INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC 1/SC 29/WG 11
CODING OF MOVING PICTURES AND AUDIO
ISO/IEC JTC 1/SC 29/WG 11 N 13180
Shanghai, CN, October 2012
Title:	WD of ISO/IEC 14496-16:2011/Amd.3 Web3DG coding
Editor:	Ivica Arsov, Marius Preda

Scope
This standard provides an architecture able to combine MPEG-4 tools for 3D graphics and Web technologies. It implies JavaScript implementations for decoders and communication between the decoders and the rendering based on WebGL API.
The MPEG-4 file format is replaced by a package composed of JSON structure and MPEG-4 3D graphics elementary streams.
Architecture
Overview
Figure 1 illustrates an overview of the architecture.
	

	[bookmark: _Ref337471882]Figure 1. Overview of the Web3DCoding architecture

The content is prepared using standard 3D content creation tools (e.g. 3D Studio Max ®). Then the content is converted in a format appropriate for consumption from the scripts that can be transferred to the web server. When the web page is loaded, the Web3DCoding scripts analyses the content description, call the appropriate decoders and initializes the rendering data.
Content Preparation
The process of the content creation is left to the designer, however the final content must comply to some limitations. Currently only the following types of content are supported:
· Each mesh can have only one layer of texture;
· Meshes can have multiple sub-meshes with different textures, however vertices must not be shared between sub-meshes;
· Only bone-based animation is supported with maximum of 4 weights per vertex;
· Mesh that is a child of a bone (rigid mesh) is not supported, however a workaround can be done by merging that mesh with the animated one, and weighting it accordingly;
· Only one bone-based animated mesh per file is supported;
· Only one animation stream per file is supported.
Handling of sub-meshes and vertex weights with SC3DMC
Because SC3DMC does not directly support object with multiple sub-meshes and vertex weights, some conventions had to me made in order to add this support. Namely, its facility of OtherAttributes was used to specify these properties. How the OtherAttributes were used depends on their count and therefore we defined four possible options. They are presented in Table 1.

[bookmark: _GoBack][bookmark: _Ref339979935]Table 1. Other Attribute Usage
	Count
	Usage

	0
	The mesh has only one sub-mesh and it has no vertex weights.

	1
	The mesh has multiple sub-meshes and it has no vertex weights. The single OtherAttribute for the vertex is used to specify the index of the sub-mesh in which it belongs. This means that one vertex cannot be shared between sub-meshes.

	8
	The mesh has only one sub-mesh and it has vertex weights. The first four values are the index of the bones and the last four values are the corresponding weights. If a weight has value zero, then the corresponding bone index is not valid.

	9
	The has multiple sub-meshes and it has vertex weights. The first eight values correspond to the vertex weights, and the ninth is the sub-mesh index

JSON Structure Description
Introduction
In order to facilitate the integration of the 3D Content in the web pages, a JSON structure was designed that integrates all of the components of the 3D object. Figure 2 illustrates an example of that structure.
	 (
{"object
" :
 {

"
name
": "rabbit",

"
shapes
":[

{

"
filename
": "rabbit_0.s3d",

"
transform
": [1.00000, 0.00000, 0.00000, 0.00000,

0.00000, 1.00000, 0.00000, 0.00000,

0.00000, 0.00000, 1.00000, 0.00000,

0.00000,

0.00000, 0.00000, 1.00000],

"
materials
":[

{

"
texture
": "rabbit_0_0.jpg"

}

]

,"animation":{

"
anm_filename
": "rabbit_0.anm",

"
bba_streams
": [

{

"
name
": "rabbit_0_0.bba",

"
fileName
": "rabbit_0_0.bba"

}

]

}

}

]
}}
)

	[bookmark: _Ref337473501]Figure 2. Example of a JSON Structure used to represent a 3D object

Root Object
Structure

{
	“object” : {}
}

semantics
The root object contains only the parameter object which is defined Section 3.2.
[bookmark: _Ref339356283]Object
Structure

{
	“name” : “”,
	“shapes” : []
}

semantics
Object is the basic structure that contains description and data about one 3D object.

The name filed is a string that specifies the name of the 3D object.

The shapes field is an array of shape objects that describe the 3D data of the object. The shape object is defined in Section 3.3.
[bookmark: _Ref339357089]Shape
Structure

{
	"filename": "",
 "transform": [1.0, 0.0, 0.0, 0.0,
 0.0, 1.0, 0.0, 0.0,
 0.0, 0.0, 1.0, 0.0,
 0.0, 0.0, 0.0, 1.0],
 "materials":[],
"animation":{}
}
Semantics
Shape is a structure that describes one separate shape of the 3D object. It points to its 3D mesh data, the materials associated, the position relative to the object center and animation if present.

The filename is a string field specifying the URL to the s3d file containing the mesh data for the shape.

The transform field specifies the transformation of the shape relative to the root of the object. The filed is an array of 16 float values specifying a 4x4 matrix that can be consumed directly from a WebGL interface.

The materials field is an array of material objects, one for each sub-shape of the shape. At least one material should be present in this array. The material structure is described in Section 3.4.

The animation filed is an optional. It is only present if there is a BBA associated with the shape. It contains one animation structure which is described in Section XXX.
[bookmark: _Ref339877838]Material
Structure

{
"texture": "",
"diffuse”: [0.8, 0.8, 0.8],
"emissive”: [0, 0, 0],
"specular”: [0, 0, 0],
"ambient”: 0.2,
"shininess”: 0.2,
"transparency”: 0
}

Semantics
Material is a structure that describes the material used for one sub-shape of the object. The description is composed of color properties and a diffuse texture.

The texture field is a string field specifying the URL to the texture that is used for the object. The supported texture image formats are the ones supported by the browser.

The semantics of the other fields are the same as for the Material node specified in ISO/IEC 14772-1:1998, subclause 6.27.
Animation
Structure

{
"anm_filename": "",
"bba_streams": []
}
Semantics
Animation is a structure that describes the animation parameters that are associated with the current shape.

The anm_filename field specifies the URL to the anm file associated with the animation. The anm file specifies the bone hierarchy for the animation and its structure is specified in Section XXX.

The bba_streams field is an array of bba_animation objects, one for each animation stream.

BBA_Animation
Structure

{
"name": "rabbit_0_0.bba",
"fileName": "rabbit_0_0.bba"
}

Semantics
The bba_animation structure specifies one animation sequence for the object.

The name field is a string that represents the name of the animation sequence.

The fileName field is an URL to the BBA file corresponding to the animation.

ANM Format
Introduction
The ANM format is used to describe the bone hierarchy for the skeleton of the mesh, as well as its initial position. This data corresponds to the bone information in the SBVCAnimation and SBVCAnimationV2 nodes.
Format description
ANM is a binary format. The basic building block is called atom. Each atom holds information about the type of data stored in the atom and the data itself.
Atom
Syntax
Class Atom() {
	int(24) type;
	int(32) atom_id;
	int(32) size;
}
Semantics
The Atom holds basic information about the data that is stored. The atom cannot be used by itself and it has to be instantiated.

The type field represents the type of the atom.

The atom_id filed specifies a unique id of the atom.

The size filed specifies the size of the whole atom including its header and data.

AnimationAtom
Syntax
Class AnimationAtom extends Atom : int(24) type = AnimationAtomTag {
	int(32) numSkeletons;
	int(8) localCoordinates;
	Atom skeletons[];
}
Semantics
The AnimationAtom is the basic atom of the stream and it is the first one that in encountered. It holds one or more skeleton atoms, i.e. SkeletonAtom as defined in Section XXX.

The numSkeletons field specifies the number of skeletons in the skeletons array.

The localCoordinates field specifies if the transformation are specified relatively to the parent (local coordinates) or relatively to the global coordinate system.
0 – global coordinate system;
1 – local coordinate system.

The skeletons filed is an array of one or more skeleton atoms. Each of them corresponds to the SBSkeleton node from the BIFS scene description.
SkeletonAtom
Syntax
Class AnimationAtom extends Atom : int(24) type = SkeletonAtomTag {
	int(32) numBones;
	for (i = 0; i < numBones; i++){
		int(32) boneID;
		int(32) parentID;
Atom transform;
}
}
Semantics
The SkeletonAtom stores data for one skeleton of the object.

The numBones files specifies the number of bones in the skeleton.

The boneID field specifies the ID of the bone which corresponds to the bone ID in the BIFS scene.

The parentID field specifies the ID of the parent bone.

The transform filed is a TransformAtom specifying the transformation of the current bone.
TransformAtom
Syntax
Class TransformAtom extends Atom : int(24) type = TransformAtomTag {
	float(32) rotation_x;
	float(32) rotation_y;
float(32) rotation_z;
float(32) rotation_q;
float(32) scaleOrientation_x;
float(32) scaleOrientation_y;
float(32) scaleOrientation_z;
float(32) scaleOrientation_q;
float(32) center_x;
float(32) center_y;
float(32) center_z;
float(32) translation_x;
float(32) translation_y;
float(32) translation_z;
float(32) scale_x;
float(32) scale_y;
float(32) scale_z;
}

Semantics
The semantics of the fields is same as for the SBBone node defined in ISO/IEC 14496-16:2003, subclause 4.7.1.1.
image1.emf
Conversion

Tools

3D Graphics

Content

Web3DCoding Scripts

SC3DMC

Decoder

BBA

Decoder

oleObject1.bin
Conversion Tools

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC

1/SC

29/WG

11

CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC

1/SC

29/WG

11 N

13180

S

hanghai

,

CN

,

October

2012

Title:

WD of ISO/IEC 14496

-

16:2011/Amd.3 Web3DG coding

Editor

:

Ivica Arsov, Marius Preda

1

Scope

This standard provides an architecture able to combine MPEG

-

4 tools for 3D graphics and Web

technologies. It

implies

JavaScript

implementations for decoders and communication between

the decoders and the rendering based on WebGL API.

The MPEG

-

4 file format is replaced by a package composed

of

J

SON structure and

MPEG

-

4 3D

graphics

elementary streams.

2

Architecture

2.1

Overview

Figure

1

illustrates

an overview of the architecture.

Conversion

Tools

3

D Graphics

Content

Web

3

DCoding Scripts

SC

3

DMC

Decoder

BBA

Decoder

Figure

1

. Overview of the Web3DCoding architecture

The content is prepared using standard 3D content creation tools (e.g. 3D Stu

dio Max ®). Then

the content is converted in a format

appropriate

for consumption from the scripts

that can

be

transferred

to the web server. When the web page is loaded, the Web3D

C

oding scripts

analyses

the content description

,

call

the appropriate decode

rs and initializes the rendering data.

2.2

Content

P

reparation

The process of the content creation

is left

to

the designer, however the final

content must comply

to some limitations. Currently only the following types of content are supported:

-

Each mesh can

have only one layer of texture;

-

Meshes can have multiple sub

-

meshes with different textures, however vertices must not

be shared between sub

-

meshes;

-

Only bone

-

based animation is supported with maximum of 4 weights per vertex;

-

Mesh that is a child of a bone

(rigid mesh) is not supported, however a workaround can

be done by merging that mesh with the animated one, and weighting it accordingly;

