventIn

SFVec2f
updatePlayerGPS

IS setPlayerGPS

eventIn
SFBool

fakeClick

IS doClick

eventIn
SFBool

clicked

eventOut
SFBool

onClick

IS onClick

eventOut
SFString
playerAround

IS onPlayerAround

eventOut
SFString
playerLeft

IS onPlayerLeft

url ["

javascript:

function initialize() {

Equatorial radius (m)

eqRadius

= 6378137;

tileSize

= 256;

playerAround

= false;

originShift

= 2 * Math.PI * eqRadius / 2.0;

initialResolution
= 2 * Math.PI * eqRadius / tileSize;

mapGPSCenter

= new SFVec2f ();

mapZoomLevel

= 0;

isEnabled

= false;

isClickable

= false;

isVisible

= false;

markerName

= 'm_'+Math.random().toString(36).substr(2, 5);

markerPos

= new SFVec3f ();

}

function fakeClick(val) {

clicked(val);

}

function setMarkerPositionOnMap() {

if (!mapGPSCenter) return;

markerCoord
= LatLonToPixels(markerPos[0], markerPos[1]);

mapCenterCoord
= LatLonToPixels(mapGPSCenter[0], mapGPSCenter[1]);

markerNode.translation[0] = markerCoord[0] - mapCenterCoord[0];

markerNode.translation[1] = markerCoord[1] - mapCenterCoord[1];

print ('[MARKER] - ' + markerName + ': UPDATE POSITION ON MAP : ' + markerNode.translation);

}

function setName(name) {

if (name == '') return;

print ('[---]');

print ('[MARKER] - ' + markerName + ': UPDATE NAME to ' + name);

markerName
= name;

}

function clicked(val) {

if (!val) return;

print ('[MARKER] - ' + markerName + ': CLICKED!');

onClick = true;

}

function setEnable(val) {

isEnabled = val;

if (val) {

print ('[MARKER] - ' + markerName + ': SET ENABLED');

}

else {

print ('[MARKER] - ' + markerName + ': SET DISABLED');

}

}

function setClickable(val) {

ts.enabled
= val;

isClickable = val;

if (val) {

print ('[MARKER] - ' + markerName + ': SET CLICKABLE');

}

else {

print ('[MARKER] - ' + markerName + ': SET UNCLICKABLE');

}

}

function setPosition(gpsPos) {

if ((gpsPos.x == 0) && (gpsPos.y == 0) && (gpsPos.z == 0)) {

return;

}

print ('[MARKER] - ' + markerName + ': SET POSITION: ' + gpsPos);

markerPos

= gpsPos;

setMarkerPositionOnMap();

}

function setMarkerShape(markerShape) {

if (typeof(markerShape) == 'undefined') return;

if (markerShape.length == 0) {

print ('[MARKER] - ' + markerName + ': markerShape is empty!');

print ('[MARKER] - ' + markerName + ': Returning...');

return;

}

print ('[MARKER] - ' + markerName + ': SET NEW MARKER SHAPE');

}

function setVisible(val) {

if (val) {

main_sw.whichChoice = 0;

print ('[MARKER] - ' + markerName + ': SET VISIBLE');

}

else {

main_sw.whichChoice = -1;

print ('[MARKER] - ' + markerName + ': SET INVISIBLE');

}

isVisible

= val;

}

function updatePlayerGPS(playerPos) {

if (playerPos.x == 0 || playerPos.y == 0) return;

distance = haversine_km(markerPos[0], markerPos[1], playerPos[0], playerPos[1]);

to meters

distance *= 1000;

print ('[MARKER] - ' + markerName + ': DISTANCE TO PLAYER = ' + distance + '. Limit to reach: ' + markerPos[2]);

if (!playerAround && (distance <= markerPos[2]) && isEnabled) {

print ('[MARKER] - ' + markerName + ': Player around!');

playerAround
= markerName;

}

else if (playerAround && (distance > markerPos[2]) && isEnabled) {

print ('[MARKER] - ' + markerName + ': Player left!');

playerLeft

= markerName;

playerAround
= false;

}

}

function updateZoomLevel(zoomLevel) {

if (zoomLevel <= 0) return;

print ('[MARKER] - ' + markerName + ': MAP ZOOM LEVEL: ' + zoomLevel);

mapZoomLevel = zoomLevel;

setMarkerPositionOnMap();

}

function updateMapGPSCenter(gpsCenter) {

if (gpsCenter[0] == 0.0 && gpsCenter[1] == 0.0) return;

print ('[MARKER] - ' + markerName + ': Update MAP GPS CENTER: ' + gpsCenter);

mapGPSCenter = gpsCenter;

setMarkerPositionOnMap();

}

START COMP_FUNCTIONS

The following functions are used to compute distances between 2 GPS positions

and converting GPS position to coordinates and vice-versa.

These should not be changed

Calculates distance between 2 points (lat1, long1) & (lat2, long2)

http://en.wikipedia.org/wiki/Haversine_formula

http://stackoverflow.com/questions/365826/calculate-distance-between-2-gps-coordinates

#

function haversine_km(lat1, long1, lat2, long2) {

d2r
= Math.PI / 180;

d_latt
= (lat2 - lat1) * d2r;

d_long
= (long2 - long1) * d2r;

a

= Math.sin(d_latt/2)*Math.sin(d_latt/2) + Math.cos(lat1 * d2r) * Math.cos(lat2 * d2r) * Math.sin(d_long/2)*Math.sin(d_long/2);

c

= 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));

return 6371 * c;

}

function LatLonToMeters(lat, lon) {

mx

= lon * originShift / 180.0;

my

= Math.log(Math.tan((90 + lat) * Math.PI / 360.0)) / (Math.PI / 180.0);

my

= my * originShift / 180.0;

return new Array(mx, my);

}

function LatLonToPixels(lat, lon) {

ll2p
= LatLonToMeters(lat, lon);

m2p
= MetersToPixels(ll2p[0], ll2p[1], mapZoomLevel);

return new Array(m2p[0], m2p[1]);

}

function MetersToPixels(mx, my) {

res
= Resolution();

px

= (mx + originShift) / res;

py

= (my + originShift) / res;

return new Array(px, py);

}

function Resolution() {

return initialResolution / (Math.pow(2,mapZoomLevel));

}

END COMP_FUNCTIONS

"]

}

ROUTE TS.isActive TO UI_MARKER_SCRIPT.clicked

}

PROTO MapOverlay [

exposedField
SFString
name

""

exposedField
SFBool
visible

TRUE

exposedField
SFBool
enabled

TRUE

exposedField
SFBool
clickable
TRUE

exposedField
MFNode

children
[]

exposedField
MFString
keywords
[]

eventIn

MFNode
addOverlayItems

eventIn

MFNode
removeOverlayItems

]
{

DEF MapOverlaySW Switch {

whichChoice 0

choice [

DEF MapOverlayOG OrderedGroup {

children IS children

}

]

}

DEF UI_MapOverlay_SCRIPT Script {

field SFNode og
USE MapOverlayOG

field SFNode sw
USE MapOverlaySW

eventIn SFString
setOverlayName

IS name

eventIn SFBool
setVisible

IS visible

eventIn SFBool

setClickable

IS clickable

eventIn SFBool

setEnable

IS enabled

eventIn MFNode
addOverlayItems
IS addOverlayItems

eventIn MFNode
removeOverlayItems
IS removeOverlayItems

url ["

javascript:

function initialize() {

mapOverlayName
= 'mo_'+Math.random().toString(36).substr(2, 5);

}

function setOverlayName(name) {

if (name == '') return;

print ('[MapOverlay] - ' + mapOverlayName + ': UPDATE NAME to ' + name);

mapOverlayName
= name;

}

function setEnable(val) {

if (val) {

for (i = 0; i < og.children.length; i++) {

og.children[i].enabled = true;

}

print ('[MapOverlay] - ' + mapOverlayName + ': SET ENABLE ');

}

else {

for (i = 0; i < og.children.length; i++) {

og.children[i].enabled = false;

}

print ('[MapOverlay] - ' + mapOverlayName + ': SET DISABLE ');

}

isEnabled = val;

}

function setVisible(val) {

if (val) {

print ('[MapOverlay] - ' + mapOverlayName + ': SET VISIBLE');

#
sw.whichChoice = 0;

for (i = 0; i < og.children.length; i++) {

og.children[i].visible = true;

}

}

else {

print ('[MapOverlay] - ' + mapOverlayName + ': SET INVISIBLE');

#
sw.whichChoice = -1;

for (i = 0; i < og.children.length; i++) {

og.children[i].visible = false;

}

}

isVisible = val;

}

function setClickable(val) {

if (val) {

for (i = 0; i < og.children.length; i++) {

og.children[i].clickable = true;

}

enabled = true;

print ('[MapOverlay] - ' + mapOverlayName + ': SET CLICKABLE');

}

else {

for (i = 0; i < og.children.length; i++) {

og.children[i].clickable = false;

}

enabled = false;

print ('[MapOverlay] - ' + mapOverlayName + ': SET UNCLICKABLE');

}

isClickable = val;

}

function addOverlayItems(marker) {

if (marker == null) return;

if (marker.length == 0) return;

og.addChildren
= new MFNode(marker[0]);

print ('[MapOverlay] - ' + mapOverlayName + ': ADD new overlay item \\"' + marker[0].name + '\\"');

}

function removeOverlayItems(marker) {

if (marker == null) return;

if (marker.length == 0) return;

for (i = 0; i < og.children.length; i++) {

if (og.children[i].name == marker.name) {

og.removeChildren = new MFNode(og.children[i]);

print ('[MapOverlay] - ' + mapOverlayName + ': REMOVE overlay item \\"' + marker.name + '\\"');

return;

}

}

print ('[MapOverlay] - ' + mapOverlayName + ': COULD NOT FIND Overlay item \\"' + marker.name + '\\"!');

}

"]

}
}
#
MAP PLAYER
#
PROTO MapPlayer [

exposedField
SFString
name "playerName"

exposedField
SFVec2f
position
0 0

exposedField
SFBool
visible

TRUE

exposedField
MFNode

playerShape

[]

eventIn
SFInt32

setMapZoomLevel

eventIn
SFVec2f

setMapGPSCenter

 # 'arrow_navigator': for testing -> use arrow navigator proto to change player position
 # through the 'arrow_navigator' event (up, down, left, right mapped to -1, 1, 2, 3)

eventIn SFInt32 arrow_navigator

]
{

DEF PLAYER Transform2D {

children IS playerShape

}
 DEF UI_PLAYER_SCRIPT Script {
 field SFNode player USE PLAYER

 field SFVec2f playerPositionTest PLAYER_POSITION

 eventOut SFVec2f playerPosition IS position
 eventIn SFVec2f setMapGPSCenter IS setMapGPSCenter

 eventIn SFInt32 updateMapZoomLevel IS setMapZoomLevel

 # 'arrow_navigator': for testing
 eventIn SFInt32 arrow_navigator IS arrow_navigator

 eventIn SFInt32 keyPress

 eventIn SFVec3f updatePlayerGPSPosition

 url ["javascript:
 function initialize() {
 # Equatorial radius (m)
 eqRadius = 6378137;
 playerLat = playerPositionTest.x;
 playerLon = playerPositionTest.y;
 tileSize = 256;
 originShift = 2 * Math.PI * eqRadius / 2.0;
 initialResolution = 2 * Math.PI * eqRadius / tileSize;
 mapZoomLevel = 19;
 playerCoord = new Array(0, 0);
 mapCenterCoord = new Array(0, 0);
 mapGPSCenter = new SFVec2f (0, 0);
 }
 function updatePlayerPosition() {
 mapCenterCoord = LatLonToPixels(mapGPSCenter.x, mapGPSCenter.y);
 playerCoord = LatLonToPixels(playerLat, playerLon);
 updatePlayerPositionOnMap();
 }
 function updatePlayerGPSPosition(gps) {
 print ('[PLAYER]: UPDATE PLAYER GPS POSITION: (Latitude: ' + gps.y + '), (Longitude: ' + gps.x + ')');
 playerLat = gps.y;
 playerLon = gps.x;
 playerPosition = new SFVec2f (playerLat, playerLon);
 playerCoord = LatLonToPixels(playerLat, playerLon);
 updatePlayerPositionOnMap();
 }
 function updateMapZoomLevel(mapZoom) {
 print ('[PLAYER]: SET MAP ZOOM LEVEL: ' + mapZoom);
 mapZoomLevel = mapZoom;
 updatePlayerPosition();
 }
 function setMapGPSCenter(mapGPS) {
 if (mapGPS.x == 0 && mapGPS.y ==0) return;
 print ('[PLAYER]: SET MAP GPS CENTER: ' + mapGPS);
 mapGPSCenter = new SFVec2f (mapGPS.x, mapGPS.y);
 updatePlayerPosition();
 }
 function keyPress(value)

 {
 if (value == 0) return;
 playerCoord = LatLonToPixels(playerLat, playerLon);
 switch (value)

 {
 # Right Key
 case 68:

 {
 player.translation.x += 8;
 playerCoord[0] += 8;
 break;
 }
 # Left Key
 case 65:

 {
 player.translation.x -= 8;
 playerCoord[0] -= 8;
 break;
 }
 # Up Key
 case 87:
 {
 player.translation.y += 8;
 playerCoord[1] += 8;
 break;
 }
 # Down Key
 case 83:
 {
 player.translation.y -= 8;
 playerCoord[1] -= 8;
 break;
 }
 }
 playerPositionArr = PixelsToLatLon(playerCoord[0], playerCoord[1]);
 playerLat = playerPositionArr[0];
 playerLon = playerPositionArr[1];
 playerPosition = new SFVec2f (playerPositionArr[0], playerPositionArr[1]);
 }
 function updatePlayerPositionOnMap() {
 # if playerCoord OR mapCenterCoord has not been set yet, return
 if ((playerCoord[0] == Number.POSITIVE_INFINITY && playerCoord[1] == Number.POSITIVE_INFINITY) ||

 (mapCenterCoord[0] == Number.POSITIVE_INFINITY && mapCenterCoord[1] == Number.POSITIVE_INFINITY)) {
 return;
 }
 player.translation = new SFVec2f (playerCoord[0] - mapCenterCoord[0], playerCoord[1] - mapCenterCoord[1]);
 print ('[PLAYER]: SET NEW TRANSLATION ON MAP: ' + player.translation);
 }
 # testing: keyboard arrows "wrapper"
 function arrow_navigator(direction) {
 print ('[PLAYER]: MOVE PLAYER: ' + direction);
 if (direction == -1) return;
 # up
 if (direction == 0) {
 keyPress(87);
 }
 # down
 else if (direction == 1) {
 keyPress(83);
 }
 # left
 else if (direction == 2) {
 keyPress(65);
 }
 # right
 else if (direction == 3) {
 keyPress(68);
 }
 return;
 }
 function LatLonToPixels(lat, lon) {
 ll2p = LatLonToMeters(lat, lon);
 m2p = MetersToPixels(ll2p[0], ll2p[1]);
 return new Array(m2p[0], m2p[1]);

 }
 function LatLonToMeters(lat, lon) {
 mx = lon * originShift / 180.0;
 my = Math.log(Math.tan((90 + lat) * Math.PI / 360.0)) / (Math.PI / 180.0);
 my = my * originShift / 180.0;
 return new Array(mx, my);
 }
 function MetersToPixels(mx, my) {
 res = Resolution();
 px = (mx + originShift) / res;
 py = (my + originShift) / res;
 return new Array(px, py);
 }
 function PixelsToLatLon(px, py) {
 mp2m = PixelsToMeters(px, py);
 mmtll = MetersToLatLon(mp2m[0], mp2m[1]);
 return new Array(mmtll[0], mmtll[1]);
 }
 function MetersToLatLon(mx, my) {
 lon = (mx / originShift) * 180.0;
 lat = (my / originShift) * 180.0;
 lat = 180 / Math.PI * (2 * Math.atan(Math.exp(lat * Math.PI / 180.0)) - Math.PI / 2.0);
 return new Array(lat, lon);
 }
 function PixelsToMeters(px, py) {
 res = Resolution();
 mx = px * res - originShift;
 my = py * res - originShift;
 return new Array(mx, my);
 }
 function Resolution() {
 return initialResolution / (Math.pow(2,mapZoomLevel));
 }
 "]
 }
 DEF UI_MAP_KEY_SENS InputSensor {
 url "1"
 buffer {
 REPLACE UI_PLAYER_SCRIPT.keyPress BY 0

 }
 }
 DEF UI_PLAYER_GPS_SENS InputSensor {
 url "5"
 buffer {
 REPLACE UI_PLAYER_SCRIPT.updatePlayerGPSPosition BY 0 0 0

 }
 }
}

#
MAP
#
PROTO MAP [

exposedField SFString
name

""

exposedField SFVec2f
mapTranslation
0 0

exposedField SFVec2f
mapSize

768 768

exposedField SFVec2f
mapGPSCenter

0 0

exposedField SFInt32
zoomLevel

18

exposedField MFNode
overlays

[]

exposedField MFString
mode

["ROADMAP"]

exposedField MFString
provider

["ANY"]

eventIn

MFNode
addOverlays

eventIn
MFNode
removeOverlays

eventIn
SFVec2f
translate

eventIn
SFBool
zoomIn

eventIn
SFBool
zoomOut

]
{
Transform2D {

children [

Transform2D {

children [

DEF UI_MAP_TS TouchSensor {}

DEF UI_MAP_LAY_ITEMS_VIEW Layer2D {

viewport DEF UI_MAP_MAP_VIEW Viewport {

alignment [0 0]

fit 1

}

children [

Background2D {

backColor 0 0 0

}

DEF UI_MAP_CONTAINER Transform2D {

translation IS mapTranslation

children [

DEF UI_MAP_TILE_CONTAINER Transform2D {

children []

}

DEF UI_MAP_MAP_OVERLAYS Transform2D {

children IS overlays

}

]

}

]

}

]

}

DEF UI_MAP_ZOOM_BUTTONS Transform2D {

children [

DEF UI_MAP_BTN_ZOOM_IN BUTTON {

Transform2D_translation 200 320

Rectangle_size

70 70

ImageTexture_BackImage
"30"

ImageTexture_OverImage
"32"

}

DEF UI_MAP_BTN_ZOOM_OUT BUTTON {

Transform2D_translation -200 320

Rectangle_size

70 70

ImageTexture_BackImage
"31"

ImageTexture_OverImage
"33"

}

]

}

]
}

DEF INITIALIZE_TS TimeSensor {

cycleInterval 1

loop false

enabled TRUE

}

DEF UI_MAP_SCRIPT Script {

field
SFNode
script

USE UI_MAP_SCRIPT

field
SFNode
zoomInBtn

USE UI_MAP_BTN_ZOOM_IN

field
SFNode
zoomOutBtn

USE UI_MAP_BTN_ZOOM_OUT

field
SFNode
tileContainer

USE UI_MAP_TILE_CONTAINER

field
SFNode
mapContainer

USE UI_MAP_CONTAINER

field
SFNode
overlayContainer
USE UI_MAP_MAP_OVERLAYS

field SFString
mapName

IS name

field
SFBool
mapTouched

false

field
SFInt32
down_x

-10000

field
SFInt32
down_y

-1

field
SFBool
scrolling

false

field
SFBool

initialized

false

eventIn SFVec2f
set_coord

eventIn SFBool
ZoomIn

eventIn SFBool
ZoomOut

eventIn SFBool
OnActive

eventIn MFNode
addOverlays

IS addOverlays

eventIn MFNode
removeOverlays

IS removeOverlays

eventIn SFInt32
setZoomLevel

IS zoomLevel

eventIn SFVec2f
setMapGPSCenter

IS mapGPSCenter

eventIn SFVec2f
setMapTranslation
IS mapTranslation

eventIn SFVec2f
setMapSize

IS mapSize

eventIn
SFTime

mapPropertiesInit

eventOut SFVec2f
mapGPSCenter

IS mapGPSCenter

eventOut SFInt32
zoomLevel

IS zoomLevel

eventOut SFVec2f
mapTranslation

IS mapTranslation

eventOut SFVec2f
mapSize

IS mapSize

url ["javascript:

function initialize() {

Equatorial radius (m)

eqRadius

= 6378137;

tiles

= new Array();

tileSize

= 256;

originShift

= 2 * Math.PI * eqRadius / 2.0;

initialResolution
= 0;

magicShift

= 256;

addMap2OverlayItemRoutes(false);

addPlayerMarkerRoutes();

}

function mapPropertiesInit() {

print ('[MAP]: REINITILIZE MAP PROPERTIES');

setMapTranslation(mapTranslation);

setMapSize(mapSize);

setZoomLevel(zoomLevel);

setMapGPSCenter(mapGPSCenter);

}

function setMapTranslation(mapTrans) {

print ('[MAP TRANSLATION]: SET MAP TRANSLATION: ' + mapTrans);

mapTranslation = new SFVec2f (mapTrans.x, mapTrans.y);

}

function setMapSize(mSize) {

if (mSize.x == 0 || mSize.y == 0) return;

print ('[MAP SIZE]: SET MAP SIZE: ' + mSize);

mapSize = mSize;

if (mapSize.y >= mapSize.x) {

tileSize

= Math.floor(mapSize.y/3);

mapSizeRatio
= mapSize.y / 768;

magicRatio

= 3 / mapSizeRatio;

magicShift

= mapSize.y / magicRatio;

}

else {

tileSize

= Math.floor(mapSize.x/3);

mapSizeRatio
= mapSize.x / 768;

magicRatio

= 3 / mapSizeRatio;

magicShift

= mapSize.x / magicRatio;

}

initialResolution
= 2 * Math.PI * eqRadius / tileSize;

}

function setMapGPSCenter(gpsCenter) {

if (gpsCenter.x == 0 && gpsCenter.y == 0) {

return;

}

print ('[MAP GPS]: SET MAP GPS CENTER: ' + gpsCenter);

mapGPSCenter = new SFVec2f (gpsCenter.x, gpsCenter.y);

addTileContainers();

}

function setZoomLevel(lvl) {

print ('[MAP ZOOM]: Set ZOOM LEVEL ' + lvl);

zoomLevel
= lvl;

}

function addOverlays(ovrls) {

if (typeof(ovrls) == 'undefined') return;

if (ovrls.length == 0) return;

for (ovrls_idx = 0; ovrls_idx < ovrls.length; ovrls_idx++) {

overlayContainer.addChildren = new MFNode(ovrls[ovrls_idx]);

print ('[MAP]: New overlay added: ' + ovrls[ovrls_idx].name);

addMapOverlayRoutes(ovrls[ovrls_idx]);

addPlayerMarkerRoutes();

}

}

function addMap2OverlayItemRoutes(overlay2) {

if (!overlay2) {

for (i = 0; i < overlayContainer.children.length; i++) {

addMapOverlayRoutes(overlayContainer.children[i]);

}

}

else {

addMapOverlayRoutes(overlay2);

}

}

function addMapOverlayRoutes(overlay1) {

print ('[MAP]: Add MAP-OVERLAY Routes for Overlay: ' + overlay1.name);

for (j = 0; j < overlay1.children.length; j++) {

marker = overlay1.children[j];

Browser.addRoute(script, 'mapGPSCenter',
marker, 'setMapGPSCenter');

Browser.addRoute(script, 'zoomLevel',

marker, 'setMapZoomLevel');

print ('[MAP]: MAP routes (GPS, ZOOM, SIZE) to MARKER ' + marker.name + ' has been added.');

}

}

function addTileContainers() {

for (i = 0; i < 3; i++) {

tiles[i] = new Array();

for (j = 0; j < 3; j++) {

tiles[i][j]

= new SFNode ('MAP_TILE');

tiles[i][j].tileSize

= new SFVec2f (tileSize, tileSize);

tiles[i][j].tileTranslation.x
= (i-1) * tileSize;

tiles[i][j].tileTranslation.y
= (j-1) * tileSize;

tileContainer.children[i*3+j]
= tiles[i][j];

}

}

calcTilesUrl(mapGPSCenter);

}

function addPlayerMarkerRoutes() {

print ('[MAP]: Trying to add PLAYER-MARKERS ROUTES...');

playerNode = findPlayer();

if (!playerNode) return;

addPlayerRoute4EachOveralyItem(playerNode);

}

function findPlayer() {

search for the player overlay (should have a marker "player" attached)

for (i = 0; i < overlayContainer.children.length; i++) {

found the overlay of the player

if (overlayContainer.children[i].name == 'player') {

print ('[MAP - OVERLAY]: The PLAYER OVERLAY has been found. Searching for the player marker...');

check if it has one and only one children

if (overlayContainer.children[i].children[0].name != 'player') {

print ('[MAP - MARKER]: THE FIRST MARKER OF THE PLAYER OVERLAY IS NOT player.');

}

else {

print ('[MAP - MARKER]: player marker has been found.');

playerItem = overlayContainer.children[i].children[0];

return playerItem;

}

}

}

print ('[MAP - OVERLAY]: PLAYER OVERLAY NOT FOUND. The player has not been added yet.');

return false;

}

function addPlayerRoute4EachOveralyItem(playerNode) {

print ('[MAP]: Adding PLAYER-MARKER Routes...');

for (i = 0; i < overlayContainer.children.length; i++) {

currentOverlay = overlayContainer.children[i];

if (currentOverlay.name == 'player') {

continue;

}

print ('[MAP]: Adding PLAYER-MARKER Routes for OVERLAY ' + currentOverlay.name);

for (j = 0; j < currentOverlay.children.length; j++) {

marker = currentOverlay.children[j];

Browser.addRoute(playerNode, 'playerPosition',
marker, 'setPlayerGPS');

print ('[MAP]: Adding PLAYER-MARKER Routes for marker ' + marker.name);

}

}

}

function calcTilesCoords(center) {

#
Get pixel coordinates of the current map center

m2p

= LatLonToPixels(center[0], center[1], zoomLevel);

#
Compute the lat, lon of the bottom left and top right tiles.

The coordinates for the middle tile are already known (map center)

therefore combining these coordinates will provide the gps coord

for all the tiles.

coordTR
= PixelsToLatLon(m2p[0]+magicShift, m2p[1]+magicShift, zoomLevel);

coordBL
= PixelsToLatLon(m2p[0]-magicShift, m2p[1]-magicShift, zoomLevel);

#
Add the coordinates to an array:

#

- 3 lat coords

#

- 3 lon coords

coord

= new Array();

coord[0]
= coordBL[0];

coord[1]
= center[0];

coord[2]
= coordTR[0];

coord[3+0]
= coordBL[1];

coord[3+1]
= center[1];

coord[3+2]
= coordTR[1];

return coord;

}

#
Request a google map of tileSize X tileSize from (x,y) lat lon coord

#
and fill the corresponding tile with the image result

function setTileCoord(i, j, lat, lon) {

print ('[Google] Getting images...');

tiles[j][i].tileURL[0]

= 'http://maps.google.com/maps/api/staticmap?center='

+ lat + ',' + lon

+ '&zoom=' + zoomLevel

+ '&size=' + tileSize + 'x' + tileSize

+ '&maptype=satellite&sensor=true';

tiles[j][i].tileCenterCoord[0]
= lat;

tiles[j][i].tileCenterCoord[1]
= lon;

}

#
Iterate the tiles and set the corresponding image for each of them

function calcTilesUrl(center) {

coord = calcTilesCoords(center);

for (i =0; i < 3; i++) {

for (j = 0; j < 3; j++) {

setTileCoord(i, j, coord[i], coord[3+j]);

}

}

}

function OnActive(value) {

mapTouched = value;

}

function ZoomIn(value) {

if (zoomLevel < 21) {

zoomLevel++;

mapGPSCenter = tiles[1][1].tileCenterCoord;

calcTilesUrl(mapGPSCenter);

resetMapOverlayTranslation();

}

}

function ZoomOut(value) {

if (zoomLevel > 1) {

zoomLevel--;

mapGPSCenter = tiles[1][1].tileCenterCoord;

calcTilesUrl(mapGPSCenter);

resetMapOverlayTranslation();

}

}

function resetMapOverlayTranslation() {

overlayContainer.translation.y = 0;

overlayContainer.translation.x = 0;

}

function swapPos(xx, yy) {

t
= xx.x;

xx.x = yy.x;

yy.x = t;

t
= xx.y;

xx.y = yy.y;

yy.y = t;

}

function swapTiles(x1, y1, x2, y2) {

t

= tiles[x1][y1];

tiles[x1][y1]
= tiles[x2][y2];

tiles[x2][y2]
= t;

}

function shiftLeft() {

for (i = 0; i < 3; i++)

{

swapTiles(1, i, 2, i);

swapTiles(0, i, 1, i);

swapPos(tiles[0][i].tileTranslation, tiles[1][i].tileTranslation);

swapPos(tiles[1][i].tileTranslation, tiles[2][i].tileTranslation);

}

coord

= calcTilesCoords(mapGPSCenter);

setTileCoord(0, 0, coord[0], coord[3+0]) ;

setTileCoord(1, 0, coord[1], coord[3+0]) ;

setTileCoord(2, 0, coord[2], coord[3+0]) ;

overlayContainer.translation.x
+= tileSize;

}

function shiftRight() {

for (i = 0; i < 3; i++)

{

swapTiles(0, i, 1, i);

swapTiles(1, i, 2, i);

swapPos(tiles[1][i].tileTranslation, tiles[2][i].tileTranslation);

swapPos(tiles[0][i].tileTranslation, tiles[1][i].tileTranslation);

}

coord

= calcTilesCoords(mapGPSCenter);

setTileCoord(0, 2, coord[0], coord[3+2]) ;

setTileCoord(1, 2, coord[1], coord[3+2]) ;

setTileCoord(2, 2, coord[2], coord[3+2]) ;

overlayContainer.translation.x
-= tileSize;

}

function shiftUp() {

for (i = 0; i < 3; i++)

{

swapTiles(i, 0, i, 1);

swapTiles(i, 1, i, 2);

swapPos(tiles[i][1].tileTranslation, tiles[i][2].tileTranslation);

swapPos(tiles[i][0].tileTranslation, tiles[i][1].tileTranslation);

}

coord

= calcTilesCoords(mapGPSCenter);

setTileCoord(2, 0, coord[2], coord[3+0]) ;

setTileCoord(2, 1, coord[2], coord[3+1]) ;

setTileCoord(2, 2, coord[2], coord[3+2]) ;

overlayContainer.translation.y
-= tileSize;

}

function shiftDown() {

for (i = 0; i < 3; i++)

{

swapTiles(i, 1, i, 2);

swapTiles(i, 0, i, 1);

swapPos(tiles[i][0].tileTranslation, tiles[i][1].tileTranslation);

swapPos(tiles[i][1].tileTranslation, tiles[i][2].tileTranslation);

}

coord

= calcTilesCoords(mapGPSCenter);

setTileCoord(0, 0, coord[0], coord[3+0]) ;

setTileCoord(0, 1, coord[0], coord[3+1]) ;

setTileCoord(0, 2, coord[0], coord[3+2]) ;

overlayContainer.translation.y
+= tileSize;

}

function Scroll(diffx, diffy) {

#

Calculate the offset of the new mapGPSCenter (latitude, longitude)

#

mapContainer.translation.x
-= diffx;

mapContainer.translation.y
-= diffy;

mapTranslation = new SFVec2f (mapContainer.translation.x, mapContainer.translation.y);

if (mapContainer.translation.x > tileSize) {

mapContainer.translation.x
-= tileSize;

down_x

-= tileSize;

m2p

= LatLonToPixels(mapGPSCenter[0], mapGPSCenter[1], zoomLevel);

mapGPSCenter

= PixelsToLatLon(m2p[0]-magicShift, m2p[1]+0, zoomLevel);

shiftLeft();

}

else

if (mapContainer.translation.x < -tileSize) {

mapContainer.translation.x
+= tileSize;

down_x

+= tileSize;

m2p

= LatLonToPixels(mapGPSCenter[0], mapGPSCenter[1], zoomLevel);

mapGPSCenter

= PixelsToLatLon(m2p[0]+magicShift, m2p[1]-0, zoomLevel);

shiftRight();

}

if (mapContainer.translation.y > tileSize) {

mapContainer.translation.y
-= tileSize;

down_y

-= tileSize;

m2p

= LatLonToPixels(mapGPSCenter[0], mapGPSCenter[1], zoomLevel);

mapGPSCenter

= PixelsToLatLon(m2p[0]-0, m2p[1]-magicShift, zoomLevel);

shiftDown();

}

else

if (mapContainer.translation.y < -tileSize) {

print ('mapContainer.translation.y = ' + mapContainer.translation.y);

mapContainer.translation.y
+= tileSize;

down_y

+= tileSize;

m2p

= LatLonToPixels(mapGPSCenter[0], mapGPSCenter[1], zoomLevel);

mapGPSCenter

= PixelsToLatLon(m2p[0]+0, m2p[1]+magicShift, zoomLevel);

shiftUp();

}

}

function set_coord(val) {

m_x = val.x | 0;

m_y = val.y | 0;

if (mapTouched) {

if (down_x == -10000) {

down_x
= m_x;

down_y
= m_y;

}

diffx = down_x - m_x;

diffy = down_y - m_y;

if (!scrolling) {

scrolling = true;

}

if (scrolling) {

Scroll(diffx, diffy);

down_x
= m_x;

down_y
= m_y;

}

}

else {

down_x

= -10000;

scrolling
= false;

}

}

function LatLonToMeters(lat, lon) {

mx

= lon * originShift / 180.0;

my

= Math.log(Math.tan((90 + lat) * Math.PI / 360.0)) / (Math.PI / 180.0);

my

= my * originShift / 180.0;

return new Array(mx, my);

}

function LatLonToPixels(lat, lon) {

ll2p
= LatLonToMeters(lat, lon);

m2p
= MetersToPixels(ll2p[0], ll2p[1]);

return new Array(m2p[0], m2p[1]);

}

function MetersToLatLon(mx, my) {

lon
= (mx / originShift) * 180.0;

lat
= (my / originShift) * 180.0;

lat
= 180 / Math.PI * (2 * Math.atan(Math.exp(lat * Math.PI / 180.0)) - Math.PI / 2.0);

return new Array(lat, lon);

}

function PixelsToLatLon(px, py) {

mp2m
= PixelsToMeters(px, py);

mmtll
= MetersToLatLon(mp2m[0], mp2m[1]);

return new Array(mmtll[0], mmtll[1]);

}

function PixelsToMeters(px, py) {

res
= Resolution();

mx

= px * res - originShift;

my

= py * res - originShift;

return new Array(mx, my);

}

function MetersToPixels(mx, my) {

res
= Resolution();

px

= (mx + originShift) / res;

py

= (my + originShift) / res;

return new Array(px, py);

}

function Resolution() {

return initialResolution / (Math.pow(2,zoomLevel));

}

"]

}

DEF UI_MAP_MOUSE_SENS InputSensor {

url "2"

buffer {

REPLACE UI_MAP_SCRIPT.set_coord
BY 0 0

}

}

ROUTE UI_MAP_TS.isActive

TO UI_MAP_SCRIPT.OnActive

ROUTE UI_MAP_BTN_ZOOM_IN.onClick
TO UI_MAP_SCRIPT.ZoomIn

ROUTE UI_MAP_BTN_ZOOM_OUT.onClick
TO UI_MAP_SCRIPT.ZoomOut

ROUTE INITIALIZE_TS.cycleTime

TO UI_MAP_SCRIPT.mapPropertiesInit

}
Annex B (informative)
SEQ aaa \h

SEQ table \r0\h

SEQ figure \r0\h
SimpleAugmentationRegion Prototype Implementation
In this annex we provide the implementation of the simplified ARAF’s AugmentationRegion proto.
PROTO SimpleAugmentationRegion [

exposedField

SFString

ARLabel

"ar_default"

exposedField

SFInt32

ARType

-1

exposedField

MFVec2f

AR2DRegion

[]

exposedField

MFFloat

ARTimestampStart
[]
exposedField

MFFloat

ARTimestampEnd
[]

exposedField

MFVec2f

ARTranslation

[]

exposedField

SFBool

AREnabled

FALSE

eventIn

SFTime

mediaTime
] {

DEF T2D Transform2D {

children [

DEF RECTTRANS Transform2D {

translation 0 0

children [

Shape {

appearance Appearance {

material DEF MAT2D Material2D {

transparency
1

emissiveColor
0 1 0

filled

FALSE

lineProps LineProperties {

width

2

lineColor
0 0 1

}

}

}

geometry DEF RECT Rectangle {

size 50 50

}

}

]

}

DEF LABELTRANS Transform2D {

translation 0 0

children [

Shape {

appearance Appearance {

material DEF LABELMAT Material2D {

emissiveColor
0 1 0

transparency
1

filled

TRUE

}

}

geometry DEF LABELTEXT Text {

string ["default_label"]

fontStyle FontStyle {

justify
["LEFT"]

size

18

}

}

}

]

}

]

}

DEF SCRIPT Script {

eventIn

SFTime

currentTime

IS mediaTime

eventIn

MFVec2f

set2DRegion

IS AR2DRegion

eventIn

MFFloat

setTimestampStart
IS ARTimestampStart
eventIn

MFFloat

setTimestampEnd

IS ARTimestampEnd

eventIn

MFVec2f

setTranslation

IS ARTranslation

eventIn

SFString

setLabel

IS ARLabel

eventIn

SFInt32

setType

IS ARType

eventIn

SFBool

setEnable

IS AREnabled

field

SFNode

mat2d

USE MAT2D

field

SFNode

labelMat2d
USE LABELMAT

field

SFNode

labelText

USE LABELTEXT

field

SFNode

rectSize

USE RECT

field

SFNode

rectTrans

USE RECTTRANS

field

SFNode

labelTrans
USE LABELTRANS

url ["

javascript:

function initialize() {

regions

= new MFVec2f();

timestampStart
= new Array();

timestampEnd
= new Array();

translations
= new MFVec2f();

label

= '';

type

= -1;

enabled

= false;

labelOffset
= 3;
currentTSEnd
= -1;
TSEndProvided
= false;

}

function currentTime(currentTimestamp) {

if (!enabled) return;

if (!TSEndProvided) {

arStart(currentTimestamp);

}

else {

arStartEnd(currentTimestamp);

}

}

function arStartEnd(ts) {

currentTS = parseFloat(ts.toFixed(1));

idx = parseInt(timestampStart.indexOf(currentTS));

if (idx != -1) {

if (timestampStart[idx] != timestampEnd[idx]) {

currentTSEnd = timestampEnd[idx];

}

else {

currentTSEnd = -1;

}

showAR(idx);

}

else if (currentTS <= currentTSEnd) {

}

else {

hideAR();

}

}

function arStart(ts) {

currentTS = parseFloat(ts.toFixed(1));

idx = parseInt(timestampStart.indexOf(currentTS));

if (idx != -1) {

showAR(idx);

}

else {

hideAR();

}

}

function showAR(idx) {

rectTrans.translation
= translations[idx];

rectSize.size

= regions[idx];

mat2d.transparency
= 0;

labelTrans.translation = new SFVec2f(
translations[idx].x - regions[idx].x/2,
translations[idx].y + regions[idx].y/2 + 3);

labelMat2d.transparency = 0;

}

function hideAR() {

mat2d.transparency
= 1;

labelMat2d.transparency
= 1;

}

function set2DRegion(val) {

regions = val;

}

function setTimestampStart(val) {

for (i = 0; i < val.length; i++) {

timestampStart[i] = parseFloat(val[i].toFixed(1));

}

}

function setTimestampEnd(val) {

if (val.length == 0) return;

for (i = 0; i < val.length; i++) {

timestampEnd[i] = parseFloat(val[i].toFixed(1));

}
TSEndProvided = true;

}

function setTranslation(val) {

translations = val;

}

function setLabel(val) {

if (val) {

label

 = val.toString();

labelText.string[0] = label;

}

}

function setType(val) {

if (val != -1) {

type = parseInt(val);

}

}

function setEnable(val) {

enabled = val;

if (!enabled) {

hideAR();

}

}

"]

}
}
Document type: International Standard
Document subtype: REF DDDocSubType * CHARFORMAT
Document stage: (30) Committee
Document language: E
 STD Version 2.1c2

_1428398256.unknown

