© ISO/IEC 2012 – All rights reserved

INTERNATIONAL ORGANISATION FOR STANDARDISATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC 1/SC 29/WG 11

CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11/N12733
May 2012, Geneva, CH
Title:
ISO/IEC 14496-29 Web video coding
Source:
Video

Status:
CD
Project:
ISO/IEC 14496-29

Editor(s): 
David Benham, Gaëlle Martin-Cocher, Eric Pearson, Jesus Sampedro, David Singer, Thomas Wiegand
COMMITTEE DRAFT

 SET DDOrganization "© ISO/IEC 2012 – All rights reserved" © ISO/IEC 2012 – All rights reserved

 SET LibEnteteISO "ISO/IEC CD 14496-29" ISO/IEC CD 14496-29

 SET LIBTypeTitreISO " 63"  63

 SET DDTITLE4 "Part 29: Web video coding" Part 29: Web video coding

 SET DDTITLE3 "Information technology — Coding of audio-visual objects" Information technology — Coding of audio-visual objects

 SET DDTITLE2 "Élément introductif — Élément central — Partie 29: Titre de la partie" Élément introductif — Élément central — Partie 29: Titre de la partie

 SET DDTITLE1 "Information technology — Coding of audio-visual objects — Part 29: Web video coding" Information technology — Coding of audio-visual objects — Part 29: Web video coding

 SET DDDocLanguage "E" E

 SET DDWorkDocDate "2012-05-4" 2012-05-4

 SET DDDocStage "(30) Committee" (30) Committee

 SET DDOrganization3 "ISO/IEC" ISO/IEC

 SET DDOrganization1 "ISO/IEC J" ISO/IEC J

 SET DDBASEYEAR "2008" 2008

 SET DDAmno "3" 3

 SET DDDocSubType ""  

 SET DDDocType "International Standard" International Standard

 SET DDpubYear "2012" 2012

 SET DDWorkDocNo ""  

 SET DDRefNoPart "ISO/IEC 14496" ISO/IEC 14496

 SET DDRefGen "ISO/IEC 14496‑29" ISO/IEC 14496‑29

 SET DDRefNum "ISO/IEC CD 14496-29" ISO/IEC CD 14496-29

 SET DDSCSecr ""  

 SET DDSecr ""  

 SET DDSCTitle "Coding of audio, picture, multimedia and hypermedia information" Coding of audio, picture, multimedia and hypermedia information

 SET DDTCTitle "Information technology" Information technology

 SET DDWGNum "11" 11

 SET DDSCNum "29" 29

 SET DDTCNum "1" 1

 SET LIBLANG " 2"  2

 SET libH2NAME "見出し 2" 見出し 2

 SET libH1NAME "見出し 1,h1,Heading U,H1,H11,Œ©�o‚µ 1,?c�o??E 1,뙥,?c,?c�o?ƒÊ 1,?,Œ" 見出し 1,h1,Heading U,H1,H11,Œ©�o‚µ 1,?c�o??E 1,뙥,?c,?c�o?ƒÊ 1,?,Œ

 SET LibDesc ""  

 SET LibDescD ""  

 SET LibDescE ""  

 SET LibDescF ""  

 SET NATSubVer "0" 0

 SET CENSubVer "2" 2

 SET ISOSubVer ""  

 SET LIBVerMSDN "STD Version 2.1c2" STD Version 2.1c2

 SET LIBStageCode "30" 30

 SET LibRpl ""  

 SET LibICS ""  

 SET LIBFIL " 4"  4

 SET LIBEnFileName "H:\29f1303\w12733.doc" H:\29f1303\w12733.doc 

 SET LIBDeFileName "" 

 SET LIBNatFileName "" 

 SET LIBFileOld ""  

 SET LIBTypeTitreCEN ""  

 SET LIBTypeTitreNAT ""  

 SET LibEnteteCEN ""  

 SET LibEnteteNAT ""  

 SET LIBASynchroVF ""  

 SET LIBASynchroVE ""  

 SET LIBASynchroVD ""   ISO/IEC JTC 1/SC 29 N  REF DDWorkDocNo \* CHARFORMAT   \* MERGEFORMAT 
Date:   2012-05-4
ISO/IEC CD 14496-29
ISO/IEC JTC 1/SC 29/WG 11
Secretariat:    REF DDSecr \* CHARFORMAT   \* MERGEFORMAT 
Information technology — Coding of audio-visual objects — Part 29: Web video coding
Élément introductif — Élément central — Partie 29: Titre de la partie

Warning

This document is not an ISO International Standard. It is distributed for review and comment. It is subject to change without notice and may not be referred to as an International Standard.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.




Copyright notice

This ISO document is a working draft or committee draft and is copyright-protected by ISO. While the reproduction of working drafts or committee drafts in any form for use by participants in the ISO standards development process is permitted without prior permission from ISO, neither this document nor any extract from it may be reproduced, stored or transmitted in any form for any other purpose without prior written permission from ISO.

Requests for permission to reproduce this document for the purpose of selling it should be addressed as shown below or to ISO's member body in the country of the requester:

[Indicate the full address, telephone number, fax number, telex number, and electronic mail address, as appropriate, of the Copyright Manger of the ISO member body responsible for the secretariat of the TC or SC within the framework of which the working document has been prepared.]

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.
Contents
Page
viForeword

Introduction
viii
1
Scope
1
2
Normative references
1
3
Definitions
1
4
Abbreviations
7
5
Conventions
7
5.1
Arithmetic operators
7
5.2
Logical operators
8
5.3
Relational operators
8
5.4
Bit-wise operators
8
5.5
Assignment operators
9
5.6
Range notation
9
5.7
Mathematical functions
9
5.8
Order of operation precedence
10
5.9
Variables, syntax elements, and tables
10
5.10
Text description of logical operations
11
5.11
Processes
12
6
Source, coded, decoded and output data formats, scanning processes, and neighbouring relationships
13
6.1
Bitstream formats
13
6.2
Source, decoded, and output picture formats
13
6.3
Spatial subdivision of pictures and slices
14
6.4
Inverse scanning processes and derivation processes for neighbours
15
7
Syntax and semantics
24
7.1
Normative Syntax and Semantics
24
7.2
Specification of syntax functions, categories, and descriptors
26
7.3
Syntax in tabular form
27
7.4
Semantics
37
8
Decoding process
64
8.1
NAL unit decoding process
64
8.2
Slice decoding process
65
8.3
Intra prediction process
75
8.4
Inter prediction process
87
8.5
Transform coefficient decoding process and picture construction process prior to deblocking filter process
99
8.6
(void)
108
8.7
Deblocking filter process
108
9
Parsing process
117
9.1
Parsing process for Exp-Golomb codes
117
9.2
CAVLC parsing process for transform coefficient levels
121
9.3
(void)
130
 Annex A (normative)  Profiles and levels
131
A.1
Requirements on video decoder capability
131
A.2
Profiles
131
A.3
Levels
132
 Annex B (normative)  Byte stream format
142
B.1
Byte stream NAL unit syntax and semantics
142
B.2
Byte stream NAL unit decoding process
143
B.3
Decoder byte-alignment recovery (informative)
143
 Annex C (normative)  Hypothetical reference decoder
145
C.1
Operation of coded picture buffer (CPB)
148
C.2
Operation of the decoded picture buffer (DPB)
149
C.3
Bitstream conformance
152
C.4
Decoder conformance
153
 Annex D (informative) Supplemental enhancement information
157
 Annex E (normative)  Video usability information
158
E.1
VUI syntax
159
E.2
VUI semantics
160


Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 14496‑29 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.

ISO/IEC 14496 consists of the following parts, under the general title Information technology — Coding of audio-visual objects:

· Part 1: Systems

· Part 2: Visual

· Part 3: Audio

· Part 4: Conformance testing

· Part 5: Reference software

· Part 6: Delivery Multimedia Integration Framework (DMIF)

· Part 7: Optimized reference software for coding of audio-visual objects

· Part 8: Carriage of ISO/IEC 14496 contents over IP networks

· Part 9: Reference hardware description

· Part 10: Advanced Video Coding

· Part 11: Scene description and application engine

· Part 12: ISO base media file format

· Part 13: Intellectual Property Management and Protection (IPMP) extensions

· Part 14: MP4 file format

· Part 15: Advanced Video Coding (AVC) file formatPart 16: Animation Framework eXtension (AFX)

· Part 17: Streaming text format

· Part 18: Font compression and streaming

· Part 19: Synthesized texture stream

· Part 20: Lightweight Application Scene Representation (LASeR) and Simple Aggregation Format (SAF)

· Part 21: MPEG-J Graphics Framework eXtensions (GFX)

· Part 22: Open Font Format

· Part 23: Symbolic Music Representation

· Part 24: Audio and systems interaction

· Part 25: 3D Graphics Compression Model

· Part 26: Audio conformance

· Part 27: 3D Graphics conformance

· Part 28: Composite font representation 

· Part 29: Web video coding 

Introduction

This International Standard specifies Web Video Coding, a technology that is compatible with the Constrained Baseline Profile of ISO/IEC 14996-10. Only the subset that is specified in Annex A for Constrained Baseline is a normative specification, while all remaining parts are informative. This text is derived from ISO/IEC 14996-10, and that specification may be referenced if desired, as an aid to understanding this specification.
Information technology — Coding of audio-visual objects — Part 29: Web video coding
1 Scope

This Part of ISO/IEC 14496 specifies Web Video Coding for coding of audio-visual objects. 

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

–
ITU-T Recommendation T.35 (2000), Procedure for the allocation of ITU-T defined codes for non‑standard facilities.
–
ISO/IEC 11578:1996, Information technology — Open Systems Interconnection — Remote Procedure Call (RPC).
–
ISO 11664-1, Colorimetry — Part 1: CIE standard colorimetric observers.

3 Definitions

For the purposes of this document, the following definitions apply:

3.1 access unit: A set of NAL units that are consecutive in decoding order and contain exactly one primary coded picture. In addition to the primary coded picture, an access unit may also contain one auxiliary coded picture, or other NAL units not containing slices of a coded picture. The decoding of an access unit always results in a decoded picture.

3.2 AC transform coefficient: Any transform coefficient for which the frequency index in one or both dimensions is non-zero.

3.3 bitstream: A sequence of bits that forms the representation of coded pictures and associated data forming one or more coded video sequences. Bitstream is a collective term used to refer either to a NAL unit stream or a byte stream.

3.4 block: An MxN (M-column by N-row) array of samples, or an MxN array of transform coefficients.

3.5 [void]
3.6 broken link: A location in a bitstream at which it is indicated that some subsequent pictures in decoding order may contain serious visual artefacts due to unspecified operations performed in the generation of the bitstream.
3.7 byte: A sequence of 8 bits, written and read with the most significant bit on the left and the least significant bit on the right. When represented in a sequence of data bits, the most significant bit of a byte is first.

3.8 byte-aligned: A position in a bitstream is byte-aligned when the position is an integer multiple of 8 bits from the position of the first bit in the bitstream. A bit or byte or syntax element is said to be byte-aligned when the position at which it appears in a bitstream is byte-aligned.
3.9 byte stream: An encapsulation of a NAL unit stream containing start code prefixes and NAL units as specified in Annex B.

3.10 can: A term used to refer to behaviour that is allowed, but not necessarily required.
3.11 category: A number associated with each syntax element.  It may be used in a manner determined by the application to refer to classes of syntax elements in a manner not specified in this International Standard.

3.12 chroma: An adjective specifying that a sample array or single sample is representing one of the two colour difference signals related to the primary colours. The symbols used for a chroma array or sample are Cb and Cr.

NOTE – The term chroma is used rather than the term chrominance in order to avoid the implication of the use of linear light transfer characteristics that is often associated with the term chrominance.

3.13 coded frame: A coded representation of a frame.

3.14 coded picture: A coded representation of a picture.

3.15 coded picture buffer (CPB): A first-in first-out buffer containing access units in decoding order specified in the hypothetical reference decoder in Annex C.

3.16 coded representation: A data element as represented in its coded form.

3.17 [void]
3.18 coded slice NAL unit: A NAL unit containing a slice that is not a slice of an auxiliary coded picture.

3.19 coded video sequence: A sequence of access units that consists, in decoding order, of an IDR access unit followed by zero or more non-IDR accessunits including all subsequent access units up to but not including any subsequent IDR access unit.

3.20 component: An array or single sample from one of the three arrays (luma and two chroma) that make up a frame in 4:2:0 colour format.

3.21 DC transform coefficient: A transform coefficient for which the frequency index is zero in all dimensions.

3.22 decoded picture: A decoded picture is derived by decoding a coded picture. A decoded picture is a decoded frame. 

3.23 decoded picture buffer (DPB): A buffer holding decoded pictures for reference, output reordering, or output delay specified for the hypothetical reference decoder in Annex C.

3.24 decoder: An embodiment of a decoding process.

3.25 decoder under test (DUT): A decoder that is tested for conformance to this International Standard by operating the hypothetical stream scheduler to deliver a conforming bitstream to the decoder and to the hypothetical reference decoder and comparing the values and timing of the output of the two decoders.

3.26 decoding order: The order in which syntax elements are processed by the decoding process.

3.27 decoding process: The process specified in this International Standard that reads a bitstream and derives decodedpictures from it.

3.28 [void]
3.29 display process: A process not specified in this International Standard having, as its input, the cropped decoded pictures that are the output of the decoding process.
3.30 emulation prevention byte: A byte equal to 0x03 that may be present within a NAL unit. The presence of emulation prevention bytes ensures that no sequence of consecutive byte-alignedbytes in the NAL unit contains a start code prefix.

3.31 encoder: An embodiment of an encoding process.

3.32 encoding process: A process, not specified in this International Standard, that produces a bitstream conforming to this International Standard.

3.33 flag: A variable that can take one of the two possible values 0 and 1.

3.34 frame: A frame contains an array of luma samples and two corresponding arrays of chroma samples in 4:2:0 format. 

3.35 frame macroblock: A macroblock representing samples from of a coded frame. All macroblocks of a coded frame are frame macroblocks. 

3.36 [void]
3.37 frequency index: A one-dimensional or two-dimensional index associated with a transform coefficient prior to an inverse transform part of the decoding process.
3.38 hypothetical reference decoder (HRD): A hypothetical decoder model that specifies constraints on the variability of conforming NAL unit streams or conforming byte streams that an encoding process may produce.

3.39 hypothetical stream scheduler (HSS): A hypothetical delivery mechanism for the timing and data flow of the input of a bitstream into the hypothetical reference decoder. The HSS is used for checking the conformance of a bitstream or a decoder.

3.40 I slice: A slice that  is decoded using intra prediction only.

3.41 informative: A term used to refer to content provided in this International Standard that is not an integral part of this International Standard. Informative content does not establish any mandatory requirements for conformance to this International Standard.

3.42 instantaneous decoding refresh (IDR) access unit: An access unit in which the primary coded picture is an IDR picture.

3.43 instantaneous decoding refresh (IDR) picture: A codedpicturefor which the variable IdrPicFlag is equal to 1. An IDR picture causes the decoding process to mark all reference pictures as "unused for reference" immediately after the decodingof the IDR picture. All coded picturesthat follow an IDR picture in decoding order can be decoded without inter prediction from any picturethat precedes the IDR picture in decoding order. The first picture of each coded video sequencein decoding order is an IDR picture.

3.44 inter coding: Coding of a block, macroblock, slice, or picture that uses inter prediction.

3.45 inter prediction: A prediction derived from decoded samples of reference pictures other than the current decoded picture.
3.46 interpretation sample value: A possibly-altered value corresponding to a decoded sample value of an auxiliary coded picture that may be generated for use in the display process. Interpretation sample values are not used in the decoding process and have no normative effect on the decoding process.

3.47 intra coding: Coding of a block, macroblock, slice, or picture that uses intra prediction.

3.48 intra prediction: A prediction derived from the decoded samples of the same decoded slice.

3.49 intra slice: See I slice.
3.50 inverse transform: A part of the decoding process by which a set of transform coefficients are converted into spatial-domain values, or by which a set of transform coefficients are converted into DC transform coefficients.

3.51 layer: One of a set of syntactical structures in a non-branching hierarchical relationship. Higher layers contain lower layers. The coding layers are the coded video sequence, picture, slice, and macroblock layers.

3.52 level: A defined set of constraints on the values that may be taken by the syntax elements and variables of this International Standard. The same set of levels is defined for all profiles, with most aspects of the definition of each level being in common across different profiles. Individual implementations may, within specified constraints, support a different level for each supported profile. In a different context, a level is the value of a transform coefficient prior to scaling (see the definition of transform coefficient level).

3.53 list: A one-dimensional array of syntax elements or variables.
3.54 luma: An adjective specifying that a sample array or single sample is representing the monochrome signal related to the primary colours. The symbol or subscript used for luma is Y or L.

NOTE – The term luma is used rather than the term luminance in order to avoid the implication of the use of linear light transfer characteristics that is often associated with the term luminance. The symbol L is sometimes used instead of the symbol Y to avoid confusion with the symbol y as used for vertical location.

3.55 macroblock: A 16x16 block of luma samples and two corresponding blocks of chroma samples of a picture that has three sample arrays, or a 16x16 block of samples of a monochrome picture or a picture that is coded using three separate colour planes. The division of a slice into macroblocks is a partitioning.

3.56 macroblock address: a macroblock address is the index of a macroblock in a macroblock raster scan of the picture starting with zero for the top-left macroblock in a picture. 

3.57 macroblock location: The two-dimensional coordinates of a macroblock in a picture denoted by ( x, y ). For the top left macroblock of the picture ( x, y ) is equal to ( 0, 0 ). x is incremented by 1 for each macroblock column from left to right. y is incremented by 1 for each macroblock row from top to bottom. 

3.58 macroblock partition: A block of luma samples and two corresponding blocks of chroma samples resulting from a partitioning of a macroblock for inter prediction for a picture that has three sample arrays or a block of luma samples resulting from a partitioning of a macroblock for inter prediction for a monochrome picture or a picture that is coded using three separate colour planes.

3.59 matrix: A two-dimensional array of syntax elements or variables.
3.60 may: A term used to refer to behaviour that is allowed, but not necessarily required. In some places where the optional nature of the described behaviour is intended to be emphasized, the phrase "may or may not" is used to provide emphasis.

3.61 memory management control operation: Seven operations that control reference picture marking.

3.62 motion vector: A two-dimensional vector used for inter prediction that provides an offset from the coordinates in the decoded picture to the coordinates in a reference picture.

3.63 must: A term used in expressing an observation about a requirement or an implication of a requirement that is specified elsewhere in this International Standard. This term is used exclusively in an informative context.

3.64 NAL unit: A syntax structure containing an indication of the type of data to follow and bytes containing that data in the form of an RBSP interspersed as necessary with emulation prevention bytes.

3.65 NAL unit stream: A sequence of NAL units.

3.66 non-reference frame: A frame coded with nal_ref_idc equal to 0.

3.67 non-reference picture: A picture coded with nal_ref_idc equal to 0. A non-reference picture is not used for inter prediction of any other pictures.

3.68 note: A term used to prefix informative remarks. This term is used exclusively in an informative context.

3.69 output order: The order in which the decodedpictures are output from the decoded picture buffer.

3.70 P slice: A slice that may be decoded using intraprediction or inter prediction using at most one motion vector and reference index to predict the sample values of each block.

3.71 parameter: A syntax element of a sequence parameter set or a picture parameter set. Parameter is also used as part of the defined term quantisation parameter.

3.72 partitioning: The division of a set into subsets such that each element of the set is in exactly one of the subsets.

3.73 picture: A collective term for  a frame.

3.74 picture parameter set: A syntax structure containing syntax elements that apply to zero or more entire coded pictures as determined by the pic_parameter_set_id syntax element found in each slice header.
3.75 picture order count: A variable that is associated with each coded picture and has a value that is non-decreasing with increasing picture position in output order relative to the first output picture of the previous IDR picture in decoding order or relative to the previous picture, in decoding order, that contains a memory management control operation that marks all reference pictures as "unused for reference".

3.76 prediction: An embodiment of the prediction process.

3.77 prediction process: The use of a predictor to provide an estimate of the sample value or data element currently being decoded.

3.78 predictive slice: See P slice.
3.79 predictor: A combination of specified values or previously decoded sample values or data elements used in the decoding process of subsequent sample values or data elements.

3.80 primary coded picture: The coded representation of a picture to be used by the decoding process for a bitstream conforming to this International Standard. The primary coded picture contains all macroblocks of the picture. The only pictures that have a normative effect on the decoding process are primary coded pictures. e.
3.81 profile: A specified subset of the syntax of this International Standard.

3.82 quantisation parameter: A variable used by the decoding process for scaling of transform coefficient levels.
3.83 random access: The act of starting the decoding process for a bitstream at a point other than the beginning of the stream.

3.84 raster scan: A mapping of a rectangular two-dimensional pattern to a one-dimensional pattern such that the first entries in the one-dimensional pattern are from the first top row of the two-dimensional pattern scanned from left to right, followed similarly by the second, third, etc., rows of the pattern (going down) each scanned from left to right.

3.85 raw byte sequence payload (RBSP): A syntax structure containing an integer number of bytes that is encapsulated in a NAL unit. An RBSP is either empty or has the form of a string of data bits containing syntax elements followed by an RBSP stop bit and followed by zero or more subsequent bits equal to 0.

3.86 raw byte sequence payload (RBSP) stop bit: A bit equal to 1 present within a raw byte sequence payload (RBSP) after a string of data bits. The location of the end of the string of data bits within an RBSP can be identified by searching from the end of the RBSP for the RBSP stop bit, which is the last non-zero bit in the RBSP.
3.87 recovery point: A point in the bitstream at which the recovery of an exact or an approximate representation of the decoded pictures represented by the bitstream is achieved after a random access or broken link.

3.88 reference frame: A reference frame may be used for inter prediction when P slices of a coded frame are decoded. See also reference picture.

3.89 reference index: An index into a reference picture list.

3.90 reference picture: A picture with nal_ref_idc not equal to 0. A reference picture contains samples that may be used for inter prediction in the decoding process of subsequent pictures in decoding order.

3.91 reference picture list: A list of reference pictures that is used for inter prediction of a P slice. For the decoding process of a P slice, there is one reference picture list..
3.92 reference picture list 0: A reference picture list used for inter prediction of a Pslice. All inter prediction used for P slices uses reference picture list 0.

3.93 reference picture marking: Specifies, in the bitstream, how the decoded pictures are marked for inter prediction.

3.94 reserved: The term reserved, when used in the clauses specifying some values of a particular syntax element, are for future use by ITU-T | ISO/IEC. These values shall not be used in bitstreams conforming to this International Standard, but may be used in future extensions of this International Standard by ITU‑T | ISO/IEC.

3.95 residual: The decoded difference between a prediction of a sample or data element and its decoded value.

3.96 run: A number of consecutive data elements represented in the decoding process. In one context, the number of zero-valued transform coefficient levels preceding a non-zero transform coefficient level in the list of transform coefficient levels generated by a zig-zag scan. In other contexts, run refers to a number of macroblocks.

3.97 sample aspect ratio: Specifies, for assisting the display process, which is not specified in this International Standard, the ratio between the intended horizontal distance between the columns and the intended vertical distance between the rows of the luma sample array in a frame. Sample aspect ratio is expressed as h:v, where h is horizontal width and v is vertical height (in arbitrary units of spatial distance).

3.98 scaling: The process of multiplying transform coefficient levels by a factor, resulting in transform coefficients.

3.99 sequence parameter set: A syntax structure containing syntax elements that apply to zero or more entire coded video sequences as determined by the content of a seq_parameter_set_id syntax element found in the picture parameter set referred to by the pic_parameter_set_id syntax element found in each slice header.
3.100 shall: A term used to express mandatory requirements for conformance to this International Standard. When used to express a mandatory constraint on the values of syntax elements or on the results obtained by operation of the specified decoding process, it is the responsibility of the encoder to ensure that the constraint is fulfilled. When used in reference to operations performed by the decoding process, any decoding process that produces identical results to the decoding process described herein conforms to the decoding process requirements of this International Standard.
3.101 should: A term used to refer to behaviour of an implementation that is encouraged to be followed under anticipated ordinary circumstances, but is not a mandatory requirement for conformance to this International Standard.

3.102 skipped macroblock: A macroblock for which no data is coded other than an indication that the macroblock is to be decoded as "skipped". This indication may be common to several macroblocks.

3.103 slice: An integer number of macroblocks ordered consecutively in the raster scan within the primary coded picture. The macroblock addresses are derived from the first macroblock address in a slice (as represented in the slice header) and, when a picture is coded using three separate colour planes, a colour plane identifier.
3.104 [void]
3.105 [void]
3.106 slice header: A part of a coded slice containing the data elements pertaining to the first or all macroblocks represented in the slice.

3.107 source: Term used to describe the video material or some of its attributes before encoding.

3.108 start code prefix: A unique sequence of three bytes equal to 0x000001 embedded in the byte stream as a prefix to each NAL unit. The location of a start code prefix can be used by a decoder to identify the beginning of a new NAL unit and the end of a previous NAL unit. Emulation of start code prefixes is prevented within NAL units by the inclusion of emulation prevention bytes.

3.109 string of data bits (SODB): A sequence of some number of bits representing syntax elements present within a raw byte sequence payload prior to the raw byte sequence payload stop bit. Within an SODB, the left-most bit is considered to be the first and most significant bit, and the right-most bit is considered to be the last and least significant bit.

3.110 sub-macroblock: One quarter of the samples of a macroblock, i.e., an 8x8 luma block and two corresponding chroma blocks of which one corner is located at a corner of the macroblock for a picture that has three sample arrays or an 8x8 luma block of which one corner is located at a corner of the macroblock for a monochrome picture or a picture that is coded using three separate colour planes.

3.111 sub-macroblock partition: A block of luma samples and two corresponding blocks of chroma samples resulting from a partitioning of a sub-macroblock for inter prediction for a picture that has three sample arrays or a block of luma samples resulting from a partitioning of a sub-macroblock for inter prediction for a monochrome picture or a picture that is coded using three separate colour planes.

3.112 syntax element: An element of data represented in the bitstream.

3.113 syntax structure: Zero or more syntax elements present together in the bitstream in a specified order.
3.114 transform coefficient: A scalar quantity, considered to be in a frequency domain, that is associated with a particular one-dimensional or two-dimensional frequency index in an inverse transform part of the decoding process.

3.115 transform coefficient level: An integer quantity representing the value associated with a particular two‑dimensional frequency index in the decoding process prior to scaling for computation of a transform coefficient value.

3.116 universal unique identifier (UUID): An identifier that is unique with respect to the space of all universal unique identifiers.

3.117 unspecified: The term unspecified, when used in the clauses specifying some values of a particular syntax element, indicates that the values have no specified meaning in this International Standard and will not have a specified meaning in the future as an integral part of this International Standard.

3.118 variable length coding (VLC): A reversible procedure for entropy coding that assigns shorter bit strings to symbols expected to be more frequent and longer bit strings to symbols expected to be less frequent.

3.119 VCL NAL unit: A collective term for coded slice NAL units.
3.120 zig-zag scan: A specific sequential ordering of transform coefficient levels from (approximately) the lowest spatial frequency to the highest. Zig-zag scan is used for transform coefficient levels in frame macroblocks.
4 Abbreviations

For the purposes of this International Standard, the following abbreviations apply:
CAVLC
Context-based Adaptive Variable Length Coding
CBR
Constant Bit Rate
CPB
Coded Picture Buffer
DPB
Decoded Picture Buffer

DUT
Decoder under test

FIFO
First-In, First-Out

HRD
Hypothetical Reference Decoder

HSS
Hypothetical Stream Scheduler

IDR
Instantaneous Decoding Refresh

LSB
Least Significant Bit

MB
Macroblock

MSB
Most Significant Bit

NAL
Network Abstraction Layer

RBSP
Raw Byte Sequence Payload

SEI
Supplemental Enhancement Information

SODB
String Of Data Bits

UUID
Universal Unique Identifier

VBR
Variable Bit Rate

VCL
Video Coding Layer

VLC
Variable Length Coding
VUI
Video Usability Information

5 Conventions

NOTE – The mathematical operators used in this Specification are similar to those used in the C programming language. However, integer division and arithmetic shift operations are specifically defined. Numbering and counting conventions generally begin from 0.

5.1 Arithmetic operators

The following arithmetic operators are defined as follows:


Addition

−
Subtraction (as a two-argument operator) or negation (as a unary prefix operator)

*
Multiplication, including matrix multiplication

x y
Exponentiation. Specifies x to the power of y. In other contexts, such notation is used for superscripting not intended for interpretation as exponentiation.

/
Integer division with truncation of the result toward zero. For example, 7/4 and −7/−4 are truncated to 1 and −7/4 and 7/−4 are truncated to −1.


Used to denote division in mathematical equations where no truncation or rounding is intended.


[image: image1.wmf]y

x


Used to denote division in mathematical equations where no truncation or rounding is intended.


[image: image2.wmf]å

=

y

x

i

i

f

)

(


The summation of f( i ) with i taking all integer values from x up to and including y.

x % y
Modulus. Remainder of x divided by y, defined only for integers x and y with x >= 0 and y > 0.

5.2 Logical operators

The following logical operators are defined as follows:

x&&y
Boolean logical "and" of x and y.

x  | |  y
Boolean logical "or" of x and y.

!
Boolean logical "not".

x ? y : z
If x is TRUE or not equal to 0, evaluates to the value of y; otherwise, evaluates to the value of z.

5.3 Relational operators

The following relational operators are defined as follows:


Greater than.


Greater than or equal to.


Less than.


Less than or equal to.


Equal to.

!
Not equal to.

When a relational operator is applied to a syntax element or variable that has been assigned the value "na" (not applicable), the value "na" is treated as a distinct value for the syntax element or variable. The value "na" is considered not to be equal to any other value.

5.4 Bit-wise operators

The following bit-wise operators are defined as follows:

&
Bit-wise "and". When operating on integer arguments, operates on a two's complement representation of the integer value. When operating on a binary argument that contains fewer bits than another argument, the shorter argument is extended by adding more significant bits equal to 0.

|
Bit-wise "or". When operating on integer arguments, operates on a two's complement representation of the integer value. When operating on a binary argument that contains fewer bits than another argument, the shorter argument is extended by adding more significant bits equal to 0.

^
Bit-wise "exclusive or". When operating on integer arguments, operates on a two's complement representation of the integer value. When operating on a binary argument that contains fewer bits than another argument, the shorter argument is extended by adding more significant bits equal to 0.

x >> y
Arithmetic right shift of a two's complement integer representation of x by y binary digits. This function is defined only for positive integer values of y. Bits shifted into the MSBs as a result of the right shift have a value equal to the MSB of x prior to the shift operation.

x << y
Arithmetic left shift of a two's complement integer representation of x by y binary digits. This function is defined only for positive integer values of y. Bits shifted into the LSBs as a result of the left shift have a value equal to 0.

5.5 Assignment operators

The following arithmetic operators are defined as follows:


Assignment operator.


Increment, i.e., x is equivalent to xx  1; when used in an array index, evaluates to the value of the variable prior to the increment operation.

−−
Decrement, i.e., x−− is equivalent to xx− 1; when used in an array index, evaluates to the value of the variable prior to the decrement operation.

+=
Increment by amount specified, i.e., x += 3 is equivalent to x = x + 3, and x += (−3) is equivalent to x = x + (−3).

−=
Decrement by amount specified, i.e., x −= 3 is equivalent to x = x − 3, and x −= (−3) is equivalent to x = x − (−3).

5.6 Range notation

The following notation is used to specify a range of values:

x = y..z
x takes on integer values starting from y to z, inclusive, with x, y, and z being integer numbers.

5.7 Mathematical functions

The following mathematical functions are defined as follows: 
BitDepthY and BitDepthC are both are equal to 8 in this standard

Abs( x )  
[image: image3.wmf]î

í

ì

<

-

>=

0

x

;

x

0

x

;

x



(5-1)

Ceil( x ) 
the smallest integer greater than or equal to x.
(5-2)

Clip1Y( x ) = Clip3( 0, ( 1 << BitDepthY ) − 1, x )

(5-3)

Clip1C( x ) = Clip3( 0, ( 1 << BitDepthC ) − 1, x )

(5-4)

Clip3( x, y, z ) = 
[image: image4.wmf]ï

î

ï

í

ì

>

<

otherwise

;

;

;

z

y

z

y

x

z

x



(5-5)

Floor( x )
the greatest integer less than or equal to x.

(5-6)

InverseRasterScan( a, b, c, d, e ) = 
[image: image5.wmf]î

í

ì

=

=

=

=

1

;

*

)

)

/

(

/

(

0

;

*

)

)

/

(

%

(

e

c

b

d

a

e

b

b

d

a


(5-7)

Log2( x ) returns the base-2 logarithm of x.

(5-8)

Log10( x ) returns the base-10 logarithm of x.

(5-9)

Median( x, y, z ) = x + y + z − Min( x, Min( y, z ) ) − Max( x, Max( y, z ) )
(5-10)

Min( x, y ) = 
[image: image6.wmf]î

í

ì

>

<=

y

x

;

y

y

x

;

x



(5-11)

Max( x, y ) = 
[image: image7.wmf]î

í

ì

<

>=

y

x

;

y

y

x

;

x



(5-12)

Round( x ) = Sign( x ) * Floor( Abs( x ) + 0.5 )

(5-13)

Sign( x )  
[image: image8.wmf]î

í

ì

<

-

>=

0

x

;

1

0

x

;

1



(5-14)

Sqrt( x ) = 
[image: image9.wmf]x




(5-15)

5.8 Order of operation precedence

When order of precedence in an expression is not indicated explicitly by use of parentheses, the following rules apply:

–
operations of a higher precedence are evaluated before any operation of a lower precedence,

–
operations of the same precedence are evaluated sequentially from left to right.

Table 5‑1 specifies the precedence of operations from highest to lowest; a higher position in the table indicates a higher precedence.

NOTE – For those operators that are also used in the C programming language, the order of precedence used in this Specification is the same as used in the C programming language.

Table 5‑1 – Operation precedence from highest (at top of table) to lowest (at bottom of table)

	operations (with operands x, y, and z)

	"x++", "x− −"

	"!x", "−x" (as a unary prefix operator)

	xy

	"x * y", "x / y", "x  y""
[image: image10.wmf]y

x

", "x % y"

	"x + y", "x − y" (as a two-argument operator), "
[image: image11.wmf]å

=

y

x

i

i

f

)

(

"

	"x << y", "x >> y"

	"x < y", "x <= y", "x > y", "x >= y"

	"x = = y", "x != y"

	"x & y"

	"x | y"

	"x && y"

	"x | | y"

	"x ? y : z"

	"x = y", "x += y", "x −= y"


5.9 Variables, syntax elements, and tables

Syntax elements in the bitstream are represented in bold type. Each syntax element is described by its name (all lower case letters with underscore characters), its one or two syntax categories, and one or two descriptors for its method of coded representation. The decoding process behaves according to the value of the syntax element and to the values of previously decoded syntax elements. When a value of a syntax element is used in the syntax tables or the text, it appears in regular (i.e., not bold) type.

In some cases the syntax tables may use the values of other variables derived from syntax elements values. Such variables appear in the syntax tables, or text, named by a mixture of lower case and upper case letter and without any underscore characters. Variables starting with an upper case letter are derived for the decoding of the current syntax structure and all depending syntax structures. Variables starting with an upper case letter may be used in the decoding process for later syntax structures without mentioning the originating syntax structure of the variable. Variables starting with a lower case letter are only used within the subclause in which they are derived.

In some cases, "mnemonic" names for syntax element values or variable values are used interchangeably with their numerical values. Sometimes "mnemonic" names are used without any associated numerical values. The association of values and names is specified in the text. The names are constructed from one or more groups of letters separated by an underscore character. Each group starts with an upper case letter and may contain more upper case letters.

NOTE – The syntax is described in a manner that closely follows the C-language syntactic constructs.

Functions that specify properties of the current position in the bitstream are referred to as syntax functions. These functions are specified in subclause 7.2 and assume the existence of a bitstream pointer with an indication of the position of the next bit to be read by the decoding process from the bitstream. Syntax functions are described by their names, which are constructed as syntax element names and end with left and right round parentheses including zero or more variable names (for definition) or values (for usage), separated by commas (if more than one variable).

Functions that are not syntax functions (including mathematical functions specified in subclause 5.7) are described by their names, which start with an upper case letter, contain a mixture of lower and upper case letters without any underscore character, and end with left and right parentheses including zero or more variable names (for definition) or values (for usage) separated by commas (if more than one variable).

Subscripts or square parentheses are used for the indexing of arrays. In reference to a visual depiction of a matrix, the first subscript is used as a row (vertical) index and the second subscript is used as a column (horizontal) index. The indexing order is reversed when using square parentheses rather than subscripts for indexing. Thus, an element of a matrix s at horizontal position x and vertical position y may be denoted either as s[ x, y ] or as syx.

Binary notation is indicated by enclosing the string of bit values by single quote marks. For example, '01000001' represents an eight-bit string having only its second and its last bits (counted from the most to the least significant bit) equal to 1.

Hexadecimal notation, indicated by prefixing the hexadecimal number by "0x", may be used instead of binary notation when the number of bits is an integer multiple of 4. For example, 0x41 represents an eight-bit string having only its second and its last bits (counted from the most to the least significant bit) equal to 1.

Numerical values not enclosed in single quotes and not prefixed by "0x" are decimal values.

A value equal to 0 represents a FALSE condition in a test statement. The value TRUE is represented by any value different from zero.

5.10 Text description of logical operations

In the text, a statement of logical operations as would be described in pseudo-code as

if( condition 0 )
  statement 0
else if ( condition 1 )
  statement 1
…
else /* informative remark on remaining condition */
  statement n

may be described in the following manner:

... as follows / ... the following applies:

–
If condition 0, statement 0

–
Otherwise, if condition 1, statement 1

–
…

–
Otherwise (informative remark on remaining condition), statement n

Each "If...Otherwise, if...Otherwise, ..." statement in the text is introduced with "... as follows" or "... the following applies" immediately followed by "If ... ". The last condition of the "If...Otherwise, if...Otherwise, ..." is always an "Otherwise, ...". Interleaved "If...Otherwise, if...Otherwise, ..." statements can be identified by matching "... as follows" or "... the following applies" with the ending "Otherwise, ...".

In the text, a statement of logical operations as would be described in pseudo-code as

if( condition 0a  &&  condition 0b )
  statement 0
else if ( condition 1a  | |  condition 1b )
  statement 1
…
else
  statement n

may be described in the following manner:

... as follows / ... the following applies:

–
If all of the following conditions are true, statement 0

–
condition 0a

–
condition 0b

–
Otherwise, if any of the following conditions are true, statement 1

–
condition 1a

–
condition 1b

–
…

–
Otherwise, statement n

In the text, a statement of logical operations as would be described in pseudo-code as:

if( condition 0 )
  statement 0
if ( condition 1 )
  statement 1

may be described in the following manner:

When condition 0, statement 0

When condition 1, statement 1

5.11 Processes

Processes are used to describe the decoding of syntax elements. A process has a separate specification and invoking. All syntax elements and upper case variables that pertain to the current syntax structure and depending syntax structures are available in the process specification and invoking. A process specification may also have a lower case variable explicitly specified as the input. Each process specification has explicitly specified an output. The output is a variable that can either be an upper case variable or a lower case variable.

When invoking a process, the assignment of variables is specified as follows:

–
If the variables at the invoking and the process specification do not have the same name, the variables are explicitly assigned to lower case input or output variables of the process specification.

–
Otherwise (the variables at the invoking and the process specification have the same name), assignment is implied.

In the specification of a process, a specific macroblock may be referred to by the variable name having a value equal to the address of the specific macroblock.

6 Source, coded, decoded and output data formats, scanning processes, and neighbouring relationships

6.1 Bitstream formats

This subclause specifies the relationship between the NAL unit stream and byte stream, either of which are referred to as the bitstream.

The bitstream can be in one of two formats: the NAL unit stream format or the byte stream format. The NAL unit stream format is conceptually the more "basic" type. It consists of a sequence of syntax structures called NAL units. This sequence is ordered in decoding order. There are constraints imposed on the decoding order (and contents) of the NAL units in the NAL unit stream.

The byte stream format can be constructed from the NAL unit stream format by ordering the NAL units in decoding order and prefixing each NAL unit with a start code prefix and zero or more zero-valued bytes to form a stream of bytes. The NAL unit stream format can be extracted from the byte stream format by searching for the location of the unique start code prefix pattern within this stream of bytes. Methods of framing the NAL units in a manner other than use of the byte stream format are outside the scope of this International Standard. The byte stream format is specified in Annex B.

6.2 Source, decoded, and output picture formats

This subclause specifies the relationship between source and decoded frames that is given via the bitstream.

The video source that is represented by the bitstream is a sequence of frames (called pictures) in decoding order.

The source and decoded pictures  are each comprised of one or more sample arrays:

–
Luma (Y) only (monochrome), with or without an auxiliary array.

–
Luma and two Chroma (YCbCr or YCgCo), with or without an auxiliary array.
–
Green, Blue and Red (GBR, also known as RGB), with or without an auxiliary array.

–
Arrays representing other unspecified monochrome or tri-stimulus colour samplings (for example, YZX, also known as XYZ), with or without an auxiliary array.

For convenience of notation and terminology in this Specification, the variables and terms associated with these arrays are referred to as luma (or L or Y) and chroma, where the two chroma arrays are referred to as Cb and Cr; regardless of the actual colour representation method in use. The actual colour representation method in use can be indicated in syntax that is specified in Annex E.

Table 6‑1 –Chroma Format
	chroma_format_idc
	Chroma Format

	1
	4:2:0


In monochrome sampling there is only one sample array, which is nominally considered the luma array.

In 4:2:0 sampling, each of the two chroma arrays has half the height and half the width of the luma array.

The width and height of the luma sample arrays are each an integer multiple of 16. In coded video sequences using 4:2:0 chroma sampling, the width and height of chroma sample arrays are each an integer multiple of 8.  The width or height of pictures output from the decoding process need not be an integer multiple of 16 and can be specified using a cropping rectangle.

The syntax for the luma and (when present) chroma arrays are ordered such when data for all three colour components is present, the data for the luma array is first, followed by any data for the Cb array, followed by any data for the Cr array, unless otherwise specified.

The number of bits necessary for the representation of each of the samples in the luma and chroma arrays in a video sequence is in the range of 8 to 14, and the number of bits used in the luma array may differ from the number of bits used in the chroma arrays.

the nominal vertical and horizontal relative locations of luma and chroma samples in frames are shown in Figure 6‑1. Alternative chroma sample relative locations may be indicated in video usability information (see Annex E).

[image: image12.wmf]F

r

a

m

e

G

u

i

d

e

:

X

 

Š

 

L

o

c

a

t

i

o

n

 

o

f

 

l

u

m

a

 

s

a

m

p

l

e

O

 

Š

 

L

o

c

a

t

i

o

n

 

o

f

 

c

h

r

o

m

a

 

s

a

m

p

l

e


Figure 6‑1 – Nominal vertical and horizontal locations of 4:2:0 luma and chroma samples in a frame

The samples are processed in units of macroblocks. The luma array for each macroblock is 16 samples in both width and height. The variables MbWidthC and MbHeightC, which specify the width and height, respectively, of the chroma arrays for each macroblock, are derived as follows:


MbWidthC and MbHeightC are derived as

MbWidthC = 16 / 2

(6-1)
MbHeightC = 16 / 2

(6-2)
6.3 Spatial subdivision of pictures and slices

This subclause specifies how a picture is partitioned into slices and macroblocks. Pictures are divided into slices. A slice is a sequence of macroblocks.  Each macroblock is comprised of one 16x16 luma array and two corresponding chroma sample arrays. Each macroblock represents a spatial rectangular region of the picture. For example, a picture may be divided into two slices as shown inFigure 6‑7.

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	


Figure 6‑7 – A picture with 11 by 9 macroblocks that is partitioned into two slices

6.4 Inverse scanning processes and derivation processes for neighbours

This subclause specifies inverse scanning processes; i.e., the mapping of indices to locations, and derivation processes for neighbours.

6.4.1 Inverse macroblock scanning process

Input to this process is a macroblock address mbAddr.

Output of this process is the location ( x, y ) of the upper-left luma sample for the macroblock with address mbAddr relative to the upper-left sample of the picture.

The inverse macroblock scanning process is specified as follows:

x = InverseRasterScan( mbAddr, 16, 16, PicWidthInSamplesL, 0 ) 
(6-3)

y = InverseRasterScan( mbAddr, 16, 16, PicWidthInSamplesL, 1 ) 
(6-4)

6.4.2 Inverse macroblock partition and sub-macroblock partition scanning process

Macroblocks or sub-macroblocks may be partitioned, and the partitions are scanned for inter prediction as shown in Figure 6‑9. The outer rectangles refer to the samples in a macroblock or sub-macroblock, respectively. The rectangles refer to the partitions. The number in each rectangle specifies the index of the inverse macroblock partition scan or inverse sub-macroblock partition scan.

The functions MbPartWidth( ), MbPartHeight( ), SubMbPartWidth( ), and SubMbPartHeight( ) describing the width and height of macroblock partitions and sub-macroblock partitions are specified in Tables 7‑13, 7‑14, 7‑17, and 7‑18. MbPartWidth( ) and MbPartHeight( ) are set to appropriate values for each macroblock, depending on the macroblock type. SubMbPartWidth( ) and SubMbPartHeight( ) are set to appropriate values for each sub-macroblock of a macroblock with mb_type equal to P_8x8 or P_8x8ref0, depending on the sub-macroblock type.


[image: image13.wmf] 

0

 

Sub

-

macroblock

 

partitions

 

0

 

1

 

0

 

1

 

0

 

1

 

2

 

3

 

0

 

0

 

1

 

0

 

1

 

0

 

2

 

1

 

3

 

1 macroblock partition of

 

16*16 luma samples and

 

associated chroma samples

 

Macroblock

 

partitions

 

2 mac

roblock partitions of

 

16*8 luma samples and

 

associated chroma samples

 

4 sub

-

macroblocks of

 

8*8 luma samples and

 

associated chroma samples

 

2 macroblock partitions of

 

8*16 luma samples and

 

associated chroma samples

 

1 sub

-

macroblock partition

 

of 8*8

 luma samples and

 

associated chroma samples

 

2 sub

-

macroblock partitions

 

of 8*4 luma samples and

 

associated chroma samples

 

4 sub

-

macroblock partitions

 

of 4*4 luma samples and

 

associated chroma samples

 

2 sub

-

macroblock partitions

 

 of 4*8 luma sample

s and

 

associated chroma samples

 


Figure 6‑9 – Macroblock partitions, sub-macroblock partitions, macroblock partition scans,
and sub-macroblock partition scans

6.4.2.1 Inverse macroblock partition scanning process

Input to this process is the index of a macroblock partition mbPartIdx.

Output of this process is the location ( x, y ) of the upper-left luma sample for the macroblock partition mbPartIdx relative to the upper-left sample of the macroblock.

The inverse macroblock partition scanning process is specified by

x = InverseRasterScan( mbPartIdx, MbPartWidth( mb_type ), MbPartHeight( mb_type ), 16, 0 )
(6-11)

y = InverseRasterScan( mbPartIdx, MbPartWidth( mb_type ), MbPartHeight( mb_type ), 16, 1 )  
(6-12)

6.4.2.2 Inverse sub-macroblock partition scanning process

Inputs to this process are the index of a macroblock partition mbPartIdx and the index of a sub-macroblock partition subMbPartIdx.

Output of this process is the location ( x, y ) of the upper-left luma sample for the sub-macroblock partition subMbPartIdx relative to the upper-left sample of the sub-macroblock.

The inverse sub-macroblock partition scanning process is specified as follows:

–
If mb_type is equal to P_8x8 or P_8x8ref0

x = InverseRasterScan( subMbPartIdx, SubMbPartWidth( sub_mb_type[ mbPartIdx ] ), 



                                          SubMbPartHeight( sub_mb_type[ mbPartIdx ] ), 8, 0 ) 
(6-13)

y = InverseRasterScan( subMbPartIdx, SubMbPartWidth( sub_mb_type[ mbPartIdx ] ), 



                                          SubMbPartHeight( sub_mb_type[ mbPartIdx ] ), 8, 1 ) 
(6-14)

–
Otherwise (mb_type is not equal to P_8x8 or P_8x8ref0),

x = InverseRasterScan( subMbPartIdx, 4, 4, 8, 0 )

(6-15)

y = InverseRasterScan( subMbPartIdx, 4, 4, 8, 1 )

(6-16)
6.4.3 Inverse 4x4 luma block scanning process

Input to this process is the index of a 4x4 luma block luma4x4BlkIdx.

Output of this process is the location ( x, y ) of the upper-left luma sample for the 4x4 luma block with index luma4x4BlkIdx relative to the upper-left luma sample of the macroblock.

Figure 6‑10 shows the scan for the 4x4 luma blocks.


[image: image14.emf]0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15


Figure 6‑10 – Scan for 4x4 luma blocks

The inverse 4x4 luma block scanning process is specified by

x = InverseRasterScan( luma4x4BlkIdx / 4, 8, 8, 16, 0 ) +
InverseRasterScan( luma4x4BlkIdx % 4, 4, 4, 8, 0 ) 

(6-17)
y = InverseRasterScan( luma4x4BlkIdx / 4, 8, 8, 16, 1 ) +
 InverseRasterScan( luma4x4BlkIdx % 4, 4, 4, 8, 1 ) 

(6-18)

6.4.4 (void)

6.4.5 Inverse 8x8 luma block scanning process

Input to this process is the index of an 8x8 luma block luma8x8BlkIdx.

Output of this process is the location ( x, y ) of the upper-left luma sample for the 8x8 luma block with index luma8x8BlkIdx relative to the upper-left luma sample of the macroblock.

Figure 6‑11 shows the scan for the 8x8 luma blocks.


[image: image15.emf]0 1

2 3


Figure 6‑11 – Scan for 8x8 luma blocks

The inverse 8x8 luma block scanning process is specified by:

x = InverseRasterScan( luma8x8BlkIdx, 8, 8, 16, 0 )

(6-19)

y = InverseRasterScan( luma8x8BlkIdx, 8, 8, 16, 1 )

(6-20)

6.4.6 (void)

6.4.7 Inverse 4x4 chroma block scanning process

Input to this process is the index of a 4x4 chroma block chroma4x4BlkIdx.

Output of this process is the location ( x, y ) of the upper-left chroma sample for a 4x4 chroma block with index chroma4x4BlkIdx relative to the upper-left chroma sample of the macroblock.

The inverse 4x4chroma block scanning process is specified by

x = InverseRasterScan( chroma4x4BlkIdx, 4, 4, 8, 0 )
(6-21)

y = InverseRasterScan( chroma4x4BlkIdx, 4, 4, 8, 1 )
(6-22)
6.4.8 Derivation process of the availability for macroblock addresses

Input to this process is a macroblock address mbAddr.

Output of this process is the availability of the macroblock mbAddr.

NOTE – The meaning of availability is determined when this process is invoked.

The macroblock is marked as available, unless any of the following conditions aretrue, in which case the macroblock is marked as not available:

–
mbAddr < 0,

–
mbAddr > CurrMbAddr,

–
the macroblock with address mbAddr belongs to a different slice than the macroblock with address CurrMbAddr.

6.4.9 Derivation process for neighbouring macroblock addresses and their availability

The outputs of this process are:

–
mbAddrA: the address and availability status of the macroblock to the left of the current macroblock,

–
mbAddrB: the address and availability status of the macroblock above the current macroblock,

–
mbAddrC: the address and availability status of the macroblock above-right of the current macroblock,

–
mbAddrD: the address and availability status of the macroblock above-left of the current macroblock.

Figure 6‑12 shows the relative spatial locations of the macroblocks with mbAddrA, mbAddrB, mbAddrC, and mbAddrD relative to the current macroblock with CurrMbAddr.

	mbAddrD
	mbAddrB
	mbAddrC

	mbAddrA
	CurrMbAddr
	

	
	
	


Figure 6‑12 – Neighbouring macroblocks for a given macroblock
Input to the process in subclause 6.4.8 is mbAddrA = CurrMbAddr − 1 and the output is whether the macroblock mbAddrA is available. In addition, mbAddrA is marked as not available when CurrMbAddr % PicWidthInMbs is equal to 0.

Input to the process in subclause 6.4.8 is mbAddrB = CurrMbAddr − PicWidthInMbs and the output is whether the macroblock mbAddrB is available.

Input to the process in subclause 6.4.8 is mbAddrC = CurrMbAddr − PicWidthInMbs + 1 and the output is whether the macroblock mbAddrC is available. In addition, mbAddrC is marked as not available when ( CurrMbAddr + 1 ) % PicWidthInMbs is equal to 0.

Input to the process in subclause 6.4.8 is mbAddrD = CurrMbAddr − PicWidthInMbs − 1 and the output is whether the macroblock mbAddrD is available. In addition, mbAddrD is marked as not available when CurrMbAddr % PicWidthInMbs is equal to 0.
6.4.10 (void)
6.4.11 Derivation processes for neighbouring macroblocks, blocks, and partitions

Subclause  6.4.11.1 specifies the derivation process for neighbouring macroblocks.

Subclause  6.4.11.4 specifies the derivation process for neighbouring 4x4 luma blocks.

Subclause  6.4.11.5 specifies the derivation process for neighbouring 4x4 chroma blocks.

Subclause  6.4.11.7 specifies the derivation process for neighbouring partitions.

Table 6‑2 specifies the values for the difference of luma location ( xD, yD ) for the input and the replacement for N in mbAddrN, mbPartIdxN, subMbPartIdxN, luma8x8BlkIdxN, luma4x4BlkIdxN, cb4x4BlkIdxN, cr4x4BlkIdxN, and chroma4x4BlkIdxN for the output. These input and output assignments are used in subclauses 6.4.11.1 to 6.4.11.7. The variable predPartWidth is specified when Table 6‑2 is referred to.

Table 6‑2 – Specification of input and output assignments for subclauses 6.4.11.1 to 6.4.11.7
	N
	xD
	yD

	A
	−1
	0

	B
	0
	−1

	C
	predPartWidth
	−1

	D
	−1
	−1


Figure 6‑14 illustrates the relative location of the neighbouring macroblocks, blocks, or partitions A, B, C, and D to the current macroblock, partition, or block, when the current macroblock, partition, or block is in frame coding mode.


[image: image16.emf]Current

Macroblock

or Partition

or Block

A

B C D

 

Figure 6‑14 – Determination of the neighbouring macroblock, blocks, and partitions (informative)

6.4.11.1 Derivation process for neighbouring macroblocks

Outputs of this process are:

–
mbAddrA: the address of the macroblock to the left of the current macroblock and its availability status,

–
mbAddrB: the address of the macroblock above the current macroblock and its availability status.

mbAddrN (with N being A or B) is derived as specified by the following ordered steps:

1. The difference of luma location ( xD, yD ) is set according to Table 6‑2.

2. The derivation process for neighbouring locations as specified in subclause 6.4.12 is invoked for luma locations with ( xN, yN ) equal to ( xD, yD ), and the output is assigned to mbAddrN.

6.4.11.2 (void)
6.4.11.3  (void)

6.4.11.4 Derivation process for neighbouring 4x4 luma blocks

Input to this process is a 4x4 luma block index luma4x4BlkIdx.

Outputs of this process are:

–
mbAddrA: either equal to CurrMbAddr or the address of the macroblock to the left of the current macroblock and its availability status,

–
luma4x4BlkIdxA: the index of the 4x4 luma block to the left of the 4x4 block with index luma4x4BlkIdx and its availability status,

–
mbAddrB: either equal to CurrMbAddr or the address of the macroblock above the current macroblock and its availability status,

–
luma4x4BlkIdxB: the index of the 4x4 luma block above the 4x4 block with index luma4x4BlkIdx and its availability status.

mbAddrN and luma4x4BlkIdxN (with N being A or B) are derived as specified by the following ordered steps:

1. The difference of luma location ( xD, yD ) is set according to Table 6‑2.

2. The inverse 4x4 luma block scanning process as specified in subclause 6.4.3 is invoked with luma4x4BlkIdx as the input and ( x, y ) as the output.

3. The luma location ( xN, yN ) is specified by

xN = x + xD

(6-25)

yN = y + yD

(6-26)
4. The derivation process for neighbouring locations as specified in subclause 6.4.12 is invoked for luma locations with ( xN, yN ) as the input and the output is assigned to mbAddrN and ( xW, yW ).

5. The variable luma4x4BlkIdxN is derived as follows:

–
If mbAddrN is not available, luma4x4BlkIdxN is marked as not available.

–
Otherwise (mbAddrN is available), the derivation process for 4x4 luma block indices as specified in subclause 6.4.13.1 is invoked with the luma location ( xW, yW ) as the input and the outputis assigned to luma4x4BlkIdxN.

6.4.11.5 Derivation process for neighbouring 4x4 chroma blocks

Input to this process is a 4x4 chroma block index chroma4x4BlkIdx.

Outputs of this process are:

–
mbAddrA (either equal to CurrMbAddr or the address of the macroblock to the left of the current macroblock) and its availability status,

–
chroma4x4BlkIdxA (the index of the 4x4 chroma block to the left of the 4x4 chroma block with index chroma4x4BlkIdx) and its availability status,

–
mbAddrB (either equal to CurrMbAddr or the address of the macroblock above the current macroblock) and its availability status,

–
chroma4x4BlkIdxB (the index of the 4x4 chroma block above the 4x4 chroma block with index chroma4x4BlkIdx) and its availability status.

mbAddrN and chroma4x4BlkIdxN (with N being A or B) are derived as specified by the following ordered steps:

1. The difference of chroma location ( xD, yD ) is set according to Table 6‑2.

2. The inverse 4x4 chroma block scanning process as specified in subclause 6.4.7 is invoked with chroma4x4BlkIdx as the input and( x, y ) as the output.

3. The chroma location ( xN, yN ) is specified by

xN = x + xD

(6-27)

yN = y + yD

(6-28)

4. The derivation process for neighbouring locations as specified in subclause 6.4.12 is invoked for chroma locations with ( xN, yN ) as the input and the output is assigned to mbAddrN and ( xW, yW ).

5. The variable chroma4x4BlkIdxN is derived as follows:

–
If mbAddrN is not available, chroma4x4BlkIdxN is marked as not available.

–
Otherwise (mbAddrN is available), the derivation process for 4x4 chroma block indices as specified in subclause 6.4.13.2 is invoked with the chroma location ( xW, yW ) as the input and the output is assigned to chroma4x4BlkIdxN.

6.4.11.6 (void)

6.4.11.7 Derivation process for neighbouring partitions

Inputs to this process are:

–
a macroblock partition index mbPartIdx

–
a current sub-macroblock type currSubMbType

–
a sub-macroblock partition index subMbPartIdx

Outputs of this process are:

–
mbAddrA\mbPartIdxA\subMbPartIdxA: specifying the macroblock or sub-macroblock partition to the left of the current macroblock and its availability status, or the sub-macroblock partition CurrMbAddr\mbPartIdx\subMbPartIdx and its availability status,

–
mbAddrB\mbPartIdxB\subMbPartIdxB: specifying the macroblock or sub-macroblock partition above the current macroblock and its availability status, or the sub-macroblock partition CurrMbAddr\mbPartIdx\subMbPartIdx and its availability status,

–
mbAddrC\mbPartIdxC\subMbPartIdxC: specifying the macroblock or sub-macroblock partition to the right-above of the current macroblock and its availability status, or the sub-macroblock partition CurrMbAddr\mbPartIdx\subMbPartIdx and its availability status,

–
mbAddrD\mbPartIdxD\subMbPartIdxD: specifying the macroblock or sub-macroblock partition to the left-above of the current macroblock and its availability status, or the sub-macroblock partition CurrMbAddr\mbPartIdx\subMbPartIdx and its availability status.

mbAddrN, mbPartIdxN, and subMbPartIdxN (with N being A, B, C, or D) are derived as specified by the following ordered steps:

1. The inverse macroblock partition scanning process as described in subclause 6.4.2.1 is invoked with mbPartIdx as the input and ( x, y ) as the output.

2. The location of the upper-left luma sample inside a macroblock partition ( xS, yS ) is derived as follows:

–
If mb_type is equal to P_8x8 or P_8x8ref0, the inverse sub-macroblock partition scanning process as described in subclause 6.4.2.2 is invoked with subMbPartIdx as the input and ( xS, yS ) as the output.

–
Otherwise, ( xS, yS ) are set to ( 0, 0 ).

3. The variable predPartWidth in Table 6‑2 is specified as follows:

–
If mb_type is equal to P_Skip, predPartWidth = 16.

–
Otherwise, if mb_type is equal to P_8x8 or P_8x8ref0, predPartWidth = SubMbPartWidth( sub_mb_type[ mbPartIdx ] ).

–
Otherwise, predPartWidth = MbPartWidth( mb_type ).

4. The difference of luma location ( xD, yD ) is set according to Table 6‑2.

5. The neighbouring luma location ( xN, yN ) is specified by

xN = x + xS + xD

(6-29)

yN = y + yS + yD

(6-30)

6. The derivation process for neighbouring locations as specified in subclause 6.4.12 is invoked for luma locations with ( xN, yN ) as the input and the output is assigned to mbAddrN and ( xW, yW ).

7. Depending on mbAddrN, the following applies:

–
If mbAddrN is not available, the macroblock or sub-macroblock partition mbAddrN\mbPartIdxN\subMbPartIdxN is marked as not available.

–
Otherwise (mbAddrN is available), the following ordered steps are specified:

a. Let mbTypeN be the syntax element mb_type of the macroblock with macroblock address mbAddrN and, when mbTypeN is equal to P_8x8 or P_8x8ref0, let subMbTypeN be the syntax element list sub_mb_type of the macroblock with macroblock address mbAddrN.

b. The derivation process for macroblock and sub-macroblock partition indices as specified in subclause 6.4.13.4 is invoked with the luma location ( xW, yW ), the macroblock type mbTypeN, and, when mbTypeN is equal to P_8x8 or P_8x8ref0, the list of sub-macroblock types subMbTypeN as the inputs and the outputs are the macroblock partition index mbPartIdxN and the sub-macroblock partition index subMbPartIdxN.

c. When the partition given by mbPartIdxN and subMbPartIdxN is not yet decoded, the macroblock partition mbPartIdxN and the sub-macroblock partition subMbPartIdxN are marked as not available.

NOTE 2 – The latter condition is, for example, the case when mbPartIdx = 2, subMbPartIdx = 3, xD = 4, yD = −1, i.e., when neighbour C of the last 4x4 luma block of the third sub-macroblock is requested.

6.4.12 Derivation process for neighbouring locations

Input to this process is a luma or chroma location ( xN, yN ) expressed relative to the upper left corner of the current macroblock.

Outputs of this process are:

–
mbAddrN: either equal to CurrMbAddr or to the address of neighbouring macroblock that contains (xN, yN) and its availability status,

–
( xW, yW ): the location (xN, yN) expressed relative to the upper-left corner of the macroblock mbAddrN (rather than relative to the upper-left corner of the current macroblock).

Let maxW and maxH be variables specifying maximum values of the location components xN, xW, and yN, yW, respectively. maxW and maxH are derived as follows:

–
If this process is invoked for neighbouring luma locations,

maxW = maxH = 16

(6-31)

–
Otherwise (this process is invoked for neighbouring chroma locations),

maxW = MbWidthC

(6-32)

maxH = MbHeightC

(6-33)

6.4.12.1 Specification for neighbouring locations in frames
The derivation process for neighbouring macroblock addresses and their availability in subclause 6.4.9 is invoked with mbAddrA, mbAddrB, mbAddrC, and mbAddrD as well as their availability status as the output.

Table 6‑3 specifies mbAddrN depending on ( xN, yN ).

Table 6‑3 – Specification of mbAddrN

	xN
	yN
	mbAddrN

	< 0
	< 0
	mbAddrD

	< 0
	0..maxH − 1
	mbAddrA

	0..maxW − 1
	< 0
	mbAddrB

	0..maxW − 1
	0..maxH − 1
	CurrMbAddr

	> maxW − 1
	< 0
	mbAddrC

	> maxW − 1
	0..maxH − 1
	not available

	
	> maxH − 1
	not available


The neighbouring location ( xW, yW ) relative to the upper-left corner of the macroblock mbAddrN is derived as

xW = ( xN + maxW ) % maxW

(6-34)

yW = ( yN + maxH ) % maxH

(6-35)

6.4.13 Derivation processes for block and partition indices

Subclause 6.4.13.1 specifies the derivation process for 4x4 luma block indices.

Subclause 6.4.13.2 specifies the derivation process for 4x4 chroma block indices.

Subclause 6.4.13.3 specifies the derivation process for 8x8 luma block indices.

Subclause 6.4.13.4 specifies the derivation process for macroblock and sub-macroblock partition indices.

6.4.13.1 Derivation process for 4x4 luma block indices

Input to this process is a luma location ( xP, yP ) relative to the upper-left luma sample of a macroblock.

Output of this process is a 4x4 luma block index luma4x4BlkIdx.

The 4x4 luma block index luma4x4BlkIdx is derived by

luma4x4BlkIdx = 8 * ( yP / 8 ) + 4 * ( xP / 8 ) + 2 * ( ( yP % 8 ) / 4 ) + ( ( xP % 8 ) / 4 )
(6-38)

6.4.13.2 Derivation process for 4x4 chroma block indices

Input to this process is a chroma location ( xP, yP ) relative to the upper-left chroma sample of a macroblock.

Output of this process is a 4x4 chroma block index chroma4x4BlkIdx.

The 4x4 chroma block index chroma4x4BlkIdx is derived by

chroma4x4BlkIdx = 2 * ( yP / 4 ) + ( xP / 4 )

(6-39)

6.4.13.3 Derivation process for 8x8 luma block indices

Input to this process is a luma location ( xP, yP ) relative to the upper-left luma sample of a macroblock.

Outputs of this process is an 8x8 luma block index luma8x8BlkIdx.

The 8x8 luma block index luma8x8BlkIdx is derived by

luma8x8BlkIdx = 2 * ( yP / 8 ) + ( xP / 8 )

(6-40)

6.4.13.4 Derivation process for macroblock and sub-macroblock partition indices

Inputs to this process are:

–
a luma location ( xP, yP ) relative to the upper-left luma sample of a macroblock,

–
a macroblock type mbType,

–
when mbType is equal to P_8x8 or P_8x8ref0, a list of sub-macroblock types subMbType with 4 elements.

Outputs of this process are:

–
a macroblock partition index mbPartIdx,

–
a sub-macroblock partition index subMbPartIdx.

The macroblock partition index mbPartIdx is derived as follows:

–
If mbType specifies an I macroblock type, mbPartIdx is set equal to 0.

–
Otherwise (mbType does not specify an I macroblock type), mbPartIdx is derived by

mbPartIdx = ( 16 / MbPartWidth( mbType ) ) * ( yP / MbPartHeight( mbType ) ) +
 ( xP / MbPartWidth( mbType ) )

(6-41)

The sub-macroblock partition index subMbPartIdx is derived as follows:

–
If mbType is not equal to P_8x8 or P_8x8ref0, subMbPartIdx is set equal to 0.

–
Otherwise (mbType is equal to P_8x8 or P_8x8ref0), subMbPartIdx is derived by

subMbPartIdx = ( 8 / SubMbPartWidth( subMbType[ mbPartIdx ] ) ) * 
( ( yP % 8 ) / SubMbPartHeight( subMbType[ mbPartIdx ] ) ) +
                                 ( ( xP % 8 ) / SubMbPartWidth( subMbType[ mbPartIdx ] ) )
(6-43)

7 Syntax and semantics

7.1 Normative Syntax and Semantics

7.1.1 Normative and Informative Technologies

The normative requirements of this specification extend only to the technologies required to implement the profile specified in A.2.1. All other aspects of this specification are informative only, and not normative. Specifically, a conformant decoder is not required to handle a number of technologies, including but not limited to the following:

a) field coding;

b) color sub-sampling other than 4:2:0

c) picture scaling;

d) weighted prediction other than the default (method 0);

e) bit_depth other than 8; 

7.1.2 Method of specifying syntax in tabular form

The syntax tables specify a superset of the syntax of all allowed bitstreams. Additional constraints on the syntax may be specified, either directly or indirectly, in other clauses.

NOTE – An actual decoder should implement means for identifying entry points into the bitstream and means to identify and handle non-conforming bitstreams. The methods for identifying and handling errors and other such situations are not specified here.

The following table lists examples of pseudo code used to describe the syntax. When syntax_element appears, it specifies that a syntax element is parsed from the bitstream and the bitstream pointer is advanced to the next position beyond the syntax element in the bitstream parsing process.

	
	C
	Descriptor

	/* A statement can be a syntax element with an associated syntax category and descriptor or can be an expression used to specify conditions for the existence, type, and quantity of syntax elements, as in the following two examples */
	
	

	syntax_element
	3
	ue(v)

	conditioning statement
	
	

	
	
	

	/* A group of statements enclosed in curly brackets is a compound statement and is treated functionally as a single statement. */
	
	

	{
	
	

	
statement
	
	

	
statement
	
	

	
…
	
	

	}
	
	

	
	
	

	/* A "while" structure specifies a test of whether a condition is true, and if true, specifies evaluation of a statement (or compound statement) repeatedly until the condition is no longer true */
	
	

	while( condition )
	
	

	
statement
	
	

	
	
	

	/* A "do … while" structure specifies evaluation of a statement once, followed by a test of whether a condition is true, and if true, specifies repeated evaluation of the statement until the condition is no longer true */
	
	

	do
	
	

	
statement
	
	

	while( condition )
	
	

	
	
	

	/* An "if … else" structure specifies a test of whether a condition is true, and if the condition is true, specifies evaluation of a primary statement, otherwise, specifies evaluation of an alternative statement. The "else" part of the structure and the associated alternative statement is omitted if no alternative statement evaluation is needed */
	
	

	if( condition )
	
	

	
primary statement
	
	

	else
	
	

	
alternative statement
	
	

	
	
	

	/* A "for" structure specifies evaluation of an initial statement, followed by a test of a condition, and if the condition is true, specifies repeated evaluation of a primary statement followed by a subsequent statement until the condition is no longer true. */
	
	

	for( initial statement; condition; subsequent statement )
	
	

	
primary statement
	
	


7.2 Specification of syntax functions, categories, and descriptors

The functions presented here are used in the syntactical description. These functions assume the existence of a bitstream pointer with an indication of the position of the next bit to be read by the decoding process from the bitstream.

byte_aligned( ) is specified as follows:

–
If the current position in the bitstream is on a byte boundary, i.e., the next bit in the bitstream is the first bit in a byte, the return value of byte_aligned( ) is equal to TRUE.

–
Otherwise, the return value of byte_aligned( ) is equal to FALSE.

more_data_in_byte_stream( ), which is used only in the byte stream NAL unit syntax structure specified in Annex B, is specified as follows:

–
If more data follow in the byte stream, the return value of more_data_in_byte_stream( ) is equal to TRUE.

–
Otherwise, the return value of more_data_in_byte_stream( ) is equal to FALSE.

more_rbsp_data( ) is specified as follows:

–
If there is no more data in the RBSP, the return value of more_rbsp_data( ) is equal to FALSE.

–
Otherwise, the RBSP data is searched for the last (least significant, right-most) bit equal to 1 that is present in the RBSP. Given the position of this bit, which is the first bit (rbsp_stop_one_bit) of the rbsp_trailing_bits( ) syntax structure, the following applies:

–
If there is more data in an RBSP before the rbsp_trailing_bits( ) syntax structure, the return value of more_rbsp_data( ) is equal to TRUE.

–
Otherwise, the return value of more_rbsp_data( ) is equal to FALSE.

The method for enabling determination of whether there is more data in the RBSP is specified by the application (or in Annex B for applications that use the byte stream format).

more_rbsp_trailing_data( ) is specified as follows:

–
If there is more data in an RBSP, the return value of more_rbsp_trailing_data( ) is equal to TRUE.

–
Otherwise, the return value of more_rbsp_trailing_data( ) is equal to FALSE.

next_bits( n ) provides the next bits in the bitstream for comparison purposes, without advancing the bitstream pointer. Provides a look at the next n bits in the bitstream with n being its argument. When used within the byte stream as specified in Annex B, next_bits( n ) returns a value of 0 if fewer than n bits remain within the byte stream.

read_bits( n ) reads the next n bits from the bitstream and advances the bitstream pointer by n bit positions. When n is equal to 0, read_bits( n ) is specified to return a value equal to 0 and to not advance the bitstream pointer.

The following descriptors specify the parsing process of each syntax element

–
b(8): byte having any pattern of bit string (8 bits). The parsing process for this descriptor is specified by the return value of the function read_bits( 8 ).

–
ce(v): context-adaptive variable-length entropy-coded syntax element with the left bit first. The parsing process for this descriptor is specified in subclause 9.2.

–
f(n): fixed-pattern bit string using n bits written (from left to right) with the left bit first. The parsing process for this descriptor is specified by the return value of the function read_bits( n ).

–
i(n): signed integer using n bits. When n is "v" in the syntax table, the number of bits varies in a manner dependent on the value of other syntax elements. The parsing process for this descriptor is specified by the return value of the function read_bits( n ) interpreted as a two's complement integer representation with most significant bit written first.

–
me(v): mapped Exp-Golomb-coded syntax element with the left bit first. The parsing process for this descriptor is specified in subclause 9.1.

–
se(v): signed integer Exp-Golomb-coded syntax element with the left bit first. The parsing process for this descriptor is specified in subclause 9.1.

–
te(v): truncated Exp-Golomb-coded syntax element with left bit first. The parsing process for this descriptor is specified in subclause 9.1.

–
u(n): unsigned integer using n bits. When n is "v" in the syntax table, the number of bits varies in a manner dependent on the value of other syntax elements. The parsing process for this descriptor is specified by the return value of the function read_bits( n ) interpreted as a binary representation of an unsigned integer with most significant bit written first.

–
ue(v): unsigned integer Exp-Golomb-coded syntax element with the left bit first. The parsing process for this descriptor is specified in subclause 9.1.

7.3 Syntax in tabular form

7.3.1 NAL unit syntax

	nal_unit( NumBytesInNALunit ) {
	Descriptor

	
forbidden_zero_bit
	f(1)

	
nal_ref_idc
	u(2)

	
nal_unit_type
	u(5)

	
NumBytesInRBSP = 0
	

	
nalUnitHeaderBytes = 1
	

	
for( i = nalUnitHeaderBytes; i < NumBytesInNALunit; i++ ) {
	

	

if( i + 2 < NumBytesInNALunit && next_bits( 24 )  = =  0x000003 ) {
	

	


rbsp_byte[ NumBytesInRBSP++ ]
	b(8)

	


rbsp_byte[ NumBytesInRBSP++ ]
	b(8)

	


i += 2
	

	


emulation_prevention_three_byte  /* equal to 0x03 */
	f(8)

	

} else
	

	


rbsp_byte[ NumBytesInRBSP++ ]
	b(8)

	
}
	

	}
	


7.3.2 Raw byte sequence payloads and RBSP trailing bits syntax

7.3.2.1 Sequence parameter set RBSP syntax

	seq_parameter_set_rbsp( ) {
	Descriptor

	
seq_parameter_set_data( )
	

	
rbsp_trailing_bits( )
	

	}
	


7.3.2.1.1 Sequence parameter set data syntax

	seq_parameter_set_data( ) {
	Descriptor

	
profile_idc
	u(8)

	
constraint_set0_flag /* equal to 1 */
	u(1)

	
constraint_set1_flag /* equal to 1 */
	u(1)

	
constraint_set2_flag /* normally equal to 1 */
	u(1)

	
constraint_set3_flag
	u(1)

	    
constraint_set4_flag /* normally equal to 0 */
	u(1)

	
constraint_set5_flag /* normally equal to 0 */
	u(1)

	
reserved_zero_2bits /* equal to 0 */
	u(2)

	
level_idc
	u(8)

	
seq_parameter_set_id
	ue(v)

	
if( profile_idc  !=  66  &&  profile_idc  !=  77  &&  profile_idc  !=  88) 
	

	

informative_high_profile_seven_bits  /* equal to ‘0101100’ */
	u(7)

	
log2_max_frame_num_minus4
	ue(v)

	
pic_order_cnt_type
	ue(v)

	
if( pic_order_cnt_type  = =  0 )
	

	

log2_max_pic_order_cnt_lsb_minus4
	ue(v)

	
else if( pic_order_cnt_type  = =  1 ) {
	

	

delta_pic_order_always_zero_flag
	u(1)

	

offset_for_non_ref_pic
	se(v)

	

offset_for_top_to_bottom_field
	se(v)

	

num_ref_frames_in_pic_order_cnt_cycle
	ue(v)

	

for( i = 0; i < num_ref_frames_in_pic_order_cnt_cycle; i++ )
	

	


offset_for_ref_frame[ i ]
	se(v)

	
}
	

	
max_num_ref_frames
	ue(v)

	
gaps_in_frame_num_value_allowed_flag
	u(1)

	
pic_width_in_mbs_minus1
	ue(v)

	
pic_height_in_map_units_minus1
	ue(v)

	
frame_mbs_only_flag /*equal to 1*/
	u(1)

	

	

	
direct_8x8_inference_flag 
	u(1)

	
frame_cropping_flag
	u(1)

	
if( frame_cropping_flag ) {
	

	

frame_crop_left_offset
	ue(v)

	

frame_crop_right_offset
	ue(v)

	

frame_crop_top_offset
	ue(v)

	

frame_crop_bottom_offset
	ue(v)

	
}
	

	
vui_parameters_present_flag
	u(1)

	
if( vui_parameters_present_flag )
	

	

vui_parameters( )
	

	}
	


7.3.2.1.2 (void)
7.3.2.2 Picture parameter set RBSP syntax

	pic_parameter_set_rbsp( ) {
	Descriptor

	
pic_parameter_set_id
	ue(v)

	
seq_parameter_set_id
	ue(v)

	
entropy_coding_mode_flag  /*equal to zero*/
	u(1)

	
bottom_field_pic_order_in_frame_present_flag
	u(1)

	
num_slice_groups_minus1 /*equal to zero*/
	ue(v)

	
num_ref_idx_l0_default_active_minus1
	ue(v)

	
num_ref_idx_l1_default_active_minus1
	ue(v)

	
weighted_pred_flag /* = 0 */
	u(1)

	
weighted_bipred_idc /* = 0 */
	u(2)

	
pic_init_qp_minus26/* relative to 26 */
	se(v)

	
pic_init_qs_minus26  /* relative to 26 */
	se(v)

	
chroma_qp_index_offset
	se(v)

	
deblocking_filter_control_present_flag
	u(1)

	
constrained_intra_pred_flag
	u(1)

	
redundant_pic_cnt_present_flag /* equal to zero*/
	u(1)

	
rbsp_trailing_bits( )
	

	}
	


7.3.2.3 Access unit delimiter RBSP syntax

	access_unit_delimiter_rbsp( ) {
	Descriptor

	
primary_pic_type
	u(3)

	
rbsp_trailing_bits( )
	

	}
	


7.3.2.4 End of sequence RBSP syntax

	end_of_seq_rbsp( ) {
	Descriptor

	}
	


7.3.2.5 End of stream RBSP syntax

	end_of_stream_rbsp( ) {
	Descriptor

	}
	


7.3.2.6 Filler data RBSP syntax

	filler_data_rbsp( ) {
	Descriptor

	
while( next_bits( 8 )  = =  0xFF )
	

	

ff_byte  /* equal to 0xFF */
	f(8)

	
rbsp_trailing_bits( )
	

	}
	


7.3.2.7 Slice layer RBSP syntax

	slice_layer_rbsp( ) {
	Descriptor

	
slice_header( )
	

	
slice_data( )  /* all categories of slice_data( ) syntax */
	

	
rbsp_slice_trailing_bits( )
	

	}
	


7.3.2.8 (void)

7.3.2.8.1 (void)

7.3.2.8.2  (void)

7.3.2.8.3  (void)

7.3.2.9 RBSP slice trailing bits syntax

	rbsp_slice_trailing_bits( ) {
	Descriptor

	
rbsp_trailing_bits( )
	

	}
	


7.3.2.10 RBSP trailing bits syntax

	rbsp_trailing_bits( ) {
	Descriptor

	
rbsp_stop_one_bit  /* equal to 1 */
	f(1)

	
while( !byte_aligned( ) )
	

	

rbsp_alignment_zero_bit  /* equal to 0 */
	f(1)

	}
	


7.3.2.11 Slice layer extension RBSP syntax

	slice_layer_extension_rbsp( ) {
	Descriptor

	

slice_header( )
	

	

slice_data( )
	

	
rbsp_slice_trailing_bits( )
	

	}
	


7.3.3 Slice header syntax

	slice_header( ) {
	Descriptor

	
first_mb_in_slice
	ue(v)

	
slice_type
	ue(v)

	
pic_parameter_set_id
	ue(v)

	
frame_num
	u(v)

	
if( IdrPicFlag )
	

	

idr_pic_id
	ue(v)

	
if( pic_order_cnt_type  = =  0 ) {
	

	

pic_order_cnt_lsb
	u(v)

	

if( bottom_field_pic_order_in_frame_present_flag)
	

	


delta_pic_order_cnt_bottom
	se(v)

	
}
	

	
if( pic_order_cnt_type = = 1 && !delta_pic_order_always_zero_flag ) {
	

	

delta_pic_order_cnt[0 ]
	se(v)

	

if( bottom_field_pic_order_in_frame_present_flag)
	

	


delta_pic_order_cnt[1 ]
	se(v)

	
}
	

	
if( slice_type = = P) {
	

	

num_ref_idx_active_override_flag
	u(1)

	

if( num_ref_idx_active_override_flag ) {
	

	


num_ref_idx_l0_active_minus1
	ue(v)

	

}
	

	
}
	

	
ref_pic_list_modification( )
	

	
if( nal_ref_idc != 0 )
	

	

dec_ref_pic_marking( )
	

	
slice_qp_delta
	se(v)

	
if( deblocking_filter_control_present_flag ) {
	

	

disable_deblocking_filter_idc
	ue(v)

	

if( disable_deblocking_filter_idc  !=  1 ) {
	

	


slice_alpha_c0_offset_div2
	se(v)

	


slice_beta_offset_div2
	se(v)

	

}
	

	
}
	

	}
	


7.3.3.1 Reference picture list modification syntax

	ref_pic_list_modification( ) {
	Descriptor

	
if( slice_type % 5  !=  2  &&  slice_type % 5  !=  4 ) { 
	

	

ref_pic_list_modification_flag_l0
	u(1)

	

if( ref_pic_list_modification_flag_l0 )
	

	


do {
	

	



modification_of_pic_nums_idc
	ue(v)

	



if( modification_of_pic_nums_idc  = =  0  | |





modification_of_pic_nums_idc  = =  1 )
	

	




abs_diff_pic_num_minus1
	ue(v)

	



else if( modification_of_pic_nums_idc  = =  2 )
	

	




long_term_pic_num
	ue(v)

	


} while( modification_of_pic_nums_idc  !=  3 )
	

	
}
	

	}
	


7.3.3.2 (void)

7.3.3.3 Decoded reference picture marking syntax

	dec_ref_pic_marking( ) {
	Descriptor

	
if( IdrPicFlag ) {
	

	

no_output_of_prior_pics_flag
	u(1)

	

long_term_reference_flag
	u(1)

	
} else {
	

	

adaptive_ref_pic_marking_mode_flag
	u(1)

	

if( adaptive_ref_pic_marking_mode_flag )
	

	


do {
	

	



memory_management_control_operation
	ue(v)

	



if( memory_management_control_operation  = =  1  | |





memory_management_control_operation  = =  3 )
	

	




difference_of_pic_nums_minus1
	ue(v)

	



if(memory_management_control_operation  = =  2  )
	

	




long_term_pic_num
	ue(v)

	



if( memory_management_control_operation  = =  3  | |





memory_management_control_operation  = =  6 )
	

	




long_term_frame_idx
	ue(v)

	



if( memory_management_control_operation  = =  4 )
	

	




max_long_term_frame_idx_plus1
	ue(v)

	


} while( memory_management_control_operation  !=  0 )
	

	
}
	

	}
	


7.3.4 Slice data syntax

	slice_data( ) {
	Descriptor

	
CurrMbAddr = first_mb_in_slice 
	

	
moreDataFlag = 1
	

	
prevMbSkipped = 0
	

	
do {
	

	

if( slice_type  !=  I  ) {
	

	



mb_skip_run
	ue(v)

	



prevMbSkipped = ( mb_skip_run > 0 )
	

	



for( i=0; i<mb_skip_run; i++ )
	

	




CurrMbAddr = NextMbAddress( CurrMbAddr )
	

	



if( mb_skip_run > 0 )
	

	




moreDataFlag = more_rbsp_data( )
	

	

}
	

	

if( moreDataFlag )
	

	


macroblock_layer( )
	

	

moreDataFlag = more_rbsp_data( )
	

	

CurrMbAddr = NextMbAddress( CurrMbAddr )
	

	
} while( moreDataFlag )
	

	}
	


7.3.5 Macroblock layer syntax

	macroblock_layer( ) {
	Descriptor

	
mb_type
	ue(v) 

	
if( mb_type  = =  I_PCM ) {
	

	

while( !byte_aligned( ) )
	

	


pcm_alignment_zero_bit
	f(1)

	

for( i = 0; i < 256; i++ )
	

	


pcm_sample_luma[ i ]
	u(v)

	

for( i = 0; i < 128 )
	

	


pcm_sample_chroma[ i ]
	u(v)

	
} else {
	

	

if( mb_type  !=  I_4x4  &&




MbPartPredMode( mb_type, 0 )  !=  Intra_16x16  &&




NumMbPart( mb_type )  = =  4 ) {
	

	


sub_mb_pred( mb_type )
	

	

}else{
	

	


mb_pred( mb_type )
	

	

}
	

	

if( MbPartPredMode( mb_type, 0 )  !=  Intra_16x16 ) {
	

	


coded_block_pattern
	

	

}
	

	

if( CodedBlockPatternLuma > 0  | |  CodedBlockPatternChroma > 0  | |



MbPartPredMode( mb_type, 0 )  = =  Intra_16x16 ) {
	

	


mb_qp_delta
	se(v) 

	


residual( )
	

	

}
	

	
}
	

	}
	


7.3.5.1 Macroblock prediction syntax

	mb_pred( mb_type ) {
	Descriptor

	
if( MbPartPredMode( mb_type, 0 )  = =  Intra_4x4  | |

MbPartPredMode( mb_type, 0 )  = =  Intra_16x16 ) {
	

	

if( MbPartPredMode( mb_type, 0 )  = =  Intra_4x4 )
	

	


for( luma4x4BlkIdx=0; luma4x4BlkIdx<16; luma4x4BlkIdx++ ) {
	

	



prev_intra4x4_pred_mode_flag[ luma4x4BlkIdx ]
	u(1) 

	



if( !prev_intra4x4_pred_mode_flag[ luma4x4BlkIdx ] )
	

	




rem_intra4x4_pred_mode[ luma4x4BlkIdx ]
	u(3) 

	


}
	

	

intra_chroma_pred_mode
	ue(v) 

	
} else {
	

	

for( mbPartIdx = 0; mbPartIdx < NumMbPart( mb_type ); mbPartIdx++)
	

	


if(  num_ref_idx_l0_active_minus1 > 0 )
	

	



ref_idx_l0[ mbPartIdx ]
	te(v) 

	

for( mbPartIdx = 0; mbPartIdx < NumMbPart( mb_type ); mbPartIdx++)
	

	



for( compIdx = 0; compIdx < 2; compIdx++ )
	

	




mvd_l0[ mbPartIdx ][ 0 ][ compIdx ]
	se(v) 

	
}
	

	}
	


7.3.5.2 Sub-macroblock prediction syntax

	sub_mb_pred( mb_type ) {
	Descriptor

	
for( mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++ )
	

	

sub_mb_type[ mbPartIdx ]
	ue(v) 

	
for( mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++ )
	

	

if(  num_ref_idx_l0_active_minus1  >  0 && mb_type  !=  P_8x8ref0
	

	


ref_idx_l0[ mbPartIdx ]
	te(v) 

	
for( mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++ )
	

	

for( subMbPartIdx = 0; 




   subMbPartIdx < NumSubMbPart( sub_mb_type[ mbPartIdx ] );




   subMbPartIdx++)
	

	


for( compIdx = 0; compIdx < 2; compIdx++ )
	

	



mvd_l0[ mbPartIdx ][ subMbPartIdx ][ compIdx ]
	se(v) 

	}
	


7.3.5.3 Residual data syntax

	residual( ) {
	Descriptor

	
residual_luma( i16x16DClevel, i16x16AClevel, level4x4)
	

	
Intra16x16DCLevel = i16x16DClevel
	

	
Intra16x16ACLevel = i16x16AClevel
	

	
LumaLevel4x4 = level4x4
	

	

for( iCbCr = 0; iCbCr < 2; iCbCr++ )
	

	


if( CodedBlockPatternChroma & 3 )  












/* chroma DC residual present */
	

	



residual_block( ChromaDCLevel[ iCbCr ], 0, 3, 4 )
	

	


else
	

	



for( i = 0; i <4; i++ )
	

	




ChromaDCLevel[ iCbCr ][ i ] = 0
	

	

for( iCbCr = 0; iCbCr < 2; iCbCr++ )
	

	


for( i4x4 = 0; i4x4 < 4; i4x4++ )
	

	




if( CodedBlockPatternChroma & 2)












/* chroma AC residual present */
	

	





residual_block( ChromaACLevel[ iCbCr ][ i4x4 ], 0,14,15)
	

	




else
	

	





for( i = 0; i < 15; i++ )
	

	






ChromaACLevel[ iCbCr ][ i4x4 ][ i ] = 0
	

	
} 
	


7.3.5.3.1 Residual luma syntax

	residual_luma( i16x16DClevel, i16x16AClevel, level4x4 ) {
	Descriptor

	
if( MbPartPredMode( mb_type, 0 )  = =  Intra_16x16 )
	

	

residual_block( i16x16DClevel, 0, 15, 16 )
	

	
for( i8x8 = 0; i8x8 < 4; i8x8++ )
	

	


for( i4x4 = 0; i4x4 < 4; i4x4++ ) {
	

	



if( CodedBlockPatternLuma & ( 1 << i8x8 ) )
	

	




if( MbPartPredMode( mb_type, 0 )  = =  Intra_16x16 )
	

	





residual_block( i16x16AClevel[i8x8*4+ i4x4], 0, 14, 15)
	

	




else
	

	





residual_block( level4x4[ i8x8* 4 + i4x4 ], 0, 15, 16)
	

	



else if( MbPartPredMode( mb_type, 0 )  = =  Intra_16x16 )
	

	




for( i = 0; i < 15; i++ )
	

	





i16x16AClevel[ i8x8 * 4 + i4x4 ][ i ] = 0
	

	



else
	

	




for( i = 0; i < 16; i++ )
	

	





level4x4[ i8x8 * 4 + i4x4 ][ i ] = 0
	

	


}
	

	}
	


7.3.5.3.2 Residual block CAVLC syntax

	residual_block( coeffLevel, startIdx, endIdx, maxNumCoeff ) {
	Descriptor

	
for( i = 0; i < maxNumCoeff; i++ )
	

	

coeffLevel[ i ] = 0
	

	
coeff_token
	ce(v)

	
if( TotalCoeff( coeff_token ) > 0 ) {
	

	

if( TotalCoeff( coeff_token ) > 10  &&  TrailingOnes( coeff_token ) < 3 )
	

	


suffixLength = 1
	

	

else
	

	


suffixLength = 0
	

	

for( i = 0; i < TotalCoeff( coeff_token ); i++ )
	

	


if( i < TrailingOnes( coeff_token ) ) {
	

	



trailing_ones_sign_flag
	u(1)

	



levelVal[ i ] = 1 − 2 * trailing_ones_sign_flag
	

	


} else {
	

	



level_prefix
	ce(v)

	



levelCode = ( level_prefix << suffixLength )
	

	



if( suffixLength > 0  | |  level_prefix >= 14 ) {
	

	




level_suffix
	u(v)

	




levelCode += level_suffix
	

	



}
	

	



if( i  = =  TrailingOnes( coeff_token )  &&





 TrailingOnes( coeff_token ) < 3 )
	

	




levelCode += 2
	

	



if( levelCode % 2  = =  0 )
	

	




levelVal[ i ] = ( levelCode + 2 ) >> 1
	

	



else
	

	




levelVal[ i ] = ( −levelCode − 1 ) >> 1
	

	



if( suffixLength  = =  0 )
	

	




suffixLength = 1
	

	



if( Abs( levelVal[ i ] )  >  ( 3 << ( suffixLength − 1 ) )  &&





 suffixLength < 6 )
	

	




suffixLength++
	

	


}
	

	

if( TotalCoeff( coeff_token ) <endIdx − startIdx + 1 ) {
	

	


total_zeros
	ce(v)

	


zerosLeft = total_zeros
	

	

} else
	

	


zerosLeft = 0
	

	

for( i = 0; i < TotalCoeff( coeff_token ) − 1; i++ ) {
	

	


if( zerosLeft > 0 ) {
	

	



run_before
	ce(v)

	



runVal[ i ] = run_before
	

	


} else
	

	



runVal[ i ] = 0
	

	


zerosLeft = zerosLeft − runVal[ i ]
	

	

}
	

	

runVal[ TotalCoeff( coeff_token ) − 1 ] = zerosLeft
	

	

coeffNum = −1
	

	

for( i = TotalCoeff( coeff_token ) − 1; i >= 0; i− − ) {
	

	


coeffNum += runVal[ i ] + 1
	

	


coeffLevel[ startIdx + coeffNum ] = levelVal[ i ] 
	

	

}
	

	
}
	

	}
	


7.4 Semantics

Semantics associated with the syntax structures and with the syntax elements within these structures are specified in this subclause. When the semantics of a syntax element are specified using a table or a set of tables, any values that are not specified in the table(s) shall not be present in the bitstream unless otherwise specified in this International Standard.

7.4.1 NAL unit semantics

NOTE 1 – The VCL is specified to efficiently represent the content of the video data. The NAL is specified to format that data and provide header information in a manner appropriate for conveyance on a variety of communication channels or storage media. All data are contained in NAL units, each of which contains an integer number of bytes. A NAL unit specifies a generic format for use in both packet-oriented and bitstream systems. The format of NAL units for both packet-oriented transport and byte stream is identical except that each NAL unit can be preceded by a start code prefix and extra padding bytes in the byte stream format.
NumBytesInNALunit specifies the size of the NAL unit in bytes. This value is required for decoding of the NAL unit. Some form of demarcation of NAL unit boundaries is necessary to enable inference of NumBytesInNALunit. One such demarcation method is specified in Annex B for the byte stream format. Other methods of demarcation may be specified outside of this International Standard.

forbidden_zero_bit shall be equal to 0.

nal_ref_idc not equal to 0 specifies that the content of the NAL unit contains a sequence parameter set, a picture parameter set, or a slice of a reference picture.

For coded video sequences conforming to one or more of the profiles specified in Annex A that are decoded using the decoding process specified in clauses 2-9, nal_ref_idc equal to 0 for a NAL unit containing a slice indicates that the slice is part of a non-reference picture.

nal_ref_idc shall not be equal to 0 for sequence parameter set or picture parameter set NAL units. When nal_ref_idc is equal to 0 for one NAL unit with nal_unit_type in the range of 1 to 4, inclusive, of a particularpicture, it shall be equal to 0 for all NAL units with nal_unit_type in the range of 1 to 4, inclusive, of the picture.

nal_ref_idc shall not be equal to 0 for NAL units with nal_unit_type equal to 5.

nal_ref_idc shall be equal to 0 for all NAL units having nal_unit_type equal to 6, 9, 10, 11, or 12.

nal_unit_type specifies the type of RBSP data structure contained in the NAL unit as specified in Table 7‑1.

For coded video sequences conforming to one or more of the profiles specified in Annex A that are decoded using the decoding process specified in clauses 2-9, VCL and non-VCL NAL units are specified in Table 7‑1 in the column labelled "Annex A NAL unit type class". 

Table 7‑1 – NAL unit type codes, syntax element categories, and NAL unit type classes

	nal_unit_type
	Content of NAL unit and RBSP syntax structure
	Annex A
NAL unit
type class
	

	0
	Unspecified
	non-VCL
	

	1
	Coded slice of a non-IDR picture
slice_layer_ rbsp( )
	VCL
	

	2
	not used
	VCL
	

	3
	not used
	VCL
	

	4
	not used
	VCL
	

	5
	Coded slice of an IDR picture
slice_layer_rbsp( )
	VCL
	

	6
	Supplemental enhancement information (SEI)
sei_rbsp( )
	non-VCL
	

	7
	Sequence parameter set
seq_parameter_set_rbsp( )
	non-VCL
	

	8
	Picture parameter set
pic_parameter_set_rbsp( )
	non-VCL
	

	9
	Access unit delimiter
access_unit_delimiter_rbsp( )
	non-VCL
	

	10
	End of sequence
end_of_seq_rbsp( )
	non-VCL
	

	11
	End of stream
end_of_stream_rbsp( )
	non-VCL
	

	12
	Filler data
filler_data_rbsp( )
	non-VCL
	

	13
	not used
	non-VCL
	

	14
	not used
	non-VCL
	

	15
	not used
	non-VCL
	

	16..18
	Reserved
	non-VCL
	

	19
	not used.
	non-VCL
	

	20
	not used
	non-VCL
	

	21..23
	Reserved
	non-VCL
	

	24..31
	Unspecified
	non-VCL
	


Decoders that conform to one or more of the profiles specified in Annex A shall ignore (remove from the bitstream and discard) the contents of all NAL units with nal_unit_type equal to 2,3,4,13, 14, 15, 19 or 20.

NAL units that use nal_unit_type equal to 0 or in the range of 24..31, inclusive, shall not affect the decoding process specified in this International Standard.

NOTE 2 – NAL unit types 0 and 24..31 may be used as determined by the application. No decoding process for these values of nal_unit_typeis specified in this International Standard. Since different applications might use NAL unit types 0 and 24..31 for different purposes, particular care must be exercised in the design of encoders that generate NAL units with nal_unit_type equal to 0 or in the range of 24 to 31, inclusive, and in the design of decoders that interpret the content of NAL units with nal_unit_type equal to 0 or in the range of 24 to 31, inclusive.

Decoders shall ignore (remove from the bitstream and discard) the contents of all NAL units that use reserved values of nal_unit_type.

NOTE 3 – This requirement allows future definition of compatible extensions to this International Standard.

NOTE 4 – In previous editions of this International Standard, the NAL unit types 13..15 and 19..20 (or a subset of these NAL unit types) were reserved and no decoding process for NAL units having these values of nal_unit_type was specified. In later editions of this International Standard, currently reserved values of nal_unit_type might become non-reserved and a decoding process for these values of nal_unit_type might be specified. Encoders should take into consideration that the values of nal_unit_type that were reserved in previous editions of this International Standard might be ignored by decoders.

In the text, coded slice NAL unit collectively refers to a coded slice of a non-IDR picture NAL unit or to a coded slice of an IDR picture NAL unit. The variable IdrPicFlag is specified as

IdrPicFlag = ( ( nal_unit_type  = =  5 ) ?  1  :  0 )
(7-1)

When the value of nal_unit_type is equal to 5 for a NAL unit containing a slice of a particular picture, the picture shall not contain NAL units with nal_unit_type in the range of 1 to 4, inclusive. For coded video sequences conforming to one or more of the profiles specified in Annex A that are decoded using the decoding process specified in clauses 2-9,such a picture is referred to as an IDR picture.

rbsp_byte[ i ] is the i-th byte of an RBSP. An RBSP is specified as an ordered sequence of bytes as follows.

The RBSP contains an SODB as follows:

–
If the SODB is empty (i.e., zero bits in length), the RBSP is also empty.

–
Otherwise, the RBSP contains the SODB as follows:

1)
The first byte of the RBSP contains the (most significant, left-most) eight bits of the SODB; the next byte of the RBSP contains the next eight bits of the SODB, etc., until fewer than eight bits of the SODB remain.

2)
rbsp_trailing_bits( ) are present after the SODB as follows:

i)
The first (most significant, left-most) bits of the final RBSP byte contains the remaining bits of the SODB (if any).

ii)
The next bit consists of a single rbsp_stop_one_bit equal to 1.

iii)
When the rbsp_stop_one_bit is not the last bit of a byte-aligned byte, one or more rbsp_alignment_zero_bit is present to result in byte alignment.

3)


Syntax structures having these RBSP properties are denoted in the syntax tables using an "_rbsp" suffix. These structures shall be carried within NAL units as the content of the rbsp_byte[ i ] data bytes. The association of the RBSP syntax structures to the NAL units shall be as specified in Table 7‑1.

NOTE 6 – When the boundaries of the RBSP are known, the decoder can extract the SODB from the RBSP by concatenating the bits of the bytes of the RBSP and discarding the rbsp_stop_one_bit, which is the last (least significant, right-most) bit equal to 1, and discarding any following (less significant, farther to the right) bits that follow it, which are equal to 0. The data necessary for the decoding process is contained in the SODB part of the RBSP.

emulation_prevention_three_byte is a byte equal to 0x03. When an emulation_prevention_three_byte is present in the NAL unit, it shall be discarded by the decoding process.

The last byte of the NAL unit shall not be equal to 0x00.

Within the NAL unit, the following three-byte sequences shall not occur at any byte-aligned position:

–
0x000000

–
0x000001

–
0x000002

Within the NAL unit, any four-byte sequence that starts with 0x000003 other than the following sequences shall not occur at any byte-aligned position:

–
0x00000300

–
0x00000301

–
0x00000302

–
0x00000303

NOTE 7– When nal_unit_type is equal to 0, particular care must be exercised in the design of encoders to avoid the presence of the above-listed three-byte and four-byte patterns at the beginning of the NAL unit syntax structure, as the syntax element emulation_prevention_three_byte cannot be the third byte of a NAL unit.

7.4.1.1 Encapsulation of an SODB within an RBSP (informative)

This subclause does not form an integral part of this International Standard.

The form of encapsulation of an SODB within an RBSP and the use of the emulation_prevention_three_byte for encapsulation of an RBSP within a NAL unit is specified for the following purposes:

–
to prevent the emulation of start codes within NAL units while allowing any arbitrary SODB to be represented within a NAL unit,

–
to enable identification of the end of the SODB within the NAL unit by searching the RBSP for the rbsp_stop_one_bit starting at the end of the RBSP,

The encoder can produce a NAL unit from an RBSP by the following procedure:

1. The RBSP data is searched for byte-aligned bits of the following binary patterns:


'00000000 00000000 000000xx'  (where xx represents any 2 bit pattern: 00, 01, 10, or 11),

and a byte equal to 0x03 is inserted to replace these bit patterns with the patterns:


'00000000 00000000 00000011 000000xx',

2. The resulting sequence of bytes is then prefixed as follows:

–
If nal_unit_type is not equal to 14 or 20, the sequence of bytes is prefixed with the first byte of the NAL unit containing the syntax elements forbidden_zero_bit, nal_ref_idc, and nal_unit_type, where nal_unit_type indicates the type of RBSP data structure the NAL unit contains.

The process specified above results in the construction of the entire NAL unit.

This process can allow any SODB to be represented in a NAL unit while ensuring that

–
no byte-aligned start code prefix is emulated within the NAL unit,

· no sequence of 8 zero-valued bits followed by a start code prefix, regardless of byte-alignment, is emulated within the NAL unit.

7.4.1.2 Order of NAL units and association to coded pictures, access units, and video sequences

This subclause specifies constraints on the order of NAL units in the bitstream.

Any order of NAL units in the bitstream obeying these constraints is referred to in the text as the decoding order of NAL units. Within a NAL unit, the syntax in subclauses 7.3, and E.1 specifies the decoding order of syntax elements. Decoders shall be capable of receiving NAL units and their syntax elements in decoding order.

7.4.1.2.1 Order of sequence and picture parameter set RBSPs and their activation

This subclause specifies the activation process of picture and sequence parameter sets for coded video sequences that conform to one or more of the profiles specified in Annex A and are decoded using the decoding process specified in clauses 2-9.

NOTE 1 – The sequence and picture parameter set mechanism decouples the transmission of infrequently changing information from the transmission of coded macroblock data. Sequence and picture parameter sets may, in some applications, be conveyed "out-of-band" using a reliable transport mechanism.

A picture parameter set RBSP includes parameters that can be referred to by the coded slice NAL units of one or more coded pictures. Each picture parameter set RBSP is initially considered not active at the start of the operation of the decoding process. At most one picture parameter set RBSP is considered active at any given moment during the operation of the decoding process, and the activation of any particular picture parameter set RBSP results in the deactivation of the previously-active picture parameter set RBSP (if any).

When a picture parameter set RBSP (with a particular value of pic_parameter_set_id) is not active and it is referred to by a coded slice NAL unit (using that value of pic_parameter_set_id), it is activated. This picture parameter set RBSP is called the active picture parameter set RBSP until it is deactivated by the activation of another picture parameter set RBSP. A picture parameter set RBSP, with that particular value of pic_parameter_set_id,shall be available to the decoding process prior to its activation.

Any picture parameter set NAL unit containing the value of pic_parameter_set_id for the active picture parameter set RBSP for a coded picture shall have the same content as that of the active picture parameter set RBSP for the coded picture unless it follows the last VCL NAL unit of the coded picture and precedes the first VCL NAL unit of another coded picture.

When a picture parameter set NAL unit with a particular value of pic_parameter_set_id is received, its content replaces the content of the previous picture parameter set NAL unit, in decoding order, with the same value of pic_parameter_set_id (when a previous picture parameter set NAL unit with the same value of pic_parameter_set_id was present in the bitstream).

NOTE 2 – A decoder must be capable of simultaneously storing the contents of the picture parameter sets for all values of pic_parameter_set_id. The content of the picture parameter set with a particular value of pic_parameter_set_id is overwritten when a new picture parameter set NAL unit with the same value of pic_parameter_set_id is received.
A sequence parameter set RBSP includes parameters that can be referred to by one or more picture parameter set RBSPs or one or more SEI NAL units containing a buffering period SEI message. Each sequence parameter set RBSP is initially considered not active at the start of the operation of the decoding process. At most one sequence parameter set RBSP is considered active at any given moment during the operation of the decoding process, and the activation of any particular sequence parameter set RBSP results in the deactivation of the previously-active sequence parameter set RBSP (if any).

When a sequence parameter set RBSP (with a particular value of seq_parameter_set_id) is not already active and it is referred to by activation of a picture parameter set RBSP (using that value of seq_parameter_set_id) or is referred to by an SEI NAL unit containing a buffering period SEI message (using that value of seq_parameter_set_id), it is activated. This sequence parameter set RBSP is called the active sequence parameter set RBSP until it is deactivated by the activation of another sequence parameter set RBSP. A sequence parameter set RBSP, with that particular value of seq_parameter_set_id, shall be available to the decoding process prior to its activation. An activated sequence parameter set RBSP shall remain active for the entire coded video sequence.

NOTE 3– Because an IDR access unit begins a new coded video sequence and an activated sequence parameter set RBSP must remain active for the entire coded video sequence, a sequence parameter set RBSP can only be activated by a buffering period SEI message when the buffering period SEI message is part of an IDR access unit.
Any sequence parameter set NAL unit containing the value of seq_parameter_set_id for the active sequence parameter set RBSP for a coded video sequence shall have the same content as that of the active sequence parameter set RBSP for the coded video sequence unless it follows the last access unit of the coded video sequence and precedes the first VCL NAL unit and the first SEI NAL unit containing a buffering period SEI message (when present) of another coded video sequence.

NOTE 4– If picture parameter set RBSP or sequence parameter set RBSP are conveyed within the bitstream, these constraints impose an order constraint on the NAL units that contain the picture parameter set RBSP or sequence parameter set RBSP, respectively. Otherwise (picture parameter set RBSP or sequence parameter set RBSP are conveyed by other means not specified in this International Standard), they must be available to the decoding process in a timely fashion such that these constraints are obeyed.

When a sequence parameter set NAL unit with a particular value of seq_parameter_set_id is received, its content replaces the content of the previous sequence parameter set NAL unit, in decoding order, with the same value of seq_parameter_set_id (when a previous sequence parameter set NAL unit with the same value of seq_parameter_set_id was present in the bitstream).

NOTE 5 – A decoder must be capable of simultaneously storing the contents of the sequence parameter sets for all values of seq_parameter_set_id. The content of the sequence parameter set with a particular value of seq_parameter_set_id is overwritten when a new sequence parameter set NAL unit with the same value of seq_parameter_set_id is received.

All constraints that are expressed on the relationship between the values of the syntax elements (and the values of variables derived from those syntax elements) in sequence parameter sets and picture parameter sets and other syntax elements are expressions of constraints that apply only to the active sequence parameter set and the active picture parameter set. If any sequence parameter set RBSP is present that is not activated in the bitstream, its syntax elements shall have values that would conform to the specified constraints if it were activated by reference in an otherwise‑conforming bitstream. If any picture parameter set RBSP is present that is not ever activated in the bitstream, its syntax elements shall have values that would conform to the specified constraints if it were activated by reference in an otherwise-conforming bitstream.

During operation of the decoding process (see clause 8), the values of parameters of the active picture parameter set and the active sequence parameter set shall be considered in effect..

7.4.1.2.2  Order of access units and association to coded video sequences

A bitstream conforming to this International Standard consists of one or more coded video sequences.

A coded video sequence consists of one or more access units. For coded video sequences that conform to one or more of the profiles specified in Annex A and are decoded using the decoding process specified in clauses 2-9, the order of NAL units and coded pictures and their association to access units is described in subclause 7.4.1.2.3.

The first access unit of each coded video sequence is an IDR access unit. All subsequent access units in the coded video sequence are non-IDR access units.

It is a requirement of bitstream conformance that, when two consecutive access units in decoding order within a coded video sequence both contain non-reference pictures, the value of picture order count for each coded frame in the first such access unit shall be less than or equal to the value of picture order count for each coded frame in the second such access unit.

It is a requirement of bitstream conformance that, when present, an access unit following an access unit that contains an end of sequence NAL unit shall be an IDR access unit.

It is a requirement of bitstream conformance that, when an SEI NAL unit contains data that pertain to more than one access unit (for example, when the SEI NAL unit has a coded video sequence as its scope), it shall be contained in the first access unit to which it applies.

It is a requirement of bitstream conformance that, when an end of stream NAL unit is present in an access unit, this access unit shall be the last access unit in the bitstream and the end of stream NAL unit shall be the last NAL unit in that access unit.

7.4.1.2.3 Order of NAL units and coded pictures and association to access units

This subclause specifies the order of NAL units and coded pictures and association to access unit for coded video sequences that conform to one or more of the profiles specified in Annex A and are decoded using the decoding process specified in clauses 2-9.

An access unit consists of one primary coded picture, , and zero or more non-VCL NAL units. The association of VCL NAL units to primary is described in subclause 7.4.1.2.5.

The first access unit in the bitstream starts with the first NAL unit of the bitstream.

The first of any of the following NAL units after the last VCL NAL unit of a primary coded picture specifies the start of a new access unit:

–
access unit delimiter NAL unit (when present),

–
sequence parameter set NAL unit (when present),

–
picture parameter set NAL unit (when present),

–
SEI NAL unit (when present),

–
NAL units with nal_unit_type in the range of 14 to 18, inclusive (when present),

–
first VCL NAL unit of a primary coded picture (always present).

The constraints for the detection of the first VCL NAL unit of a primary coded picture are specified in subclause 7.4.1.2.4.

The following constraints shall be obeyed by the order of the coded pictures and non-VCL NAL units within an access unit:

–
When an access unit delimiter NAL unit is present, it shall be the first NAL unit. There shall be at most one access unit delimiter NAL unit in any access unit.

–
When any SEI NAL units are present, they shall precede the primary coded picture.

–
When an SEI NAL unit containing a buffering period SEI message is present, the buffering period SEI message shall be the first SEI message payload of the first SEI NAL unit in the access unit.

–
When an end of sequence NAL unit is present, it shall follow the primary coded picture 

–
When an end of stream NAL unit is present, it shall be the last NAL unit.

–
NAL units having nal_unit_type equal to 0, 12, or in the range of 20 to 31, inclusive, shall not precede the first VCL NAL unit of the primary coded picture.

NOTE 2 – Sequence parameter set NAL units or picture parameter set NAL units may be present in an access unit, but cannot follow the last VCL NAL unit of the primary coded picture within the access unit, as this condition would specify the start of a new access unit.

NOTE 3 – When a NAL unit having nal_unit_type equal to 7 or 8 is present in an access unit, it may or may not be referred to in the coded pictures of the access unit in which it is present, and may be referred to in coded pictures of subsequent access units.

The structure of access units not containing any NAL units with nal_unit_type equal to 0, 7, 8, or in the range of 12 to 18, inclusive, or in the range of 20 to 31, inclusive, is shown in Figure 7‑1.


[image: image17.emf]access unit delimiter

SEI

primary coded picture

redundant coded picture

end of sequence

end of stream

start

end

auxiliary coded picture


Figure 7‑1 – Structure of an access unit not containing any NAL units with nal_unit_type equal to 0, 7, 8, 
or in the range of 12 to 18, inclusive, or in the range of 20 to 31, inclusive

7.4.1.2.4 Detection of the first VCL NAL unit of a primary coded picture

This subclause specifies constraints on VCL NAL unit syntax that are sufficient to enable the detection of the first VCL NAL unit of each primary coded picture for coded video sequences that conform to one or more of the profiles specified in Annex A and are decoded using the decoding process specified in clauses 2-9.

Any coded slice NAL unit of the primary coded picture of the current access unit shall be different from any coded slice NAL unit of the primary coded picture of the previous access unit in one or more of the following ways:

–
frame_num differs in value. The value of frame_num used to test this condition is the value of frame_num that appears in the syntax of the slice header, regardless of whether that value is inferred to have been equal to 0 for subsequent use in the decoding process due to the presence of memory_management_control_operation equal to 5.

NOTE 1 – A consequence of the above statement is that a primary coded picture having frame_num equal to 1 cannot contain a memory_management_control_operation equal to 5 unless some other condition listed below is fulfilled for the next primary coded picture that follows after it (if any).

–
pic_parameter_set_id differs in value.

–
nal_ref_idc differs in value with one of the nal_ref_idc values being equal to 0.

–
pic_order_cnt_type is equal to 0 for both and pic_order_cnt_lsb differs in value.–
pic_order_cnt_type is equal to 1 for both and either delta_pic_order_cnt[ 0 ] differs in value, or delta_pic_order_cnt[ 1 ] differs in value.

–
IdrPicFlag differs in value.

–
IdrPicFlag is equal to 1 for both and idr_pic_id differs in value.

NOTE 2 – Some of the VCL NAL units in non-VCL NAL units (e.g., an access unit delimiter NAL unit) may also be used for the detection of the boundary between access units, and may therefore aid in the detection of the start of a new primary coded picture.

7.4.1.2.5 Order of VCL NAL units and association to coded pictures

This subclause specifies the order of VCL NAL units and association to coded pictures for coded video sequences that conform to one or more of the profiles specified in Annex A and are decoded using the decoding process specified in clauses 2-9.

Each VCL NAL unit is part of a coded picture.

The order of the VCL NAL units within a coded IDR picture is constrained as follows:

–
the order of coded slice of an IDR picture NAL units shall be in the order of increasing macroblock address.

The order of the VCL NAL units within a coded non-IDR picture is constrained as follows:

–
the order of coded slice of a non-IDR picture NAL units shall be in the order of increasing macroblock address. 

NAL units having nal_unit_type equal to 12 may be present in the access unit but shall not precede the first VCL NAL unit of the primary coded picture within the access unit.

NAL units having nal_unit_type equal to 0 or in the range of 24 to 31, inclusive, which are unspecified, may be present in the access unit but shall not precede the first VCL NAL unit of the primary coded picture within the access unit.

NAL units having nal_unit_type in the range of 20 to 23, inclusive, shall not precede the first VCL NAL unit of the primary coded picture within the access unit.

7.4.2 Raw byte sequence payloads and RBSP trailing bits semantics

7.4.2.1 Sequence parameter set RBSP semantics

7.4.2.1.1 Sequence parameter set data semantics

profile_idc and level_idc indicate the profile and level to which the coded video sequence conforms.  constraint_set0_flag equal to 1 indicates that the coded video sequence obeys all constraints specified in subclause A.2.1. constraint_set0_flag equal to 0 indicates that the coded video sequence may or may not obey all constraints specified in subclause A.2.1.

constraint_set1_flag equal to 1 indicates that the coded video sequence obeys all constraints specified in subclause A.2.1. constraint_set1_flag equal to 0 indicates that the coded video sequence may or may not obey all constraints specified in subclause A.2.1.  In this standard, constraint_set0_flag  and constraint_set1_flag shall be 1.

constraint_set2_flag is not used in this specification; the value shall be ignored by decoders, and should be set to 1 by encoders. 
constraint_set3_flag is specified as follows:

–
If profile_idc is equal to 66, 77, or 88 and level_idc is equal to 11, constraint_set3_flag equal to 1 indicates that the coded video sequence obeys all constraints specified in Annex A for level 1b and constraint_set3_flag equal to 0 indicates that the coded video sequence obeys all constraints specified in Annex A for level 1.1.

–
Otherwise the value of 1 for constraint_set3_flag is reserved for future use by ITU‑T | ISO/IEC.. Decoders shall ignore the value of constraint_set3_flag. 
constraint_set4_flag is not used in this specification; the value shall be ignored by decoders, and should be set to 0 by encoders.
constraint_set5_flag is not used in this specification; the value shall be ignored by decoders, and should be set to 0 by encoders.
reserved_zero_2bits shall be equal to 0. Other values of reserved_zero_2bits may be specified in the future by ITU‑T | ISO/IEC. Decoders shall ignore the value of reserved_zero_2bits.

seq_parameter_set_id identifies the sequence parameter set that is referred to by the picture parameter set. The value of seq_parameter_set_id shall be in the range of 0 to 31, inclusive.
NOTE 3– When feasible, encoders should use distinct values of seq_parameter_set_id when the values of other sequence parameter set syntax elements differ rather than changing the values of the syntax elements associated with a specific value of seq_parameter_set_id.
log2_max_frame_num_minus4 specifies the value of the variable MaxFrameNum that is used in frame_num related derivations as follows:

MaxFrameNum = 2( log2_max_frame_num_minus4 + 4 )

(7-9)

The value of log2_max_frame_num_minus4 shall be in the range of 0 to 12, inclusive.

pic_order_cnt_type specifies the method to decode picture order count (as specified in subclause 8.2.1). The value of pic_order_cnt_type shall be in the range of 0 to 2, inclusive.

pic_order_cnt_type shall not be equal to 2 in a coded video sequence that contains any of the following:

–
an access unit containing a non-reference frame followed immediately by an access unit containing a non-reference picture,

log2_max_pic_order_cnt_lsb_minus4 specifies the value of the variable MaxPicOrderCntLsb that is used in the decoding process for picture order count as specified in subclause 8.2.1 as follows:

MaxPicOrderCntLsb = 2( log2_max_pic_order_cnt_lsb_minus4 + 4 )
(7-10)

The value of log2_max_pic_order_cnt_lsb_minus4 shall be in the range of 0 to 12, inclusive.
delta_pic_order_always_zero_flag equal to 1 specifies that delta_pic_order_cnt[ 0 ] and delta_pic_order_cnt[ 1 ] are not present in the slice headers of the sequence and shall be inferred to be equal to 0. delta_pic_order_always_zero_flag equal to 0 specifies that delta_pic_order_cnt[ 0 ] is present in the slice headers of the sequence and delta_pic_order_cnt[ 1 ] may be present in the slice headers of the sequence.

offset_for_non_ref_pic is used to calculate the picture order count of a non-reference picture as specified in subclause 8.2.1. The value of offset_for_non_ref_pic shall be in the range of −231 + 1 to 231 − 1, inclusive.

num_ref_frames_in_pic_order_cnt_cycle is used in the decoding process for picture order count as specified in subclause 8.2.1. The value of num_ref_frames_in_pic_order_cnt_cycle shall be in the range of 0 to 255, inclusive.

offset_for_ref_frame[ i ] is an element of a list of num_ref_frames_in_pic_order_cnt_cycle values used in the decoding process for picture order count asspecified in subclause 8.2.1. The value of offset_for_ref_frame[ i ] shall be in the range of −231 + 1 to 231 − 1, inclusive.

When pic_order_cnt_type is equal to 1, the variable ExpectedDeltaPerPicOrderCntCycle is derived by

ExpectedDeltaPerPicOrderCntCycle = 0
for( i = 0;  i < num_ref_frames_in_pic_order_cnt_cycle;  i++ )

ExpectedDeltaPerPicOrderCntCycle += offset_for_ref_frame[ i ]
(7-11)

max_num_ref_frames specifies the maximum number of short-term and long-term reference frames that may be used by the decoding process for inter prediction of any picture in the coded video sequence. max_num_ref_frames also determines the size of the sliding window operation as specified in subclause 8.2.5.3. The value of max_num_ref_frames shall be in the range of 0 toMaxDpbFrames (as specified in subclause A.3.1 or A.3.2), inclusive.

gaps_in_frame_num_value_allowed_flag specifies the allowed values of frame_num as specified in subclause 7.4.3 and the decoding process in case of an inferred gap between values of frame_num as specified in subclause 8.2.5.2.

pic_width_in_mbs_minus1 plus 1 specifies the width of each decoded picture in units of macroblocks.

The variable for the picture width in units of macroblocks is derived as

PicWidthInMbs = pic_width_in_mbs_minus1 + 1

(7-12)

The variable for picture width for the luma component is derived as

PicWidthInSamplesL = PicWidthInMbs * 16

(7-13)
The variable for picture width for the chroma components is derived as

PicWidthInSamplesC = PicWidthInMbs * MbWidthC
(7-14)

frame_mbs_only_flag  shall be  equal to 1 and specifies that every coded picture of the coded video sequence is a coded frame containing only frame macroblocks. 
The allowed range of values for pic_width_in_mbs_minus1, pic_height_in_map_units_minus1, is specified by constraints in Annex A.

pic_height_in_map_units_minus1 plus 1 is the height of a frame in units of macroblocks.

The variable FrameHeightInMbs is derived as

FrameHeightInMbs = ( 2 − frame_mbs_only_flag ) * PicHeightInMapUnits
(7-17)

direct_8x8_inference_flag  not used
frame_cropping_flag equal to 1 specifies that the frame cropping offset parameters follow next in the sequence parameter set. frame_cropping_flag equal to 0 specifies that the frame cropping offset parameters are not present.
frame_crop_left_offset, frame_crop_right_offset, frame_crop_top_offset, frame_crop_bottom_offset specify the samples of the pictures in the coded video sequence that are output from the decoding process, in terms of a rectangular region specified in frame coordinates for output.

The variables CropUnitX and CropUnitY are derived as follows:

–
CropUnitX and CropUnitY are derived as:

CropUnitX = 2

(7-20)
CropUnitY = 2* ( 2 − frame_mbs_only_flag )
(7-21)

The frame cropping rectangle contains luma samples with horizontal frame coordinates from CropUnitX * frame_crop_left_offset to PicWidthInSamplesL − ( CropUnitX * frame_crop_right_offset + 1 ) and vertical frame coordinates from CropUnitY * frame_crop_top_offset to ( 16 * FrameHeightInMbs ) − ( CropUnitY * frame_crop_bottom_offset + 1 ), inclusive. The value of frame_crop_left_offset shall be in the range of 0 to ( PicWidthInSamplesL / CropUnitX ) − ( frame_crop_right_offset + 1 ), inclusive; and the value of frame_crop_top_offset shall be in the range of 0 to ( 16 * FrameHeightInMbs / CropUnitY ) − ( frame_crop_bottom_offset + 1 ), inclusive.

When frame_cropping_flag is equal to0, the values of frame_crop_left_offset, frame_crop_right_offset, frame_crop_top_offset, and frame_crop_bottom_offset shall be inferred to be equal to 0.

The corresponding specified samples of the two chroma arrays are the samples having frame coordinates ( x / 2, y / 2), where ( x, y ) are the frame coordinates of the specified luma samples.

vui_parameters_present_flag equal to 1 specifies that the vui_parameters( ) syntax structure as specified in Annex E is present. vui_parameters_present_flag equal to 0 specifies that the vui_parameters( ) syntax structure as specified in Annex E is not present.

7.4.2.1.2 (void)
7.4.2.2 Picture parameter set RBSP semantics

pic_parameter_set_id identifies the picture parameter set that is referred to in the slice header. The value of pic_parameter_set_id shall be in the range of 0 to 255, inclusive.
seq_parameter_set_id refers to the active sequence parameter set. The value of seq_parameter_set_id shall be in the range of 0 to 31, inclusive.
entropy_coding_mode_flag selects the entropy decoding method to be applied for the syntax elements. It shall be  equal to 0, the method specified by the left descriptor in the syntax table is applied (Exp-Golomb coded, see subclause 9.1 or CAVLC, see subclause 9.2).

num_slice_groups_minus1 shall = 0

num_ref_idx_l0_default_active_minus1 specifies how num_ref_idx_l0_active_minus1 is inferred for P slices with num_ref_idx_active_override_flag equal to 0. The value of num_ref_idx_l0_default_active_minus1 shall be in the range of 0 to 31, inclusive. 

num_ref_idx_l1_default_active_minus1 not used
pic_init_qp_minus26 specifies the initial value minus 26 of SliceQPY for each slice. The initial value is modified at the slice layer when a non-zero value of slice_qp_delta is decoded, and is modified further when a non-zero value of mb_qp_delta is decoded at the macroblock layer. The value of pic_init_qp_minus26 shall be in the range of −(26 + 0 ) to +25, inclusive.

pic_init_qs_minus26 not used

chroma_qp_index_offset specifies the offset that shall be added to QPY and QSY for addressing the table of QPC values for the Cb chroma component. The value of chroma_qp_index_offset shall be in the range of −12 to +12, inclusive.

deblocking_filter_control_present_flag equal to 1 specifies that a set of syntax elements controlling the characteristics of the deblocking filter is present in the slice header. deblocking_filter_control_present_flag equal to 0 specifies that the set of syntax elements controlling the characteristics of the deblocking filter is not present in the slice headers and their inferred values are in effect.

constrained_intra_pred_flag equal to 0 specifies that intra prediction allows usage of residual data and decoded samples of neighbouring macroblocks coded using Inter macroblock prediction modes for the prediction of macroblocks coded using Intra macroblock prediction modes. constrained_intra_pred_flag equal to 1 specifies constrained intra prediction, in which case prediction of macroblocks coded using Intra macroblock prediction modes only uses residual data and decoded samples from I macroblock types.

redundant_pic_cnt_present_flag shall be equal to 0 and specifies that the redundant_pic_cnt syntax element is not present in slice headers that refer to the picture parameter set. 

7.4.2.3 Access unit delimiter RBSP semantics

The access unit delimiter may be used to indicate the type of slices present in a primary coded picture and to simplify the detection of the boundary between access units. There is no normative decoding process associated with the access unit delimiter.

primary_pic_type indicates that the slice_type values for all slices of the primary coded picture are members of the set listed in Table 7‑5for the given value of primary_pic_type.

NOTE – The value of primary_pic_type applies to the slice_type values in all slice headers of the primary coded picture, including the slice_type syntax elements in all NAL units with nal_unit_type equal to 1 or 5.

Table 7‑5 – Meaning of primary_pic_type

	primary_pic_type
	slice_type values that may be present in the primary coded picture

	0
	2, 7

	1
	0, 2, 5, 7

	2
	0, 2, 5, 7

	3
	4, 9

	4
	3, 4, 8, 9

	5
	2, 4, 7, 9

	6
	0, 2, 3, 4, 5, 7, 8, 9

	7
	0, 2, 3, 4, 5, 7, 8, 9


7.4.2.4 End of sequence RBSP semantics

The end of sequence RBSP specifies that the next subsequent access unit in the bitstream in decoding order (if any) shall be an IDR access unit. The syntax content of the SODB and RBSP for the end of sequence RBSP are empty. No normative decoding process is specified for an end of sequence RBSP.

7.4.2.5 End of stream RBSP semantics

The end of stream RBSP indicates that no additional NAL units shall be present in the bitstream that are subsequent to the end of stream RBSP in decoding order. The syntax content of the SODB and RBSP for the end of stream RBSP are empty. No normative decoding process is specified for an end of stream RBSP.

NOTE – When an end of stream NAL unit is present, the bitstream is considered to end (for purposes of the scope of this International Standard). In some system environments, another bitstream may follow after the bitstream that has ended, either immediately or at some time thereafter, possibly within the same communication channel. Under such circumstances, the scope of this International Standard applies only to the processing of each of these individual bitstreams. No requirements are specified herein regarding the transition between such bitstreams (e.g., in regard to timing, buffering operation, etc.).

7.4.2.6 Filler data RBSP semantics

The filler data RBSP contains zero or more bytes. No normative decoding process is specified for a filler data RBSP.

ff_byte is a byte. It is a requirement of bitstream conformance that the value of ff_byte shall be equal to 0xFF.

7.4.2.7 Slice layer without partitioning RBSP semantics

The slice layer without partitioning RBSP consists of a slice header and slice data.

7.4.2.8 (void)

7.4.2.9 RBSP trailing bits semantics

rbsp_stop_one_bit shall be equal to 1.

rbsp_alignment_zero_bit shall be equal to 0.

7.4.3 Slice header semantics

When present, the value of the slice header syntax elements pic_parameter_set_id, frame_num, , idr_pic_id, pic_order_cnt_lsb, delta_pic_order_cnt[ 0 ], and delta_pic_order_cnt[ 1 ] shall be the same in all slice headers of a coded picture.

first_mb_in_slice specifies the address of the first macroblock in the slice. the value of first_mb_in_slice is constrained as follows:

–
the value of first_mb_in_slice shall not be less than the value of first_mb_in_slice for any other slice of the current picture that precedes the current slice in decoding order.

The first macroblock address of the slice is derived as follows:

first_mb_in_slice is the macroblock address of the first macroblock in the slice, and first_mb_in_slice shall be in the range of 0 to PicSizeInMbs − 1, inclusive.

slice_type specifies the coding type of the slice according to Table 7‑6.

Table 7‑6 – Name association to slice_type
	slice_type
	Name of slice_type

	0
	P (P slice)

	1
	not used

	2
	I (I slice)

	3
	not used

	4
	not used

	5
	P (P slice)

	6
	not used

	7
	I (I slice)

	8
	not used

	9
	not used


When slice_type has a value in the range 5..9, it is a requirement of bitstream conformance that all other slices of the current coded picture shall have a value of slice_type equal to the current value of slice_type or equal to the current value of slice_type minus 5.

NOTE 1 – Values of slice_type in the range 5..9 can be used by an encoder to indicate that all slices of a picture have the same value of (slice_type % 5). Values of slice_type in the range 5..9 are otherwise equivalent to corresponding values in the range 0..4.

When nal_unit_type is equal to 5 (IDR picture), slice_type shall be equal to 2 or 7.

When max_num_ref_frames is equal to 0, slice_type shall be equal to 2 or 7.

pic_parameter_set_id specifies the picture parameter set in use. The value of pic_parameter_set_id shall be in the range of 0 to 255, inclusive.

frame_num is used as an identifier for pictures and shall be represented by log2_max_frame_num_minus4 + 4 bits in the bitstream. frame_num is constrained as follows:

The variable PrevRefFrameNum is derived as follows:

–
If the current picture is an IDR picture, PrevRefFrameNum is set equal to 0.

–
Otherwise (the current picture is not an IDR picture), PrevRefFrameNum is set as follows:

–
If the decoding process for gaps in frame_num specified in subclause 8.2.5.2 was invoked by the decoding process for an access unit that contained a non-reference picture that followed the previous access unit in decoding order that contained a reference picture, PrevRefFrameNum is set equal to the value of frame_num for the last of the "non-existing" reference frames inferred by the decoding process for gaps in frame_num specified in subclause 8.2.5.2.

–
Otherwise, PrevRefFrameNum is set equal to the value of frame_num for the previous access unit in decoding order that contained a reference picture.

The value of frame_num is constrained as follows:

–
If the current picture is an IDR picture, frame_num shall be equal to 0.

–
Otherwise (the current picture is not an IDR picture), referring to the primary coded picture in the previous access unit in decoding order that contains a reference picture as the preceding reference picture, the value of frame_num for the current picture shall not be equal to PrevRefFrameNum unless all of the following three conditions are true:

a) The current picture and the preceding reference picture belong to consecutive access units in decoding order.

b) (void).

c) One or more of the following conditions is true:

–
The preceding reference picture is an IDR picture,

–
The preceding reference picture includes a memory_management_control_operation syntax element equal to 5,

NOTE 3– When the preceding reference picture includes a memory_management_control_operation syntax element equal to 5, PrevRefFrameNum is equal to 0.

–
There is a primary coded picture that precedes the preceding reference picture and the primary coded picture that precedes the preceding reference picture does not have frame_num equal to PrevRefFrameNum,

–
There is a primary coded picture that precedes the preceding reference picture and the primary coded picture that precedes the preceding reference picture is not a reference picture.

When the value of frame_num is not equal to PrevRefFrameNum, it is a requirement of bitstream conformance that the following constraints shall be obeyed:

a) There shall not be any previous frame in decoding order that is currently marked as "used for short-term reference" that has a value of frame_num equal to any value taken on by the variable UnusedShortTermFrameNum in the following:

UnusedShortTermFrameNum = ( PrevRefFrameNum + 1 ) % MaxFrameNum
while( UnusedShortTermFrameNum  !=  frame_num )
(7-23)

UnusedShortTermFrameNum = ( UnusedShortTermFrameNum + 1 ) % MaxFrameNum

b) The value of frame_num is constrained as follows:

–
If gaps_in_frame_num_value_allowed_flag is equal to 0, the value of frame_num for the current picture shall be equal to ( PrevRefFrameNum + 1 ) % MaxFrameNum.

–
Otherwise (gaps_in_frame_num_value_allowed_flag is equal to 1), the following applies:

–
If frame_num is greater than PrevRefFrameNum, there shall not be any non-reference pictures in the bitstream that follow the previous reference picture and precede the current picture in decoding order in which either of the following conditions is true:

–
The value of frame_num for the non-reference picture is less than PrevRefFrameNum,

–
The value of frame_num for the non-reference picture is greater than the value of frame_num for the current picture.

–
Otherwise (frame_num is less than PrevRefFrameNum), there shall not be any non-reference pictures in the bitstream that follow the previous reference picture and precede the current picture in decoding order in which both of the following conditions are true:

–
The value of frame_num for the non-reference picture is less than PrevRefFrameNum,

–
The value of frame_num for the non-reference picture is greater than the value of frame_num for the current picture.

A picture including a memory_management_control_operation equal to 5 shall have frame_num constraints as described above and, after the decoding of the current picture and the processing of the memory management control operations, the picture shall be inferred to have had frame_num equal to 0 for all subsequent use in the decoding process, except as specified in subclause 7.4.1.2.4.

idr_pic_id identifies an IDR picture. The values of idr_pic_id in all the slices of an IDR picture shall remain unchanged. When two consecutive access units in decoding order are both IDR access units, the value of idr_pic_id in the slices of the first such IDR access unit shall differ from the idr_pic_id in the second such IDR access unit. The value of idr_pic_id shall be in the range of 0 to 65535, inclusive.

NOTE 5 – It is not prohibited for multiple IDR pictures in a bitstream to have the same value of idr_pic_id unless such pictures occur in two consecutive access units in decoding order.
pic_order_cnt_lsb specifies the picture order count modulo MaxPicOrderCntLsb for a coded frame. The length of the pic_order_cnt_lsb syntax element is log2_max_pic_order_cnt_lsb_minus4 + 4 bits. The value of the pic_order_cnt_lsb shall be in the range of 0 to MaxPicOrderCntLsb − 1, inclusive.
delta_pic_order_cnt[ 0 ] specifies the picture order count difference from the expected picture order count for the top field of a coded frame or for a coded field as specified in subclause 8.2.1. The value of delta_pic_order_cnt[ 0 ] shall be in the range of −231 + 1 to 231 − 1, inclusive. When this syntax element is not present in the bitstream for the current slice, it shall be inferred to be equal to 0.

redundant_pic_cnt shall be equal to 0 and specifies that  slices belong to the primary coded picture.  

When the value of nal_ref_idc in one VCL NAL unit of an access unit is equal to 0, the value of nal_ref_idc in all other VCL NAL units of the same access unit shall be equal to 0.

The marking status of reference pictures and the value of frame_num after the decoded reference picture marking process as specified in subclause 8.2.5 is invoked for the primary coded picture of the same access unit shall be identical regardless whether the primary coded picture of the access unit would be decoded.

num_ref_idx_active_override_flag equal to 1 specifies that the syntax element num_ref_idx_l0_active_minus1 is present for P slices. num_ref_idx_active_override_flag equal to 0 specifies that the syntax element num_ref_idx_l0_active_minus1 is not present.

When the current slice is a P slice and the value of num_ref_idx_l0_default_active_minus1 in the picture parameter set exceeds 15, num_ref_idx_active_override_flag shall be equal to 1.

num_ref_idx_l0_active_minus1specifies the maximum reference index for reference picture list 0 that shall be used to decode the slice.

When the current slice is a P slice and num_ref_idx_l0_active_minus1 is not present, num_ref_idx_l0_active_minus1 shall be inferred to be equal to num_ref_idx_l0_default_active_minus1.

The range of num_ref_idx_l0_active_minus1 is specified as follows:

num_ref_idx_l0_active_minus1 shall be in the range of 0 to 15, inclusive..

slice_qp_delta specifies the initial value of QPY to be used for all the macroblocks in the slice until modified by the value of mb_qp_delta in the macroblock layer. The initial QPY quantisation parameter for the slice is computed as

SliceQPY = 26 + pic_init_qp_minus26 + slice_qp_delta
(7-29)

The value of slice_qp_delta shall be limited such that SliceQPY is in the range of −0 to +51, inclusive.

disable_deblocking_filter_idc specifies whether the operation of the deblocking filter shall be disabled across some block edges of the slice and specifies for which edges the filtering is disabled. When disable_deblocking_filter_idc is not present in the slice header, the value of disable_deblocking_filter_idc shall be inferred to be equal to 0.

The value of disable_deblocking_filter_idc shall be in the range of 0 to 2, inclusive.

slice_alpha_c0_offset_div2 specifies the offset used in accessing the α and tC0 deblocking filter tables for filtering operations controlled by the macroblocks within the slice. From this value, the offset that shall be applied when addressing these tables shall be computed as

FilterOffsetA = slice_alpha_c0_offset_div2 << 1

(7-31)

The value of slice_alpha_c0_offset_div2 shall be in the range of −6 to +6, inclusive. When slice_alpha_c0_offset_div2 is not present in the slice header, the value of slice_alpha_c0_offset_div2 shall be inferred to be equal to 0.

slice_beta_offset_div2 specifies the offset used in accessing the β deblocking filter table for filtering operations controlled by the macroblocks within the slice. From this value, the offset that is applied when addressing the β table of the deblocking filter shall be computed as

FilterOffsetB = slice_beta_offset_div2 << 1

(7-32)

The value of slice_beta_offset_div2 shall be in the range of −6 to +6, inclusive. When slice_beta_offset_div2 is not present in the slice header the value of slice_beta_offset_div2 shall be inferred to be equal to 0.

7.4.3.1 Reference picture list modification semantics

The syntax elements modification_of_pic_nums_idc, abs_diff_pic_num_minus1, and long_term_pic_num specify the change from the initial reference picture lists to the reference picture lists to be used for decoding the slice.

ref_pic_list_modification_flag_l0 equal to 1 specifies that the syntax element modification_of_pic_nums_idc is present for specifying reference picture list 0. ref_pic_list_modification_flag_l0 equal to 0 specifies that this syntax element is not present.

When ref_pic_list_modification_flag_l0 is equal to 1, the number of times that modification_of_pic_nums_idc is not equal to 3 following ref_pic_list_modification_flag_l0 shall not exceed num_ref_idx_l0_active_minus1 + 1.

When RefPicList0[ num_ref_idx_l0_active_minus1 ] in the initial reference picture list produced as specified in subclause 8.2.4.2 is equal to "no reference picture", ref_pic_list_modification_flag_l0 shall be equal to 1 and modification_of_pic_nums_idc shall not be equal to 3 until RefPicList0[ num_ref_idx_l0_active_minus1 ] in the modified list produced as specified in subclause 8.2.4.3 is not equal to "no reference picture".

modification_of_pic_nums_idc together with abs_diff_pic_num_minus1 or long_term_pic_num specifies which of the reference pictures are re-mapped. The values of modification_of_pic_nums_idc are specified in Table 7‑7. The value of the first modification_of_pic_nums_idc that follows immediately after ref_pic_list_modification_flag_l0 shall not be equal to 3.

Table 7‑7 – modification_of_pic_nums_idc operations for modification of reference picture lists

	modification_of_pic_nums_idc
	modification specified

	0
	abs_diff_pic_num_minus1 is present and corresponds to a difference to subtract from a picture number prediction value

	1
	abs_diff_pic_num_minus1 is present and corresponds to a difference to add to a picture number prediction value

	2
	long_term_pic_num is present and specifies the long-term picture number for a reference picture

	3
	End loop for modification of the initial reference picture list


abs_diff_pic_num_minus1 plus 1 specifies the absolute difference between the picture number of the picture being moved to the current index in the list and the picture number prediction value. abs_diff_pic_num_minus1 shall be in the range of 0 to MaxPicNum − 1. The allowed values of abs_diff_pic_num_minus1 are further restricted as specified in subclause 8.2.4.3.1.

long_term_pic_num specifies the long-term picture number of the picture being moved to the current index in the list. When decoding a coded frame, long_term_pic_num shall be equal to a LongTermPicNum assigned to one of the reference frames marked as "used for long-term reference". 

7.4.3.2 (void)
7.4.3.3 Decoded reference picture marking semantics

The syntax elements no_output_of_prior_pics_flag, long_term_reference_flag, adaptive_ref_pic_marking_mode_flag, memory_management_control_operation, difference_of_pic_nums_minus1, long_term_frame_idx, long_term_pic_num, and max_long_term_frame_idx_plus1 specify marking of the reference pictures.

The marking of a reference picture can be "unused for reference", "used for short-term reference", or "used for long-term reference", but only one among these three. When a reference picture is referred to as being marked as "used for reference", this collectively refers to the picture being marked as "used for short-term reference" or "used for long-term reference" (but not both). A reference picture that is marked as "used for short-term reference" is referred to as a short‑term reference picture. A reference picture that is marked as "used for long-term reference" is referred to as a long‑term reference picture.
The content of the decoded reference picture marking syntax structure shall be the same in all slice headers of the primary coded picture.  

The syntax category of the decoded reference picture marking syntax structure shall be inferred as follows:

–
If the decoded reference picture marking syntax structure is in a slice header, the syntax category of the decoded reference picture marking syntax structure is inferred to be equal to 2.

no_output_of_prior_pics_flag specifies how the previously-decoded pictures in the decoded picture buffer are treated after decoding of an IDR picture. See Annex C. When the IDR picture is the first IDR picture in the bitstream, the value of no_output_of_prior_pics_flag has no effect on the decoding process. When the IDR picture is not the first IDR picture in the bitstream and the value of PicWidthInMbs, FrameHeightInMbs, or max_dec_frame_buffering derived from the active sequence parameter set is different from the value of PicWidthInMbs, FrameHeightInMbs, or max_dec_frame_buffering derived from the sequence parameter set active for the preceding picture, no_output_of_prior_pics_flag equal to 1 may (but should not) be inferred by the decoder, regardless of the actual value of no_output_of_prior_pics_flag.

long_term_reference_flag equal to 0 specifies that the MaxLongTermFrameIdx variable is set equal to "no long-term frame indices" and that the IDR picture is marked as "used for short-term reference". long_term_reference_flag equal to 1 specifies that the MaxLongTermFrameIdx variable is set equal to 0 and that the current IDR picture is marked "used for long-term reference" and is assigned LongTermFrameIdx equal to 0. When max_num_ref_frames is equal to 0, long_term_reference_flag shall be equal to 0.

adaptive_ref_pic_marking_mode_flag selects the reference picture marking mode of the currently decoded picture as specified in Table 7‑8. adaptive_ref_pic_marking_mode_flag shall be equal to 1 when the number of frames, that are currently marked as "used for long-term reference" is equal to Max( max_num_ref_frames, 1 ).

Table 7‑8 – Interpretation of adaptive_ref_pic_marking_mode_flag

	adaptive_ref_pic_marking_mode_flag
	Reference picture marking mode specified

	0
	Sliding window reference picture marking mode: A marking mode providing a first-in first-out mechanism for short-term reference pictures.

	1
	Adaptive reference picture marking mode: A reference picture marking mode providing syntax elements to specify marking of reference pictures as "unused for reference" and to assign long-term frame indices.


memory_management_control_operation specifies a control operation to be applied to affect the reference picture marking. The memory_management_control_operation syntax element is followed by data necessary for the operation specified by the value of memory_management_control_operation. The values and control operations associated with memory_management_control_operation are specified in Table 7‑9. The memory_management_control_operation syntax elements are processed by the decoding process in the order in which they appear in the slice header, and the semantics constraints expressed for each memory_management_control_operation apply at the specific position in that order at which that individual memory_management_control_operation is processed.

For interpretation of memory_management_control_operation, the term reference picture is interpreted as follows:

–
the term reference picture refers to a reference frame.

memory_management_control_operation shall not be equal to 1 in a slice header unless the specified reference picture is marked as "used for short-term reference" when the memory_management_control_operation is processed by the decoding process.

memory_management_control_operation shall not be equal to 2 in a slice header unless the specified long-term picture number refers to a reference picture that is marked as "used for long-term reference" when the memory_management_control_operation is processed by the decoding process.

memory_management_control_operation shall not be equal to 3 in a slice header unless the specified reference picture is marked as "used for short-term reference" when the memory_management_control_operation is processed by the decoding process.

memory_management_control_operation shall not be equal to 3 or 6 if the value of the variable MaxLongTermFrameIdx is equal to "no long-term frame indices" when the memory_management_control_operation is processed by the decoding process.

Not more than one memory_management_control_operation equal to 4 shall be present in a slice header.

Not more than one memory_management_control_operation equal to 5 shall be present in a slice header.

Not more than one memory_management_control_operation equal to 6 shall be present in a slice header.

memory_management_control_operation shall not be equal to 5 in a slice header unless no memory_management_control_operation in the range of 1 to 3 is present in the same decoded reference picture marking syntax structure.

A memory_management_control_operation equal to 5 shall not follow a memory_management_control_operation equal to 6 in the same slice header.

When a memory_management_control_operation equal to 6 is present, any memory_management_control_operation equal to 2, 3, or 4 that follows the memory_management_control_operation equal to 6 within the same slice header shall not specify the current picture to be marked as "unused for reference".

NOTE 2– These constraints prohibit any combination of multiple memory_management_control_operation syntax elements that would specify the current picture to be marked as "unused for reference". However, some other combinations of memory_management_control_operation syntax elements are permitted that may affect the marking status of other reference pictures more than once in the same slice header. In particular, it is permitted for a memory_management_control_operation equal to 3 that specifies a long-term frame index to be assigned to a particular short-term reference picture to be followed in the same slice header by a memory_management_control_operation equal to 2, 3, 4 or 6 that specifies the same reference picture to subsequently be marked as "unused for reference".

Table 7‑9 – Memory management control operation (memory_management_control_operation) values

	memory_management_control_operation
	Memory Management Control Operation

	0
	End memory_management_control_operation syntax element loop

	1
	Mark a short-term reference picture as
"unused for reference"

	2
	Mark a long-term reference picture as
"unused for reference"

	3
	Mark a short-term reference picture as
"used for long-term reference" and assign a long-term frame index to it

	4
	Specify the maximum long-term frame index and mark all long-term reference pictures havinglong-term frame indices greater than the maximum value as "unused for reference"

	5
	Mark all reference pictures as
"unused for reference" and set the MaxLongTermFrameIdx variable to
"no long-term frame indices"

	6
	Mark the current picture as
"used for long-term reference" and assign a long-term frame index to it


difference_of_pic_nums_minus1 is used (with memory_management_control_operation equal to 3 or 1) to assign a long-term frame index to a short-term reference picture or to mark a short-term reference picture as "unused for reference". When the associated memory_management_control_operation is processed by the decoding process, the resulting picture number derived from difference_of_pic_nums_minus1 shall be a picture number assigned to one of the reference pictures marked as "used forreference" and not previously assigned to a long-term frame index.

The resulting picture number is constrained as follows:

–
the resulting picture number shall be one of the set of picture numbers assigned to reference frames 

long_term_pic_num is used (with memory_management_control_operation equal to 2) to mark a long-term reference picture as "unused for reference". When the associated memory_management_control_operation is processed by the decoding process, long_term_pic_num shall be equal to a long-term picture number assigned to one of the reference pictures that is currently marked as "used for long-term reference".

The resulting long-term picture number is constrained as follows:

–
the resulting long-term picture number shall be one of the set of long-term picture numbers assigned to reference frames 

long_term_frame_idx is used (with memory_management_control_operation equal to 3 or 6) to assign a long-term frame index to a picture. When the associated memory_management_control_operation is processed by the decoding process, the value of long_term_frame_idx shall be in the range of 0 to MaxLongTermFrameIdx, inclusive.

max_long_term_frame_idx_plus1 minus 1 specifies the maximum value of long-term frame index allowed for long‑term reference pictures (until receipt of another value of max_long_term_frame_idx_plus1). The value of max_long_term_frame_idx_plus1 shall be in the range of 0 to max_num_ref_frames, inclusive.

7.4.4 Slice data semantics

mb_skip_run specifies the number of consecutive skipped macroblocks for which, when decoding a P slice, mb_type shall be inferred to be P_Skip and the macroblock type is collectively referred to as a P macroblock type. The value of mb_skip_run shall be in the range of 0 to PicSizeInMbs −CurrMbAddr, inclusive.

end_of_slice_flag equal to 0 specifies that another macroblock is following in the slice. end_of_slice_flag equal to 1 specifies the end of the slice and that no further macroblock follows.

The function NextMbAddress(n ) used in the slice data syntax table is specified as:


NextMbAddress(n) = n + 1

7.4.5 Macroblock layer semantics

mb_type specifies the macroblock type. The semantics of mb_type depend on the slice type.

Tables and semantics are specified for the various macroblock types for I, P slices. Each table presents the value of mb_type, the name of mb_type, the number of macroblock partitions used (given by the NumMbPart( mb_type ) function), the prediction mode of the macroblock (when it is not partitioned) or the first partition (given by the MbPartPredMode( mb_type, 0 ) function) and the prediction mode of the second partition (given by the MbPartPredMode( mb_type, 1 ) function). When a value is not applicable it is designated by "na". In the text, the value of mb_type may be referred to as the macroblock type, the value of MbPartPredMode( ) may be referred to in the text by "macroblock (partition) prediction mode", and a value X of MbPartPredMode( ) may be referred to in the text by "X macroblock (partition) prediction mode" or as "X prediction macroblocks".

Table 7‑10 shows the allowed collective macroblock types for each slice_type.

Table 7‑10 – Allowed collective macroblock types for slice_type

	slice_type
	allowed collective macroblock types

	I (slice)
	I (see Table 7‑11) (macroblock types)

	P (slice)
	P (see Table 7‑13) and I (see Table 7‑11) (macroblock types)


transform_size_8x8_flag not used.  When transform_size_8x8_flag is not present in the bitstream, it shall be inferred to be equal to 0.
Macroblock types that may be collectively referred to as I macroblock types are specified in Table 7‑11.

The macroblock types for I slices are all I macroblock types.

Table 7‑11 – Macroblock types for I slices

	mb_type
	Name of mb_type
	MbPartPredMode
( mb_type, 0 )
	Intra16x16PredMode
	CodedBlockPatternChroma
	CodedBlockPatternLuma

	0
	I_4x4
	Intra_4x4
	na
	Equation 7-35
	Equation 7-35

	1
	I_16x16_0_0_0
	Intra_16x16
	0
	0
	0

	2
	I_16x16_1_0_0
	Intra_16x16
	1
	0
	0

	3
	I_16x16_2_0_0
	Intra_16x16
	2
	0
	0

	4
	I_16x16_3_0_0
	Intra_16x16
	3
	0
	0

	5
	I_16x16_0_1_0
	Intra_16x16
	0
	1
	0

	6
	I_16x16_1_1_0
	Intra_16x16
	1
	1
	0

	7
	I_16x16_2_1_0
	Intra_16x16
	2
	1
	0

	8
	I_16x16_3_1_0
	Intra_16x16
	3
	1
	0

	9
	I_16x16_0_2_0
	Intra_16x16
	0
	2
	0

	10
	I_16x16_1_2_0
	Intra_16x16
	1
	2
	0

	11
	I_16x16_2_2_0
	Intra_16x16
	2
	2
	0

	12
	I_16x16_3_2_0
	Intra_16x16
	3
	2
	0

	13
	I_16x16_0_0_1
	Intra_16x16
	0
	0
	15

	14
	I_16x16_1_0_1
	Intra_16x16
	1
	0
	15

	15
	I_16x16_2_0_1
	Intra_16x16
	2
	0
	15

	16
	I_16x16_3_0_1
	Intra_16x16
	3
	0
	15

	17
	I_16x16_0_1_1
	Intra_16x16
	0
	1
	15

	18
	I_16x16_1_1_1
	Intra_16x16
	1
	1
	15

	19
	I_16x16_2_1_1
	Intra_16x16
	2
	1
	15

	20
	I_16x16_3_1_1
	Intra_16x16
	3
	1
	15

	21
	I_16x16_0_2_1
	Intra_16x16
	0
	2
	15

	22
	I_16x16_1_2_1
	Intra_16x16
	1
	2
	15

	23
	I_16x16_2_2_1
	Intra_16x16
	2
	2
	15

	24
	I_16x16_3_2_1
	Intra_16x16
	3
	2
	15

	25
	I_PCM
	na
	na
	na
	na


The following semantics are assigned to the macroblock types in Table 7‑11:

–
I_NxN: A mnemonic name for mb_type equal to 0 with MbPartPredMode( mb_type, 0 ) equal to Intra_4x4.

–
I_16x16_0_0_0, I_16x16_1_0_0, I_16x16_2_0_0, I_16x16_3_0_0, I_16x16_0_1_0, I_16x16_1_1_0, I_16x16_2_1_0, I_16x16_3_1_0, I_16x16_0_2_0, I_16x16_1_2_0, I_16x16_2_2_0, I_16x16_3_2_0, I_16x16_0_0_1, I_16x16_1_0_1, I_16x16_2_0_1, I_16x16_3_0_1, I_16x16_0_1_1, I_16x16_1_1_1, I_16x16_2_1_1, I_16x16_3_1_1, I_16x16_0_2_1, I_16x16_1_2_1, I_16x16_2_2_1, I_16x16_3_2_1: the macroblock is coded as an Intra_16x16 prediction macroblock.

To each Intra_16x16 prediction macroblock, an Intra16x16PredMode is assigned, which specifies the Intra_16x16 prediction mode, and values of CodedBlockPatternLuma and CodedBlockPatternChroma are assigned as specified in Table 7‑11.

Intra_4x4 specifies the macroblock prediction mode and specifies that the Intra_4x4 prediction process is invoked as specified in subclause 8.3.1. Intra_4x4 is an Intra macroblock prediction mode.

Intra_16x16 specifies the macroblock prediction mode and specifies that the Intra_16x16 prediction process is invoked as specified in subclause 8.3.3. Intra_16x16 is an Intra macroblock prediction mode.

For a macroblock coded with mb_type equal to I_PCM, the Intra macroblock prediction mode shall be inferred.

Macroblock types that may be collectively referred to as P macroblock types are specified in Table 7‑13.

The macroblock types for P and SP slices are specified in Tables 7‑13 and 7‑11. mb_type values 0 to 4 are specified in Table 7‑13 and mb_type values 5 to 30 are specified in Table 7‑11, indexed by subtracting 5 from the value of mb_type.

Table 7‑13 – Macroblock type values 0 to 4 for P and SP slices

	mb_type
	Name of mb_type
	NumMbPart
( mb_type )
	MbPartPredMode
( mb_type, 0 )
	MbPartPredMode
( mb_type, 1 )
	MbPartWidth
( mb_type )
	MbPartHeight
( mb_type )

	0
	P_L0_16x16
	1
	Pred_L0
	na
	16
	16

	1
	P_L0_L0_16x8
	2
	Pred_L0
	Pred_L0
	16
	8

	2
	P_L0_L0_8x16
	2
	Pred_L0
	Pred_L0
	8
	16

	3
	P_8x8
	4
	na
	na
	8
	8

	4
	P_8x8ref0
	4
	na
	na
	8
	8

	inferred
	P_Skip
	1
	Pred_L0
	na
	16
	16


The following semantics are assigned to the macroblock types in Table 7‑13:

–
P_L0_16x16: the samples of the macroblock are predicted with one luma macroblock partition of size 16x16 luma samples and associated chroma samples.

–
P_L0_L0_MxN, with MxN being replaced by 16x8 or 8x16: the samples of the macroblock are predicted using two luma partitions of size MxN equal to 16x8, or two luma partitions of size MxN equal to 8x16, and associated chroma samples, respectively.

–
P_8x8: for each sub-macroblock an additional syntax element (sub_mb_type[ mbPartIdx ] with mbPartIdx being the macroblock partition index for the corresponding sub-macroblock) is present in the bitstream that specifies the type of the corresponding sub-macroblock (see subclause 7.4.5.2).

–
P_8x8ref0: has the same semantics as P_8x8 but no syntax element for the reference index (ref_idx_l0[ mbPartIdx ] with mbPartIdx = 0..3) is present in the bitstream and ref_idx_l0[ mbPartIdx ] shall be inferred to be equal to 0 for all sub-macroblocks of the macroblock (with indices mbPartIdx = 0..3).

–
P_Skip: no further data is present for the macroblock in the bitstream.

The following semantics are assigned to the macroblock prediction modes (for macroblocks that are not partitioned) and macroblock partition prediction modes (for macroblocks that are partitioned) specified by MbPartPredMode( ) in Table 7‑13:

–
Pred_L0: specifies that the Inter prediction process is invoked using list 0 prediction. Pred_L0 is an Inter macroblock prediction mode (for macroblocks that are not partitioned) and an Inter macroblock partition prediction mode (for macroblocks that are partitioned).

When mb_type is equal to any of the values specified in Table 7‑13, the macroblock is coded in an Inter macroblock prediction mode.

pcm_alignment_zero_bit is a bit equal to 0.

pcm_sample_luma[ i ] is a sample value. The pcm_sample_luma[ i ] values represent luma sample values in the raster scan within the macroblock. The number of bits used to represent each of these samples is BitDepthY. (bitDepth = 8 in this standard)   pcm_sample_luma[ i ] shall not be zero.
pcm_sample_chroma[ i ] is a sample value.  The first MbWidthC * MbHeightC pcm_sample_chroma[ i ] values represent Cb sample values in the raster scan within the macroblock and the remaining MbWidthC * MbHeightC pcm_sample_chroma[ i ] values represent Cr sample values in the raster scan within the macroblock. The number of bits used to represent each of these samples is BitDepthC. (bitDepth = 8 in this standard) pcm_sample_chroma[ i ] shall not be zero.
coded_block_pattern specifies which of the four 8x8 luma blocks and associated chroma blocks of a macroblock may contain non-zero transform coefficient levels. When coded_block_pattern is present in the bitstream, the variables CodedBlockPatternLuma and CodedBlockPatternChroma are derived as

CodedBlockPatternLuma = coded_block_pattern % 16
CodedBlockPatternChroma = coded_block_pattern / 16
(7-35)

When the macroblock type is not equal to P_Skip or I_PCM, the following applies:

–
If the macroblock prediction mode is equal Intra_16x16, the following applies:

–
the value of CodedBlockPatternLuma specifies the following.

–
If CodedBlockPatternLuma is equal to 0, all AC transform coefficient levels of the luma component of the macroblock are equal to 0 for all 16 of the 4x4 blocks in the 16x16 luma block.

–
Otherwise (CodedBlockPatternLuma is not equal to 0), CodedBlockPatternLuma is equal to 15, at least one of the AC transform coefficient levels of the luma component of the macroblock shall be non-zero, and the AC transform coefficient levels are scanned for all 16 of the 4x4 blocks in the 16x16 block.

–
Otherwise (the macroblock prediction mode is not equal to Intra_16x16),coded_block_pattern is present in the bitstream,and the following applies:

–
each of the four LSBs of CodedBlockPatternLuma specifies, for one of the four 8x8 luma blocks of the macroblock, the following.

–
If the corresponding bit of CodedBlockPatternLuma is equal to 0, all transform coefficient levels of the luma transform blocks in the 8x8 luma block are equal to zero.

–
Otherwise (the corresponding bit of CodedBlockPatternLuma is equal to 1), one or more transform coefficient levels of one or more of the luma transform blocks in the 8x8 luma block shall be non-zero valued and the transform coefficient levels of the corresponding transform blocks are scanned.

When the macroblock type is not equal to P_Skip or I_PCM, CodedBlockPatternChroma is interpreted as follows:

–
CodedBlockPatternChroma is specified in Table 7‑15.

Table 7‑15 – Specification of CodedBlockPatternChroma values

	CodedBlockPatternChroma
	Description

	0
	All chroma transform coefficient levels are equal to 0.

	1
	One or more chroma DC transform coefficient levels shall be non-zero valued. 
All chroma AC transform coefficient levels are equal to 0.

	2
	Zero or more chroma DC transform coefficient levels are non-zero valued. 
One or more chroma AC transform coefficient levels shall be non-zero valued.


mb_qp_delta can change the value of QPY in the macroblock layer. The decoded value of mb_qp_delta shall be in the range of −( 26 + 0 / 2) to +( 25 + 0 / 2 ), inclusive. mb_qp_delta shall be inferred to be equal to 0 when it is not present for any macroblock (including P_Skip macroblock types).

The value of QPY is derived as

QPY = ( ( QPY,PREV + mb_qp_delta + 52 + 2 * 0 ) % ( 52 + 0 ) ) − 0
(7-36)

where QPY,PREV is the luma quantisation parameter, QPY, of the previous macroblock in decoding order in the current slice. For the first macroblock in the slice QPY,PREV is initially set equal to SliceQPY derived in Equation 7-29 at the start of each slice.

The value of QP′Y is derived as

QP′Y = QPY + 0

(7-37)

7.4.5.1 Macroblock prediction semantics

All samples of the macroblock are predicted. The prediction modes are derived using the following syntax elements.

prev_intra4x4_pred_mode_flag[ luma4x4BlkIdx ]and rem_intra4x4_pred_mode[ luma4x4BlkIdx ] specify the Intra_4x4 prediction of the 4x4 luma block with index luma4x4BlkIdx = 0..15. 

intra_chroma_pred_mode specifies the type of spatial prediction used for chroma in macroblocks using Intra_4x4 or Intra_16x16 prediction, as shown in Table 7‑16. The value of intra_chroma_pred_mode shall be in the range of 0 to 3, inclusive.

Table 7‑16 – Relationship between intra_chroma_pred_mode and spatial prediction modes

	intra_chroma_pred_mode
	Intra Chroma Prediction Mode

	0
	DC

	1
	Horizontal

	2
	Vertical

	3
	Plane


ref_idx_l0[ mbPartIdx ] when present, specifies the index in reference picture list 0 of the reference picture to be used for prediction.

The range of ref_idx_l0[ mbPartIdx ], the index in list 0 of the reference picture, is specified as follows:
–
The value of ref_idx_l0[ mbPartIdx ] shall be in the range of 0 to num_ref_idx_l0_active_minus1, inclusive.

When only one reference picture is used for inter prediction, the values of ref_idx_l0[ mbPartIdx ] shall be inferred to be equal to 0.

mvd_l0[ mbPartIdx ][ 0 ][ compIdx ] specifies the difference between a list 0 motion vector component to be used and its prediction. The index mbPartIdx specifies to which macroblock partition mvd_l0 is assigned. The partitioning of the macroblock is specified by mb_type. The horizontal motion vector component difference is decoded first in decoding order and is assigned compIdx = 0. The vertical motion vector component is decoded second in decoding order and is assigned compIdx = 1. The range of the components of mvd_l0[ mbPartIdx ][ 0 ][ compIdx ] is specified by constraints on the motion vector variable values derived from it as specified in Annex A.

7.4.5.2 Sub-macroblock prediction semantics

sub_mb_type[ mbPartIdx ] specifies the sub-macroblock types.

Tables and semantics are specified for the various sub-macroblock types for P macroblock types. Each table presents the value of sub_mb_type[ mbPartIdx ], the name of sub_mb_type[ mbPartIdx ], the number of sub-macroblock partitions used (given by the NumSubMbPart( sub_mb_type[ mbPartIdx ] ) function), and the prediction mode of the sub-macroblock (given by the SubMbPredMode( sub_mb_type[ mbPartIdx ] ) function). In the text, the value of sub_mb_type[ mbPartIdx ] may be referred to by "sub-macroblock type". In the text, the value of SubMbPredMode( ) may be referred to by "sub-macroblock prediction mode" or "macroblock partition prediction mode".

The interpretation of sub_mb_type[ mbPartIdx ] for P macroblock types is specified in Table 7‑17, where the row for "inferred" specifies values inferred when sub_mb_type[ mbPartIdx ] is not present.

Table 7‑17 – Sub-macroblock types in P macroblocks

	sub_mb_type[ mbPartIdx ]
	Name of sub_mb_type[ mbPartIdx ]
	NumSubMbPart
( sub_mb_type[ mbPartIdx ] )
	SubMbPredMode
( sub_mb_type[ mbPartIdx ] )
	SubMbPartWidth
( sub_mb_type[ mbPartIdx ] )
	SubMbPartHeight
( sub_mb_type[ mbPartIdx ] )

	inferred
	na
	na
	na
	na
	na

	0
	P_L0_8x8
	1
	Pred_L0
	8
	8

	1
	P_L0_8x4
	2
	Pred_L0
	8
	4

	2
	P_L0_4x8
	2
	Pred_L0
	4
	8

	3
	P_L0_4x4
	4
	Pred_L0
	4
	4


The following semantics are assigned to the sub-macroblock types in Table 7‑17:

P_L0_MxN, with MxN being replaced by 8x8, 8x4, 4x8, or 4x4: the samples of the sub-macroblock are predicted using one luma partition of size MxN equal to 8x8, two luma partitions of size MxN equal to 8x4, or two luma partitions of size MxN equal to 4x8, or four luma partitions of size MxN equal to 4x4, and associated chroma samples, respectively.

The following semantics are assigned to the sub-macroblock prediction modes (or macroblock partition prediction modes)specified by SubMbPredMode( ) in Table 7‑17:

Pred_L0: see semantics for Table 7‑13.

ref_idx_l0[ mbPartIdx ]has the same semantics as ref_idx_l0 in subclause 7.4.5.1.

mvd_l0[ mbPartIdx ][ subMbPartIdx ][ compIdx ]has the same semantics as mvd_l0 in subclause 7.4.5.1, except that it is applied to the sub-macroblock partition index with subMbPartIdx. The indices mbPartIdx and subMbPartIdx specify to which macroblock partition and sub-macroblock partition mvd_l0 is assigned.
7.4.5.3 Residual data semantics

The syntax structure residual_block( ), which is used for parsing the transform coefficient levels is set equal to residual_block_cavlc, which is used for parsing the syntax elements for transform coefficient levels.

The syntax structure residual_luma( i16x16DClevel, i16x16AClevel, level4x4, level8x8, startIdx, endIdx ) is used with the first four variables in brackets being its output and being assigned as follows.

Intra16x16DCLevel is set equal to i16x16DClevel, Intra16x16ACLevel is set equal to i16x16AClevel, LumaLevel4x4 is set equal to level4x4, and LumaLevel8x8 is set equal to level8x8.

The following applies:

–
For each chroma component, indexed by iCbCr = 0..1, the DC transform coefficient levels of the 4 * NumC8x8 4x4 chroma blocks are parsed into the iCbCr-th list ChromaDCLevel[ iCbCr ].

–
For each of the 4x4 chroma blocks, indexed by i4x4 = 0..3 and i8x8 = 0..NumC8x8 ( 1, of each chroma component, indexed by iCbCr = 0..1, the 15 AC transform coefficient levels are parsed into the (i8x8*4 + i4x4)-th list of the iCbCr-th chroma component ChromaACLevel[ iCbCr ][ i8x8*4 + i4x4 ].

7.4.5.3.1 Residual luma data semantics

Output of this syntax structure are the variables i16x16DClevel, i16x16AClevel, level4x4, and level8x8.

Depending on mb_type, the syntax structure residual_block( coeffLevel, startIdx, endIdx, maxNumCoeff ) is used with the arguments coeffLevel, which is a list containing the maxNumCoeff transform coefficient levels that are parsed in residual_block( ), startIdx, endIdx, and maxNumCoeff as follows.

Depending on MbPartPredMode( mb_type, 0 ), the following applies:

–
If MbPartPredMode( mb_type, 0 ) is equal to Intra_16x16, the transform coefficient levels are parsed into the list i16x16DClevel and into the 16 lists i16x16AClevel[ i ]. i16x16DClevel contains the 16 transform coefficient levels of the DC transform coefficient levels for each 4x4 luma block. For each of the 16 4x4 luma blocks indexed by i = 0..15, the 15 AC transform coefficients levels of the i-th block are parsed into the i-th list i16x16AClevel[ i ].

–
Otherwise (MbPartPredMode( mb_type, 0 ) is not equal to Intra_16x16), the following applies:

for each of the 16 4x4 luma blocks indexed by i = 0..15, the 16 transform coefficient levels of the i-th block are parsed into the i-th list level4x4[ i ].

7.4.5.3.2 Residual block CAVLC semantics

The function TotalCoeff( coeff_token ) that is used in subclause 7.3.5.3.2 returns the number of non-zero transform coefficient levels derived from coeff_token.

The function TrailingOnes( coeff_token ) that is used in subclause 7.3.5.3.2 returns the trailing ones derived from coeff_token.

coeff_token specifies the total number of non-zero transform coefficient levels and the number of trailing one transform coefficient levels in a transform coefficient level scan. A trailing one transform coefficient level is one of up to three consecutive non-zero transform coefficient levels having an absolute value equal to 1 at the end of a scan of non-zero transform coefficient levels. The range of coeff_token is specified in subclause 9.2.1.

trailing_ones_sign_flag specifies the sign of a trailing one transform coefficient level as follows:

–
If trailing_ones_sign_flag is equal to 0, the corresponding transform coefficient level is decoded as +1.

–
Otherwise (trailing_ones_sign_flag equal to 1), the corresponding transform coefficient level is decoded as −1.

level_prefix and level_suffix specify the value of a non-zero transform coefficient level. The range of level_prefix and level_suffix is specified in subclause 9.2.2.

total_zeros specifies the total number of zero-valued transform coefficient levels that are located before the position of the last non-zero transform coefficient level in a scan of transform coefficient levels. The range of total_zeros is specified in subclause 9.2.3.

run_before specifies the number of consecutive transform coefficient levels in the scan with zero value before a non‑zero valued transform coefficient level. The range of run_before is specified in subclause 9.2.3.

coeffLevel contains maxNumCoeff transform coefficient levels for the current list of transform coefficient levels.
8 Decoding process

Outputs of this process are decoded samples of the current picture (sometimes referred to by the variable CurrPic).

the number of sample arrays of the current picture is as follows:

–
the current picture consists of 3 sample arrays SL, SCb, SCr.

This clause describes the decoding process, given syntax elements and upper-case variables from clause 7.

The decoding process is specified such that all decoders shall produce numerically identical results. Any decoding process that produces identical results to the process described here conforms to the decoding process requirements of this International Standard.

Each picture referred to in this clause is a complete primary coded picture. Each slice referred to in this clause is a slice of a primary coded picture. 

The decoding process is structured as follows:

the decoding process is invoked a single time with the current picture being the output.

An overview of the decoding process is given as follows:

· The decoding of NAL units is specified in subclause 8.1.

· The processes in subclause 8.2 specify decoding processes using syntax elements in the slice layer and above:

–
Variables and functions relating to picture order count are derived in subclause 8.2.1. (only needed to be invoked for one slice of a picture)

–
When the frame_num of the current picture is not equal to PrevRefFrameNum and is not equal to ( PrevRefFrameNum + 1 ) % MaxFrameNum, the decoding process for gaps in frame_num is performed according to subclause 8.2.5.2 prior to the decoding of any slices of the current picture.

–
At the beginning of the decoding process for each P slice, the decoding process for reference picture lists construction specified in subclause 8.2.4is invoked for derivation of reference picture list 0 (RefPicList0).

–
When the current picture is a reference picture and after all slices of the current picture have been decoded, the decoded reference picture marking process in subclause 8.2.5 specifies how the current picture is used in the decoding process of inter prediction in later decoded pictures.

· The processes in subclauses 8.3, 8.4, 8.5, 8.6, and 8.7 specify decoding processes using syntax elements in the macroblock layer and above.

–
The intra prediction process for I macroblocks, except for I_PCM macroblocks as specified in subclause 8.3, has intra prediction samples as its output. For I_PCM macroblocks subclause 8.3 directly specifies a picture construction process. The output are constructed samples prior to the deblocking filter process.

–
The inter prediction process for P macroblocks is specified in subclause 8.4 with inter prediction samples being the output.

–
The transform coefficient decoding process and picture construction process prior to deblocking filter process are specified in subclause 8.5. That process derives samples for I macroblocks and for P macroblocks in P slices. The output are constructed samples prior to the deblocking filter process.

–
The constructed samples prior to the deblocking filter process that are next to the edges of blocks and macroblocks are processed by a deblocking filter as specified in subclause 8.7 with the output being the decoded samples.

8.1 NAL unit decoding process

Inputs to this process are NAL units.

Outputs of this process are the RBSP syntax structures encapsulated within the NAL units.

The decoding process for each NAL unit extracts the RBSP syntax structure from the NAL unit and then operates the decoding processes specified for the RBSP syntax structure in the NAL unit as follows.

Subclause 8.2 describes the decoding process for NAL units with nal_unit_type equal to 1 through 5.

Subclause 8.3 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with nal_unit_type equal to 1, and 5.

Subclause 8.4 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with nal_unit_type equal to 1..

Subclause 8.5 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with nal_unit_type equal to 1 and 5.

NAL units with nal_unit_type equal to 7 and 8 contain sequence parameter sets and picture parameter sets, respectively. Picture parameter sets are used in the decoding processes of other NAL units as determined by reference to a picture parameter set within the slice headers of each picture. Sequence parameter sets are used in the decoding processes of other NAL units as determined by reference to a sequence parameter set within the picture parameter sets of each sequence.

No normative decoding process is specified for NAL units with nal_unit_type equal to 6, 9, 10, 11, and 12.

8.2 Slice decoding process

8.2.1 Decoding process for picture order count

Outputs of this process are the functions PicOrderCnt( picX ) and  DiffPicOrderCnt( picA, picB ) and the variable PicOrderCnt..

Each coded frame is associated with a picture order count, called PicOrderCnt.

PicOrderCnt indicates the picture order of the corresponding frame relative to the previous IDR picture or the previous reference picture including a memory_management_control_operation equal to 5 in decoding order.

PicOrderCnt is derived by invoking one of the decoding processes for picture order count type 0, 1, and 2 in subclauses 8.2.1.1, 8.2.1.2, and 8.2.1.3, respectively. When the current picture includes a memory_management_control_operation equal to 5, after the decoding of the current picture, tempPicOrderCnt is set equal to PicOrderCnt( CurrPic ), and PicOrderCnt is set equal to 0.

NOTE 1 –When the decoding process for a picture currPic that includes a memory_management_control_operation equal to 5 refers to the values of PicOrderCnt  for the picture currPic (including references to the function PicOrderCnt( ) with the picture currPic as the argument and references to the function DiffPicOrderCnt( ) with one of the arguments being currPic), the values of PicOrderCnt  that is derived as specified in subclauses 8.2.1.1, 8.2.1.2, and 8.2.1.3 for the picture currPic are used. When the decoding process for a picture refers to the values PicOrderCnt  of the previous picture prevMmco5Pic in decoding order that includes a memory_management_control_operation equal to 5 (including references via the functions PicOrderCnt( ) or DiffPicOrderCnt( )), the values of PicOrderCnt  that is used for the picture prevMmco5Pic are the values after the modification specified in the paragraph above (resulting in PicOrderCnt equal to 0).
The bitstream shall not contain data that result in PicOrderCnt not equal to 0 for a coded IDR frame..

When the current picture is not an IDR picture, the following applies:

1) Consider the list variable listD containing as elements the PicOrderCnt values associated with the list of pictures including all of the following:

a. The first picture in the list is the previous picture of any of the following types:

–
an IDR picture,

–
a picture containing a memory_management_control_operation equal to 5.

b. The following additional pictures:

–
If pic_order_cnt_type is equal to 0, all other pictures that follow in decoding order after the first picture in the list are not "non-existing" frames inferred by the decoding process for gaps in frame_num specified in subclause 8.2.5.2 and either precede the current picture in decoding order or are the current picture. When pic_order_cnt_type is equal to 0 and the current picture is not a "non‑existing" frame inferred by the decoding process for gaps in frame_num specified in subclause 8.2.5.2, the current picture is included in listD prior to the invoking of the decoded reference picture marking process.

–
Otherwise (pic_order_cnt_type is not equal to 0), all other pictures that follow in decoding order after the first picture in the list and either precede the current picture in decoding order or are the current picture. When pic_order_cnt_type is not equal to 0, the current picture is included in listD prior to the invoking of the decoded reference picture marking process.

2) Consider the list variable listO which contains the elements of listD sorted in ascending order. listO shall not contain any of the following:

–
a PicOrderCnt that has a value equal to another PicOrderCnt,

The bitstream shall not contain data that result in values of PicOrderCnt, PicOrderCntMsb, or FrameNumOffset used in the decoding process as specified in subclauses 8.2.1.1 to 8.2.1.3 that exceed the range of values from −231 to 231 − 1, inclusive.

The function PicOrderCnt( picX ) is specified as follows:


PicOrderCnt( picX ) = PicOrderCnt of the frame picX


Then DiffPicOrderCnt( picA, picB ) is specified as follows:

DiffPicOrderCnt( picA, picB ) = PicOrderCnt( picA ) − PicOrderCnt( picB )
(8-2)

The bitstream shall not contain data that result in values of DiffPicOrderCnt( picA, picB ) used in the decoding process that exceed the range of −215 to 215 − 1, inclusive.

NOTE 2– Let X be the current picture and Y and Z be two other pictures in the same sequence, Y and Z are considered to be in the same output order direction from X when both DiffPicOrderCnt( X, Y ) and DiffPicOrderCnt( X, Z ) are positive or both are negative.

When the current picture includes a memory_management_control_operation equal to 5, PicOrderCnt( CurrPic ) shall be greater than PicOrderCnt( any other picture in listD ).

8.2.1.1 Decoding process for picture order count type 0

This process is invoked when pic_order_cnt_type is equal to 0.

Input to this process is PicOrderCntMsb of the previous reference picture in decoding order as specified in this subclause.

Outputs of this process is PicOrderCnt.

The variables prevPicOrderCntMsb and prevPicOrderCntLsb are derived as follows:

–
If the current picture is an IDR picture, prevPicOrderCntMsb is set equal to 0 and prevPicOrderCntLsb is set equal to 0.

–
Otherwise (the current picture is not an IDR picture), the following applies:

–
If the previous reference picture in decoding order included a memory_management_control_operation equal to 5, the following applies:

–
prevPicOrderCntMsb is set equal to 0 and prevPicOrderCntLsb is set equal to the value of PicOrderCnt for the previous reference picture in decoding order.

–
Otherwise (the previous reference picture in decoding order did not include a memory_management_control_operation equal to 5), prevPicOrderCntMsb is set equal to PicOrderCntMsb of the previous reference picture in decoding order and prevPicOrderCntLsb is set equal to the value of pic_order_cnt_lsb of the previous reference picture in decoding order.

PicOrderCntMsb of the current picture is derived as specified by the following pseudo-code:

if( ( pic_order_cnt_lsb  <  prevPicOrderCntLsb )  &&
     ( ( prevPicOrderCntLsb − pic_order_cnt_lsb )  >=  ( MaxPicOrderCntLsb / 2 ) ) )

PicOrderCntMsb = prevPicOrderCntMsb + MaxPicOrderCntLsb
(8-3)
else if( ( pic_order_cnt_lsb  >  prevPicOrderCntLsb )  &&
            ( ( pic_order_cnt_lsb − prevPicOrderCntLsb )  >  ( MaxPicOrderCntLsb / 2 ) ) )

PicOrderCntMsb = prevPicOrderCntMsb − MaxPicOrderCntLsb
else

PicOrderCntMsb = prevPicOrderCntMsb

PicOrderCnt is derived as

PicOrderCnt = PicOrderCntMsb + pic_order_cnt_lsb

(8-4)

8.2.1.2 Decoding process for picture order count type 1

This process is invoked when pic_order_cnt_type is equal to 1.

Input to this process is FrameNumOffset of the previous picture in decoding order as specified in this subclause.

Outputs of this process is PicOrderCnt 

The value of PicOrderCnt is derived as specified in this subclause. Let prevFrameNum be equal to the frame_num of the previous picture in decoding order.

When the current picture is not an IDR picture, the variable prevFrameNumOffset is derived as follows:

–
If the previous picture in decoding order included a memory_management_control_operation equal to 5, prevFrameNumOffset is set equal to 0.

–
Otherwise (the previous picture in decoding order did not include a memory_management_control_operation equal to 5), prevFrameNumOffset is set equal to the value of FrameNumOffset of the previous picture in decoding order.

NOTE – When gaps_in_frame_num_value_allowed_flag is equal to 1, the previous picture in decoding order may be a "non‑existing" frame inferred by the decoding process for gaps in frame_num specified in subclause 8.2.5.2.
The variable FrameNumOffset is derived as specified by the following pseudo-code:

if( IdrPicFlag  = =  1 )

FrameNumOffset = 0
else if( prevFrameNum > frame_num ) 

(8-6)

FrameNumOffset = prevFrameNumOffset + MaxFrameNum
else

FrameNumOffset = prevFrameNumOffset

The variable absFrameNumis derived as specified by the following pseudo-code:

if( num_ref_frames_in_pic_order_cnt_cycle  !=  0 )

absFrameNum = FrameNumOffset + frame_num
else


(8-7)

absFrameNum = 0
if( nal_ref_idc  = =  0  &&  absFrameNum  >  0 )

absFrameNum = absFrameNum − 1

When absFrameNum > 0, picOrderCntCycleCnt and frameNumInPicOrderCntCycle are derived as

picOrderCntCycleCnt = 
( absFrameNum − 1 ) / num_ref_frames_in_pic_order_cnt_cycle
frameNumInPicOrderCntCycle = ( absFrameNum − 1 ) % num_ref_frames_in_pic_order_cnt_cycle
(8-8)

The variable expectedPicOrderCnt is derived as specified by the following pseudo-code:

if( absFrameNum > 0 ){

expectedPicOrderCnt = picOrderCntCycleCnt * ExpectedDeltaPerPicOrderCntCycle

for( i = 0; i <= frameNumInPicOrderCntCycle; i++ )


expectedPicOrderCnt = expectedPicOrderCnt + offset_for_ref_frame[ i ]
} else

expectedPicOrderCnt = 0
if( nal_ref_idc  = =  0 ) 

(8-9)

expectedPicOrderCnt = expectedPicOrderCnt + offset_for_non_ref_pic

The variables PicOrderCnt are derived as specified by the following pseudo-code:


PicOrderCnt = expectedPicOrderCnt + delta_pic_order_cnt[ 0 ]
(8-10)


8.2.1.3 Decoding process for picture order count type 2

This process is invoked when pic_order_cnt_type is equal to 2.

Outputs of this process is PicOrderCnt .

Let prevFrameNum be equal to the frame_num of the previous picture in decoding order.

When the current picture is not an IDR picture, the variable prevFrameNumOffset is derived as follows:

–
If the previous picture in decoding order included a memory_management_control_operation equal to 5, prevFrameNumOffset is set equal to 0.

–
Otherwise (the previous picture in decoding order did not include a memory_management_control_operation equal to 5), prevFrameNumOffset is set equal to the value of FrameNumOffset of the previous picture in decoding order.

NOTE 1 – When gaps_in_frame_num_value_allowed_flag is equal to 1, the previous picture in decoding order may be a "non‑existing" frame inferred by the decoding process for gaps in frame_num specified in subclause 8.2.5.2.
The variable FrameNumOffset is derived as specified by the following pseudo-code:

if( IdrPicFlag  = =  1)

FrameNumOffset = 0
else if( prevFrameNum  >  frame_num ) 

(8-11)

FrameNumOffset = prevFrameNumOffset + MaxFrameNum
else

FrameNumOffset = prevFrameNumOffset

The variable tempPicOrderCnt is derived as specified by the following pseudo-code:

if( IdrPicFlag  = =  1 )

tempPicOrderCnt = 0
else if( nal_ref_idc  = =  0 ) 

(8-12)

tempPicOrderCnt = 2 * ( FrameNumOffset + frame_num ) − 1
else

tempPicOrderCnt = 2 * ( FrameNumOffset + frame_num )

The variables PicOrderCnt is derived as specified by the following pseudo-code:


PicOrderCnt = tempPicOrderCnt

(8-13)


NOTE 2 – Picture order count type 2 cannot be used in a coded video sequence that contains consecutive non-reference pictures that would result in more than one of these pictures having the same value of PicOrderCnt 
NOTE 3 –Picture order count type 2 results in an output order that is the same as the decoding order.

8.2.2 (void)

8.2.3 (void)

8.2.4 Decoding process for reference picture lists construction

This process is invoked at the beginning of the decoding process for each P slice.

Decoded reference pictures are marked as "used for short-term reference" or "used for long-term reference" as specified by the bitstream and specified in subclause 8.2.5. Short-term reference pictures are identified by the value of frame_num. Long-term reference pictures are assigned a long-term frame index as specified by the bitstream and specified in subclause 8.2.5.

Subclause 8.2.4.1 is invoked to specify

–
the assignment of variables FrameNum, FrameNumWrap, and PicNum to each of the short-term reference pictures, and

–
the assignment of variable LongTermPicNum to each of the long-term reference pictures.

Reference pictures are addressed through reference indices as specified in subclause 8.4.2.1. A reference index is an index into a reference picture list. When decoding a P slice, there is a single reference picture list RefPicList0. At the beginning of the decoding process for each slice, reference picture list RefPicList0, are derived as specified by the following ordered steps:

1. An initial reference picture list RefPicList0 are derived as specified in subclause 8.2.4.2.

2. When ref_pic_list_modification_flag_l0 is equal to 1 or, the initial reference picture list RefPicList0 are modified as specified in subclause 8.2.4.3.

NOTE – The modification process for reference picture lists specified in subclause 8.2.4.3allows the contents of RefPicList0 to be modified in a flexible fashion. In particular, it is possible for a picture that is currently marked "used for reference" to be inserted into RefPicList0 even when the picture is not in the initial reference picture list derived as specified in subclause 8.2.4.2.

The number of entries in the modified reference picture list RefPicList0 is num_ref_idx_l0_active_minus1 + 1,. A reference picture may appear at more than one index in the modified reference picture lists RefPicList0.

8.2.4.1 Decoding process for picture numbers

This process is invoked when the decoding process for reference picture lists construction specified in subclause 8.2.4, the decoded reference picture marking process specified in subclause 8.2.5, or the decoding process for gaps in frame_num specified in subclause 8.2.5.2 is invoked.

The variables FrameNum, FrameNumWrap, PicNum, LongTermFrameIdx, and LongTermPicNum are used for the initialisation process for reference picture lists in subclause 8.2.4.2, the modification process for reference picture lists in subclause 8.2.4.3, the decoded reference picture marking process in subclause 8.2.5, and the decoding process for gaps in frame_num in subclause 8.2.5.2.

To each short-term reference picture the variables FrameNum and FrameNumWrap are assigned as follows. First, FrameNum is set equal to the syntax element frame_num that has been decoded in the slice header(s) of the corresponding short-term reference picture. Then the variable FrameNumWrap is derived as

if( FrameNum > frame_num )

FrameNumWrap = FrameNum − MaxFrameNum

(8-27)
else

FrameNumWrap = FrameNum

where the value of frame_num used in Equation 8-27 is the frame_num in the slice header(s) for the current picture.

Each long-term reference picture has an associated value of LongTermFrameIdx (that was assigned to it as specified in subclause 8.2.5).

To each short-term reference picture a variable PicNum is assigned, and to each long-term reference picture a variable LongTermPicNum is assigned. T

8.2.4.2 Initialisation process for reference picture lists

This initialisation process is invoked when decoding a P, slice header.

RefPicList0 have initial entries as specified in subclauses 8.2.4.2.1 through 8.2.4.2.5.

When the number of entries in the initial RefPicList0 produced as specified in subclauses 8.2.4.2.1 through 8.2.4.2.5 is greater than num_ref_idx_l0_active_minus1 + 1 the extra entries past position num_ref_idx_l0_active_minus1 are discarded from the initial reference picture list.

When the number of entries in the initial RefPicList0 produced as specified in subclauses 8.2.4.2.1 through 8.2.4.2.5 is less than num_ref_idx_l0_active_minus1 + 1, the remaining entries in the initial reference picture list are set equal to "no reference picture".

8.2.4.2.1 Initialisation process for the reference picture list for P slices in frames

This initialisation process is invoked when decoding a P slice in a coded frame.

When this process is invoked, there shall be at least one reference frame that is currently marked as "used for reference" (i.e., as "used for short-term reference" or "used for long-term reference") and is not marked as "non-existing".

The reference picture list RefPicList0 is ordered so that short-term reference frames s have lower indices than long-term reference frames The short-term reference frames are ordered starting with the frame with the highest PicNum value and proceeding through in descending order to the frame with the lowest PicNum value.

The long-term reference frames are ordered starting with the frame with the lowest LongTermPicNum value and proceeding through in ascending order to the frame with the highest LongTermPicNum value.

For example, when three reference frames are marked as "used for short-term reference" with PicNum equal to 300, 302, and 303 and two reference frames are marked as "used for long-term reference" with LongTermPicNum equal to 0 and 3, the initial index order is:

–
RefPicList0[0] is set equal to the short-term reference picture with PicNum = 303,

–
RefPicList0[1] is set equal to the short-term reference picture with PicNum = 302,

–
RefPicList0[2] is set equal to the short-term reference picture with PicNum = 300,

–
RefPicList0[3] is set equal to the long-term reference picture with LongTermPicNum = 0,

–
RefPicList0[4] is set equal to the long-term reference picture with LongTermPicNum = 3.

8.2.4.3 Modification process for reference picture lists

When ref_pic_list_modification_flag_l0 is equal to 1, the following applies:

1. Let refIdxL0 be an index into the reference picture list RefPicList0. It is initially set equal to 0.

2. The corresponding syntax elements modification_of_pic_nums_idc are processed in the order they occur in the bitstream. For each of these syntax elements, the following applies:

–
If modification_of_pic_nums_idc is equal to 0 or equal to 1, the process specified in subclause 8.2.4.3.1 is invoked with refIdxL0 as input, and the output is assigned to refIdxL0.

–
Otherwise, if modification_of_pic_nums_idc is equal to 2, the process specified in subclause 8.2.4.3.2 is invoked with refIdxL0 as input, and the output is assigned to refIdxL0.

–
Otherwise (modification_of_pic_nums_idc is equal to 3), the modification process for reference picture list RefPicList0 is finished.

8.2.4.3.1 Modification process of reference picture lists for short-term reference pictures

Input to this process is an index refIdxL0 

Output of this process is an incremented index refIdxL0.

The variable picNumL0NoWrap is derived as follows:

–
If modification_of_pic_nums_idc is equal to 0,

if( picNumL0Pred − ( abs_diff_pic_num_minus1 + 1 ) < 0 )

picNumL0NoWrap = picNumL0Pred − ( abs_diff_pic_num_minus1 + 1 ) + MaxPicNum
(8-34)
else

picNumL0NoWrap = picNumL0Pred − ( abs_diff_pic_num_minus1 + 1 )

–
Otherwise (modification_of_pic_nums_idc is equal to 1),

if( picNumL0Pred + ( abs_diff_pic_num_minus1 + 1 )  >=  MaxPicNum )

picNumL0NoWrap = picNumL0Pred + ( abs_diff_pic_num_minus1 + 1 ) − MaxPicNum
(8-35)
else

picNumL0NoWrap = picNumL0Pred + ( abs_diff_pic_num_minus1 + 1 )

picNumL0Pred is the prediction value for the variable picNumL0NoWrap. When the process specified in this subclause is invoked the first time for a slice (that is, for the first occurrence of modification_of_pic_nums_idc equal to 0 or 1 in the ref_pic_list_modification( ) syntax), picNumL0Pred isinitially set equal to CurrPicNum. After each assignment of picNumL0NoWrap, the value of picNumL0NoWrap is assigned to picNumL0Pred.

The variable picNumL0 is derived as specified by the following pseudo-code:

if( picNumL0NoWrap > CurrPicNum )

picNumL0 = picNumL0NoWrap − MaxPicNum
(8-36)
else

picNumL0 = picNumL0NoWrap

picNumL0 shall be equal to the PicNum of a reference picture that is marked as "used for short-term reference" and shall not be equal to the PicNum of a short-term reference picture that is marked as "non-existing".
The following procedure is conducted to place the picture with short-term picture number picNumL0 into the index position refIdxL0, shift the position of any other remaining pictures to later in the list, and increment the value of refIdxL0.

for( cIdx = num_ref_idx_l0_active_minus1 + 1; cIdx > refIdxL0; cIdx− − )

RefPicList0[ cIdx ] = RefPicList0[ cIdx − 1]
RefPicList0[ refIdxL0++ ] = short-term reference picture with PicNum equal to picNumL0
nIdx = refIdxL0
for( cIdx = refIdxL0; cIdx <= num_ref_idx_l0_active_minus1 + 1; cIdx++ ) 
(8-37)

if( PicNumF( RefPicList0[ cIdx ] ) != picNumL0 )


RefPicList0[ nIdx++ ] = RefPicList0[ cIdx ]

where the function PicNumF( RefPicList0[ cIdx ] ) is derived as follows:

–
If the picture RefPicList0[ cIdx ] is marked as "used for short-term reference", PicNumF( RefPicList0[ cIdx ] ) is the PicNum of the picture RefPicList0[ cIdx ].

–
Otherwise (the picture RefPicList0[ cIdx ] is not marked as "used for short-term reference"), PicNumF( RefPicList0[ cIdx ] ) is equal to MaxPicNum.

NOTE 1 – A value of MaxPicNum can never be equal to picNumL0.

NOTE 2 – Within this pseudo-code procedure, the length of the list RefPicList0 is temporarily made one element longer than the length needed for the final list. After the execution of this procedure, only elements 0 through num_ref_idx_l0_active_minus1 of the list need to be retained.

8.2.4.3.2 Modification process of reference picture lists for long-term reference pictures

Input to this process is an index refIdxL0 

Output of this process is an incremented index refIdxL0.

The following procedure is conducted to place the picture with long-term picture number long_term_pic_num into the index position refIdxL0, shift the position of any other remaining pictures to later in the list, and increment the value of refIdxL0.

for( cIdx = num_ref_idx_l0_active_minus1 + 1; cIdx > refIdxL0; cIdx− − )

RefPicList0[ cIdx ] = RefPicList0[ cIdx − 1]
RefPicList0[ refIdxL0++ ] = long-term reference picture with LongTermPicNum equal to long_term_pic_num
nIdx = refIdxL0
for( cIdx = refIdxL0; cIdx <= num_ref_idx_l0_active_minus1 + 1; cIdx++ )
(8-38)

if( LongTermPicNumF( RefPicList0[ cIdx ] ) != long_term_pic_num )


RefPicList0[ nIdx++ ] = RefPicList0[ cIdx ]

where the function LongTermPicNumF( RefPicList0[ cIdx ] ) is derived as follows:

–
If the picture RefPicList0[ cIdx ] is marked as "used for long-term reference", LongTermPicNumF( RefPicList0[ cIdx ] ) is the LongTermPicNum of the picture RefPicList0[ cIdx ].

–
Otherwise (the picture RefPicList0[ cIdx ] is not marked as "used for long-term reference"), LongTermPicNumF( RefPicList0[ cIdx ] ) is equal to 2 * ( MaxLongTermFrameIdx + 1 ).

NOTE 1 – A value of 2 * ( MaxLongTermFrameIdx + 1 ) can never be equal to long_term_pic_num.

NOTE 2 – Within this pseudo-code procedure, the length of the list RefPicList0 is temporarily made one element longer than the length needed for the final list. After the execution of this procedure, only elements 0 through num_ref_idx_l0_active_minus1 of the list need to be retained.

8.2.5 Decoded reference picture marking process

This process is invoked for decoded pictures when nal_ref_idc is not equal to 0.

NOTE 1 – The decoding process for gaps in frame_num that is specified in subclause 8.2.5.2 may also be invoked when nal_ref_idc is equal to 0, as specified in clause 8.

A decoded picture with nal_ref_idc not equal to 0, referred to as a reference picture, is marked as "used for short-term reference" or "used for long-term reference"..  A picture that is marked as "used for short-term reference" is identified by its FrameNum. A picture that is marked as "used for long-term reference" is identified by its LongTermFrameIdx.

Frames marked as "used for short-term reference" or as "used for long-term reference" can be used as a reference for inter prediction when decoding a frame until the frame, is marked as "unused for reference". 

A picture can be marked as "unused for reference" by the sliding window reference picture marking process, a first-in, first-out mechanism specified in subclause 8.2.5.3 or by the adaptive memory control reference picture marking process, a customised adaptive marking operation specified in subclause 8.2.5.4.

A short-term reference picture is identified for use in the decoding process by its variables FrameNum and FrameNumWrap and its picture number PicNum, and a long-term reference picture is identified for use in the decoding process by its long-term picture number LongTermPicNum. When the current picture is not an IDR picture, subclause 8.2.4.1 is invoked to specify the assignment of the variables FrameNum, FrameNumWrap, PicNum and LongTermPicNum.

8.2.5.1 Sequence of operations for decoded reference picture marking process

Decoded reference picture marking proceeds in the following ordered steps:

1. All slices of the current picture are decoded.

2. Depending on whether the current picture is an IDR picture, the following applies:

–
If the current picture is an IDR picture, the following ordered steps are specified:

a. All reference pictures are marked as "unused for reference"

b. Depending on long_term_reference_flag, the following applies:

–
If long_term_reference_flag is equal to 0, the IDR picture is marked as "used for short-term reference" and MaxLongTermFrameIdx is set equal to "no long-term frame indices".

–
Otherwise (long_term_reference_flag is equal to 1), the IDR picture is marked as "used for long‑term reference", the LongTermFrameIdx for the IDR picture is set equal to 0, and MaxLongTermFrameIdx is set equal to 0.

–
Otherwise (the current picture is not an IDR picture), the following applies:

–
If adaptive_ref_pic_marking_mode_flag is equal to 0, the process specified in subclause 8.2.5.3 is invoked.

–
Otherwise (adaptive_ref_pic_marking_mode_flag is equal to 1), the process specified in subclause 8.2.5.4 is invoked.

3. When the current picture is not an IDR picture and it was not marked as "used for long-term reference" by memory_management_control_operation equal to 6, it is marked as "used for short-term reference".

It is a requirement of bitstream conformance that, after marking the current decoded reference picture, the total number of frames  shall not be greater than Max( max_num_ref_frames, 1 ).

8.2.5.2 Decoding process for gaps in frame_num

This process is invoked when frame_num is not equal to PrevRefFrameNum and is not equal to ( PrevRefFrameNum + 1 ) % MaxFrameNum.

NOTE 1 – Although this process is specified as a subclause within subclause 8.2.5 (which defines a process that is invoked only when nal_ref_idc is not equal to 0), this process may also be invoked when nal_ref_idc is equal to 0 (as specified in clause 8). The reasons for the location of this subclause within the structure of this International Standard are historical.

NOTE 2 – This process can only be invoked for a conforming bitstream when gaps_in_frame_num_value_allowed_flag is equal to 1. When gaps_in_frame_num_value_allowed_flag is equal to 0 and frame_num is not equal to PrevRefFrameNum and is not equal to ( PrevRefFrameNum + 1 ) % MaxFrameNum, the decoding process should infer an unintentional loss of pictures.

When this process is invoked, a set of values of frame_num pertaining to "non-existing" pictures is derived as all values taken on by UnusedShortTermFrameNum in Equation 7-23 except the value of frame_num for the current picture.

For each of the values of frame_num pertaining to "non-existing" pictures, in the order in which the values of UnusedShortTermFrameNum are generated by Equation 7-23, the following ordered steps are specified:

1. The decoding process for picture numbers as specified in subclause 8.2.4.1 is invoked.

2. The sliding window decoded reference picture marking process as specified in subclause 8.2.5.3 is invoked.

3. The decoding process generates a frame and the generated frame is marked as "non-existing" and "used for short-term reference". The sample values of the generated frame may be set to any value.

The following constraints shall be obeyed:

a) (void)

b) The bitstream shall not contain data that result in the derivation of a reference picture that is marked as "non‑existing" in any invocation of the reference picture selection process specified in subclause 8.4.2.1.

c) The bitstream shall not contain data that result in a variable picNumL0 that is equal to the PicNum of a picture marked as "non-existing" in any invocation of the modification process for reference picture lists for short-term reference pictures specified in subclause 8.2.4.3.1.

d) The bitstream shall not contain data that result in a variable picNumL0 that is equal to the PicNum of a picture marked as "non-existing" in any invocation of the assignment process of a LongTermFrameIdx to a short-term reference picture specified in subclause 8.2.5.4.3.

NOTE 3 – The above constraints specify that frames that are marked as "non-existing" by the process specified in this subclause must not be referenced in the inter prediction process (subclause 8.4, including the derivation process for co-located 4x4 sub‑macroblock partitions in subclause 8.4.1.2.1), the modification commands for reference picture lists for short-term reference pictures (subclause 8.2.4.3.1), or the assignment process of a LongTermFrameIdx to a short-term reference picture (subclause 8.2.5.4.3).

8.2.5.3 Sliding window decoded reference picture marking process

This process is invoked when adaptive_ref_pic_marking_mode_flag is equal to 0.

Depending on the properties of the current picture as specified below, the following applies:

1. Let numShortTerm be the total number of reference frames marked as "used for short-term reference". Let numLongTerm be the total number of reference frames marked as "used for long-term reference".

2. When numShortTerm + numLongTerm is equal to Max( max_num_ref_frames, 1 ), the condition that numShortTerm is greater than 0 shall be fulfilled, and the short-term reference frame that has the smallest value of FrameNumWrap is marked as "unused for reference". 

8.2.5.4 Adaptive memory control decoded reference picture marking process

This process is invoked when adaptive_ref_pic_marking_mode_flag is equal to 1.

The memory_management_control_operation commands with values of 1 to 6 are processed in the order they occur in the bitstream after the current picture has been decoded. For each of these memory_management_control_operation commands, one of the processes specified in subclauses 8.2.5.4.1 to 8.2.5.4.6 is invoked depending on the value of memory_management_control_operation. The memory_management_control_operation command with value of 0 specifies the end of memory_management_control_operation commands.

Memory management control operations are applied to pictures as follows:

–
memory_management_control_operation commands are applied to the frames specified.

8.2.5.4.1 Marking process of a short-term reference picture as "unused for reference"

This process is invoked when memory_management_control_operation is equal to 1.

Let picNumX be specified by

picNumX = CurrPicNum − ( difference_of_pic_nums_minus1 + 1 ). 
(8-39)

The value of picNumX is used to mark a short-term reference picture as "unused for reference" as follows:

–
the short-term reference frame specified by picNumX is marked as "unused for reference".

8.2.5.4.2 Marking process of a long-term reference picture as "unused for reference"

This process is invoked when memory_management_control_operation is equal to 2.

The value of LongTermPicNum is used to mark a long-term reference picture as "unused for reference" as follows:

–
the long-term reference frame having LongTermPicNum equal to long_term_pic_num is marked as "unused for reference".

8.2.5.4.3 Assignment process of a LongTermFrameIdx to a short-term reference picture

This process is invoked when memory_management_control_operation is equal to 3.

Given the syntax element difference_of_pic_nums_minus1, the variable picNumX is obtained as specified in subclause 8.2.5.4.1. picNumX shall refer to a frame marked as "used for short-term reference" and not marked as "non-existing".

When LongTermFrameIdx equal to long_term_frame_idx is already assigned to a long-term reference frame, that frame is marked as "unused for reference". 

The value of LongTermFrameIdx is used to mark a picture from "used for short-term reference" to "used for long-term reference" as follows:

–
The marking of the short-term reference frame specified by picNumX is changed from "used for short-term reference" to "used for long-term reference" and assigned LongTermFrameIdx equal to long_term_frame_idx.

8.2.5.4.4 Decoding process for MaxLongTermFrameIdx

This process is invoked when memory_management_control_operation is equal to 4.

All pictures for which LongTermFrameIdx is greater than max_long_term_frame_idx_plus1 − 1 and that are marked as "used for long-term reference" are marked as "unused for reference".

The variable MaxLongTermFrameIdx is derived as follows:

–
If max_long_term_frame_idx_plus1 is equal to 0, MaxLongTermFrameIdx is set equal to "no long-term frame indices".

–
Otherwise (max_long_term_frame_idx_plus1 is greater than 0), MaxLongTermFrameIdx is set equal to max_long_term_frame_idx_plus1 − 1.

NOTE – The memory_management_control_operation command equal to 4 can be used to mark long-term reference pictures as "unused for reference". The frequency of transmitting max_long_term_frame_idx_plus1 is not specified by this International Standard. However, the encoder should send a memory_management_control_operation command equal to 4 upon receiving an error message, such as an intra refresh request message.

8.2.5.4.5 Marking process of all reference pictures as "unused for reference" and setting MaxLongTermFrameIdx to "no long-term frame indices"

This process is invoked when memory_management_control_operation is equal to 5.

All reference pictures are marked as "unused for reference" and the variable MaxLongTermFrameIdx is set equal to "no long-term frame indices".

8.2.5.4.6  Process for assigning a long-term frame index to the current picture

This process is invoked when memory_management_control_operation is equal to 6.

When a variable LongTermFrameIdx equal to long_term_frame_idx is already assigned to a long-term reference frame, that frame is marked as "unused for reference". 

The current picture is marked as "used for long-term reference" and assigned LongTermFrameIdx equal to long_term_frame_idx.

8.3 Intra prediction process

This process is invoked for I macroblock types.

Inputs to this process are constructed samples prior to the deblocking filter process and, for Intra_4x4 prediction modes, the values of Intra4x4PredMode from neighbouring macroblocks.

Outputs of this process are specified as follows:

–
If the macroblock prediction mode is Intra_4x4, the outputs are constructed luma samples prior to the deblocking filter process and chroma prediction samples of the macroblock predC, where C is equal to Cb and Cr.

–
Otherwise, if mb_type is not equal to I_PCM, the outputs are luma prediction samples of the macroblock predL and chroma prediction samples of the macroblock predC, where C is equal to Cb and Cr.

–
Otherwise (mb_type is equal to I_PCM), the outputs are constructed luma and chroma samples prior to the deblocking filter process.

The variable MvCnt is set equal to 0.

Depending on the value of mb_type the following applies:

–
If mb_type is equal to I_PCM, the sample construction process for I_PCM macroblocks as specified in subclause 8.3.5 is invoked.

–
Otherwise (mb_type is not equal to I_PCM), the following applies:

1. The decoding processes for Intra prediction modes are described for the luma component as follows:

–
If the macroblock prediction mode is equal to Intra_4x4, the Intra_4x4 prediction process for luma samples as specified in subclause 8.3.1 is invoked.

–
Otherwise (the macroblock prediction mode is equal to Intra_16x16), the Intra_16x16 prediction process as specified in subclause 8.3.3 is invoked with S′L as the input and the outputs are luma prediction samples of the macroblock predL.

2. the Intra prediction process for chroma samples as specified in subclause 8.3.4 is invoked with S′Cb, and S′Cr as the inputs and the outputs are chroma prediction samples of the macroblock predCb and predCr.

Samples used in the Intra prediction process are the sample values prior to alteration by any deblocking filter operation.

8.3.1 Intra_4x4 prediction process for luma samples

This process is invoked when the macroblock prediction mode is equal to Intra_4x4.

Inputs to this process are the values of Intra4x4PredMode (if available) from neighbouring macroblocks or macroblock pairs.

The luma component of a macroblock consists of 16 blocks of 4x4 luma samples. These blocks are inverse scanned using the 4x4 luma block inverse scanning process as specified in subclause 6.4.3.

For all 4x4 luma blocks of the luma component of a macroblock with luma4x4BlkIdx = 0..15, the derivation process for the Intra4x4PredMode as specified in subclause 8.3.1.1 is invoked with luma4x4BlkIdx as well as Intra4x4PredMode that are previously (in decoding order) derived for adjacent macroblocks as the input and the variable Intra4x4PredMode[ luma4x4BlkIdx ] as the output.

For each luma block of 4x4 samples indexed using luma4x4BlkIdx = 0..15, the following ordered steps are specified:

1. The Intra_4x4 sample prediction process in subclause 8.3.1.2 is invoked with luma4x4BlkIdx and the array S′L containing constructed luma samples prior to the deblocking filter process from adjacent luma blocks as the inputs and the outputs are the Intra_4x4 luma prediction samples pred4x4L[ x, y ] with x, y = 0..3.

2. The position of the upper-left sample of a 4x4 luma block with index luma4x4BlkIdx inside the current macroblock is derived by invoking the inverse 4x4 luma block scanning process in subclause 6.4.3 with luma4x4BlkIdx as the input and the output being assigned to ( xO, yO ).

3. The values of the prediction samples predL[ xO + x, yO + y ] with x, y = 0..3 are derived by

predL[ xO + x, yO + y ] = pred4x4L[ x, y ]

(8-40)

4. The transform coefficient decoding process and picture construction process prior to deblocking filter process in subclause 8.5 is invoked with predL and luma4x4BlkIdx as the input and the constructed samples for the current 4x4 luma block S′L as the output.

8.3.1.1 Derivation process for Intra4x4PredMode

Inputs to this process are the index of the 4x4 luma block luma4x4BlkIdx and variable arrays Intra4x4PredMode (if available) that are previously (in decoding order) derived for adjacent macroblocks.

Output of this process is the variable Intra4x4PredMode[ luma4x4BlkIdx ].

Table 8‑2 specifies the values for Intra4x4PredMode[ luma4x4BlkIdx ] and the associated names.

Table 8‑2 – Specification of Intra4x4PredMode[ luma4x4BlkIdx ] and associated names

	Intra4x4PredMode[ luma4x4BlkIdx ]
	Name of Intra4x4PredMode[ luma4x4BlkIdx ]

	0
	Intra_4x4_Vertical (prediction mode)

	1
	Intra_4x4_Horizontal (prediction mode)

	2
	Intra_4x4_DC (prediction mode)

	3
	Intra_4x4_Diagonal_Down_Left (prediction mode)

	4
	Intra_4x4_Diagonal_Down_Right (prediction mode)

	5
	Intra_4x4_Vertical_Right (prediction mode)

	6
	Intra_4x4_Horizontal_Down (prediction mode)

	7
	Intra_4x4_Vertical_Left (prediction mode)

	8
	Intra_4x4_Horizontal_Up (prediction mode)


Intra4x4PredMode[ luma4x4BlkIdx ] labelled 0, 1, 3, 4, 5, 6, 7, and 8 represent directions of predictions as illustrated in Figure 8‑1.

[image: image18.wmf]0

1

4

3

5

7

8

6


Figure 8‑1 – Intra_4x4 prediction mode directions (informative)

Intra4x4PredMode[ luma4x4BlkIdx ] is derived as specified by the following ordered steps:

1. The process specified in subclause 6.4.11.4 is invoked with luma4x4BlkIdx given as input and the output is assigned to mbAddrA, luma4x4BlkIdxA, mbAddrB, and luma4x4BlkIdxB.

2. The variable dcPredModePredictedFlag is derived as follows:

–
If any of the following conditions are true, dcPredModePredictedFlag is set equal to 1

–
the macroblock with address mbAddrA is not available

–
the macroblock with address mbAddrB is not available

–
the macroblock with address mbAddrA is available and coded in an Inter macroblock prediction mode and constrained_intra_pred_flag is equal to 1

–
the macroblock with address mbAddrB is available and coded in an Inter macroblock prediction mode and constrained_intra_pred_flag is equal to 1

–
Otherwise, dcPredModePredictedFlag is set equal to 0.

3. For N being either replaced by A or B, the variables intraMxMPredModeN are derived as follows:

–
If dcPredModePredictedFlag is equal to 1 or the macroblock with address mbAddrN is not coded in Intra_4x4 macroblock prediction mode, intraMxMPredModeN is set equal to 2 (Intra_4x4_DC prediction mode).

–
Otherwise (dcPredModePredictedFlag is equal to 0 and the macroblock with address mbAddrN is coded in Intra_4x4 macroblock prediction mode), the following applies:

–
If the macroblock with address mbAddrN is coded in Intra_4x4 macroblock prediction mode, intraMxMPredModeN is set equal to Intra4x4PredMode[ luma4x4BlkIdxN ], where Intra4x4PredMode is the variable array assigned to the macroblock mbAddrN.

4. Intra4x4PredMode[ luma4x4BlkIdx ] is derived by applying the following procedure:

predIntra4x4PredMode = Min( intraMxMPredModeA, intraMxMPredModeB )
if( prev_intra4x4_pred_mode_flag[ luma4x4BlkIdx ] )

Intra4x4PredMode[ luma4x4BlkIdx ] = predIntra4x4PredMode
else





(8-41)

if( rem_intra4x4_pred_mode[ luma4x4BlkIdx ] < predIntra4x4PredMode )


Intra4x4PredMode[ luma4x4BlkIdx ] = rem_intra4x4_pred_mode[ luma4x4BlkIdx ]

else


Intra4x4PredMode[ luma4x4BlkIdx ] = rem_intra4x4_pred_mode[ luma4x4BlkIdx ] + 1

8.3.1.2 Intra_4x4 sample prediction

This process is invoked for each 4x4 luma block of a macroblock with macroblock prediction mode equal to Intra_4x4 followed by the transform decoding process and picture construction process prior to deblocking for each 4x4 luma block.

Inputs to this process are:

–
the index of a 4x4 luma block luma4x4BlkIdx,

–
an (PicWidthInSamplesL)x(PicHeightInSamplesL) array cSL containing constructed luma samples prior to the deblocking filter process of neighbouring macroblocks.

Output of this process are the prediction samples pred4x4L[ x, y ], with x, y = 0..3, for the 4x4 luma block with index luma4x4BlkIdx.

The position of the upper-left sample of a 4x4 luma block with index luma4x4BlkIdx inside the current macroblock is derived by invoking the inverse 4x4 luma block scanning process in subclause 6.4.3 with luma4x4BlkIdx as the input and the output being assigned to ( xO, yO ).

The 13 neighbouring samples p[ x, y ] that are constructed luma samples prior to the deblocking filter process, with x = −1, y = −1..3 and x = 0..7, y = −1, are derived as specified by the following ordered steps:

1. The luma location ( xN, yN ) is specified by

xN = xO + x


(8-42)
yN = yO + y


(8-43)
2. The derivation process for neighbouring locations in subclause 6.4.12 is invoked for luma locations with ( xN, yN ) as input and mbAddrN and ( xW, yW ) as output.

3. Each sample p[ x, y ] with x = −1, y = −1..3 and x = 0..7, y = −1 is derived as follows:

–
If any of the following conditions aretrue, the sample p[ x, y ] is marked as "not available for Intra_4x4 prediction"

–
mbAddrN is not available,

–
the macroblock mbAddrN is coded in an Inter macroblock prediction mode and constrained_intra_pred_flag is equal to 1,

–
the macroblock mbAddrN has mb_type equal to SI and constrained_intra_pred_flag is equal to 1 and the current macroblock does not have mb_type equal to SI,

–
x is greater than 3 and luma4x4BlkIdx is equal to 3 or 11.

–
Otherwise, the sample p[ x, y ] is marked as "available for Intra_4x4 prediction" and the value of the sample p[ x, y ] is derived as specified by the following ordered steps:

a. The location of the upper-left luma sample of the macroblock mbAddrN is derived by invoking the inverse macroblock scanning process in subclause 6.4.1 with mbAddrN as the input and the output is assigned to ( xM, yM ).

b. the sample value p[ x, y ] is derived as follows:

p[ x, y ] = cSL[ xM + xW, yM + yW ]
(8-45)

When samples p[ x, −1 ], with x = 4..7, are marked as "not available for Intra_4x4 prediction," and the sample p[ 3, −1 ] is marked as "available for Intra_4x4 prediction," the sample value of p[ 3, −1 ] is substituted for sample values p[ x, −1 ], with x = 4..7, and samples p[ x, −1 ], with x = 4..7, are marked as "available for Intra_4x4 prediction".

NOTE – Each block is assumed to be constructed into a picture array prior to decoding of the next block.

Depending on Intra4x4PredMode[ luma4x4BlkIdx ], one of the Intra_4x4 prediction modes specified in subclauses 8.3.1.2.1 to 8.3.1.2.9 is invoked.

8.3.1.2.1 Specification of Intra_4x4_Vertical prediction mode

This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[ luma4x4BlkIdx ] is equal to 0.

This mode shall be used only when the samples p[ x, −1 ] with x = 0..3 are marked as "available for Intra_4x4 prediction".

The values of the prediction samples pred4x4L[ x, y ], with x, y = 0..3, are derived by


pred4x4L[ x, y ] = p[ x, −1 ], with x, y = 0..3

(8-46)

8.3.1.2.2 Specification of Intra_4x4_Horizontal prediction mode

This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[ luma4x4BlkIdx ] is equal to 1.

This mode shall be used only when the samples p[ −1, y ], with y = 0..3, are marked as "available for Intra_4x4 prediction".

The values of the prediction samples pred4x4L[ x, y ], with x, y = 0..3, are derived by


pred4x4L[ x, y ] = p[ −1, y ], with x,y = 0..3

(8-47)

8.3.1.2.3 Specification of Intra_4x4_DC prediction mode

This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[ luma4x4BlkIdx ] is equal to 2.

The values of the prediction samples pred4x4L[ x, y ], with x, y = 0..3, are derived as follows:

–
If all samples p[ x, −1 ], with x = 0..3, and p[ −1, y ], with y = 0..3, are marked as "available for Intra_4x4 prediction", the values of the prediction samples pred4x4L[ x, y ], with x, y = 0..3, are derived by

pred4x4L[ x, y ] = ( p[ 0, −1 ] + p[ 1, −1 ] + p[ 2, −1 ] + p[ 3, −1 ] + 


            p[ −1, 0 ] + p[ −1, 1 ] + p[ −1, 2 ] + p[ −1, 3 ] + 4 ) >> 3
(8-48)

–
Otherwise, if any samples p[ x, −1 ], with x = 0..3, are marked as "not available for Intra_4x4 prediction" and all samples p[ −1, y ], with y = 0..3, are marked as "available for Intra_4x4 prediction", the values of the prediction samples pred4x4L[ x, y ], with x, y = 0..3, are derived by

pred4x4L[ x, y ] = ( p[ −1, 0 ] + p[ −1, 1 ] + p[ −1, 2 ] + p[ −1, 3 ] + 2 ) >> 2
(8-49)

–
Otherwise, if any samples p[ −1, y ], with y = 0..3, are marked as "not available for Intra_4x4 prediction" and all samples p[ x, −1 ], with x = 0 .. 3, are marked as "available for Intra_4x4 prediction", the values of the prediction samples pred4x4L[ x, y ], with x, y = 0 .. 3, are derived by

pred4x4L[ x, y ] = ( p[ 0, −1 ] + p[ 1, −1 ] + p[ 2, −1 ] + p[ 3, −1 ] + 2 ) >> 2
(8-50)

–
Otherwise (some samples p[ x, −1 ], with x = 0..3, and some samples p[ −1, y ], with y = 0..3, are marked as "not available for Intra_4x4 prediction"), the values of the prediction samples pred4x4L[ x, y ], with x, y = 0..3, are derived by (bitDepth = 8 in this standard)

pred4x4L[ x, y ] = ( 1 << ( BitDepthY− 1 ) )

(8-51)

NOTE – A 4x4 luma block can always be predicted using this mode.

8.3.1.2.4 Specification of Intra_4x4_Diagonal_Down_Left prediction mode

This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[ luma4x4BlkIdx ] is equal to 3.

This mode shall be used only when the samples p[ x, −1 ] with x = 0..7 are marked as "available for Intra_4x4 prediction".

The values of the prediction samples pred4x4L[ x, y ], with x, y = 0..3, are derived as follows:

–
If x is equal to 3 and y is equal to 3,

pred4x4L[ x, y ] = ( p[ 6, −1 ] + 3 * p[ 7, −1 ] + 2 ) >> 2
(8-52)

–
Otherwise (x is not equal to 3 or y is not equal to 3),

pred4x4L[ x, y ] = ( p[ x + y, −1 ] + 2 * p[ x + y + 1, −1 ] + p[ x + y + 2, −1 ] + 2 ) >> 2
(8-53)

8.3.1.2.5 Specification of Intra_4x4_Diagonal_Down_Right prediction mode

This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[ luma4x4BlkIdx ] is equal to 4.

This mode shall be used only when the samples p[ x, −1 ] with x = 0..3 and p[ −1, y ] with y = −1..3 are marked as "available for Intra_4x4 prediction".

The values of the prediction samples pred4x4L[ x, y ], with x, y = 0..3, are derived as follows:

–
If x is greater than y,

pred4x4L[ x, y ] = ( p[ x − y − 2, −1] + 2 * p[ x − y − 1, −1 ] + p[ x − y, −1 ] + 2 ) >> 2
(8-54)

–
Otherwise if x is less than y,

pred4x4L[ x, y ] = ( p[ −1, y − x − 2 ] + 2 * p[ −1, y − x − 1 ] + p[ −1, y − x ] + 2 ) >> 2
(8-55)

–
Otherwise (x is equal to y),

pred4x4L[ x, y ] = ( p[ 0, −1 ] + 2 * p[ −1, −1 ] + p[ −1, 0 ] + 2 ) >> 2
(8-56)

8.3.1.2.6 Specification of Intra_4x4_Vertical_Right prediction mode

This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[ luma4x4BlkIdx ] is equal to 5.

This mode shall be used only when the samples p[ x, −1 ] with x = 0..3 and p[ −1, y ] with y = −1..3 are marked as "available for Intra_4x4 prediction".

Let the variable zVR be set equal to 2 * x − y.

The values of the prediction samples pred4x4L[ x, y ], with x, y = 0..3, are derived as follows:

–
If zVR is equal to 0, 2, 4, or 6,

pred4x4L[ x, y ] = ( p[ x − ( y >> 1 ) − 1, −1 ] + p[ x − ( y >> 1 ), −1 ] + 1 ) >> 1
(8-57)

–
Otherwise, if zVR is equal to 1, 3, or 5,

pred4x4L[ x, y ] = ( p[ x − ( y >> 1 ) − 2, −1] + 2 * p[ x − ( y >> 1 ) − 1, −1 ] + p[ x − ( y >> 1 ), −1 ] + 2 ) >> 2






(8-58)

–
Otherwise, if zVR is equal to −1,

pred4x4L[ x, y ] = ( p[ −1, 0 ] + 2 * p[ −1, −1 ] + p[ 0, −1 ] + 2 ) >> 2
(8-59)

–
Otherwise (zVR is equal to −2 or −3),

pred4x4L[ x, y ] = ( p[ −1, y − 1 ] + 2 * p[ −1, y − 2 ] + p[ −1, y − 3 ] + 2 ) >> 2
(8-60)

8.3.1.2.7 Specification of Intra_4x4_Horizontal_Down prediction mode

This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[ luma4x4BlkIdx ] is equal to 6.

This mode shall be used only when the samples p[ x, −1 ] with x = 0..3 and p[ −1, y ] with y = −1..3 are marked as "available for Intra_4x4 prediction".

Let the variable zHD be set equal to 2 * y − x.

The values of the prediction samples pred4x4L[ x, y ], with x, y = 0..3, are derived as follows:

–
If zHD is equal to 0, 2, 4, or 6,

pred4x4L[ x, y ] = ( p[ −1, y − ( x >> 1 ) − 1 ] + p[ −1, y − ( x >> 1 ) ] + 1 ) >> 1
(8-61)

–
Otherwise, if zHD is equal to 1, 3, or 5,

pred4x4L[ x, y ] = ( p[ −1, y − ( x >> 1 ) − 2 ] + 2 * p[ −1, y − ( x >> 1 ) − 1 ] + p[ −1, y − ( x >> 1 ) ] + 2 ) >> 2






(8-62)

–
Otherwise, if zHD is equal to −1,

pred4x4L[ x, y ] = ( p[ −1, 0 ] + 2 * p[ −1, −1 ] + p[ 0, −1 ] + 2 ) >> 2
(8-63)

–
Otherwise (zHD is equal to −2 or −3),

pred4x4L[ x, y ] = ( p[ x − 1, −1 ] + 2 * p[ x − 2, −1 ] + p[ x − 3, −1 ] + 2 ) >> 2
(8-64)

8.3.1.2.8 Specification of Intra_4x4_Vertical_Left prediction mode

This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[ luma4x4BlkIdx ] is equal to 7.

This mode shall be used only when the samples p[ x, −1 ] with x = 0..7 are marked as "available for Intra_4x4 prediction".

The values of the prediction samples pred4x4L[ x, y ], with x, y = 0..3, are derived as follows:

–
If y is equal to 0 or 2,

pred4x4L[ x, y ] = ( p[ x + ( y >> 1 ), −1 ] + p[ x + ( y >> 1 ) + 1, −1 ] + 1) >> 1
(8-65)

–
Otherwise (y is equal to 1 or 3),

pred4x4L[ x, y ] = ( p[ x + ( y >> 1 ), −1 ] + 2 * p[ x + ( y >> 1 ) + 1, −1 ] + p[ x + ( y >> 1 ) + 2, −1 ] + 2 ) >> 2






(8-66)

8.3.1.2.9 Specification of Intra_4x4_Horizontal_Up prediction mode

This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[ luma4x4BlkIdx ] is equal to 8.

This mode shall be used only when the samples p[ −1, y ] with y = 0..3 are marked as "available for Intra_4x4 prediction".

Let the variable zHU be set equal to x + 2 * y.

The values of the prediction samples pred4x4L[ x, y ], with x, y = 0..3, are derived as follows:

–
If zHU is equal to 0, 2, or 4

pred4x4L[ x, y ] = ( p[ −1, y + ( x >> 1 ) ] + p[ −1, y + ( x >> 1 ) + 1 ] + 1 ) >> 1
(8-67)

–
Otherwise, if zHU is equal to 1 or 3

pred4x4L[ x, y ] = ( p[ −1, y + ( x >> 1 ) ] + 2 * p[ −1, y + ( x >> 1 ) + 1 ] + p[ −1, y + ( x >> 1 ) + 2 ] + 2 ) >> 2






(8-68)

–
Otherwise, if zHU is equal to 5,

pred4x4L[ x, y ] = ( p[ −1, 2 ] + 3 * p[ −1, 3 ] + 2 ) >> 2
(8-69)

–
Otherwise (zHU is greater than 5),

pred4x4L[ x, y ] = p[ −1, 3 ]

(8-70)

8.3.2 (void)

8.3.3 Intra_16x16 prediction process for luma samples

This process is invoked when the macroblock prediction mode is equal to Intra_16x16. It specifies how the Intra prediction luma samples for the current macroblock are derived.

Input to this process is a (PicWidthInSamplesL)x(PicHeightInSamplesL) array cSL containing constructed luma samples prior to the deblocking filter process of neighbouring macroblocks.

Outputs of this process are Intra prediction luma samples for the current macroblock predL[ x, y ].

The 33 neighbouring samples p[ x, y ] that are constructed luma samples prior to the deblocking filter process, with x = −1, y = −1..15 and with x = 0..15, y = −1, are derived as specified by the following ordered steps:

1. The derivation process for neighbouring locations in subclause 6.4.12 is invoked for luma locations with ( x, y ) assigned to ( xN, yN ) as input and mbAddrN and ( xW, yW ) as output.

2. Each sample p[ x, y ] with x = −1, y = −1..15 and with x = 0..15, y = −1 is derived as follows:

–
If any of the following conditions aretrue, the sample p[ x, y ] is marked as "not available for Intra_16x16 prediction":

–
mbAddrN is not available,

–
the macroblock mbAddrN is coded in an Inter macroblock prediction mode and constrained_intra_pred_flag is equal to 1,

–
the macroblock mbAddrN has mb_type equal to SI and constrained_intra_pred_flag is equal to 1.

–
Otherwise, the sample p[ x, y ] is marked as "available for Intra_16x16 prediction" and the value of the sample p[ x, y ] is derived as specified by the following ordered steps:

a. The location of the upper-left luma sample of the macroblock mbAddrN is derived by invoking the inverse macroblock scanning process in subclause 6.4.1 with mbAddrN as the input and the output is assigned to ( xM, yM ).

b. the sample value p[ x, y ] is derived as follows:

p[ x, y ] = cSL[ xM + xW, yM + yW ]
(8-115)

Let predL[ x, y ] with x, y = 0..15 denote the prediction samples for the 16x16 luma block samples.

Intra_16x16 prediction modes are specified in Table 8‑4.

Table 8‑4 – Specification of Intra16x16PredMode and associated names

	Intra16x16PredMode
	Name of Intra16x16PredMode

	0
	Intra_16x16_Vertical (prediction mode)

	1
	Intra_16x16_Horizontal (prediction mode)

	2
	Intra_16x16_DC (prediction mode)

	3
	Intra_16x16_Plane (prediction mode)


Depending on Intra16x16PredMode, one of the Intra_16x16 prediction modes specified in subclauses 8.3.3.1 to 8.3.3.4 is invoked.

8.3.3.1 Specification of Intra_16x16_Vertical prediction mode

This Intra_16x16 prediction mode shall be used only when the samples p[ x, −1 ] with x = 0..15 are marked as "available for Intra_16x16 prediction".

The values of the prediction samples predL[ x, y ], with x, y = 0..15, are derived by

predL[ x, y ] = p[ x, −1 ], with x, y = 0..15

(8-116)

8.3.3.2 Specification of Intra_16x16_Horizontal prediction mode

This Intra_16x16 prediction mode shall be used only when the samples p[−1, y] with y = 0..15 are marked as "available for Intra_16x16 prediction".

The values of the prediction samples predL[ x, y ], with x, y = 0..15, are derived by

predL[ x, y ] = p[ −1, y ], with x, y = 0..15

(8-117)

8.3.3.3 Specification of Intra_16x16_DC prediction mode

This Intra_16x16 prediction mode operates, depending on whether the neighbouring samples are marked as "available for Intra_16x16 prediction", as follows:

–
If all neighbouring samples p[ x, −1 ], with x = 0..15, and p[ −1, y ], with y = 0..15, are marked as "available for Intra_16x16 prediction", the prediction for all luma samples in the macroblock is given by:

predL[ x, y ] = 
[image: image19.wmf][

]

[

]

å

å

=

=

>>

+

-

+

-

15

0

x'

15

0

y'

5

16)

y'

1,

p

1

,

x'

p

(

, with x, y = 0..15
(8-118)

–
Otherwise, if any of the neighbouring samples p[ x, −1 ], with x = 0..15, are marked as "not available for Intra_16x16 prediction" and all of the neighbouring samples p[ −1, y ], with y = 0..15, are marked as "available for Intra_16x16 prediction", the prediction for all luma samples in the macroblock is given by:

predL[ x, y ] = 
[image: image20.wmf][

]

4

8)

y'

1,

p

(

15

0

y'

>>

+

-

å

=

, with x, y = 0..15
(8-119)

–
Otherwise, if any of the neighbouring samples p[ −1, y ], with y = 0..15, are marked as "not available for Intra_16x16 prediction" and all of the neighbouring samples p[ x, −1 ], with x = 0..15, are marked as "available for Intra_16x16 prediction", the prediction for all luma samples in the macroblock is given by:

predL[ x, y ] = 
[image: image21.wmf][

]

å

=

>>

+

-

15

0

x'

4

8)

1

,

x'

p

(

, with x, y = 0..15
(8-120)

–
Otherwise (some of the neighbouring samples p[ x, −1 ], with x = 0..15, and some of the neighbouring samples p[ −1, y ], with y = 0..15, are marked as "not available for Intra_16x16 prediction"), the prediction for all luma samples in the macroblock is given by:

predL[ x, y ] = ( 1 << ( BitDepthY− 1 ) ), with x, y = 0..15
(8-121)

8.3.3.4 Specification of Intra_16x16_Plane prediction mode

This Intra_16x16 prediction mode shall be used only when the samples p[ x, −1 ] with x =−1..15 and p[ −1, y ] with y = 0..15 are marked as "available for Intra_16x16 prediction".

The values of the prediction samples predL[ x, y ], with x, y = 0..15, are derived by

predL[ x, y ] = Clip1Y( ( a + b * ( x − 7 ) + c * ( y − 7 ) + 16 ) >> 5 ), with x, y = 0..15,
(8-122)

where

a = 16 * ( p[ −1, 15 ] + p[ 15, −1 ] )

(8-123)

b = ( 5 * H + 32 ) >> 6


(8-124)

c = ( 5 * V + 32 ) >> 6


(8-125)

and H and V are specified as


[image: image22.wmf][

]

[

]

å

=

-

+

+

=

7

0

x'

)

 

 

1

-

 

,

x'

-

6

 

p

 

-

 

1

 

,

x'

8

 

p

 

(

*

)

 

1

 x'

(

H



(8-126)

[image: image23.wmf][

]

[

]

å

=

+

+

=

7

0

y'

)

 

 

y'

-

6

 

1,

-

 

p

-

 

y'

8

 

1,

-

 

p

 

(

*

)

 

1

y'

 

(

V



(8-127)
8.3.4 Intra prediction process for chroma samples

This process is invoked for I macroblock types. It specifies how the Intra prediction chroma samples for the current macroblock are derived. (ChromaArrayType = 1 in this standard)

Inputs to this process are two (PicWidthInSamplesC)x(PicHeightInSamplesC) arrays cSCb and cSCr containing constructed chroma samples prior to the deblocking filter process of neighbouring macroblocks.

Outputs of this process are Intra prediction chroma samples for the current macroblock predCb[ x, y ] and predCr[ x, y ].

The following applies:

the following text specifies the Intra prediction chroma samples for the current macroblock predCb[ x, y ] and predCr[ x, y ].
Both chroma blocks (Cb and Cr) of the macroblock use the same prediction mode. The prediction mode is applied to each of the chroma blocks separately. The process specified in this subclause is invoked for each chroma block. In the remainder of this subclause, chroma block refers to one of the two chroma blocks and the subscript C is used as a replacement of the subscript Cb or Cr.

The neighbouring samples p[ x, y ] that are constructed chroma samples prior to the deblocking filter process, with x = −1, y = −1..MbHeightC − 1 and with x = 0..MbWidthC − 1, y = −1, are derived as specified by the following ordered steps:

1. The derivation process for neighbouring locations in subclause 6.4.12 is invoked for chroma locations with ( x, y ) assigned to ( xN, yN ) as input and mbAddrN and ( xW, yW ) as output.

2. Each sample p[ x, y ] is derived as follows:

–
If any of the following conditions aretrue, the sample p[ x, y ] is marked as "not available for Intra chroma prediction":

–
mbAddrN is not available,

–
the macroblock mbAddrN is coded in an Inter macroblock prediction mode and constrained_intra_pred_flag is equal to 1,

–
the macroblock mbAddrN has mb_type equal to SI and constrained_intra_pred_flag is equal to 1 and the current macroblock does not have mb_type equal to SI.

–
Otherwise, the sample p[ x, y ] is marked as "available for Intra chroma prediction" and the value of the sample p[ x, y ] is derived as specified by the following ordered steps:

a. The location of the upper-left luma sample of the macroblock mbAddrN is derived by invoking the inverse macroblock scanning process in subclause 6.4.1 with mbAddrN as the input and the output is assigned to ( xL, yL ).

b. The location ( xM, yM ) of the upper-left chroma sample of the macroblock mbAddr is derived by:

xM =   ( xL >> 4 ) * MbWidthC

(8-128)
yM = ( ( yL >> 4 )* MbHeightC ) + ( yL % 2 )
(8-129)
c. the sample value p[ x, y ] is derived as follows:

p[ x, y ] = cSC[ xM + xW, yM + yW ]
(8-131)

Let predC[ x, y ] with x = 0..MbWidthC − 1, y = 0..MbHeightC − 1 denote the prediction samples for the chroma block samples.

Intra chroma prediction modes are specified in Table 8‑5.

Table 8‑5 – Specification of Intra chroma prediction modes and associated names

	intra_chroma_pred_mode
	Name of intra_chroma_pred_mode

	0
	Intra_Chroma_DC (prediction mode)

	1
	Intra_Chroma_Horizontal (prediction mode)

	2
	Intra_Chroma_Vertical (prediction mode)

	3
	Intra_Chroma_Plane (prediction mode)


Depending on intra_chroma_pred_mode, one of the Intra chroma prediction modes specified in subclauses 8.3.4.1 to 8.3.4.4is invoked.

8.3.4.1 Specification of Intra_Chroma_DC prediction mode

This Intra chroma prediction mode is invoked when intra_chroma_pred_mode is equal to 0. (ChromaArrayType = 1 in this standard)

For each chroma block of 4x4 samples indexed by chroma4x4BlkIdx = 0..( 1 << ( ChromaArrayType + 1 ) ) − 1, the following applies:

–
The position of the upper-left sample of a 4x4 chroma block with index chroma4x4BlkIdx inside the current macroblock is derived by invoking the inverse 4x4 chroma block scanning process in subclause 6.4.7 with chroma4x4BlkIdx as the input and the output being assigned to ( xO, yO ).
–
Depending on the values of xO and yO, the following applies:

–
If ( xO, yO ) is equal to ( 0, 0 ) or xO and yO are greater than 0, the values of the prediction samples predC[ x + xO, y + yO ] with x, y = 0..3 are derived as follows:

–
If all samples p[ x + xO, −1 ], with x = 0..3, and p[ −1, y +yO ], with y = 0..3, are marked as "available for Intra chroma prediction", the values of the prediction samples predC[ x + xO, y + yO ], with x, y = 0..3, are derived as:

[image: image24.wmf]3

4

]

yO

'

y

,

1

[

p

]

1

,

xO

'

x

[

p

 

 

]

 

yO

y

 

xO,

 x

[

pred

3

0

'

y

3

0

'

x

C

>>

÷

÷

ø

ö

ç

ç

è

æ

+

+

-

+

-

+

=

+

+

å

å

=

=

, with x, y = 0..3.
(8-134)
–
Otherwise, if any samples p[ x + xO, −1 ], with x = 0..3, are marked as "not available for Intra chroma prediction" and all samples p[ −1, y +yO ], with y = 0..3, are marked as "available for Intra chroma prediction", the values of the prediction samples predC[ x + xO, y + yO ], with x, y = 0..3, are derived as:

[image: image25.wmf]2

2

]

yO

'

y

,

1

[

p

 

 

]

 

yO

y

 

xO,

 x

[

pred

3

0

'

y

C

>>

÷

÷

ø

ö

ç

ç

è

æ

+

+

-

=

+

+

å

=

, with x, y = 0..3.
(8-135)
–
Otherwise, if any samples p[ −1, y +yO ], with y = 0..3, are marked as "not available for Intra chroma prediction" and all samples p[ x + xO, −1 ], with x = 0..3, are marked as "available for Intra chroma prediction", the values of the prediction samples predC[ x + xO, y + yO ], with x, y = 0..3, are derived as:

[image: image26.wmf]2

2

]

1

,

xO

'

x

[

p

 

 

]

 

yO

y

 

xO,

 x

[

pred

3

0

x'

C

>>

÷

÷

ø

ö

ç

ç

è

æ

+

-

+

=

+

+

å

=

, with x, y = 0..3.
(8-136)
–
Otherwise (some samples p[ x + xO, −1 ], with x = 0..3, and some samples p[ −1, y +yO ], with y = 0..3, are marked as "not available for Intra chroma prediction"), the values of the prediction samples predC[ x + xO, y + yO ], with x, y = 0..3, are derived as: (bitDepth = 8 in this standard)
predC[ x + xO, y + yO ] = ( 1 << ( BitDepthC− 1 ) ), with x, y = 0..3.
(8-135)

–
Otherwise, if xO is greater than 0 and yO is equal to 0, the values of the prediction samples predC[ x + xO, y + yO ] with x, y = 0..3 are derived as follows:

–
If all samples p[ x + xO, −1 ], with x = 0..3, are marked as "available for Intra chroma prediction", the values of the prediction samples predC[ x + xO, y + yO ], with x, y = 0..3, are derived as:

[image: image27.wmf]2

2

]

1

,

xO

'

x

[

p

 

 

]

 

yO

y

 

xO,

 x

[

pred

3

0

x'

C

>>

÷

÷

ø

ö

ç

ç

è

æ

+

-

+

=

+

+

å

=

, with x, y = 0..3.
(8-138)
–
Otherwise, if all samples p[ −1, y +yO ], with y = 0..3, are marked as "available for Intra chroma prediction", the values of the prediction samples predC[ x + xO, y + yO ], with x, y = 0..3, are derived as:

[image: image28.wmf]2

2

]

yO

'

y

,

1

[

p

 

 

]

 

yO

y

 

xO,

 x

[

pred

3

0

'

y

C

>>

÷

÷

ø

ö

ç

ç

è

æ

+

+

-

=

+

+

å

=

, with x, y = 0..3.
(8-139)
–
Otherwise (some samples p[ x + xO, −1 ], with x = 0..3, and some samples p[ −1, y +yO ], with y = 0..3, are marked as "not available for Intra chroma prediction"), the values of the prediction samples predC[ x + xO, y + yO ], with x, y = 0..3, are derived as:
predC[ x + xO, y + yO ] = ( 1 << ( BitDepthC− 1 ) ), with x, y = 0..3.
(8-138)

–
Otherwise (xO is equal to 0 and yO is greater than 0), the values of the prediction samples predC[ x + xO, y + yO ] with x, y = 0..3 are derived as follows:

–
If all samples p[ −1, y +yO ], with y = 0..3, are marked as "available for Intra chroma prediction", the values of the prediction samples predC[ x + xO, y + yO ], with x, y = 0..3, are derived as:

[image: image29.wmf]2

2

]

yO

'

y

,

1

[

p

 

 

]

 

yO

y

 

xO,

 x

[

pred

3

0

'

y

C

>>

÷

÷

ø

ö

ç

ç

è

æ

+

+

-

=

+

+

å

=

, with x, y = 0..3.
(8-141)
–
Otherwise, if all samples p[ x + xO, −1 ], with x = 0..3, are marked as "available for Intra chroma prediction", the values of the prediction samples predC[ x + xO, y + yO ], with x, y = 0..3, are derived as:
predC[ x + xO, y + yO ] = ( 1 << ( BitDepthC − 1 ) ), with x, y = 0..3.
(8-143)

–
Otherwise (some samples p[ x + xO, −1 ], with x = 0..3, and some samples p[ −1, y +yO ], with y = 0..3, are marked as "not available for Intra chroma prediction"), the values of the prediction samples predC[ x + xO, y + yO ], with x, y = 0..3, are derived as:
predC[ x + xO, y + yO ] = ( 1 << ( BitDepthC− 1 ) ), with x, y = 0..3.
(8-141)

8.3.4.2 Specification of Intra_Chroma_Horizontal prediction mode

This Intra chroma prediction mode is invoked when intra_chroma_pred_mode is equal to 1.

This mode shall be used only when the samples p[ −1, y ] with y = 0..MbHeightC − 1 are marked as "available for Intra chroma prediction".

The values of the prediction samples predC[ x, y ] are derived as:

predC[ x, y ] = p[ −1, y ], with x = 0..MbWidthC − 1 and y = 0..MbHeightC − 1
(8-142)

8.3.4.3 Specification of Intra_Chroma_Vertical prediction mode

This Intra chroma prediction mode is invoked when intra_chroma_pred_mode is equal to 2.

This mode shall be used only when the samples p[ x, −1 ] with x = 0..MbWidthC − 1 are marked as "available for Intra chroma prediction".

The values of the prediction samples predC[ x, y ] are derived as:

predC[ x, y ] = p[ x, −1 ], with x = 0..MbWidthC − 1 and y = 0..MbHeightC − 1
(8-143)

8.3.4.4 Specification of Intra_Chroma_Plane prediction mode

This Intra chroma prediction mode is invoked when intra_chroma_pred_mode is equal to 3. (ChromaArrayType = 1 in this standard)

This mode shall be used only when the samples p[ x, −1 ], with x = 0..MbWidthC − 1 and p[ −1, y ], with y = −1..MbHeightC − 1 are marked as "available for Intra chroma prediction".

The values of the prediction samples predC[ x, y ] are derived by:

predC[ x, y ] = Clip1C( ( a + b * ( x − 3 ) + c * ( y − 3 ) + 16 ) >> 5 ), 



with x = 0..MbWidthC − 1 and y = 0..MbHeightC − 1
(8-144)

where

a = 16 * ( p[ −1, MbHeightC − 1 ] + p[ MbWidthC − 1, −1 ] ) 
(8-145)

b = (  34  * H + 32 ) >> 6
(8-146)

c = ( 34  * V + 32 ) >> 6
(8-147)

and H and V are specified as:


[image: image30.wmf][

]

[

]

å

+

=

-

-

+

-

-

+

+

+

=

 xCF

 

3

0

'

x

)

1

 

,

'

x

xCF

2

p

1

 

,

'

x

xCF

4

p

(

*

)

1

'

x

(

 

 

H


(8-150)

[image: image31.wmf]å

+

=

-

+

-

-

+

+

-

+

=

yCF

3

0

'

y

])

'

y

yCF

2

 

,

1

[

p

]

'

y

yCF

4

 

,

1

[

p

(

*

)

1

'

y

(

V


(8-151)

8.3.4.5  (void)

8.3.5 Sample construction process for I_PCM macroblocks

This process is invoked when mb_type is equal to I_PCM.

The position of the upper-left luma sample of the current macroblock is derived by invoking the inverse macroblock scanning process in subclause 6.4.1 with CurrMbAddr as input and the output being assigned to ( xP, yP ).

The constructed luma samples prior to the deblocking process are generated as specified by:
for( i = 0; i < 256; i++ )

S′L[ xP + ( i % 16 ), yP + ( i / 16 ) ) ] = pcm_sample_luma[ i ]
(8-150)

The constructed chroma samples prior to the deblocking process are generated as specified by:
for( i = 0; i < MbWidthC * MbHeightC; i++ ) {

S′Cb[ ( xP / 2 ) + ( i % MbWidthC ),


( ( yP + 2− 1 ) / 2) + ( i / MbWidthC ) ] =


  pcm_sample_chroma[ i ]

(8-151)

S′Cr[ ( xP / 2 ) + ( i % MbWidthC ),


( ( yP + 2− 1 ) / 2) + ( i / MbWidthC ) ] =


  pcm_sample_chroma[ i + MbWidthC * MbHeightC ]
}

8.4 Inter prediction process

This process is invoked when decoding P macroblock types.

Outputs of this process are Inter prediction samples for the current macroblock that are a 16x16 array predL of luma samples and two (MbWidthC)x(MbHeightC) arrays predCb and predCr of chroma samples, one for each of the chroma components Cb and Cr.

The partitioning of a macroblock is specified by mb_type. Each macroblock partition is referred to by mbPartIdx. When the macroblock partitioning consists of partitions that are equal to sub-macroblocks, each sub-macroblock can be further partitioned into sub-macroblock partitions as specified by sub_mb_type[ mbPartIdx ]. Each sub-macroblock partition is referred to by subMbPartIdx. When the macroblock partitioning does not consist of sub-macroblocks, subMbPartIdx is set equal to 0.

The following steps are specified for each macroblock partition or for each sub-macroblock partition.

The functions MbPartWidth( ), MbPartHeight( ), SubMbPartWidth( ), and SubMbPartHeight( ) describing the width and height of macroblock partitions and sub-macroblock partitions are specified in Tables 7‑13, 7‑14, 7‑17, and 7‑18.

The range of the macroblock partition index mbPartIdx is derived as follows:

–
mbPartIdx proceeds over values 0..NumMbPart( mb_type ) − 1.

For each value of mbPartIdx, the variables partWidth and partHeight for each macroblock partition or sub-macroblock partition in the macroblock are derived as follows:

–
If mb_type is not equal to P_8x8 or P_8x8ref0, subMbPartIdx is set equal to 0, and partWidth and partHeight are derived as:

partWidth = MbPartWidth( mb_type ) 

(8-152)

partHeight = MbPartHeight( mb_type ) 

(8-153)

–
Otherwise, if mb_type is equal to P_8x8 or P_8x8ref0, subMbPartIdx proceeds over values 0..NumSubMbPart( sub_mb_type[ mbPartIdx ] ) − 1, and partWidth and partHeight are derived as:

partWidth = SubMbPartWidth( sub_mb_type[ mbPartIdx ] ) 
(8-154)

partHeight = SubMbPartHeight( sub_mb_type[ mbPartIdx ] ). 
(8-155)

The variables partWidthC and partHeightC are derived as:

partWidthC = partWidth / 2

(8-158)
partHeightC = partHeight / 2

(8-159)

Let the variable MvCnt be initially set equal to 0 before any invocation of subclause 8.4.1 for the macroblock.

The Inter prediction process for a macroblock partition mbPartIdx and a sub-macroblock partition subMbPartIdx consists of the following ordered steps:

1. The derivation process for motion vector components and reference indices as specified in subclause 8.4.1 is invoked.

Inputs to this process are:

–
a macroblock partition mbPartIdx,

–
a sub-macroblock partition subMbPartIdx.

Outputs of this process are:

–
luma motion vector mvL0 and the chroma motion vector mvCL0

–
reference indices refIdxL0

–
prediction list utilization flag predFlagL0

–
the sub-macroblock partition motion vector count subMvCnt.

2. The variable MvCnt is incremented by subMvCnt.

3. (void)  

4. The decoding process for Inter prediction samples as specified in subclause 8.4.2 is invoked.

Inputs to this process are:

–
a macroblock partition mbPartIdx,

–
a sub-macroblock partition subMbPartIdx,

–
variables specifying partition width and height for luma and chroma (if available), partWidth, partHeight, partWidthC (if available), and partHeightC (if available),

–
luma motion vector mvL0 and the chroma motion vector mvCL0,

–
reference index refIdxL0,

–
prediction list utilization flag predFlagL0,

Outputs of this process are inter prediction samples (pred); which are a (partWidth)x(partHeight) array predPartL of prediction luma samples and two (partWidthC)x(partHeightC) arrays predPartCr, and predPartCb of prediction chroma samples, one for each of the chroma components Cb and Cr.

For use in derivation processes of variables invoked later in the decoding process, the following assignments are made:

MvL0[ mbPartIdx ][ subMbPartIdx ] = mvL0

(8-160)

RefIdxL0[ mbPartIdx ] = refIdxL0

(8-162)

PredFlagL0[ mbPartIdx ] = predFlagL0

(8-164)

The location of the upper-left sample of the macroblock partition relative to the upper-left sample of the macroblock is derived by invoking the inverse macroblock partition scanning process as described in subclause 6.4.2.1 with mbPartIdx as the input and ( xP, yP ) as the output.

The location of the upper-left sample of the sub-macroblock partition relative to the upper-left sample of the macroblock partition is derived by invoking the inverse sub-macroblock partition scanning process as described in subclause 6.4.2.2 with subMbPartIdx as the input and ( xS, yS ) as the output.

The macroblock prediction is formed by placing the macroblock or sub-macroblock partition prediction samples in their correct relative positions in the macroblock, as follows.

The variable predL[ xP + xS + x, yP + yS + y ] with x = 0..partWidth − 1, y = 0..partHeight − 1 is derived by:

predL[ xP + xS + x, yP + yS + y ] = predPartL[ x, y ] 

(8-166)

The variable predC with x = 0..partWidthC − 1, y = 0..partHeightC − 1, and C in predC and predPartC being replaced by Cb or Cr is derived by:

predC[ xP / 2 + xS / 2 + x, yP / 2+ yS / 2+ y ] = predPartC[ x, y ]






(8-167)

8.4.1 Derivation process for motion vector components and reference indices

Inputs to this process are:

–
a macroblock partition mbPartIdx,

–
a sub-macroblock partition subMbPartIdx.

Outputs of this process are:

–
luma motion vector mvL0 and the chroma motion vector mvCL0,

–
reference index refIdxL0,

–
prediction list utilization flag predFlagL0,

–
a motion vector count variable subMvCnt.

For the derivation of the variables mvL0 as well as refIdxL0, the following applies:

1. The variables refIdxL0 and predFlagL0 are derived as follows:

–
If MbPartPredMode( mb_type, mbPartIdx ) or SubMbPredMode( sub_mb_type[ mbPartIdx ] ) is equal to Pred_L0,

refIdxL0 = ref_idx_l0[ mbPartIdx ]

(8-168)

predFlagL0 = 1

(8-169)

–
Otherwise, the variables refIdxL0 and predFlagL0 are specified by

refIdxL0 = −1

(8-170)

predFlagL0 = 0

(8-171)

2. The motion vector count variable subMvCnt is set equal to predFlagL0.

3. The variable currSubMbType is derived as follows:

  currSubMbType is set equal to "na".

4. When predFlagL0 is equal to 1, the derivation process for luma motion vector prediction in subclause 8.4.1.3 is invoked with mbPartIdx subMbPartIdx, refIdxL0, and currSubMbType as the inputs and the output being mvpL0. The luma motion vectors are derived by

mvL0[ 0 ] = mvpL0[ 0 ] + mvd_l0[ mbPartIdx ][ subMbPartIdx ][ 0 ]
(8-172)

mvL0[ 1 ] = mvpL0[ 1 ] + mvd_l0[ mbPartIdx ][ subMbPartIdx ][ 1 ]
(8-173)

When predFlagL0 is equal to 1, the derivation process for chroma motion vectors in subclause 8.4.1.4 is invoked with mvL0 and refIdxL0 as input and the output being mvCL0.

8.4.1.1 Derivation process for luma motion vectors for skipped macroblocks in P slices

This process is invoked when mb_type is equal to P_Skip.

Outputs of this process are the motion vector mvL0 and the reference index refIdxL0.

The reference index refIdxL0 for a skipped macroblock is derived as:

refIdxL0 = 0.


(8-174)
For the derivation of the motion vector mvL0 of a P_Skip macroblock type, the following ordered steps are specified:

1. The process specified in subclause 8.4.1.3.2 is invoked with mbPartIdx set equal to 0, subMbPartIdx set equal to 0, currSubMbType set equal to "na", and listSuffixFlag set equal to 0 as input and the output is assigned to mbAddrA, mbAddrB, mvL0A, mvL0B, refIdxL0A, and refIdxL0B.

2. The variable mvL0 is specified as follows:

–
If any of the following conditions are true, both components of the motion vector mvL0 are set equal to 0:

–
mbAddrA is not available,

–
mbAddrB is not available,

–
refIdxL0A is equal to 0 and both components of mvL0A are equal to 0,

–
refIdxL0B is equal to 0 and both components of mvL0B are equal to 0.

–
Otherwise, the derivation process for luma motion vector prediction as specified in subclause 8.4.1.3 is invoked with mbPartIdx = 0, subMbPartIdx = 0, refIdxL0, and currSubMbType = "na" as inputs and the output is assigned to mvL0.

NOTE – The output is directly assigned to mvL0, since the predictor is equal to the actual motion vector.

8.4.1.1.1 (void)

8.4.1.1.2  (void)

8.4.1.1.3 (void)

8.4.1.2 (void)

8.4.1.3 Derivation process for luma motion vector prediction

Inputs to this process are:

–
the macroblock partition index mbPartIdx,

–
the sub-macroblock partition index subMbPartIdx,

–
the reference index of the current partition refIdxL0 

–
the variable currSubMbType.

Output of this process is the prediction mvpL0 of the motion vector mvL0 .

The derivation process for the neighbouring blocks for motion data in subclause 8.4.1.3.2 is invoked with mbPartIdx, subMbPartIdx, currSubMbType, and listSuffixFlag = 0 as the input and with mbAddrN\mbPartIdxN\subMbPartIdxN, reference indices refIdxL0N and the motion vectors mvL0N with N being replaced by A, B, or C as the output.

The motion vector predictor mvpL0 is derived as follows:

–
If MbPartWidth( mb_type ) is equal to 16, MbPartHeight( mb_type ) is equal to 8, mbPartIdx is equal to 0, and refIdxL0B is equal to refIdxL0, the motion vector predictor mvpL0 is derived by:

mvpL0 = mvL0B

(8-203)

–
Otherwise, if MbPartWidth( mb_type ) is equal to 16, MbPartHeight( mb_type ) is equal to 8, mbPartIdx is equal to 1, and refIdxL0A is equal to refIdxL0, the motion vector predictor mvpL0 is derived by:

mvpL0 = mvL0A

(8-204)

–
Otherwise, if MbPartWidth( mb_type ) is equal to 8, MbPartHeight( mb_type ) is equal to 16, mbPartIdx is equal to 0, and refIdxL0A is equal to refIdxL0, the motion vector predictor mvpL0 is derived by:

mvpL0 = mvL0A

(8-205)
–
Otherwise, if MbPartWidth( mb_type ) is equal to 8, MbPartHeight( mb_type ) is equal to 16, mbPartIdx is equal to 1, and refIdxL0C is equal to refIdxL0, the motion vector predictor mvpL0 is derived by:

mvpL0 = mvL0C

(8-206)

–
Otherwise, the derivation process for median luma motion vector prediction in subclause 8.4.1.3.1 is invoked with mbAddrN\mbPartIdxN\subMbPartIdxN, mvL0N, refIdxL0N with N being replaced by A, B, or C, and refIdxL0 as the inputs and the output is assigned to the motion vector predictor mvpL0.

Figure 8‑3 illustrates the non-median prediction as specified in Equations 8-203 to 8-206.

[image: image32.emf]8*16 16*8


Figure 8‑3 – Directional segmentation prediction (informative)

8.4.1.3.1  Derivation process for median luma motion vector prediction

Inputs to this process are:

–
the neighbouring partitions mbAddrN\mbPartIdxN\subMbPartIdxN (with N being replaced by A, B, or C),

–
the motion vectors mvL0N (with N being replaced by A, B, or C) of the neighbouring partitions,

–
the reference indices refIdxL0N (with N being replaced by A, B, or C) of the neighbouring partitions,

–
the reference index refIdxL0 of the current partition.

Output of this process is the motion vector prediction mvpL0.

The variable mvpL0 is derived as specified by the following ordered steps:

1. When both partitions mbAddrB\mbPartIdxB\subMbPartIdxB and mbAddrC\mbPartIdxC\subMbPartIdxC are not available and mbAddrA\mbPartIdxA\subMbPartIdxA is available,

mvL0B = mvL0A

(8-207)

mvL0C = mvL0A

(8-208)

refIdxL0B = refIdxL0A

(8-209)

refIdxL0C = refIdxL0A

(8-210)

2. Depending on reference indices refIdxL0A, refIdxL0B, or refIdxL0C, the following applies:

–
If one and only one of the reference indices refIdxL0A, refIdxL0B, or refIdxL0C is equal to the reference index refIdxL0 of the current partition, the following applies. Let refIdxL0N be the reference index that is equal to refIdxL0, the motion vector mvL0N is assigned to the motion vector prediction mvpL0:

mvpL0 = mvL0N

(8-211)

–
Otherwise, each component of the motion vector prediction mvpL0 is given by the median of the corresponding vector components of the motion vector mvL0A, mvL0B, and mvL0C:

mvpL0[ 0 ] = Median( mvL0A[ 0 ], mvL0B[ 0 ], mvL0C[ 0 ] ) 
(8-212)

mvpL0[ 1 ] = Median( mvL0A[ 1 ], mvL0B[ 1 ], mvL0C[ 1 ] ) 
(8-213)

8.4.1.3.2  Derivation process for motion data of neighbouring partitions

Inputs to this process are:

–
the macroblock partition index mbPartIdx,

–
the sub-macroblock partition index subMbPartIdx,

–
the current sub-macroblock type currSubMbType,

–
the list suffix flag listSuffixFlag.

Outputs of this process are (with N being replaced by A, B, or C)

–
mbAddrN\mbPartIdxN\subMbPartIdxN specifying neighbouring partitions,

–
the motion vectors mvL0N of the neighbouring partitions,

–
the reference indices refIdxL0N of the neighbouring partitions.

Variable names that include the string "L0" are interpreted with the 0 being equal to listSuffixFlag.

The partitions mbAddrN\mbPartIdxN\subMbPartIdxN with N being either A, B, or C are derived in the following ordered steps:

1. Let mbAddrD\mbPartIdxD\subMbPartIdxD be variables specifying an additional neighbouring partition.

2. The process in subclause 6.4.11.7 is invoked with mbPartIdx, currSubMbType, and subMbPartIdx as input and the output is assigned to mbAddrN\mbPartIdxN\subMbPartIdxN with N being replaced by A, B, C, or D.

3. When the partition mbAddrC\mbPartIdxC\subMbPartIdxC is not available, the following applies:

mbAddrC = mbAddrD

(8-214)

mbPartIdxC = mbPartIdxD

(8-215)

subMbPartIdxC = subMbPartIdxD

(8-216)
The motion vectors mvL0N and reference indices refIdxL0N (with N being A, B, or C) are derived as follows:

–
If the macroblock partition or sub-macroblock partition mbAddrN\mbPartIdxN\subMbPartIdxN is not available or mbAddrN is coded in an Intra macroblock prediction mode or predFlagL0 of mbAddrN\mbPartIdxN\subMbPartIdxN is equal to 0, both components of mvL0N are set equal to 0 and refIdxL0N is set equal to −1.

–
Otherwise, the following ordered steps are specified:

1. The motion vector mvL0N and reference index refIdxL0N are set equal to MvL0[ mbPartIdxN ][ subMbPartIdxN ] and RefIdxL0[ mbPartIdxN ], respectively, which are the motion vector mvL0 and reference index refIdxL0 that have been assigned to the (sub-)macroblock partition mbAddrN\mbPartIdxN\subMbPartIdxN.

2. The variables mvL0N[ 1 ] and refIdxL0N are further processed as follows:

–
Otherwise, the vertical motion vector component mvL0N[ 1 ] and the reference index refIdxL0N remain unchanged.

8.4.1.4 Derivation process for chroma motion vectors

Inputs to this process are a luma motion vector mvL0 and a reference index refIdxL0.

Output of this process is a chroma motion vector mvCL0.

A chroma motion vector is derived from the corresponding luma motion vector.

The precision of the chroma motion vector components is 1 ÷ ( 4 * 2 ) horizontally and 1 ÷ ( 4 * 2) vertically.

NOTE – For example, when using the 4:2:0 chroma format, since the units of luma motion vectors are one-quarter luma sample units and chroma has half horizontal and vertical resolution compared to luma, the units of chroma motion vectors are one-eighth chroma sample units, i.e., a value of 1 for the chroma motion vector refers to a one-eighth chroma sample displacement. For example, when the luma vector applies to 8x16 luma samples, the corresponding chroma vector in 4:2:0 chroma format applies to 4x8 chroma samples and when the luma vector applies to 4x4 luma samples, the corresponding chroma vector in 4:2:0 chroma format applies to 2x2 chroma samples.

For the derivation of the motion vector mvCL0, the following applies:

–
the horizontal and vertical components of the chroma motion vector mvCL0 are derived as:

mvCL0[ 0 ] = mvL0[ 0 ]

(8-221)
mvCL0[ 1 ] = mvL0[ 1 ]

(8-222)

8.4.2 Decoding process for Inter prediction samples

Inputs to this process are:

–
a macroblock partition mbPartIdx,

–
a sub-macroblock partition subMbPartIdx,

–
variables specifying partition width and height for luma and chroma (if available), partWidth, partHeight, partWidthC (if available) and partHeightC (if available),

–
luma motion vectors mvL0 and chroma motion vectors mvCL0,

–
reference indices refIdxL0,

–
prediction list utilization flags, predFlagL0,

Outputs of this process are the Inter prediction samples predPart, which are a (partWidth)x(partHeight) array predPartL of prediction luma samples two (partWidthC)x(partHeightC) arrays predPartCb, predPartCr of prediction chroma samples, one for each of the chroma components Cb and Cr.
Let predPartL0L be (partWidth)x(partHeight) arrays of predicted luma sample values.  Let   predPartL0Cb, and predPartL0Cr, be (partWidthC)x(partHeightC) arrays of predicted chroma sample values.
When predFlagL0 is equal to 1, the following applies:

–
The reference picture consisting of an ordered two-dimensional array refPicL0Lof luma samples and two ordered two-dimensional arrays refPicL0Cband refPicL0Crof chroma samples is derived by invoking the process specified in subclause 8.4.2.1 with refIdxL0 and RefPicList0 given as input.

–
The array predPartL0Land the arrays predPartL0Cband predPartL0Crare derived by invoking the process specified in subclause 8.4.2.2 with the current partition specified by mbPartIdx\subMbPartIdx, the motion vectors mvL0, mvCL0 (if available), and the reference arrays with refPicL0L, refPicL0Cb(if available), and refPicL0Cr(if available) given as input.

For C being replaced by L, Cb (if available), or Cr (if available), the array predPartC of the prediction samples of component C is derived by 

predPartC[ x, y ] = predPartL0C[ x, y ]

(8-271)
8.4.2.1 Reference picture selection process

Input to this process is a reference index refIdxL0
Output of this process is a reference picture consisting of a two-dimensional array of luma samples refPicL0L and  two two-dimensional arrays of chroma samples refPicL0Cb and refPicL0Cr.

The reference picture list RefPicList0 (which has been derived as specified in subclause 8.2.4) consists of the following.

–
each entry of RefPicList0 is a reference frame 

For the derivation of the reference picture, the following applies:

–
the reference frame RefPicList0[ refIdxL0 ] is the output. The output reference frame consists of a (PicWidthInSamplesL)x(PicHeightInSamplesL) array of luma samples refPicL0L and two (PicWidthInSamplesC)x(PicHeightInSamplesC) arrays of chroma samples refPicL0Cb and refPicL0Cr.

The following applies:

· the reference picture sample arrays refPicL0L, refPicL0Cb, and refPicL0Cr correspond to decoded sample arrays SL, SCb, SCr derived in subclause 8.7 for a previously-decoded reference frame.  

8.4.2.2 Fractional sample interpolation process

Inputs to this process are:

–
the current partition given by its partition index mbPartIdx and its sub-macroblock partition index subMbPartIdx,

–
the width and height partWidth, partHeight of this partition in luma-sample units,

–
a luma motion vector mvL0 given in quarter-luma-sample units,

–
a chroma motion vector mvCL0 with a precision of one‑(4*2)-th chroma-sample units horizontally and one-(4*2)-th chroma-sample units vertically,

–
the selected reference picture sample arrays refPicL0L, refPicL0Cb, and refPicL0Cr.

Outputs of this process are:

–
a (partWidth)x(partHeight) array predPartL0Lof prediction luma sample values,

–
two (partWidthC)x(partHeightC) arrays predPartL0Cb, and predPartL0Crof prediction chroma sample values.

Let ( xAL, yAL ) be the location given in full-sample units of the upper-left luma sample of the current partition given by mbPartIdx\subMbPartIdx relative to the upper-left luma sample location of the given two-dimensional array of luma samples.

Let ( xIntL, yIntL ) be a luma location given in full-sample units and ( xFracL, yFracL ) be an offset given in quarter‑sample units. These variables are used only inside this subclause for specifying general fractional-sample locations inside the reference sample arrays refPicL0L, refPicL0Cb(if available), and refPicL0Cr(if available).

For each luma sample location (0 <= xL < partWidth, 0 <= yL < partHeight) inside the prediction luma sample array predPartL0L, the corresponding prediction luma sample value predPartL0L[ xL, yL ] is derived as specified by the following ordered steps:

1. The variables xIntL, yIntL, xFracL, and yFracL are derived by:

xIntL = xAL + ( mvL0[ 0 ] >> 2 ) + xL

(8-223)
yIntL = yAL + ( mvL0[ 1 ] >> 2 ) + yL

(8-224)
xFracL = mvL0[ 0 ]& 3

(8-225)
yFracL = mvL0[ 1 ]& 3

(8-226)
2. The prediction luma sample value predPartL0L[ xL, yL ] is derived by invoking the process specified in subclause 8.4.2.2.1 with ( xIntL, yIntL ), ( xFracL, yFracL ) and refPicL0L given as input.

Let ( xIntC, yIntC ) be a chroma location given in full-sample units and ( xFracC, yFracC ) be an offset given in one‑(4*2)-th chroma-sample units horizontally and one-(4*2)-th chroma-sample units vertically. These variables are used only inside this subclause for specifying general fractional-sample locations inside the reference sample arrays refPicL0Cb, and refPicL0Cr.

For each chroma sample location (0 <= xC < partWidthC, 0 <= yC < partHeightC) inside the prediction chroma sample arrays predPartL0Cb and predPartL0Cr, the corresponding prediction chroma sample values predPartL0Cb[ xC, yC ] and predPartL0Cr[ xC, yC ] are derived as specified by the following ordered steps:

1. the variables xIntC, yIntC, xFracC, and yFracC are derived as follows:

xIntC = ( xAL / 2 ) + ( mvCL0[ 0 ] >> 3 ) + xC
(8-227)
yIntC = ( yAL / 2) + ( mvCL0[ 1 ] >> 3 ) + yC
(8-228)
xFracC = mvCL0[ 0 ]& 7

(8-229)
yFracC = mvCL0[ 1 ]& 7

(8-230)

2. the following applies:

–
The prediction sample value predPartL0Cb[ xC, yC ] is derived by invoking the process specified in subclause 8.4.2.2.2 with ( xIntC, yIntC ), ( xFracC, yFracC ) and refPicL0Cb given as input.

–
The prediction sample value predPartL0Cr[ xC, yC ] is derived by invoking the process specified in subclause 8.4.2.2.2 with ( xIntC, yIntC ), ( xFracC, yFracC ) and refPicL0Cr given as input.

subclause 8.4.2.2.1 with ( xIntC, yIntC ), ( xFracC, yFracC ) and refPicL0Cr given as input.

8.4.2.2.1 Luma sample interpolation process

Inputs to this process are:

–
a luma location in full-sample units ( xIntL, yIntL ),

–
a luma location offset in fractional-sample units ( xFracL, yFracL ),

–
the luma sample array of the selected reference picture refPicL0L.

Output of this process is a predicted luma sample value predPartL0L[ xL, yL ].


[image: image33.wmf]bb

a

c

E

F

I

J

G

h

d

n

H

m

A

C

B

D

R

T

S

U

M

s

N

K

L

P

Q

f

e

g

j

i

k

q

p

r

aa

b

cc

dd

ee

ff

hh

gg


Figure 8‑4 – Integer samples (shaded blocks with upper-case letters) and fractional sample positions (un-shaded blocks with lower-case letters) for quarter sample luma interpolation

The variable refPicHeightEffectiveL, which is the height of the effective reference picture luma array, is derived as follows:

–
refPicHeightEffectiveL is set equal to PicHeightInSamplesL.

In Figure 8‑4, the positions labelled with upper-case letters within shaded blocks represent luma samples at full-sample locations inside the given two-dimensional array refPicL0L of luma samples. These samples may be used for generating the predicted luma sample value predPartL0L[ xL, yL ]. The locations ( xZL, yZL ) for each of the corresponding luma samples Z, where Z may be A, B, C, D, E, F, G, H, I, J, K, L, M, N, P, Q, R, S, T, or U, inside the given array refPicL0L of luma samples are derived as:

xZL = Clip3( 0, PicWidthInSamplesL− 1, xIntL + xDZL )
(8-239)
yZL = Clip3( 0, refPicHeightEffectiveL− 1, yIntL + yDZL )
(8-240)

Table 8‑11 specifies ( xDZL, yDZL ) for different replacements of Z.

Table 8‑11 – Differential full-sample luma locations

	Z
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	P
	Q
	R
	S
	T
	U

	xDZL
	0
	1
	0
	1
	−2
	−1
	0
	1
	2
	3
	−2
	−1
	0
	1
	2
	3
	0
	1
	0
	1

	yDZL
	−2
	−2
	−1
	−1
	0
	0
	0
	0
	0
	0
	1
	1
	1
	1
	1
	1
	2
	2
	3
	3


Given the luma samples 'A' to 'U' at full-sample locations ( xAL, yAL ) to ( xUL, yUL ), the luma samples 'a' to 's' at fractional sample positions are derived by the following rules. The luma prediction values at half sample positions are derived by applying a 6-tap filter with tap values ( 1, −5, 20, 20, −5, 1 ). The luma prediction values at quarter sample positions are derived by averaging samples at full and half sample positions. The process for each fractional position is described below.

–
The samples at half sample positions labelled b are derived by first calculating intermediate values denoted as b1by applying the 6-tap filter to the nearest integer position samples in the horizontal direction. The samples at half sample positions labelled h are derived by first calculating intermediate values denoted as h1by applying the 6-tap filter to the nearest integer position samples in the vertical direction:

b1 = ( E − 5 * F + 20 * G + 20 * H − 5 * I + J ) 

(8-241)
h1 = ( A − 5 * C + 20 * G + 20 * M − 5 * R + T )

(8-242)


The final prediction values b and h are derived using

b = Clip1Y( ( b1 + 16 ) >> 5 ) 

(8-243)
h = Clip1Y( ( h1 + 16 ) >> 5 )

(8-244)

–
The samples at half sample position labelled as j are derived by first calculating intermediate value denoted as j1 by applying the 6-tap filter to the intermediate values of the closest half sample positions in either the horizontal or vertical direction because these yield an equal result:

j1 = cc − 5 * dd + 20 * h1 + 20 * m1− 5 * ee + ff, or

(8-245)
j1 = aa − 5 * bb + 20 * b1 + 20 * s1− 5 * gg + hh

(8-246)


where intermediate values denoted as aa, bb, gg, s1 and hh are derived by applying the 6-tap filter horizontally in the same manner as the derivation of b1 and intermediate values denoted as cc, dd, ee, m1 and ff are derived by applying the 6-tap filter vertically in the same manner as the derivation of h1. The final prediction value j is derived using

j = Clip1Y( ( j1 + 512 ) >> 10 )

(8-247)

–
The final prediction values s and m are derived from s1 and m1 in the same manner as the derivation of b and h, as given by

s  = Clip1Y( ( s1  + 16 ) >> 5 ) 

(8-248)
m = Clip1Y( ( m1 + 16 ) >> 5 )

(8-249)

–
The samples at quarter sample positions labelled as a, c, d, n, f, i, k, and q are derived by averaging with upward rounding of the two nearest samples at integer and half sample positions using

a = ( G + b + 1 ) >> 1

(8-250)
c = ( H + b + 1 ) >> 1

(8-251)
d = ( G + h + 1 ) >> 1

(8-252)
n = ( M + h + 1 ) >> 1

(8-253)
f = ( b + j + 1 ) >> 1

(8-254)
i = ( h + j + 1 ) >> 1

(8-255)
k = ( j + m + 1 ) >> 1

(8-256)
q = ( j + s + 1 ) >> 1

(8-257)
–
The samples at quarter sample positions labelled as e, g, p, and r are derived by averaging with upward rounding of the two nearest samples at half sample positions in the diagonal direction using

e = ( b + h + 1 ) >> 1

(8-258)
g = ( b + m + 1 ) >> 1

(8-259)
p = ( h + s + 1 ) >> 1

(8-260)
r = ( m + s + 1 ) >> 1. 

(8-261)

The luma location offset in fractional-sample units ( xFracL, yFracL ) specifies which of the generated luma samples at full-sample and fractional-sample locations is assigned to the predicted luma sample value predPartL0L[ xL, yL ]. This assignment is done according to Table 8‑12. The value of predPartL0L[ xL, yL ] is the output.

Table 8‑12 – Assignment of the luma prediction sample predPartL0L[ xL, yL ]

	xFracL
	0
	0
	0
	0
	1
	1
	1
	1
	2
	2
	2
	2
	3
	3
	3
	3

	yFracL
	0
	1
	2
	3
	0
	1
	2
	3
	0
	1
	2
	3
	0
	1
	2
	3

	predPartL0L[ xL, yL ]
	G
	d
	h
	n
	a
	e
	i
	p
	b
	f
	j
	q
	c
	g
	k
	r


8.4.2.2.2 Chroma sample interpolation process

Inputs to this process are:

–
a chroma location in full-sample units ( xIntC, yIntC ),

–
a chroma location offset in fractional-sample units ( xFracC, yFracC ),

–
chroma component samples from the selected reference picture refPicL0C.

Output of this process is a predicted chroma sample value predPartL0C[ xC, yC ].

In Figure 8‑5, the positions labelled with A, B, C, and D represent chroma samples at full-sample locations inside the given two-dimensional array refPicL0C of chroma samples.


[image: image34.emf]A

B

C

D

xFrac

C

yFrac

C

8-xFrac

C

8-yFrac

C


Figure 8‑5 – Fractional sample position dependent variables in chroma interpolation and surrounding integer position samples A, B, C, and D

The variable refPicHeightEffectiveC,which is the height of the effective reference picture chroma array, is derived as follows:

–
refPicHeightEffectiveC is set equal to PicHeightInSamplesC.

The sample coordinates specified in Equations 8-262 through 8-269 are used for generating the predicted chroma sample value predPartL0C[ xC, yC ].

xAC = Clip3( 0, PicWidthInSamplesC− 1, xIntC ) 

(8-262)
xBC = Clip3( 0, PicWidthInSamplesC− 1, xIntC + 1 ) 

(8-263)
xCC = Clip3( 0, PicWidthInSamplesC− 1, xIntC ) 

(8-264)
xDC = Clip3( 0, PicWidthInSamplesC− 1, xIntC + 1 ) 
(8-265)
yAC = Clip3( 0, refPicHeightEffectiveC− 1, yIntC ) 

(8-266)
yBC = Clip3( 0, refPicHeightEffectiveC− 1, yIntC ) 

(8-267)
yCC = Clip3( 0, refPicHeightEffectiveC− 1, yIntC + 1 ) 
(8-268)
yDC = Clip3( 0, refPicHeightEffectiveC− 1, yIntC + 1 ) 
(8-269)
Given the chroma samples A, B, C, and D at full-sample locations specified in Equations 8-262 through 8-269, the predicted chroma sample value predPartL0C[ xC, yC ] is derived as:

predPartL0C[ xC, yC ] = ( ( 8 − xFracC ) * ( 8 − yFracC ) * A + xFracC * ( 8 − yFracC ) * B +
                         ( 8 − xFracC ) * yFracC * C            + xFracC * yFracC * D            + 32 ) >> 6
(8-270)
8.4.2.3 Void 
8.4.2.3.1 Void 
8.4.2.3.2 (void)

8.4.3 (void)
8.5 Transform coefficient decoding process and picture construction process prior to deblocking filter process

Inputs to this process are Intra16x16DCLevel (if available), Intra16x16ACLevel (if available), LumaLevel4x4 (if available), LumaLevel8x8 (if available), ChromaDCLevel (if available), ChromaACLevel (if available), CbLevel4x4 (if available), CrLevel4x4 (if available), CbLevel8x8 (if available), CrLevel8x8 (if available), and available Inter or Intra prediction sample arrays for the current macroblock for the applicable components predL, predCb, or predCr.

NOTE 1 – When decoding a macroblock in Intra_4x4 macroblock prediction mode, the luma component of the macroblock prediction array may not be complete, since for each 4x4 luma block, the Intra_4x4 prediction process for luma samples as specified in subclause 8.3.1 and the process specified in this subclause are iterated. 

Outputs of this process are the constructed sample arrays prior to the deblocking filter process for the applicable components S′L, S′Cb, or S′Cr.

NOTE 2 – When decoding a macroblock in Intra_4x4 macroblock prediction mode, the luma component of the macroblock constructed sample arrays prior to the deblocking filter process may not be complete, since for each 4x4 luma block, the Intra_4x4 prediction process for luma samples as specified in subclause 8.3.1 and the process specified in this subclause are iterated. 

This subclause specifies transform coefficient decoding and picture construction prior to the deblocking filter process.

When the current macroblock is coded as P_Skip, all values of LumaLevel4x4, LumaLevel8x8, CbLevel4x4, CbLevel8x8, CrLevel4x4, CrLevel8x8, ChromaDCLevel, ChromaACLevel are set equal to 0 for the current macroblock.

8.5.1 Specification of transform decoding process for 4x4 luma residual blocks

When the current macroblock prediction mode is not equal to Intra_16x16, the variable LumaLevel4x4 contains the levels for the luma transform coefficients. For a 4x4 luma block indexed by luma4x4BlkIdx = 0..15, the following ordered steps are specified:

1. The inverse scanning process for 4x4 transform coefficients and scaling lists as specified in subclause 8.5.6 is invoked with LumaLevel4x4[ luma4x4BlkIdx ] as the input and the two-dimensional array c as the output.

2. The scaling and transformation process for residual 4x4 blocks as specified in subclause 8.5.12 is invoked with c as the input and r as the output.

3. (void)

4. The position of the upper-left sample of a 4x4 luma block with index luma4x4BlkIdx inside the macroblock is derived by invoking the inverse 4x4 luma block scanning process in subclause 6.4.3 with luma4x4BlkIdx as the input and the output being assigned to ( xO, yO ).

5. The 4x4 array u with elements uij for i, j = 0..3 is derived as:

uij = Clip1Y( predL[ xO + j, yO + i ] + rij )

(8-299)

6. The picture construction process prior to deblocking filter process in subclause 8.5.14 is invoked with u and luma4x4BlkIdx as the inputs.

8.5.2 Specification of transform decoding process for luma samples of Intra_16x16 macroblock prediction mode

When the current macroblock prediction mode is equal to Intra_16x16, the variables Intra16x16DCLevel and Intra16x16ACLevel contain the levels for the luma transform coefficients. The transform coefficient decoding proceeds in the following ordered steps:

1. The 4x4 luma DC transform coefficients of all 4x4 luma blocks of the macroblock are decoded.

a. The inverse scanning process for 4x4 transform coefficients and scaling lists as specified in subclause 8.5.6 is invoked with Intra16x16DCLevel as the input and the two-dimensional array c as the output.

b. The scaling and transformation process for luma DC transform coefficients for Intra_16x16 macroblock type as specified in subclause 8.5.10 is invoked with BitDepthY, QP′Y, and c as the input and dcY as the output.

2. The 16x16 array rMb is derived by processing the 4x4 luma blocks indexed by luma4x4BlkIdx = 0..15, and for each 4x4 luma block, the following ordered steps are specified:

a. The variable lumaList, which is a list of 16 entries, is derived. The first entry of lumaList is the corresponding value from the array dcY. Figure 8‑6 shows the assignment of the indices of the array dcY to the luma4x4BlkIdx. The two numbers in the small squares refer to indices i and j in dcYij, and the numbers in large squares refer to luma4x4BlkIdx.


[image: image35.emf]0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33


Figure 8‑6 – Assignment of the indices of dcY to luma4x4BlkIdx

The elements in lumaList with index k = 1..15 are specified as:

lumaList[ k ] = Intra16x16ACLevel[ luma4x4BlkIdx ][ k − 1 ] 
(8-300)

b. The inverse scanning process for 4x4 transform coefficients and scaling lists as specified in subclause 8.5.6 is invoked with lumaList as the input and the two-dimensional array c as the output.

c. The scaling and transformation process for residual 4x4 blocks as specified in subclause 8.5.12 is invoked with c as the input and r as the output.

d. The position of the upper-left sample of a 4x4 luma block with index luma4x4BlkIdx inside the macroblock is derived by invoking the inverse 4x4 luma block scanning process in subclause 6.4.3 with luma4x4BlkIdx as the input and the output being assigned to ( xO, yO ).

e. The elements rMb[ x, y ] of the 16x16 array rMb with x = xO..xO + 3 and y = yO..yO + 3are derived by

rMb[ xO + j, yO + i ] = rij

(8-301)

3. (void)

4. The 16x16 array u with elements uij for i, j = 0..15 is derived as

uij = Clip1Y( predL[j, i ] + rMb[ j, i ] ) 

(8-302)

5. The picture construction process prior to deblocking filter process in subclause 8.5.14 is invoked with u as the input.

8.5.3 (void)

8.5.4 Specification of transform decoding process for chroma samples

This process is invoked for each chroma component Cb and Cr separately.

For each chroma component, the variables ChromaDCLevel[ iCbCr ] and ChromaACLevel[ iCbCr ], with iCbCr set equal to 0 for Cb and iCbCr set equal to 1 for Cr, contain the levels for both components of the chroma transform coefficients.

Let the variable numChroma4x4Blks be set equal to (MbWidthC / 4) * (MbHeightC / 4).

For each chroma component, the transform decoding proceeds separately in the following ordered steps:

1. The numChroma4x4Blks chroma DC transform coefficients of the 4x4 chroma blocks of the component indexed by iCbCr of the macroblock are decoded as specified in the following ordered steps:

a. The 2x2 array c is derived using the inverse raster scanning process applied to ChromaDCLevel as follows:


[image: image36.wmf]ú

û

ù

ê

ë

é

=

]

3

][

iCbCr

[

vel

ChromaDCLe

]

2

][

iCbCr

[

vel

ChromaDCLe

]

1

][

iCbCr

[

vel

ChromaDCLe

]

0

][

iCbCr

[

vel

ChromaDCLe

c


(8-306)

b. The scaling and transformation process for chroma DC transform coefficients as specified in subclause 8.5.11 is invoked with c as the input and dcC as the output.

2. The (MbWidthC)x(MbHeightC) array rMb is derived by processing the 4x4 chroma blocks indexed by chroma4x4BlkIdx = 0..numChroma4x4Blks − 1 of the component indexed by iCbCr, and for each 4x4 chroma block, the following ordered steps are specified:

a. The variable chromaList, which is a list of 16 entries, is derived. The first entry of chromaList is the corresponding value from the array dcC. Figure 8‑7 shows the assignment of the indices of the array dcC to the chroma4x4BlkIdx. The two numbers in the small squares refer to indices i and j in dcCij, and the numbers in large squares refer to chroma4x4BlkIdx.


[image: image37.emf]0 1

2 3

00 01

10 11




Figure 8‑7 – Assignment of the indices of dcC to chroma4x4BlkIdx: 


The elements in chromaList with index k = 1..15 are specified as:

chromaList[ k ] = ChromaACLevel[ chroma4x4BlkIdx ][ k − 1 ] 
(8-306)

b. The inverse scanning process for 4x4 transform coefficients and scaling lists as specified in subclause 8.5.6 is invoked with chromaList as the input and the two-dimensional array c as the output.

c. The scaling and transformation process for residual 4x4 blocks as specified in subclause 8.5.12 is invoked with c as the input and r as the output.

d. The position of the upper-left sample of a 4x4 chroma block with index chroma4x4BlkIdx inside the current macroblock is derived by invoking the inverse 4x4 chroma block scanning process as specified in subclause 6.4.7 with chroma4x4BlkIdx as the input and the output being assigned to ( xO, yO ).

e. The elements rMb[ x, y ] of the (MbWidthC)x(MbHeightC) array rMb with x = xO..xO + 3 and y = yO..yO + 3 are derived by:

rMb[ xO + j, yO + i ] = rij

(8-307)

3. (void)

4. The (MbWidthC)x(MbHeightC) array u with elements uij for i = 0..MbHeightC − 1 and j = 0..MbWidthC − 1 is derived as:

uij = Clip1C( predC[ j, i ] + rMb[ j, i ] ) 

(8-308)

5. The picture construction process prior to deblocking filter process in subclause 8.5.14 is invoked with u as the input.

8.5.5 (void)

8.5.6 Inverse scanning process for 4x4 transform coefficients and scaling lists

Input to this process is a list of 16 values.

Output of this process is a variable c containing a two-dimensional array of 4x4 values. In the case of transform coefficients, these 4x4 values represent levels assigned to locations in the transform block. In the case of applying the inverse scanning process to a scaling list, the output variable c contains a two-dimensional array representing a 4x4 scaling matrix.

When this subclause is invoked with a list of transform coefficient levels as the input, the sequence of transform coefficient levels is mapped to the transform coefficient level positions. Table 8‑13 specifies the mapping: inverse zig-zag scan. The inverse zig-zag scan is used for transform coefficients in frame macroblocks.

When this subclause is invoked with a scaling list as the input, the sequence of scaling list entries is mapped to the positions in the corresponding scaling matrix. For this mapping, the inverse zig-zag scan is used.
Figure 8‑8 illustrates the scan.

[image: image38.png]



Figure 8‑8 – 4x4 block scans. (a) Zig-zag scan. 

Table 8‑13 provides the mapping from the index idx of input list of 16 elements to indices i and j of the two-dimensional array c.

Table 8‑13 – Specification of mapping of idx to cij for zig-zag 

	idx
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	zig-zag
	c00
	c01
	c10
	c20
	c11
	c02
	c03
	c12
	c21
	c30
	c31
	c22
	c13
	c23
	c32
	c33


8.5.7 (void)

8.5.8 Derivation process for chroma quantisation parameters

Outputs of this process are:

–
QPC: the chroma quantisation parameter for each chroma component Cb and Cr,

NOTE 1 – QP quantisation parameter values QPY and QSY are always in the range of −0 to 51, inclusive. QP quantisation parameter values QPC and QSC are always in the range of −0 to 39, inclusive.

The value of QPC for a chroma component is determined from the current value of QPY and the value of chroma_qp_index_offset.

NOTE 2 – The scaling equations are specified such that the equivalent transform coefficient level scaling factor doubles for every increment of 6 in QPY. Thus, there is an increase in the factor used for scaling of approximately 12 % for each increase of 1 in the value of QPY.

The value of QPC for each chroma component is determined as specified in Table 8‑15 based on the index denoted as qPI.

The variable qPOffset for each chroma component is derived as follows:

–
If the chroma component is the Cb component, qPOffset is specified as:

qPOffset = chroma_qp_index_offset

(8-309)

–
Otherwise (the chroma component is the Cr component), qPOffset is specified as:

qPOffset = chroma_qp_index_offset

(8-310)

The value of qPI for each chroma component is derived as:

qPI = Clip3( −0, 51, QPY + qPOffset )

(8-311)

The value of QP′C for the chroma components is derived as:

QP′C = QPC + 0


(8-312)

Table 8‑15 – Specification of QPC as a function of qPI
	qPI
	<30
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51

	QPC
	= qPI
	29
	30
	31
	32
	32
	33
	34
	34
	35
	35
	36
	36
	37
	37
	37
	38
	38
	38
	39
	39
	39
	39


8.5.9 Derivation process for scaling functions

Outputs of this process are:

–
LevelScale4x4: the scaling factor for 4x4 block transform luma or chroma coefficient levels,

LevelScale4x4( m, i, j ) is specified by:

LevelScale4x4( m, i, j) = 16

(8-313)

8.5.10 Scaling and transformation process for DC transform coefficients for Intra_16x16 macroblock type

Inputs to this process are:

–
the variables bitDepth and qP,

–
transform coefficient level values for DC transform coefficients of Intra_16x16 macroblocks as a 4x4 array c with elements cij, where i and j form a two-dimensional frequency index.

Outputs of this process are 16 scaled DC values for 4x4 blocks of Intra_16x16 macroblocks as a 4x4 array dcY with elements dcYij.

The following applies:

–
the following text of this process specifies the output.

The inverse transform for the 4x4 luma DC transform coefficients is specified by:


[image: image39.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

-

-

-

-

-

*

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

*

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

-

-

-

-

-

=

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

f

33

32

31

30

23

22

21

20

13

12

11

10

03

02

01

00

.
(8-324)

The bitstream shall not contain data that result in any element fij of f with i, j = 0..3 that exceeds the range of integer values from −2(7 + bitDepth) to 2(7 + bitDepth) − 1, inclusive.

After the inverse transform, the scaling is performed as follows:

–
If qP is greater than or equal to 36, the scaled result is derived as:

dcYij = ( fij * LevelScale4x4( qP % 6, 0, 0 ) ) << ( qP / 6 − 6 ),    with  i, j = 0...3
(8-321)

–
Otherwise (qP is less than 36), the scaled result is derived as:

dcYij = ( fij * LevelScale4x4( qP % 6, 0, 0 ) + ( 1 << ( 5 − qP / 6) ) ) >> ( 6 −qP / 6 ),    with  i, j = 0...3
(8-322)

The bitstream shall not contain data that result in any element dcYij of dcY with i, j = 0..3 that exceeds the range of integer values from −2(7 + bitDepth) to 2(7 + bitDepth) − 1, inclusive.

NOTE 1– When entropy_coding_mode_flag is equal to 0 and qP is less than 10 and profile_idc is equal to 66, 77, or 88, the range of values that can be represented for the elements cij of c is not sufficient to represent the full range of values of the elements dcYij of dcY that could be necessary to form a close approximation of the content of any possible source picture by use of the Intra_16x16 macroblock type.

NOTE 2– Since the range limit imposed on the elements dcYij of dcY is imposed after the right shift in Equation 8-322, a larger range of values must be supported in the decoder prior to the right shift.

8.5.11 Scaling and transformation process for chroma DC transform coefficients

Inputs to this process are transform coefficient level values for chroma DC transform coefficients of one chroma component of the macroblock as an (MbWidthC / 4)x(MbHeightC / 4) array c with elements cij, where i and j form a two-dimensional frequency index.

Outputs of this process are the scaled DC values as an (MbWidthC / 4)x(MbHeightC / 4) array dcC with elements dcCij.

The variables bitDepth and qP are set equal to BitDepthC and QP′C, respectively.

The following ordered steps are specified:

1. The transformation process for chroma DC transform coefficients as specified in subclause 8.5.11.1 is invoked with bitDepth and c as the inputs and the output is assigned to the (MbWidthC / 4)x(MbHeightC / 4) array f of chroma DC values with elements fij.

2. The scaling process for chroma DC transform coefficients as specified in subclause 8.5.11.2 is invoked with bitDepth, qP, and f as the inputs and the output is assigned to the (MbWidthC / 4)x(MbHeightC / 4) array dcC of scaled chroma DC values with elements dcCij.

8.5.11.1 Transformation process for chroma DC transform coefficients

Inputs of this process aretransform coefficient level values for chroma DC transform coefficients of one chroma component of the macroblock as an (MbWidthC / 4)x(MbHeightC / 4) array c with elements cij, where i and j form a two-dimensional frequency index.

Outputs of this process are the DC values as an (MbWidthC / 4)x(MbHeightC / 4) array f with elements fij.

The inverse transform is specified as follows:

–
the inverse transform for the 2x2 chroma DC transform coefficients is specified as:


[image: image40.wmf]ú

û

ù

ê

ë

é

-

*

ú

û

ù

ê

ë

é

*

ú

û

ù

ê

ë

é

-

=

1

1

1

1

c

c

c

c

1

1

1

1

f

11

10

01

00



(8-328)
8.5.11.2 Scaling process for chroma DC transform coefficients

Inputs of this process are:

–
the variables bitDepth and qP,

–
DC values as an (MbWidthC / 4)x(MbHeightC / 4) array f with elements fij.
Outputs of this process are scaled DC values as an (MbWidthC / 4)x(MbHeightC / 4) array dcC with elements dcCij.

The bitstream shall not contain data that result in any element fij of f with i, j = 0..3 that exceeds the range of integer values from −2(7 + bitDepth) to 2(7 + bitDepth) − 1, inclusive.

Scaling is performed as follows:

–
the scaled result is derived as:


[image: image41.wmf]1

 

0,

j

i,

5,

 

 

)

 

)

6

qP/ 

 

(

)

 

)

 

0

 

0,

 

6,

 

%

 

qP

4x4(

LevelScale

 

*

f

 

(

 

(

dcC

ij

ij

=

>>

<<

=

with


(8-330)
The bitstream shall not contain data that result in any element dcCij of dcC with i, j = 0..3 that exceeds the range of integer values from −2(7 + bitDepth) to 2(7 + bitDepth) − 1, inclusive.

NOTE 1 – When qP is less than 4 and profile_idc is equal to 66, 77, or 88, the range of values that can be represented for the elements cij of c in subclause 8.5.11.1may not be sufficient to represent the full range of values of the elements dcCij of dcC that could be necessary to form a close approximation of the content of any possible source picture.

NOTE 2 – Since the range limit imposed on the elements dcCij of dcC is imposed after the right shift in Equation 8-326 or 8‑329, a larger range of values must be supported in the decoder prior to the right shift.

8.5.12 Scaling and transformation process for residual 4x4 blocks

Input to this process is a 4x4 array c with elements cij which is either an array relating to a residual block of the luma component or an array relating to a residual block of a chroma component.

Outputs of this process are residual sample values as 4x4 array r with elements rij.

The variable bitDepth is derived as follows:

–
If the input array c relates to a luma residual block, bitDepth is set equal to BitDepthY.

–
Otherwise (the input array c relates to a chroma residual block), bitDepth is set equal to BitDepthC.

The variable sMbFlag is derived as follows:

–
sMbFlag is set equal to 0.

The variable qP is derived as follows:

–
If the input array c relates to a luma residual block and sMbFlag is equal to 0,

qP = QP′Y



(8-330)

–
Otherwise, if the input array c relates to a luma residual block and sMbFlag is equal to 1,

qP = QSY



(8-331)

–
Otherwise, if the input array c relates to a chroma residual block and sMbFlag is equal to 0,

qP = QP′C



(8-332)

–
Otherwise (the input array c relates to a chroma residual block and sMbFlag is equal to 1),

qP = QSC



(8-333)

The following applies:

–
the following ordered steps are specified:

1. The scaling process for residual 4x4 blocks as specified in subclause 8.5.12.1 is invoked with bitDepth, qP, and c as the inputs and the output is assigned to the 4x4 array d of scaled transform coefficients with elements dij.

2. The transformation process for residual 4x4 blocks as specified in subclause 8.5.12.2 is invoked with bitDepth and d as the inputs and the output is assigned to the 4x4 array r of residual sample values with elements rij.

8.5.12.1 Scaling process for residual 4x4 blocks

Inputs of this process are:

–
the variables bitDepth and qP,

–
a 4x4 array c with elements cij which is either an array relating to a residual block of luma component or an array relating to a residual block of a chroma component.

Output of this process is a 4x4 array of scaled transform coefficients d with elements dij.

The bitstream shall not contain data that result in any element cij of c with i, j = 0..3 that exceeds the range of integer values from −2(7 + bitDepth) to 2(7 + bitDepth) − 1, inclusive.

Scaling of 4x4 block transform coefficient levels cij proceeds as follows:

–
If all of the following conditions are true:

–
i is equal to 0,

–
j is equal to 0,

–
c relates to a luma residual block coded using Intra_16x16 macroblock prediction mode or c relates to a chroma residualblock.

the variable d00 is derived by

d00 = c00



(8-335)
–
Otherwise, the following applies:

–
If qP is greater than or equal to 24, the scaled result is derived as

dij = ( cij * LevelScale4x4(qP%6,i,j))<<(qP / 6 −4), with i,j = 0..3 except asnoted above
(8-336)

–
Otherwise (qP is less than 24), the scaled result is derived as


[image: image42.wmf]above

 

noted

 

as

except 

0..3

j

i,

  with 

),

 

6

 / 

qP

4

 

(

)

2

)

 

j

 

i,

 

6,

 

%

 

qP

 

4x4(

LevelScale

 

*

c

 

(

d

qP/6

3

ij

ij

=

-

>>

+

=

-


(8-341)

The bitstream shall not contain data that result in any element dij of d with i, j = 0..3 that exceeds the range of integer values from −2(7 + bitDepth) to 2(7 + bitDepth)− 1, inclusive.

8.5.12.2 Transformation process for residual 4x4 blocks

Inputs of this process are:

–
the variable bitDepth,

–
a 4x4 array of scaled transform coefficients d with elements dij.
Outputs of this process are residual sample values as 4x4 array r with elements rij.

The bitstream shall not contain data that result in any element dij of d with i, j = 0..3 that exceeds the range of integer values from −2(7 + bitDepth) to 2(7 + bitDepth)− 1, inclusive.

The transform process shall convert the block of scaled transform coefficients to a block of output samples in a manner mathematically equivalent to the following.

First, each (horizontal) row of scaled transform coefficients is transformed using a one-dimensional inverse transform as follows.

A set of intermediate values is computed as follows:

ei0 = di0 + di2,   with   i = 0..3

(8-338)

ei1 = di0− di2,   with   i = 0..3

(8-339)

ei2 = ( di1>> 1 ) − di3,   with   i = 0..3

(8-340)

ei3 = di1 + ( di3>> 1 ),   with   i = 0..3

(8-341)

The bitstream shall not contain data that result in any element eij of e with i, j = 0..3 that exceeds the range of integer values from −2(7 + bitDepth) to 2(7 + bitDepth)− 1, inclusive.

Then, the transformed result is computed from these intermediate values as follows:

fi0 = ei0 + ei3,   with   i = 0..3

(8-342)

fi1 = ei1 + ei2,   with   i = 0..3

(8-343)

fi2 = ei1− ei2,   with   i = 0..3

(8-344)

fi3 = ei0− ei3,   with   i = 0..3

(8-345)

The bitstream shall not contain data that result in any element fij of f with i, j = 0..3 that exceeds the range of integer values from −2(7 + bitDepth) to 2(7 + bitDepth)− 1, inclusive.

Then, each (vertical) column of the resulting matrix is transformed using the same one-dimensional inverse transform as follows.

A set of intermediate values is computed as follows:

g0j = f0j + f2j,   with   j = 0..3

(8-346)

g1j = f0j− f2j,   with   j = 0..3

(8-347)

g2j = ( f1j>> 1 ) − f3j,   with   j = 0..3

(8-348)

g3j = f1j + ( f3j>> 1 ),   with   j = 0..3

(8-349)

The bitstream shall not contain data that result in any element gij of g with i, j = 0..3 that exceeds the range of integer values from −2(7 + bitDepth) to 2(7 + bitDepth)− 1, inclusive.

Then, the transformed result is computed from these intermediate values as follows:

h0j = g0j + g3j,   with   j = 0..3

(8-350)

h1j = g1j + g2j,   with   j = 0..3

(8-351)

h2j = g1j− g2j,   with   j = 0..3

(8-352)

h3j = g0j− g3j,   with   j = 0..3

(8-353)

The bitstream shall not contain data that result in any element hij of h with i, j = 0..3 that exceeds the range of integer values from −2(7 + bitDepth) to 2(7 + bitDepth)− 33, inclusive.

After performing both the one-dimensional horizontal and the one-dimensional vertical inverse transforms to produce an array of transformed samples, the final constructed residual sample values is derived as:



[image: image43.wmf]6

]

2

'

[

'

'

5

>>

+

=

ij

ij

x

X



[image: image44.wmf]6

)

 

2

 

h

 

(

r

5

ij

ij

>>

+

=

   with   i, j = 0..3

(8-358)

8.5.13  (void)

8.5.13.1 (void)

8.5.13.2 (void)

8.5.14 Picture construction process prior to deblocking filter process

Inputs to this process are:

–
a sample array u with elements uij which is a 16x16 luma block or an (MbWidthC)x(MbHeightC) chroma block or a 4x4 luma block or a 4x4 chroma block,

–
when u is not a 16x16 luma block or an (MbWidthC)x(MbHeightC) chroma block, a block index luma4x4BlkIdx or chroma4x4BlkIdx.

The position of the upper-left luma sample of the current macroblock is derived by invoking the inverse macroblock scanning process in subclause 6.4.1 with CurrMbAddr as input and the output being assigned to ( xP, yP ).

When u is a luma block, for each sample uij of the luma block, the following ordered steps are specified:

1. Depending on the size of the block u, the following applies:

–
If u is a 16x16 luma block, the position ( xO, yO ) of the upper-left sample of the 16x16 luma block inside the macroblock is set equal to ( 0, 0 ) and the variable nE is set equal to 16.

–
Otherwise, if u is an 4x4 luma block, the position of the upper-left sample of the 4x4 luma block with index luma4x4BlkIdx inside the macroblock is derived by invoking the inverse 4x4 luma block scanning process in subclause 6.4.3 with luma4x4BlkIdx as the input and the output being assigned to ( xO, yO ), and the variable nE is set equal to 4.

2. The following applies:

S′L[ xP + xO + j, yP + yO + i ] = uij   with i, j = 0..nE ( 1
(8-408)

When u is a chroma block, for each sample uij of the chroma block, the following ordered steps are specified:

1. The subscript C in the variable S′C is replaced with Cb for the Cb chroma component and with Cr for the Cr chroma component.

2. Depending on the size of the block u, the following applies:

–
If u is an (MbWidthC)x(MbHeightC) Cb or Cr block, the variable nW is set equal to MbWidthC, the variable nH is set equal to MbHeightC, and the position ( xO, yO ) of the upper-left sample of the (nW)x(nH) Cb or Cr block inside the macroblock is set equal to ( 0, 0 ).

–
Otherwise, if u is a 4x4 Cb or Cr block, the variables nW and nH are set equal to 4, and the position of the upper-left sample of a 4x4 Cb or Cr block with index chroma4x4BlkIdx inside the macroblock is derived as follows:

–
the position of the upper-left sample of the 4x4 chroma block with index chroma4x4BlkIdx inside the macroblock is derived by invoking the inverse 4x4 chroma block scanning process in subclause 6.4.7 with chroma4x4BlkIdx as the input and the output being assigned to ( xO, yO ).

3. the following applies:

S′C[ ( xP/ 2 ) + xO + j, ( yP / 2) + yO + i ] = uij
with i = 0..nH − 1  and  j = 0..nW − 1

(8-410)

8.5.15 (void)

8.6 (void)
8.7 Deblocking filter process

A conditional filtering process is specified in this subclause that is an integral part of the decoding process which shall be applied by decoders. 

The conditional filtering process is applied to all 4x4 block edges of a picture, except edges at the boundary of the picture and any edges for which the deblocking filter process is disabled by disable_deblocking_filter_idc, as specified below. This filtering process is performed on a macroblock basis after the completion of the picture construction process prior to deblocking filter process (as specified in subclauses 8.5) for the entire decoded picture, with all macroblocks in a picture processed in order of increasing macroblock addresses.

NOTE 1 – Prior to the operation of the deblocking filter process for each macroblock, the deblocked samples of the macroblock above (if any) and the macroblock to the left (if any) of the current macroblock are always available because the deblocking filter process is performed after the completion of the picture construction process prior to deblocking filter process for the entire decoded picture. However, for purposes of determining which edges are to be filtered when disable_deblocking_filter_idc is equal to 2, macroblocks in different slices are considered not available during specified steps of the operation of the deblocking filter process.

The deblocking filter process is invoked for the luma and chroma components separately. For each macroblock and each component, vertical edges are filtered first, starting with the edge on the left-hand side of the macroblock proceeding through the edges towards the right-hand side of the macroblock in their geometrical order, and then horizontal edges are filtered, starting with the edge on the top of the macroblock proceeding through the edges towards the bottom of the macroblock in their geometrical order. Figure 8‑10 shows edges of a macroblock which can be interpreted as luma or chroma edges.

When interpreting the edges in Figure 8‑10 as luma edges, the following applies:

–
both types, the solid bold and dashed bold luma edges are filtered.

When interpreting the edges in Figure 8‑10 as chroma edges, the following applies:

–
only the solid bold chroma edges are filtered.


[image: image45.emf]Vertical Edges

H

o

r

i

z

o

n

t

a

l

 

E

d

g

e

s


Figure 8‑10 – Boundaries in a macroblock to be filtered

For the current macroblock address CurrMbAddr proceeding over values 0..PicSizeInMbs − 1, the following ordered steps are specified:

1. The derivation process for neighbouring macroblocks specified in subclause 6.4.11.1 is invoked and the output is assigned to mbAddrA and mbAddrB.

2. The variables filterInternalEdgesFlag, filterLeftMbEdgeFlag and filterTopMbEdgeFlag are derived as specified by the following ordered steps:

a. The variable filterInternalEdgesFlag is derived as follows:

–
If disable_deblocking_filter_idc for the slice that contains the macroblock CurrMbAddr is equal to 1, the variable filterInternalEdgesFlag is set equal to 0.

–
Otherwise (disable_deblocking_filter_idc for the slice that contains the macroblock CurrMbAddr is not equal to 1), the variable filterInternalEdgesFlag is set equal to 1.

b. The variable filterLeftMbEdgeFlag is derived as follows:

–
If any of the following conditions are true, the variable filterLeftMbEdgeFlag is set equal to 0:

–
CurrMbAddr % PicWidthInMbs is equal to 0,

–
disable_deblocking_filter_idc for the slice that contains the macroblock CurrMbAddr is equal to 1,

–
disable_deblocking_filter_idc for the slice that contains the macroblock CurrMbAddr is equal to 2 and the macroblock mbAddrA is not available.

–
Otherwise, the variable filterLeftMbEdgeFlag is set equal to 1.

c. The variable filterTopMbEdgeFlag is derived as follows:

–
If any of the following conditions are true, the variable filterTopMbEdgeFlag is set equal to 0:

–
 CurrMbAddr is less than PicWidthInMbs,

–
disable_deblocking_filter_idc for the slice that contains the macroblock CurrMbAddr is equal to 1,

–
disable_deblocking_filter_idc for the slice that contains the macroblock CurrMbAddr is equal to 2 and the macroblock mbAddrB is not available.

–
Otherwise, the variable filterTopMbEdgeFlag is set equal to 1.

3. Given the variables filterInternalEdgesFlag, filterLeftMbEdgeFlag and filterTopMbEdgeFlag the deblocking filtering is controlled as follows:

a. When filterLeftMbEdgeFlag is equal to 1, the left vertical luma edge is filtered by invoking the process specified in subclause 8.7.1 with chromaEdgeFlag = 0, verticalEdgeFlag = 1, and (xEk, yEk) = (0, k) with k = 0..15 as the inputs and S′L as the output.

b. When filterInternalEdgesFlag is equal to 1, the filtering of the internal vertical luma edges is specified by the following ordered steps:

i. the process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 0, verticalEdgeFlag = 1, and (xEk, yEk) = (4, k) with k = 0..15 as the inputs and S′L as the output.

ii. The process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 0, verticalEdgeFlag = 1, and (xEk, yEk) = (8, k) with k = 0..15 as the inputs and S′L as the output.

iii. the process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 0, verticalEdgeFlag = 1, and (xEk, yEk) = (12, k) with k = 0..15 as the inputs and S′L as the output.

c. When filterTopMbEdgeFlag is equal to 1, the filtering of the top horizontal luma edge is specified as follows:

–
Otherwise, the process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 0, verticalEdgeFlag = 0, and (xEk, yEk) = (k, 0) with k = 0..15 as the inputs and S′L as the output.

i. When filterInternalEdgesFlag is equal to 1, the filtering of the internal horizontal luma edges is specified by the following ordered steps:

ii. the process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 0, verticalEdgeFlag = 0, and (xEk, yEk) = (k, 4) with k = 0..15 as the inputs and S′L as the output.

iii. The process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 0, verticalEdgeFlag = 0, and (xEk, yEk) = (k, 8) with k = 0..15 as the inputs and S′L as the output.

iv. the process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 0, verticalEdgeFlag = 0, and (xEk, yEk) = (k, 12) with k = 0..15 as the inputs and S′L as the output.

d. When filtering of both chroma components, with iCbCr = 0 for Cb and iCbCr = 1 for Cr, the following ordered steps are specified:
i. When filterLeftMbEdgeFlag is equal to 1, the left vertical chroma edge is filtered by invoking the process specified in subclause 8.7.1 with chromaEdgeFlag = 1, iCbCr, verticalEdgeFlag = 1, and (xEk, yEk) = (0, k) with k = 0..MbHeightC − 1 as the inputs and S′C with C being replaced by Cb for iCbCr = 0 and C being replaced by Cr for iCbCr = 1 as the output.

ii. When filterInternalEdgesFlag is equal to 1, the filtering of the internal vertical chroma edge is specified by the following ordered steps:

(1) the process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 1, iCbCr, verticalEdgeFlag = 1, and (xEk, yEk) = (4, k) with k = 0..MbHeightC − 1 as the inputs and S′C with C being replaced by Cb for iCbCr = 0 and C being replaced by Cr for iCbCr = 1 as the output.

iii. When filterTopMbEdgeFlag is equal to 1, the filtering of the top horizontal chroma edge is specified as follows:

–
the process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 1, iCbCr, verticalEdgeFlag = 0, and (xEk, yEk) = (k, 0) with k = 0..MbWidthC − 1 as the inputs and S′C with C being replaced by Cb for iCbCr = 0 and C being replaced by Cr for iCbCr = 1 as the output.

iv. When filterInternalEdgesFlag is equal to 1, the filtering of the internal horizontal chroma edge is specified by the following ordered steps:

(1) the process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 1, iCbCr, verticalEdgeFlag = 0, and (xEk, yEk) = (k, 4) with k = 0..MbWidthC − 1 as the inputs and S′C with C being replaced by Cb for iCbCr = 0 and C being replaced by Cr for iCbCr = 1 as the output.

NOTE 3 – For example, in 4:2:0 chroma format, the following applies: 3 horizontal luma edges, 1 horizontal chroma edge for Cb, and 1 horizontal chroma edge for Cr are filtered that are internal to a macroblock. 

The following applies:

–
the arrays S′L, S′Cb, S′Cr are assigned to the arrays SL, SCb, SCr (which represent the decoded picture), respectively.

8.7.1 Filtering process for block edges

Inputs to this process are chromaEdgeFlag, the chroma component index iCbCr (when chromaEdgeFlag is equal to 1), verticalEdgeFlag, and a set of nE sample locations (xEk, yEk), with k = 0..nE − 1, expressed relative to the upper left corner of the macroblock CurrMbAddr. The set of sample locations (xEk, yEk) represent the sample locations immediately to the right of a vertical edge (when verticalEdgeFlag is equal to 1) or immediately below a horizontal edge (when verticalEdgeFlag is equal to 0).

The variable nE is derived as follows:

–
If chromaEdgeFlag is equal to 0, nE is set equal to 16.

–
Otherwise (chromaEdgeFlag is equal to 1), nE is set equal to 8.
Let s′ be a variable specifying a luma or chroma sample array. s′ is derived as follows:

–
If chromaEdgeFlag is equal to 0, s′ represents the luma sample array S′L of the current picture.

–
Otherwise, if chromaEdgeFlag is equal to 1 and iCbCr is equal to 0, s′ represents the chroma sample array S′Cb of the chroma component Cb of the current picture.

–
Otherwise (chromaEdgeFlag is equal to 1 and iCbCr is equal to 1), s′ represents the chroma sample array S′Cr of the chroma component Cr of the current picture.

The position of the upper-left luma sample of the macroblock CurrMbAddr is derived by invoking the inverse macroblock scanning process in subclause 6.4.1 with mbAddr = CurrMbAddr as input and the output being assigned to ( xI, yI ).

The variables xP and yP are derived as follows:

–
If chromaEdgeFlag is equal to 0, xP is set equal to xI and yP is set equal to yI.

–
Otherwise (chromaEdgeFlag is equal to 1), xP is set equal to xI / 2 and yP is set equal to (yI + 2− 1) / 2.

	p3
	p2
	p1
	p0
	q0
	q1
	q2
	q3


Figure 8‑11 – Convention for describing samples across a 4x4 block horizontal or vertical boundary

For each sample location ( xEk, yEk ), k = 0..(nE − 1), the following ordered steps are specified:

1. The filtering process is applied to a set of eight samples across a 4x4 block horizontal or vertical edge denoted as pi and qi with i = 0..3 as shown in Figure 8‑11 with the edge lying between p0 and q0. pi and qi with i = 0..3 are specified as follows:

–
If verticalEdgeFlag is equal to 1,

qi = s′[ xP + xEk + i, yP + yEk ]

(8-442)

pi = s′[ xP + xEk− i − 1, yP + yEk ]

(8-443)

–
Otherwise (verticalEdgeFlag is equal to 0),

qi = s′[ xP + xEk, yP + yEk + i ]

(8-444)

pi = s′[ xP + xEk, yP + yEk− i − 1 ]

(8-445)

2. The process specified in subclause 8.7.2 is invoked with the sample values pi and qi (i = 0..3), chromaEdgeFlag, and verticalEdgeFlag as the inputs, and the output is assigned to the filtered result sample values p′i and q′i with i = 0..2.

3. The input sample values pi and qi with i = 0..2 are replaced by the corresponding filtered result sample values p′i and q′i with i = 0..2 inside the sample array s′ as follows:

–
If verticalEdgeFlag is equal to 1,

s′[ xP + xEk + i, yP + yEk ] = q′i

(8-446)

s′[ xP + xEk− i − 1, yP + yEk ] = p′i

(8-447)

–
Otherwise (verticalEdgeFlag is equal to 0),

s′[ xP + xEk, yP + yEk + i ] = q′i

(8-448)

s′[ xP + xEk, yP + yEk− i − 1] = p′i

(8-449)

8.7.2 Filtering process for a set of samples across a horizontal or vertical block edge

Inputs to this process are the input sample values pi and qi with i in the range of 0..3 of a single set of samples across an edge that is to be filtered, chromaEdgeFlag, and verticalEdgeFlag.

Outputs of this process are the filtered result sample values p′i and q′i with i in the range of 0..2.

The content dependent boundary filtering strength variable bS is derived as follows:

–
If chromaEdgeFlag is equal to 0, the derivation process for the content dependent boundary filtering strength specified in subclause 8.7.2.1 is invoked with p0, q0, and verticalEdgeFlag as input, and the output is assigned to bS.

–
Otherwise (chromaEdgeFlag is equal to 1), the bS used for filtering a set of samples of a horizontal or vertical chroma edge is set equal to the value of bS for filtering the set of samples of a horizontal or vertical luma edge, respectively, that contains the luma sample at location ( 2 * x, 2* y ) inside the luma array of the frame, where ( x, y ) is the location of the chroma sample q0 inside the chroma array for that frame.

Let filterOffsetA and filterOffsetB be the values of FilterOffsetA and FilterOffsetB as specified in subclause 7.4.3 for the slice that contains the macroblock containing sample q0.

Let qPp and qPq be variables specifying quantisation parameter values for the macroblocks containing the samples p0 and q0, respectively. The variables qPz (with z being replaced by p or q) are derived as follows:

–
If chromaEdgeFlag is equal to 0, the following applies:

–
If the macroblock containing the sample z0 is an I_PCM macroblock, qPz is set to 0.

–
Otherwise (the macroblock containing the sample z0 is not an I_PCM macroblock), qPz is set to the value of QPY of the macroblock containing the sample z0.

–
Otherwise (chromaEdgeFlag is equal to 1), the following applies:

–
If the macroblock containing the sample z0 is an I_PCM macroblock, qPz is set equal to the value of QPC that corresponds to a value of 0 for QPY as specified in subclause 8.5.8.

–
Otherwise (the macroblock containing the sample z0 is not an I_PCM macroblock), qPz is set equal to the value of QPC that corresponds to the value QPY of the macroblock containing the sample z0 as specified in subclause 8.5.8.

The process specified in subclause 8.7.2.2 is invoked with p0, q0, p1, q1, chromaEdgeFlag, bS, filterOffsetA, filterOffsetB, qPp, and qPq as inputs, and the outputsare assigned to filterSamplesFlag, indexA, (, and (.

Depending on the variable filterSamplesFlag, the following applies:

–
If filterSamplesFlag is equal to 1, the following applies:

–
If bS is less than 4, the process specified in subclause 8.7.2.3 is invoked with pi and qi (i = 0..2), chromaEdgeFlag, bS, (, and indexA given as input, and the output is assigned to p′i and q′i (i = 0..2).

–
Otherwise (bS is equal to 4), the process specified in subclause 8.7.2.4 is invoked with pi and qi (i = 0..3), chromaEdgeFlag, (, and ( given as input, and the output is assigned to p′i and q′i (i = 0..2).

–
Otherwise (filterSamplesFlag is equal to 0), the filtered result samples p′i and q′i (i = 0..2) are replaced by the corresponding input samples pi and qi:

for i = 0..2,

p′i = pi

(8-451)

for i = 0..2,

q′i = qi

(8-452)
8.7.2.1 Derivation process for the luma content dependent boundary filtering strength

Inputs to this process are the input sample values p0 and q0 of a single set of samples across an edge that is to be filtered and verticalEdgeFlag.

Output of this process is the variable bS.

The variable bS is derived as follows:

–
If the block edge is also a macroblock edge and the following condition is true, a value of bS equal to 4 is the output:

–
either or both of the samples p0 or q0 is in a macroblock coded using an Intra macroblock prediction mode,


Otherwise, if the following condition is true, a value of bS equal to 3 is the output:

–
either or both of the samples p0 or q0 is in a macroblock coded using an Intra macroblock prediction mode,

–
Otherwise, if any of the following conditionsaretrue, a value of bS equal to 2 is the output:

–
the 4x4 luma transform block associated with the 4x4 luma block containing the sample p0 contains non-zero transform coefficient levels,

–
the 4x4 luma transform block associated with the 4x4 luma block containing the sample q0 contains non-zero transform coefficient levels.

–
Otherwise, if any of the following conditions are true, a value of bS equal to 1 is the output:

–
for the prediction of the macroblock/sub-macroblock partition containing the sample p0 different reference pictures are used than for the prediction of the macroblock/sub-macroblock partition containing the sample q0,

NOTE 1 – The determination of whether the reference pictures used for the two macroblock/sub-macroblock partitions are the same or different is based only on which pictures are referenced, without regard to whether the index position within a reference picture list is different.

–
one motion vector is used to predict the macroblock/sub-macroblock partition containing the sample p0 and one motion vector is used to predict the macroblock/sub-macroblock partition containing the sample q0 and the absolute difference between the horizontal or vertical components of the motion vectors used is greater than or equal to 4 in units of quarter luma frame samples,

–
Otherwise, a value of bS equal to 0 is the output.

8.7.2.2 Derivation process for the thresholds for each block edge

Inputs to this process are:

–
the input sample values p0, q0, p1 and q1 of a single set of samples across an edge that is to be filtered,

–
the variables chromaEdgeFlag and bS, for the set of input samples, as specified in subclause 8.7.2,

–
the variables filterOffsetA, filterOffsetB, qPp, and qPq.

Outputs of this process are the variable filterSamplesFlag, which indicates whether the input samples are filtered, the value of indexA, and the values of the threshold variables ( and (.

Let qPav be a variable specifying an average quantisation parameter. It is derived as:

qPav = ( qPp + qPq + 1 ) >> 1

(8-453)

Let indexA be a variable that is used to access the ( table (Table 8‑16) as well as the tC0 table (Table 8‑17), which is used in filtering of edges with bS less than 4 as specified in subclause 8.7.2.3, and let indexB be a variable that is used to access the ( table (Table 8‑16). The variables indexA and indexB are derived as:

indexA = Clip3( 0, 51, qPav + filterOffsetA )

(8-454)

indexB = Clip3( 0, 51, qPav + filterOffsetB )

(8-455)

The variables (′ and (′ depending on the values of indexA and indexB are specified in Table 8‑16. Depending on chromaEdgeFlag, the corresponding threshold variables ( and ( are derived as follows:

–
If chromaEdgeFlag is equal to 0,

( = (′ * (1 << ( BitDepthY− 8 ) ) 

(8-456)

β = β′ * (1 << ( BitDepthY− 8 ) ) 

(8-457)

–
Otherwise (chromaEdgeFlag is equal to 1),

( = (′ * (1 << ( BitDepthC− 8 ) ) 

(8-458)

β = β′ * (1 << ( BitDepthC− 8 ) ) 

(8-459)

The variable filterSamplesFlag is derived by:

filterSamplesFlag = ( bS != 0  &&  Abs( p0− q0 ) <(&&  Abs( p1− p0 ) <(&&  Abs( q1− q0 ) <( )
(8-460)
Table 8‑16 – Derivation of offset dependent threshold variables (′ and (′ from indexA and indexB

	
	indexA (for (′) or indexB (for (′) 

	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25

	(′
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	4
	4
	5
	6
	7
	8
	9
	10
	12
	13

	(′
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	2
	2
	2
	3
	3
	3
	3
	4
	4
	4


Table 8‑16 (concluded) – Derivation of indexA and indexB from offset dependent threshold variables (′ and (′

	
	indexA (for (′) or indexB (for (′)

	
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51

	(′
	15
	17
	20
	22
	25
	28
	32
	36
	40
	45
	50
	56
	63
	71
	80
	90
	101
	113
	127
	144
	162
	182
	203
	226
	255
	255

	(′
	6
	6
	7
	7
	8
	8
	9
	9
	10
	10
	11
	11
	12
	12
	13
	13
	14
	14
	15
	15
	16
	16
	17
	17
	18
	18


8.7.2.3 Filtering process for edges with bS less than 4

Inputs to this process are the input sample values pi and qi (i = 0..2) of a single set of samples across an edge that is to be filtered, chromaEdgeFlag, bS, (, and indexA, for the set of input samples, as specified in subclause 8.7.2.

Outputs of this process are the filtered result sample values p′i and q′i (i = 0..2) for the set of input sample values.

Depending on the values of indexA and bS, the variable tC0 is specified in Table 8‑17. 

Table 8‑17 – Value of variable tC0 as a function of indexA and bS
	
	indexA

	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25

	bS = 1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1

	bS = 2
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1
	1
	1

	bS = 3 
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1
	1
	1
	1
	1
	1
	1


Table 8‑17 (concluded) – Value of variable tC0 as a function of indexA and bS
	
	indexA

	
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51

	bS = 1
	1
	1
	1
	1
	1
	1
	1
	2
	2
	2
	2
	3
	3
	3
	4
	4
	4
	5
	6
	6
	7
	8
	9
	10
	11
	13

	bS = 2
	1
	1
	1
	1
	1
	2
	2
	2
	2
	3
	3
	3
	4
	4
	5
	5
	6
	7
	8
	8
	10
	11
	12
	13
	15
	17

	bS = 3 
	1
	2
	2
	2
	2
	3
	3
	3
	4
	4
	4
	5
	6
	6
	7
	8
	9
	10
	11
	13
	14
	16
	18
	20
	23
	25


The threshold variables ap and aq are derived by:

ap = Abs( p2− p0 )


(8-463)
aq = Abs( q2− q0 )


(8-464)

The threshold variable tC is determined as follows:

–
If chromaEdgeFlag is equal to 0,

tC = tC0 + ( ( ap<( ) ? 1 : 0 ) + ( ( aq<( ) ? 1 : 0 ) 

(8-465)

–
Otherwise (chromaEdgeFlag is equal to 1),

tC = tC0 + 1 



(8-466)

Let Clip1( ) be a function that is replaced by Clip1Y( ) when chromaEdgeFlag is equal to 0 and by Clip1C( ) when chromaEdgeFlag is equal to 1.

The filtered result samples p′0 and q′0 are derived by:

(= Clip3( −tC, tC, ( ( ( ( q0− p0 ) << 2 ) + ( p1− q1 ) + 4 ) >> 3 ) )
(8-467)
p′0 = Clip1( p0 + ( )

(8-468)
q′0 = Clip1( q0−( )

(8-469)

The filtered result sample p′1 is derived as follows:

–
If chromaEdgeFlag is equal to 0 and ap is less than (,

p′1 = p1 + Clip3( −tC0, tC0, ( p2 + ( ( p0 + q0 + 1 ) >> 1 ) − ( p1<< 1 ) )  >>  1 )
(8-470)

–
Otherwise (chromaEdgeFlag is equal to 1 or ap is greater than or equal to (),

p′1 = p1




(8-471)

The filtered result sample q′1 is derived as follows:

–
If chromaEdgeFlag is equal to 0 and aq is less than (,

q′1 = q1 + Clip3( −tC0, tC0, ( q2 + ( ( p0 + q0 + 1 ) >> 1 ) − ( q1<< 1 ) )  >>  1 )
(8-472)

–
Otherwise (chromaEdgeFlag is equal to 1 or aq is greater than or equal to (),

q′1 = q1




(8-473)

The filtered result samples p′2 and q′2 are always set equal to the input samples p2 and q2:

p′2 = p2




(8-474)
q′2 = q2




(8-475)

8.7.2.4 Filtering process for edges for bS equal to 4

Inputs to this process are the input sample values pi and qi (i = 0..3) of a single set of samples across an edge that is to be filtered, chromaEdgeFlag, and the values of the threshold variables ( and ( for the set of samples, as specified in subclause 8.7.2.

Outputs of this process are the filtered result sample values p′i and q′i (i = 0..2) for the set of input sample values.

Let ap and aq be two threshold variables as specified in Equations 8-463 and 8-464, respectively, in subclause 8.7.2.3.

The filtered result samples p′i (i = 0..2) are derived as follows:

–
If chromaEdgeFlag is equal to 0 and the following condition holds,

ap<(&&  Abs( p0− q0 ) < ( ( (>> 2 ) + 2 )

(8-476)

then the variables p′0, p′1, and p′2 are derived by:

p′0 = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3

(8-477)

p′1 = ( p2 + p1 + p0 + q0 + 2 ) >> 2

(8-478)

p′2 = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3

(8-479)

–
Otherwise (chromaEdgeFlag is equal to 1 or the condition in Equation 8-476 does not hold), the variables p′0, p′1, and p′2 are derived by:

p′0 = ( 2*p1 + p0 + q1 + 2 ) >> 2

(8-480)

p′1 = p1




(8-481)

p′2 = p2




(8-482)

The filtered result samples q′i (i = 0..2) are derived as follows:

–
If chromaEdgeFlag is equal to 0 and the following condition holds,

aq<(&&  Abs( p0− q0 ) < ( ( (>> 2 ) + 2 )

(8-483)

then the variables q′0, q′1, and q′2 are derived by

q′0 = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3

(8-484)

q′1 = ( p0 + q0 + q1 + q2 + 2 ) >> 2

(8-485)

q′2 = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3

(8-486)

–
Otherwise (chromaEdgeFlag is equal to 1 or the condition in Equation 8-483 does not hold), the variables q′0, q′1, and q′2 are derived by:

q′0 = ( 2*q1 + q0 + p1 + 2 ) >> 2

(8-487)

q′1 = q1




(8-488)

q′2 = q2




(8-489)
9 Parsing process

Inputs to this process are bits from the RBSP.

Outputs of this process are syntax element values.

This process is invoked when the descriptor of a syntax element in the syntax tables in subclause 7.3 is equal to ue(v), me(v), se(v), te(v) (see subclause 9.1), ce(v) (see subclause 9.2)

9.1 Parsing process for Exp-Golomb codes

This process is invoked when the descriptor of a syntax element in the syntax tables in subclause 7.3 is equal to ue(v), me(v), se(v), or te(v). For syntax elements in subclauses 7.3.4 and 7.3.5.

Inputs to this process are bits from the RBSP.

Outputs of this process are syntax element values.

Syntax elements coded as ue(v), me(v), or se(v) are Exp-Golomb-coded. Syntax elements coded as te(v) are truncated Exp-Golomb-coded. The parsing process for these syntax elements begins with reading the bits starting at the current location in the bitstream up to and including the first non-zero bit, and counting the number of leading bits that are equal to 0. This process is specified as follows:

leadingZeroBits = −1
for( b = 0; !b; leadingZeroBits++ )
(9-1)

b = read_bits( 1 )

The variable codeNum is then assigned as follows:

codeNum = 2leadingZeroBits− 1 + read_bits( leadingZeroBits )
(9-2)

where the value returned from read_bits( leadingZeroBits ) is interpreted as a binary representation of an unsigned integer with most significant bit written first.

Table 9‑1 illustrates the structure of the Exp-Golomb code by separating the bit string into "prefix" and "suffix" bits. The "prefix" bits are those bits that are parsed in the above pseudo-code for the computation of leadingZeroBits, and are shown as either 0 or 1 in the bit string column of Table 9‑1. The "suffix" bits are those bits that are parsed in the computation of codeNum and are shown as xi in Table 9‑1, with i being in the range 0 to leadingZeroBits − 1, inclusive. Each xi can take on values 0 or 1.

Table 9‑1 – Bit strings with "prefix" and "suffix" bits and assignment to codeNum ranges (informative)

	Bit string form
	Range of codeNum

	          1
	0

	        0 1 x0
	1..2

	      0 0 1 x1 x0
	3..6

	    0 0 0 1 x2 x1 x0
	7..14

	  0 0 0 0 1 x3 x2 x1 x0
	15..30

	0 0 0 0 0 1 x4 x3 x2 x1 x0
	31..62

	…
	…


Table 9‑2 illustrates explicitly the assignment of bit strings to codeNum values.

Table 9‑2 – Exp-Golomb bit strings and codeNum in explicit form and used as ue(v) (informative)

	Bit string
	codeNum

	1
	0

	0 1 0
	1

	0 1 1
	2

	0 0 1 0 0
	3

	0 0 1 0 1
	4

	0 0 1 1 0
	5

	0 0 1 1 1
	6

	0 0 0 1 0 0 0
	7

	0 0 0 1 0 0 1
	8

	0 0 0 1 0 1 0
	9

	…
	…


Depending on the descriptor, the value of a syntax element is derived as follows:

–
If the syntax element is coded as ue(v), the value of the syntax element is equal to codeNum.

–
Otherwise, if the syntax element is coded as se(v), the value of the syntax element is derived by invoking the mapping process for signed Exp-Golomb codes as specified in subclause 9.1.1 with codeNum as the input.

–
Otherwise, if the syntax element is coded as me(v), the value of the syntax element is derived by invoking the mapping process for coded block pattern as specified in subclause 9.1.2 with codeNum as the input.

–
Otherwise (the syntax element is coded as te(v)), the range of possible values for the syntax element is determined first. The range of this syntax element may be between 0 and x, with x being greater than or equal to 1 and the range is used in the derivation of the value of the syntax element value as follows:

–
If x is greater than 1, codeNum and the value of the syntax element is derived in the same way as for syntax elements coded as ue(v).

–
Otherwise (x is equal to 1), the parsing process for codeNum which is equal to the value of the syntax element is given by a process equivalent to:

b = read_bits( 1 )
(9-3)
codeNum = !b

9.1.1 Mapping process for signed Exp-Golomb codes

Input to this process is codeNum as specified in subclause 9.1.

Output of this process is a value of a syntax element coded as se(v).

The syntax element is assigned to the codeNum by ordering the syntax element by its absolute value in increasing order and representing the positive value for a given absolute value with the lower codeNum. Table 9‑3 provides the assignment rule.

Table 9‑3 – Assignment of syntax element to codeNum for signed Exp-Golomb coded syntax elements se(v)

	codeNum
	syntax element value

	0
	0

	1
	1

	2
	−1

	3
	2

	4
	−2

	5
	3

	6
	−3

	k
	(−1)k+1 Ceil( k÷2 )


9.1.2 Mapping process for coded block pattern

Input to this process is codeNum as specified in subclause 9.1.

Output of this process is a value of the syntax element coded_block_pattern coded as me(v).

Table 9‑4shows the assignment of coded_block_pattern to codeNum depending on whether the macroblock prediction mode is equal to Intra_4x4 or Inter.

Table 9‑4 – Assignment of codeNum to values of coded_block_pattern for macroblock prediction modes

	codeNum
	coded_block_pattern

	
	Intra_4x4
	Inter

	0
	47
	0

	1
	31
	16

	2
	15
	1

	3
	0
	2

	4
	23
	4

	5
	27
	8

	6
	29
	32

	7
	30
	3

	8
	7
	5

	9
	11
	10

	10
	13
	12

	11
	14
	15

	12
	39
	47

	13
	43
	7

	14
	45
	11

	15
	46
	13

	16
	16
	14

	17
	3
	6

	18
	5
	9

	19
	10
	31

	20
	12
	35

	21
	19
	37

	22
	21
	42

	23
	26
	44

	24
	28
	33

	25
	35
	34

	26
	37
	36

	27
	42
	40

	28
	44
	39

	29
	1
	43

	30
	2
	45

	31
	4
	46

	32
	8
	17

	33
	17
	18

	34
	18
	20

	35
	20
	24

	36
	24
	19

	37
	6
	21

	38
	9
	26

	39
	22
	28

	40
	25
	23

	41
	32
	27

	42
	33
	29

	43
	34
	30

	44
	36
	22

	45
	40
	25

	46
	38
	38

	47
	41
	41


9.2 CAVLC parsing process for transform coefficient levels

This process is invoked for theparsing of syntax elements with descriptor equal to ce(v) in subclause 7.3.5.3.2.

Inputs to this process are bits from slice data, a maximum number of non-zero transform coefficient levels maxNumCoeff, the luma block index luma4x4BlkIdx or the chroma block index chroma4x4BlkIdx,cb4x4BlkIdx or cr4x4BlkIdx of the current block of transform coefficient levels.

Output of this process is the list coeffLevel containing transform coefficient levels of the luma block with block index luma4x4BlkIdx or the chroma block with block index chroma4x4BlkIdx, cb4x4BlkIdx or cr4x4BlkIdx.

The process is specified in the following ordered steps:

1. All transform coefficient level values coeffLevel[ i ], with indices i ranging from 0 to maxNumCoeff − 1, in the list coeffLevel are set equal to 0.

2. The total number of non-zero transform coefficient levels TotalCoeff( coeff_token ) and the number of trailing one transform coefficient levels TrailingOnes( coeff_token ) are derived by parsing coeff_token as specified insubclause 9.2.1.

3. The following then applies:

–
If the number of non-zero transform coefficient levels TotalCoeff( coeff_token ) is equal to 0, the list coeffLevel (in which all transform coefficient level values are equal to 0) is returned and no further stepsarecarried out.

–
Otherwise, the following steps are carried out:

a. The non-zero transform coefficient levels are derived by parsing trailing_ones_sign_flag, level_prefix, and level_suffix as specified insubclause 9.2.2.

b. The runs of zero transform coefficient levels before each non-zero transform coefficient level are derived by parsing total_zeros and run_before as specified insubclause 9.2.3.

c. The level and run information are combined into the list coeffLevel as specified insubclause 9.2.4.

9.2.1 Parsing process for total number of non-zero transform coefficient levels and number of trailing ones

Inputs to this process are bits from slice data, a maximum number of non-zero transform coefficient levels maxNumCoeff, the luma block index luma4x4BlkIdx or the chroma block index chroma4x4BlkIdx,cb4x4BlkIdx or cr4x4BlkIdx of the current block of transform coefficient levels.

Outputs of this process are TotalCoeff( coeff_token ), TrailingOnes( coeff_token ), and the variable nC.

The syntax element coeff_token is decoded using one of the six VLCs specified in the six right-most columns of Table 9‑5. Each VLC specifies both TotalCoeff( coeff_token ) and TrailingOnes( coeff_token ) for a given codeword coeff_token. Theselection of the applicable column ofTable 9‑5is determined by a variable nC. The value of nCis derived as follows:

–
If the CAVLC parsing process is invoked for ChromaDCLevel, nC is set equal to −1,

–
Otherwise, the following ordered steps are performed:

1. When the CAVLC parsing process is invoked for Intra16x16DCLevel, luma4x4BlkIdx is set equal to 0.

2. (void)
3. (void)
4. The variables blkA and blkB are derived as follows:

–
If the CAVLC parsing process is invoked for Intra16x16DCLevel, Intra16x16ACLevel, or LumaLevel4x4, the process specified in subclause 6.4.11.4 is invoked with luma4x4BlkIdx as the input, and the output is assigned to mbAddrA, mbAddrB, luma4x4BlkIdxA, and luma4x4BlkIdxB. The 4x4 luma block specified by mbAddrA\luma4x4BlkIdxA is assigned toblkA, and the 4x4 luma block specified by mbAddrB\luma4x4BlkIdxB is assigned to blkB.

–
Otherwise (the CAVLC parsing process is invoked for ChromaACLevel), the process specified in subclause 6.4.11.5 is invoked with chroma4x4BlkIdx as input, and the output is assigned to mbAddrA, mbAddrB, chroma4x4BlkIdxA, and chroma4x4BlkIdxB. The 4x4 chroma block specified by mbAddrA\iCbCr\chroma4x4BlkIdxA is assigned toblkA, and the 4x4 chroma block specified by mbAddrB\iCbCr\chroma4x4BlkIdxB is assigned to blkB.

5. The variable availableFlagN with N being replaced by A and B is derived as follows:

–
If any of the following conditions are true, availableFlagN is set equal to 0:

–
mbAddrN is not available,

–
Otherwise, availableFlagN is set equal to 1.

6. For N being replaced by A and B, when availableFlagN is equal to 1, the variable nN is derived as follows:

–
If any of the following conditions are true, nN is set equal to 0:

–
The macroblock mbAddrN has mb_type equal to P_Skip,

–
The macroblock mbAddrN has mb_type not equal to I_PCM and all AC residual transform coefficient levels of the neighbouring block blkN are equal to 0 due to the corresponding bit of CodedBlockPatternLuma or CodedBlockPatternChroma being equal to 0.

–
Otherwise, if mbAddrN is an I_PCM macroblock, nN is set equal to 16.

–
Otherwise, nN is set equal to the value TotalCoeff( coeff_token ) of the neighbouring block blkN.

NOTE 1 – The values nA and nB that are derived using TotalCoeff( coeff​_token ) do not include the DC transform coefficient levels in Intra_16x16 macroblocks or DC transform coefficient levels in chroma blocks, because these transform coefficient levels are decoded separately. When the block above or to the left belongs to an Intra_16x16 macroblock, nA ornB is the number of decoded non-zero AC transform coefficient levels for the adjacent 4x4 block in the Intra_16x16 macroblock. When the block above or to the left is a chroma block, nA or nB is the number of decoded non-zero AC transform coefficient levels for the adjacent chroma block.

NOTE 2 – When parsing for Intra16x16DCLevel the values nA and nB are based on the number of non-zero transform coefficient levels in adjacent 4x4 blocks and not on the number of non-zero DC transform coefficient levels in adjacent 16x16 blocks.

7. The variable nC is derived as follows:

–
If availableFlagA is equal to 1 and availableFlagB is equal to 1, the variable nC is set equal to ( nA + nB + 1 ) >> 1.

–
Otherwise, if availableFlagA is equal to 1 (and availableFlagB is equal to 0), the variable nC is set equal to nA.

–
Otherwise, if availableFlagB is equal to 1 (and availableFlagA is equal to 0), the variable nC is set equal to nB.

–
Otherwise (availableFlagA is equal to 0 and availableFlagB is equal to 0), the variable nC is set equal to 0.

When maxNumCoeff is equal to 15, it is a requirement of bitstream conformance that the value of TotalCoeff( coeff_token ) resulting from decoding coeff_token shall not be equal to 16.

	TrailingOnes
( coeff_token )
	TotalCoeff
( coeff_token )
	0 <= nC < 2
	2 <= nC < 4
	4 <= nC < 8
	8 <= nC
	nC = = −1

	0
	0
	1
	11
	1111
	0000 11
	01

	0
	1
	0001 01
	0010 11
	0011 11
	0000 00
	0001 11

	1
	1
	01
	10
	1110
	0000 01
	1

	0
	2
	0000 0111
	0001 11
	0010 11
	0001 00
	0001 00

	1
	2
	0001 00
	0011 1
	0111 1
	0001 01
	0001 10

	2
	2
	001
	011
	1101
	0001 10
	001

	0
	3
	0000 0011 1
	0000 111
	0010 00
	0010 00
	0000 11

	1
	3
	0000 0110
	0010 10
	0110 0
	0010 01
	0000 011

	2
	3
	0000 101
	0010 01
	0111 0
	0010 10
	0000 010

	3
	3
	0001 1
	0101
	1100
	0010 11
	0001 01

	0
	4
	0000 0001 11
	0000 0111
	0001 111
	0011 00
	0000 10

	1
	4
	0000 0011 0
	0001 10
	0101 0
	0011 01
	0000 0011

	2
	4
	0000 0101
	0001 01
	0101 1
	0011 10
	0000 0010

	3
	4
	0000 11
	0100
	1011
	0011 11
	0000 000

	0
	5
	0000 0000 111
	0000 0100
	0001 011
	0100 00
	-

	1
	5
	0000 0001 10
	0000 110
	0100 0
	0100 01
	-

	2
	5
	0000 0010 1
	0000 101
	0100 1
	0100 10
	-

	3
	5
	0000 100
	0011 0
	1010
	0100 11
	-

	0
	6
	0000 0000 0111 1
	0000 0011 1
	0001 001
	0101 00
	-

	1
	6
	0000 0000 110
	0000 0110
	0011 10
	0101 01
	-

	2
	6
	0000 0001 01
	0000 0101
	0011 01
	0101 10
	-

	3
	6
	0000 0100
	0010 00
	1001
	0101 11
	-

	0
	7
	0000 0000 0101 1
	0000 0001 111
	0001 000
	0110 00
	-

	1
	7
	0000 0000 0111 0
	0000 0011 0
	0010 10
	0110 01
	-

	2
	7
	0000 0000 101
	0000 0010 1
	0010 01
	0110 10
	-

	3
	7
	0000 0010 0
	0001 00
	1000
	0110 11
	-

	0
	8
	0000 0000 0100 0
	0000 0001 011
	0000 1111
	0111 00
	-

	1
	8
	0000 0000 0101 0
	0000 0001 110
	0001 110
	0111 01
	-

	2
	8
	0000 0000 0110 1
	0000 0001 101
	0001 101
	0111 10
	-

	3
	8
	0000 0001 00
	0000 100
	0110 1
	0111 11
	-

	0
	9
	0000 0000 0011 11
	0000 0000 1111
	0000 1011
	1000 00
	-

	1
	9
	0000 0000 0011 10
	0000 0001 010
	0000 1110
	1000 01
	-

	2
	9
	0000 0000 0100 1
	0000 0001 001
	0001 010
	1000 10
	-

	3
	9
	0000 0000 100
	0000 0010 0
	0011 00
	1000 11
	-

	0
	10
	0000 0000 0010 11
	0000 0000 1011
	0000 0111 1
	1001 00
	-

	1
	10
	0000 0000 0010 10
	0000 0000 1110
	0000 1010
	1001 01
	-

	2
	10
	0000 0000 0011 01
	0000 0000 1101
	0000 1101
	1001 10
	-

	3
	10
	0000 0000 0110 0
	0000 0001 100
	0001 100
	1001 11
	-

	0
	11
	0000 0000 0001 111
	0000 0000 1000
	0000 0101 1
	1010 00
	-

	1
	11
	0000 0000 0001 110
	0000 0000 1010
	0000 0111 0
	1010 01
	-

	2
	11
	0000 0000 0010 01
	0000 0000 1001
	0000 1001
	1010 10
	-

	3
	11
	0000 0000 0011 00
	0000 0001 000
	0000 1100
	1010 11
	-

	0
	12
	0000 0000 0001 011
	0000 0000 0111 1
	0000 0100 0
	1011 00
	-

	1
	12
	0000 0000 0001 010
	0000 0000 0111 0
	0000 0101 0
	1011 01
	-

	2
	12
	0000 0000 0001 101
	0000 0000 0110 1
	0000 0110 1
	1011 10
	-

	3
	12
	0000 0000 0010 00
	0000 0000 1100
	0000 1000
	1011 11
	-

	0
	13
	0000 0000 0000 1111
	0000 0000 0101 1
	0000 0011 01
	1100 00
	-

	1
	13
	0000 0000 0000 001
	0000 0000 0101 0
	0000 0011 1
	1100 01
	-

	2
	13
	0000 0000 0001 001
	0000 0000 0100 1
	0000 0100 1
	1100 10
	-

	3
	13
	0000 0000 0001 100
	0000 0000 0110 0
	0000 0110 0
	1100 11
	-

	0
	14
	0000 0000 0000 1011
	0000 0000 0011 1
	0000 0010 01
	1101 00
	-

	1
	14
	0000 0000 0000 1110
	0000 0000 0010 11
	0000 0011 00
	1101 01
	-

	2
	14
	0000 0000 0000 1101
	0000 0000 0011 0
	0000 0010 11
	1101 10
	-

	3
	14
	0000 0000 0001 000
	0000 0000 0100 0
	0000 0010 10
	1101 11
	-

	0
	15
	0000 0000 0000 0111
	0000 0000 0010 01
	0000 0001 01
	1110 00
	-

	1
	15
	0000 0000 0000 1010
	0000 0000 0010 00
	0000 0010 00
	1110 01
	-

	2
	15
	0000 0000 0000 1001
	0000 0000 0010 10
	0000 0001 11
	1110 10
	-

	3
	15
	0000 0000 0000 1100
	0000 0000 0000 1
	0000 0001 10
	1110 11
	-

	0
	16
	0000 0000 0000 0100
	0000 0000 0001 11
	0000 0000 01
	1111 00
	-

	1
	16
	0000 0000 0000 0110
	0000 0000 0001 10
	0000 0001 00
	1111 01
	-

	2
	16
	0000 0000 0000 0101
	0000 0000 0001 01
	0000 0000 11
	1111 10
	-

	3
	16
	0000 0000 0000 1000
	0000 0000 0001 00
	0000 0000 10
	1111 11
	-


9.2.2 Parsing process for level information

Inputs to this process are bits from slice data, the number of non-zero transform coefficient levels TotalCoeff( coeff_token ), and the number of trailing one transform coefficient levels TrailingOnes( coeff_token ).

Output of this process is a list with name levelVal containing transform coefficient levels.

Initially an index i is set equal to 0. Then, when TrailingOnes( coeff_token ) is not equal to 0, the following ordered steps are applied TrailingOnes( coeff_token ) times to decode the trailing one transform coefficient levels:

1. A 1-bit syntax element trailing_ones_sign_flag is decoded and evaluated as follows:

–
If trailing_ones_sign_flag is equal to 0, levelVal[ i ] is set equal to 1.

–
Otherwise (trailing_ones_sign_flag is equal to 1), levelVal[ i ] is set equal to −1.

2. The index i is incremented by 1.

Then, the variable suffixLength is initialised as follows:

–
If TotalCoeff( coeff_token ) is greater than 10 and TrailingOnes( coeff_token ) is less than 3, suffixLength is set equal to 1.

–
Otherwise (TotalCoeff( coeff_token ) is less than or equal to 10 or TrailingOnes( coeff_token ) is equal to 3), suffixLength is set equal to 0.

Then, when TotalCoeff( coeff_token ) − TrailingOnes( coeff_token ) is not equal to 0, the following ordered steps are applied TotalCoeff( coeff_token ) − TrailingOnes( coeff_token ) times to decode the remaining non-zero level values:

1. The syntax element level_prefix is decoded as specified in subclause 9.2.2.1.

2. The variable levelSuffixSize is set as follows:

–
Iflevel_prefix is equal to 14 and suffixLength is equal to 0, levelSuffixSize is set equal to 4.
–
Otherwise, if level_prefix is equal to 15, levelSuffixSize is set equal tolevel_prefix − 3.

–
Otherwise, levelSuffixSize is set equal to suffixLength.
3. The syntax element level_suffix is decoded as follows:

–
If levelSuffixSize is greater than 0, the syntax element level_suffix is decoded as unsigned integer representation u(v) with levelSuffixSize bits.

–
Otherwise (levelSuffixSize is equal to 0), the syntax element level_suffix is inferred to be equal to 0.

4. The variable levelCode is set equal to (level_prefix << suffixLength ) + level_suffix.

5. (void)
6. (void)
7. When the index i is equal to TrailingOnes( coeff_token ) and TrailingOnes( coeff_token ) is less than 3, levelCode is incremented by 2.

8. The variable levelVal[ i ] is derived as follows:

–
If levelCode is an even number, levelVal[ i ] is set equal to ( levelCode + 2 ) >> 1.

–
Otherwise (levelCode is an odd number), levelVal[ i ] is set equal to ( −levelCode − 1) >> 1.

9. When suffixLength is equal to 0, suffixLength is set equal to 1.

10. When the absolute value of levelVal[ i ] is greater than ( 3 << ( suffixLength − 1 ) ) and suffixLength is less than 6, suffixLength is incremented by 1.

11. The index i is incremented by 1.

9.2.2.1 Parsing process for level_prefix

Inputs to this process are bits from slice data.

Output of this process is level_prefix.

The parsing process for this syntax element consists in reading the bits starting at the current location in the bitstream up to and including the first non-zero bit, and counting the number of leading bits that are equal to 0. This process is specified as follows:

leadingZeroBits = −1
for( b = 0; !b; leadingZeroBits++ )
(9-4)

b = read_bits( 1 )
level_prefix = leadingZeroBits

Table 9‑6 illustrates the codeword table for level_prefix.

Table 9‑6 – Codeword table for level_prefix (informative)

	level_prefix
	bit string

	0
	1

	1
	01

	2
	001

	3
	0001

	4
	0000 1

	5
	0000 01

	6
	0000 001

	7
	0000 0001

	8
	0000 0000 1

	9
	0000 0000 01

	10
	0000 0000 001

	11
	0000 0000 0001

	12
	0000 0000 0000 1

	13
	0000 0000 0000 01

	14
	0000 0000 0000 001

	15
	0000 0000 0000 0001


9.2.3 Parsing process for run information

Inputs to this process are bits from slice data, the number of non-zero transform coefficient levels TotalCoeff( coeff_token ), and the maximum number of non-zero transform coefficient levels maxNumCoeff.

Output of this process is a list of runs of zero transform coefficient levels preceding non-zero transform coefficient levels called runVal.

Initially, an index i is set equal to 0.

The variable zerosLeft is derived as follows:

–
If the number of non-zero transform coefficient levels TotalCoeff( coeff_token ) is equal to the maximum number of non-zero transform coefficient levels maxNumCoeff, a variable zerosLeft is set equal to 0.

–
Otherwise (the number of non-zero transform coefficient levels TotalCoeff( coeff_token ) is less than the maximum number of non-zero transform coefficient levels maxNumCoeff), total_zeros is decoded and zerosLeft is set equal to its value.

The variable tzVlcIndex is setequal to TotalCoeff( coeff_token ).

The VLC used to decode total_zeros is derived as follows:

–
If maxNumCoeff is equal to 4, one of the VLCs specified in Table 9‑9  is used.

–
Otherwise (maxNumCoeff is not equal to 4), VLCs from Tables 9‑7 and 9‑8 are used.

The following ordered steps arethen performed TotalCoeff( coeff_token ) − 1 times:

1. The variable runVal[ i ] is derived as follows:

–
If zerosLeft is greater than zero, a value run_before is decoded based on Table 9‑10 and zerosLeft. runVal[ i ] is set equal to run_before.

–
Otherwise (zerosLeft is equal to 0), runVal[ i ] is set equal to 0.

2. The value of runVal[ i ] is subtracted from zerosLeft and the result is assigned to zerosLeft. It is a requirement of bitstream conformance that the result of the subtraction shall be greater than or equal to 0.

3. The index i is incremented by 1.

Finally the value of zerosLeft is assigned to runVal[ i ].

Table 9‑7 – total_zeros tables for 4x4 blocks with tzVlcIndex 1 to 7

	total_zeros
	tzVlcIndex

	
	1
	2
	3
	4
	5
	6
	7

	0
	1
	111
	0101
	0001 1
	0101
	0000 01
	0000 01

	1
	011
	110
	111
	111
	0100
	0000 1
	0000 1

	2
	010
	101
	110
	0101
	0011
	111
	101

	3
	0011
	100
	101
	0100
	111
	110
	100

	4
	0010
	011
	0100
	110
	110
	101
	011

	5
	0001 1
	0101
	0011
	101
	101
	100
	11

	6
	0001 0
	0100
	100
	100
	100
	011
	010

	7
	0000 11
	0011
	011
	0011
	011
	010
	0001

	8
	0000 10
	0010
	0010
	011
	0010
	0001
	001

	9
	0000 011
	0001 1
	0001 1
	0010
	0000 1
	001
	0000 00

	10
	0000 010
	0001 0
	0001 0
	0001 0
	0001
	0000 00
	-

	11
	0000 0011
	0000 11
	0000 01
	0000 1
	0000 0
	-
	-

	12
	0000 0010
	0000 10
	0000 1
	0000 0
	-
	-
	-

	13
	0000 0001 1
	0000 01
	0000 00
	-
	-
	-
	-

	14
	0000 0001 0
	0000 00
	-
	-
	-
	-
	-

	15
	0000 0000 1
	-
	-
	-
	-
	-
	-


Table 9‑8 – total_zeros tables for 4x4 blocks with tzVlcIndex 8 to 15

	total_zeros
	tzVlcIndex

	
	8
	9
	10
	11
	12
	13
	14
	15

	0
	0000 01
	0000 01
	0000 1
	0000
	0000
	000
	00
	0

	1
	0001
	0000 00
	0000 0
	0001
	0001
	001
	01
	1

	2
	0000 1
	0001
	001
	001
	01
	1
	1
	-

	3
	011
	11
	11
	010
	1
	01
	-
	-

	4
	11
	10
	10
	1
	001
	-
	-
	-

	5
	10
	001
	01
	011
	-
	-
	-
	-

	6
	010
	01
	0001
	-
	-
	-
	-
	-

	7
	001
	0000 1
	-
	-
	-
	-
	-
	-

	8
	0000 00
	-
	-
	-
	-
	-
	-
	-


Table 9‑9 – total_zeros tables for chroma DC 2x2 (4:2:0 chroma sampling)
	total_zeros
	tzVlcIndex

	
	1
	2
	3

	0
	1
	1
	1

	1
	01
	01
	0

	2
	001
	00
	-

	3
	000
	-
	-


Table 9‑10 – Tables for run_before

	run_before


	zerosLeft

	
	1
	2
	3
	4
	5
	6
	>6

	0
	1
	1
	11
	11
	11
	11
	111

	1
	0
	01
	10
	10
	10
	000
	110

	2
	-
	00
	01
	01
	011
	001
	101

	3
	-
	-
	00
	001
	010
	011
	100

	4
	-
	-
	-
	000
	001
	010
	011

	5
	-
	-
	-
	-
	000
	101
	010

	6
	-
	-
	-
	-
	-
	100
	001

	7
	-
	-
	-
	-
	-
	-
	0001

	8
	
	-
	-
	-
	-
	-
	00001

	9
	-
	-
	-
	-
	-
	-
	000001

	10
	-
	-
	-
	-
	-
	-
	0000001

	11
	-
	-
	-
	-
	-
	-
	00000001

	12
	-
	-
	-
	-
	-
	-
	000000001

	13
	-
	-
	-
	-
	-
	-
	0000000001

	14
	-
	-
	-
	-
	-
	-
	00000000001


9.2.4 Combining level and run information

Input to this process are a list of transform coefficient levels called levelVal, a list of runs called runVal, and the number of non‑zero transform coefficient levels TotalCoeff( coeff_token ).

Output of this process is an list coeffLevel of transform coefficient levels.

A variable coeffNum is set equal to −1 and an index i is set equal to TotalCoeff( coeff_token ) − 1. The following ordered steps are then applied TotalCoeff( coeff_token ) times:

1. coeffNum is incremented by runVal[ i ] + 1.

2. coeffLevel[ coeffNum ] is set equal to levelVal[ i ].

3. The index i is decremented by 1.

9.3 (void)
A Annex A
(normative)

Profiles and levels

Profiles and levels specify restrictions on bitstreams and hence limits on the capabilities needed to decode the bitstreams. Profiles and levels may also be used to indicate interoperability points between individual decoder implementations.

NOTE 1 – This International Standard does not include individually selectable "options" at the decoder, as this would increase interoperability difficulties.

Each profile specifies a subset of algorithmic features and limits that shall be supported by all decoders conforming to that profile. All specifications that are not specified by the profile in this Annex shall be considered informative.

NOTE 2 – Encoders are not required to make use of any particular subset of features supported in a profile. This text is derived from ISO/IEC 14996-10 and is intended to only specify Constrained Baseline profile.

Each level specifies a set of limits on the values that may be taken by the syntax elements of this International Standard. The same set of level definitions is used with all profiles, but individual implementations may support a different level for each supported profile. For any given profile, levels generally correspond to decoder processing load and memory capability.

A.1 Requirements on video decoder capability

Capabilities of video decoders conforming to this International Standard are specified in terms of the ability to decode video streams conforming to the constraints of profiles and levels specified in this annex. For each such profile, the level supported for that profile shall also be expressed.

Specific values are specified in this annex for the syntax elements profile_idc and level_idc. All other values of profile_idc and level_idc are reserved for future use by ITU-T | ISO/IEC.

NOTE – Decoders should not infer that when a reserved value of profile_idc or level_idc falls between the values specified in this International Standard that this indicates intermediate capabilities between the specified profiles or levels, as there are no restrictions on the method to be chosen by ITU-T | ISO/IEC for the use of such future reserved values.

A.2 Profiles

All constraints for picture parameter sets that are specified in subclause A.2.1 are constraints for picture parameter sets that are activated in the bitstream. All constraints for sequence parameter sets that are specified in subclause A.2.1 are constraints for sequence parameter sets that are activated in the bitstream.

A.2.1 Constrained Baseline profile

Bitstreams conforming to the Constrained Baseline profile shall obey the following constraints:

–
Only I and P slice types may be present.

–
NAL unit streams shall not contain nal_unit_type values in the range of 2 to 4, inclusive.

–
Arbitrary slice order is not allowed.

–
Sequence parameter sets shall have frame_mbs_only_flag equal to 1.

–
Picture parameter sets shall have num_slice_groups_minus1 equal to 0 only.

–
Picture parameter sets shall have redundant_pic_cnt_present_flag equal to 0 only.

–
Picture parameter sets shall have weighted_pred_flag and weighted_bipred_idc both equal to 0.

–
Picture parameter sets shall have entropy_coding_mode_flag equal to 0.

–
The syntax element level_prefix shall not be greater than 15 (when present).

–
The syntax elements pcm_sample_luma[ i ], with i = 0..255, and pcm_sample_chroma[ i ], with i = 0..2 * MbWidthC * MbHeightC − 1, shall not be equal to 0 (when present).

–
The level constraints specified for the Constrained Baseline profile in subclause A.3 shall be fulfilled.

Decoders conforming to the Constrained Baseline profile at a specific level shall be capable of decoding all bitstreams in which all of the following are true:

–
profile_idc is equal to 66 or constraint_set0_flag is equal to 1,

–
constraint_set1_flag is equal to 1,

–
level_idc and constraint_set3_flag represent a level less than or equal to the specified level.

All parts of this International Standard that are not part of the set of technical specifications that are necessary for conformance to Constrained Baseline Profile shall be considered informative.

A.3 Levels

The following is specified for expressing the constraints in this annex.

–
Let access unit n be the n-th access unit in decoding order with the first access unit being access unit 0.

–
Let picture n be the primary coded picture or the corresponding decoded picture of access unit n.

Let the variable fR be derived as follows:

–
fR is set equal to 1 ( 172.

Bitstreams conforming to the Constrained Baseline profile at a specified level shall obey the following constraints:

a) The nominal removal time of access unit n with n > 0 from the CPB as specified in subclause C.1.2, satisfies the constraint that tr,n( n ) − tr( n − 1 ) is greater than or equal to Max( PicSizeInMbs ( MaxMBPS, fR), where MaxMBPS is the value specified in Table A‑1 that applies to picture n − 1 and PicSizeInMbs is the number of macroblocks in picture n − 1.

b) The difference between consecutive output times of pictures from the DPB as specified in subclause C.2.2, satisfies the constraint that (to,dpb( n ) >= Max( PicSizeInMbs ( MaxMBPS, fR ), where MaxMBPS is the value specified in Table A‑1 for picture n and PicSizeInMbs is the number of macroblocks of picture n, provided that picture n is a picture that is output and is not the last picture of the bitstream that is output.

c) The sum of the NumBytesInNALunit variables for access unit 0 is less than or equal to 384 *( Max( PicSizeInMbs, fR * MaxMBPS ) + MaxMBPS * ( tr( 0 ) − tr,n( 0 ) ) ) ÷ MinCR, where MaxMBPS and MinCR are the values specified in Table A‑1 that apply to picture 0 and PicSizeInMbs is the number of macroblocks in picture 0.

d) The sum of the NumBytesInNALunit variables for access unit n with n > 0 is less than or equal to 384 * MaxMBPS * ( tr( n ) − tr( n − 1 ) ) ÷ MinCR, where MaxMBPS and MinCR are the values specified in Table A‑1 that apply to picture n.

e) PicWidthInMbs * FrameHeightInMbs <= MaxFS, where MaxFS is specified in Table A‑1
f) PicWidthInMbs <= Sqrt( MaxFS * 8 )

g) FrameHeightInMbs <= Sqrt( MaxFS * 8 )

h) max_dec_frame_buffering <= MaxDpbFrames, where MaxDpbFrames is equal to Min( MaxDpbMbs / ( PicWidthInMbs * FrameHeightInMbs ), 16 ) and MaxDpbMbs is given in Table A‑1.

i) For the VCL HRD parameters, BitRate[ SchedSelIdx ] <= 1000 * MaxBR and CpbSize[ SchedSelIdx ] <= 1000 * MaxCPB for at least one value of SchedSelIdx, where BitRate[ SchedSelIdx ] and CpbSize[ SchedSelIdx ] are given as follows:

–
If vcl_hrd_parameters_present_flag is equal to 1, BitRate[ SchedSelIdx ] and CpbSize[ SchedSelIdx ] are given by Equations E-37 and E-38, respectively, using the syntax elements of the hrd_parameters( ) syntax structure that immediately follows vcl_hrd_parameters_present_flag.

–
Otherwise (vcl_hrd_parameters_present_flag is equal to 0), BitRate[ SchedSelIdx ] and CpbSize[ SchedSelIdx ] are inferred as specified in subclause E.2.2 for VCL HRD parameters.

MaxBR and MaxCPB are specified in Table A‑1 in units of 1000 bits/s and 1000 bits, respectively. The bitstream shall satisfy these conditions for at least one value of SchedSelIdx in the range 0 to cpb_cnt_minus1, inclusive.

j) For the NAL HRD parameters, BitRate[ SchedSelIdx ] <= 1200 * MaxBR and CpbSize[ SchedSelIdx ] <= 1200 * MaxCPB for at least one value of SchedSelIdx, where BitRate[ SchedSelIdx ] and CpbSize[ SchedSelIdx ] are given as follows:

–
If nal_hrd_parameters_present_flag is equal to 1, BitRate[ SchedSelIdx ] and CpbSize[ SchedSelIdx ] are given by Equations E-37 and E-38, respectively, using the syntax elements of the hrd_parameters( ) syntax structure that immediately follows nal_hrd_parameters_present_flag.

–
Otherwise (nal_hrd_parameters_present_flag is equal to 0), BitRate[ SchedSelIdx ] and CpbSize[ SchedSelIdx ] are inferred as specified in subclause E.2.2 for NAL HRD parameters.

MaxBR and MaxCPB are specified in Table A‑1 in units of 1200 bits/s and 1200 bits, respectively. The bitstream shall satisfy these conditions for at least one value of SchedSelIdx in the range 0 to cpb_cnt_minus1.

k) The vertical motion vector component range for luma motion vectors does not exceed MaxVmvR in units of luma frame samples, where MaxVmvR is specified in Table A‑1
l) The horizontal motion vector range does not exceed the range of −2048 to 2047.75, inclusive, in units of luma samples

m) Let setOf2Mb be the set of unsorted pairs of macroblocks that contains the unsorted pairs of macroblocks (mbA, mbB) of a coded video sequence for which any of the following conditions aretrue:

–
mbA and mbB are macroblocks that belong to the same slice and are consecutive in decoding order,

–
mbA is the last macroblock (in decoding order) of aslice, and mbB is the first macroblock (in decoding order) of the next slice in decoding order,

NOTE 2 – The macroblocks mbA and mbB can belong to different pictures.

For each unsorted pair of macroblocks (mbA, mbB) of the set setOf2Mb, the total number of motion vectors (given by the sum of the number of motion vectors for macroblock mbA and the number of motion vectors for macroblock mbB) does not exceed MaxMvsPer2Mb, where MaxMvsPer2Mb is specified in Table A‑1. The number of motion vectors for each macroblock is the value of the variable MvCnt after the completion of the intra or inter prediction process for the macroblock.

NOTE 3 – The constraint specifies that the total number of motion vectors for two consecutive macroblocks in decoding order must not exceed MaxMvsPer2Mb..

n) The number of bits of macroblock_layer( ) data for any macroblock is not greater than 3200. The number of bits of macroblock_layer( ) data is given by the number of bits in the macroblock_layer( ) syntax structure for a macroblock.

Table A‑1 specifies the limits for each level. A definition of all levels identified in the "Level number" column of Table A‑1 is specified for the Constrained Baseline profile. Each entry in Table A‑1 indicates, for the level corresponding to the row of the table, the absence or value of a limit that is imposed by the variable corresponding to the column of the table, as follows:

–
If the table entry is marked as "-", no limit is imposed by the value of the variable as a requirement of bitstream conformance to the profile at the specified level.

–
Otherwise, the table entry specifies the value of the variable for the associated limit that is imposed as a requirement of bitstream conformance to the profile at the specified level.

For purposes of comparison of level capabilities, a level shall be considered to be a lower (higher) level than some other level if the level appears nearer to the top (bottom) row of Table A‑1 than the other level.

In bitstreams conforming to the Constrained Baseline profile, the conformance of the bitstream to a specified level is indicated by the syntax elements level_idc and constraint_set3_flag as follows:

–
If level_idc is equal to 11 and constraint_set3_flag is equal to 1, the indicated level is level 1b.

–
Otherwise (level_idc is not equal to 11 or constraint_set3_flag is not equal to 1), level_idc is equal to a value of ten times the level number (of the indicated level) specified in Table A‑1.

Table A‑1 – Level limits

	Level number







	Max macroblock processing rate MaxMBPS (MB/s)



	Max frame size MaxFS (MBs)




	Max decoded picture buffer size MaxDpbMbs(MBs)



	Max 
video
bit rate MaxBR 
(1000 bits/s,
1200 bits/s, cpbBrVclFactor bits/s, or cpbBrNalFactor bits/s)
	Max
CPB size
MaxCPB
(1000 bits,
1200 bits, cpbBrVclFactor bits, or cpbBrNalFactor bits)
	Vertical MV component range 
MaxVmvR
(luma frame samples)



	Min compression ratio MinCR





	Max number of motion vectors per two consecutive MBs 
MaxMvsPer2Mb





	1
	1 485
	99
	396
	64
	175
	[−64,+63.75]
	2
	-

	1b
	1 485
	99
	396
	128
	350
	[−64,+63.75]
	2
	-

	1.1
	3 000
	396
	900
	192
	500
	[−128,+127.75]
	2
	-

	1.2
	6 000
	396
	2 376
	384
	1 000
	[−128,+127.75]
	2
	-

	1.3
	11 880
	396
	2 376
	768
	2 000
	[−128,+127.75]
	2
	-

	2
	11 880
	396
	2 376
	2 000
	2 000
	[−128,+127.75]
	2
	-

	2.1
	19 800
	792
	4 752
	4 000
	4 000
	[−256,+255.75]
	2
	-

	2.2
	20 250
	1 620
	8 100
	4 000
	4 000
	[−256,+255.75]
	2
	-

	3
	40 500
	1 620
	8 100
	10 000
	10 000
	[−256,+255.75]
	2
	32

	3.1
	108 000
	3 600
	18 000
	14 000
	14 000
	[−512,+511.75]
	4
	16

	3.2
	216 000
	5 120
	20 480
	20 000
	20 000
	[−512,+511.75]
	4
	16

	4
	245 760
	8 192
	32 768
	20 000
	25 000
	[−512,+511.75]
	4
	16

	4.1
	245 760
	8 192
	32 768
	50 000
	62 500
	[−512,+511.75]
	2
	16

	4.2
	522 240
	8 704
	34 816
	50 000
	62 500
	[−512,+511.75]
	2
	16

	5
	589 824
	22 080
	110 400
	135 000
	135 000
	[−512,+511.75]
	2
	16

	5.1
	983 040
	36 864
	184 320
	240 000
	240 000
	[−512,+511.75]
	2
	16


Levels with non-integer level numbers in Table A‑1 are referred to as "intermediate levels".

NOTE 4– All levels have the same status, but some applications may choose to use only the integer-numbered levels.

Informative subclause A.3.4 shows the effect of these limits on frame rates for several example picture formats.

In bitstreams conforming to the Constrained Baseline profile, ( xIntmax− xIntmin + 6 ) * ( yIntmax− yIntmin + 6 ) <= MaxSubMbRectSize in macroblocks coded with mb_type equal to P_8x8 or P_8x8ref0 for all invocations of the process specified in subclause 8.4.2.2.1 used to generate the predicted luma sample array for a single reference picture list (reference picture list 0) for each 8x8 sub-macroblock with the macroblock partition index mbPartIdx, where NumSubMbPart( sub_mb_type[ mbPartIdx ] ) > 1, where MaxSubMbRectSize is specified in Table A‑3 for the Constrained Baseline profile and in Table A‑5 for the Extended profile and

–
xIntmin is the minimum value of xIntL among all luma sample predictions for the sub-macroblock

–
xIntmax is the maximum value of xIntL among all luma sample predictions for the sub-macroblock

–
yIntmin is the minimum value of yIntL among all luma sample predictions for the sub-macroblock

–
yIntmax is the maximum value of yIntL among all luma sample predictions for the sub-macroblock

Table A‑3 specifies limits for each level that are specific to bitstreams conforming to the Constrained Baseline profile. Each entryin Table A‑3 indicates, for the level corresponding to the row of the table, the absence or value of a limit that is imposed by the variable corresponding to the column of the table, as follows:

–
If the table entry is marked as "-", no limit is imposed by the value of the variable as a requirement of bitstream conformance to the profile at the specified level.

–
Otherwise, the table entry specifies the value of the variable for the associated limit that is imposed as a requirement of bitstream conformance to the profile at the specified level.

Table A‑3 –Constrained Baseline profile level limits

	Level  number
	MaxSubMbRectSize

	1
	576

	1b
	576

	1.1
	576

	1.2
	576

	1.3
	576

	2
	576

	2.1
	576

	2.2
	576

	3
	576

	3.1
	-

	3.2
	-

	4
	-

	4.1
	-

	4.2
	-

	5
	-

	5.1
	-


A.3.1 Effect of level limits on frame rate (informative)

This subclause does not form an integral part of this International Standard.

Table A‑6 – Maximum frame rates (frames per second) for some example frame sizes

	Level:
	
	
	
	
	1
	1b
	1.1
	1.2
	1.3
	2
	2.1

	Max frame size (macroblocks):
	
	
	
	
	99
	99
	396
	396
	396
	396
	792

	Max macroblocks/second:
	
	
	
	
	1 485
	1 485
	3 000
	6 000
	11 880
	11 880
	19 800

	
	
	
	
	
	
	
	
	
	
	
	

	Max frame size (samples):
	
	
	
	
	25 344
	25 344
	101 376
	101 376
	101 376
	101 376
	202 752

	Max samples/second:
	
	
	
	
	380 160
	380 160
	768 000
	1 536 000
	3 041 280
	3 041 280
	5 068 800

	Format
	Luma Width
	Luma Height
	MBs Total
	Luma Samples
	
	
	
	
	
	
	

	SQCIF
	128
	96
	48
	12 288
	30.9
	30.9
	62.5
	125.0
	172.0
	172.0
	172.0

	QCIF
	176
	144
	99
	25 344
	15.0
	15.0
	30.3
	60.6
	120.0
	120.0
	172.0

	QVGA
	320
	240
	300
	76 800
	-
	-
	10.0
	20.0
	39.6
	39.6
	66.0

	525 SIF
	352
	240
	330
	84 480
	-
	-
	9.1
	18.2
	36.0
	36.0
	60.0

	CIF
	352
	288
	396
	101 376
	-
	-
	7.6
	15.2
	30.0
	30.0
	50.0

	525 HHR
	352
	480
	660
	168 960
	-
	-
	-
	-
	-
	-
	30.0

	625 HHR
	352
	576
	792
	202 752
	-
	-
	-
	-
	-
	-
	25.0

	VGA
	640
	480
	1 200
	307 200
	-
	-
	-
	-
	-
	-
	-

	525 4SIF
	704
	480
	1 320
	337 920
	-
	-
	-
	-
	-
	-
	-

	525 SD
	720
	480
	1 350
	345 600
	-
	-
	-
	-
	-
	-
	-

	4CIF
	704
	576
	1 584
	405 504
	-
	-
	-
	-
	-
	-
	-

	625 SD
	720
	576
	1 620
	414 720
	-
	-
	-
	-
	-
	-
	-

	SVGA
	800
	600
	1 900
	486 400
	-
	-
	-
	-
	-
	-
	-

	XGA
	1024
	768
	3 072
	786 432
	-
	-
	-
	-
	-
	-
	-

	720p HD
	1280
	720
	3 600
	921 600
	-
	-
	-
	-
	-
	-
	-

	4VGA
	1280
	960
	4 800
	1 228 800
	-
	-
	-
	-
	-
	-
	-

	SXGA
	1280
	1024
	5 120
	1 310 720
	-
	-
	-
	-
	-
	-
	-

	525 16SIF
	1408
	960
	5 280
	1 351 680
	-
	-
	-
	-
	-
	-
	-

	16CIF
	1408
	1152
	6 336
	1 622 016
	-
	-
	-
	-
	-
	-
	-

	4SVGA
	1600
	1200
	7 500
	1 920 000
	-
	-
	-
	-
	-
	-
	-

	1080 HD
	1920
	1088
	8 160
	2 088 960
	-
	-
	-
	-
	-
	-
	-

	2Kx1K
	2048
	1024
	8 192
	2 097 152
	-
	-
	-
	-
	-
	-
	-

	2Kx1080
	2048
	1088
	8 704
	2 228 224
	-
	-
	-
	-
	-
	-
	-

	4XGA
	2048
	1536
	12 288
	3 145 728
	-
	-
	-
	-
	-
	-
	-

	16VGA
	2560
	1920
	19 200
	4 915 200
	-
	-
	-
	-
	-
	-
	-

	3616x1536 (2.35:1)
	3616
	1536
	21 696
	5 554 176
	-
	-
	-
	-
	-
	-
	-

	3672x1536 (2.39:1)
	3680
	1536
	22 080
	5 652 480
	-
	-
	-
	-
	-
	-
	-

	4Kx2K
	4096
	2048
	32 768
	8 388 608
	-
	-
	-
	-
	-
	-
	-

	4096x2304 (16:9)
	4096
	2304
	36 864
	9 437 184
	-
	-
	-
	-
	-
	-
	-


Table A‑6 (continued) – Maximum frame rates (frames per second) for some example frame sizes

	Level:
	
	
	
	
	2.2
	3
	3.1
	3.2
	4
	4.1
	4.2

	Max frame size (macroblocks):
	
	
	
	
	1 620
	1 620
	3 600
	5 120
	8 192
	8 192
	8 704

	Max macroblocks/second:
	
	
	
	
	20 250
	40 500
	108 000
	216 000
	245 760
	245 760
	522 240

	
	
	
	
	
	
	
	
	
	
	
	

	Max frame size (samples):
	
	
	
	
	414 720
	414 720
	921 600
	1 310 720
	2 097 152
	2 097 152
	2 228 224

	Max samples/second:
	
	
	
	
	5 184 000
	10 368 000
	27 648 000
	55 296 000
	62 914 560
	62 914 560
	133 693 440

	Format
	Luma Width
	Luma Height
	MBs Total
	Luma Samples
	
	
	
	
	
	
	

	SQCIF
	128
	96
	48
	12 288
	172.0
	172.0
	172.0
	172.0
	172.0
	172.0
	172.0

	QCIF
	176
	144
	99
	25 344
	172.0
	172.0
	172.0
	172.0
	172.0
	172.0
	172.0

	QVGA
	320
	240
	300
	76 800
	67.5
	135.0
	172.0
	172.0
	172.0
	172.0
	172.0

	525 SIF
	352
	240
	330
	84 480
	61.4
	122.7
	172.0
	172.0
	172.0
	172.0
	172.0

	CIF
	352
	288
	396
	101 376
	51.1
	102.3
	172.0
	172.0
	172.0
	172.0
	172.0

	525 HHR
	352
	480
	660
	168 960
	30.7
	61.4
	163.6
	172.0
	172.0
	172.0
	172.0

	625 HHR
	352
	576
	792
	202 752
	25.6
	51.1
	136.4
	172.0
	172.0
	172.0
	172.0

	VGA
	640
	480
	1 200
	307 200
	16.9
	33.8
	90.0
	172.0
	172.0
	172.0
	172.0

	525 4SIF
	704
	480
	1 320
	337 920
	15.3
	30.7
	81.8
	163.6
	172.0
	172.0
	172.0

	525 SD
	720
	480
	1 350
	345 600
	15.0
	30.0
	80.0
	160.0
	172.0
	172.0
	172.0

	4CIF
	704
	576
	1 584
	405 504
	12.8
	25.6
	68.2
	136.4
	155.2
	155.2
	172.0

	625 SD
	720
	576
	1 620
	414 720
	12.5
	25.0
	66.7
	133.3
	151.7
	151.7
	172.0

	SVGA
	800
	600
	1 900
	486 400
	-
	-
	56.8
	113.7
	129.3
	129.3
	172.0

	XGA
	1024
	768
	3 072
	786 432
	-
	-
	35.2
	70.3
	80.0
	80.0
	172.0

	720p HD
	1280
	720
	3 600
	921 600
	-
	-
	30.0
	60.0
	68.3
	68.3
	145.1

	4VGA
	1280
	960
	4 800
	1 228 800
	-
	-
	-
	45.0
	51.2
	51.2
	108.8

	SXGA
	1280
	1024
	5 120
	1 310 720
	-
	-
	-
	42.2
	48.0
	48.0
	102.0

	525 16SIF
	1408
	960
	5 280
	1 351 680
	-
	-
	-
	-
	46.5
	46.5
	98.9

	16CIF
	1408
	1152
	6 336
	1 622 016
	-
	-
	-
	-
	38.8
	38.8
	82.4

	4SVGA
	1600
	1200
	7 500
	1 920 000
	-
	-
	-
	-
	32.8
	32.8
	69.6

	1080 HD
	1920
	1088
	8 160
	2 088 960
	-
	-
	-
	-
	30.1
	30.1
	64.0

	2Kx1K
	2048
	1024
	8 192
	2 097 152
	-
	-
	-
	-
	30.0
	30.0
	63.8

	2Kx1080
	2048
	1088
	8 704
	2 228 224
	-
	-
	-
	-
	-
	-
	60.0

	4XGA
	2048
	1536
	12 288
	3 145 728
	-
	-
	-
	-
	-
	-
	-

	16VGA
	2560
	1920
	19 200
	4 915 200
	-
	-
	-
	-
	-
	-
	-

	3616x1536 (2.35:1)
	3616
	1536
	21 696
	5 554 176
	-
	-
	-
	-
	-
	-
	-

	3672x1536 (2.39:1)
	3680
	1536
	22 080
	5 652 480
	-
	-
	-
	-
	-
	-
	-

	4Kx2K
	4096
	2048
	32 768
	8 388 608
	-
	-
	-
	-
	-
	-
	-

	4096x2304 (16:9)
	4096
	2304
	36 864
	9 437 184
	-
	-
	-
	-
	-
	-
	-


Table A‑6 (concluded) – Maximum frame rates (frames per second) for some example frame sizes

	Level:
	
	
	
	
	5
	5.1

	Max frame size (macroblocks):
	
	
	
	
	22 080
	36 864

	Max macroblocks/second:
	
	
	
	
	589 824
	983 040

	
	
	
	
	
	
	

	Max frame size (samples):
	
	
	
	
	5 652 480
	9 437 184

	Max samples/second:
	
	
	
	
	150 994 944
	251 658 240

	Format
	Luma Width
	Luma Height
	MBs Total
	Luma Samples
	
	

	SQCIF
	128
	96
	48
	12 288
	172.0
	172.0

	QCIF
	176
	144
	99
	25 344
	172.0
	172.0

	QVGA
	320
	240
	300
	76 800
	172.0
	172.0

	525 SIF
	352
	240
	330
	84 480
	172.0
	172.0

	CIF
	352
	288
	396
	101 376
	172.0
	172.0

	525 HHR
	352
	480
	660
	168 960
	172.0
	172.0

	625 HHR
	352
	576
	792
	202 752
	172.0
	172.0

	VGA
	640
	480
	1 200
	307 200
	172.0
	172.0

	525 4SIF
	704
	480
	1 320
	337 920
	172.0
	172.0

	525 SD
	720
	480
	1 350
	345 600
	172.0
	172.0

	4CIF
	704
	576
	1 584
	405 504
	172.0
	172.0

	625 SD
	720
	576
	1 620
	414 720
	172.0
	172.0

	SVGA
	800
	600
	1 900
	486 400
	172.0
	172.0

	XGA
	1024
	768
	3 072
	786 432
	172.0
	172.0

	720p HD
	1280
	720
	3 600
	921 600
	163.8
	172.0

	4VGA
	1280
	960
	4 800
	1 228 800
	122.9
	172.0

	SXGA
	1280
	1024
	5 120
	1 310 720
	115.2
	172.0

	525 16SIF
	1408
	960
	5 280
	1 351 680
	111.7
	172.0

	16CIF
	1408
	1152
	6 336
	1 622 016
	93.1
	155.2

	4SVGA
	1600
	1200
	7 500
	1 920 000
	78.6
	131.1

	1080 HD
	1920
	1088
	8 160
	2 088 960
	72.3
	120.5

	2Kx1K
	2048
	1024
	8 192
	2 097 152
	72.0
	120.0

	2Kx1080
	2048
	1088
	8 704
	2 228 224
	67.8
	112.9

	4XGA
	2048
	1536
	12 288
	3 145 728
	48.0
	80.0

	16VGA
	2560
	1920
	19 200
	4 915 200
	30.7
	51.2

	3616x1536 (2.35:1)
	3616
	1536
	21 696
	5 554 176
	27.2
	45.3

	3672x1536 (2.39:1)
	3680
	1536
	22 080
	5 652 480
	26.7
	44.5

	4Kx2K
	4096
	2048
	32 768
	8 388 608
	-
	30.0

	4096x2304 (16:9)
	4096
	2304
	36 864
	9 437 184
	-
	26.7


The following should be noted:

–
This International Standard is a variable-frame-size specification. The specific frame sizes in Table A‑6 are illustrative examples only.

–
As used in Table A‑6, "525" refers to typical use for environments using 525 analogue scan lines (of which approximately 480 lines contain the visible picture region), and "625" refers to environments using 625 analogue scan lines (of which approximately 576 lines contain the visible picture region).

–
XGA is also known as (aka) XVGA, 4SVGA aka UXGA, 16XGA aka 4Kx3K, CIF aka 625 SIF, 625 HHR aka 2CIF aka half 625 D-1, aka half 625 ITU-R BT.601, 525 SD aka 525 D-1 aka 525 ITU-R BT.601, 625 SD aka 625 D-1 aka 625 ITU-R BT.601.

–
Frame rates given are correct for progressive scan modes. The frame rates are also correct for interlaced video coding for the cases of frame height divisible by 32.

A.3.2 Effect of level limits on maximum DPB size in units of frames (informative)

This subclause does not form an integral part of this International Standard.

Table A‑7 – Maximum DPB size (frames) for some example frame sizes

	Level:
	
	
	
	1
	1b
	1.1
	1.2
	1.3
	2
	2.1
	2.2

	Max frame size (macroblocks):
	
	
	
	99
	99
	396
	396
	396
	396
	792
	1 620

	Max DPB size (macroblocks):
	
	
	
	396
	396
	900
	2 376
	2 376
	2 376
	4 752
	8 100

	Format
	Luma Width
	Luma Height
	MBs Total
	
	
	
	
	
	
	
	

	SQCIF
	128
	96
	48
	8
	8
	16
	16
	16
	16
	16
	16

	QCIF
	176
	144
	99
	4
	4
	9
	16
	16
	16
	16
	16

	QVGA
	320
	240
	300
	-
	-
	3
	7
	7
	7
	15
	16

	525 SIF
	352
	240
	330
	-
	-
	2
	7
	7
	7
	14
	16

	CIF
	352
	288
	396
	-
	-
	2
	6
	6
	6
	12
	16

	525 HHR
	352
	480
	660
	-
	-
	-
	-
	-
	-
	7
	12

	625 HHR
	352
	576
	792
	-
	-
	-
	-
	-
	-
	6
	10

	VGA
	640
	480
	1 200
	-
	-
	-
	-
	-
	-
	-
	6

	525 4SIF
	704
	480
	1 320
	-
	-
	-
	-
	-
	-
	-
	6

	525 SD
	720
	480
	1 350
	-
	-
	-
	-
	-
	-
	-
	6

	4CIF
	704
	576
	1 584
	-
	-
	-
	-
	-
	-
	-
	5

	625 SD
	720
	576
	1 620
	-
	-
	-
	-
	-
	-
	-
	5

	SVGA
	800
	600
	1 900
	-
	-
	-
	-
	-
	-
	-
	-

	XGA
	1024
	768
	3 072
	-
	-
	-
	-
	-
	-
	-
	-

	720p HD
	1280
	720
	3 600
	-
	-
	-
	-
	-
	-
	-
	-

	4VGA
	1280
	960
	4 800
	-
	-
	-
	-
	-
	-
	-
	-

	SXGA
	1280
	1024
	5 120
	-
	-
	-
	-
	-
	-
	-
	-

	525 16SIF
	1408
	960
	5 280
	-
	-
	-
	-
	-
	-
	-
	-

	16CIF
	1408
	1152
	6 336
	-
	-
	-
	-
	-
	-
	-
	-

	4SVGA
	1600
	1200
	7 500
	-
	-
	-
	-
	-
	-
	-
	-

	1080 HD
	1920
	1088
	8 160
	-
	-
	-
	-
	-
	-
	-
	-

	2Kx1K
	2048
	1024
	8 192
	-
	-
	-
	-
	-
	-
	-
	-

	2Kx1080
	2048
	1088
	8 704
	-
	-
	-
	-
	-
	-
	-
	-

	4XGA
	2048
	1536
	12 288
	-
	-
	-
	-
	-
	-
	-
	-

	16VGA
	2560
	1920
	19 200
	-
	-
	-
	-
	-
	-
	-
	-

	3616x1536 (2.35:1)
	3616
	1536
	21 696
	-
	-
	-
	-
	-
	-
	-
	-

	3672x1536 (2.39:1)
	3680
	1536
	22 080
	-
	-
	-
	-
	-
	-
	-
	-

	4Kx2K
	4096
	2048
	32 768
	-
	-
	-
	-
	-
	-
	-
	-

	4096x2304 (16:9)
	4096
	2304
	36 864
	-
	-
	-
	-
	-
	-
	-
	-


Table A‑7 (continued) – Maximum DPB size (frames) for some example frame sizes

	Level:
	
	
	
	3
	3.1
	3.2
	4
	4.1
	4.2
	5
	5.1

	Max frame size (macroblocks):
	
	
	
	1 620
	3 600
	5 120
	8 192
	8 192
	8 704
	22 080
	36 864

	Max DPB size (macroblocks):
	
	
	
	8 100
	18 000
	20 480
	32 768
	32 768
	34 816
	110 400
	184 320

	Format
	Luma Width
	Luma Height
	MBs Total
	
	
	
	
	
	
	
	

	SQCIF
	128
	96
	48
	16
	16
	16
	16
	16
	16
	16
	16

	QCIF
	176
	144
	99
	16
	16
	16
	16
	16
	16
	16
	16

	QVGA
	320
	240
	300
	16
	16
	16
	16
	16
	16
	16
	16

	525 SIF
	352
	240
	330
	16
	16
	16
	16
	16
	16
	16
	16

	CIF
	352
	288
	396
	16
	16
	16
	16
	16
	16
	16
	16

	525 HHR
	352
	480
	660
	12
	16
	16
	16
	16
	16
	16
	16

	625 HHR
	352
	576
	792
	10
	16
	16
	16
	16
	16
	16
	16

	VGA
	640
	480
	1 200
	6
	15
	16
	16
	16
	16
	16
	16

	525 4SIF
	704
	480
	1 320
	6
	13
	15
	16
	16
	16
	16
	16

	525 SD
	720
	480
	1 350
	6
	13
	15
	16
	16
	16
	16
	16

	4CIF
	704
	576
	1 584
	5
	11
	12
	16
	16
	16
	16
	16

	625 SD
	720
	576
	1 620
	5
	11
	12
	16
	16
	16
	16
	16

	SVGA
	800
	600
	1 900
	-
	9
	10
	16
	16
	16
	16
	16

	XGA
	1024
	768
	3 072
	-
	5
	6
	10
	10
	11
	16
	16

	720p HD
	1280
	720
	3 600
	-
	5
	5
	9
	9
	9
	16
	16

	4VGA
	1280
	960
	4 800
	-
	-
	4
	6
	6
	7
	16
	16

	SXGA
	1280
	1024
	5 120
	-
	-
	4
	6
	6
	6
	16
	16

	525 16SIF
	1408
	960
	5 280
	-
	-
	-
	6
	6
	6
	16
	16

	16CIF
	1408
	1152
	6 336
	-
	-
	-
	5
	5
	5
	16
	16

	4SVGA
	1600
	1200
	7 500
	-
	-
	-
	4
	4
	4
	14
	16

	1080 HD
	1920
	1088
	8 160
	-
	-
	-
	4
	4
	4
	13
	16

	2Kx1K
	2048
	1024
	8 192
	-
	-
	-
	4
	4
	4
	13
	16

	2Kx1080
	2048
	1088
	8 704
	-
	-
	-
	-
	-
	4
	12
	16

	4XGA
	2048
	1536
	12 288
	-
	-
	-
	-
	-
	-
	8
	15

	16VGA
	2560
	1920
	19 200
	-
	-
	-
	-
	-
	-
	5
	9

	3616x1536 (2.35:1)
	3616
	1536
	21 696
	-
	-
	-
	-
	-
	-
	5
	8

	3672x1536 (2.39:1)
	3680
	1536
	22 080
	-
	-
	-
	-
	-
	-
	5
	8

	4Kx2K
	4096
	2048
	32 768
	-
	-
	-
	-
	-
	-
	-
	5

	4096x2304 (16:9)
	4096
	2304
	36 864
	-
	-
	-
	-
	-
	-
	-
	5


The following should be noted:

–
As used in Table A‑7, "525" refers to typical use for environments using 525 analogue scan lines (of which approximately 480 lines contain the visible picture region), and "625" refers to environments using 625 analogue scan lines (of which approximately 576 lines contain the visible picture region).

–
XGA is also known as (aka) XVGA, 4SVGA aka UXGA, 16XGA aka 4Kx3K, CIF aka 625 SIF, 625 HHR aka 2CIF aka half 625 D-1, aka half 625 ITU-R BT.601, 525 SD aka 525 D-1 aka 525 ITU-R BT.601, 625 SD aka 625 D-1 aka 625 ITU-R BT.601.

B Annex B
(normative)

Byte stream format

This annex specifies syntax and semantics of a byte stream format specified for use by applications that deliver some or all of the NAL unit stream as an ordered stream of bytes or bits within which the locations of NAL unit boundaries need to be identifiable from patterns in the data, such as ITU-T Rec. H.222.0 | ISO/IEC 13818-1 systems or ITU‑T Rec. H.320 systems. For bit-oriented delivery, the bit order for the byte stream format is specified to start with the MSB of the first byte, proceed to the LSB of the first byte, followed by the MSB of the second byte, etc.

The byte stream format consists of a sequence of byte stream NAL unit syntax structures. Each byte stream NAL unit syntax structure contains one start code prefix followed by one nal_unit( NumBytesInNALunit ) syntax structure. It may (and under some circumstances, it shall) also contain an additional zero_byte syntax element. It may also contain one or more additional trailing_zero_8bits syntax elements. When it is the first byte stream NAL unit in the bitstream, it may also contain one or more additional leading_zero_8bits syntax elements.

B.1 Byte stream NAL unit syntax and semantics

B.1.1 Byte stream NAL unit syntax

	byte_stream_nal_unit( NumBytesInNALunit ) {
	Descriptor

	
while( next_bits( 24 )  !=  0x000001 &&




next_bits( 32 ) != 0x00000001 )
	

	

leading_zero_8bits  /* equal to 0x00 */
	f(8)

	
if( next_bits( 24 ) != 0x000001 )
	

	

zero_byte  /* equal to 0x00 */
	f(8)

	
start_code_prefix_one_3bytes  /* equal to 0x000001 */
	f(24)

	
nal_unit( NumBytesInNALunit )
	

	
while( more_data_in_byte_stream( ) &&




next_bits( 24 ) != 0x000001 &&




next_bits( 32 ) != 0x00000001 )
	

	

trailing_zero_8bits  /* equal to 0x00 */
	f(8)

	}
	


B.1.2 Byte stream NAL unit semantics

The order of byte stream NAL units in the byte stream shall follow the decoding order of the NAL units contained in the byte stream NAL units (see subclause 7.4.1.2). The content of each byte stream NAL unit is associated with the same access unit as the NAL unit contained in the byte stream NAL unit (see subclause 7.4.1.2.3).

leading_zero_8bits is a byte equal to 0x00.

NOTE – The leading_zero_8bits syntax element can only be present in the first byte stream NAL unit of the bitstream, because (as shown in the syntax diagram of subclause B.1.1) any bytes equal to 0x00 that follow a NAL unit syntax structure and precede the four-byte sequence 0x00000001 (which is to be interpreted as a zero_byte followed by a start_code_prefix_one_3bytes) will be considered to be trailing_zero_8bits syntax elements that are part of the preceding byte stream NAL unit.

zero_byte is a single byte equal to 0x00.

When any of the following conditions are true, the zero_byte syntax element shall be present:

–
the nal_unit_type within the nal_unit( ) is equal to 7 (sequence parameter set) or 8 (picture parameter set),

–
the byte stream NAL unit syntax structure contains the first NAL unit of an access unit in decoding order, as specified insubclause 7.4.1.2.3.

start_code_prefix_one_3bytes is a fixed-value sequence of 3 bytes equal to 0x000001. This syntax element is called a start code prefix.

trailing_zero_8bits is a byte equal to 0x00.

B.2 Byte stream NAL unit decoding process

Input to this process consists of an ordered stream of bytes consisting of a sequence of byte stream NAL unit syntax structures.

Output of this process consists of a sequence of NAL unit syntax structures.

At the beginning of the decoding process, the decoder initialises its current position in the byte stream to the beginning of the byte stream. It then extracts and discards each leading_zero_8bits syntax element (if present), moving the current position in the byte stream forward one byte at a time, until the current position in the byte stream is such that the next four bytes in the bitstream form the four-byte sequence 0x00000001.

The decoder then performs the following step-wise process repeatedly to extract and decode each NAL unit syntax structure in the byte stream until the end of the byte stream has been encountered (as determined by unspecified means) and the last NAL unit in the byte stream has been decoded:

1. When the next four bytes in the bitstream form the four-byte sequence 0x00000001, the next byte in the byte stream (which is a zero_byte syntax element) is extracted and discarded and the current position in the byte stream is set equal to the position of the byte following this discarded byte.

2. The next three-byte sequence in the byte stream (which is a start_code_prefix_one_3bytes) is extracted and discarded and the current position in the byte stream is set equal to the position of the byte following this three‑byte sequence.

3. NumBytesInNALunit is set equal to the number of bytes starting with the byte at the current position in the byte stream up to and including the last byte that precedes the location of any of the following:

–
A subsequent byte-aligned three-byte sequence equal to 0x000000,

–
A subsequent byte-aligned three-byte sequence equal to 0x000001,

–
The end of the byte stream, as determined by unspecified means.

4. NumBytesInNALunit bytes are removed from the bitstream and the current position in the byte stream is advanced by NumBytesInNALunit bytes. This sequence of bytes is nal_unit( NumBytesInNALunit ) and is decoded using the NAL unit decoding process.

5. When the current position in the byte stream is not at the end of the byte stream (as determined by unspecified means) and the next bytes in the byte stream do not start with a three-byte sequence equal to 0x000001 and the next bytes in the byte stream do not start with a four byte sequence equal to 0x00000001, the decoder extracts and discards each trailing_zero_8bits syntax element, moving the current position in the byte stream forward one byte at a time, until the current position in the byte stream is such that the next bytes in the byte stream form the four-byte sequence 0x00000001 or the end of the byte stream has been encountered (as determined by unspecified means).

B.3 Decoder byte-alignment recovery (informative)

This subclause does not form an integral part of this International Standard.

Many applications provide data to a decoder in a manner that is inherently byte aligned, and thus have no need for the bit-oriented byte alignment detection procedure described in this subclause.

A decoder is said to have byte-alignment with a bitstream when the decoder is able to determine whether or not the positions of data in the bitstream are byte-aligned. When a decoder does not have byte alignment with the encoder's byte stream, the decoder may examine the incoming bitstream for the binary pattern '00000000 00000000 00000000 00000001' (31 consecutive bits equal to 0 followed by a bit equal to 1). The bit immediately following this pattern is the first bit of an aligned byte following a start code prefix. Upon detecting this pattern, the decoder will be byte aligned with the encoder and positioned at the start of a NAL unit in the byte stream.

Once byte aligned with the encoder, the decoder can examine the incoming byte stream for subsequent three-byte sequences 0x000001 and 0x000003.

When the three-byte sequence 0x000001 is detected, this is a start code prefix.

When the three-byte sequence 0x000003 is detected, the third byte (0x03) is an emulation_prevention_three_byte to be discarded as specified in subclause 7.4.1.

When an error in the bitstream syntax is detected (e.g., a non-zero value of the forbidden_zero_bit or one of the three‑byte or four-byte sequences that are prohibited in subclause 7.4.1), the decoder may consider the detected condition as an indication that byte alignment may have been lost and may discard all bitstream data until the detection of byte alignment at a later position in the bitstream as described in this subclause.

C Annex C
(normative)

Hypothetical reference decoder

This annex specifies the hypothetical reference decoder (HRD) and its use to check bitstream and decoder conformance.

Two types of bitstreams are subject to HRD conformance checking for this International Standard. The first such type of bitstream, called Type I bitstream, is a NAL unit stream containing only the VCL NAL units and filler data NAL units for all access units in the bitstream. The second type of bitstream, called a Type II bitstream, contains, in addition to the VCL NAL units and filler data NAL units for all access units in the bitstream, at least one of the following:

–
additional non-VCL NAL units other than filler data NAL units,

–
all leading_zero_8bits, zero_byte, start_code_prefix_one_3bytes, and trailing_zero_8bits syntax elements that form a byte stream from the NAL unit stream (as specified in Annex B).

Figure C‑1 shows the types of bitstream conformance points checked by the HRD.


[image: image46.emf]Type I HRD

conformance point

Type II HRD

conformance point when

not using

byte stream format

VCL NAL units

Non-VCL NAL units other

than filler data NAL units

Type II HRD

conformance point when

using

byte stream format

Filler data NAL units

Byte stream format

encapsulation

(see Annex B)


Figure C‑1 – Structure of byte streams and NAL unit streams for HRD conformance checks

The syntax elements of non-VCL NAL units (or their default values for some of the syntax elements), required for the HRD, are specified in the semantic subclauses of clause 7, and E, Two types of HRD parameter sets (NAL HRD parameters and VCL HRD parameters) are used. The HRD parameter sets are signalled as follows:

–
When the coded video sequence conforms to one or more of the profiles specified in Annex A and the decoding process specified in clauses 2-9 is applied, the HRD parameter sets are signalled through video usability information as specified in subclauses E.1 and E.2, which is part of the sequence parameter set syntax structure.

NOTE 1 – For coded video sequences that conform to one or more of the profiles specified in Annex A the signalling of the applicable HRD parameter sets is specified in clauses 2-9  

All sequence parameter sets and picture parameter sets referred to in the VCL NAL units, and corresponding buffering period and picture timing SEI messages shall be conveyed to the HRD, in a timely manner, either in the bitstream (by non-VCL NAL units), or by other means not specified in this International Standard.

In Annexes C,  and E and the specification for "presence" of non-VCL NAL units is also satisfied when those NAL units (or just some of them) are conveyed to decoders (or to the HRD) by other means not specified by this International Standard. For the purpose of counting bits, only the appropriate bits that are actually present in the bitstream are counted.

NOTE 3– As an example, synchronization of a non-VCL NAL unit, conveyed by means other than presence in the bitstream, with the NAL units that are present in the bitstream, can be achieved by indicating two points in the bitstream, between which the non‑VCL NAL unit would have been present in the bitstream, had the encoder decided to convey it in the bitstream.

When the content of a non-VCL NAL unit is conveyed for the application by some means other than presence within the bitstream, the representation of the content of the non-VCL NAL unit is not required to use the same syntax specified in this annex.

NOTE 4 – When HRD information is contained within the bitstream, it is possible to verify the conformance of a bitstream to the requirements of this subclause based solely on information contained in the bitstream. When the HRD information is not present in the bitstream, as is the case for all "stand-alone" Type I bitstreams, conformance can only be verified when the HRD data is supplied by some other means not specified in this International Standard.

The HRD contains a coded picture buffer (CPB), an instantaneous decoding process, a decoded picture buffer (DPB), and output cropping as shown in Figure C‑2.


[image: image47.emf]Hypothetical

stream scheduler

(HSS)

Coded picture

buffer (CPB)

Decoding process

(instantaneous)

Output cropping

Decoded picture

buffer (DPB)

Type I or type II bitstream

Access units

Fields or frames

Fields or frames

Reference

fields or frames

Output cropped fields or frames


Figure C‑2 – HRD buffer model

The CPB size (number of bits) is CpbSize[ SchedSelIdx ]. The DPB size (number of frame buffers) is Max( 1, max_dec_frame_buffering ). 

The HRD operates as follows. Data associated with access units that flow into the CPB according to a specified arrival schedule are delivered by the HSS. The data associated with each access unit are removed and decoded instantaneously by the instantaneous decoding process at CPB removal times. Each decoded picture is placed in the DPB at its CPB removal time unless it is output at its CPB removal time and is a non-reference picture. When a picture is placed in the DPB it is removed from the DPB at the later of the DPB output time or the time that it is marked as "unused for reference".

For each picture in the bitstream, the variable OutputFlag for the decoded picture and, when applicable, the reference base picture is set as follows:

–
If the coded video sequence containing the picture conforms to one or more of the profiles specified in Annex A and the decoding process specified in clauses 2-9 is applied, OutputFlag is set equal to 1.

The operation of the CPB is specified in subclause C.1. The instantaneous decoder operation is specified in clauses 2-9 (for coded video sequences conforming to one or more of the profiles specified in Annex A) The operation of the DPB is specified in subclause C.2. The output cropping is specified in subclause C.2.2.

NOTE 5 – Coded video sequences that conform to  one or more of the profiles specified in Annex A can be decoded by the decoding process specified in clauses 2-9 

HSS and HRD information concerning the number of enumerated delivery schedules and their associated bit rates and buffer sizes is specified in subclauses E.1.1, E.1.2, E.2.1, E.2.2, All timing information relating to a specific access unit shall arrive prior to the CPB removal time of the access unit.

The HRD is used to check conformance of bitstreams and decoders as specified in subclauses C.3 and C.4, respectively.

NOTE 7 – While conformance is guaranteed under the assumption that all frame-rates and clocks used to generate the bitstream match exactly the values signalled in the bitstream, in a real system each of these may vary from the signalled or specified value.

All the arithmetic in this annex is done with real values, so that no rounding errors can propagate. For example, the number of bits in a CPB just prior to or after removal of an access unit is not necessarily an integer.

The variable tc is derived as follows and is called a clock tick:

tc = num_units_in_tick  time_scale

(C-1)
The following is specified for expressing the constraints in this annex:

–
Let access unit n be the n-th access unit in decoding order with the first access unit being access unit 0.

–
Let picture n be the primary coded picture or the decoded primary picture of access unit n.

C.1 Operation of coded picture buffer (CPB)

The specifications in this subclause apply independently to each set of CPB parameters that is present and to both the Type I and Type II conformance points shown in Figure C‑1.

C.1.1 Timing of bitstream arrival

Prior to initialisation, the CPB is empty.

Each access unit is referred to as access unit n, where the number n identifies the particular access unit. The value of n is incremented by 1 for each subsequent access unit in decoding order.

The time at which the first bit of access unit n begins to enter the CPB is referred to as the initial arrival time tai( n ).
The initial arrival time of access units is derived as follows:

–
If the access unit is access unit 0, tai( 0 ) = 0,
–
Otherwise (the access unit is access unit n with n > 0), the following applies:

–
If cbr_flag[ SchedSelIdx ] is equal to 1, the initial arrival time for access unit n, is equal to the final arrival time (which is derived below) of access unit n − 1, i.e.,

tai( n ) = taf( n − 1 )

(C-2)

–
Otherwise (cbr_flag[ SchedSelIdx ] is equal to 0), the initial arrival time for access unit n is derived by

tai( n ) = Max( taf( n − 1 ), tai,earliest( n ) )

(C-3)

where tai,earliest( n ) is derived as follows:

–
If access unit n is not the first access unit of a subsequent buffering period, tai,earliest( n ) is derived as

tai,earliest( n ) = tr,n( n ) − ( initial_cpb_removal_delay[ SchedSelIdx ]+
 initial_cpb_removal_delay_offset[ SchedSelIdx ] )90000
(C-4)

with tr,n( n ) being the nominal removal time of access unit n from the CPB as specified in subclause C.1.2 and initial_cpb_removal_delay[ SchedSelIdx ]and initial_cpb_removal_delay_offset[ SchedSelIdx ] being specified in the previous buffering period SEI message.

–
Otherwise (access unit n is the first access unit of a subsequent buffering period), tai,earliest( n ) is derived as

tai,earliest( n ) = tr,n( n ) − ( initial_cpb_removal_delay[ SchedSelIdx ] 90000 )
(C-5)

with initial_cpb_removal_delay[ SchedSelIdx ] being specified in the buffering period SEI message associated with access unit n.

The final arrival time for access unit n is derived by

taf( n ) = tai( n ) + b( n )  BitRate[ SchedSelIdx ]

(C-6)

where b( n ) is the size in bits of access unit n, counting the bits of the VCL NAL units and the filler data NAL units for the Type I conformance point or all bits of the Type II bitstream for the Type II conformance point, where the Type I and Type II conformance points are as shown in Figure C‑1.

The values of SchedSelIdx, BitRate[ SchedSelIdx ], and CpbSize[ SchedSelIdx ] are constrained as follows:
–
If the content of the active sequence parameter sets for access unit n and access unit n − 1 differ, the HSS selects a value SchedSelIdx1 of SchedSelIdx from among the values of SchedSelIdx provided in the active sequence parameter set for access unit n that results in a BitRate[ SchedSelIdx1 ] or CpbSize[ SchedSelIdx1 ] for access unit n. The value of BitRate[ SchedSelIdx1 ] or CpbSize[ SchedSelIdx1 ] may differ from the value of BitRate[ SchedSelIdx0 ] or CpbSize[ SchedSelIdx0 ] for the value SchedSelIdx0 of SchedSelIdxthat was in use for access unit n − 1.
–
Otherwise, the HSS continues to operate with the previous values of SchedSelIdx, BitRate[ SchedSelIdx ] and CpbSize[ SchedSelIdx ].

When the HSS selects values of BitRate[ SchedSelIdx ] or CpbSize[ SchedSelIdx ] that differ from those of the previous access unit, the following applies:
–
the variable BitRate[ SchedSelIdx ] comes into effect at time tai( n )

–
the variable CpbSize[ SchedSelIdx ] comes into effect as follows:
–
If the new value of CpbSize[ SchedSelIdx ] exceeds the old CPB size, it comes into effect at time tai( n ),
–
Otherwise, the new value of CpbSize[ SchedSelIdx ] comes into effect at the time tr( n ).
C.1.2 Timing of coded picture removal

When an access unit n is the access unit with n equal to 0 (the access unit that initialises the HRD), the nominal removal time of the access unit from the CPB is specified by
tr,n( 0 ) = initial_cpb_removal_delay[ SchedSelIdx ] 90000
(C-7)

When an access unit n is the first access unit of a buffering period that does not initialise the HRD, the nominal removal time of the access unit from the CPB isspecified by

tr,n( n ) = tr,n( nb ) + tc* cpb_removal_delay( n )

(C-8)

where tr,n( nb ) is the nominal removal time of the first access unit of the previous buffering period and cpb_removal_delay( n ) is the value of cpb_removal_delay specified in the picture timing SEI message associated with access unit n.

The nominal removal time tr,n(n) of an access unit n that is not the first access unit of a buffering period is given by

tr,n( n ) = tr,n( nb ) + tc* cpb_removal_delay( n )

(C-9)

where tr,n( nb ) is the nominal removal time of the first access unit of the current buffering period and cpb_removal_delay( n ) is the value of cpb_removal_delay specified in the picture timing SEI message associated with access unit n.

The removal time of access unit n is specified as follows:

–
If low_delay_hrd_flag is equal to 0 or tr,n( n ) >= taf( n ), the removal time of access unit n is specified by

tr( n ) = tr,n( n )

(C-10)

–
Otherwise (low_delay_hrd_flag is equal to 1 and tr,n( n ) <taf( n )), the removal time of access unit n is specified by

tr( n ) = tr,n( n ) + tc* Ceil( ( taf( n ) − tr,n( n ) ) tc) 

(C-11)

NOTE – The latter case indicates that the size of access unit n, b( n ), is so large that it prevents removal at the nominal removal time.

When an access unit n is the first access unit of a buffering period, nb is set equal to n at the removal time tr( n ) of the access unit n.

C.2 Operation of the decoded picture buffer (DPB)

The decoded picture buffer contains frame buffers. When a coded video sequence conforming to one or more of the profiles specified in Annex A is decoded by applying the decoding process specified in clauses 2-9, each of the frame buffers may contain a decoded frame that is marked as "used for reference" (reference pictures) or is held for future output (reordered or delayed pictures).

Prior to initialisation, the DPB is empty (the DPB fullness is set to zero). The following steps specified in this subclause all happen instantaneously at tr( n ) and in the order listed. 
1. The process of decoding gaps in frame_num and storing "non-existing" frames as specified in subclause C.2.1 is invoked.

2. The picture decoding and output process as specified in subclause C.2.2 is invoked.

3. The process of removing pictures from the DPB before possible insertion of the current picture as specified in subclause C.2.3 is invoked.

4. The process of marking and storing the current decoded picture as specified in subclause C.2.4 is invoked.

C.2.1 Decoding of gaps in frame_num and storage of "non-existing" frames

When applicable, gaps in frame_num are detected by the decoding process and the generated frames are marked and inserted into the DPB as specified below.

Gaps in frame_num are detected by the decoding process and the generated frames are marked as specified in subclauses 8.2.5.2.

After the marking of each generated frame, each picture m marked by the "sliding window" process as "unused for reference" is removed from the DPB when it is also marked as "non-existing" or its DPB output time is less than or equal to the CPB removal time of the current picture n; i.e., to,dpb( m ) <=tr( n ), or it has OutputFlag equal to 0. When a frame is removed from the DPB, the DPB fullness is decremented by one. The "non-existing" generated frame is inserted into the DPB and the DPB fullness is incremented by one.

C.2.2 Picture decoding and output

The decoding of the current picture and the derivation of the DPB output time (if applicable) is specified as follows:

–
If the decoding process specified in clause 8, the following applies:
–
The current primary coded picture n is decoded.

–
When picture n has OutputFlag equal to 1, its DPB output time to,dpb( n ) is derived by

to,dpb( n ) = tr( n ) + tc* dpb_output_delay( n )

(C-12)

where dpb_output_delay( n ) is the value of dpb_output_delay specified in the picture timing SEI message associated with access unit n.

The output of the current picture is specified as follows:

–
If OutputFlag is equal to 1 andto,dpb( n ) = tr( n ), the current picture or view component is output.

NOTE 1– When the current picture has nal_ref_idc greater than 0 it will be stored in the DPB.

–
Otherwise, if OutputFlag is equal to 0, the current picture or view component is not output, but it may be stored in the DPB as specified in subclause C.2.4.

–
Otherwise (OutputFlag is equal to 1 andto,dpb( n ) > tr( n ) ), the current picture is output later and will be stored in the DPB (as specified in subclause C.2.4) and is output at time to,dpb( n ) unless indicated not to be output by the decoding or inference of no_output_of_prior_pics_flag equal to 1 at a time that precedes to,dpb( n ).

When output, the picture or view component shall be cropped, using the cropping rectangle specified in the active sequence parameter set for the picture or view component.

When the decoding process specified in clause 8 is applied, the currentpicture n is a picture that is output and is not the last picture of the bitstream that is output, the value of (to,dpb( n ) is derived by

(to,dpb( n ) = to,dpb( nn ) −to,dpb( n )

(C-13)

where nn indicates the picture that follows after picture n in output order and has OutputFlag equal to 1.

C.2.3 Removal of pictures from the DPB before possible insertion of the current picture

The removal of pictures from the DPB before possible insertion of the current picture proceeds as follows:

–
If the decoded picture is an IDR picture the following applies:

1. All reference pictures in the DPB are marked as "unused for reference" as specified in subclause 8.2.5.1 when a coded video sequence conforming to one or more of the profiles specified in Annex A is decoded by applying the decoding process specified in clauses 2-9
2. When the IDR picture is not the first IDR picture decoded and the value of PicWidthInMbs or FrameHeightInMbs or max_dec_frame_buffering derived from the active sequence parameter set is different from the value of PicWidthInMbs or FrameHeightInMbs or max_dec_frame_buffering derived from the sequence parameter set that was active for the preceding picture, respectively, no_output_of_prior_pics_flag is inferred to be equal to 1 by the HRD, regardless of the actual value of no_output_of_prior_pics_flag.

NOTE – Decoder implementations should try to handle frame or DPB size changes more gracefully than the HRD in regard to changes in PicWidthInMbs or FrameHeightInMbs.

3. When no_output_of_prior_pics_flag is equal to 1 or is inferred to be equal to 1, all frame buffers in the DPB are emptied without output of the pictures they contain, and DPB fullness is set to 0.
–
Otherwise (the decoded picture is not an IDR picture), the following applies:

–
If the slice header of the current picture includes memory_management_control_operation equal to 5, all reference pictures in the DPB are marked as "unused for reference".

–
Otherwise (the slice header of the current picture does not include memory_management_control_operation equal to 5), the decoded reference picture marking process specified in subclause 8.2.5 is invoked when a coded video sequence conforming to one or more of the profiles specified in Annex A is decoded by applying the decoding process specified in clauses 2-9, 
All pictures m in the DPB, for which all of the following conditions are true, are removed from the DPB:

–
picture m is marked as "unused for reference" or picture m is a non-reference picture.  

–
picture m is marked as "non-existing" or it has OutputFlag equal to 0 or its DPB output time to,dpb( m ) is less than or equal to the CPB removal time tr( n ) of the current picture n.

When a frame is removed from the DPB, the DPB fullness is decremented by one.

C.2.4 Current decoded picture marking and storage

The marking and storage of the current decoded picture is specified as follows:

–
If the current picture is a reference picture, the marking and storage process for reference pictures as specified in subclause C.2.4.1 is invoked.

–
Otherwise (the current picture is a non-reference picture), the storage process for non-reference pictures as specified in subclause C.2.4.2 is invoked.

C.2.4.1 Marking and storage of a reference picture into the DPB

The current decoded picture is stored in an empty frame buffer, and the DPB fullness is incremented by one.

C.2.4.2 Storage of a non-reference picture into the DPB

The variable storePicFlag is derived as follows:

–
If the following condition is true, storePicFlag is set equal to 1:

–
the current picture n has OutputFlag equal to 1 andto,dpb(n) > tr(n),

–
Otherwise, storePicFlag is set equal to 0.

When storePicFlag is equal to 1, the current picture is stored in the DPB as follows:

–
the current decoded picture is stored in an empty frame buffer, and the DPB fullness is incremented by one.

C.3 Bitstream conformance

A bitstream of coded data conforming to this International Standard fulfils the following requirements.

The bitstream is constructed according to the syntax, semantics, and constraints specified in this International Standard outside of this annex.

The bitstream is tested by the HRD as specified below:

For Type I bitstreams, the number of tests carried out is equal to cpb_cnt_minus1 + 1 where cpb_cnt_minus1 is either the syntax element of hrd_parameters( ) following the vcl_hrd_parameters_present_flag or is determined by the application by other means not specified in this International Standard. One test is carried out for each bit rate and CPB size combination specified by hrd_parameters( ) following the vcl_hrd_parameters_present_flag. Each of these tests is conducted at the Type I conformance point shown in Figure C‑1.

For Type II bitstreams there are two sets of tests. The number of tests of the first set is equal to cpb_cnt_minus1 + 1 where cpb_cnt_minus1 is either the syntax element of hrd_parameters( ) following the vcl_hrd_parameters_present_flag or is determined by the application by other means not specified in this International Standard. One test is carried out for each bit rate and CPB size combination. Each of these tests is conducted at the Type I conformance point shown in Figure C‑1. For these tests, only VCL and filler data NAL units are counted for the input bit rate and CPB storage.

The number of tests of the second set, for Type II bitstreams, is equal to cpb_cnt_minus1 + 1 where cpb_cnt_minus1 is either the syntax element of hrd_parameters( ) following the nal_hrd_parameters_present_flag or is determined by the application by other means not specified in this International Standard. One test is carried out for each bit rate and CPB size combination specified by hrd_parameters( ) following the nal_hrd_parameters_present_flag. Each of these tests is conducted at the Type II conformance point shown in Figure C‑1. For these tests, all NAL units (of a Type II NAL unit stream) or all bytes (of a byte stream) are counted for the input bit rate and CPB storage.

NOTE 1 – NAL HRD parameters established by a value of SchedSelIdx for the Type II conformance point shown in Figure C‑1 are sufficient to also establish VCL HRD conformance for the Type I conformance point shown in Figure C‑1 for the same values of initial_cpb_removal_delay[ SchedSelIdx ], BitRate[ SchedSelIdx ], and CpbSize[ SchedSelIdx ] for the VBR case (cbr_flag[ SchedSelIdx ] equal to 0). This is because the data flow into the Type I conformance point is a subset of the data flow into the Type II conformance point and because, for the VBR case, the CPB is allowed to become empty and stay empty until the time a next picture is scheduled to begin to arrive. For example, when a coded video sequence conforming to one or more of the profiles specified in Annex A is decoded by applying the decoding process specified in clauses 2-9, when NAL HRD parameters are provided for the Type II conformance point that not only fall within the bounds set for NAL HRD parameters for profile conformance in item j) of subclause A.3.1 or item h) of subclause A.3.3 (depending on the profile in use) but also fall within the bounds set for VCL HRD parameters for profile conformance in item i) of subclause A.3.1 or item g) of subclause A.3.3 (depending on the profile in use), conformance of the VCL HRD for the Type I conformance point is also assured to fall within the bounds of item i) of subclause A.3.1.
For conforming bitstreams, all of the following conditions shall be fulfilled for each of the tests:

1. For each access unit n, with n>0, associated with a buffering period SEI message, with (tg,90( n ) specified by

(tg,90( n ) = 90000 * ( tr,n( n ) − taf( n − 1 ) )

(C-14)

the value of initial_cpb_removal_delay[ SchedSelIdx ] shall be constrained as follows:

–
If cbr_flag[ SchedSelIdx ] is equal to 0,

initial_cpb_removal_delay[ SchedSelIdx ]<= Ceil( (tg,90( n ) )
(C-15)

–
Otherwise (cbr_flag[ SchedSelIdx ] is equal to 1),

Floor( (tg,90( n ) ) <= 
initial_cpb_removal_delay[ SchedSelIdx ]<= Ceil( (tg,90( n ) )
(C-16)

NOTE 2 – The exact number of bits in the CPB at the removal time of each picture may depend on which buffering period SEI message is selected to initialise the HRD. Encoders must take this into account to ensure that all specified constraints must be obeyed regardless of which buffering period SEI message is selected to initialise the HRD, as the HRD may be initialised at any one of the buffering period SEI messages.

2. A CPB overflow is specified as the condition in which the total number of bits in the CPB is larger than the CPB size. The CPB shall never overflow.

3. A CPB underflow is specified as the condition in which tr,n( n ) is less than taf( n ). When low_delay_hrd_flag is equal to 0, the CPB shall never underflow.

4. The nominal removal times of pictures from the CPB (starting from the second picture in decoding order), shall satisfy the constraints on tr,n( n ) and tr( n ) expressed in subclauses A.3.1 through A.3.3 for the profile and level specified in the bitstream when a coded video sequence conforming to one or more of the profiles specified in Annex A is decoded by applying the decoding process specified in clauses 2-9.

5. Immediately after any decoded picture is added to the DPB, the fullness of the DPB shall be less than or equal to the DPB size as constrained by Annex A, for the profile and level specified in the bitstream.

6. All reference pictures shall be present in the DPB when needed for prediction. Each picture shall be present in the DPB at its DPB output time unless it is not stored in the DPB at all, or is removed from the DPB before its output time by one of the processes specified in subclause C.2.

7. The value of (to,dpb( n ) as given by Equation C-13, which is the difference between the output time of a picture and that of the first picture following it in output order and having OutputFlag equal to 1, shall satisfy the constraint expressed in subclause A.3.1 for the profile and level specified in the bitstream when a coded video sequence conforming to one or more of the profiles specified in Annex A is decoded by applying the decoding process specified in clauses 2-9. 
C.4 Decoder conformance

A decoder conforming to this International Standard fulfils the following requirements.

A decoder claiming conformance to a specific profile and level shall be able to decode successfully all conforming bitstreams specified for decoder conformance in subclause C.3, provided that all sequence parameter sets and picture parameter sets referred to in the VCL NAL units, and appropriate buffering period and picture timing SEI messages are conveyed to the decoder, in a timely manner, either in the bitstream (by non-VCL NAL units), or by external means not specified by this International Standard.

There are two types of conformance that can be claimed by a decoder: output timing conformance and output order conformance.

To check conformance of a decoder, test bitstreams conforming to the claimed profile and level, as specified insubclause C.3 are delivered by a hypothetical stream scheduler (HSS) both to the HRD and to the decoder under test (DUT). All pictures output by the HRD shall also be output by the DUT and, for each picture output by the HRD, the values of all samples that are output by the DUT for the corresponding picture shall be equal to the values of the samples output by the HRD.

For output timing decoder conformance, the HSS operates as described above, with delivery schedules selected only from the subset of values of SchedSelIdx for which the bit rate and CPB size are restricted as specified in Annex A, for the specified profile and level, or with "interpolated" delivery schedules as specified below for which the bit rate and CPB size are restricted as specified in Annex A. The same delivery schedule is used for both the HRD and DUT.

When the HRD parameters and the buffering period SEI messages are present with cpb_cnt_minus1 greater than 0, the decoder shall be capable of decoding the bitstream as delivered from the HSS operating using an "interpolated" delivery schedule specified as having peak bit rate r, CPB size c( r ), and initial CPB removal delay ( f( r )r ) as follows:

 = ( r − BitRate[ SchedSelIdx − 1 ] )  ( BitRate[ SchedSelIdx ]−BitRate[ SchedSelIdx − 1 ] ),
(C-17)

c( r ) =  * CpbSize[ SchedSelIdx ] + (1 − * CpbSize[ SchedSelIdx−1 ],
(C-18)
f( r ) = initial_cpb_removal_delay[ SchedSelIdx ] * BitRate[ SchedSelIdx ] +


( 1 − initial_cpb_removal_delay[ SchedSelIdx − 1 ] * BitRate[ SchedSelIdx − 1 ]
(C-19)

for any SchedSelIdx > 0 and r such that BitRate[ SchedSelIdx − 1 ] <= r <= BitRate[ SchedSelIdx ]such that r and c( r ) are within the limits as specified in Annex A, for the maximum bit rate and buffer size for the specified profile and level.

NOTE 1 – initial_cpb_removal_delay[ SchedSelIdx ] can be different from one buffering period to another and have to be re‑calculated.

For output timing decoder conformance, an HRD as described above is used and the timing (relative to the delivery time of the first bit) of picture output is the same for both HRD and the DUT up to a fixed delay.

For output order decoder conformance, the HSS delivers the bitstream to the DUT "by demand" from the DUT, meaning that the HSS delivers bits (in decoding order) only when the DUT requires more bits to proceed with its processing.

NOTE 2 – This means that for this test, the coded picture buffer of the DUT could be as small as the size of the largest access unit.

A modified HRD as described below is used, and the HSS delivers the bitstream to the HRD by one of the schedules specified in the bitstream such that the bit rate and CPB size are restricted as specified in Annex A. The order of pictures output shall be the same for both HRD and the DUT.

For output order decoder conformance, the HRD CPB size is equal to CpbSize[ SchedSelIdx ] for the selected schedule and the DPB size is equal to MaxDpbFrames. Removal time from the CPB for the HRD is equal to final bit arrival time and decoding is immediate. The operation of the DPB of this HRD is specified in subclause C.4.1.

C.4.1 Operation of the output order DPB

The decoded picture buffer contains frame buffers. When a coded video sequence conforming to the profile specified in Annex A is decoded by applying the decoding process specified in clauses 2-9, each of the frame buffers may contain a decoded frame that is marked as "used for reference" or is held for future output (reordered pictures).

At HRD initialisation, the DPB fullness, measured in non-empty frame buffers, is set equal to 0. The following steps all happen instantaneously when an access unit is removed from the CPB, and in the order listed. 

1. The process of decoding gaps in frame_num and storing "non-existing" frames as specified in subclause C.4.2 is invoked.

2. The picture decoding and output process as specified in subclause C.4.3 is invoked.
3. The process of removing pictures from the DPB before possible insertion of the current picture as specified in subclause C.4.4 is invoked.

4. The process of marking and storing the current decoded picture as specified in subclause C.4.5 is invoked.

C.4.2 Decoding of gaps in frame_num and storage of "non-existing" pictures

When applicable, gaps in frame_num are detected by the decoding process and the necessary number of "non-existing" frames are inferred in the order specified by the generation of values of UnusedShortTermFrameNum in Equation 7-23 and are marked as specified in subclause 8.2.5.2. Frame buffers containing a frame which is marked as "not needed for output" and "unused for reference" are emptied (without output), and the DPB fullness is decremented by the number of frame buffers emptied. Each "non-existing" frame is stored in the DPB as follows:

–
When there is no empty frame buffer (i.e., DPB fullness is equal to DPB size), the "bumping" process specified in subclause C.4.5.3 is invoked repeatedly until there is an empty frame buffer in which to store the "non-existing" frame.

–
The "non-existing" frame is stored in an empty frame buffer and is marked as "not needed for output", and the DPB fullness is incremented by one.

C.4.3 Picture decoding

The decoding of the current picture) is specified as follows:

–
If the decoding process specified in clause 8 is applied, the current primary coded picture n is decoded and is temporarily stored (not in the DPB).

C.4.4 Removal of pictures from the DPB before possible insertion of the current picture

The removal of pictures from the DPB before possible insertion of the current picture proceeds as follows:

–
If the decoded picture is an IDR picture the following applies:

1. All reference pictures in the DPB are marked as "unused for reference" as specified in subclause 8.2.5 when a coded video sequence conforming to one or more of the profiles specified in Annex A is decoded by applying the decoding process specified in clauses 2-9.

2. When the IDR picture is not the first IDR picture decoded and the value of PicWidthInMbs or FrameHeightInMbs or max_dec_frame_buffering derived from the active sequence parameter set is different from the value of PicWidthInMbs or FrameHeightInMbs or max_dec_frame_buffering derived from the sequence parameter set that was active for the preceding picture, respectively, no_output_of_prior_pics_flag is inferred to be equal to 1 by the HRD, regardless of the actual value of no_output_of_prior_pics_flag.

NOTE 3 – Decoder implementations should try to handle changes in the value of PicWidthInMbs or FrameHeightInMbs or max_dec_frame_buffering more gracefully than the HRD.

3. When no_output_of_prior_pics_flag is equal to 1 or is inferred to be equal to 1, all frame buffers in the DPB are emptied without output of the pictures they contain, and DPB fullness is set to 0.
–
Otherwise (the decoded picture is not an IDR picture), the decoded reference picture marking process is invoked as specified in subclause 8.2.5 when a coded video sequence conforming to one or more of the profiles specified in Annex A is decoded by applying the decoding process specified in clauses 2-9. Frame buffers containing a frame which is marked as "not needed for output" and "unused for reference" are emptied (without output), and the DPB fullness is decremented by the number of frame buffers emptied.

When the current picture has a memory_management_control_operation equal to 5 or is an IDR picture for which no_output_of_prior_pics_flag is not equal to 1 and is not inferred to be equal to 1, the following two steps are performed.

1.
Frame buffers containing a frame which is marked as "not needed for output" and "unused for reference" are emptied (without output), and the DPB fullness is decremented by the number of frame buffers emptied.

2.
All non-empty frame buffers in the DPB are emptied by repeatedly invoking the "bumping" process specified in subclause C.4.5.3, and the DPB fullness is set to 0.

C.4.5 Current decoded picture marking and storage

The marking and storage of the current decoded picture is specified as follows:

–
If the current picture is a reference picture, the storage and marking process for decoded reference pictures as specified in subclause C.4.5.1 is invoked.

–
Otherwise (the current picture is a non-reference picture), the storage and marking process for decoded non‑reference pictures as specified in subclause C.4.5.2 is invoked.

C.4.5.1 Storage and marking of a reference decoded picture into the DPB

The current picture is stored in the DPB as follows:

–
the following operations are performed:

1. When there is no empty frame buffer (i.e., DPB fullness is equal to DPB size), the "bumping" process specified in subclause C.4.5.3 is invoked repeatedly until there is an empty frame buffer in which to store the current decoded picture.

2. The current decoded picture is stored in an empty frame buffer, the DPB fullness is incremented by one, and the following applies:

–
If the current decoded picture has OutputFlag equal to 1, it is marked as "needed for output".

–
Otherwise (the current decoded picture has OutputFlag equal to 0), it is marked as "not needed for output".

C.4.5.2 Storage and marking of a non-reference decoded picture into the DPB

The current picture is associated with a variable StoreInterViewOnlyRefFlag, which is derived as follows:

–
StoreInterViewOnlyRefFlag is set equal to 0.

The current picture is stored in the DPB or output as follows:

–
if the current picture has OutputFlag equal to 0 and StoreInterViewOnlyRefFlag equal to 0, the DPB is not modified and the current picture is not output.

–
Otherwise, the following operations are performed repeatedly until the current decoded picture has been cropped and output or has been stored in the DPB:

–
If there is no empty frame buffer (i.e., DPB fullness is equal to DPB size), the following applies:

–
If the current picture does not have a lower value of PicOrderCnt( ) than all pictures in the DPB that are marked as "needed for output", the "bumping" process described in subclause C.4.5.3 is performed.

–
Otherwise (the current picture has a lower value of PicOrderCnt( ) than all pictures in the DPB that are marked as "needed for output"), the current picture is cropped, using the cropping rectangle specified in the active sequence parameter set for the picture and the cropped picture is output.

–
Otherwise (there is an empty frame buffer, i.e., DPB fullness is less than DPB size), the current decoded picture is stored in an empty frame buffer and is marked as "needed for output",and the DPB fullness is incremented by one.

C.4.5.3 "Bumping" process

The "bumping" process is invoked in the following cases.

–
There is no empty frame buffer (i.e., DPB fullness is equal to DPB size) and an empty frame buffer is needed for storage of an inferred "non-existing" frame, as specified in subclause C.4.2.

–
The current picture is an IDR picture and no_output_of_prior_pics_flag is not equal to 1 and is not inferred to be equal to 1, as specified in subclause C.4.4.

–
The current picture has memory_management_control_operation equal to 5, as specified in subclause C.4.4.

–
There is no empty frame buffer (i.e., DPB fullness is equal to DPB size) and an empty frame buffer is needed for storage of a decoded (non-IDR) reference picture or a reference base picture, as specified in subclause C.4.5.1.

–
There is no empty frame buffer (i.e., DPB fullness is equal to DPB size) and the current picture is a non-reference picture and the current picture has OutputFlag equal to 1 and there are pictures in the DPB that are marked as "needed for output" that precede the current non-reference picture in output order, as specified in subclause C.4.5.2, so an empty buffer is needed for storage of the current picture.

–
There is no empty frame buffer (i.e., DPB fullness is equal to DPB size) and the current picture is a non-reference picture and the current picture has StoreInterViewOnlyRefFlag equal to 1, as specified in subclause C.4.5.2, so an empty buffer is needed for storage of the current picture.

The "bumping" process consists of the following ordered steps:

1. The picture that is considered first for output is selected as follows:

a. The frame buffer is selected that contains the picture having the smallest value of PicOrderCnt( ) of all pictures in the DPB marked as "needed for output".

b. Depending on the frame buffer, the following applies:

–
the picture in this frame buffer that has the smallest value of PicOrderCnt( ) is considered first for output.

2. the following applies:

–
the picture is cropped, using the cropping rectangle specified in the active sequence parameter set for the picture, the cropped picture is output, and the picture is marked as "not needed for output".

3. The frame buffer that included the picture that was cropped and output is checked, and when any of the following conditions are true, the frame buffer is emptied and the DPB fullness is decremented by 1:

· The frame buffer contains a non-reference frame.

D Annex D
(informative)
Supplemental enhancement information

SEI messages conforming to the specifications in ISO/IEC 14496-10 Annex D may be used with this specification. If SEI messages are present, they must conform to that specification. This specification does not require any SEI message, and their presence and processing are both optional.

E Annex E
(normative)

Video usability information

This annex specifies syntax and semantics of the VUI parameters of the sequence parameter sets.

VUI parameters are not required for constructing the luma or chroma samples by the decoding process. Conforming decoders are not required to process this information for output order conformance to this International Standard (see Annex C for the specification of conformance). Some VUI parameters are required to check bitstream conformance and for output timing decoder conformance.

In Annex E, specification for presence of VUI parameters is also satisfied when those parameters (or some subset of them) are conveyed to decoders (or to the HRD) by other means not specified by this International Standard. When present in the bitstream, VUI parameters shall follow the syntax and semantics specified in subclauses 7.3.2.1 and 7.4.2.1 and this annex. When the content of VUI parameters is conveyed for the application by some means other than presence within the bitstream, the representation of the content of the VUI parameters is not required to use the same syntax specified in this annex. For the purpose of counting bits, only the appropriate bits that are actually present in the bitstream are counted.

E.1 VUI syntax

E.1.1 VUI parameters syntax

	vui_parameters( ) {
	Descriptor

	
aspect_ratio_info_present_flag
	u(1)

	
if( aspect_ratio_info_present_flag ) {
	

	

aspect_ratio_idc
	u(8)

	

if( aspect_ratio_idc  = =  Extended_SAR ) {
	

	


sar_width
	u(16)

	


sar_height
	u(16)

	

}
	

	
}
	

	
overscan_info_present_flag
	u(1)

	
if( overscan_info_present_flag )
	

	

overscan_appropriate_flag
	u(1)

	
video_signal_type_present_flag
	u(1)

	
if( video_signal_type_present_flag ) {
	

	

video_format
	u(3)

	

video_full_range_flag
	u(1)

	

colour_description_present_flag
	u(1)

	

if( colour_description_present_flag ) {
	

	


colour_primaries
	u(8)

	


transfer_characteristics
	u(8)

	


matrix_coefficients
	u(8)

	

}
	

	
}
	

	
chroma_loc_info_present_flag
	u(1)

	
if( chroma_loc_info_present_flag ) {
	

	

chroma_sample_loc_type_top_field
	ue(v)

	

chroma_sample_loc_type_bottom_field
	ue(v)

	
}
	

	
timing_info_present_flag
	u(1)

	
if( timing_info_present_flag ) {
	

	

num_units_in_tick
	u(32)

	

time_scale
	u(32)

	

fixed_frame_rate_flag
	u(1)

	
}
	

	
nal_hrd_parameters_present_flag
	u(1)

	
if( nal_hrd_parameters_present_flag )
	

	

hrd_parameters( )
	

	
vcl_hrd_parameters_present_flag
	u(1)

	
if( vcl_hrd_parameters_present_flag )
	

	

hrd_parameters( )
	

	
if( nal_hrd_parameters_present_flag  | |  vcl_hrd_parameters_present_flag )
	

	

low_delay_hrd_flag
	u(1)

	
pic_struct_present_flag 
	u(1)

	
bitstream_restriction_flag
	u(1)

	
if( bitstream_restriction_flag ) {
	

	

motion_vectors_over_pic_boundaries_flag
	u(1)

	

max_bytes_per_pic_denom
	ue(v)

	

max_bits_per_mb_denom
	ue(v)

	

log2_max_mv_length_horizontal
	ue(v)

	

log2_max_mv_length_vertical
	ue(v)

	

max_num_reorder_frames
	ue(v)

	

max_dec_frame_buffering
	ue(v)

	
}
	

	}
	


E.1.2 HRD parameters syntax

	hrd_parameters( ) {
	Descriptor

	
cpb_cnt_minus1
	ue(v)

	
bit_rate_scale
	u(4)

	
cpb_size_scale
	u(4)

	
for( SchedSelIdx = 0; SchedSelIdx <= cpb_cnt_minus1; SchedSelIdx++ ) {
	

	

bit_rate_value_minus1[ SchedSelIdx ]
	ue(v)

	

cpb_size_value_minus1[ SchedSelIdx ]
	ue(v)

	

cbr_flag[ SchedSelIdx ]
	u(1)

	
}
	

	
initial_cpb_removal_delay_length_minus1
	u(5)

	
cpb_removal_delay_length_minus1
	u(5)

	
dpb_output_delay_length_minus1
	u(5)

	
time_offset_length
	u(5)

	}
	


E.2 VUI semantics

E.2.1 VUI parameters semantics

aspect_ratio_info_present_flag equal to 1 specifies that aspect_ratio_idc is present. aspect_ratio_info_present_flag equal to 0 specifies that aspect_ratio_idc is not present.

aspect_ratio_idc specifies the value of the sample aspect ratio of the luma samples. Table E‑1 shows the meaning of the code. When aspect_ratio_idc indicates Extended_SAR, the sample aspect ratio is represented by sar_width : sar_height. When the aspect_ratio_idc syntax element is not present, aspect_ratio_idc value shall be inferred to be equal to 0.

Table E‑1 – Meaning of sample aspect ratio indicator

	aspect_ratio_idc
	Sample aspect ratio
	(informative)
Examples of use

	0
	Unspecified

	

	1
	1:1
("square")
	1280x720 16:9 frame without horizontal overscan
1920x1080 16:9 frame without horizontal overscan (cropped from 1920x1088)
640x480 4:3 frame without horizontal overscan

	2
	12:11
	720x576 4:3 frame with horizontal overscan
352x288 4:3 frame without horizontal overscan

	3
	10:11
	720x480 4:3 frame with horizontal overscan
352x240 4:3 frame without horizontal overscan

	4
	16:11
	720x576 16:9 frame with horizontal overscan
528x576 4:3 frame without horizontal overscan

	5
	40:33
	720x480 16:9 frame with horizontal overscan
528x480 4:3 frame without horizontal overscan

	6
	24:11
	352x576 4:3 frame without horizontal overscan
480x576 16:9 frame with horizontal overscan

	7
	20:11
	352x480 4:3 frame without horizontal overscan
480x480 16:9 frame with horizontal overscan

	8
	32:11
	352x576 16:9 frame without horizontal overscan

	9
	80:33
	352x480 16:9 frame without horizontal overscan

	10
	18:11
	480x576 4:3 frame with horizontal overscan

	11
	15:11
	480x480 4:3 frame with horizontal overscan

	12
	64:33
	528x576 16:9 frame without horizontal overscan

	13
	160:99
	528x480 16:9 frame without horizontal overscan

	14
	4:3
	1440x1080 16:9 frame without horizontal overscan

	15
	3:2
	1280x1080 16:9 frame without horizontal overscan

	16
	2:1
	960x1080 16:9 frame without horizontal overscan

	17..254
	Reserved
	

	255
	Extended_SAR
	


NOTE 1 – For the examples in Table E‑1, the term "without horizontal overscan" refers to display processes in which the display area matches the area of the cropped decoded pictures and the term "with horizontal overscan" refers to display processes in which some parts near the left and/or right border of the cropped decoded pictures are not visible in the display area. As an example, the entry "720x576 4:3 frame with horizontal overscan" for aspect_ratio_idc equal to 2 refers to having an area of 704x576 luma samples (which has an aspect ratio of 4:3) of the cropped decoded frame (720x576 luma samples) that is visible in the display area.

sar_width indicates the horizontal size of the sample aspect ratio (in arbitrary units).

sar_height indicates the vertical size of the sample aspect ratio (in the same arbitrary units as sar_width).

sar_width and sar_height shall be relatively prime or equal to 0. When aspect_ratio_idc is equal to 0 or sar_width is equal to 0 or sar_height is equal to 0, the sample aspect ratio shall be considered unspecified by this International Standard.

overscan_info_present_flag equal to 1 specifies that the overscan_appropriate_flag is present. When overscan_info_present_flag is equal to 0 or is not present, the preferred display method for the video signal is unspecified.

overscan_appropriate_flag equal to 1 indicates that the cropped decoded pictures output are suitable for display using overscan. overscan_appropriate_flag equal to 0 indicates that the cropped decoded pictures output contain visually important information in the entire region out to the edges of the cropping rectangle of the picture, such that the cropped decoded pictures output should not be displayed using overscan. Instead, they should be displayed using either an exact match between the display area and the cropping rectangle, or using underscan. As used in this paragraph, the term "overscan" refers to display processes in which some parts near the borders of the cropped decoded pictures are not visible in the display area. The term "underscan" describes display processes in which the entire cropped decoded pictures are visible in the display area, but they do not cover the entire display area. For display processes that neither use overscan nor underscan, the display area exactly matches the area of the cropped decoded pictures.
NOTE 2– For example, overscan_appropriate_flag equal to 1 might be used for entertainment television programming, or for a live view of people in a videoconference, and overscan_appropriate_flag equal to 0 might be used for computer screen capture or security camera content.
video_signal_type_present_flag equal to 1 specifies that video_format, video_full_range_flag and colour_description_present_flag are present. video_signal_type_present_flag equal to 0, specify that video_format, video_full_range_flag and colour_description_present_flag are not present.

video_format indicates the representation of the pictures as specified in Table E‑2, before being coded in accordance with this International Standard. When the video_format syntax element is not present, video_format value shall be inferred to be equal to 5.

Table E‑2 – Meaning of video_format

	video_format
	Meaning

	0
	Component

	1
	PAL

	2
	NTSC

	3
	SECAM

	4
	MAC

	5
	Unspecified video format

	6
	Reserved

	7
	Reserved


video_full_range_flag indicates the black level and range of the luma and chroma signals as derived from E′Y, E′PB, and E′PR or E′R, E′G, and E′Breal-valued component signals.

When the video_full_range_flag syntax element is not present, the value of video_full_range_flag shall be inferred to be equal to 0.
colour_description_present_flag equal to 1 specifies that colour_primaries, transfer_characteristics and matrix_coefficients are present. colour_description_present_flag equal to 0 specifies that colour_primaries, transfer_characteristics and matrix_coefficients are not present.

colour_primaries indicates the chromaticity coordinates of the source primaries as specified in Table E‑3 in terms of the CIE 1931 definition of x and y as specified by ISO 11664-1.

When the colour_primaries syntax element is not present, the value of colour_primaries shall be inferred to be equal to 2 (the chromaticity is unspecified or is determined by the application).

Table E‑3 – Colour primaries

	Value
	Primaries
	Informative Remark

	0
	Reserved
	For future use by ITU‑T | ISO/IEC

	1
	primary
x
y

green
0.300
0.600

blue
0.150
0.060

red
0.640
0.330

white D65
0.3127
0.3290
	ITU‑R Rec. BT.709-5
ITU-R Rec. BT.1361 conventional colour gamut system and extended colour gamut system

IEC 61966-2-4

Society of Motion Picture and Television Engineers RP 177 (1993) Annex B

	2
	Unspecified
	Image characteristics are unknown or are determined by the application.

	3
	Reserved
	For future use by ITU‑T | ISO/IEC

	4
	primary
x
y

green
0.21
0.71

blue
0.14
0.08

red
0.67
0.33

white C
0.310
0.316
	ITU‑R Rec. BT.470‑6 System M (historical)

United States National Television System Committee 1953 Recommendation for transmission standards for colour television

United States Federal Communications Commission Title 47 Code of Federal Regulations (2003) 73.682 (a) (20)

	5
	primary
x
y

green
0.29
0.60

blue
0.15
0.06

red
0.64
0.33

white D65
0.3127
0.3290
	ITU‑R Rec. BT.470‑6 System B, G (historical)

ITU‑R Rec. BT.601‑6 625

ITU‑R Rec. BT.1358 625

ITU‑R Rec. BT.1700 625 PAL and 625 SECAM

	6
	primary
x
y

green
0.310
0.595

blue
0.155
0.070

red
0.630
0.340

white D65
0.3127
0.3290
	ITU‑R Rec. BT.601‑6 525

ITU‑R Rec. BT.1358 525

ITU‑R Rec. BT.1700 NTSC

Society of Motion Picture and Television Engineers 170M (2004)

(functionally the same as the value 7)

	7
	primary
x
y

green
0.310
0.595

blue
0.155
0.070

red
0.630
0.340

white D65
0.3127
0.3290
	Society of Motion Picture and Television Engineers 240M (1999)

(functionally the same as the value 6)

	8
	primary
x
y

green
0.243
0.692 (Wratten 58)

blue
0.145
0.049 (Wratten 47)

red
0.681
0.319 (Wratten 25)

white C
0.310
0.316
	Generic film (colour filters using Illuminant C)

	9..255
	Reserved
	For future use by ITU‑T | ISO/IEC


transfer_characteristics indicates the opto-electronic transfer characteristic of the source picture as specified in Table E‑4 as a function of a linear optical intensity input Lc with a nominalreal-valued range of 0 to 1.

When the transfer_characteristics syntax element is not present, the value of transfer_characteristics shall be inferred to be equal to 2 (the transfer characteristics are unspecified or are determined by the application).

Table E‑4 – Transfer characteristics

	Value
	Transfer Characteristic
	Informative Remark

	0
	Reserved
	For future use by ITU‑T | ISO/IEC

	1
	V = 1.099 * Lc0.45 − 0.099
for 1 >= Lc>= 0.018

V = 4.500 * Lc
for 0.018 > Lc>= 0
	ITU‑R Rec. BT.709-5
ITU‑R Rec. BT.1361 conventional colour gamut system

(functionally the same as the value 6)

	2
	Unspecified
	Image characteristics are unknown or are determined by the application.

	3
	Reserved
	For future use by ITU‑T | ISO/IEC

	4
	Assumed display gamma 2.2
	ITU‑R Rec. BT.470‑6 System M (historical)

United States National Television System Committee 1953 Recommendation for transmission standards for colour television

United States Federal Communications Commission Title 47 Code of Federal Regulations (2003) 73.682 (a) (20)

ITU‑R Rec. BT.1700 (2007 revision) 625 PAL and 625 SECAM

	5
	Assumed display gamma 2.8
	ITU‑R Rec. BT.470-6 System B, G (historical)

	6
	V = 1.099 * Lc0.45− 0.099 
for 1 >= Lc>= 0.018

V = 4.500 * Lc
for 0.018 > Lc>= 0
	ITU‑R Rec. BT.601‑6 525 or 625

ITU‑R Rec. BT.1358 525 or 625

ITU‑R Rec. BT.1700 NTSC

Society of Motion Picture and Television Engineers 170M (2004)

(functionally the same as the value 1)

	7
	V = 1.1115 * Lc0.45− 0.1115
for 1 >= Lc>= 0.0228

V = 4.0 * Lc
for 0.0228 > Lc>= 0
	Society of Motion Picture and Television Engineers 240M (1999)

	8
	V = Lc
for 1 > Lc>= 0
	Linear transfer characteristics

	9
	V = 1.0 + Log10( Lc ) ( 2 
for 1 >= Lc>= 0.01

V = 0.0
for 0.01 > Lc>= 0
	Logarithmic transfer characteristic (100:1 range)

	10
	V = 1.0 + Log10( Lc ) ( 2.5 
for 1 >=Lc>=Sqrt( 10 ) / 1000

V = 0.0
for Sqrt( 10 ) / 1000>Lc>= 0
	Logarithmic transfer characteristic (100 * Sqrt( 10 ) : 1 range)

	11
	V = 1.099 * Lc0.45− 0.099
for Lc>= 0.018

V = 4.500 * Lc
for 0.018 >Lc>−0.018

V = −1.099 * ( −Lc )0.45 + 0.099
for −0.018 >=Lc
	IEC 61966-2-4

	12
	V = 1.099 * Lc0.45− 0.099
for 1.33 >Lc>= 0.018

V = 4.500 * Lc
for 0.018 >Lc>=−0.0045

V = −( 1.099 * ( −4 * Lc )0.45− 0.099 ) ( 4
for −0.0045 >Lc>=−0.25
	ITU‑R Rec.BT.1361 extended colour gamut system

	13..255
	Reserved
	For future use by ITU‑T | ISO/IEC


matrix_coefficients describes the matrix coefficients used in deriving luma and chroma signals from the green, blue, and red primaries, as specified in Table E‑5.

matrix_coefficients shall not be equal to 0 

The specification of the use of matrix_coefficients equal to 0 under all other conditions is reserved for future use by ITU‑T | ISO/IEC.

matrix_coefficients shall not be equal to 8 unless one of the following conditions is true:

–
BitDepthC is equal to BitDepthY,

The specification of the use of matrix_coefficients equal to 8 under all other conditions is reserved for future use by ITU‑T | ISO/IEC.

When the matrix_coefficients syntax element is not present, the value of matrix_coefficients shall be inferred to be equal to 2 (unspecified).

For the interpretation of matrix_coefficients, the following is specified:

1. The range of E′R, E′G, and E′B is specified as follows:

–
If transfer_characteristics is not equal to 11 or 12, E′R, E′G, and E′B are real numbers with values in the range of 0 to 1.

–
Otherwise (transfer_characteristics is equal to 11 (IEC 61966-2-4) or 12 (ITU-R BT.1361 extended colour gamut system)), E′R, E′G and E′B are real numbers with a larger range not specified in this Recommendation.

2. Nominal white is specified as having E′R equal to 1, E′G equal to 1, and E′B equal to 1.

3. Nominal black is specified as having E′R equal to 0, E′G equal to 0, and E′B equal to 0.

The interpretation of matrix_coefficients is specified as follows:

–
If video_full_range_flag is equal to 0, the following applies:

–
If matrix_coefficients is equal to 1, 4, 5, 6, or 7, the following equations apply:

Y = Clip1Y( Round( ( 1 << ( BitDepthY− 8 ) ) * ( 219 * E′Y + 16 ) ) )
(E-1)

Cb = Clip1C( Round( ( 1 << ( BitDepthC− 8 ) ) * ( 224 * E′PB + 128 ) ) )
(E-2)

Cr = Clip1C( Round( ( 1 << ( BitDepthC− 8 ) ) * ( 224 * E′PR + 128 ) ) )
(E-3)

–
Otherwise, if matrix_coefficients is equal to 0 or 8, the following equations apply:

R = Clip1Y( ( 1 << ( BitDepthY− 8 ) ) * ( 219 * E′R + 16 ) )
(E-4)

G = Clip1Y( ( 1 << ( BitDepthY− 8 ) ) * ( 219 * E′G + 16 ) )
(E-5)

B = Clip1Y( ( 1 << ( BitDepthY− 8 ) ) * ( 219 * E′B + 16 ) )
(E-6)

–
Otherwise, if matrix_coefficients is equal to 2, the interpretation of the matrix_coefficients syntax element is unknown or is determined by the application.

–
Otherwise (matrix_coefficients is not equal to 0, 1, 2, 4, 5, 6, 7, or 8), the interpretation of the matrix_coefficients syntax element is reserved for future definition by ITU‑T | ISO/IEC.

–
Otherwise (video_full_range_flag is equal to 1), the following applies:

–
If matrix_coefficients is equal to 1, 4, 5, 6, or 7, the following equations apply:

Y = Clip1Y( Round( ( ( 1 << BitDepthY ) − 1 ) * E′Y ) )
(E-7)

Cb = Clip1C( Round( ( ( 1 << BitDepthC ) − 1 )  * E′PB + ( 1 << ( BitDepthC− 1 ) ) ))
(E-8)

Cr = Clip1C( Round( ( ( 1 << BitDepthC ) − 1 )  * E′PR + ( 1 << ( BitDepthC− 1 ) ) ))
(E-9)

–
Otherwise, if matrix_coefficients is equal to 0 or 8, the following equations apply:

R = Clip1Y( ( ( 1 << BitDepthY ) − 1 ) * E′R )

(E-10)

G = Clip1Y( ( ( 1 << BitDepthY ) − 1 ) * E′G )

(E-11)

B = Clip1Y( ( ( 1 << BitDepthY ) − 1 ) * E′B )

(E-12)

–
Otherwise, if matrix_coefficients is equal to 2, the interpretation of the matrix_coefficients syntax element is unknown or is determined by the application.

–
Otherwise (matrix_coefficients is not equal to 0, 1, 2, 4, 5, 6, 7, or 8), the interpretation of the matrix_coefficients syntax element is reserved for future definition by ITU‑T | ISO/IEC.

The variables E′Y, E′PB, and E′PR (for matrix_coefficients not equal to 0 or 8) or Y, Cb, and Cr (for matrix_coefficients equal to 0 or 8) are specified as follows:

–
If matrix_coefficients is not equal to 0 or 8, the following equations apply:

E′Y = KR * E′R + ( 1 − KR− KB ) * E′G + KB * E′B

(E-13)

E′PB = 0.5 * ( E′B− E′Y ) ÷ ( 1 − KB )

(E-14)

E′PR = 0.5 * ( E′R− E′Y ) ÷ ( 1 − KR )

(E-15)

NOTE 3 – E′Y is a real number with the value 0 associated with nominal black and the value 1 associated with nominal white. E′PB and E′PR are real numbers with the value 0 associated with both nominal black and nominal white. When transfer_characteristics is not equal to 11 or 12, E′Y is a real number with values in the range of 0 to 1. When transfer_characteristics is not equal to 11 or 12, E′PB and E′PR are real numbers with values in the range of −0.5 to 0.5. When transfer_characteristics is equal to 11 (IEC 61966-2-4), or 12 (ITU‑R BT.1361 extended colour gamut system), E′Y, E′PB and E′PR are real numbers with a larger range not specified in this Recommendation.

–
Otherwise, if matrix_coefficients is equal to 0, the following equations apply:

Y   = Round( G )

(E-16)

Cb = Round( B )

(E-17)

Cr = Round( R )

(E-18)

–
Otherwise (matrix_coefficients is equal to 8), the following applies:

–
If BitDepthC is equal to BitDepthY, the following equations apply:

Y   = Round( 0.5 * G + 0.25 * ( R + B ) )

(E-19)

Cb = Round( 0.5 * G − 0.25 * ( R + B ) ) + ( 1 << ( BitDepthC− 1 ) )
(E-20)

Cr = Round( 0.5 * (R − B ) ) + ( 1 << ( BitDepthC− 1 ) )
(E-21)

NOTE 4– For purposes of the YCgCo nomenclature used in Table E‑5, Cb and Cr of Equations E-20 and E-21 may be referred to as Cg and Co, respectively. The inverse conversion for the above three equations should be computed as:

t = Y −( Cb− ( 1 << ( BitDepthC− 1 ) ) )

(E-22)

G = Clip1Y( Y + ( Cb− ( 1 << ( BitDepthC− 1 ) ) ) )
(E-23)

B = Clip1Y( t −( Cr− ( 1 << ( BitDepthC− 1 ) ) ) )

(E-24)

R = Clip1Y( t + ( Cr− ( 1 << ( BitDepthC− 1 ) ) ) )

(E-25)

–
Otherwise (BitDepthC is not equal to BitDepthY), the following equations apply:
Cr = Round( R ) − Round( B ) + ( 1 << ( BitDepthC− 1 ) )
(E-26)

t = Round( B ) + ( ( Cr − ( 1 << ( BitDepthC− 1 ) ) ) >> 1 )
(E-27)

Cb = Round( G ) −t + ( 1 << ( BitDepthC− 1 ) )
(E-28)

Y = t + ( ( Cb − ( 1 << ( BitDepthC− 1 ) ) ) >> 1 )
(E-29)

NOTE 5– For purposes of the YCgCo nomenclature used in Table E‑5, Cb and Cr of Equations E-28 and E-26 may be referred to as Cg and Co, respectively. The inverse conversion for the above four equations should be computed as.

t = Y −( ( Cb − ( 1 << ( BitDepthC− 1 ) ) ) >> 1 )
(E-30)

G = Clip1Y( t + ( Cb− ( 1 << ( BitDepthC− 1 ) ) ) )
(E-31)

B = Clip1Y( t −( ( Cr − ( 1 << ( BitDepthC− 1 ) ) ) >> 1 ) )
(E-32)

R = Clip1Y( B + ( Cr− ( 1 << ( BitDepthC− 1 ) ) ) )
(E-33)

Table E‑5 – Matrix coefficients

	Value
	Matrix
	Informative remark

	0
	GBR
	Typically referred to as RGB; see Equations E-16 to E-18

	1
	KR = 0.2126; KB = 0.0722
	ITU‑R Rec. BT.709-5

ITU‑R Rec. BT.1361 conventional colour gamut system and extended colour gamut system

IEC 61966-2-4 xvYCC709
Society of Motion Picture and Television Engineers RP 177 (1993) Annex B

	2
	Unspecified
	Image characteristics are unknown or are determined by the application.

	3
	Reserved
	For future use by ITU‑T | ISO/IEC

	4
	KR = 0.30;   KB = 0.11
	United States Federal Communications Commission Title 47 Code of Federal Regulations (2003) 73.682 (a) (20)

	5
	KR = 0.299; KB = 0.114
	ITU‑R Rec. BT.470‑6 System B, G (historical)

ITU‑R Rec. BT.601‑6 625

ITU‑R Rec. BT.1358 625

ITU‑R Rec. BT.1700 625 PAL and 625 SECAM

IEC 61966-2-4 xvYCC601
(functionally the same as the value 6)

	6
	KR = 0.299; KB = 0.114
	ITU‑R Rec. BT.601‑6 525

ITU‑R Rec. BT.1358 525

ITU‑R Rec. BT.1700 NTSC

Society of Motion Picture and Television Engineers 170M (2004)

(functionally the same as the value 5)

	7
	KR = 0.212; KB = 0.087
	Society of Motion Picture and Television Engineers 240M (1999)

	8
	YCgCo
	See Equations E-19 to E-33

	9..255
	Reserved
	For future use by ITU‑T | ISO/IEC


chroma_loc_info_present_flag equal to 1 specifies that chroma_sample_loc_type_top_field and chroma_sample_loc_type_bottom_field are present. chroma_loc_info_present_flag equal to 0 specifies that chroma_sample_loc_type_top_field and chroma_sample_loc_type_bottom_field are not present.

chroma_sample_loc_type_top_field and chroma_sample_loc_type_bottom_field specify the location of chroma samples as follows:
–
chroma_sample_loc_type_top_field and chroma_sample_loc_type_bottom_field specify the location of chroma samples for the top field and the bottom field, respectively, as shown in Figure E‑1.

The value of chroma_sample_loc_type_top_field and chroma_sample_loc_type_bottom_field shall be in the range of 0 to 5, inclusive. When the chroma_sample_loc_type_top_field and chroma_sample_loc_type_bottom_field are not present, the values of chroma_sample_loc_type_top_field and chroma_sample_loc_type_bottom_field shall be inferred to be equal to 0.

NOTE 6– When coding progressive source material, chroma_sample_loc_type_top_field and chroma_sample_loc_type_bottom_field should have the same value.


[image: image48.emf]= Chroma sample type 0

= Chroma sample type 2

= Chroma sample type 1

= Chroma sample type 3

= Chroma sample type 4 = Chroma sample type 5

= Luma sample top field = Luma sample bottom field

Luma sample position indications:

Chroma sample position indications,

where gray fill indicates a bottom field sample type

and no fill indicates a top field sample type:

Interpretation of symbols:

...

.

.

.


Figure E‑1 – Location of chroma samples for top and bottom fields for 4:2:0 chroma format as a function of chroma_sample_loc_type_top_field and chroma_sample_loc_type_bottom_field
timing_info_present_flag equal to 1 specifies that num_units_in_tick, time_scale and fixed_frame_rate_flag are present in the bitstream. timing_info_present_flag equal to 0 specifies that num_units_in_tick, time_scale and fixed_frame_rate_flag are not present in the bitstream.

num_units_in_tick is the number of time units of a clock operating at the frequency time_scale Hz that corresponds to one increment (called a clock tick) of a clock tick counter. num_units_in_tick shall be greater than 0. A clock tick is the minimum interval of time that can be represented in the coded data. For example, when the frame rate of a video signal is 30000 ( 1001 Hz, time_scale may be equal to 60 000 and num_units_in_tick may be equal to 1001. See Equation C-1.

time_scale is the number of time units that pass in one second. For example, a time coordinate system that measures time using a 27 MHz clock has a time_scale of 27 000 000. time_scale shall be greater than 0.

fixed_frame_rate_flag equal to 1 indicates that the temporal distance between the HRD output times of any two consecutive pictures in output order is constrained as follows. fixed_frame_rate_flag equal to 0 indicates that no such constraints apply to the temporal distance between the HRD output times of any two consecutive pictures in output order.

When fixed_frame_rate_flag is not present, it shall be inferred to be equal to 0.

For each picture n where n indicates the n-th picture (in output order) that is output and picture n is not the last picture in the bitstream (in output order) that is output, the value of (tfi,dpb( n ) is specified by

(tfi,dpb( n )  =  (to,dpb( n ) ( DeltaTfiDivisor
(E-34)

where (to,dpb( n ) is specified in Equation C-13 and DeltaTfiDivisor is specified by Table E‑6 based on the value of pic_struct_present_flag,, and pic_struct for the coded video sequence containing picture n. Entries marked "-" in Table E‑6 indicate a lack of dependence of DeltaTfiDivisor on the corresponding syntax element.

When fixed_frame_rate_flag is equal to 1 for a coded video sequence containing picture n, the value computed for (tfi,dpb( n ) shall be equal to tc as specified in Equation C-1 (using the value of tc for the coded video sequence containing picture n) when either or both of the following conditions are true for the following picture nn that is specified for use in Equation C-13:

–
picture nn is in the same coded video sequence as picture n.

–
picture nn is in a different coded video sequence and fixed_frame_rate_flag is equal to 1 in the coded video sequence containing picture nn and the value of num_units_in_tick ( time_scale is the same for both coded video sequences.

Table E‑6 – Divisor for computation of (tfi,dpb( n )

	pic_struct_present_flag
	
	pic_struct
	DeltaTfiDivisor

	1
	
	1
	1

	1
	
	2
	1

	0
	
	-
	2

	1
	
	0
	2

	1
	
	3
	2

	1
	
	4
	2

	1
	
	5
	3

	1
	
	6
	3

	1
	
	7
	4

	1
	
	8
	6


NOTE 7 – In order to produce a DeltaTfiDivisor other than 2, pic_struct_present_flag must be equal to 1.

nal_hrd_parameters_present_flag equal to 1 specifies that NAL HRD parameters (pertaining to Type II bitstream conformance) are present. nal_hrd_parameters_present_flag equal to 0 specifies that NAL HRD parameters are not present.

NOTE 8– When nal_hrd_parameters_present_flag is equal to 0, the conformance of the bitstream cannot be verified without provision of the NAL HRD parameters and all buffering period and picture timing SEI messages, by some means not specified in this International Standard.
When nal_hrd_parameters_present_flag is equal to 1, NAL HRD parameters (subclauses E.1.2 and E.2.2) immediately follow the flag.

The variable NalHrdBpPresentFlag is derived as follows:

–
If any of the following is true, the value of NalHrdBpPresentFlag shall be set equal to 1:

–
nal_hrd_parameters_present_flag is present in the bitstream and is equal to 1,

–
the need for presence of buffering periods for NAL HRD operation to be present in the bitstream in buffering period SEI messages is determined by the application, by some means not specified in this International Standard.

–
Otherwise, the value of NalHrdBpPresentFlag shall be set equal to 0.

vcl_hrd_parameters_present_flag equal to 1 specifies that VCL HRD parameters (pertaining to all bitstream conformance) are present. vcl_hrd_parameters_present_flag equal to 0 specifies that VCL HRD parameters are not present.

NOTE 9– When vcl_hrd_parameters_present_flag is equal to 0, the conformance of the bitstream cannot be verified without provision of the VCL HRD parameters and all buffering period and picture timing SEI messages, by some means not specified in this International Standard.
When vcl_hrd_parameters_present_flag is equal to 1, VCL HRD parameters (subclauses E.1.2 and E.2.2) immediately follow the flag.

The variable VclHrdBpPresentFlag is derived as follows:

–
If any of the following is true, the value of VclHrdBpPresentFlag shall be set equal to 1:

–
vcl_hrd_parameters_present_flag is present in the bitstream and is equal to 1,

–
the need for presence of buffering periods for VCL HRD operation to be present in the bitstream in buffering period SEI messages is determined by the application, by some means not specified in this International Standard.

–
Otherwise, the value of VclHrdBpPresentFlag shall be set equal to 0.

The variable CpbDpbDelaysPresentFlag is derived as follows:

–
If any of the following is true, the value of CpbDpbDelaysPresentFlag shall be set equal to 1:

–
nal_hrd_parameters_present_flag is present in the bitstream and is equal to 1,

–
vcl_hrd_parameters_present_flag is present in the bitstream and is equal to 1,

–
the need for presence of CPB and DPB output delays to be present in the bitstream in picture timing SEI messages is determined by the application, by some means not specified in this International Standard.

–
Otherwise, the value of CpbDpbDelaysPresentFlag shall be set equal to 0.

low_delay_hrd_flag specifies the HRD operational mode as specified in Annex C. When fixed_frame_rate_flag is equal to 1, low_delay_hrd_flag shall be equal to 0. When low_delay_hrd_flag is not present, its value shall be inferred to be equal to 1 − fixed_frame_rate_flag.

NOTE 10 – When low_delay_hrd_flag is equal to 1, "big pictures" that violate the nominal CPB removal times due to the number of bits used by an access unit are permitted. It is expected, but not required, that such "big pictures" occur only occasionally.
pic_struct_present_flag equal to 1 specifies that picture timing SEI messages (subclause D.2.2) are present that include the pic_struct syntax element. pic_struct_present_flag equal to 0 specifies that the pic_struct syntax element is not present in picture timing SEI messages. When pic_struct_present_flag is not present, its value shall be inferred to be equal to 0.

bitstream_restriction_flag equal to 1, specifies that the following coded video sequence bitstream restrictionparameters are present. bitstream_restriction_flagequal to 0, specifies that the following coded video sequence bitstream restriction parameters are not present.

motion_vectors_over_pic_boundaries_flag equal to 0 indicates that no sample outside the picture boundaries and no sample at a fractional sample position for which the samplevalue is derived using one or more samples outside the picture boundaries is used forinter prediction of any sample. motion_vectors_over_pic_boundaries_flag equal to 1 indicates that one or more samples outside picture boundaries may be used in inter prediction. When the motion_vectors_over_pic_boundaries_flag syntax element is not present, motion_vectors_over_pic_boundaries_flag value shall be inferred to be equal to 1.

max_bytes_per_pic_denom indicates a number of bytes not exceeded by the sum of the sizes of the VCL NAL units associated with any coded picture in the coded video sequence.
The number of bytes that represent a picture in the NAL unit stream is specified for this purpose as the total number of bytes of VCL NAL unit data (i.e., the total of the NumBytesInNALunit variables for the VCL NAL units) for the picture. The value of max_bytes_per_pic_denom shall be in the range of 0 to 16, inclusive.

Depending on max_bytes_per_pic_denom the following applies:

–
If max_bytes_per_pic_denom is equal to 0, no limits are indicated.

–
Otherwise (max_bytes_per_pic_denom is not equal to 0), it is a requirement of bitstream conformance that no coded picture shall be represented in the coded video sequence by more than the following number of bytes.

( PicSizeInMbs * RawMbBits ) ( ( 8 * max_bytes_per_pic_denom )
(E-35)

When the max_bytes_per_pic_denom syntax element is not present, the value of max_bytes_per_pic_denom shall be inferred to be equal to 2.

max_bits_per_mb_denom indicates an upper bound for the number of coded bits of macroblock_layer( ) data for any macroblock in any picture of the coded video sequence. The value of max_bits_per_mb_denom shall be in the range of 0 to 16, inclusive.

Depending on max_bits_per_mb_denom the following applies:

–
If max_bits_per_mb_denom is equal to 0, no limit is specified by this syntax element.

–
Otherwise (max_bits_per_mb_denom is not equal to 0), it is a requirement of bitstream conformance that no coded macroblock_layer( ) shall be represented in the bitstream by more than the following number of bits.

( 128 + RawMbBits ) ( max_bits_per_mb_denom

(E-36)

The bits of macroblock_layer( ) data are counted as follows:

–
the number of bits of macroblock_layer( ) data is given by the number of bits in the macroblock_layer( ) syntax structure for a macroblock.

When the max_bits_per_mb_denom is not present, thevalue of max_bits_per_mb_denom shall be inferred to be equal to 1.

log2_max_mv_length_horizontal and log2_max_mv_length_vertical indicate the maximum absolute value of a decoded horizontal and vertical motion vector component, respectively, in ¼ luma sample units, for all pictures in the coded video sequence. A value of n asserts that no value of a motion vector component shall exceed the range from −2n to 2n − 1, inclusive, in units of ¼ luma sample displacement. The value of log2_max_mv_length_horizontal shall be in the range of 0 to 16, inclusive. The value of log2_max_mv_length_vertical shall be in the range of 0 to 16, inclusive. When log2_max_mv_length_horizontal is not present, the values of log2_max_mv_length_horizontal and log2_max_mv_length_vertical shall be inferred to be equal to 16.

NOTE 11 – The maximum absolute value of a decoded vertical or horizontal motion vector component is also constrained by profile and level limits as specified in Annex A.
max_num_reorder_frames indicates an upper bound for the number of frames buffers, in the decoded picture buffer (DPB), that are required for storing frames before output. It is a requirement of bitstream conformance that the maximum number of frames that precede any frame in the coded video sequence in decoding order and follow it in output ordershall be less than or equal to max_num_reorder_frames. The value of max_num_reorder_frames shall be in the range of 0 to max_dec_frame_buffering, inclusive. When the max_num_reorder_frames syntax element is not present, the value of max_num_reorder_frames value shall be inferred as follows:

–
If profile_idc is equal to 44, 86, 100, 110, 122, or 244 and constraint_set3_flag is equal to 1, the value of max_num_reorder_frames shall be inferred to be equal to 0.

–
Otherwise (profile_idc is not equal to 44, 86, 100, 110, 122, or 244 or constraint_set3_flag is equal to 0), the value of max_num_reorder_frames shall be inferred to be equal to MaxDpbFrames.

max_dec_frame_buffering specifies the required size of the HRD decoded picture buffer (DPB) in units of frame buffers. It is a requirement of bitstream conformance that the coded video sequence shall not require a decoded picture buffer with size of more than Max( 1, max_dec_frame_buffering ) frame buffers to enable the output of decoded pictures at the output timesspecified by dpb_output_delay of the picture timing SEI messages. The value of max_dec_frame_buffering shall be greater than or equal to max_num_ref_frames. An upper boundfor the value of max_dec_frame_buffering is specified by the level limits in subclauses A.3.1, A.3.2.

When the max_dec_frame_buffering syntax element is not present, the value of max_dec_frame_buffering shall be inferred as follows:

–
If profile_idc is equal to 44, 86, 100, 110, 122, or 244 and constraint_set3_flag is equal to 1, the value of max_dec_frame_buffering shall be inferred to be equal to 0.

–
Otherwise (profile_idc is not equal to 44, 86, 100, 110, 122, or 244 or constraint_set3_flag is equal to 0), the value of max_dec_frame_buffering shall be inferred to be equal to MaxDpbFrames.
E.2.2 HRD parameters semantics

The syntax category of the HRD parameters syntax structure shall be inferred as follows:

–
If the HRD parameters syntax structure is not part of an SEI message, the syntax category of the HRD parameters syntax structure is inferred to be equal to 0.

cpb_cnt_minus1 plus 1 specifies the number of alternative CPB specifications in the bitstream. The value of cpb_cnt_minus1 shall be in the range of 0 to 31, inclusive. When low_delay_hrd_flag is equal to 1, cpb_cnt_minus1 shall be equal to 0. When cpb_cnt_minus1 is not present, it shall be inferred to be equal to 0.

bit_rate_scale (together with bit_rate_value_minus1[ SchedSelIdx ]) specifies the maximum input bit rate of the SchedSelIdx-th CPB.

cpb_size_scale (together with cpb_size_value_minus1[ SchedSelIdx ]) specifies the CPB size of the SchedSelIdx-th CPB.
bit_rate_value_minus1[ SchedSelIdx ] (together with bit_rate_scale) specifies the maximum input bit rate for the SchedSelIdx‑th CPB. bit_rate_value_minus1[ SchedSelIdx ] shall be in the range of 0 to 232 − 2, inclusive. For any SchedSelIdx > 0, bit_rate_value_minus1[ SchedSelIdx ] shall be greater than bit_rate_value_minus1[ SchedSelIdx − 1 ]. The bit rate in bits per second is given by
BitRate[ SchedSelIdx ] = ( bit_rate_value_minus1[ SchedSelIdx ] + 1 ) * 2(6 + bit_rate_scale)
(E-37)

When the bit_rate_value_minus1[ SchedSelIdx ] syntax element is not present, the value of BitRate[ SchedSelIdx ] shall be inferred as follows:

–
If profile_idc is equal to 66, 77, or 88, BitRate[ SchedSelIdx ] shall be inferred to be equal to 1000 * MaxBR for VCL HRD parameters and to be equal to 1200 * MaxBR for NAL HRD parameters, where MaxBR is specified in subclause A.3.1.

–
Otherwise, BitRate[ SchedSelIdx ] shall be inferred to be equal to cpbBrVclFactor * MaxBR for VCL HRD parameters and to be equal to cpbBrNalFactor * MaxBR for NAL HRD parameters, where MaxBR is specified in subclause A.3.1 and cpbBrVclFactor and cpbBrNalFactor are specified in subclause A.3.3 (for profiles specified in Annex A).

cpb_size_value_minus1[ SchedSelIdx ] is used together with cpb_size_scale to specify the SchedSelIdx-th CPB size. cpb_size_value_minus1[ SchedSelIdx ] shall be in the range of 0 to 232 − 2, inclusive. For any SchedSelIdx greater than 0, cpb_size_value_minus1[ SchedSelIdx ] shall be less than or equal to cpb_size_value_minus1[ SchedSelIdx −1 ].
The CPB size in bits is given by
CpbSize[ SchedSelIdx ] = ( cpb_size_value_minus1[ SchedSelIdx ] + 1 ) * 2(4 + cpb_size_scale)
(E-38)

When the cpb_size_value_minus1[ SchedSelIdx ] syntax element is not present, the value of CpbSize[ SchedSelIdx ] shall be inferred as follows:

–
If profile_idc is equal to 66, 77, or 88, CpbSize[ SchedSelIdx ] shall be inferred to be equal to 1000 * MaxCPB for VCL HRD parameters and to be equal to 1200 * MaxCPB for NAL HRD parameters, where MaxCPB is specified in subclause A.3.1.

–
Otherwise, CpbSize[ SchedSelIdx ] shall be inferred to be equal to cpbBrVclFactor * MaxCPB for VCL HRD parameters and to be equal to cpbBrNalFactor * MaxCPB for NAL HRD parameters, where MaxCPB is specified in subclause A.3.1 and cpbBrVclFactor and cpbBrNalFactor are specified in subclause A.3.3 (for profiles specified in Annex A).

cbr_flag[ SchedSelIdx ] equal to 0 specifies that to decode this bitstream by the HRD using the SchedSelIdx-th CPB specification, the hypothetical stream delivery scheduler (HSS) operates in an intermittent bit rate mode. cbr_flag[ SchedSelIdx ] equal to 1 specifies that the HSS operates in a constant bit rate (CBR)mode. When the cbr_flag[ SchedSelIdx ] syntax element is not present, the value of cbr_flag shall be inferred to be equal to 0.

initial_cpb_removal_delay_length_minus1 specifies the length in bits of the initial_cpb_removal_delay[ SchedSelIdx ] and initial_cpb_removal_delay_offset[ SchedSelIdx ] syntax elements of the buffering period SEI message. The length of initial_cpb_removal_delay[ SchedSelIdx ] and of initial_cpb_removal_delay_offset[ SchedSelIdx ] is initial_cpb_removal_delay_length_minus1 + 1. When the initial_cpb_removal_delay_length_minus1 syntax element is present in more than one hrd_parameters( ) syntax structure within the VUI parameters syntax structure, the value of the initial_cpb_removal_delay_length_minus1 parameters shall be equal in both hrd_parameters( ) syntax structures. When the initial_cpb_removal_delay_length_minus1 syntax element is not present, it shall be inferred to be equal to 23.

cpb_removal_delay_length_minus1 specifies the length in bits of the cpb_removal_delay syntax element. The length of the cpb_removal_delay syntax element of the picture timing SEI message is cpb_removal_delay_length_minus1 + 1. When the cpb_removal_delay_length_minus1 syntax element is present in more than one hrd_parameters( ) syntax structure within the VUI parameters syntax structure, the value of the cpb_removal_delay_length_minus1 parameters shall be equal in both hrd_parameters( ) syntax structures. When the cpb_removal_delay_length_minus1 syntax element is not present, it shall be inferred to be equal to 23.

dpb_output_delay_length_minus1 specifies the length in bits of the dpb_output_delay syntax element. The length of the dpb_output_delay syntax element of the picture timing SEI message is dpb_output_delay_length_minus1 + 1. When the dpb_output_delay_length_minus1 syntax element is present in more than one hrd_parameters( ) syntax structure within the VUI parameters syntax structure, the value of the dpb_output_delay_length_minus1 parameters shall be equal in both hrd_parameters( ) syntax structures. When the dpb_output_delay_length_minus1 syntax element is not present, it shall be inferred to be equal to 23.

time_offset_length greater than 0 specifies the length in bits of the time_offset syntax element. time_offset_length equal to 0 specifies that the time_offset syntax element is not present. When the time_offset_length syntax element is present in more than one hrd_parameters( ) syntax structure within the VUI parameters syntax structure, the value of the time_offset_length parameters shall be equal in both hrd_parameters( ) syntax structures. When the time_offset_length syntax element is not present, it shall be inferred to be equal to 24.
Document type:   International Standard
Document subtype:    REF DDDocSubType \* CHARFORMAT  
Document stage:   (30) Committee
Document language:   E
STD Version 2.1c2

_1110463920.unknown

_1192284031.vsd
0


1


2


3



_1262687929.unknown

_1262688115.unknown

_1269940290.unknown

_1278750758.unknown

_1279048144.unknown

_1279048201.unknown

_1269940317.unknown

_1267009716.unknown

_1262687956.unknown

_1262688103.unknown

_1262687941.unknown

_1262687894.unknown

_1262687910.unknown

_1262685233.vsd
access unit delimiter


SEI


primary coded picture


redundant coded picture


end of sequence


end of stream


start


end


auxiliary coded picture



_1110468247.unknown

_1110468581.unknown

_1142746814.vsd
Vertical Edges�

Horizontal Edges�


_1154252771.unknown

_1115272819.unknown

_1110524671.vsd
�

�

Type I HRD�conformance point�

Type II HRD conformance point when not using�byte stream format�

VCL NAL units�

Non-VCL NAL units other than filler data NAL units�

Type II HRD conformance point when using�byte stream format�

�

Filler data NAL units�

Byte stream format encapsulation�(see Annex B)�

�

�


_1110468372.unknown

_1110468535.unknown

_1110468344.unknown

_1110464158.unknown

_1110464194.unknown

_1110464102.unknown

_1106542585.unknown

_1109099599.vsd
A�

B�

C�

D�

xFracC�

yFracC�

8-xFracC�

8-yFracC�


_1109748365.vsd
Current
Macroblock
or Partition
or Block�

A�

B�

C�

D�


_1110429470.vsd
Hypothetical stream scheduler (HSS)�

Coded picture buffer (CPB)�

Decoding process (instantaneous) �

Output cropping�

Decoded picture buffer (DPB)�

Type I or type II bitstream�

Access units�

Fields or frames�

Fields or frames�

Reference�fields or frames�

Output cropped fields or frames�


_1106573561.vsd
0�

1�

4�

5�

2�

3�

6�

7�

8�

9�

12�

13�

10�

11�

14�

15�

00�

01�

02�

03�

10�

11�

12�

13�

20�

21�

22�

23�

30�

31�

32�

33�


_1106573975.vsd
0�

1�

2�

3�

00�

01�

10�

11�


_1106572844.vsd
0�

1�

4�

5�

2�

3�

6�

7�

8�

9�

12�

13�

10�

11�

14�

15�


_1106410984.unknown

_1106410858.unknown

_1106410900.unknown

_1103640158.vsd
= Chroma sample type 0�

�

�

= Chroma sample type 2�

�

= Chroma sample type 1�

= Chroma sample type 3�

= Chroma sample type 4�

= Chroma sample type 5�

= Luma sample top field�

= Luma sample bottom field�

Luma sample position indications:�

Chroma sample position indications,�where gray fill indicates a bottom field sample type�and no fill indicates a top field sample type:�

Interpretation of symbols:�

...�

...�


_1103718699.doc


0







Sub-macroblock







partitions







0







1







0







1







0







1







2







3







0







0







1







0







1







0







2







1







3







1 macroblock partition of







16*16 luma samples and







associated chroma samples







Macroblock







partitions







2 macroblock partitions of







16*8 luma samples and







associated chroma samples







4 sub-macroblocks of







8*8 luma samples and







associated chroma samples







2 macroblock partitions of







8*16 luma samples and







associated chroma samples







1 sub-macroblock partition







of 8*8 luma samples and







associated chroma samples







2 sub-macroblock partitions







of 8*4 luma samples and







associated chroma samples







4 sub-macroblock partitions







of 4*4 luma samples and







associated chroma samples







2 sub-macroblock partitions







 of 4*8 luma samples and







associated chroma samples












_1101456132.vsd

