

INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC1/SC29/WG11
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11 N15729
October 2015, Geneva, CH

	Source
	Requirements

	Status
	Approved

	Title
	Evaluation Framework for Compact Descriptors for Video Analysis - Search and Retrieval – Version 2.0

Introduction
This document outlines an evaluation framework (version 2.0) for assessing the responses to the Call for Proposals on Compact Descriptors for Video Analysis addressing Search and Retrieval applications [1]. It focuses on scenarios of visual search in video, primarily in the media and entertainment domain. Please note that further updates to the CDVA Evaluation Framework may be issued in the future, so users are advised to check the latest MPEG output documents to ensure the use the latest version.

Objectives and definitions of terms
The evaluation framework is designed to assess the performance of descriptors in the task of identifying scenes and views of objects in a database of videos. The objects of interest comprise planar or non-planar, rigid or partially rigid, textured or partially textured objects. The objective excludes identification of people and faces as there are existing methods and standards specifically addressing these functionalities. The databases can be large, for example broadcast archives or videos available on the Internet.

The following definitions and terms are used throughout this document.

Query images or videos / Query set: images or videos used to initiate search.

Reference videos / Reference set: videos containing views of objects or scenes intended to be identified.

Distractor videos / Distractor set: videos containing unrelated content w.r.t. query and reference (i.e. no frame contains views of objects or scenes intended to be identified).

Dataset: the query set and reference set.

Database: the dataset and distractor set or their descriptors and associated information.

Database index: file or set of files, enabling fast retrieval of all database items (including distractors).

Relevant videos or video segments: reference videos or segments in video that contain view(s) of object(s) or the scene present in the query.

Identified video segments: list of all video segments returned in response to a query request. This will include video material ID, and start/end frame for the segment.

Precision: the ratio between the number of relevant items among all identified items and the number of identified items, where items are video segments.

Recall: the ratio between the number of relevant items among the identified items and the total number of relevant items, where items are video segments.

Rank: position of an item in the ranked list of identified items, where items are video segments.

Precision at a given cut-off rank r for a single query:
P(r) = (number of relevant items of rank r or less) / r

Recall at a given cut-off rank r for a single query:
R(r) = (number of relevant items of rank r or less) / (number of relevant items)

Average precision: defined as follows

where N is the number of identified items, R is the number of relevant items, and rel(r) = 1 if item at rank r is relevant, 0 otherwise.

Mean average precision: average precision for a set of queries is defined as follows:

where Q is the number of queries.

Success rate for top match: (number of times the top identified item is relevant) / (number of queries).

Spatio-temporal Localization information: description of temporal and spatial location of objects within the reference and query videos. Please note that version 1 of the CVDA Evaluation Framework does not specify spatial locations of objects, but spatial location may be specified in subsequent revisions of the evaluation frameworks.
Datasets and annotations
Original videos and images
The evaluation will be conducted on 5,388 videos and images depicting 796 items of interest across three different categories, namely large objects, small objects and scenes. The videos have durations of between 1 sec to 1 min+. Table 1 summarises the numbers of items of interest and their instances, i.e. their videos and images, for each category. This summery is for information purposes only, as this categorisation is not used in the evaluation framework.

Table 1. Number of Items and Instances across Categories.
	Category
	Items of interest
	Instances

	
	
	Videos
	Images

	Large objects *1
	489
	3021
	50

	Small objects *2
	236
	1707
	180

	Scenes *3
	71
	400
	30

	Total
	796
	5128
	260

*1 Stationary large objects e.g. buildings, landmarks (most likely background objects, possibly partially occluded or a close-up).
*2 Generally smaller items (e.g. paintings, books, CD covers, products) which typically appear in front of background scenes, possibly occluded.
*3 Scenes (e.g. interior scenes, natural scenes, multi-camera shots, etc.). General camera recordings showing the same scenes or actions from different view-points.

Table 2 shows the compositions of the original videos and images in terms of Broadcast and User-Generated Content (UGC).

Table 2. Number of Items and Instances for Broadcast and UGC.
	Type
	Items of interest
	Instances

	
	
	Videos
	Images

	Broadcast
	181
	1283
	0

	UGC
	615
	3845
	260

	Total
	796
	5128
	260

Query set
All images for the items of interest are used as query images.
For the videos, the original videos of ~80% of the items of interest were embedded in unrelated content of duration 5-30 seconds before the original video and 5-30 seconds after the original video to create partial queries, and the original videos of the remaining ~20% of the items of interest were not embedded in unrelated content, giving direct queries. It should be noted that the CDVA evaluation framework does not distinguish between direct and partial queries and that proposed methods should be able to cope with both types without prior knowledge of whether a query is direct or partial.
Then, the query videos of ~20% (~5% for camcording) of the items of interest were modified according to Table 3, to produce modified queries. It should be noted that the CDVA evaluation framework does not distinguish between unmodified and modified queries and that proposed methods should be able to cope with both types without prior knowledge of whether a query is modified or not.
Table 4 summarises the query set.

Table 3. Query video modifications.
	Modification
	Strength

	Text/Logo overlay
	~20% of screen area

	Frame rate
	7 fps

	Interlaced/Progressive Conversion
	PIP or IP

	Transcoding
	MPEG-2 SD @ 512kbps

	Color to monochrome and contrast change
	20% contract increase

	Add grain
	fine motion picture grain (modern 35mm material), monochrome, signal dependent (stronger on mid tones)

	Captured displayed content
	"Zoom out": Clips should be at least 20% of area
"Zoom in": At least 50% of clip should be visible

Table 4. Query set.
	Type
	Items of interest
	Instances

	
	
	Videos
	Images

	Unmodified
(Direct & Partial)
	796
	5029
	260

	Modified
(Direct & Partial)
	123
	4686
	0

	Total
	796
	9715
	260

Reference set
No images for the items of interest are used as references.
For the videos, the original videos of ~80% of the items of interest were embedded in unrelated content (different to that used in the queries) of duration 5-30 seconds before the original video and 5-30 seconds after the original video to create partial references, and the original videos of the remaining ~20% of the items of interest were not embedded in unrelated content, giving direct references. It should be noted that the CDVA evaluation framework does not distinguish between direct and partial references and that proposed methods should be able to cope with both types without prior knowledge of whether a reference is direct or partial.
No modifications were applied to the reference videos.
Table 5 summarises the reference set.

Table 5. Reference set.
	Type
	Items of interest
	Instances

	
	
	Videos
	Images

	All
	796
	5128
	0

Distractor set
The database for retrieval experiments is formed by the reference set and the distractor set, which consist of content unrelated to the relevant items. Table 6 summarises the distractor set.

 Table 6. Distractor set.
	Source
	Videos
	Type

	MediaEval Blip
	4701
	UGC

	OpenImages.eu (various collections)
	3789
	Broadcast, archival, education

Annotations
Temporal localisation annotations are provided for all videos in the query and reference set at the shot or group of shots level.
Spatial localisation annotations are not provided in version 2.0 of the evaluation framework, but may be provided in subsequent releases.

Experiment setup
The performance of proposals will be evaluated using two types of experiments:
· retrieval experiment, and
· pairwise matching experiment.
Retrieval experiment
The retrieval experiment is intended to assess performance of proposals in the context of a video retrieval system. The block diagram of this process is shown in Figure 1.

[image:]
Figure 1. Retrieval experiment setup.

Descriptors for the query set are extracted. The reference set and the distractor set are used to create a database index. The database index and a descriptor of each query are used to perform retrieval operations. The pipeline returns results in the form of a ranked list of matches in the database. This list as well as ground truth information are used to compute retrieval performance.
Pairwise matching experiment
The pairwise matching experiment is intended for assessing performance of proposals in the context of an application that uses descriptors for the purpose of video/image content matching, that is detection of relevant object in video/image. The overall scheme of this experiment is shown in Figure 2.

[image:]
Figure 2. Pairwise matching experiment setup.

Pairwise matching is performed for videos in the query set against matching and non-matching videos in the reference set. The result of pairwise matching is a match / no match decision, and is then compared to ground truth. If ground-truth spatial and temporal localization data are provided, the accuracy of localization is also assessed.
Performance measurements

This section describes performance measures to be used in the CDVA Evaluation Framework. To ensure fair and consistent comparison, MPEG has prepared a comprehensive evaluation framework software, which proponents must use in order to respond to this CfP. The evaluation framework software is attached to this document.
Descriptor lengths
The performance of proposals will be assessed for the following operating points (upper bounds on average descriptor lengths across all query clips):

· 16KB, 64KB and 256KB per second of video content

It must be understood that descriptors generated at any one of these operating points should allow retrieval and matching operations with descriptors generated at different operating points.

This will be tested using pairwise matching experiments with descriptors generated at the following combination of lengths:

· 16KB against 256KB

All reported results will be considered in assessing overall performance of proposal.

Average lengths of descriptors at each operating point shall be reported. The worst case length of descriptors shall also be reported.
Performance characteristics
The information about performance of proposals shall be provided using the following set of measures.

Retrieval performance
· Mean Average Precision (mAP), used as a primary measure.
· Precision at r, where r is the number of reference clips for each query, used as a secondary measure.

Pairwise matching performance
· Success rate at given false alarm rate (target false alarm rate is specified below).
· Temporal localisation, reported as the ratio of the duration of the intersection of the detected and actual matching temporal intervals over the duration of the union of the detected and actual matching temporal intervals.

where:
· for the NMF (segments not containing query object):
· False positive rate (false alarm rate) = FP / (FP+TN)
· for the MF (segments matching the query object):
· True positive rate (success rate) = TP / (TP + FN)

	where: TP the number of true positives FP the number of false positives
		TN the number of true negatives FN the number of false negatives

For initial evaluation of proposals the target false alarm rate is set to 1%.

It must be understood that for some applications CDVA descriptors should support operation at lower false alarm rates. Therefore evaluations at lower false alarm rates may be introduced during core experiment stage.
Complexity measurements
Complexity shall be measured by proponents using retrieval and verification experiments, reporting the following characteristics:
· average time and peak memory usage of descriptor extraction
· average time and peak memory usage of retrieval
· average time and peak memory usage of pairwise matching
[bookmark: OLE_LINK3]
These numbers shall be reported for all bitrates used for evaluation of performance, the report shall also include specification of the machine used for experiments.

The timing shall be measured when execution (affinity mask) is constrained to a single thread/ single CPU operation. Time measurements functions to be used are provided in C/C++ example modules in the evaluation software.

All complexity measurements will be verified on-site during 114th MPEG meeting by compiling from source and running on a reference platform. The reference platform shall consist of a desktop workstation with a single i7 6-core CPU (Intel 5930K), 32GB of RAM and 1TB SSD/8TB HDD. For time measurements processing should be performed only on the CPU without GPU acceleration.

Timings will be evaluated on appropriately selected subsets of data, which will be provided with the evaluation scripts.

The following limits for average time numbers on the reference platform must be met:
· extraction time: must not exceed 10 seconds per second of decoded video content.
· pairwise matching time: must not exceed 1 second per pair.
· retrieval time: must not exceed 60 seconds per query.

Only proposals that meet these limits will be further considered, and the decision on which one to select will be based mostly on accuracy characteristics. Complexity information will be used to decide among best performing proposals but only as a secondary characteristic.
Evaluation Framework Software

The Evaluation Framework Software is composed by four parts:
1. the “cdva” source code, which provides the C++ framework for the pairwise matching and retrieval experiments implementation;
2. the Perl scripts to execute the pairwise matching and retrieval experiments;
3. the Matlab/Octave scripts that analyze the output files provided by the “cdva” executable;
4. the scripts to execute complexity measurements, i.e. tests on speed and memory usage of proposals.

The “cdva” code is compliant to both C++98 and C++11, and can be compiled and runs on both Linux and Windows, using Perl scripts to execute the CDVA experiments (assuming a Perl engine is installed on the target machine). All Matlab scripts can run on Windows and Linux as well, and we have verified that they can also run on Octave, a tool distributed under the terms of the GNU General Public License. Scripts to execute speed and memory tests are Linux and Windows-specific.
Part 1: the “cdva” command line
The cdva source code provides a C++ environment for the implementation of CDVA proposals on either Windows or Linux. Moreover, if run without parameters, it provides a usage help for the end user:

	$ cdva
Usage: cdva <subcommand> [args] [options]
CDVA command-line client, version 1.0
Type 'cdva help <subcommand>' for help on a specific subcommand.

Available subcommands:
 extract
 match
 retrieve

CDVA is an acronym for 'Compact Descriptors for Video Analysis'.
For additional information, see http://wg11.sc29.org/

The three subcommands “extract”, “match” and “retrieve” are sufficient to perform the CDVA pairwise matching and retrieval experiments.

The parameters needed by each subcommand are explained by the usage help message:

	$ cdva help extract
CDVA extraction module: encode video information into a CDVA descriptor.
Usage:
 cdva extract <vlist> <bitrate> [-c][-h][-t][-d][-v]
where:
 vlist - text file containing the relative pathname of the video files to process (one file name per line)
 bitrate (0, 16, 64, 256) - bit rate of descriptors in KB/s (0 = unconstrained)
options:
 -c: generate CSV file
 -h: generate HTML file
 -t: text output
 -d: dry run, try operation but make no changes
 -v: verbose

	$ cdva help match
CDVA descriptor matching module: computes the probability (score) that two videos share the same visual object
Usage:
 cdva match <vlist> <query_bitrate> <reference_bitrate> [-c][-h][-t][-d][-v]
where:
 vlist - text file containing the relative pathname of the video files to match (two file names per line)
 query_bitrate (16, 64, 256) - use query descriptors of this type
 reference_bitrate (16, 64, 256) - use reference descriptors of this type
options:
 -c: generate CSV file
 -h: generate HTML file
 -t: text output
 -d: dry run, try operation but make no changes
 -v: verbose

	$ cdva help retrieve
CDVA retrieval module.
Usage:
 cdva retrieve <queries> <bitrate> <index> <idxrate> [-c][-h][-t][-d][-v]
where:
 queries - text file containing the relative pathnames of the query video files to process (one file name per line)
 bitrate (16, 64, 256) - bit rate of query descriptors in KB/s
 index - text file containing the relative pathnames of the reference descriptors (one file per line)
 idxrate (0, 16, 64, 256) - bit rate of reference descriptors in KB/s
options:
 -c: generate CSV file
 -h: generate HTML file
 -t: text output
 -d: dry run, try operation but make no changes
 -v: verbose

All cdva subcommands can export their evaluation data in three formats: CVS, HTML and text. While text is output to the console, CSV and HTML formatted data are directly stored into files, with automatic naming of the files depending from the input parameters (dataset name, bitrate).

The code can manage multiple simultaneous outputs, for example:

	cdva extract ~/cdva/Queries.txt 64 -c -t
output format: TEXT; printing to standard output.
output format: CSV; output log file: Queries.64K.csv
[1/4]: CTurin180/object044.camera1.video1.3gp (254 frames, 8.53782 s, 29.75 fps) -> 76.551 [bytes], 8.96612 [byte/s]
[2/4]: CTurin180/object089.camera1.video1.3gp (316 frames, 10.6218 s, 29.75 fps) -> 2271.66 [bytes], 213.866 [byte/s]
[3/4]: CTurin180/object134.camera1.video1.3gp (286 frames, 9.64045 s, 29.6667 fps) -> 1287.5 [bytes], 133.552 [byte/s]
[4/4]: CTurin180/object179.camera1.video1.3gp (315 frames, 10.5882 s, 29.75 fps) -> 449.601 [bytes], 42.4623 [byte/s]

Finally, the -d option allows to perform a dry run of an experiment; in this case no changes are actually done, but the code will open all the annotation files as if it were processing the data. This is useful to check that no annotation file is missing on a target execution environment, before actually running an experiment. Any ouput is suppressed when performing a dry run, therefore the -c and -h options are ignored; while the -t option is enforced.
Part 2: Perl scripts
Two scripts are used to carry out the experiments:

· run-pairwise-matching.pl
· run-retrieval.pl

Preparing the environment for running
In order to execute correctly, the first script to run must be the pairwise matching. Moreover, the following variable must modified in the setenv.pl script (which is used by run-pairwise-matching.pl and run-retrieval.pl), to correctly locate the directory where the CDVA dataset is stored:

	$BASEDIR = $isWindows ? "F:/cdva" : "/media/mbdata/cdva";

The $BASEDIR directory must contain the following annotation files used by run-pairwise-matching.pl:
· Queries.txt
· References.txt
· MatchingPairs.txt
· NonMatchingPairs.txt

and the following annotation files used by run-retrieval.pl:
· Retrieval.txt - list of query videos;
· Database.txt - list of references and distractors videos to be loaded in the index database;

Each video clip must be identified in the annotation text files as a relative pathname to $BASEDIR, using slashes (not backslashes) to descend directories, as in the following example database index annotation:

	#
list of reference descriptors to be stored in the Database index.
#
CTurin180/object079.camera1.video1.3gp
CTurin180/object115.camera1.video1.3gp

In this case, assuming the above definition of $BASEDIR, the cdva code will try to store the descriptors extracted from the following videos in the database index:
1. on Windows:
		F:/cdva/CTurin180/object079.camera1.video1.3gp
		F:/cdva/CTurin180/object115.camera1.video1.3gp
2. on Linux:
		/media/mbdata/cdva/CTurin180/object079.camera1.video1.3gp
		/media/mbdata/cdva/CTurin180/object115.camera1.video1.3gp

Lines starting with '#' are ignored (this allows comments in the annotation files).
Lines starting with '@' are interpreted as sub-annotations files to be included; for example:

	#
include references and distractors to be stored in the Database index.
#
@ References.txt
@ Distractors.txt
#
other (more complex) examples:
#
@CTurin180/videos.txt
@OtherVideos/Houses/all.txt

In this case the cdva executable will read all files listed in References.txt, Distractors.txt, CTurin180/videos.txt and OtherVideos/Houses/all.txt and merge them in a single list with the correct relative pathname (the relative path of each query and reference filename contained in videos.txt and all.txt will be corrected prepending the CTurin180 and OtherVideos/Houses path; the pathnames contained in References.txt and Distractors.txt will not be changed). This mechanism allows to build incrementally a very large annotation file by just referencing sub-annotation files.
Running the scripts
The setenv.pl script can be run in advance to check that all annotation files are readable. When no error messages are printed by the script, all annotation files are in place and correctly readable, and running the run-pairwise-matching.pl script will produce the following output:

./run-pairwise-matching.pl
cdva extract /home/mpeg/cdva/Queries.txt 16 -c
cdva extract /home/mpeg/cdva/Queries.txt 64 -c
cdva extract /home/mpeg/cdva/Queries.txt 256 -c
cdva extract /home/mpeg/cdva/References.txt 16 -c
cdva extract /home/mpeg/cdva/References.txt 64 -c
cdva extract /home/mpeg/cdva/References.txt 256 -c
Extraction running;
output format: CSV; output log file: References.16K.csv
output format: CSV; output log file: References.64K.csv
output format: CSV; output log file: References.256K.csv
output format: CSV; output log file: Queries.16K.csv
output format: CSV; output log file: Queries.256K.csv
output format: CSV; output log file: Queries.64K.csv
cdva match /home/mpeg/cdva/MatchingPairs.txt 16 16 -c
cdva match /home/mpeg/cdva/MatchingPairs.txt 64 64 -c
cdva match /home/mpeg/cdva/MatchingPairs.txt 256 256 -c
cdva match /home/mpeg/cdva/MatchingPairs.txt 16 256 -c
cdva match /home/mpeg/cdva/NonMatchingPairs.txt 16 16 -c
cdva match /home/mpeg/cdva/NonMatchingPairs.txt 64 64 -c
cdva match /home/mpeg/cdva/NonMatchingPairs.txt 256 256 -c
cdva match /home/mpeg/cdva/NonMatchingPairs.txt 16 256 -c
Match running;
output format: CSV; output log file: MatchingPairs.256K.csv
output format: CSV; output log file: MatchingPairs.16K.csv
output format: CSV; output log file: MatchingPairs.64K.csv
output format: CSV; output log file: NonMatchingPairs.16K.csv
output format: CSV; output log file: NonMatchingPairs.64K.csv
output format: CSV; output log file: NonMatchingPairs.256K.csv
output format: CSV; output log file: NonMatchingPairs.16K_256K.csv
output format: CSV; output log file: MatchingPairs.16K_256K.csv
Done.

Then, running the run-retrieval.pl script will produce the following output:

./run-retrieval.pl
Extract running on Database.txt;
cdva extract /home/mpeg/cdva/Database.txt 0 -c
output format: CSV; output log file: Database.DB.csv
cdva retrieve /home/mpeg/cdva/Retrieval.txt 16 /home/mpeg/cdva/Database.txt 0 -c
cdva retrieve /home/mpeg/cdva/Retrieval.txt 64 /home/mpeg/cdva/Database.txt 0 -c
cdva retrieve /home/mpeg/cdva/Retrieval.txt 256 /home/mpeg/cdva/Database.txt 0 -c
Retrieval running;
output format: CSV; output log file: Retrieval.256K.csv
output format: CSV; output log file: Retrieval.64K.csv
output format: CSV; output log file: Retrieval.16K.csv
Done.

The output files produced by the scripts will be read by the Matlab scripts to evaluate the performances of the cdva implementation under test:

Database.DB.csv NonMatchingPairs.16K.csv References.16K.csv
MatchingPairs.16K_256K.csv NonMatchingPairs.256K.csv References.256K.csv
MatchingPairs.16K.csv NonMatchingPairs.64K.csv References.64K.csv
MatchingPairs.256K.csv Queries.16K.csv Retrieval.16K.csv
MatchingPairs.64K.csv Queries.256K.csv Retrieval.256K.csv
NonMatchingPairs.16K_256K.csv Queries.64K.csv Retrieval.64K.csv
Part 3: Matlab scripts
The Matlab/Octave script analyzes the output CSV files provided by the execution of the pairwise matching and retrieval experiments and produces a graphical report containing the results of all checks and information about performance of proposals.
Requirements
The Matlab script and associated functions have been tested on MATLAB R2015a and on GNU Octave 4.0.0 on both Windows and Linux. Older versions of Matlab may work, but have not been tested. The previous version of GNU Octave (version 3.8) is not sufficient to run the script.
Running the script
The Matlab script assumes that the output files produced by “cdva” are placed where the Perl scripts store them by default, i.e. in the “CDVA_evaluation_framework/run” directory. A ground truth file in CSV format named “Retrieval.GT.csv” is stored in the same place. To run the script in MATLAB or Octave, use “CDVA_evaluation_framework/Matlab” as working directory; then run “cdva_eval”. The script will produce the following output (numbers in the example are just random data):

	>> cdva_eval
 Descriptor lengths (Bps): 16K 64K 256K
 Query average lengths: 73.84 73.84 99.71
 Query max lengths: 132.78 132.78 213.87
 Reference average lengths: 156.94 156.94 156.94
 Reference max lengths: 232.81 232.81 232.81

 Retrieval performance at: 16K 64K 256K
 Mean average precision: 0.173 0.173 0.173
 Precision at r: 0.000 0.000 0.000

Pairwise matching performance at: 16K 64K 256K 16K_256K
 Success rate at 1%: 0.500 0.500 0.500 0.500
 Temporal localisation: 0.322 0.412 0.467 0.402
>>

The script will also display a ROC (Receiver Operating Characteristic) diagram showing pairwise matching performance at True Negative rates from 0.95 to 1:

[image:]

Figure 1. Examples of ROC graphs produced by the framework

Part 4: Complexity Measurements
Linux

Complexity in terms of processing time is measured using perf, a Linux kernel tool which uses CPU hardware registers that count hardware events such as instructions executed, cache-misses suffered, or branches mispredicted; an example output of perf is the following:

	Performance counter stats for 'cdva extract /home/cdva/Queries.test.txt 256':

 1198.310289 task-clock (msec) # 1.415 CPUs utilized
 19,840 context-switches # 0.017 M/sec
 738 cpu-migrations # 0.616 K/sec
 9,553 page-faults # 0.008 M/sec
 2,860,655,568 cycles # 2.387 GHz [85.90%]
 1,581,184,766 stalled-cycles-frontend # 55.27% frontend cycles idle [83.50%]
 796,347,716 stalled-cycles-backend # 27.84% backend cycles idle [62.78%]
 3,646,879,061 instructions # 1.27 insns per cycle
 # 0.43 stalled cycles per insn [82.41%]
 320,165,614 branches # 267.181 M/sec [84.94%]
 8,774,028 branch-misses # 2.74% of all branches [83.01%]

 0.846991589 seconds time elapsed

Complexity in terms of memory usage can be performed on Linux using the valgrind tool.

The scripts to perform speed and memory tests can be found in the ./test directory:
· setenv.sh: edit and then run this script to set and check the environment for tests; when no error messages are printed, proceed with the following tests;
· run-memory-test.sh: memory checks;
· run-speed-test.sh: processing time complexity test.

In order to run the memory test, the code must be compiled using debugging symbols (e.g. using the g++ option -g).
[bookmark: _GoBack]Windows
TO be provided once framework is completed.
Documentation
Instructions on how to build the code are given in the “CDVA-build-run-instructions.pdf” document that can be found in the ./docs directory. Documentation of the software is available in the “CDVA-reference-manual.pdf” that can be found in the same directory.
Instructions for implementers
All C++ sources can be found in the “src” directory; other source files – if needed - should be added in the same directory or in sub-directories of the same. The methods to be implemented are “extract”, “match” and “retrieve” that can be found in the “CdvaImpl.cpp” file. The “makeindex” method can be used as is, or replaced by a new implementation, as far as it allows to set up a DB of descriptors to be used in the retrieval method as currently implemented.

The results of extract, match and retrieval must be exported for evaluation using the LogManager instance and the MatchData class. Here is an excerpt of the documentation of these two classes:

mpeg7cdva::MatchData Class Reference

A class containing the results of a matching or retrieval operation.

#include <cdva.h>

Public Member Functions

· MatchData ()
· virtual ∼ MatchData ()
· void setMatchingScore (double myscore)
set the score of matching the query image with the reference image
· void setMatchingTime (double time_s)
set the time of each matching frame (only the first and the last will be saved).
· void setReferenceID (const std::string reference)
set the string that identifies the matching reference video clip.
· double getScore () const
Get the matching score.
· double getFirstMatchingTime () const
get the time in seconds indicating the fist matching frame of the query clip.
· double getLastMatchingTime () const
get the time in seconds indicating the last matching frame of the query clip.
· std::string getReferenceId () const
get the string that identifies the matching reference video clip.

mpeg7cdva::LogManager Class Reference

Helper class to produce log files in various formats (csv, text, XML, etc.)
#include <LogManager.h>

Public Member Functions

LogManager ()
constructor
virtual ∼ LogManager ()
destructor
void setVideoDuration (double time)
set the video duration in seconds.
void setNumFrames (double nframes)
set the number of frames of the video clip.
void setDescriptorLength (double length)
set the actual descriptor length (in bytes).

… (other methods not relevant for proposal submission)

A proposal implementation must export the results of extraction, matching and retrieval operation as follows:

in CdvaImpl::extract ()
· call logmanager.setVideoDuration(time) once to set the video clip duration in seconds;
· call logmanager.setNumFrames(numframes) once to set the number of frames in the video clip;
· call logmanager.setDescriptorLength(numbytes) once to set the encoded descriptor length in bytes;

in CdvaImpl::match()
· call matchResults.setMatchingTime(time) each time a frame in the query video matches a frame in the reference video, passing the time (in seconds) from the start of the query video where the match occurs;
· call matchResults.setMatchingScore(score) once passing the overall matching score of the matching operation. The score may be normalized between 0 and 1 but this is not strictly needed;

in CdvaImpl::retrieve()
· use the index Data Base “DB” containing all reference descriptors;
· fill a vector of MatchData results using the following operations for each matching reference descriptor:
· call results.setMatchingScore(score) once for each matching reference descriptor passing the overall matching score of the matching operation. The score may be normalized between 0 and 1 but this is not strictly needed;
· call results.setReferenceID(DB[i].descriptorId) to indicate the matching reference video pathname;
· (optionally) set the matching time as in CdvaImpl::match();
· finally, sort the results by descending score, as in the given example implementation of CdvaImpl.

References

[1]	Call for Proposals for Compact Descriptors for Video Analysis - Search and Retrieval (CDVA), ISO/IEC JTC1/SC29/WG11 N15339, Warsaw, Poland, June 2014.

Page 1 of 20
oleObject1.bin

image2.wmf
(

)

1

1

Q

q

MAPAvePq

Q

=

=

å

oleObject2.bin

image3.png
Query image
or video
segment

Extract Search
descriptors
Extract
descriptors Database:
& descriptors
Build db +index
Index

Rank
search
results

Annotations

image4.png
Query image
or video
segment

Extract
descriptor

Matching
Filter

—

Check
accuracy of
filter

output

Annotations

image5.png
True Positive

CDVA Pairwise matching

09
08
07
06
05
04
03 | ——16K
02| |—64K
——256K
011 ——16K_256K
805 0.96 097 0.98 0.99

True Negative

image1.wmf
(

)

(

)

1

1

rel

N

r

AvePPrr

R

=

=

å

